prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import numpy as np import holidays import statsmodels.formula.api as sm import time from Helper import helper import datetime class DR(object): def __init__(self, dataframe): df = dataframe.copy() self.lm_data = helper.DR_Temp_data_cleaning(df) self.name = 'DR' def set_date(self, date): self.date = date def model_building(self, training_data, station): ml = sm.ols(formula=station + "_Temp_Log~Load_Lag_48+Humi_Lag_48+I(Load_Lag_48**2)+I(Humi_Lag_48**2)+\ Hour+Weekday+Month+Holiday+ RIV_Temp_Log_Lag_48+I(RIV_Temp_Log_Lag_48**2)+\ Month:Load_Lag_48+Month:Humi_Lag_48+\ Hour:Load_Lag_48+Hour:Humi_Lag_48+\ Holiday:Load_Lag_48+Holiday:Humi_Lag_48", data=training_data).fit() return ml def model_selection_mape_rmse(self, station): training_days = 30 date_time = pd.to_datetime(self.date) + datetime.timedelta(hours=7) test_start_date = date_time - datetime.timedelta(days=training_days + 1) train_end_date = test_start_date - datetime.timedelta(hours=8) test_end_date = date_time - datetime.timedelta(hours=8) forecast = [] x_test = [] this_date = test_start_date for counter in range(training_days): train_end_date = this_date # print(train_end_date) Y_start, Y_end = this_date + datetime.timedelta(hours=1), this_date + datetime.timedelta(hours=40) start = time.time() x_train = self.lm_data['2014-01-03 01:00':str(train_end_date)] ml = self.model_building(x_train, station) test = self.lm_data[str(Y_start):str(Y_end)] p = ml.predict(test) p = pd.DataFrame(p) forecast.append(np.array(np.exp(p[0]))) x_test.append(np.array(test[station + '_Temp'])) end = time.time() this_date = this_date + datetime.timedelta(hours=24) result_mape = [] result_rmse = [] for index in range(len(forecast)): result_mape.append(helper.mape(np.array(x_test[index]), np.array(forecast[index]))) result_rmse.append(helper.rmse(np.array(x_test[index]), np.array(forecast[index]))) self.mape = np.mean(result_mape) self.rmse = np.mean(result_rmse) return self.mape, self.rmse def predict_next_40hours_temp(self, station): today = pd.to_datetime(self.date) + datetime.timedelta(hours=7) train_end_date = today - datetime.timedelta(hours=1) x_train = self.lm_data['2014-01-03 01:00':str(train_end_date)] # print('building the latest model') ml = self.model_building(x_train, station) # print('building process complete') Y_start, Y_end = today + datetime.timedelta(hours=1), today + datetime.timedelta(hours=40) # print(f'Y_start {Y_start}, Y_end: {Y_end}') X = self.lm_data[str(Y_start):str(Y_end)] p = ml.predict(X) p = pd.DataFrame(p) p = np.exp(p[0]) # print('with time stamp: ', p) self.forecast = p.tolist() return self.forecast if __name__ == '__main__': path = '../../Data/Hourly_Temp_Humi_Load-6.csv' df =
pd.read_csv(path)
pandas.read_csv
import json, os, sys import pandas as pd from urllib.request import urlopen from xml.dom import minidom from json import load from pandas.io.json import json_normalize def filterIQM(apidf, filter_list): """ Loads the API info and filters based on user-provided parameters. Filter parameters should be a list of strings and string formats should be "(VAR) (Operator) (Value)". Example: ['TR == 3.0'] or ['TR > 1.0','FD < .3'] Note: Each element in each string is SPACE separated! Args: apidf (pandas dataframe): Pandas df of the API info. filter_list = (list): List of argument strings that will be joined by ampersands to use pandas query function. Returns: A pandas dataframe containing data pulled from the MRICQ API, but filtered to contain only your match specifications. """ cols = apidf.columns cols = cols.map(lambda x: x.replace(".", "_")) apidf.columns = cols ## FOR LATER: ## # CONTROL WHICH EXPECTED VARIABLE LIST YOU CHECK DEPENDING # ON THE MODALITY TYPE. (This will be useless if it's a checkbox # or a pull down in a web interface...) # bold_filters = {'SNR':'snr','TSNR':'tsnr', # 'DVAR':'dvars_nstd','FD':'fd_mean', # 'FWHM':'fwhm_avg','Tesla':'bids_meta_MagneticFieldStrength', # 'gsr_x':'gsr_x','gsr_y':'gsr_y', # 'TE':'bids_meta_EchoTime','TR':'bids_meta_RepetitionTime'} # t1_filters = {'SNR_TOTAL':'snr_total', # 'SNR_GM':'snr_gm', # 'SNR_WM':'snr_wm', # 'SNR_CSF':'snr_csf', # 'CNR':'cnr', # 'EFC':'efc', # 'FWHM':'fwhm_avg', # 'TE':'bids_meta_EchoTime', # 'TR':'bids_meta_RepetitionTime', # 'Tesla':'bids_meta_MagneticFieldStrength' # } # t2_filters = { # 'SNR_TOTAL':'snr_total', # 'SNR_GM':'snr_gm', # 'SNR_WM':'snr_wm', # 'SNR_CSF':'snr_csf', # 'CNR':'cnr', # 'EFC':'efc' # } query = [] expected_filters = {'SNR':'snr','TSNR':'tsnr','SNR_WM':'snr_wm', 'SNR_CSF':'snr_csf','CNR':'cnr','EFC':'efc', 'DVAR':'dvars_nstd','FD':'fd_mean', 'FWHM':'fwhm_avg','Tesla':'bids_meta_MagneticFieldStrength', 'gsr_x':'gsr_x','gsr_y':'gsr_y', 'TE':'bids_meta_EchoTime','TR':'bids_meta_RepetitionTime', 'SNR_TOTAL':'snr_total','SNR_GM':'snr_gm','SNR_WM':'snr_wm', 'SNR_CSF':'snr_csf','CNR':'cnr','EFC':'efc','FWHM':'fwhm_avg', 'TE':'bids_meta_EchoTime','TR':'bids_meta_RepetitionTime', 'Tesla':'bids_meta_MagneticFieldStrength' } filter_check = list(expected_filters.keys()) for filt in filter_list: var = filt.split(' ')[0] op = filt.split(' ')[1] val = filt.split(' ')[2] if var in filter_check: filt_str = expected_filters[var] + op + val query.append(filt_str) filtered_df = apidf.query(' & '.join(query)) return filtered_df # Functions are in alphabetical order, because lazy! ## def load_groupfile(infile_path): """ Load your MRIQC group tsv file and return a pandas df to then use for visualizations or any other functions down the line. Args: infile_path (string): Path to your MRIQC tsv that you got from running MRIQC on your LOCAL group. However, this can be used to load any other downloaded/shared tsv for future integration Returns: A pandas dataframe of your tsv file that was output by MRIQC. (This can also be tsv files shared or downloaded, such as the ABIDE example tsv available online). """ name, ext = os.path.splitext(os.path.basename(infile_path)) if ext == '.tsv': df = pd.read_table(infile_path, header=0) elif ext == '.csv': df = pd.read_csv(infile_path, header=0) else: raise ValueError("File type not supported: " + ext) return df def merge_dfs(userdf, filtered_apidf): """ Merges the user/group dataframe and the filtered API dataframe while adding a groupby variable. Name is "SOURCE". User entries are "USER" and API entries are "API". Args: udf (pandas df): User MRIQC tsv converted to pandas dataframe apidf (pandas df): API info, filtered and stored in padas dataframe. Returns: A merged pandas dataframe containing the user group info and the filtered API info. A "groupby" header called "SOURCE" is added with a "USER" or "API" entry for easy sorting/splitting. """ userdf['SOURCE']='USER' filtered_apidf['SOURCE']='API' filtered_apidf.rename(columns={'_id': 'bids_name'}, inplace=True) merged_df =
pd.concat([userdf,filtered_apidf], sort=True)
pandas.concat
""" """ """ >>> # --- >>> # SETUP >>> # --- >>> import os >>> import logging >>> logger = logging.getLogger('PT3S.Rm') >>> # --- >>> # path >>> # --- >>> if __name__ == "__main__": ... try: ... dummy=__file__ ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ','path = os.path.dirname(__file__)'," .")) ... path = os.path.dirname(__file__) ... except NameError: ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ',"path = '.' because __file__ not defined and: "," from Rm import Rm")) ... path = '.' ... from Rm import Rm ... else: ... path = '.' ... logger.debug("{0:s}{1:s}".format('Not __main__ Context: ',"path = '.' .")) >>> try: ... from PT3S import Mx ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Mx: ImportError: ","trying import Mx instead ... maybe pip install -e . is active ...")) ... import Mx >>> try: ... from PT3S import Xm ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Xm: ImportError: ","trying import Xm instead ... maybe pip install -e . is active ...")) ... import Xm >>> # --- >>> # testDir >>> # --- >>> # globs={'testDir':'testdata'} >>> try: ... dummy= testDir ... except NameError: ... testDir='testdata' >>> # --- >>> # dotResolution >>> # --- >>> # globs={'dotResolution':''} >>> try: ... dummy= dotResolution ... except NameError: ... dotResolution='' >>> import pandas as pd >>> import matplotlib.pyplot as plt >>> pd.set_option('display.max_columns',None) >>> pd.set_option('display.width',666666666) >>> # --- >>> # LocalHeatingNetwork SETUP >>> # --- >>> xmlFile=os.path.join(os.path.join(path,testDir),'LocalHeatingNetwork.XML') >>> xm=Xm.Xm(xmlFile=xmlFile) >>> mx1File=os.path.join(path,os.path.join(testDir,'WDLocalHeatingNetwork\B1\V0\BZ1\M-1-0-1'+dotResolution+'.MX1')) >>> mx=Mx.Mx(mx1File=mx1File,NoH5Read=True,NoMxsRead=True) >>> mx.setResultsToMxsFile(NewH5Vec=True) 5 >>> xm.MxSync(mx=mx) >>> rm=Rm(xm=xm,mx=mx) >>> # --- >>> # Plot 3Classes False >>> # --- >>> plt.close('all') >>> ppi=72 # matplotlib default >>> dpi_screen=2*ppi >>> fig=plt.figure(dpi=dpi_screen,linewidth=1.) >>> timeDeltaToT=mx.df.index[2]-mx.df.index[0] >>> # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr >>> # die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt immer ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66,pFWVBGCategory=['BLNZ1u5u7'],pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']})) >>> # --- >>> # Check pFWVB Return >>> # --- >>> f=lambda x: "{0:8.5f}".format(x) >>> print(pFWVB[['Measure','MCategory','GCategory','VIC']].round(2).to_string(formatters={'Measure':f})) Measure MCategory GCategory VIC 0 0.81000 Top BLNZ1u5u7 NaN 1 0.67000 Middle NaN 2 0.66000 Middle BLNZ1u5u7 NaN 3 0.66000 Bottom BLNZ1u5u7 VIC1 4 0.69000 Middle NaN >>> # --- >>> # Print >>> # --- >>> (wD,fileName)=os.path.split(xm.xmlFile) >>> (base,ext)=os.path.splitext(fileName) >>> plotFileName=wD+os.path.sep+base+'.'+'pdf' >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) >>> plt.savefig(plotFileName,dpi=2*dpi_screen) >>> os.path.exists(plotFileName) True >>> # --- >>> # Plot 3Classes True >>> # --- >>> plt.close('all') >>> # FixedLimits wird automatisch auf Wahr gesetzt wenn 3Classes Wahr ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasure3Classes=True,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66) >>> # --- >>> # LocalHeatingNetwork Clean Up >>> # --- >>> if os.path.exists(mx.h5File): ... os.remove(mx.h5File) >>> if os.path.exists(mx.mxsZipFile): ... os.remove(mx.mxsZipFile) >>> if os.path.exists(mx.h5FileVecs): ... os.remove(mx.h5FileVecs) >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) """ __version__='172.16.58.3.dev1' import warnings # 3.6 #...\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. # from ._conv import register_converters as _register_converters warnings.simplefilter(action='ignore', category=FutureWarning) #C:\Users\Wolters\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. # warnings.warn(message, mplDeprecation, stacklevel=1) import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) import os import sys import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import pandas as pd import h5py from collections import namedtuple from operator import attrgetter import subprocess import warnings import tables import math import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.colorbar import make_axes import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import markers from matplotlib.path import Path from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backends.backend_pdf import PdfPages import numpy as np import scipy import networkx as nx from itertools import chain import math import sys from copy import deepcopy from itertools import chain import scipy from scipy.signal import savgol_filter import logging # --- # --- PT3S Imports # --- logger = logging.getLogger('PT3S') if __name__ == "__main__": logger.debug("{0:s}{1:s}".format('in MODULEFILE: __main__ Context','.')) else: logger.debug("{0:s}{1:s}{2:s}{3:s}".format('in MODULEFILE: Not __main__ Context: ','__name__: ',__name__," .")) try: from PT3S import Mx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Mx - trying import Mx instead ... maybe pip install -e . is active ...')) import Mx try: from PT3S import Xm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Xm - trying import Xm instead ... maybe pip install -e . is active ...')) import Xm try: from PT3S import Am except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Am - trying import Am instead ... maybe pip install -e . is active ...')) import Am try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx # --- # --- main Imports # --- import argparse import unittest import doctest import math from itertools import tee # --- Parameter Allgemein # ----------------------- DINA6 = (4.13 , 5.83) DINA5 = (5.83 , 8.27) DINA4 = (8.27 , 11.69) DINA3 = (11.69 , 16.54) DINA2 = (16.54 , 23.39) DINA1 = (23.39 , 33.11) DINA0 = (33.11 , 46.81) DINA6q = ( 5.83, 4.13) DINA5q = ( 8.27, 5.83) DINA4q = ( 11.69, 8.27) DINA3q = ( 16.54,11.69) DINA2q = ( 23.39,16.54) DINA1q = ( 33.11,23.39) DINA0q = ( 46.81,33.11) dpiSize=72 DINA4_x=8.2677165354 DINA4_y=11.6929133858 DINA3_x=DINA4_x*math.sqrt(2) DINA3_y=DINA4_y*math.sqrt(2) linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] ylimpD=(-5,70) ylimpDmlc=(600,1350) #(300,1050) ylimQD=(-75,300) ylim3rdD=(0,3) yticks3rdD=[0,1,2,3] yGridStepsD=30 yticksALD=[0,3,4,10,20,30,40] ylimALD=(yticksALD[0],yticksALD[-1]) yticksRD=[0,2,4,10,15,30,45] ylimRD=(-yticksRD[-1],yticksRD[-1]) ylimACD=(-5,5) yticksACD=[-5,0,5] yticksTVD=[0,100,135,180,200,300] ylimTVD=(yticksTVD[0],yticksTVD[-1]) plotTVAmLabelD='TIMER u. AM [Sek. u. (N)m3*100]' def getDerivative(df,col,shiftSize=1,windowSize=60,fct=None,savgol_polyorder=None): """ returns a df df: the df col: the col of df to be derived shiftsize: the Difference between 2 indices for dValue and dt windowSize: size for rolling mean or window_length of savgol_filter; choosen filtertechnique is applied after fct windowsSize must be an even number for savgol_filter windowsSize-1 is used fct: function to be applied on dValue/dt savgol_polyorder: if not None savgol_filter is applied; pandas' rolling.mean() is applied otherwise new cols: dt (with shiftSize) dValue (from col) dValueDt (from col); fct applied dValueDtFiltered; choosen filtertechnique is applied """ mDf=df.dropna().copy(deep=True) try: dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) if savgol_polyorder == None: mDf['dValueDtFiltered']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] else: mDf['dValueDtFiltered']=savgol_filter(mDf['dValueDt'].values,windowSize-1, savgol_polyorder) mDf=mDf.iloc[windowSize/2+1+savgol_polyorder-1:] #mDf=mDf.iloc[windowSize-1:] except Exception as e: raise e finally: return mDf def fCVDNodesFromName(x): Nodes=x.replace('°','~') Nodes=Nodes.split('~') Nodes =[Node.lstrip().rstrip() for Node in Nodes if len(Node)>0] return Nodes def fgetMaxpMinFromName(CVDName,dfSegsNodesNDataDpkt): """ returns max. pMin for alle NODEs in CVDName """ nodeLst=fCVDNodesFromName(CVDName) df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['NODEsName'].isin(nodeLst)][['pMin','pMinMlc']] s=df.max() return s.pMin # --- Funktionen Allgemein # ----------------------- def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def genTimespans(timeStart ,timeEnd ,timeSpan=pd.Timedelta('12 Minutes') ,timeOverlap=pd.Timedelta('0 Seconds') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ): # generates timeSpan-Sections # if timeStart is # an int, it is considered as the number of desired Sections before timeEnd; timeEnd must be a time # a time, it is considered as timeStart # if timeEnd is # an int, it is considered as the number of desired Sections after timeStart; timeStart must be a time # a time, it is considered as timeEnd # if timeSpan is # an int, it is considered as the number of desired Sections # a time, it is considered as timeSpan # returns an array of tuples logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) xlims=[] try: if type(timeStart) == int: numOfDesiredSections=timeStart timeStartEff=timeEnd+timeEndPostfix-numOfDesiredSections*timeSpan+(numOfDesiredSections-1)*timeOverlap-timeStartPraefix else: timeStartEff=timeStart-timeStartPraefix logger.debug("{0:s}timeStartEff: {1:s}".format(logStr,str(timeStartEff))) if type(timeEnd) == int: numOfDesiredSections=timeEnd timeEndEff=timeStart-timeStartPraefix+numOfDesiredSections*timeSpan-(numOfDesiredSections-1)*timeOverlap+timeEndPostfix else: timeEndEff=timeEnd+timeEndPostfix logger.debug("{0:s}timeEndEff: {1:s}".format(logStr,str(timeEndEff))) if type(timeSpan) == int: numOfDesiredSections=timeSpan dt=timeEndEff-timeStartEff timeSpanEff=dt/numOfDesiredSections+(numOfDesiredSections-1)*timeOverlap else: timeSpanEff=timeSpan logger.debug("{0:s}timeSpanEff: {1:s}".format(logStr,str(timeSpanEff))) logger.debug("{0:s}timeOverlap: {1:s}".format(logStr,str(timeOverlap))) timeStartAct = timeStartEff while timeStartAct < timeEndEff: logger.debug("{0:s}timeStartAct: {1:s}".format(logStr,str(timeStartAct))) timeEndAct=timeStartAct+timeSpanEff xlim=(timeStartAct,timeEndAct) xlims.append(xlim) timeStartAct = timeEndAct - timeOverlap except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def gen2Timespans( timeStart # Anfang eines "Prozesses" ,timeEnd # Ende eines "Prozesses" ,timeSpan=pd.Timedelta('12 Minutes') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ,roundStr=None # i.e. '5min': timeStart.round(roundStr) und timeEnd dito ): """ erzeugt 2 gleich lange Zeitbereiche 1 um timeStart herum 1 um timeEnd herum """ #print("timeStartPraefix: {:s}".format(str(timeStartPraefix))) #print("timeEndPostfix: {:s}".format(str(timeEndPostfix))) xlims=[] logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if roundStr != None: timeStart=timeStart.round(roundStr) timeEnd=timeEnd.round(roundStr) xlims.append((timeStart-timeStartPraefix,timeStart-timeStartPraefix+timeSpan)) xlims.append((timeEnd+timeEndPostfix-timeSpan,timeEnd+timeEndPostfix)) return xlims except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def fTotalTimeFromPairs( x ,denominator=None # i.e. pd.Timedelta('1 minute') for totalTime in Minutes ,roundToInt=True # round to and return as int if denominator is specified; else td is rounded by 2 ): tdTotal=pd.Timedelta('0 seconds') for idx,tPairs in enumerate(x): t1,t2=tPairs if idx==0: tLast=t2 else: if t1 <= tLast: print("Zeitpaar überlappt?!") td=t2-t1 if td < pd.Timedelta('1 seconds'): pass #print("Zeitpaar < als 1 Sekunde?!") tdTotal=tdTotal+td if denominator==None: return tdTotal else: td=tdTotal / denominator if roundToInt: td=int(round(td,0)) else: td=round(td,2) return td def findAllTimeIntervalls( df ,fct=lambda row: True if row['col'] == 46 else False ,tdAllowed=None ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: rows,cols=df.shape if df.empty: logger.debug("{:s}df ist leer".format(logStr)) elif rows == 1: logger.debug("{:s}df hat nur 1 Zeile: {:s}".format(logStr,df.to_string())) rowValue=fct(df.iloc[0]) if rowValue: tPair=(df.index[0],df.index[0]) tPairs.append(tPair) else: pass else: tEin=None # paarweise über alle Zeilen for (i1, row1), (i2, row2) in pairwise(df.iterrows()): row1Value=fct(row1) row2Value=fct(row2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not row1Value and row2Value: tEin=i2 # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif row1Value and not row2Value: if tEin != None: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: pass # sonst: Bed. ist jetzt Aus und war nicht Ein # Bed. kann nur im ersten Fall Ein gehen # wenn 1 x und 2 x elif row1Value and row2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # letztes Paar if row1Value and row2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) if tdAllowed != None: tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def findAllTimeIntervallsSeries( s=pd.Series() ,fct=lambda x: True if x == 46 else False ,tdAllowed=None # if not None all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=True ): """ # if fct: # alle [Zeitbereiche] finden fuer die fct Wahr ist; diese Zeitbereiche werden geliefert; es werden nur Paare geliefert; Wahr-Solitäre gehen nicht verloren sondern werden als Paar (t,t) geliefert # Wahr-Solitäre sind NUR dann enthalten, wenn s nur 1 Wert enthält und dieser Wahr ist; das 1 gelieferte Paar enthaelt dann den Solitär-Zeitstempel für beide Zeiten # tdAllowed can be be specified # dann im Anschluss in Zeitbereiche zusammenfassen, die nicht mehr als tdAllowed auseinander liegen; diese Zeitbereiche werden dann geliefert # if fct None: # tdAllowed must be specified # in Zeitbereiche zerlegen, die nicht mehr als Schwellwert tdAllowed auseinander liegen; diese Zeitbereiche werden geliefert # generell hat jeder gelieferte Zeitbereich Anfang und Ende (d.h. 2 Zeiten), auch dann, wenn dadurch ein- oder mehrfach der Schwellwert ignoriert werden muss # denn es soll kein Zeitbereich verloren gehen, der in s enthalten ist # wenn s nur 1 Wert enthält, wird 1 Zeitpaar mit demselben Zeitstempel für beide Zeiten geliefert, wenn Wert nicht Null # returns array of Time-Pair-Tuples >>> import pandas as pd >>> t=pd.Timestamp('2021-03-19 01:02:00') >>> t1=t +pd.Timedelta('1 second') >>> t2=t1+pd.Timedelta('1 second') >>> t3=t2+pd.Timedelta('1 second') >>> t4=t3+pd.Timedelta('1 second') >>> t5=t4+pd.Timedelta('1 second') >>> t6=t5+pd.Timedelta('1 second') >>> t7=t6+pd.Timedelta('1 second') >>> d = {t1: 46, t2: 0} # geht aus - kein Paar >>> s1PaarGehtAus=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 46} # geht ein - kein Paar >>> s1PaarGehtEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t5: 46, t6: 0} # geht ausE - kein Paar >>> s1PaarGehtAusE=pd.Series(data=d, index=[t5, t6]) >>> d = {t5: 0, t6: 46} # geht einE - kein Paar >>> s1PaarGehtEinE=pd.Series(data=d, index=[t5, t6]) >>> d = {t1: 46, t2: 46} # geht aus - ein Paar >>> s1PaarEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 0} # geht aus - kein Paar >>> s1PaarAus=pd.Series(data=d, index=[t1, t2]) >>> s2PaarAus=pd.concat([s1PaarGehtAus,s1PaarGehtAusE]) >>> s2PaarEin=pd.concat([s1PaarGehtEin,s1PaarGehtEinE]) >>> s2PaarAusEin=pd.concat([s1PaarGehtAus,s1PaarGehtEinE]) >>> s2PaarEinAus=pd.concat([s1PaarGehtEin,s1PaarGehtAusE]) >>> # 1 Wert >>> d = {t1: 46} # 1 Wert - Wahr >>> s1WertWahr=pd.Series(data=d, index=[t1]) >>> d = {t1: 44} # 1 Wert - Falsch >>> s1WertFalsch=pd.Series(data=d, index=[t1]) >>> d = {t1: None} # 1 Wert - None >>> s1WertNone=pd.Series(data=d, index=[t1]) >>> ### >>> # 46 0 >>> # 0 46 >>> # 0 0 >>> # 46 46 !1 Paar >>> # 46 0 46 0 >>> # 46 0 0 46 >>> # 0 46 0 46 >>> # 0 46 46 0 !1 Paar >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus) [] >>> findAllTimeIntervallsSeries(s1PaarGehtEin) [] >>> findAllTimeIntervallsSeries(s1PaarEin) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarEin) [] >>> findAllTimeIntervallsSeries(s2PaarAusEin) [] >>> findAllTimeIntervallsSeries(s2PaarEinAus) [(Timestamp('2021-03-19 01:02:02'), Timestamp('2021-03-19 01:02:05'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertFalsch) [] >>> ### >>> # 46 0 !1 Paar >>> # 0 46 !1 Paar >>> # 0 0 !1 Paar >>> # 46 46 !1 Paar >>> # 46 0 46 0 !2 Paare >>> # 46 0 0 46 !2 Paare >>> # 0 46 0 46 !2 Paare >>> # 0 46 46 0 !2 Paare >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarGehtEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s2PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarAusEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEinAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr,fct=None) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertNone,fct=None) [] >>> ### >>> d = {t1: 0, t3: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t1, t3]) >>> findAllTimeIntervallsSeries(s1PaarmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:03'))] >>> d = {t4: 0, t5: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t4, t5]) >>> s2PaarmZoZ=pd.concat([s1PaarmZ,s1PaaroZ]) >>> findAllTimeIntervallsSeries(s2PaarmZoZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t1: 0, t2: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t1, t2]) >>> d = {t3: 0, t5: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t3, t5]) >>> s2PaaroZmZ=pd.concat([s1PaaroZ,s1PaarmZ]) >>> findAllTimeIntervallsSeries(s2PaaroZmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t6: 0, t7: 0} >>> s1PaaroZ2=pd.Series(data=d, index=[t6, t7]) >>> d = {t4: 0} >>> solitaer=pd.Series(data=d, index=[t4]) >>> s5er=pd.concat([s1PaaroZ,solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s5er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] >>> s3er=pd.concat([s1PaaroZ,solitaer]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:04'))] >>> s3er=pd.concat([solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: if s.empty: logger.debug("{:s}Series {!s:s} ist leer".format(logStr,s.name)) elif s.size == 1: logger.debug("{:s}Series {!s:s} hat nur 1 Element: {:s}".format(logStr,s.name,s.to_string())) if fct != None: # 1 Paar mit selben Zeiten wenn das 1 Element Wahr sValue=fct(s.iloc[0]) if sValue: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: # 1 Paar mit selben Zeiten wenn das 1 Element nicht None sValue=s.iloc[0] if sValue != None: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: tEin=None if fct != None: # paarweise über alle Zeiten for idx,((i1, s1), (i2, s2)) in enumerate(pairwise(s.iteritems())): s1Value=fct(s1) s2Value=fct(s2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not s1Value and s2Value: tEin=i2 if idx > 0: # Info pass else: # beim ersten Paar "geht Ein" pass # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif s1Value and not s2Value: if tEin != None: if tEin<i1: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: # singulaeres Ereignis # Paar mit selben Zeiten tPair=(tEin,i1) tPairs.append(tPair) pass else: # geht Aus ohne Ein zu sein if idx > 0: # Info pass else: # im ersten Paar pass # wenn 1 x und 2 x elif s1Value and s2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # Behandlung letztes Paar # bleibt Ein am Ende der Series: Paar speichern if s1Value and s2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) # Behandlung tdAllowed if tdAllowed != None: if debugOutput: logger.debug("{:s}Series {!s:s}: Intervalle werden mit {!s:s} zusammengefasst ...".format(logStr,s.name,tdAllowed)) tPairsOld=tPairs.copy() tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed,debugOutput=debugOutput) if debugOutput: tPairsZusammengefasst=sorted(list(set(tPairsOld) - set(tPairs))) if len(tPairsZusammengefasst)>0: logger.debug("{:s}Series {!s:s}: Intervalle wurden wg. {!s:s} zusammengefasst. Nachfolgend die zusgefassten Intervalle: {!s:s}. Sowie die entsprechenden neuen: {!s:s}".format( logStr ,s.name ,tdAllowed ,tPairsZusammengefasst ,sorted(list(set(tPairs) - set(tPairsOld))) )) else: # paarweise über alle Zeiten # neues Paar beginnen anzInPair=1 # Anzahl der Zeiten in aktueller Zeitspanne for (i1, s1), (i2, s2) in pairwise(s.iteritems()): td=i2-i1 if td > tdAllowed: # Zeit zwischen 2 Zeiten > als Schwelle: Zeitspanne ist abgeschlossen if tEin==None: # erstes Paar liegt bereits > als Schwelle auseinander # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert # aktuelle Zeitspanne beginnt beim 1. Wert und geht über Schwellwert tEin=i1 anzInPair=2 else: if anzInPair>=2: # Zeitspanne abschließen tPair=(tEin,i1) tPairs.append(tPair) # neue Zeitspanne beginnen tEin=i2 anzInPair=1 else: # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert anzInPair=2 else: # Zeitspanne zugelassen, weiter ... if tEin==None: tEin=i1 anzInPair=anzInPair+1 # letztes Zeitpaar behandeln if anzInPair>=2: tPair=(tEin,i2) tPairs.append(tPair) else: # ein letzter Wert wuerde ueber bleiben, letzte Zeitspanne verlängern ... tPair=tPairs[-1] tPair=(tPair[0],i2) tPairs[-1]=tPair except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def fCombineSubsequenttPairs( tPairs ,tdAllowed=pd.Timedelta('1 second') # all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=False ): # returns tPairs logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: for idx,(tp1,tp2) in enumerate(pairwise(tPairs)): t1Ende=tp1[1] t2Start=tp2[0] if t2Start-t1Ende <= tdAllowed: if debugOutput: logger.debug("{:s} t1Ende: {!s:s} t2Start: {!s:s} Gap: {!s:s}".format(logStr,t1Ende,t2Start,t2Start-t1Ende)) tPairs[idx]=(tp1[0],tp2[1]) # Folgepaar in vorheriges Paar integrieren tPairs.remove(tp2) # Folgepaar löschen tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) # Rekursion except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs class RmError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') # --- Parameter und Funktionen LDS Reports # ---------------------------------------- def pltMakeCategoricalColors(color,nOfSubColorsReq=3,reversedOrder=False): """ Returns an array of rgb colors derived from color. Parameter: color: a rgb color nOfSubColorsReq: number of SubColors requested Raises: RmError >>> import matplotlib >>> color='red' >>> c=list(matplotlib.colors.to_rgb(color)) >>> import Rm >>> Rm.pltMakeCategoricalColors(c) array([[1. , 0. , 0. ], [1. , 0.375, 0.375], [1. , 0.75 , 0.75 ]]) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) rgb=None try: chsv = matplotlib.colors.rgb_to_hsv(color[:3]) arhsv = np.tile(chsv,nOfSubColorsReq).reshape(nOfSubColorsReq,3) arhsv[:,1] = np.linspace(chsv[1],0.25,nOfSubColorsReq) arhsv[:,2] = np.linspace(chsv[2],1,nOfSubColorsReq) rgb = matplotlib.colors.hsv_to_rgb(arhsv) if reversedOrder: rgb=list(reversed(rgb)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return rgb # Farben fuer Druecke SrcColorp='green' SrcColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorp)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorp='blue' SnkColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorp)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe # Farben fuer Fluesse SrcColorQ='red' SrcColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorQ)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorQ='orange' SnkColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorQ)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe lwBig=4.5 lwSmall=2.5 attrsDct={ 'p Src':{'color':SrcColorp,'lw':lwBig,'where':'post'} ,'p Snk':{'color':SnkColorp,'lw':lwSmall+1.,'where':'post'} ,'p Snk 2':{'color':'mediumorchid','where':'post'} ,'p Snk 3':{'color':'darkviolet','where':'post'} ,'p Snk 4':{'color':'plum','where':'post'} ,'Q Src':{'color':SrcColorQ,'lw':lwBig,'where':'post'} ,'Q Snk':{'color':SnkColorQ,'lw':lwSmall+1.,'where':'post'} ,'Q Snk 2':{'color':'indianred','where':'post'} ,'Q Snk 3':{'color':'coral','where':'post'} ,'Q Snk 4':{'color':'salmon','where':'post'} ,'Q Src RTTM':{'color':SrcColorQ,'lw':matplotlib.rcParams['lines.linewidth']+1.,'ls':'dotted','where':'post'} ,'Q Snk RTTM':{'color':SnkColorQ,'lw':matplotlib.rcParams['lines.linewidth'] ,'ls':'dotted','where':'post'} ,'Q Snk 2 RTTM':{'color':'indianred','ls':'dotted','where':'post'} ,'Q Snk 3 RTTM':{'color':'coral','ls':'dotted','where':'post'} ,'Q Snk 4 RTTM':{'color':'salmon','ls':'dotted','where':'post'} ,'p ISrc 1':{'color':SrcColorsp[-1],'ls':'dashdot','where':'post'} ,'p ISrc 2':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 3':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISrc 4':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 5':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 6':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISnk 1':{'color':SnkColorsp[0],'ls':'dashdot','where':'post'} ,'p ISnk 2':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 3':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISnk 4':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 5':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 6':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'Q xSrc 1':{'color':SrcColorsQ[-1],'ls':'dashdot','where':'post'} ,'Q xSrc 2':{'color':SrcColorsQ[-2],'ls':'dashdot','where':'post'} ,'Q xSrc 3':{'color':SrcColorsQ[-3],'ls':'dashdot','where':'post'} ,'Q xSnk 1':{'color':SnkColorsQ[0],'ls':'dashdot','where':'post'} ,'Q xSnk 2':{'color':SnkColorsQ[1],'ls':'dashdot','where':'post'} ,'Q xSnk 3':{'color':SnkColorsQ[2],'ls':'dashdot','where':'post'} ,'Q (DE) Me':{'color': 'indigo','ls': 'dashdot','where': 'post','lw':1.5} ,'Q (DE) Re':{'color': 'cyan','ls': 'dashdot','where': 'post','lw':3.5} ,'p (DE) SS Me':{'color': 'magenta','ls': 'dashdot','where': 'post'} ,'p (DE) DS Me':{'color': 'darkviolet','ls': 'dashdot','where': 'post'} ,'p (DE) SS Re':{'color': 'magenta','ls': 'dotted','where': 'post'} ,'p (DE) DS Re':{'color': 'darkviolet','ls': 'dotted','where': 'post'} ,'p OPC LDSErgV':{'color':'olive' ,'lw':lwSmall-.5 ,'ms':matplotlib.rcParams['lines.markersize'] ,'marker':'x' ,'mec':'olive' ,'mfc':'olive' ,'where':'post'} ,'p OPC Src':{'color':SrcColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorp ,'mfc':SrcColorQ ,'where':'post'} ,'p OPC Snk':{'color':SnkColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorp ,'mfc':SnkColorQ ,'where':'post'} ,'Q OPC Src':{'color':SrcColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorQ ,'mfc':SrcColorp ,'where':'post'} ,'Q OPC Snk':{'color':SnkColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorQ ,'mfc':SnkColorp ,'where':'post'} } attrsDctLDS={ 'Seg_AL_S_Attrs':{'color':'blue','lw':3.,'where':'post'} ,'Druck_AL_S_Attrs':{'color':'blue','lw':3.,'ls':'dashed','where':'post'} ,'Seg_MZ_AV_Attrs':{'color':'orange','zorder':3,'where':'post'} ,'Druck_MZ_AV_Attrs':{'color':'orange','zorder':3,'ls':'dashed','where':'post'} ,'Seg_LR_AV_Attrs':{'color':'green','zorder':1,'where':'post'} ,'Druck_LR_AV_Attrs':{'color':'green','zorder':1,'ls':'dashed','where':'post'} ,'Seg_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'where':'post'} ,'Druck_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'ls':'dashed','where':'post'} ,'Seg_NG_AV_Attrs':{'color':'red','zorder':2,'where':'post'} ,'Druck_NG_AV_Attrs':{'color':'red','zorder':2,'ls':'dashed','where':'post'} ,'Seg_SB_S_Attrs':{'color':'black','alpha':.5,'where':'post'} ,'Druck_SB_S_Attrs':{'color':'black','ls':'dashed','alpha':.75,'where':'post','lw':1.0} ,'Seg_AC_AV_Attrs':{'color':'indigo','where':'post'} ,'Druck_AC_AV_Attrs':{'color':'indigo','ls':'dashed','where':'post'} ,'Seg_ACF_AV_Attrs':{'color':'blueviolet','where':'post','lw':1.0} ,'Druck_ACF_AV_Attrs':{'color':'blueviolet','ls':'dashed','where':'post','lw':1.0} ,'Seg_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_TIMER_AV_Attrs':{'color':'chartreuse','where':'post'} ,'Druck_TIMER_AV_Attrs':{'color':'chartreuse','ls':'dashed','where':'post'} ,'Seg_AM_AV_Attrs':{'color':'chocolate','where':'post'} ,'Druck_AM_AV_Attrs':{'color':'chocolate','ls':'dashed','where':'post'} # ,'Seg_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_DPDT_AV_Attrs':{'color':'fuchsia','where':'post','lw':2.0} ,'Druck_DPDT_AV_Attrs':{'color':'fuchsia','ls':'dashed','where':'post','lw':2.0} ,'Seg_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[6][1],'where':'post','lw':1.0} # 'loosely dashdotted' ,'Druck_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[10][1],'where':'post','lw':1.0} # 'loosely dashdotdotted' } pSIDEvents=re.compile('(?P<Prae>IMDI\.)?Objects\.(?P<colRegExMiddle>3S_FBG_ESCHIEBER|FBG_ESCHIEBER{1})\.(3S_)?(?P<colRegExSchieberID>[a-z,A-Z,0-9,_]+)\.(?P<colRegExEventID>(In\.ZUST|In\.LAEUFT|In\.LAEUFT_NICHT|In\.STOER|Out\.AUF|Out\.HALT|Out\.ZU)$)') # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} valRegExMiddleCmds='3S_FBG_ESCHIEBER' # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) LDSParameter=[ 'ACC_SLOWTRANSIENT' ,'ACC_TRANSIENT' ,'DESIGNFLOW' ,'DT' ,'FILTERWINDOW' #,'L_PERCENT' ,'L_PERCENT_STDY' ,'L_PERCENT_STRAN' ,'L_PERCENT_TRANS' ,'L_SHUTOFF' ,'L_SLOWTRANSIENT' ,'L_SLOWTRANSIENTQP' ,'L_STANDSTILL' ,'L_STANDSTILLQP' ,'L_TRANSIENT' ,'L_TRANSIENTQP' ,'L_TRANSIENTVBIGF' ,'L_TRANSIENTPDNTF' ,'MEAN' ,'NAME' ,'ORDER' ,'TIMER' ,'TTIMERTOALARM' ,'TIMERTOLISS' ,'TIMERTOLIST' ] LDSParameterDataD={ 'ACC_SLOWTRANSIENT':0.1 ,'ACC_TRANSIENT':0.8 ,'DESIGNFLOW':250. ,'DT':1 ,'FILTERWINDOW':180 #,'L_PERCENT':1.6 ,'L_PERCENT_STDY':1.6 ,'L_PERCENT_STRAN':1.6 ,'L_PERCENT_TRANS':1.6 ,'L_SHUTOFF':2. ,'L_SLOWTRANSIENT':4. ,'L_SLOWTRANSIENTQP':4. ,'L_STANDSTILL':2. ,'L_STANDSTILLQP':2. ,'L_TRANSIENT':10. ,'L_TRANSIENTQP':10. ,'L_TRANSIENTVBIGF':3. ,'L_TRANSIENTPDNTF':1.5 ,'MEAN':1 ,'ORDER':1 ,'TIMER':180 ,'TTIMERTOALARM':45 # TIMER/4 ,'TIMERTOLISS':180 ,'TIMERTOLIST':180 ,'NAME':'' } def fSEGNameFromPV_2(Beschr): # fSEGNameFromSWVTBeschr # 2,3,4,5 if Beschr in ['',None]: return None m=re.search(Lx.pID,Beschr) if m == None: return Beschr return m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5') def fSEGNameFromPV_3(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') def fSEGNameFromPV_3m(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) #print("C4: {:s} C6: {:s}".format(m.group('C4'),m.group('C6'))) if m.group('C4')=='AAD' and m.group('C6')=='_OHN': return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_OHV1' elif m.group('C4')=='OHN' and m.group('C6')=='_NGD': return m.group('C3')+'_'+'OHV2'+'_'+m.group('C5')+m.group('C6') else: return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') # Ableitung eines DIVPipelineNamens von PV def fDIVNameFromPV(PV): m=re.search(Lx.pID,PV) return m.group('C2')+'-'+m.group('C4') # Ableitung eines DIVPipelineNamens von SEGName def fDIVNameFromSEGName(SEGName): if pd.isnull(SEGName): return None # dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) m=re.search('(\d+)_(\w+)_(\w+)_(\w+)',SEGName) if m == None: return SEGName return m.group(1)+'_'+m.group(3) #def getNamesFromOPCITEM_ID(dfSegsNodesNDataDpkt # ,OPCITEM_ID): # """ # Returns tuple (DIVPipelineName,SEGName) from OPCITEM_ID PH # """ # df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['OPCITEM_ID']==OPCITEM_ID] # if not df.empty: # return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def fGetBaseIDFromResID( ID='Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.MW.value' ): """ Returns 'Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.' funktioniert im Prinzip fuer SEG- und Druck-Ergs: jede Erg-PV eines Vektors liefert die Basis gueltig fuer alle Erg-PVs des Vektors d.h. die Erg-PVs eines Vektors unterscheiden sich nur hinten siehe auch fGetSEGBaseIDFromSEGName """ if pd.isnull(ID): return None m=re.search(Lx.pID,ID) if m == None: return None try: base=m.group('A')+'.'+m.group('B')\ +'.'+m.group('C1')\ +'_'+m.group('C2')\ +'_'+m.group('C3')\ +'_'+m.group('C4')\ +'_'+m.group('C5')\ +m.group('C6') #print(m.groups()) #print(m.groupdict()) if 'C7' in m.groupdict().keys(): if m.group('C7') != None: base=base+m.group('C7') base=base+'.'+m.group('D')\ +'.' #print(base) except: base=m.group(0)+' (Fehler in fGetBaseIDFromResID)' return base def fGetSEGBaseIDFromSEGName( SEGName='6_AAD_41_OHV1' ): """ Returns 'Objects.3S_FBG_SEG_INFO.3S_L_'+SEGName+'.In.' In some cases SEGName is manipulated ... siehe auch fGetBaseIDFromResID """ if SEGName == '6_AAD_41_OHV1': x='6_AAD_41_OHN' elif SEGName == '6_OHV2_41_NGD': x='6_OHN_41_NGD' else: x=SEGName return 'Objects.3S_FBG_SEG_INFO.3S_L_'+x+'.In.' def getNamesFromSEGResIDBase(dfSegsNodesNDataDpkt ,SEGResIDBase): """ Returns tuple (DIVPipelineName,SEGName) from SEGResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==SEGResIDBase] if not df.empty: return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt ,DruckResIDBase): """ Returns tuple (DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) from DruckResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase']==DruckResIDBase] if not df.empty: #return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0],df['SEGResIDBase'].iloc[0]) tupleLst=[] for index,row in df.iterrows(): tupleItem=(row['DIVPipelineName'],row['SEGName'],row['SEGResIDBase'],row['SEGOnlyInLDSPara']) tupleLst.append(tupleItem) return tupleLst else: return [] def fGetErgIDsFromBaseID( baseID='Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_BUA.In.' ,dfODI=pd.DataFrame() # df mit ODI Parametrierungsdaten ,strSep=' ' ,patternPat='^IMDI.' # ,pattern=True # nur ergIDs, fuer die 2ndPatternPat zutrifft liefern ): """ returns string mit strSep getrennten IDs aus dfODI, welche baseID enthalten (und bei pattern WAHR patternPat matchen) baseID (und group(0) von patternPat bei pattern WAHR) sind in den IDs entfernt """ if baseID in [None,'']: return None df=dfODI[dfODI.index.str.contains(baseID)] if df.empty: return None if pattern: ergIDs=''.join([e.replace(baseID,'').replace(re.search(patternPat,e).group(0),'')+' ' for e in df.index if re.search(patternPat,e) != None]) else: ergIDs=''.join([e.replace(baseID,'')+' ' for e in df.index if re.search(patternPat,e) == None]) return ergIDs def dfSegsNodesNDataDpkt( VersionsDir=r"C:\3s\Projekte\Projekt\04 - Versionen\Version82.3" ,Model=r"MDBDOC\FBG.mdb" # a Access Model ,am=None # a Access Model already processed ,SEGsDefPattern='(?P<SEG_Ki>\S+)~(?P<SEG_Kk>\S+)$' # RSLW-Beschreibung: liefert die Knotennamen der Segmentdefinition () ,RIDefPattern='(?P<Prae>\S+)\.(?P<Post>RICHT.S)$' # SWVT-Beschreibung (RICHT-DP): liefert u.a. SEGName ,fSEGNameFromPV_2=fSEGNameFromPV_2 # Funktion, die von SWVT-Beschreibung (RICHT-DP) u.a. SEGName liefert ,fGetBaseIDFromResID=fGetBaseIDFromResID # Funktion, die von OPCITEM-ID des PH-Kanals eines KNOTens den Wortstamm der Knotenergebnisse liefert ,fGetSEGBaseIDFromSEGName=fGetSEGBaseIDFromSEGName # Funktion, die aus SEGName den Wortstamm der Segmentergebnisse liefert ,LDSPara=r"App LDS\Modelle\WDFBG\B1\V0\BZ1\LDS_Para.xml" ,LDSParaPT=r"App LDS\SirOPC\AppLDS_DPDTParams.csv" ,ODI=r"App LDS\SirOPC\AppLDS_ODI.csv" ,LDSParameter=LDSParameter ,LDSParameterDataD=LDSParameterDataD ): """ alle Segmente mit Pfaddaten (Kantenzuege) mit Kanten- und Knotendaten sowie Parametrierungsdaten returns df: DIVPipelineName SEGName SEGNodes (Ki~Kk; Schluessel in LDSPara) SEGOnlyInLDSPara NODEsRef NODEsRef_max NODEsSEGLfdNr NODEsSEGLfdNrType NODEsName OBJTYPE ZKOR Blockname ATTRTYPE (PH) CLIENT_ID OPCITEM_ID NAME (der DPKT-Gruppe) DruckResIDBase SEGResIDBase SEGResIDs SEGResIDsIMDI DruckResIDs DruckResIDsIMDI NODEsSEGDruckErgLfdNr # LDSPara ACC_SLOWTRANSIENT ACC_TRANSIENT DESIGNFLOW DT FILTERWINDOW L_PERCENT_STDY L_PERCENT_STRAN L_PERCENT_TRANS L_SHUTOFF L_SLOWTRANSIENT L_SLOWTRANSIENTQP L_STANDSTILL L_STANDSTILLQP L_TRANSIENT L_TRANSIENTPDNTF L_TRANSIENTQP L_TRANSIENTVBIGF MEAN ORDER TIMER TIMERTOLISS TIMERTOLIST TTIMERTOALARM # LDSParaPT #ID pMin DT_Vorhaltemass TTimer_PMin Faktor_PMin MaxL_PMin pMinMlc pMinMlcMinSEG pMinMlcMaxSEG """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfSegsNodesNDataDpkt=pd.DataFrame() try: ###### --- LDSPara LDSParaFile=os.path.join(VersionsDir,LDSPara) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSPara',LDSPara)) with open(LDSParaFile) as f: xml = f.read() xmlWellFormed='<root>'+xml+'</root>' root=ET.fromstring(xmlWellFormed) LDSParameterData={} for key in LDSParameterDataD.keys(): LDSParameterData[key]=[] logger.debug("{:s}LDSParameter: {!s:s}.".format(logStr,LDSParameter)) for idx,element in enumerate(root.iter(tag='LDSI')): attribKeysMute=[] for key,value in element.attrib.items(): if key not in LDSParameter: logger.warning("{:s}{:s}: Parameter: {:s} undefiniert.".format(logStr,element.attrib['NAME'],key)) attribKeysMute.append(key) keysIst=element.attrib.keys() keysSoll=set(LDSParameter) keysExplizitFehlend=keysSoll-keysIst LDSIParaDct=element.attrib for key in keysExplizitFehlend: if key=='ORDER': LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) elif key=='TTIMERTOALARM': LDSIParaDct[key]=int(LDSIParaDct['TIMER'])/4 logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) else: LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) keyListToProcess=[key for key in LDSIParaDct.keys() if key not in attribKeysMute] for key in keyListToProcess: LDSParameterData[key].append(LDSIParaDct[key]) df=pd.DataFrame.from_dict(LDSParameterData) df=df.set_index('NAME').sort_index() df.index.rename('SEGMENT', inplace=True) df=df[sorted(df.columns.to_list())] df = df.apply(pd.to_numeric) #logger.debug("{:s}df: {:s}".format(logStr,df.to_string())) logger.debug("{:s}Parameter, die nicht auf Standardwerten sind:".format(logStr)) for index, row in df.iterrows(): for colName, colValue in zip(df.columns.to_list(),row): if colValue != LDSParameterDataD[colName]: logger.debug("Segment: {:30s}: Parameter: {:20s} Wert: {:10s} (Standard: {:s})".format(index,colName,str(colValue),str(LDSParameterDataD[colName]))) dfPara=df # --- Einlesen Modell if am == None: accFile=os.path.join(VersionsDir,Model) logger.info("{:s}###### {:10s}: {:s}: Lesen und verarbeiten ...".format(logStr,'Modell',Model)) am=Am.Am(accFile=accFile) V_BVZ_RSLW=am.dataFrames['V_BVZ_RSLW'] V_BVZ_SWVT=am.dataFrames['V_BVZ_SWVT'] V3_KNOT=am.dataFrames['V3_KNOT'] V3_VBEL=am.dataFrames['V3_VBEL'] V3_DPKT=am.dataFrames['V3_DPKT'] V3_RSLW_SWVT=am.dataFrames['V3_RSLW_SWVT'] # --- Segmente ermitteln # --- per Modell SEGsDefinesPerRICHT=V3_RSLW_SWVT[ (V3_RSLW_SWVT['BESCHREIBUNG'].str.match(SEGsDefPattern).isin([True])) # Muster Ki~Kk ... & #! (V3_RSLW_SWVT['BESCHREIBUNG_SWVT'].str.match(RIDefPattern).isin([True])) # Muster Förderrichtungs-PV ... ].copy(deep=True) SEGsDefinesPerRICHT=SEGsDefinesPerRICHT[['BESCHREIBUNG','BESCHREIBUNG_SWVT']] # --- nur per LDS Para lSEGOnlyInLDSPara=[str(SEGNodes) for SEGNodes in dfPara.index if str(SEGNodes) not in SEGsDefinesPerRICHT['BESCHREIBUNG'].values] for SEGNodes in lSEGOnlyInLDSPara: logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) # --- zusammenfassen SEGsDefines=pd.concat([SEGsDefinesPerRICHT,pd.DataFrame(lSEGOnlyInLDSPara,columns=['BESCHREIBUNG'])]) # Knotennamen der SEGDef ergänzen df=SEGsDefines['BESCHREIBUNG'].str.extract(SEGsDefPattern,expand=True) dfCols=df.columns.to_list() SEGsDefines=pd.concat([SEGsDefines,df],axis=1) # ausduennen SEGsDefines=SEGsDefines[dfCols+['BESCHREIBUNG_SWVT','BESCHREIBUNG']] # sortieren SEGsDefines=SEGsDefines.sort_values(by=['BESCHREIBUNG_SWVT','BESCHREIBUNG']).reset_index(drop=True) # SEGName SEGsDefines['BESCHREIBUNG_SWVT']=SEGsDefines.apply(lambda row: row['BESCHREIBUNG_SWVT'] if not pd.isnull(row['BESCHREIBUNG_SWVT']) else row['BESCHREIBUNG'] ,axis=1) #print(SEGsDefines) SEGsDefines['SEGName']=SEGsDefines['BESCHREIBUNG_SWVT'].apply(lambda x: fSEGNameFromPV_2(x)) # --- Segmentkantenzuege ermitteln dfSegsNodeLst={} # nur zu Kontrollzwecken dfSegsNode=[] for index,row in SEGsDefines[~SEGsDefines[dfCols[-1]].isnull()].iterrows(): df=Xm.Xm.constructShortestPathFromNodeList(df=V3_VBEL.reset_index() ,sourceCol='NAME_i' ,targetCol='NAME_k' ,nl=[row[dfCols[0]],row[dfCols[-1]]] ,weight=None,query=None,fmask=None,filterNonQ0Rows=True) s=pd.concat([pd.Series([row[dfCols[0]]]),df['nextNODE']]) s.name=row['SEGName'] dfSegsNodeLst[row['SEGName']]=s.reset_index(drop=True) df2=pd.DataFrame(s.reset_index(drop=True)).rename(columns={s.name:'NODEs'}) df2['SEGName']=s.name df2=df2[['SEGName','NODEs']] sObj=pd.concat([pd.Series(['None']),df['OBJTYPE']]) sObj.name='OBJTYPE' df3=pd.concat([df2,pd.DataFrame(sObj.reset_index(drop=True))],axis=1) df4=df3.reset_index().rename(columns={'index':'NODEsLfdNr','NODEs':'NODEsName'})[['SEGName','NODEsLfdNr','NODEsName','OBJTYPE']] df4['NODEsType']=df4.apply(lambda row: row['NODEsLfdNr'] if row['NODEsLfdNr'] < df4.index[-1] else -1, axis=1) df4=df4[['SEGName','NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] df4['SEGNodes']=row[dfCols[0]]+'~'+row[dfCols[-1]] dfSegsNode.append(df4) dfSegsNodes=pd.concat(dfSegsNode).reset_index(drop=True) # --- dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes['NODEsRef']=dfSegsNodes.sort_values( by=['NODEsName','SEGOnlyInLDSPara','NODEsType','SEGName'] ,ascending=[True,True,False,True]).groupby(['NODEsName']).cumcount() + 1 dfSegsNodes=pd.merge(dfSegsNodes,dfSegsNodes.groupby(['NODEsName']).max(),left_on='NODEsName',right_index=True,suffixes=('','_max')) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] dfSegsNodes=dfSegsNodes.rename(columns={'NODEsLfdNr':'NODEsSEGLfdNr','NODEsType':'NODEsSEGLfdNrType'}) ### # --- ### dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsSEGLfdNr','NODEsSEGLfdNrType','NODEsName','OBJTYPE']] # --- Knotendaten ergaenzen dfSegsNodesNData=pd.merge(dfSegsNodes,V3_KNOT, left_on='NODEsName',right_on='NAME',suffixes=('','KNOT')) dfSegsNodesNData=dfSegsNodesNData.filter(items=dfSegsNodes.columns.to_list()+['ZKOR','NAME_CONT','NAME_VKNO','pk']) dfSegsNodesNData=dfSegsNodesNData.rename(columns={'NAME_CONT':'Blockname','NAME_VKNO':'Bl.Kn. fuer Block'}) # --- Knotendatenpunktdaten ergänzen V3_DPKT_KNOT=pd.merge(V3_DPKT,V3_KNOT,left_on='fkOBJTYPE',right_on='pk',suffixes=('','_KNOT')) V3_DPKT_KNOT_PH=V3_DPKT_KNOT[V3_DPKT_KNOT['ATTRTYPE'].isin(['PH'])] # Mehrfacheintraege sollte es nicht geben ... # V3_DPKT_KNOT_PH[V3_DPKT_KNOT_PH.duplicated(subset=['fkOBJTYPE'])] df=pd.merge(dfSegsNodesNData,V3_DPKT_KNOT_PH,left_on='pk',right_on='fkOBJTYPE',suffixes=('','_DPKT'),how='left') cols=dfSegsNodesNData.columns.to_list() cols.remove('pk') df=df.filter(items=cols+['ATTRTYPE','CLIENT_ID','OPCITEM_ID','NAME']) dfSegsNodesNDataDpkt=df #dfSegsNodesNDataDpkt # --- colList=dfSegsNodesNDataDpkt.columns.to_list() dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fDIVNameFromSEGName(x)) ### dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.filter(items=['DIVPipelineName']+colList) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.sort_values(by=['DIVPipelineName','SEGName','NODEsSEGLfdNr']).reset_index(drop=True) dfSegsNodesNDataDpkt['DruckResIDBase']=dfSegsNodesNDataDpkt['OPCITEM_ID'].apply(lambda x: fGetBaseIDFromResID(x) ) dfSegsNodesNDataDpkt['SEGResIDBase']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fGetSEGBaseIDFromSEGName(x) ) ###### --- ODI ODIFile=os.path.join(VersionsDir,ODI) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'ODI',ODI)) dfODI=Lx.getDfFromODI(ODIFile) dfSegsNodesNDataDpkt['SEGResIDs']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['SEGResIDsIMDI']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) dfSegsNodesNDataDpkt['DruckResIDs']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['DruckResIDsIMDI']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) # --- lfd. Nr. der Druckmessstelle im Segment ermitteln df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase'].notnull()].copy() df['NODEsSEGDruckErgLfdNr']=df.groupby('SEGName').cumcount() + 1 df['NODEsSEGDruckErgLfdNr']=df['NODEsSEGDruckErgLfdNr'].astype(int) cols=dfSegsNodesNDataDpkt.columns.to_list() cols.append('NODEsSEGDruckErgLfdNr') dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt ,df ,left_index=True ,right_index=True ,how='left' ,suffixes=('','_df') ).filter(items=cols) dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr']=dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr'].astype(int,errors='ignore') # LDSPara ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfPara,left_on='SEGNodes',right_index=True,suffixes=('','_LDSPara'),how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) #for SEGNodes in [str(SEGNodes) for SEGNodes in df.index if str(SEGNodes) not in dfSegsNodesNDataDpkt['SEGNodes'].values]: # logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) ###### --- LDSParaPT LDSParaPTFile=os.path.join(VersionsDir,LDSParaPT) if os.path.exists(LDSParaPTFile): logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSParaPT',LDSParaPT)) dfDPDTParams=pd.read_csv(LDSParaPTFile,delimiter=';',error_bad_lines=False,warn_bad_lines=True) dfMehrfach=dfDPDTParams.groupby(by='#ID').filter(lambda x: len(x) > 1) rows,cols=dfMehrfach.shape if rows > 0: logger.warning("{:s}Mehrfachkonfigurationen:".format(logStr)) logger.warning("{:s}".format(dfMehrfach.to_string())) dfDPDTParams=dfDPDTParams.groupby(by='#ID').first() # LDSParaPT ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfDPDTParams,left_on='CLIENT_ID',right_on='#ID',how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfOhne=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID']].reset_index(drop=True) rows,cols=dfOhne.shape if rows > 0: logger.debug("{:s}Druckmessstellen ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(dfOhne.to_string())) dfSegsNodesNDataDpkt['pMinMlc']=dfSegsNodesNDataDpkt.apply(lambda row: row['ZKOR']+row['pMin']*100000/(794.*9.81),axis=1) g=dfSegsNodesNDataDpkt.groupby(by='SEGName') df=g.pMinMlc.agg(pMinMlcMinSEG=np.min,pMinMlcMaxSEG=np.max) # pMinMlcMinSEG, pMinMlcMaxSEG ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,df,left_on='SEGName',right_index=True,how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) # Segmente ohne Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt.groupby(['SEGName']).first() df=df[pd.isnull(df['pMinMlcMinSEG'])][['DIVPipelineName','SEGNodes']] rows,cols=df.shape if rows > 0: logger.debug("{:s}ganze Segmente ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(df.to_string())) # Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (~pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID','pMin']].reset_index(drop=True) logger.debug("{:s}dfSegsNodesNDataDpkt: Mindestdrücke: {!s:s}".format(logStr,df.to_string())) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfSegsNodesNDataDpkt def fResValidSeriesSTAT_S(x): # STAT_S if pd.isnull(x)==False: if x >=0: return True else: return False else: return False def fResValidSeriesSTAT_S601(x): # STAT_S if pd.isnull(x)==False: if x==601: return True else: return False else: return False def fResValidSeriesAL_S(x,value=20): # AL_S if pd.isnull(x)==False: if x==value: return True else: return False else: return False def fResValidSeriesAL_S10(x): return fResValidSeriesAL_S(x,value=10) def fResValidSeriesAL_S4(x): return fResValidSeriesAL_S(x,value=4) def fResValidSeriesAL_S3(x): return fResValidSeriesAL_S(x,value=3) ResChannelFunctions=[fResValidSeriesSTAT_S,fResValidSeriesAL_S,fResValidSeriesSTAT_S601] ResChannelResultNames=['Zustaendig','Alarm','Stoerung'] ResChannelTypes=['STAT_S','AL_S','STAT_S'] # (fast) alle verfuegbaren Erg-Kanaele ResChannelTypesAll=['AL_S','STAT_S','SB_S','MZ_AV','LR_AV','NG_AV','LP_AV','AC_AV','ACCST_AV','ACCTR_AV','ACF_AV','TIMER_AV','AM_AV','DNTD_AV','DNTP_AV','DPDT_AV' ,'DPDT_REF_AV' ,'DPDT_REF' # Workaround ,'QM_AV','ZHKNR_S'] baseColorsSchieber=[ # Schieberfarben 'g' # 1 ,'b' # 2 ,'m' # 3 ,'r' # 4 ,'c' # 5 # alle Basisfarben außer y gelb ,'tab:blue' # 6 ,'tab:orange' # 7 ,'tab:green' # 8 ,'tab:red' # 9 ,'tab:purple' # 10 ,'tab:brown' # 11 ,'tab:pink' # 12 ,'gold' # 13 ,'fuchsia' # 14 ,'coral' # 15 ] markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer ] # --- Reports LDS: Funktionen und Hilfsfunktionen # ----------------------------------------------- def getLDSResVecDf( ResIDBase='ID.' # i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In. / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In. ,LDSResBaseType='SEG' # or Druck ,lx=None ,timeStart=None,timeEnd=None ,ResChannelTypes=ResChannelTypesAll ,timeShiftPair=None ): """ returns a df: the specified LDSResChannels (AL_S, ...) for an ResIDBase """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: # zu lesende IDs basierend auf ResIDBase bestimmen ErgIDs=[ResIDBase+ext for ext in ResChannelTypes] IMDIErgIDs=['IMDI.'+ID for ID in ErgIDs] ErgIDsAll=[*ErgIDs,*IMDIErgIDs] # Daten lesen von TC-H5s dfFiltered=lx.getTCsFromH5s(timeStart=timeStart,timeEnd=timeEnd,LDSResOnly=True,LDSResColsSpecified=ErgIDsAll,LDSResTypeSpecified=LDSResBaseType,timeShiftPair=timeShiftPair) # Spalten umbenennen colDct={} for col in dfFiltered.columns: m=re.search(Lx.pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetResTimes( ResIDBases=[] # Liste der Wortstaemme der Ergebnisvektoren ,df=pd.DataFrame() # TCsLDSRes... ,ResChannelTypes=ResChannelTypes # ['STAT_S','AL_S','STAT_S'] # Liste der Ergebnisvektoren Postfixe ,ResChannelFunctions=ResChannelFunctions # [fResValidSeriesSTAT_S,ResValidSeriesAL_S,fResValidSeriesSTAT_S601] # Liste der Ergebnisvektoren Funktionen ,ResChannelResultNames=ResChannelResultNames # ['Zustaendig','Alarm','Stoerung'] # Liste der key-Namen der Ergebnisse ,tdAllowed=pd.Timedelta('1 second') # erlaubte Zeitspanne zwischen geht und kommt (die beiden an diese Zeitspanne angrenzenden Zeitbereiche werden als 1 Zeit gewertet) ): """ Return: dct key: ResIDBase value: dct: key: ResChannelResultName Value: Liste mit Zeitpaaren (oder leere Liste) """ resTimesDct={} for ResIDBase in ResIDBases: tPairsDct={} for idx,ext in enumerate(ResChannelTypes): ID=ResIDBase+ext if ext == 'AL_S': debugOutput=True else: debugOutput=False if ID in df: #print("{:s} in Ergliste".format(ID)) tPairs=findAllTimeIntervallsSeries( s=df[ID].dropna() #! ,fct=ResChannelFunctions[idx] ,tdAllowed=tdAllowed#pd.Timedelta('1 second') ,debugOutput=debugOutput ) else: #print("{:s} nicht in Ergliste".format(ID)) tPairs=[] tPairsDct[ResChannelResultNames[idx]]=tPairs resTimesDct[ResIDBase]=tPairsDct return resTimesDct def getAlarmStatistikData( h5File='a.h5' ,dfSegsNodesNDataDpkt=pd.DataFrame() ,timeShiftPair=None # z.B. (1,'H') bei Replay ): """ Returns TCsLDSRes1,TCsLDSRes2,dfCVDataOnly """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) TCsLDSRes1=pd.DataFrame() TCsLDSRes2=pd.DataFrame() try: # "connect" to the App Logs lx=Lx.AppLog(h5File=h5File) if hasattr(lx, 'h5FileLDSRes'): logger.error("{0:s}{1:s}".format(logStr,'In den TCs nur Res und nicht Res1 und Res2?!')) raise RmError # zu lesende Daten ermitteln l=dfSegsNodesNDataDpkt['DruckResIDBase'].unique() l = l[~pd.isnull(l)] DruckErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] # l=dfSegsNodesNDataDpkt['SEGResIDBase'].unique() l = l[~pd.isnull(l)] SEGErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] ErgIDs=[*DruckErgIDs,*SEGErgIDs] # Daten lesen TCsLDSRes1,TCsLDSRes2=lx.getTCsFromH5s(LDSResOnly=True,LDSResColsSpecified=ErgIDs,timeShiftPair=timeShiftPair) (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) dfCVDataOnly=lx.getCVDFromH5(timeDelta=timeDelta,returnDfCVDataOnly=True) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsLDSRes1,TCsLDSRes2,dfCVDataOnly def processAlarmStatistikData( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,tdAllowed=None # pd.Timedelta('1 second') # Alarm geht ... Alarm kommt (wieder): wenn Zeitspanne ... <= tdAllowed, dann wird dies _gewertet als dieselbe Alarmzeitspanne # d.h. es handelt sich _gewertet inhaltlich um denselben Alarm # None zählt die Alarme strikt getrennt ): """ Returns: SEGResDct,DruckResDct ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.<KEY>. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: <KEY>S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Zeiten SEGErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['SEGResIDBase'].unique() if not pd.isnull(baseID)] SEGResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes1,tdAllowed=tdAllowed) logger.debug("{:s}SEGResDct: {!s:s}".format(logStr,SEGResDct)) # Zeiten DruckErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['DruckResIDBase'].unique() if not pd.isnull(baseID)] DruckResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes2,tdAllowed=tdAllowed) logger.debug("{:s}DruckResDct: {!s:s}".format(logStr,DruckResDct)) # verschiedene Auspraegungen pro Alarmzeit ermitteln for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] for keyStr, colExt in zip(['AL_S_SB_S','<KEY>'],['SB_S','ZHKNR_S']): lGes=[] if tPairs != []: for tPair in tPairs: col=ID+colExt lSingle=ResSrc.loc[tPair[0]:tPair[1],col] lSingle=[int(x) for x in lSingle if pd.isnull(x)==False] lSingle=[lSingle[0]]+[lSingle[i] for i in range(1,len(lSingle)) if lSingle[i]!=lSingle[i-1]] lGes.append(lSingle) IDDct[keyStr]=lGes # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def addNrToAlarmStatistikData( SEGResDct={} ,DruckResDct={} ,dfAlarmEreignisse=pd.DataFrame() ): """ Returns: SEGResDct,DruckResDct added with key AL_S_NR ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_SPV.In. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: AL_S_ZHKNR_S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) # ergänzt: key: AL_S_NR: value: Liste mit der Nr. (aus dfAlarmEreignisse) pro Alarm (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # for ResDct, LDSResBaseType in zip([SEGResDct, DruckResDct],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] lNr=[] if tPairs != []: ZHKNRnListen=IDDct['AL_S_ZHKNR_S'] for idxAlarm,tPair in enumerate(tPairs): ZHKNRnListe=ZHKNRnListen[idxAlarm] ZHKNR=ZHKNRnListe[0] ae=AlarmEvent(tPair[0],tPair[1],ZHKNR,LDSResBaseType) Nr=dfAlarmEreignisse[dfAlarmEreignisse['AlarmEvent']==ae]['Nr'].iloc[0] lNr.append(Nr) IDDct['AL_S_NR']=lNr # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def processAlarmStatistikData2( DruckResDct=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ): """ Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet Returns: SEGDruckResDct ResDct: key: baseID value: dct sortiert und direkt angrenzende oder gar ueberlappende Zeiten aus Druckergebnissen zusammenfasst key: Zustaendig: value: Zeitbereiche, in denen ein Druckergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen ein Druckergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen ein Druckergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) voneiander verschiedene Ausprägungen (sortiert) aus Druckergebnissen key: AL_S_SB_S: Liste key: AL_S_ZHKNR_S: Liste key: AL_S_NR: Liste """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet SEGDruckResDct={} # merken, ob eine ID bereits bei einem SEG gezählt wurde; die Alarme einer ID sollen nur bei einem SEG gezaehlt werden IDBereitsGezaehlt={} # über alle DruckErgs for idx,(ID,tPairsDct) in enumerate(DruckResDct.items()): # SEG ermitteln # ein DruckErg kann zu mehreren SEGs gehoeren z.B. gehoert ein Verzweigungsknoten i.d.R. zu 3 versch. SEGs tupleLst=getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,ID) for idxTuple,(DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) in enumerate(tupleLst): # wenn internes SEG if SEGOnlyInLDSPara: logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt da dieses SEG intern.".format(logStr,ID,SEGName)) continue # ID wurde bereits gezählt if ID in IDBereitsGezaehlt.keys(): logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern wurde bereits bei SEGName {:s} gezaehlt.".format(logStr,ID,SEGName,IDBereitsGezaehlt[ID])) continue else: # ID wurde noch nicht gezaehlt IDBereitsGezaehlt[ID]=SEGName #if idxTuple>0: # logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern nur bei SEGName {:s}.".format(logStr,ID,SEGName,tupleLst[0][1])) # continue if len(tPairsDct['Alarm'])>0: logger.debug("{:s}SEGName {:20s}: durch ID {:40s} mit Alarm. Nr des Verweises von ID auf ein Segment: {:d}".format(logStr,SEGName,ID, idxTuple+1)) if SEGResIDBase not in SEGDruckResDct.keys(): # auf dieses SEG wurde noch nie verwiesen SEGDruckResDct[SEGResIDBase]=deepcopy(tPairsDct) # das Segment erhält die Ergebnisse des ersten Druckvektors der zum Segment gehört else: # ergaenzen # Zeitlisten ergänzen for idx2,ext in enumerate(ResChannelTypes): tPairs=tPairsDct[ResChannelResultNames[idx2]] for idx3,tPair in enumerate(tPairs): if True: #tPair not in SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]]: # keine identischen Zeiten mehrfach zaehlen # die Ueberlappung von Zeiten wird weiter unten behandelt SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]].append(tPair) # weitere Listen ergaenzen for ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: SEGDruckResDct[SEGResIDBase][ext]=SEGDruckResDct[SEGResIDBase][ext]+tPairsDct[ext] # Ergebnis: sortieren und dann direkt angrenzende oder gar ueberlappende Zeiten zusammenfassen for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): if ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: # keine Zeiten pass else: tPairs=tPairsDct[ResChannelResultNames[idx2]] tPairs=sorted(tPairs,key=lambda tup: tup[0]) tPairs=fCombineSubsequenttPairs(tPairs) SEGDruckResDct[ID][ResChannelResultNames[idx2]]=tPairs # voneiander verschiedene Ausprägungen (sortiert) for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): v=tPairsDct[ext] if ext in ['AL_S_SB_S','AL_S_ZHKNR_S']: # Liste von Listen l=[*{*chain.from_iterable(v)}] l=sorted(pd.unique(l)) SEGDruckResDct[ID][ext]=l elif ext in ['AL_S_NR']: # Liste l=sorted(pd.unique(v)) SEGDruckResDct[ID][ext]=l else: pass logger.debug("{:s}SEGDruckResDct: {!s:s}".format(logStr,SEGDruckResDct)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGDruckResDct def buildAlarmDataframes( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,SEGResDct={} ,DruckResDct={} ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] ,NrAsc=[False]+4*[True] ): """ Returns dfAlarmStatistik,dfAlarmEreignisse,SEGDruckResDct """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmStatistik=pd.DataFrame() dfAlarmEreignisse=pd.DataFrame() try: # Ereignisse dfAlarmEreignisse=buildDfAlarmEreignisse( SEGResDct=SEGResDct ,DruckResDct=DruckResDct ,TCsLDSRes1=TCsLDSRes1 ,TCsLDSRes2=TCsLDSRes2 ,dfCVDataOnly=dfCVDataOnly ,dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt ,replaceTup=replaceTup ,NrBy=NrBy ,NrAsc=NrAsc ) # in dfAlarmEreignisse erzeugte Alarm-Nr. an Dct merken SEGResDct,DruckResDct=addNrToAlarmStatistikData( SEGResDct ,DruckResDct ,dfAlarmEreignisse ) # BZKat der Alarme def fGetAlarmKat(row): """ """ # baseID des Alarms baseID=row['OrteIDs'][0] # dct des Alarms if row['LDSResBaseType']=='SEG': dct=SEGResDct[baseID] else: dct=DruckResDct[baseID] # Nrn der baseID Nrn=dct['AL_S_NR'] # idx dieses Alarms innerhalb der Alarme der baseID idxAl=Nrn.index(row['Nr']) # Zustaende dieses alarms SB_S=dct['AL_S_SB_S'][idxAl] kat='' if 3 in SB_S: kat='instationär' else: if 2 in SB_S: kat = 'schw. instationär' else: if 1 in SB_S: kat = 'stat. Fluss' elif 4 in SB_S: kat = 'stat. Ruhe' return kat dfAlarmEreignisse['BZKat']=dfAlarmEreignisse.apply(lambda row: fGetAlarmKat(row),axis=1) # Segment-verdichtete Druckergebnisse SEGDruckResDct=processAlarmStatistikData2( DruckResDct ,TCsLDSRes2 ,dfSegsNodesNDataDpkt ) # Alarmstatistik bilden dfAlarmStatistik=dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']] dfAlarmStatistik=dfAlarmStatistik[['DIVPipelineName','SEGName','SEGNodes','SEGResIDBase']].drop_duplicates(keep='first').reset_index(drop=True) dfAlarmStatistik['Nr']=dfAlarmStatistik.apply(lambda row: "{:2d}".format(int(row.name)),axis=1) # SEG dfAlarmStatistik['FörderZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Zustaendig']) dfAlarmStatistik['FörderZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Alarm']) dfAlarmStatistik['FörderZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Stoerung']) dfAlarmStatistik['FörderZeitenAlAnz']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['FörderZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_SB_S']) dfAlarmStatistik['FörderZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_NR']) # Druck (SEG-verdichtet) dfAlarmStatistik['RuheZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Zustaendig'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Alarm'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Stoerung'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_SB_S'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_NR'] if x in SEGDruckResDct.keys() else []) #dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAlNrn'].apply(lambda x: len(x)) # je 3 Zeiten bearbeitet dfAlarmStatistik['FörderZeit']=dfAlarmStatistik['FörderZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeit']=dfAlarmStatistik['RuheZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitAl']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitAl']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitSt']=dfAlarmStatistik['FörderZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitSt']=dfAlarmStatistik['RuheZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse, dfAlarmStatistik,SEGDruckResDct def plotDfAlarmStatistik( dfAlarmStatistik=pd.DataFrame() ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=dfAlarmStatistik[[ 'Nr' ,'DIVPipelineName' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'FörderZeitSt' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ,'RuheZeitSt' ]].copy() # diese Zeiten um (Störzeiten) annotieren df['FörderZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['FörderZeit'],row['FörderZeitSt']) if row['FörderZeitSt'] > 0. else row['FörderZeit'] ,axis=1) df['RuheZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['RuheZeit'],row['RuheZeitSt']) if row['RuheZeitSt'] > 0. else row['RuheZeit'],axis=1) # LfdNr. annotieren df['LfdNr']=df.apply(lambda row: "{:2d} - {:s}".format(int(row.Nr)+1,str(row.DIVPipelineName)),axis=1) # Zeiten Alarm um Alarm-Nrn annotieren def fAddZeitMitNrn(zeit,lAlNr): if len(lAlNr) > 0: if len(lAlNr) <= 3: return "{!s:s} (Nrn.: {!s:s})".format(zeit,lAlNr) else: # mehr als 3 Alarme... return "{!s:s} (Nrn.: {!s:s}, ...)".format(zeit,lAlNr[0]) else: return zeit df['FörderZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['FörderZeitAl'],row['FörderZeitenAlNrn']),axis=1) df['RuheZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['RuheZeitAl'],row['RuheZeitenAlNrn']),axis=1) df=df[[ 'LfdNr' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ]] try: t=plt.table(cellText=df.values, colLabels=df.columns, loc='center') cols=df.columns.to_list() colIdxLfdNr=cols.index('LfdNr') colIdxFoerderZeit=cols.index('FörderZeit') colIdxFoerderZeitenAlAnz=cols.index('FörderZeitenAlAnz') colIdxFoerderZeitAl=cols.index('FörderZeitAl') colIdxRuheZeit=cols.index('RuheZeit') colIdxRuheZeitenAlAnz=cols.index('RuheZeitenAlAnz') colIdxRuheZeitAl=cols.index('RuheZeitAl') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 if row == 0: if col in [colIdxRuheZeit,colIdxRuheZeitenAlAnz,colIdxRuheZeitAl]: pass cellObj.set_text_props(backgroundcolor='plum') elif col in [colIdxFoerderZeit,colIdxFoerderZeitenAlAnz,colIdxFoerderZeitAl]: pass cellObj.set_text_props(backgroundcolor='lightsteelblue') if col == colIdxLfdNr: if row==0: continue if 'color' in dfAlarmStatistik.columns.to_list(): color=dfAlarmStatistik['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) if col == colIdxFoerderZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'FörderZeitSt']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxFoerderZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Förderzeit if df.loc[row-1,'FörderZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # palegoldenrod #if df.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: if dfAlarmStatistik.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') if col == colIdxRuheZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'RuheZeitSt']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxRuheZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Ruhezeit if df.loc[row-1,'RuheZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: pass cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # # palegoldenrod #if df.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: if dfAlarmStatistik.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def fOrteStripped(LDSResBaseType,OrteIDs): """ returns Orte stripped """ if LDSResBaseType == 'SEG': # 'Objects.3S_FBG_SEG_INFO.3S_L_6_MHV_02_FUD.In.'] orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_'+m.group('C6') orteStripped.append(ortStripped) return orteStripped elif LDSResBaseType == 'Druck': # Objects.3S_FBG_DRUCK.3S_6_BNV_01_PTI_01.In orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') orteStripped.append(ortStripped) return orteStripped else: return None def fCVDTime(row,dfSEG,dfDruck,replaceTup=('2021-','')): """ in: dfSEG/dfDruck: TCsLDSRes1/TCsLDSRes2 row: Zeile aus dfAlarmEreignisse von row verwendet: LDSResBaseType: SEG (dfSEG) oder nicht (dfDruck) OrteIDs: ==> ID von ZHKNR_S in dfSEG/dfDruck ZHKNR: ZHKNR returns: string: xZeitA - ZeitEx ZeitA: erste Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt ZeitE: letzte Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt xZeitA, wenn ZeitA die erste Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert xZeitE, wenn ZeitE die letzte Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert in Zeit wurde replaceTup angewendet """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: Time="" ID=row['OrteIDs'][0]+'ZHKNR_S' ZHKNR=row['ZHKNR'] if row['LDSResBaseType']=='SEG': df=dfSEG else: df=dfDruck s=df[df[ID]==ZHKNR][ID] # eine Spalte; Zeilen in denen ZHKNR_S den Wert von ZHKNR trägt tA=s.index[0] # 1. Zeit tE=s.index[-1] # letzte Zeit Time=" {!s:s} - {!s:s} ".format(tA,tE) try: if tA==df[ID].dropna().index[0]: Time='x'+Time.lstrip() except: logger.debug("{0:s}Time: {1:s}: x-tA Annotation Fehler; keine Annotation".format(logStr,Time)) try: if tE==df[ID].dropna().index[-1]: Time=Time.rstrip()+'x' except: logger.debug("{0:s}Time: {1:s}: x-tE Annotation Fehler; keine Annotation".format(logStr,Time)) Time=Time.replace(replaceTup[0],replaceTup[1]) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return Time def buildDfAlarmEreignisse( SEGResDct={} ,DruckResDct={} ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] # Sortierspalten für die Nr. der Ereignisse ,NrAsc=[False]+4*[True] # aufsteigend j/n für die o.g. Sortierspalten ): """ Returns dfAlarmEreignisse: Nr: lfd. Nr (gebildet gem. NrBy und NrAsc) tA: Anfangszeit tE: Endezeit tD: Dauer des Alarms ZHKNR: ZHKNR (die zeitlich 1., wenn der Alarm sich über mehrere ZHKNRn erstreckt) tD_ZHKNR: Lebenszeit der ZHKNR; x-Annotationen am Anfang/Ende, wenn ZHK beginnt bei Res12-Anfang / andauert bei Res12-Ende; '-1', wenn Lebenszeit nicht ermittelt werden konnte ZHKNRn: sortierte Liste der ZHKNRn des Alarms; eine davon ist ZHKNR; typischerweise die 1. der Liste LDSResBaseType: SEG oder Druck OrteIDs: OrteIDs des Alarms Orte: Kurzform von OrteIDs des Alarms Ort: der 1. Ort von Orte SEGName: Segment zu dem der 1. Ort des Alarms gehört DIVPipelineName: Voralarm: ermittelter Vorlalarm des Alarms; -1, wenn kein Voralarm in Res12 gefunden werden konnte Type: Typ des Kontrollraumns; z.B. p-p für vollständige Flussbilanzen; '', wenn kein Typ gefunden werden konnte Name: Name des Bilanzraumes NrSD: lfd. Nr Alarm BaseType NrName: lfd. Nr Alarm Name NrSEGName: lfd. Nr Alarm SEGName AlarmEvent: AlarmEvent-Objekt ###BZKat: Betriebszustandskategorie des Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmEreignisse=pd.DataFrame() try: AlarmEvents=[] # Liste von AlarmEvent AlarmEventsOrte={} # dct der Orte, die diesen (key) AlarmEvent melden AlarmEventsZHKNRn={} # dct der ZHKNRn, die zu diesem (key) gehoeren # über SEG- und Druck-Ergebnisvektoren for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for ResIDBase,dct in ResDct.items(): AL_S=dct['Alarm'] if len(AL_S) > 0: # eine Erg-ID weist Alarme [(tA,tE),...] auf # korrespondiernede Liste der ZHKs: [(999,1111),...] ZHKNRnListen=dct['AL_S_ZHKNR_S'] ID=ResIDBase+'ZHKNR_S' # fuer nachfolgende Ausgabe # ueber alle Alarme der Erg-ID for idx,AL_S_Timepair in enumerate(AL_S): (t1,t2)=AL_S_Timepair # tA, tE ZHKNR_S_Lst=ZHKNRnListen[idx] # Liste der ZHKs in dieser Zeit if len(ZHKNR_S_Lst) != 1: logger.warning(("{:s}ID:\n\t {:s}: Alarm {:d} der ID\n\t Zeit von {!s:s} bis {!s:s}:\n\t Anzahl verschiedener ZHKNRn !=1: {:d} {:s}:\n\t ZHKNR eines Alarms wechselt waehrend eines Alarms. Alarm wird identifiziert mit 1. ZHKNR.".format(logStr,ID ,idx ,t1 ,t2 ,len(ZHKNR_S_Lst) ,str(ZHKNR_S_Lst) ))) # die erste wird verwendet ZHKNR=int(ZHKNR_S_Lst[0]) # AlarmEvent erzeugen alarmEvent=AlarmEvent(t1,t2,ZHKNR,LDSResBaseType) if alarmEvent not in AlarmEvents: # diesen Alarm gibt es noch nicht in der Ereignisliste ... AlarmEvents.append(alarmEvent) AlarmEventsOrte[alarmEvent]=[] AlarmEventsZHKNRn[alarmEvent]=[] else: pass # Ort ergaenzen (derselbe Alarm wird erst ab V83.5.3 nur an einem Ort - dem lexikalisch kleinsten des Bilanzraumes - ausgegeben; zuvor konnte derselbe Alarm an mehreren Orten auftreten) AlarmEventsOrte[alarmEvent].append(ResIDBase) # ZHKNR(n) ergaenzen (ein Alarm wird unter 1 ZHKNR geführt) AlarmEventsZHKNRn[alarmEvent].append(ZHKNR_S_Lst) # df erzeugen dfAlarmEreignisse=pd.DataFrame.from_records( [alarmEvent for alarmEvent in AlarmEvents], columns=AlarmEvent._fields ) # Liste der EventOrte erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): l.append(AlarmEventsOrte[alarmEvent]) dfAlarmEreignisse['OrteIDs']=l # abgekuerzte Orte dfAlarmEreignisse['Orte']=dfAlarmEreignisse.apply(lambda row: fOrteStripped(row.LDSResBaseType,row.OrteIDs),axis=1) dfAlarmEreignisse['Ort']=dfAlarmEreignisse['Orte'].apply(lambda x: x[0]) # Liste der ZHKNRn erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): lOfZl=AlarmEventsZHKNRn[alarmEvent] lOfZ=[*{*chain.from_iterable(lOfZl)}] lOfZ=sorted(pd.unique(lOfZ)) l.append(lOfZ) dfAlarmEreignisse['ZHKNRn']=l # Segmentname eines Ereignisses dfAlarmEreignisse['SEGName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==row['OrteIDs'][0]]['SEGName'].iloc[0] if row['LDSResBaseType']=='SEG' else [tuple for tuple in getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,row['OrteIDs'][0]) if not tuple[-1]][0][1],axis=1) # DIVPipelineName eines Ereignisses dfAlarmEreignisse['DIVPipelineName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DIVPipelineName'].iloc[0] ,axis=1) # Alarm: --- #tA: Anfangszeit #tE: Endezeit #ZHKNR: ZHKNR (1. bei mehreren Alarmen) #LDSResBaseType: SEG oder Druck # Orte: --- #OrteIDs: OrteIDs des Alarms #Orte: Kurzform von OrteIDs des Alarms #ZHKNRn: #SEGName: Segmentname #DIVPipelineName ## Nr. dfAlarmEreignisse.sort_values(by=NrBy,ascending=NrAsc,inplace=True) dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 #dfAlarmEreignisse['Nr']=dfAlarmEreignisse['Nr']+1 logger.debug("{0:s}{1:s}: {2:s}".format(logStr,'dfAlarmEreignisse',dfAlarmEreignisse.to_string())) # Voralarm VoralarmTypen=[] for index, row in dfAlarmEreignisse.iterrows(): # zur Information bei Ausgaben OrteIDs=row['OrteIDs'] OrtID=OrteIDs[0] VoralarmTyp=None try: if row['LDSResBaseType']=='SEG': VoralarmTyp=TCsLDSRes1.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] elif row['LDSResBaseType']=='Druck': VoralarmTyp=TCsLDSRes2.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] except: pass if pd.isnull(VoralarmTyp): # == None: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=-1 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: kein (isnull) Vorlalarm gefunden?! (ggf. neutraler BRWechsel) - Voralarm gesetzt auf: {:d}".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'],int(VoralarmTyp))) if int(VoralarmTyp)==0: # == 0: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=0 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: Vorlalarm 0?! (ggf. war Bilanz in Stoerung)".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'])) if int(VoralarmTyp) not in [-1,0,3,4,10]: logger.warning("{:s}PV: {:s} Alarm Nr. {:d} {:d} tA {!s:s}: unbekannter Vorlalarm gefunden: {:d}".format(logStr,row['OrteIDs'][0],int(row['Nr']),row['ZHKNR'],row['tA'],int(VoralarmTyp))) logger.debug("{:s}{:d} {!s:s} VoralarmTyp:{:d}".format(logStr,int(row['Nr']),row['tA'],int(VoralarmTyp))) VoralarmTypen.append(VoralarmTyp) dfAlarmEreignisse['Voralarm']=[int(x) for x in VoralarmTypen] # Type (aus dfCVDataOnly) und Erzeugungszeit (aus dfCVDataOnly) und Name (aus dfCVDataOnly) dfAlarmEreignisse['ZHKNR']=dfAlarmEreignisse['ZHKNR'].astype('int64') dfAlarmEreignisse['ZHKNRStr']=dfAlarmEreignisse['ZHKNR'].astype('string') dfCVDataOnly['ZHKNRStr']=dfCVDataOnly['ZHKNR'].astype('string') # wg. aelteren App-Log Versionen in denen ZHKNR in dfCVDataOnly nicht ermittelt werden konnte # Type,ScenTime,Name sind dann undefiniert dfAlarmEreignisse=pd.merge(dfAlarmEreignisse,dfCVDataOnly,on='ZHKNRStr',suffixes=('','_CVD'),how='left').filter(items=dfAlarmEreignisse.columns.to_list()+['Type' #,'ScenTime' ,'Name']) dfAlarmEreignisse=dfAlarmEreignisse.drop(['ZHKNRStr'],axis=1) dfAlarmEreignisse=dfAlarmEreignisse.fillna(value='') # lfd. Nummern dfAlarmEreignisse['NrSD']=dfAlarmEreignisse.groupby(['LDSResBaseType']).cumcount() + 1 dfAlarmEreignisse['NrName']=dfAlarmEreignisse.groupby(['Name']).cumcount() + 1 dfAlarmEreignisse['NrSEGName']=dfAlarmEreignisse.groupby(['SEGName']).cumcount() + 1 # Lebenszeit der ZHKNR try: dfAlarmEreignisse['tD_ZHKNR']=dfAlarmEreignisse.apply(lambda row: fCVDTime(row,TCsLDSRes1,TCsLDSRes2,replaceTup),axis=1) except: logger.debug("{:s}Spalte tD_ZHKNR (Lebenszeit einer ZHKNR) konnte nicht ermittelt werden. Vmtl. aeltere App-Log Version.".format(logStr)) dfAlarmEreignisse['tD_ZHKNR']='-1' # Dauer des Alarms dfAlarmEreignisse['tD']=dfAlarmEreignisse.apply(lambda row: row['tE']-row['tA'],axis=1) dfAlarmEreignisse['tD']= dfAlarmEreignisse['tD'].apply(lambda x: "{!s:s}".format(x).replace('days','Tage').replace('0 Tage','').replace('Tage','T')) # AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') dfAlarmEreignisse=dfAlarmEreignisse[['Nr','tA', 'tE','tD','ZHKNR','tD_ZHKNR','ZHKNRn','LDSResBaseType' ,'OrteIDs', 'Orte', 'Ort', 'SEGName','DIVPipelineName' ,'Voralarm', 'Type', 'Name' ,'NrSD', 'NrName', 'NrSEGName' ]] dfAlarmEreignisse['AlarmEvent']=dfAlarmEreignisse.apply(lambda row: AlarmEvent(row['tA'],row['tE'],row['ZHKNR'],row['LDSResBaseType']),axis=1) # unklar, warum erforderlich dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse def fCVDName(Name ): """ """ lName=len(Name) if len(Name)==0: Name='ZHKName vmtl. nicht in Log' lNameMaxH=20 if lName > 2*lNameMaxH: Name=Name[:lNameMaxH-2]+'....'+Name[lName-lNameMaxH+2:] Name=Name.replace('°','|') return Name def plotDfAlarmEreignisse( dfAlarmEreignisse=pd.DataFrame() ,sortBy=[] ,replaceTup=('2021-','') ,replaceTuptD=('0 days','') ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=dfAlarmEreignisse[['Nr','LDSResBaseType','Voralarm','Type','NrSD','tA','tE','tD','ZHKNR','Name','Orte','tD_ZHKNR','NrName','NrSEGName','SEGName','BZKat']].copy() df['tA']=df['tA'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) df['tE']=df['tE'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) ###df['Anz']=df['Orte'].apply(lambda x: len(x)) ##df['Orte']=df['Orte'].apply(lambda x: str(x).replace('[','').replace(']','').replace("'","")) df['Orte']=df['Orte'].apply(lambda x: str(x[0])) df['LDSResBaseType']=df.apply(lambda row: "{:s} {:s} - {:d}".format(row['LDSResBaseType'],row['Type'],row['Voralarm']),axis=1) df=df[['Nr','LDSResBaseType','NrSD','tA','tE','tD','ZHKNR','Name','NrName','NrSEGName','SEGName','tD_ZHKNR','Orte','BZKat']] df.rename(columns={'LDSResBaseType':'ResTyp - Voralarm'},inplace=True) df.rename(columns={'tD_ZHKNR':'ZHKZeit','Name':'ZHKName'},inplace=True) ###df['ZHKName']=df['ZHKName'].apply(lambda x: fCVDName(x)) ####df['ZHKName']=df['Orte'].apply(lambda x: x[0]) df['NrSEGName (SEGName)']=df.apply(lambda row: "{!s:2s} ({!s:s})".format(row['NrSEGName'],row['SEGName']),axis=1) df=df[['Nr','ResTyp - Voralarm','NrSD','tA','tD','ZHKNR' ,'Orte' #'ZHKName' ,'BZKat' ,'NrName','NrSEGName (SEGName)','ZHKZeit']] df.rename(columns={'Orte':'ID'},inplace=True) df['tD']=df['tD'].apply(lambda x: str(x).replace(replaceTuptD[0],replaceTuptD[1])) def fGetZHKNRStr(row,dfOrig): """ returns: ZHKNStr in Abhängigkeit der aktuellen Zeile und dfOrig """ s=dfOrig[dfOrig['Nr']==row['Nr']].iloc[0] if len(s.ZHKNRn)>1: if len(s.ZHKNRn)==2: return "{:d} ({!s:s})".format(row['ZHKNR'],s.ZHKNRn[1:]) else: return "{:d} (+{:d})".format(row['ZHKNR'],len(s.ZHKNRn)-1) else: return "{:d}".format(row['ZHKNR']) df['ZHKNR']=df.apply(lambda row: fGetZHKNRStr(row,dfAlarmEreignisse),axis=1) if sortBy!=[]: df=df.sort_values(by=sortBy) t=plt.table(cellText=df.values, colLabels=df.columns ,colWidths=[.03,.1 # Nr ResTyp-Voralarm ,.04 # NrSD ,.08,.08 # tA tD ,.085 # ZHKNR ,.1125,.07 #.1125 # ID BZKat ,.04 # NrName ,.14 # NrSEGName (SEGName) ,.2125] # ZHKZeit , cellLoc='left' , loc='center') t.auto_set_font_size(False) t.set_fontsize(10) cols=df.columns.to_list() #colIdxOrte=cols.index('Orte') #colIdxName=cols.index('ZHKName') colIdxNrSD=cols.index('NrSD') colIdxNrSEG=cols.index('NrSEGName (SEGName)') # ResTyp - Voralarm colIdxResTypVA=cols.index('ResTyp - Voralarm') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 #if col == colIdxName: # cellObj.set_text_props(ha='left') if col == colIdxNrSD: if row > 0: if dfAlarmEreignisse.loc[row-1,'LDSResBaseType']=='SEG': cellObj.set_text_props(backgroundcolor='lightsteelblue') else: cellObj.set_text_props(backgroundcolor='plum') elif col == colIdxNrSEG: if row==0: continue if 'color' in dfAlarmEreignisse.columns.to_list(): color=dfAlarmEreignisse['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) elif col == colIdxResTypVA and row > 0: pass if dfAlarmEreignisse.loc[row-1,'Voralarm'] in [10]: cellObj.set_text_props(backgroundcolor='sandybrown') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [4]: cellObj.set_text_props(backgroundcolor='pink') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [3]: cellObj.set_text_props(backgroundcolor='lightcoral') else: pass #cellObj.set_text_props(fontsize=16) plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def plotDfAlarmStatistikReportsSEGErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,SEGResDct={} ,timeStart=None,timeEnd=None ,SEGErgsFile='SEGErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' # Runden (1 Stunde) ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with FörderZeitenAlAnz>0 1 Base Plot and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime logger.debug("{0:s}timeStart (ohne timeShift): {1:s} timeEnd (ohne timeShift): {2:s}".format(logStr,str(timeStart),str(timeEnd))) xlimsDct={} pdf=PdfPages(SEGErgsFile) (fileNameBase,ext)= os.path.splitext(SEGErgsFile) if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,row['SEGResIDBase']) if row['FörderZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("{:s}: FörderZeitenAlAnz: 0".format(titleStr)) continue # keine SEGs ohne Alarme drucken # Erg lesen ResIDBase=row['SEGResIDBase'] dfSegReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='SEG',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) ID='AL_S' if ID not in dfSegReprVec.keys(): continue idxSEGPlotted=idxSEGPlotted+1 xlimsDct[ResIDBase]=[] logger.debug("{:s}ResIDBase: {:s} dfSegReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfSegReprVec.columns.to_list())) # Plot Basis ########################################################### fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ,plotLegend=True ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) if row['FörderZeitenAlAnz'] > 0: if row['FörderZeitenAlAnz'] <= 3: txtNr=" Nrn.: {!s:s}".format(row['FörderZeitenAlNrn']) else: txtNr=" Nrn.: {!s:s} u.w.".format(row['FörderZeitenAlNrn'][0]) txt=txt+txtNr else: txtNr='' ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,txtNr.replace('Nrn.: ','Nrn ').replace(',','').replace('[','').replace(']','').replace('u.w.','u w')) plt.savefig(fileName) plt.show() ###plt.clf() plt.close() # Plot Alarme ########################################################### dct=SEGResDct[row['SEGResIDBase']] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['FörderZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) # wenn AlarmRand - PlotRand < 3 Minuten: um 3 Minuten erweitern if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) txtNr=" Nr.: {!s:s}".format(AlNr) txt=txt+txtNr ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') #logger.info("{:s}".format(titleStr)) fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png #(fileName,ext)= os.path.splitext(SEGErgsFile) fileNameAlarm="{:s} {:s}.png".format(fileName.replace('.png','') ,txtNr.replace('Nr.: ','Nr ').replace(',','').replace('[','').replace(']','')) plt.savefig(fileNameAlarm) plt.show() ###plt.clf() plt.close() ###plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotDfAlarmStatistikReportsDruckErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,DruckResDct={} ,timeStart=None,timeEnd=None ,DruckErgsFile='DruckErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with RuheZeitenAlAnz>0 1 Base Plot for a Druck with an Alarm and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() logger.debug("{0:s}firstTime (ohne TimeShift): {1:s} lastTime (ohne TimeShift): {2:s}".format(logStr,str(firstTime),str(lastTime))) if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) # https://stackoverflow.com/questions/35339139/where-is-the-documentation-on-pandas-freq-tags else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') logger.debug("{0:s}timeStart abgerundet (ohne TimeShift): {1:s} timeEnd aufgerundet (ohne TimeShift): {2:s} TimeShift: {3:s}".format(logStr ,str(timeStart) ,str(timeEnd) ,str(timeDelta))) xlimsDct={} pdf=PdfPages(DruckErgsFile) (fileNameBase,ext)= os.path.splitext(DruckErgsFile) # über alle Segmente der Alarmstatistik (die DruckIDs sollen in der Reihenfolge der Alarmstatistik abgearbeitet werden) idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if row['RuheZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("LfdNr {:2d} - {:s}: {:s}: RuheZeitenAlAnz: 0".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'])) continue # keine SEGs ohne Alarme drucken if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break idxSEGPlotted=idxSEGPlotted+1 # DruckIDs eines Segmentes DruckIDs=sorted([ID for ID in dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DruckResIDBase'].unique() if not pd.isnull(ID)]) for idxDruckID,DruckResIDBase in enumerate(DruckIDs): dct=DruckResDct[DruckResIDBase] if len(dct['Alarm'])==0: # nur DruckIDs mit Alarmen plotten continue fig=plt.figure(figsize=DINA4q,dpi=dpiSize) # Erg lesen ResIDBase=DruckResIDBase dfDruckReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='Druck',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) logger.debug("{:s}ResIDBase: {:s} dfDruckReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfDruckReprVec.columns.to_list())) logger.debug("{:s}ID: {:s}: timeStart (mit TimeShift): {:s} timeEnd (mit TimeShift): {:s}".format(logStr ,DruckResIDBase ,str(dfDruckReprVec.index[0]) ,str(dfDruckReprVec.index[-1]) )) ID='AL_S' if ID not in dfDruckReprVec.keys(): continue xlimsDct[ResIDBase]=[] ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten)) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,fOrteStripped('Druck',[DruckResIDBase])[0] ) plt.savefig(fileName) plt.show() pdf.savefig(fig) plt.close() # Plot Alarme ########################################################### dct=DruckResDct[DruckResIDBase] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['RuheZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d} Nr. {:4d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten) ,AlNr) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileNameAlarm="{:s} Nr {:d}.png".format(fileName.replace('.png',''),AlNr) plt.savefig(fileNameAlarm) plt.show() plt.close() #plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotTimespans( xlims # list of sections ,orientation='landscape' # oben HYD unten LDS; 'portrait': # links HYD rechts LDS ,pad=3.5 # tight_layout() can take keyword arguments of pad, w_pad and h_pad. These control the extra padding around the figure border and between subplots. The pads are specified in fraction of fontsize. ,w_pad=0.5 ,h_pad=0.5 # 'portrait' # links HYD rechts LDS ,rectSpalteLinks=[0, 0, 0.5, 1] ,rectSpalteRechts=[0.325, 0, 1, 1] # 'landscape': # oben HYD unten LDS ,rectZeileOben=[0, .5, 1, 1] ,rectZeileUnten=[0, 0, 1, .5] ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,figTitle='' #! ,figSave=False #! ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,sectionTitlesLDS=None # list of section titles to be used ,sectionTextsLDS=None # list of section texts to be used ,vLinesX=[] # plotted in each HYD section if X-time fits ,hLinesY=[] # plotted in each HYD section ,vAreasX=[] # for each HYD section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXLDS=None # plotted in each LDS section if X-time fits ,vAreasXLDS=None # for each LDS section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' ,vLinesXColorLDS=None ,vAreasXColorLDS=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # --- Args Fct. HYD ---: ,TCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,TCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,TCsOPCScenTimeShift=pd.Timedelta('1 hour') ,TCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,TCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,TCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,TCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={} ,pDct={} ,QDctOPC={} ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber # --- Args Fct. LDS ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() ,ylimAL=ylimALD ,yticksAL=yticksALD ,ylimR=ylimRD #can be a list #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False # can be a list #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD # can be a list of lists #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: fig=plt.gcf() if orientation=='landscape': # oben HYD unten LDS gsHYD = gridspec.GridSpec(1,len(xlims),figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.ncols)] gsLDS = gridspec.GridSpec(1,len(xlims),figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.ncols)] else: # links HYD rechts LDS gsHYD = gridspec.GridSpec(len(xlims),1,figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.nrows)] gsLDS = gridspec.GridSpec(len(xlims),1,figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.nrows)] pltLDSpQAndEventsResults=plotTimespansHYD( axLst=axLstHYD ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitles ,sectionTexts=sectionTexts ,vLinesX=vLinesX ,hLinesY=hLinesY ,vAreasX=vAreasX ,vLinesXColor=vLinesXColor ,vAreasXColor=vAreasXColor ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfTCsLDSIn=TCsLDSIn ,dfTCsOPC=TCsOPC ,dfTCsOPCScenTimeShift=TCsOPCScenTimeShift ,dfTCsSIDEvents=TCsSIDEvents ,dfTCsSIDEventsTimeShift=TCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=TCsSIDEventsInXlimOnly ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ ,yGridSteps=yGridSteps ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ) if orientation=='landscape': # oben HYD unten LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileOben) else: # links HYD rechts LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteLinks) if sectionTitlesLDS==None: sectionTitlesLDS=sectionTitles if sectionTextsLDS==None: sectionTextsLDS=sectionTexts if vLinesXLDS==None: vLinesXLDS=vLinesX if vAreasXLDS==None: vAreasXLDS=vAreasX if vLinesXColorLDS==None: vLinesXColorLDS=vLinesXColor if vAreasXColorLDS==None: vAreasXColorLDS=vAreasXColor pltLDSErgVecResults=plotTimespansLDS( axLst=axLstLDS ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitlesLDS ,sectionTexts=sectionTextsLDS ,vLinesX=vLinesXLDS ,vAreasX=vAreasXLDS ,vLinesXColor=vLinesXColorLDS ,vAreasXColor=vAreasXColorLDS ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,ylimR=ylimR ,ylimRxlim=ylimRxlim ,yticksR=yticksR ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) # wenn weniger als 5 Achsen geplottet werden stimmt der erste Wert von rectSpalteRechts nicht #(axes,lines)=pltLDSErgVecResults[0] # # numOfYAxes=len(axes) #corFac=5-numOfYAxes #rectSpalteRechtsCor=rectSpalteRechts #[0.325, 0, 1, 1] #rectSpalteRechtsCor[0]=rectSpalteRechtsCor[0]+0.06*corFac if orientation=='landscape': # oben HYD unten LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileUnten) else: # links HYD rechts LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteRechts) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return gsHYD,gsLDS,pltLDSpQAndEventsResults,pltLDSErgVecResults def plotTimespansHYD( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,hLinesY=[] # plotted in each section ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfTCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={ # Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSrc 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None#[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSpQAndEvents selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) # plots pltLDSpQAndEvents-Sections # returns a Lst of pltLDSpQAndEvents-Results, a Lst of (axes,lines,scatters) try: if sectionTitles==[] or sectionTitles==None: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSpQAndEventsResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] (axes,lines,scatters)=pltLDSpQAndEvents( ax ,dfTCsLDSIn=dfTCsLDSIn ,dfTCsOPC=dfTCsOPC ,dfTCsOPCScenTimeShift=dfTCsOPCScenTimeShift ,dfTCsSIDEvents=dfTCsSIDEvents ,dfTCsSIDEventsTimeShift=dfTCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=dfTCsSIDEventsInXlimOnly ,dfTCsSIDEventsyOffset=dfTCsSIDEventsyOffset ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,xlim=xlim ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ # 3. Achse ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ,yGridSteps=yGridSteps ,plotLegend=plotLegendFct ,baseColorsDef=baseColorsDef ) pltLDSpQAndEventsResults.append((axes,lines,scatters)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) for hLineY in hLinesY: ax.axhline(y=hLineY,xmin=0, xmax=1,color='gray',ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly: legendHorizontalPos='center' # wenn nur 1x Legende dann Mitte if plotLegend1stOnly and idx>0: pass else: patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSpQAndEventsResults def plotTimespansLDS( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() #,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD ,yTwinedAxesPosDeltaHPStart=-0.0125 ,yTwinedAxesPosDeltaHP=-0.0875 ,ylimR=ylimRD # can be a list ,ylimRxlim=False # can be a list ,yticksR=yticksRD # can be a list # dito Beschl. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): # plots pltLDSErgVec-Sections # returns a Lst of pltLDSErgVec-Results, a Lst of (axes,lines) logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if sectionTitles==[] or sectionTitles ==None: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSErgVecResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] ylimRIdx=ylimR if isinstance(ylimR, list): ylimRIdx=ylimR[idx] ylimRxlimIdx=ylimRxlim if isinstance(ylimRxlim, list): ylimRxlimIdx=ylimRxlim[idx] yticksRIdx=yticksR if isinstance(yticksR, list): if any(isinstance(el, list) for el in yticksR): yticksRIdx=yticksR[idx] (axes,lines)=pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,xlim=xlims[idx] ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,ylimAL=ylimAL ,yticksAL=yticksAL ,yTwinedAxesPosDeltaHPStart=yTwinedAxesPosDeltaHPStart ,yTwinedAxesPosDeltaHP=yTwinedAxesPosDeltaHP ,ylimR=ylimRIdx ,ylimRxlim=ylimRxlimIdx ,yticksR=yticksRIdx ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,ySpanMin=ySpanMin ,plotLegend=plotLegendFct ,legendLoc=legendLoc ,legendFramealpha=legendFramealpha ,legendFacecolor=legendFacecolor ,attrsDctLDS=attrsDctLDS ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,plotACCLimits=plotACCLimits ,highlightAreas=highlightAreas ,Seg_Highlight_Color=Seg_Highlight_Color ,Seg_Highlight_Alpha=Seg_Highlight_Alpha ,Seg_Highlight_Fct=Seg_Highlight_Fct ,Seg_HighlightError_Color=Seg_HighlightError_Color ,Seg_Highlight_Alpha_Error=Seg_Highlight_Alpha_Error # ,Seg_HighlightError_Fct=Seg_HighlightError_Fct ,Druck_Highlight_Color=Druck_Highlight_Color ,Druck_Highlight_Alpha=Druck_Highlight_Alpha ,Druck_Highlight_Fct=Druck_Highlight_Fct ,Druck_HighlightError_Color=Druck_HighlightError_Color ,Druck_Highlight_Alpha_Error=Druck_Highlight_Alpha_Error # ,Druck_HighlightError_Fct=Druck_HighlightError_Fct ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) pltLDSErgVecResults.append((axes,lines)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly and idx>0: pass else: if not dfSegReprVec.empty: patternSeg='Seg$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternSeg,line) != None]) ,tuple([line for line in lines if re.search(patternSeg,line) != None]) ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if not dfDruckReprVec.empty: patternDruck='Drk$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternDruck,line) != None]) ,tuple([line for line in lines if re.search(patternDruck,line) != None]) ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSErgVecResults def pltLDSpQAndEvents( ax ,dfTCsLDSIn # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorgenannten Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={# Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSnk 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # plot RTTM-Echoes # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None #wenn undef., dann aus ylimQ ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,ylabel3rd='Schieber (ZUSTände 0,1,2 jew. + x; Befehle)' ,yGridSteps=30 # 0: das y-Gitter besteht dann bei ylimp=ylimQ=yticksp=yticksQ None nur aus min/max (also 1 Gitterabschnitt) ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): """ zeichnet pq-Zeitkurven - ggf. ergaenzt durch Events Returns: * axes (Dct of axes) * lines (Dct of lines) * scatters (List of ax.scatter-Results) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} lines={} scatters=[] try: axes['p']=ax # x-Achse ---------------- if xlim == None: xlimMin=dfTCsLDSIn.index[0] xlimMax=dfTCsLDSIn.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}dfTCsOPCScenTimeShift: {1:s}".format(logStr,str(dfTCsOPCScenTimeShift))) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # Eindeutigkeit der IDPlts pruefen keys=[] keysUneindeutig=[] for dct in [QDct,pDct,QDctOPC,pDctOPC]: for key, value in dct.items(): if IDPltKey in value.keys(): IDPltValue=value[IDPltKey] if IDPltValue in keys: print("IDPlt {:s} bereits vergeben".format(IDPltValue)) keysUneindeutig.append(IDPltValue) else: keys.append(IDPltValue) # 1. Achse p ----------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p')) for key, value in pDct.items(): # nur die konfigurierten IDs plotten if key in dfTCsLDSIn.columns: # nur dann, wenn ID als Spalte enthalten label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=key # Spaltenname ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct # a Dct with - i.e. {'Q Src':{'color':'red'},...} ,IDPltKey=IDPltKey # Schluesselbezeichner in value ,IDPltValuePostfix=None ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('1 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys(): if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p OPC')) for key, value in pDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) ylimp,yticksp=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,pDct.keys() ,ylim=ylimp ,yticks=yticksp ,ylimxlim=ylimpxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax.set_ylim(ylimp) ax.set_yticks(yticksp) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel(ylabelp) # 2. y-Achse Q ---------------------------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q')) ax2 = ax.twinx() axes['Q']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) for key, value in QDct.items(): if key in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=key ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct # ,timeShift=pd.Timedelta('0 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys() and plotRTTM: if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q OPC')) for key, value in QDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) pltLDSHelperY(ax2) ylimQ,yticksQ=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,QDct.keys() ,ylim=ylimQ ,yticks=yticksQ ,ylimxlim=ylimQxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax2.set_ylim(ylimQ) ax2.set_yticks(yticksQ) ax2.grid() ax2.set_ylabel(ylabelQ) # ggf. 3. Achse if not dfTCsSIDEvents.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 3. Achse SID')) ax3 = ax.twinx() axes['SID']=ax3 pltHelperX( ax3 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP ) if dfTCsSIDEventsInXlimOnly: # auf xlim beschränken dfTCsSIDEventsPlot=dfTCsSIDEvents[ (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] # weiter beschränken auf die, die in xlim mind. 1 Eintrag haben dfTCsSIDEventsPlot=dfTCsSIDEventsPlot.dropna(axis=1,how='all') else: dfTCsSIDEventsPlot=dfTCsSIDEvents # doppelte bzw. mehrfache Spaltennamen eliminieren (das waere ein Aufruf-Fehler) dfTCsSIDEventsPlot = dfTCsSIDEventsPlot.loc[:,~dfTCsSIDEventsPlot.columns.duplicated()] logger.debug("{:s}dfTCsSIDEventsPlot.dropna(how='all'): {:s}".format(logStr,dfTCsSIDEventsPlot.dropna(how='all').to_string())) if not dfTCsSIDEventsPlot.dropna(how='all').empty: # mind. 1 Ereignis in irgendeiner Spalte muss ueberbleiben # aus Performanzgruenden wird nur zum Plot gegeben, was in xlim auch zu sehen sein wird dfTCsSIDEventsPlot2=dfTCsSIDEventsPlot[ ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] labelsOneCall,scattersOneCall=pltLDSSIDHelper( ax3 ,dfTCsSIDEventsPlot2 ,dfTCsSIDEventsTimeShift ,dfTCsSIDEventsyOffset ,pSIDEvents ,valRegExMiddleCmds ,eventCCmds ,eventCStats ,markerDef ,baseColorsDef ) scatters=scatters+scattersOneCall pltLDSHelperY(ax3) ax3.set_ylim(ylim3rd) ax3.set_yticks(yticks3rd) ax3.set_ylabel(ylabel3rd) if plotLegend: legendHorizontalPos='center' patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return axes,lines,scatters def pltLDSErgVec( ax=None # Axes auf die geplottet werden soll (und aus der neue axes ge-twinx-ed werden; plt.gcf().gca() wenn undef. ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=None # tuple (xmin,xmax); wenn undef. gelten min/max aus vorgenannten Daten als xlim; wenn Seg angegeben, gilt Seg ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD #[0,10,20,30,40] ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ylimR=ylimRD #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 # wenn ylim R/AC undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): """ zeichnet Zeitkurven von App LDS Ergebnisvektoren auf ax return: axes (Dct der Achsen), yLines (Dct der Linien) Dct der Achsen: 'A': Alarm etc.; 'R': m3/h; 'a': ACC; 'TV': Timer und Leckvolumen #! Lücken (nicht plotten) wenn keine Zeiten """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} yLines={} try: if dfSegReprVec.empty and dfDruckReprVec.empty: logger.error("{0:s}{1:s}".format(logStr,'dfSegReprVec UND dfDruckReprVec leer?! Return.')) return if not dfSegReprVec.empty: # keine komplett leeren Zeilen dfSegReprVec=dfSegReprVec[~dfSegReprVec.isnull().all(1)] # keine doppelten Indices dfSegReprVec=dfSegReprVec[~dfSegReprVec.index.duplicated(keep='last')] # dfSegReprVec.groupby(dfSegReprVec.index).last() # df[~df.index.duplicated(keep='last')] if not dfDruckReprVec.empty: # keine komplett leeren Zeilen dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.isnull().all(1)] # keine doppelten Indices dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.index.duplicated(keep='last')] # dfDruckReprVec.groupby(dfDruckReprVec.index).last() # df[~df.index.duplicated(keep='last')] if ax==None: ax=plt.gcf().gca() axes['A']=ax # x-Achse ---------------- if xlim == None: if not dfSegReprVec.empty: xlimMin=dfSegReprVec.index[0] xlimMax=dfSegReprVec.index[-1] elif not dfDruckReprVec.empty: xlimMin=dfDruckReprVec.index[0] xlimMax=dfDruckReprVec.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) logger.debug("{0:s}dateFormat: {1:s}".format(logStr,dateFormat)) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # 1. Achse Alarm ----------------------- if not dfSegReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha, color=Seg_Highlight_Color) tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha_Error, color=Seg_HighlightError_Color) if not dfDruckReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha, color=Druck_Highlight_Color) tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha_Error, color=Druck_HighlightError_Color) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'AL_S',attrsDctLDS['Seg_AL_S_Attrs']) yLines['AL_S Seg']=lines[0] if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'AL_S',attrsDctLDS['Druck_AL_S_Attrs']) yLines['AL_S Drk']=lines[0] if not dfSegReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'SB_S',attrsDctLDS['Seg_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Seg']=lines[0] if not dfDruckReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'SB_S',attrsDctLDS['Druck_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Drk']=lines[0] ax.set_ylim(ylimAL) ax.set_yticks(yticksAL) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel('A [0/10/20] u. 10x B [0/1/2/3/4]') # 2. y-<NAME> ---------------------------------------- ax2 = ax.twinx() axes['R']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) pltLDSHelperY(ax2) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'MZ_AV',attrsDctLDS['Seg_MZ_AV_Attrs']) yLines['MZ_AV (R1) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LR_AV',attrsDctLDS['Seg_LR_AV_Attrs']) yLines['LR_AV (R2) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'NG_AV',attrsDctLDS['Seg_NG_AV_Attrs']) yLines['NG_AV Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'QM_AV',attrsDctLDS['Seg_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Seg']=lines[0] if plotLPRate: # R2 = R1 - LP # R2 - R1 = -LP # LP = R1 - R2 lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LP_AV',attrsDctLDS['Seg_LP_AV_Attrs']) yLines['LP_AV Seg']=lines[0] if plotR2FillSeg: df=dfSegReprVec df=df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')) df=df.fillna(method='ffill').fillna(method='bfill') # R2 unter 0 dummy=ax2.fill_between(df.index, df['LR_AV'],0 ,where=df['LR_AV']<0,color='grey',alpha=.2) # zwischen R2 und 0 dummy=ax2.fill_between(df.index, 0, df['LR_AV'] ,where=df['LR_AV']>0 #,color='yellow',alpha=.1 ,color='red',alpha=.1 ) # R2 über 0 aber unter NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=(df['LR_AV']>0) & (df['LR_AV']<df['NG_AV']) #,color='red',alpha=.1 ,color='yellow',alpha=.1 ) # R2 über NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=df['LR_AV']>df['NG_AV'] ,color='red',alpha=.2) if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'MZ_AV',attrsDctLDS['Druck_MZ_AV_Attrs']) yLines['MZ_AV (R1) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LR_AV',attrsDctLDS['Druck_LR_AV_Attrs']) yLines['LR_AV (R2) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'NG_AV',attrsDctLDS['Druck_NG_AV_Attrs']) yLines['NG_AV Drk']=lines[0] if plotLPRate: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LP_AV',attrsDctLDS['Druck_LP_AV_Attrs']) yLines['LP_AV Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'QM_AV',attrsDctLDS['Druck_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Drk']=lines[0] if plotR2FillDruck: df=dfDruckReprVec df=df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')) df=df.fillna(method='ffill').fillna(method='bfill') # R2 unter 0 dummy=ax2.fill_between(df.index, df['LR_AV'],0 ,where=df['LR_AV']<0,color='grey',alpha=.4) # zwischen R2 und 0 dummy=ax2.fill_between(df.index, 0, df['LR_AV'] ,where=df['LR_AV']>0 #,color='yellow',alpha=.1 ,color='red',alpha=.1 ) # R2 über 0 aber unter NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=(df['LR_AV']>0) & (df['LR_AV']<df['NG_AV']) #,color='red',alpha=.1 ,color='yellow',alpha=.1 ) # R2 über NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=df['LR_AV']>df['NG_AV'] ,color='red',alpha=.2) ylimSeg,yticksSeg=pltLDSErgVecHelperYLimAndTicks( dfSegReprVec ,'LR_AV' ,ylim=ylimR ,yticks=yticksR ,ylimxlim=ylimRxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimRSeg: {1:s} yticksRSeg: {2:s}".format(logStr,str(ylimSeg),str(yticksSeg))) ylimDrk,yticksDrk=pltLDSErgVecHelperYLimAndTicks( dfDruckReprVec ,'LR_AV' ,ylim=ylimR ,yticks=yticksR ,ylimxlim=ylimRxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimRDrk: {1:s} yticksRDrk: {2:s}".format(logStr,str(ylimDrk),str(yticksDrk))) if ylimSeg[1]>=ylimDrk[1]: ylimR=ylimSeg yticksR=yticksSeg else: ylimR=ylimDrk yticksR=yticksDrk logger.debug("{0:s}ylimR: {1:s} yticksR: {2:s}".format(logStr,str(ylimR),str(yticksR))) ax2.set_ylim(ylimR) ax2.set_yticks(yticksR) ax2.grid() ax2.set_ylabel('R1, R2, NG, LP (R1-R2), QM 1.6% [Nm³/h]') # 3. y-Achse Beschleunigung ---------------------------------------- if plotAC: # 3. y-Achse Beschleunigung ------------------------------------------------- ax3 = ax.twinx() axes['a']=ax3 pltHelperX( ax3 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP ) pltLDSHelperY(ax3) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax3,dfSegReprVec,'AC_AV',attrsDctLDS['Seg_AC_AV_Attrs']) yLines['AC_AV Seg']=lines[0] lines = pltLDSErgVecHelper(ax3,dfSegReprVec,'ACF_AV',attrsDctLDS['Seg_ACF_AV_Attrs']) yLines['ACF_AV Seg']=lines[0] if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax3,dfDruckReprVec,'AC_AV',attrsDctLDS['Druck_AC_AV_Attrs']) yLines['AC_AV Drk']=lines[0] lines = pltLDSErgVecHelper(ax3,dfDruckReprVec,'ACF_AV',attrsDctLDS['Druck_ACF_AV_Attrs']) yLines['ACF_AV Drk']=lines[0] # ACC Limits if plotACCLimits: if not dfSegReprVec.empty: # + line=ax3.axhline(y=dfSegReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=dfSegReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfDruckReprVec.empty: # + line=ax3.axhline(y=dfDruckReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=dfDruckReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfSegReprVec.empty: # - line=ax3.axhline(y=-dfSegReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=-dfSegReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfDruckReprVec.empty: # - line=ax3.axhline(y=-dfDruckReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=-dfDruckReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) ylimSeg,yticksSeg=pltLDSErgVecHelperYLimAndTicks( dfSegReprVec ,'AC_AV' ,ylim=ylimAC ,yticks=yticksAC ,ylimxlim=ylimACxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimACSeg: {1:s} yticksACSeg: {2:s}".format(logStr,str(ylimSeg),str(yticksSeg))) ylimDrk,yticksDrk=pltLDSErgVecHelperYLimAndTicks( dfDruckReprVec ,'AC_AV' ,ylim=ylimAC ,yticks=yticksAC ,ylimxlim=ylimACxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimACDrk: {1:s} yticksACDrk: {2:s}".format(logStr,str(ylimDrk),str(yticksDrk))) if ylimSeg[1]>=ylimDrk[1]: ylimAC=ylimSeg yticksAC=yticksSeg else: ylimAC=ylimDrk yticksAC=yticksDrk logger.debug("{0:s}ylimAC: {1:s} yticksAC: {2:s}".format(logStr,str(ylimAC),str(yticksAC))) ax3.set_ylim(ylimAC) ax3.set_yticks(yticksAC) ax3.set_ylabel('a [mm/s²]') # 4. y-Achse Timer und Volumen ---------------------------------------- if plotTV: # 4. y-Achse Timer und Volumen ---------------------------------------- ax4 = ax.twinx() axes['TV']=ax4 yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP if plotAC: yPos=yPos+yTwinedAxesPosDeltaHP pltHelperX( ax4 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yPos ) pltLDSHelperY(ax4) if not dfSegReprVec.empty: # TIMER_AV lines = pltLDSErgVecHelper(ax4,dfSegReprVec,'TIMER_AV',attrsDctLDS['Seg_TIMER_AV_Attrs'],fct=plotTVTimerFct) yLines['TIMER_AV Seg']=lines[0] # AM_AV lines = pltLDSErgVecHelper(ax4,dfSegReprVec,'AM_AV',attrsDctLDS['Seg_AM_AV_Attrs'],fct=plotTVAmFct) yLines['AM_AV Seg']=lines[0] if not dfDruckReprVec.empty: # TIMER_AV lines = pltLDSErgVecHelper(ax4,dfDruckReprVec,'TIMER_AV',attrsDctLDS['Druck_TIMER_AV_Attrs'],fct=plotTVTimerFct) yLines['TIMER_AV Drk']=lines[0] # AM_AV lines = pltLDSErgVecHelper(ax4,dfDruckReprVec,'AM_AV',attrsDctLDS['Druck_AM_AV_Attrs'],fct=plotTVAmFct) yLines['AM_AV Drk']=lines[0] if not dfSegReprVec.empty or not dfDruckReprVec.empty: ax4.set_ylim(ylimTV) ax4.set_yticks(yticksTV) ax4.set_ylabel(plotTVAmLabel) ax4.grid() # 5. y-Achse DPDT ---------------------------------------- if plotDPDT and (not dfSegReprVec.empty or not dfDruckReprVec.empty): # Min. ermitteln DPDT_REF_MinSEG=0 if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): s=dfSegReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() if not s.empty: DPDT_REF_MinSEG=s.min() DPDT_REF_MinDruck=0 if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): s=dfDruckReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() if not s.empty: DPDT_REF_MinDruck=s.min() DPDT_REF_Min=min(DPDT_REF_MinSEG,DPDT_REF_MinDruck) if DPDT_REF_Min >= 0: pass # es gibt nichts zu plotten else: # Max ermitteln maxSeg=DPDT_REF_Min if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): s=dfSegReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() s=s[s<0] if not s.empty: DPDT_REF_MinSEG=s.max() maxDruck=DPDT_REF_Min if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): s=dfDruckReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() s=s[s<0] if not s.empty: DPDT_REF_MinDruck=s.max() DPDT_REF_Max=max(maxSeg,maxDruck) # 5. y-Achse DPDT ---------------------------------------- ax5 = ax.twinx() axes['DPDT']=ax5 yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP if plotAC: yPos=yPos+yTwinedAxesPosDeltaHP if plotTV: yPos=yPos+yTwinedAxesPosDeltaHP pltHelperX( ax5 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yPos ) pltLDSHelperY(ax5) if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): lines = pltLDSErgVecHelper(ax5,dfSegReprVec,'DPDT_REF',attrsDctLDS['Seg_DPDT_REF_Attrs'],fct=None) yLines['DPDT_REF Seg']=lines[0] df=dfSegReprVec.loc[xlim[0]:xlim[1],:].query('DPDT_AV < 0') #logger.debug("{0:s}df (neg. DPDT): {1:s}".format(logStr,df.to_string())) lines = pltLDSErgVecHelper(ax5,df,'DPDT_AV',attrsDctLDS['Seg_DPDT_AV_Attrs'],fct=None) yLines['DPDT_AV Seg']=lines[0] if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): lines = pltLDSErgVecHelper(ax5,dfDruckReprVec,'DPDT_REF',attrsDctLDS['Druck_DPDT_REF_Attrs'],fct=None) yLines['DPDT_REF Drk']=lines[0] df=dfDruckReprVec.loc[xlim[0]:xlim[1],:].query('DPDT_AV < 0') #logger.debug("{0:s}df (neg. DPDT): {1:s}".format(logStr,df.to_string())) lines = pltLDSErgVecHelper(ax5,df,'DPDT_AV',attrsDctLDS['Druck_DPDT_AV_Attrs'],fct=None) yLines['DPDT_AV Drk']=lines[0] yTickList=[DPDT_REF_Min*10 ,DPDT_REF_Min/0.9 # bei einem Vorhaltemass von 0.9 steht hier x; 0.9 X x kann man an den anderen beiden Ticks ablesen #,DPDT_REF_Min ,0 ,DPDT_REF_Min*-1 ] ax5.set_ylim(yTickList[0],yTickList[-1]) ax5.set_yticks([round(yTick,2) for yTick in yTickList]) if DPDT_REF_Max > DPDT_REF_Min: ax5.set_ylabel("bar/Minute (max. Wert: {:6.3f})".format(DPDT_REF_Max)) else: ax5.set_ylabel('bar/Minute') ax5.grid() if plotLegend: legendHorizontalPos='center' if not dfSegReprVec.empty: if dfDruckReprVec.empty: loc=legendLoc # Vorgabe else: loc='upper '+legendHorizontalPos # beide: fix patternSeg='Seg$' axes['A'].add_artist(axes['A'].legend( tuple([yLines[line] for line in yLines if re.search(patternSeg,line) != None]) ,tuple([line for line in yLines if re.search(patternSeg,line) != None]) ,loc=loc #'upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if not dfDruckReprVec.empty: if dfSegReprVec.empty: loc=legendLoc # Vorgabe else: loc='lower '+legendHorizontalPos # beide: fix patternDruck='Drk$' axes['A'].add_artist(axes['A'].legend( tuple([yLines[line] for line in yLines if re.search(patternDruck,line) != None]) ,tuple([line for line in yLines if re.search(patternDruck,line) != None]) ,loc=loc #'lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return axes,yLines def pltHelperX( ax ,dateFormat='%d.%m.%y: %H:%M:%S' ,bysecond=None # [0,15,30,45] ,byminute=None ,byhour=None ,yPos=-0.0125 #: (i.d.R. negativer) Abstand der y-Achse von der Zeichenfläche; default: -0.0125 ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) logger.debug("{0:s}dateFormat: {1:s}".format(logStr,dateFormat)) if bysecond != None: majLocatorTmp=mdates.SecondLocator(bysecond=bysecond) elif byminute != None: majLocatorTmp=mdates.MinuteLocator(byminute=byminute) elif byhour != None: majLocatorTmp=mdates.HourLocator(byhour=byhour) else: majLocatorTmp=mdates.HourLocator(byhour=[0,12]) majFormatterTmp=mdates.DateFormatter(dateFormat) logger.debug("{0:s}ax.xaxis.set_major_locator ...".format(logStr)) ax.xaxis.set_major_locator(majLocatorTmp) logger.debug("{0:s}ax.xaxis.set_major_formatter ...".format(logStr)) ax.xaxis.set_major_formatter(majFormatterTmp) #logger.debug("{0:s}ax.get_xticks(): {1:s}".format(logStr,str(ax.get_xticks()))) logger.debug("{0:s}setp(ax.xaxis.get_majorticklabels() ...".format(logStr)) dummy=plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.spines["left"].set_position(("axes",yPos)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltLDSHelperY( ax ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) pltMakePatchSpinesInvisible(ax) ax.spines['left'].set_visible(True) ax.yaxis.set_label_position('left') ax.yaxis.set_ticks_position('left') #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltLDSErgVecHelperYLimAndTicks( dfReprVec ,dfReprVecCol ,ylim=None #(-10,10) # wenn undef., dann min/max dfReprVec ,yticks=None #[-10,0,10] # wenn undef., dann aus dem Ergebnis von ylim ,ylimxlim=False #wenn Wahr und ylim undef., dann wird nachf. xlim beruecksichtigt bei min/max dfReprVec ,xlim=None ,ySpanMin=0.1 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ): """ Returns: ylim,yticks Der y-Werte-Bereich ylim wird zur x-Achse symmetrisch ermittelt. yticks spielt dabei keine Rolle. Sind ylim bzw. yticks definiert, erfahren sie keine Änderung. """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) if ylim != None: # der y-Wertebereich ist explizit definiert pass else: if not dfReprVec.empty and not dfReprVec.loc[:,dfReprVecCol].isnull().all().all(): if not ylimxlim: ylimmin=dfReprVec.loc[:,dfReprVecCol].min() ylimmax=dfReprVec.loc[:,dfReprVecCol].max() else: (xlimMin,xlimMax)=xlim if not dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].isnull().all().all(): ylimmin=dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].min() ylimmax=dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].max() else: ylimmin=0 ylimmax=0 ylimminR=round(ylimmin,0) ylimmaxR=round(ylimmax,0) if ylimminR > ylimmin: ylimminR=ylimminR-1 if ylimmaxR < ylimmax: ylimmaxR=ylimmaxR+1 ylimminAbsR=math.fabs(ylimminR) # B auf den extremaleren Wert ylimB=max(ylimminAbsR,ylimmaxR) if ylimB < ySpanMin: # B auf Mindestwert ylimB=ySpanMin ## Differenz < Mindestwert: B+ #if math.fabs(ylimmax-ylimmin) < ySpanMin: # ylimB=.5*(ylimminAbs+ylimmax)+ySpanMin ylim=(-ylimB,ylimB) else: ylim=(-ySpanMin,ySpanMin) if yticks != None: # die y-Ticks sind explizit definiert pass else: # aus Wertebereich (ylimMin,ylimMax)=ylim yticks=[ylimMin,0,ylimMax] #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return ylim,yticks def pltLDSpQHelperYLimAndTicks( dfReprVec ,dfReprVecCols ,ylim=None # wenn undef., dann min/max dfReprVec ,yticks=None # wenn undef., dann aus ylimR ,ylimxlim=False # wenn Wahr und ylim undef., dann wird nachf. xlim beruecksichtigt bei min/max dfReprVec ,xlim=None # x-Wertebereich ,ySpanMin=0.1 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,yGridSteps=yGridStepsD ): """ Returns: ylim,yticks """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if ylim != None: # der y-Wertebereich ist explizit definiert pass else: df=dfReprVec.loc[:,[col for col in dfReprVecCols]] if not ylimxlim: # Extremalwerte Analysebereich ylimmin=df.min().min() ylimmax=df.max().max() else: if xlim == None: logger.error("{0:s} xlim muss angegeben sein wenn ylimxlim Wahr gesetzt wird. Weiter mit ylimxlim Falsch.".format(logStr)) ylimmin=df.min().min() ylimmax=df.max().max() else: # Extremalwerte x-Wertebereich (xlimMin,xlimMax)=xlim # Extremalwerte Analysebereich ylimmin=df.loc[xlimMin:xlimMax,:].min().min() ylimmax=df.loc[xlimMin:xlimMax,:].max().max() logger.debug("{0:s} ylimmin={1:10.2f} ylimmax={2:10.2f}.".format(logStr,ylimmin,ylimmax)) if math.fabs(ylimmax-ylimmin) < ySpanMin: ylimmax=ylimmin+ySpanMin logger.debug("{0:s} ylimmin={1:10.2f} ylimmax={2:10.2f}.".format(logStr,ylimmin,ylimmax)) ylimMinR=round(ylimmin,0) ylimMaxR=round(ylimmax,0) if ylimMinR>ylimmin: ylimMinR=ylimMinR-1 if ylimMaxR<ylimmax: ylimMaxR=ylimMaxR+1 logger.debug("{0:s} ylimMinR={1:10.2f} ylimMaxR={2:10.2f}.".format(logStr,ylimMinR,ylimMaxR)) ylim=(ylimMinR,ylimMaxR) if yticks != None: # die y-Ticks sind explizit definiert pass else: # aus Wertebereich (ylimMin,ylimMax)=ylim if yGridSteps==0: yticks=[ylimMin,ylimMax] else: dYGrid=(ylimMax-ylimMin)/yGridSteps y=np.arange(ylimMin,ylimMax,dYGrid) if y[-1]<ylimMax: y=np.append(y,y[-1]+dYGrid) yticks=y logger.debug("{0:s} yticks={1:s}.".format(logStr,str(yticks))) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return ylim,yticks def pltLDSErgVecHelper( ax ,dfReprVec=pd.DataFrame() ,ID='AL_S' # Spaltenname in dfReprVec ,attrs={} ,fct=None # Function ): """ Helper Returns: lines: ax.plot-Ergebnis """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lines=[] label=ID x=dfReprVec.index.values if ID in dfReprVec.columns.to_list(): if fct==None: y=dfReprVec[ID].values else: y=dfReprVec[ID].apply(fct).values if 'where' in attrs.keys(): logger.debug("{0:s}ID: {1:s}: step-Plot".format(logStr,ID)) lines = ax.step(x,y,label=label ,where=attrs['where']) else: lines = ax.plot(x,y,label=label ) for prop,propValue in [(prop,value) for (prop, value) in attrs.items() if prop not in ['where']]: plt.setp(lines[0],"{:s}".format(prop),propValue) else: logger.warning("{0:s}Spalte: {1:s}: nicht vorhanden?!".format(logStr,ID)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return lines def pltLDSpQHelper( ax ,TCdf=pd.DataFrame() ,ID='' # Spaltenname ,xDctValue={} # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs={} # a Dct with - i.e. {'Q Src':{'color':'red'},...} ,IDPltKey='IDPlt' # Schluesselbezeichner in xDctValue (Key in xDctAttrs und xDctFcts) ,IDPltValuePostfix=None # SchluesselPostfix in xDctAttrs und xDctFcts - i.e. ' RTTM' ,xDctFcts={} # a Dct with Fcts - i.e. {'p Src': lambda x: 134.969 + x*10^5/(794.*9.81)} ,timeShift=pd.Timedelta('0 seconds') ): """ Helper Returns: label: Bezeichner lines: ax.plot-Ergebnis """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: logger.debug("{:s}Echo der Parameter: xDctFcts: {!s:s}".format(logStr,xDctFcts)) label='' lines=[] # nur Not Null plotten s=TCdf[ID][TCdf[ID].notnull()] logger.debug("{0:s}timeShift: {1:s}".format(logStr,str(timeShift))) x=s.index.values+timeShift #TCdf.index.values+timeShift IDPltValue=None if IDPltKey in xDctValue.keys(): # es liegt ein Schluessel fuer eine Layout-Informationen vor IDPltValue=xDctValue[IDPltKey] # koennte auch None sein ... {'IDPlt':None} if IDPltValue != None and IDPltValuePostfix != None: IDPltValue=IDPltValue+IDPltValuePostfix if IDPltValue in xDctFcts.keys(): logger.debug("{:s}Fcts fuer: {:s}".format(logStr,IDPltValue)) fct=xDctFcts[IDPltValue] y=s.apply(fct).values#TCdf[ID].apply(fct).values else: y=s.values #TCdf[ID].values if IDPltValue != None: label=IDPltValue+' '+ID if IDPltValue in xDctAttrs.keys(): if 'where' in xDctAttrs[IDPltValue].keys(): logger.debug("{0:s}ID: {1:s}: step-Plot".format(logStr,ID)) lines = ax.step(x,y ,label=label ,where=xDctAttrs[IDPltValue]['where']) else: lines = ax.plot(x,y ,label=label ) for prop,propValue in [(prop,value) for (prop, value) in xDctAttrs[IDPltValue].items() if prop not in ['where']]: plt.setp(lines[0],"{:s}".format(prop),propValue) else: # es ist kein Layout definiert - einfach plotten logger.debug("{0:s}IDPltValue: {1:s}: es ist kein Layout definiert - einfach plotten ...".format(logStr,IDPltValue)) lines = ax.plot(x,y ,label=label ) else: # es liegt kein Schluessel (oder Wert None) fuer eine Layout-Informationen vor - einfach plotten label=ID logger.debug("{0:s}ID: {1:s}: es liegt kein Schluessel (oder kein Wert) fuer eine Layout-Informationen vor - einfach plotten ...".format(logStr,ID)) lines = ax.plot(x,y) logger.debug("{0:s}label: '{1:s}' len(lines): {2:d}".format(logStr,label,len(lines))) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return label, lines def pltLDSSIDHelper( ax ,dfTCsSIDEvents ,dfTCsScenTimeShift ,dfTCsSIDEventsyOffset # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden); max. Erhöhung: 0.9 ,pSIDEvents ,valRegExMiddleCmds ,eventCCmds ,eventCStats ,markerDef ,baseColorsDef ): """ Helper Returns: labels: Bezeichner scatters: ax.scatter-Ergebnisse eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust (gefülltes "dickes" Kreuz) ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: labels=[] scatters=[] # Anzahl der verschiedenen Schieber ermitteln idxKat={} idxSchieberLfd=0 for col in dfTCsSIDEvents.columns: m=re.search(pSIDEvents,col) valRegExSchieberID=m.group('colRegExSchieberID') if valRegExSchieberID not in idxKat.keys(): idxKat[valRegExSchieberID]=idxSchieberLfd idxSchieberLfd=idxSchieberLfd+1 logger.debug("{0:s}Dct idxKat: keys (versch. Schieber - meint versch. Kategorien): {1:s}: values (Index der jeweiligen Kategorie): {2:s}".format(logStr,str(idxKat.keys()),str(idxKat.values()))) dfTCsSIDEventsPlot = dfTCsSIDEvents # hier keine Veränderungen mehr for col in dfTCsSIDEventsPlot.columns: m=re.search(pSIDEvents,col) valRegExSchieberID=m.group('colRegExSchieberID') idxSchieberLfd=idxKat[valRegExSchieberID] valRegExEventID=m.group('colRegExEventID') valRegExMiddle=m.group('colRegExMiddle') # Markersize s=plt.rcParams['lines.markersize']**2 # Marker if valRegExMiddle == valRegExMiddleCmds: idxMarker=eventCCmds[valRegExEventID] else: idxMarker=eventCStats[valRegExEventID] if valRegExEventID in ['In.ZUST']: s=s*2.5 if idxMarker < len(markerDef): m=markerDef[idxMarker] else: m=markerDef[-1] logger.debug("{0:s}{1:s}: idxMarker: Soll: {2:d} MarkerIdx gewählt: {3:d}".format(logStr,col,idxMarker,len(markerDef)-1)) if idxSchieberLfd < len(baseColorsDef): c=baseColorsDef[idxSchieberLfd] else: c=baseColorsDef[-1] logger.debug("{0:s}{1:s}: idxSchieberLfd: Ist: {2:d} FarbenIdx gewählt: {3:d}".format(logStr,col,idxSchieberLfd,len(baseColorsDef)-1)) colors=[c for idx in range(len(dfTCsSIDEventsPlot.index))] # alle Ereignisse (der Spalte) haben dieselbe Farbe label=col # alle Ereignisse (der Spalte) haben dasselbe Label #sDefault=plt.rcParams['lines.markersize']**2 x=dfTCsSIDEventsPlot.index.values+dfTCsScenTimeShift y=dfTCsSIDEventsPlot[col].values+min(idxSchieberLfd*dfTCsSIDEventsyOffset,.9) logger.debug("{:s}{:s}: erste und letzte Werte: x:{!s:s} y:{!s:s}...".format(logStr,col,x[::len(x)-1],y[::len(y)-1])) scatter = ax.scatter( x ,y ,c=colors ,marker=m ,label=label ,s=s#Default ) # scatter ist eine PathCollection; Attribut u.a. get_label(): Return the label used for this artist in the legend # auch wenn y durchgehend Null wird ein scatter zurueckgegeben (d.h. ist ein Legendeneintrag vorhanden) labels.append(label) scatters.append(scatter) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return labels, scatters # --- PLOT: Funktionen und Hilfsfunktionen # ----------------------------------------------- def pltMakeCategoricalCmap(baseColorsDef="tab10",catagoryColors=None,nOfSubCatsReq=3,reversedSubCatOrder=False): """ Returns a cmap with nOfCatsReq * nOfSubCatsReq discrete colors. Parameter: baseColorsDef: a (discrete) cmap defining the "base"colors default: tab10 if baseColorsDef is not via get_cmap a matplotlib.colors.ListedColormap, baseColorsDef is interpreted via to_rgb as a list of colors in this case catagoryColors is ignored catagoryColors: a list of "base"colors indices for this cmap the length of the list is the number of Categories requested: nOfCatsReq apparently cmap's nOfColors must be ge than nOfCatsReq default: None (==> nOfCatsReq = cmap's nOfColors) i.e. [2,8,3] for tab10 is green, yellow (ocher), red nOfSubCatsReq: number of Subcategories requested reversedSubCatOrder: False (default): if True, the last color of a category is from baseColorsDef reversedSubCatOrder can be a list Returns: cmap with nOfCatsReq * nOfSubCatsReq discrete colors; None if an error occurs one "base"color per category nOfSubCatsReq "sub"colors per category so each category consists of nOfSubCatsReq colors Raises: RmError >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import Rm >>> Rm.pltMakeCategoricalCmap().N 30 >>> Rm.pltMakeCategoricalCmap(catagoryColors=[2,8,3]).N # 2 8 3 in tab10: grün gelb rot 9 >>> baseColorsDef="tab10" >>> catagoryColors=[2,8,3] >>> nOfSubCatsReq=4 >>> # grün gelb rot mit je 4 Farben von hell nach dunkel >>> cm=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> cm.colors array([[0.75 , 1. , 0.75 ], [0.51819172, 0.87581699, 0.51819172], [0.32570806, 0.75163399, 0.32570806], [0.17254902, 0.62745098, 0.17254902], [0.9983871 , 1. , 0.75 ], [0.91113148, 0.91372549, 0.51165404], [0.82408742, 0.82745098, 0.30609849], [0.7372549 , 0.74117647, 0.13333333], [1. , 0.75 , 0.75142857], [0.94640523, 0.53069452, 0.53307001], [0.89281046, 0.33167491, 0.3348814 ], [0.83921569, 0.15294118, 0.15686275]]) >>> cm2=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=[False]+2*[True]) >>> cm.colors[nOfSubCatsReq-1]==cm2.colors[0] array([ True, True, True]) >>> plt.close() >>> size_DINA6quer=(5.8,4.1) >>> fig, ax = plt.subplots(figsize=size_DINA6quer) >>> fig.subplots_adjust(bottom=0.5) >>> norm=matplotlib.colors.Normalize(vmin=0, vmax=100) >>> cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cm2,norm=norm,orientation='horizontal') >>> cb.set_label('baseColorsDef was (via get_cmap) a matplotlib.colors.ListedColormap') >>> #plt.show() >>> cm3=Rm.pltMakeCategoricalCmap(baseColorsDef=['b','c','m'],nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> cm3.colors array([[0.75 , 0.75 , 1. ], [0.5 , 0.5 , 1. ], [0.25 , 0.25 , 1. ], [0. , 0. , 1. ], [0.75 , 1. , 1. ], [0.45833333, 0.91666667, 0.91666667], [0.20833333, 0.83333333, 0.83333333], [0. , 0.75 , 0.75 ], [1. , 0.75 , 1. ], [0.91666667, 0.45833333, 0.91666667], [0.83333333, 0.20833333, 0.83333333], [0.75 , 0. , 0.75 ]]) >>> plt.close() >>> fig, ax = plt.subplots(figsize=size_DINA6quer) >>> fig.subplots_adjust(bottom=0.5) >>> norm=matplotlib.colors.Normalize(vmin=0, vmax=100) >>> cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cm3,norm=norm,orientation='horizontal') >>> cb.set_label('baseColorsDef was (via to_rgb) a list of colors') >>> #plt.show() """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) cmap=None try: try: # Farben, "base"colors, welche die cmap hat nOfColors=plt.get_cmap(baseColorsDef).N if catagoryColors==None: catagoryColors=np.arange(nOfColors,dtype=int) # verlangte Kategorien nOfCatsReq=len(catagoryColors) if nOfCatsReq > nOfColors: logStrFinal="{0:s}: nOfCatsReq: {1:d} > cmap's nOfColors: {2:d}!".format(logStr,nOfCatsReq,nOfColors) raise RmError(logStrFinal) if max(catagoryColors) > nOfColors-1: logStrFinal="{0:s}: max. Idx of catsReq: {1:d} > cmap's nOfColors-1: {2:d}!".format(logStr,max(catagoryColors),nOfColors-1) raise RmError(logStrFinal) # alle Farben holen, welche die cmap hat ccolors = plt.get_cmap(baseColorsDef)(np.arange(nOfColors,dtype=int)) # die gewuenschten Kategorie"Basis"farben extrahieren ccolors=[ccolors[idx] for idx in catagoryColors] except: listOfColors=baseColorsDef nOfColors=len(listOfColors) nOfCatsReq=nOfColors ccolors=[] for color in listOfColors: ccolors.append(list(matplotlib.colors.to_rgb(color))) finally: pass logger.debug("{0:s}ccolors: {1:s}".format(logStr,str(ccolors))) logger.debug("{0:s}nOfCatsReq: {1:s}".format(logStr,str((nOfCatsReq)))) logger.debug("{0:s}nOfSubCatsReq: {1:s}".format(logStr,str((nOfSubCatsReq)))) # Farben bauen ------------------------------------- # resultierende Farben vorbelegen cols = np.zeros((nOfCatsReq*nOfSubCatsReq, 3)) # ueber alle Kategoriefarben if type(reversedSubCatOrder) is not list: reversedSubCatOrderLst=nOfCatsReq*[reversedSubCatOrder] else: reversedSubCatOrderLst=reversedSubCatOrder logger.debug("{0:s}reversedSubCatOrderLst: {1:s}".format(logStr,str((reversedSubCatOrderLst)))) for i, c in enumerate(ccolors): rgb=pltMakeCategoricalColors(c,nOfSubColorsReq=nOfSubCatsReq,reversedOrder=reversedSubCatOrderLst[i]) cols[i*nOfSubCatsReq:(i+1)*nOfSubCatsReq,:] = rgb cmap = matplotlib.colors.ListedColormap(cols) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return cmap def pltMakePatchSpinesInvisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) def pltHlpAlignMarker(marker,halign='center',valign='middle'): """ create markers with specified alignment. Parameters ---------- marker : a valid marker specification. See mpl.markers halign : string, float {'left', 'center', 'right'} Specifies the horizontal alignment of the marker. *float* values specify the alignment in units of the markersize/2 (0 is 'center', -1 is 'right', 1 is 'left'). valign : string, float {'top', 'middle', 'bottom'} Specifies the vertical alignment of the marker. *float* values specify the alignment in units of the markersize/2 (0 is 'middle', -1 is 'top', 1 is 'bottom'). Returns ------- marker_array : numpy.ndarray A Nx2 array that specifies the marker path relative to the plot target point at (0, 0). Notes ----- The mark_array can be passed directly to ax.plot and ax.scatter, e.g.:: ax.plot(1, 1, marker=align_marker('>', 'left')) """ if isinstance(halign,str): halign = {'right': -1., 'middle': 0., 'center': 0., 'left': 1., }[halign] if isinstance(valign,str): valign = {'top': -1., 'middle': 0., 'center': 0., 'bottom': 1., }[valign] # Define the base marker bm = markers.MarkerStyle(marker) # Get the marker path and apply the marker transform to get the # actual marker vertices (they should all be in a unit-square # centered at (0, 0)) m_arr = bm.get_path().transformed(bm.get_transform()).vertices # Shift the marker vertices for the specified alignment. m_arr[:, 0] += halign / 2 m_arr[:, 1] += valign / 2 return Path(m_arr, bm.get_path().codes) def pltNetFigAx(pDf,**kwds): """ Erzeugt eine für die Netzdarstellung verzerrungsfreie Axes-Instanz. * verwendet gcf() (will return an existing figure if one is open, or it will make a new one if there is no active figure) * an already existing figure might be created this way: fig=plt.figure(dpi=2*72,linewidth=1.) * errechnet die verzerrungsfreie Darstellung unter Berücksichtigung einer zukünftigen horizontalen Farblegende * erzeugt eine Axes-Instanz * setzt Attribute der Axes-Instanz * setzt Attribute der Figure-Instanz Args: pDf: dataFrame Coordinates: * pXCor_i: colName in pDf (default: 'pXCor_i'): x-Start Coordinate of all Edges to be plotted * pYCor_i: colName in pDf (default: 'pYCor_i'): y-Start Coordinate of all Edges to be plotted * pXCor_k: colName in pDf (default: 'pXCor_k'): x-End Coordinate of all Edges to be plotted * pYCor_k: colName in pDf (default: 'pYCor_k'): y-End Coordinate of all Edges to be plotted Colorlegend: * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) Figure: * pltTitle: title [not suptitle] (default: 'pltNetFigAx') * figFrameon: figure frame (background): displayed or invisible (default: True) * figEdgecolor: edge color of the Figure rectangle (default: 'black') * figFacecolor: face color of the Figure rectangle (default: 'white') """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Coordinates if 'pXCor_i' not in keys: kwds['pXCor_i']='pXCor_i' if 'pYCor_i' not in keys: kwds['pYCor_i']='pYCor_i' if 'pXCor_k' not in keys: kwds['pXCor_k']='pXCor_k' if 'pYCor_k' not in keys: kwds['pYCor_k']='pYCor_k' # Colorlegend if 'CBFraction' not in keys: kwds['CBFraction']=0.05 if 'CBHpad' not in keys: kwds['CBHpad']=0.0275 # Figure if 'pltTitle' not in keys: kwds['pltTitle']='pltNetFigAx' if 'figFrameon' not in keys: kwds['figFrameon']=True if 'figEdgecolor' not in keys: kwds['figEdgecolor']='black' if 'figFacecolor' not in keys: kwds['figFacecolor']='white' except: pass try: dx=max(pDf[kwds['pXCor_i']].max(),pDf[kwds['pXCor_k']].max()) dy=max(pDf[kwds['pYCor_i']].max(),pDf[kwds['pYCor_k']].max()) # erf. Verhältnis bei verzerrungsfreier Darstellung dydx=dy/dx if(dydx>=1): dxInch=DINA4_x # Hochformat else: dxInch=DINA4_y # Querformat figwidth=dxInch #verzerrungsfrei: Blattkoordinatenverhaeltnis = Weltkoordinatenverhaeltnis factor=1-(kwds['CBFraction']+kwds['CBHpad']) # verzerrungsfreie Darstellung sicherstellen figheight=figwidth*dydx*factor # Weltkoordinatenbereich xlimLeft=0 ylimBottom=0 xlimRight=dx ylimTop=dy # plt.figure(dpi=, facecolor=, edgecolor=, linewidth=, frameon=True) fig = plt.gcf() # This will return an existing figure if one is open, or it will make a new one if there is no active figure. fig.set_figwidth(figwidth) fig.set_figheight(figheight) logger.debug("{:s}dx={:10.2f} dy={:10.2f}".format(logStr,dx,dy)) logger.debug("{:s}figwidth={:10.2f} figheight={:10.2f}".format(logStr,figwidth,figheight)) ax=plt.subplot() ax.set_xlim(left=xlimLeft) ax.set_ylim(bottom=ylimBottom) ax.set_xlim(right=xlimRight) ax.set_ylim(top=ylimTop) xTicks=ax.get_xticks() dxTick = xTicks[1]-xTicks[0] yTicks=ax.set_yticks([idx*dxTick for idx in range(math.floor(dy/dxTick)+1)]) plt.title(kwds['pltTitle']) fig.set_frameon(kwds['figFrameon']) fig.set_edgecolor(kwds['figEdgecolor']) fig.set_facecolor(kwds['figFacecolor']) # https://stackoverflow.com/questions/14827650/pyplot-scatter-plot-marker-size # Size in pts: # the argument markersize in plot denotes the markersize (i.e. diameter) in points # the argument s in scatter denotes the markersize**2 in points^2 # so a given plot-marker with markersize=x needs a scatter-marker with s=x**2 if the scatter-marker shall cover the same "area" in points^2 # the "area" of the scatter-marker is proportional to the s param # What are points - pts: # the standard size of points in matplotlib is 72 ppi # 1 point is hence 1/72 inches (1 inch = 1 Zoll = 2.54 cm) # 1 point = 0.352777.... mm # points and pixels - px: # 1 point = dpi/ppi # the standard dpi in matplotlib is 100 # a scatter-marker whos "area" covers always 10 pixel: # s=(10*ppi/dpi)**2 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetNodes(pDf,**kwds): """ Scatters NODEs on gca(). Args: pDf: dataFrame NODE: Size (Attribute) * pAttribute: colName (default: 'Attribute') in pDf * pSizeFactor: (deafault: 1.) * scatter Sy-Area in pts^2 = pSizeFactor * Attribute NODE: Color (Measure) * pMeasure: colName (default: 'Measure') in pDf * pMeasureColorMap (default: plt.cm.autumn) * pMeasureAlpha (default: 0.9) * pMeasureClip (default: False) * CBFixedLimits (default: True) * CBFixedLimitLow (default: 0.) * CBFixedLimitHigh (default: 1.) NODE: 3Classes * pMeasure3Classes (default: True) * pMCategory: colName (default: 'MCategory') in pDf * pMCatTopTxt (default: 'Top') * pMCatMidTxt (default: 'Middle') * pMCatBotTxt (default: 'Bottom') * pMCatTopColor (default: 'palegreen') * pMCatTopAlpha (default: 0.9) * pMCatTopClip (default: False) * pMCatMidColorMap (default: plt.cm.autumn) * pMCatMidAlpha (default: 0.9) * pMCatMidClip (default: False) * pMCatBotColor (default: 'violet') * pMCatBotAlpha (default: 0.9) * pMCatBotClip (default: False) NODE: * pXCor: colName (default: 'pXCor_i') in pDf * pYCor: colName (default: 'pYCor_i') in pDf Returns: (pcN, vmin, vmax) * pcN: die mit Farbskala gezeichneten Symbole * vmin/vmax: die für die Farbskala verwendeten Extremalwerte """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # NODE: Size (Attribute) if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pSizeFactor' not in keys: kwds['pSizeFactor']=1. # NODE: Color (Measure) if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureColorMap' not in keys: kwds['pMeasureColorMap']=plt.cm.autumn if 'pMeasureAlpha' not in keys: kwds['pMeasureAlpha']=0.9 if 'pMeasureClip' not in keys: kwds['pMeasureClip']=False if 'CBFixedLimits' not in keys: kwds['CBFixedLimits']=True if 'CBFixedLimitLow' not in keys: kwds['CBFixedLimitLow']=0. if 'CBFixedLimitHigh' not in keys: kwds['CBFixedLimitHigh']=1. # NODE: 3Classes if 'pMeasure3Classes' not in keys: kwds['pMeasure3Classes']=True if 'pMCategory' not in keys: kwds['pMCategory']='MCategory' if 'pMCatTopTxt' not in keys: kwds['pMCatTopTxt']='Top' if 'pMCatMidTxt' not in keys: kwds['pMCatMidTxt']='Middle' if 'pMCatBotTxt' not in keys: kwds['pMCatBotTxt']='Bottom' if 'pMCatTopColor' not in keys: kwds['pMCatTopColor']='palegreen' if 'pMCatTopAlpha' not in keys: kwds['pMCatTopAlpha']=0.9 if 'pMCatTopClip' not in keys: kwds['pMCatTopClip']=False if 'pMCatMidColorMap' not in keys: kwds['pMCatMidColorMap']=plt.cm.autumn if 'pMCatMidAlpha' not in keys: kwds['pMCatMidAlpha']=0.9 if 'pMCatMidClip' not in keys: kwds['pMCatMidClip']=False if 'pMCatBotColor' not in keys: kwds['pMCatBotColor']='violet' if 'pMCatBotAlpha' not in keys: kwds['pMCatBotAlpha']=0.9 if 'pMCatBotClip' not in keys: kwds['pMCatBotClip']=False # NODE: if 'pXCor' not in keys: kwds['pXCor']='pXCor_i' if 'pYCor' not in keys: kwds['pYCor']='pYCor_i' except: pass try: ax=plt.gca() if kwds['pMeasure3Classes']: pN_top=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatTopTxt'])] pN_mid=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatMidTxt'])] pN_bot=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatBotTxt'])] pN_top_Anz,col=pN_top.shape pN_mid_Anz,col=pN_mid.shape pN_bot_Anz,col=pN_bot.shape pcN_top=ax.scatter( pN_top[kwds['pXCor']],pN_top[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_top[kwds['pAttribute']] ,color=kwds['pMCatTopColor'] ,alpha=kwds['pMCatTopAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatTopClip']) logger.debug("{:s}Anzahl mit fester Farbe Top gezeichneter Symbole={:d}".format(logStr,pN_top_Anz)) if not kwds['CBFixedLimits']: vmin=pN_mid[kwds['pMeasure']].min() vmax=pN_mid[kwds['pMeasure']].max() else: vmin=kwds['CBFixedLimitLow'] vmax=kwds['CBFixedLimitHigh'] pcN=ax.scatter( pN_mid[kwds['pXCor']],pN_mid[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_mid[kwds['pAttribute']] # Farbskala ,cmap=kwds['pMCatMidColorMap'] # Normierung Farbe ,vmin=vmin ,vmax=vmax # Farbwert ,c=pN_mid[kwds['pMeasure']] ,alpha=kwds['pMCatMidAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatMidClip'] ) logger.debug("{:s}Anzahl mit Farbskala gezeichneter Symbole={:d}".format(logStr,pN_mid_Anz)) pcN_bot=ax.scatter( pN_bot[kwds['pXCor']],pN_bot[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_bot[kwds['pAttribute']] ,color=kwds['pMCatBotColor'] ,alpha=kwds['pMCatBotAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatBotClip']) logger.debug("{:s}Anzahl mit fester Farbe Bot gezeichneter Symbole={:d}".format(logStr,pN_bot_Anz)) else: pN_Anz,col=pDf.shape if not kwds['CBFixedLimits']: vmin=pDf[kwds['pMeasure']].min() vmax=pDf[kwds['pMeasure']].max() else: vmin=kwds['CBFixedLimitLow'] vmax=kwds['CBFixedLimitHigh'] pcN=ax.scatter( pDf[kwds['pXCor']],pDf[kwds['pYCor']] ,s=kwds['pSizeFactor']*pDf[kwds['pAttribute']] # Farbskala ,cmap=kwds['pMeasureColorMap'] # Normierung Farbe ,vmin=vmin ,vmax=vmax # Farbwert ,c=pDf[kwds['pMeasure']] ,alpha=kwds['pMeasureAlpha'] ,edgecolors='face' ,clip_on=kwds['pMeasureClip'] ) logger.debug("{:s}Anzahl mit Farbskala gezeichneter Symbole={:d}".format(logStr,pN_Anz)) logger.debug("{:s}Farbskala vmin={:10.3f} Farbskala vmax={:10.3f}".format(logStr,vmin,vmax)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return (pcN, vmin, vmax) def pltNetPipes(pDf,**kwds): """ Plots Lines with Marker on gca(). Args: pDf: dataFrame PIPE-Line: * pAttribute: column in pDf (default: 'Attribute') * pAttributeLs (default: '-') * pAttributeSizeFactor: plot linewidth in pts = pAttributeSizeFactor (default: 1.0) * Attribute * pAttributeSizeMin (default: None): if set: use pAttributeSizeMin-Value as Attribute for LineSize if Attribute < pAttributeSizeMin * pAttributeColorMap (default: plt.cm.binary) * pAttributeColorMapUsageStart (default: 1./3; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart PIPE-Marker: * pMeasure: column in pDf (default: 'Measure') * pMeasureMarker (default: '.') * pMeasureSizeFactor: plot markersize in pts = pMeasureSizeFactor (default: 1.0) * Measure * pMeasureSizeMin (default: None): if set: use pMeasureSizeMin-Value as Measure for MarkerSize if Measure < pMeasureSizeMin * pMeasureColorMap (default: plt.cm.cool) * pMeasureColorMapUsageStart (default: 0.; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart PIPE: * pWAYPXCors: column in pDf (default: 'pWAYPXCors') * pWAYPYCors: column in pDf (default: 'pWAYPYCors') * pClip (default: False) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # PIPE-Line if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pAttributeSizeFactor' not in keys: kwds['pAttributeSizeFactor']=1. if 'pAttributeSizeMin' not in keys: kwds['pAttributeSizeMin']=None if 'pAttributeLs' not in keys: kwds['pAttributeLs']='-' if 'pAttributeColorMap' not in keys: kwds['pAttributeColorMap']=plt.cm.binary if 'pAttributeColorMapUsageStart' not in keys: kwds['pAttributeColorMapUsageStart']=1./3. # PIPE-Marker if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureSizeFactor' not in keys: kwds['pMeasureSizeFactor']=1. if 'pMeasureSizeMin' not in keys: kwds['pMeasureSizeMin']=None if 'pMeasureMarker' not in keys: kwds['pMeasureMarker']='.' if 'pMeasureColorMap' not in keys: kwds['pMeasureColorMap']=plt.cm.cool if 'pMeasureColorMapUsageStart' not in keys: kwds['pMeasureColorMapUsageStart']=0. # PIPE if 'pWAYPXCors' not in keys: kwds['pWAYPXCors']='pWAYPXCors' if 'pWAYPYCors' not in keys: kwds['pWAYPYCors']='pWAYPYCors' if 'pClip' not in keys: kwds['pClip']=False except: pass try: # Line minLine=pDf[kwds['pAttribute']].min() maxLine=pDf[kwds['pAttribute']].max() logger.debug("{:s}minLine (Attribute): {:6.2f}".format(logStr,minLine)) logger.debug("{:s}maxLine (Attribute): {:6.2f}".format(logStr,maxLine)) normLine=colors.Normalize(minLine,maxLine) usageLineValue=minLine+kwds['pAttributeColorMapUsageStart']*(maxLine-minLine) usageLineColor=kwds['pAttributeColorMap'](normLine(usageLineValue)) # Marker minMarker=pDf[kwds['pMeasure']].min() maxMarker=pDf[kwds['pMeasure']].max() logger.debug("{:s}minMarker (Measure): {:6.2f}".format(logStr,minMarker)) logger.debug("{:s}maxMarker (Measure): {:6.2f}".format(logStr,maxMarker)) normMarker=colors.Normalize(minMarker,maxMarker) usageMarkerValue=minMarker+kwds['pMeasureColorMapUsageStart']*(maxMarker-minMarker) usageMarkerColor=kwds['pMeasureColorMap'](normMarker(usageMarkerValue)) ax=plt.gca() for xs,ys,vLine,vMarker in zip(pDf[kwds['pWAYPXCors']],pDf[kwds['pWAYPYCors']],pDf[kwds['pAttribute']],pDf[kwds['pMeasure']]): if vLine >= usageLineValue: colorLine=kwds['pAttributeColorMap'](normLine(vLine)) else: colorLine=usageLineColor if vMarker >= usageMarkerValue: colorMarker=kwds['pMeasureColorMap'](normMarker(vMarker)) else: colorMarker=usageMarkerColor linewidth=kwds['pAttributeSizeFactor']*vLine if kwds['pAttributeSizeMin'] != None: if vLine < kwds['pAttributeSizeMin']: linewidth=kwds['pAttributeSizeFactor']*kwds['pAttributeSizeMin'] mSize=kwds['pMeasureSizeFactor']*vMarker if kwds['pMeasureSizeMin'] != None: if vMarker < kwds['pMeasureSizeMin']: mSize=kwds['pMeasureSizeFactor']*kwds['pMeasureSizeMin'] pcLines=ax.plot(xs,ys ,color=colorLine ,linewidth=linewidth ,ls=kwds['pAttributeLs'] ,marker=kwds['pMeasureMarker'] ,mfc=colorMarker ,mec=colorMarker ,mfcalt=colorMarker ,mew=0 ,ms=mSize #kwds['pMeasureSizeFactor']*vMarker ,markevery=[0,len(xs)-1] ,aa=True ,clip_on=kwds['pClip'] ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetLegendColorbar(pc,pDf,**kwds): """ Erzeugt eine Axes cax für den Legendenbereich aus ax (=gca()) und zeichnet auf cax die Farblegende (die Farbskala mit allen Eigenschaften). Args: pc: (eingefaerbte) PathCollection (aus pltNetNodes); wird für die Erzeugung der Farbskala zwingend benoetigt pDf: dataFrame (default: None) Measure: * pMeasure: colName in pDf (default: 'Measure') * pMeasureInPerc: Measure wird interpretiert in Prozent [0-1] (default: True) * pMeasure3Classes (default: False d.h. Measure wird nicht in 3 Klassen dargestellt) CBFixedLimits (Ticks): * CBFixedLimits (default: False d.h. Farbskala nach vorh. min./max. Wert) * CBFixedLimitLow (default: .10) * CBFixedLimitHigh (default: .95) Label: * pMeasureUNIT (default: '[]') * pMeasureTYPE (default: '') CB * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) * CBLabelPad (default: -50) * CBTicklabelsHPad (default: 0.) * CBAspect: ratio of long to short dimension (default: 10.) * CBShrink: fraction by which to shrink the colorbar (default: 0.3) * CBAnchorHorizontal: horizontaler Fußpunkt der colorbar in Plot-% (default: 0.) * CBAnchorVertical: vertikaler Fußpunkt der colorbar in Plot-% (default: 0.2) Return: cax """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Measure if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureInPerc' not in keys: kwds['pMeasureInPerc']=True if 'pMeasure3Classes' not in keys: kwds['pMeasure3Classes']=False # Label if 'pMeasureUNIT' not in keys: kwds['pMeasureUNIT']='[]' if 'pMeasureTYPE' not in keys: kwds['pMeasureTYPE']='' # CBFixedLimits if 'CBFixedLimits' not in keys: kwds['CBFixedLimits']=False if 'CBFixedLimitLow' not in keys: kwds['CBFixedLimitLow']=.10 if 'CBFixedLimitHigh' not in keys: kwds['CBFixedLimitHigh']=.95 # CB if 'CBFraction' not in keys: kwds['CBFraction']=0.05 if 'CBHpad' not in keys: kwds['CBHpad']=0.0275 if 'CBLabelPad' not in keys: kwds['CBLabelPad']=-50 if 'CBTicklabelsHPad' not in keys: kwds['CBTicklabelsHPad']=0 if 'CBAspect' not in keys: kwds['CBAspect']=10. if 'CBShrink' not in keys: kwds['CBShrink']=0.3 if 'CBAnchorHorizontal' not in keys: kwds['CBAnchorHorizontal']=0. if 'CBAnchorVertical' not in keys: kwds['CBAnchorVertical']=0.2 except: pass try: ax=plt.gca() fig=plt.gcf() # cax cax=None cax,kw=make_axes(ax ,location='right' ,fraction=kwds['CBFraction'] # fraction of original axes to use for colorbar ,pad=kwds['CBHpad'] # fraction of original axes between colorbar and new image axes ,anchor=(kwds['CBAnchorHorizontal'],kwds['CBAnchorVertical']) # the anchor point of the colorbar axes ,aspect=kwds['CBAspect'] # ratio of long to short dimension ,shrink=kwds['CBShrink'] # fraction by which to shrink the colorbar ) # colorbar colorBar=fig.colorbar(pc ,cax=cax ,**kw ) # tick Values if kwds['pMeasure3Classes']: # FixedLimits should be True and FixedLimitHigh/Low should be set ... minCBtickValue=kwds['CBFixedLimitLow'] maxCBtickValue=kwds['CBFixedLimitHigh'] else: if kwds['CBFixedLimits'] and isinstance(kwds['CBFixedLimitHigh'],float) and isinstance(kwds['CBFixedLimitLow'],float): minCBtickValue=kwds['CBFixedLimitLow'] maxCBtickValue=kwds['CBFixedLimitHigh'] else: minCBtickValue=pDf[kwds['pMeasure']].min() maxCBtickValue=pDf[kwds['pMeasure']].max() colorBar.set_ticks([minCBtickValue,minCBtickValue+.5*(maxCBtickValue-minCBtickValue),maxCBtickValue]) # tick Labels if kwds['pMeasureInPerc']: if kwds['pMeasure3Classes']: minCBtickLabel=">{:3.0f}%".format(minCBtickValue*100) maxCBtickLabel="<{:3.0f}%".format(maxCBtickValue*100) else: minCBtickLabel="{:6.2f}%".format(minCBtickValue*100) maxCBtickLabel="{:6.2f}%".format(maxCBtickValue*100) else: if kwds['pMeasure3Classes']: minCBtickLabel=">{:6.2f}".format(minCBtickValue) maxCBtickLabel="<{:6.2f}".format(maxCBtickValue) else: minCBtickLabel="{:6.2f}".format(minCBtickValue) maxCBtickLabel="{:6.2f}".format(maxCBtickValue) logger.debug("{:s}minCBtickLabel={:s} maxCBtickLabel={:s}".format(logStr,minCBtickLabel,maxCBtickLabel)) colorBar.set_ticklabels([minCBtickLabel,'',maxCBtickLabel]) colorBar.ax.yaxis.set_tick_params(pad=kwds['CBTicklabelsHPad']) # Label if kwds['pMeasureInPerc']: CBLabelText="{:s} in [%]".format(kwds['pMeasureTYPE']) else: CBLabelText="{:s} in {:s}".format(kwds['pMeasureTYPE'],kwds['pMeasureUNIT']) colorBar.set_label(CBLabelText,labelpad=kwds['CBLabelPad']) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return cax def pltNetLegendColorbar3Classes(pDf,**kwds): """ Zeichnet auf gca() die ergaenzenden Legendeninformationen bei 3 Klassen. * scatters the Top-Symbol * scatters the Bot-Symbol * the "Mid-Symbol" is the (already existing) colorbar with (already existing) ticks and ticklabels Args: pDf: dataFrame Category: * pMCategory: colName in pDf (default: 'MCategory') * pMCatTopText * pMCatMidText * pMCatBotText CBLegend (3Classes) - Parameterization of the representative Symbols * CBLe3cTopVPad (default: 1+1*1/4) * CBLe3cMidVPad (default: .5) * CBLe3cBotVPad (default: 0-1*1/4) * "1" is the height of the Colorbar * the VPads (the vertical Sy-Positions) are defined in cax.transAxes Coordinates * cax is the Colorbar Axes * CBLe3cSySize=10**2 (Sy-Area in pts^2) * CBLe3cSyType='o' Color: * pMCatBotColor='violet' * pMCatTopColor='palegreen' Returns: (bbTop, bbMid, bbBot): the boundingBoxes of the 3Classes-Symbols """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Cats if 'pMCategory' not in keys: kwds['pMCategory']='MCategory' if 'pMCatTopText' not in keys: kwds['pMCatTopText']='Top' if 'pMCatMidText' not in keys: kwds['pMCatMidText']='Middle' if 'pMCatBotText' not in keys: kwds['pMCatBotText']='Bottom' # CBLegend3Cats if 'CBLe3cTopVPad' not in keys: kwds['CBLe3cTopVPad']=1+1*1/4 if 'CBLe3cMidVPad' not in keys: kwds['CBLe3cMidVPad']=.5 if 'CBLe3cBotVPad' not in keys: kwds['CBLe3cBotVPad']=0-1*1/4 if 'CBLe3cSySize' not in keys: kwds['CBLe3cSySize']=10**2 if 'CBLe3cSyType' not in keys: kwds['CBLe3cSyType']='o' # CatAttribs if 'pMCatTopColor' not in keys: kwds['pMCatTopColor']='palegreen' if 'pMCatBotColor' not in keys: kwds['pMCatBotColor']='violet' except: pass try: cax=plt.gca() pDf_top=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatTopTxt'])] pDf_mid=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatMidTxt'])] pDf_bot=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatBotTxt'])] pDf_top_Anz,col=pDf_top.shape pDf_mid_Anz,col=pDf_mid.shape pDf_bot_Anz,col=pDf_bot.shape logger.debug("{:s} pDf_bot_Anz={:d} pDf_mid_Anz={:d} pDf_top_Anz={:d}".format(logStr,pDf_bot_Anz,pDf_mid_Anz,pDf_top_Anz)) logger.debug("{:s} CBLe3cBotVPad={:f} CBLe3cMidVPad={:f} CBLe3cTopVPad={:f}".format(logStr,kwds['CBLe3cBotVPad'],kwds['CBLe3cMidVPad'],kwds['CBLe3cTopVPad'])) bbBot=None bbMid=None bbTop=None if pDf_bot_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cBotVPad'] ,s=kwds['CBLe3cSySize'] ,c=kwds['pMCatBotColor'] ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) # Text dazu o=po.findobj(match=None) p=o[0] bbBot=p.get_datalim(cax.transAxes) logger.debug("{:s} bbBot={!s:s}".format(logStr,bbBot)) # a=plt.annotate(pMCatBotText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cBotVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatBotColor # ) # # weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_bot_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cBotVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatBotColor # ) if pDf_top_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cTopVPad'] ,s=kwds['CBLe3cSySize'] ,c=kwds['pMCatTopColor'] ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) o=po.findobj(match=None) p=o[0] bbTop=p.get_datalim(cax.transAxes) # #Text dazu # o=po.findobj(match=None) # p=o[0] # bb=p.get_datalim(cax.transAxes) # bbTop=bb # a=plt.annotate(pMCatTopText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cTopVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatTopColor # ) # #weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_top_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad++CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cTopVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatTopColor # ) if pDf_mid_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cMidVPad'] ,s=kwds['CBLe3cSySize'] ,c='lightgrey' ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,visible=False # es erden nur die Koordinaten benoetigt ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) o=po.findobj(match=None) p=o[0] bbMid=p.get_datalim(cax.transAxes) # #Text dazu # o=po.findobj(match=None) # p=o[0] # bb=p.get_datalim(cax.transAxes) # a=plt.annotate(pMCatMidText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cMidVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatMidColor # ,visible=False # ) # #weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_mid_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cMidVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatMidColor # ,visible=False # ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return (bbTop, bbMid, bbBot) def pltNetLegendTitleblock(text='',**kwds): """ Zeichnet auf gca() ergaenzende Schriftfeldinformationen. Args: text Parametrierung: * anchorVertical """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) if 'anchorVertical' not in keys: kwds['anchorVertical']=1. except: pass cax=plt.gca() try: a=plt.text( 0. ,kwds['anchorVertical'] ,text ,transform=cax.transAxes ,family='monospace' ,size='smaller' ,rotation='vertical' ,va='bottom' ,ha='left' ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetTextblock(text='',**kwds): """ Zeichnet einen Textblock auf gca(). """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) if 'x' not in keys: kwds['x']=0. if 'y' not in keys: kwds['y']=1. except: pass ax=plt.gca() try: a=plt.text( kwds['x'] ,kwds['y'] ,text ,transform=ax.transAxes ,family='monospace' ,size='smaller' ,rotation='horizontal' ,va='bottom' ,ha='left' ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) class Rm(): @classmethod def pltNetPipes(cls,pDf,**kwds): """ Plots colored PIPES. Args: DATA: pDf: dataFrame * query: query to filter pDf; default: None; Exp.: ="CONT_ID == '1001'" * fmask: function to filter pDf; default: None; Exp.: =lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False * query and fmask are used both (query 1st) if not None * sort_values_by: list of colNames defining the plot order; default: None (d.h. die Plotreihenfolge - und damit die z-Order - ist dann die pDF-Reihenfolge) * sort_values_ascending; default: False (d.h. kleine zuletzt und damit (wenn pAttrLineSize = pAttribute/pAttributeFunc) auch dünne über dicke); nur relevant bei sort_values_by AXES: pAx: Axes to be plotted on; if not specified: gca() is used Colorlegend: * CBFraction in % (default: 5) * CBHpad (default: 0.05) * CBLabel (default: pAttribute/pAttributeFunc) * CBBinTicks (default: None, d.h. keine Vorgabe von Außen); Vorgabe N: N yTicks; bei diskreten CM gemeint im Sinne von N-1 diskreten Kategorien * CBBinDiscrete (default: False, d.h. eine gegebene (kontinuierliche) CM wird nicht in eine diskrete gewandelt) * wenn CBBinDiscrete, dann gilt N aus CBBinTicks fuer die Ticks (bzw. Kategorien); ist CBBinTicks undef. gilt 4 (also 3 Kategorien) * bei den vorgenannten Kategorien handelt es sich um eine gleichmäßige Unterteilung des definierten Wertebereiches * CBBinBounds (default: None): wenn die CM eine diskrete ist, dann wird eine vorgegebene BoundaryNorm angewandt; CBBinTicks hat dann keine Bedeutung * CBTicks: individuell vorgegebene Ticks; wird am Schluss prozessiert, d.h. vorh. (ggf. auch durch CBBinTicks bzw. <=/>= u. v=/^= bereits manipulierte) ... * ... Ticks werden überschrieben; kann ohne CBTickLabels verwendet werden * CBTickLabels: individuell vorgegebene Ticklabels; wird danach prozessiert; Länge muss zu dann existierenden Ticks passen; kann auch ohne CBTicks verwendet werden PIPE-Attribute: * pAttribute: column in pDf (default: 'Attribute') * pAttributeFunc: * function to be used to construct a new col to be plotted * if pAttributeFunc is not None pAttribute is not used: pAttribute is set to 'pAttributeFunc' * the new constructed col is named 'pAttributeFunc'; this name can be used in sort_values_by PIPE-Color: * pAttributeColorMap (default: plt.cm.cool) * Farbskalamapping: * ------------------ * pAttributeColorMapMin (default: pAttribute.min()); ordnet der kleinsten Farbe einen Wert zu; CM: wenn angegeben _und unterschritten: <= * pAttributeColorMapMax (default: pAttribute.max()); ordnet der größten Farbe einen Wert zu; CM: wenn angegeben _und überschritten: >= * Standard: Farbskala wird voll ausgenutzt; d.h. der (ggf. mit Min/Max) eingegrenzte Wertebereich wird den Randfarben der Skala zugeordnet * wenn ein anderer, kleinerer, Wertebereich mit derselben Farbskala geplottet wird, dann sind die Farben in den Plots nicht vergleichbar ... * ... wenn eine Farbvergleichbarkeit erzielt werden soll, darf dieselbe Farbskala nicht voll ausgenutzt werden * pAttributeColorMapUsageStart (default: 0.; Wertebereich: [0,1[) * hier: die Farbskala wird unten nur ab UsageStart genutzt ... * ... d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart; CM: v= * pAttributeColorMapUsageEnd (default: 1.; Wertebereich: ]0,1]) * hier: die Farbskala wird oben nur bis UsageEnd genutzt ... * ... d.h. Werte die eine "größere" Farbe hätten, bekommen die Farbe von UsageEnd; CM: ^= * etwas anderes ist es, wenn man eine Farbskala an den Rändern nicht voll ausnutzen möchte weil einem die Farben dort nicht gefallen ... PIPE-Color 2nd: * um "unwichtige" Bereiche zu "dimmen": Beispiele: * räumlich: nicht-Schnitt Bereiche; Bestand (2nd) vs. Ausbau; Zonen unwichtig (2nd) vs. Zonen wichtig; Ok (2nd) von NOK * es werden erst die 2nd-Color Pipes gezeichnet; die (1st-)Color Pipes werden danach gezeichnet, liegen also "über" den "unwichtigen" * es wird dieselbe Spalte pAttribute/pAttributeFunc für die 2. Farbskala verwendet * es wird derselbe Linienstil (pAttributeLs) für die 2. Farbskala verwendet * es wird dieselbe Dicke pAttrLineSize (pAttribute/pAttributeFunc) für die 2. Farbskala verwendet * nur die Farbskala ist anders sowie ggf. das Farbskalamapping * pAttributeColorMapFmask: function to filter pDf to decide to plot with colorMap; default: =lambda row: True * pAttributeColorMap2ndFmask: function to filter pDf to decide to plot with colorMap2nd; default: =lambda row: False * mit den beiden Funktionsmasken kann eine Filterung zusätzlich zu query und fmask realisiert werden * die Funktionsmasken sollten schnittmengenfrei sein; wenn nicht: 2nd überschreibt * pAttributeColorMap2nd (default: plt.cm.binary) * Farbskalamapping: * ------------------ * pAttributeColorMap2ndMin (default: pAttributeColorMapMin) * pAttributeColorMap2ndMax (default: pAttributeColorMapMax) * die Farbskala wird an den Rändern nicht voll ausgenutzt wenn die Farben dort ggf. nicht gefallen: * pAttributeColorMap2ndUsageStart (default: 0.; Wertebereich: [0,1[) * pAttributeColorMap2ndUsageEnd (default: 1.; Wertebereich: ]0,1]) PIPE-Linestyle: * pAttributeLs (default: '-') * same for all colors if mutliple colors are specified PIPE-Linesize: * pAttrLineSize: column in pDf; if not specified: pAttribute/pAttributeFunc * pAttrLineSizeFactor (>0): plot linewidth in pts = pAttrLineSizeFactor (default: =...) * fabs(pAttrLineSize) * ...: 1./(pDf[pAttrLineSize].std()*2.) * same for all colors if mutliple colors are specified PIPE-Geometry: * pWAYPXCors: column in pDf (default: 'pWAYPXCors') * pWAYPYCors: column in pDf (default: 'pWAYPYCors') * pClip (default: True) >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import math >>> # --- >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> xm=xms['DHNetwork'] >>> #mx=mxs['DHNetwork'] >>> # --- >>> plt.close() >>> size_DINA3quer=(16.5, 11.7) >>> dpiSize=72 >>> fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) >>> gs = gridspec.GridSpec(4, 2) >>> # --- >>> vROHR=xm.dataFrames['vROHR'] >>> # --- >>> # Attribute (with neg. Values) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttribute='ROHR~*~*~*~QMAV' ... ) >>> txt=axNfd.set_title('RL QMAV') >>> # --- >>> # Function as Attribute >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[1]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs') >>> # -------------------------- >>> # --- >>> # Mi/MaD zS auf >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[2]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1600. ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ) >>> txt=axNfd.set_title('Mi/MaD zS auf') >>> # -------------------------- >>> # --- >>> # ind. Kategorien >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[3]) >>> cm = matplotlib.colors.ListedColormap(['cyan', 'royalblue', 'magenta', 'coral']) >>> cm.set_over('0.25') >>> cm.set_under('0.75') >>> bounds = [10.,100.,200.,800.,1600.] >>> norm = matplotlib.colors.BoundaryNorm(bounds, cm.N) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMap=cm ... ,CBBinBounds=bounds ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ) >>> txt=axNfd.set_title('ind. Kategorien') >>> # -------------------------- >>> # --- >>> # Unwichtiges ausblenden über 2nd Color >>> # -------------------------- >>> vAGSN=xm.dataFrames['vAGSN'] >>> hpRL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==2)] >>> pDf=pd.merge(vROHR ... ,hpRL[hpRL.IptIdx=='S'] # wg. Innenpunkte ... ,how='left' ... ,left_on='pk' ... ,right_on='OBJID' ... ,suffixes=('','_AGSN')).filter(items=vROHR.columns.tolist()+['OBJID']) >>> axNfd = fig.add_subplot(gs[4]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinTicks=7 ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ) >>> txt=axNfd.set_title('Unwichtiges ausblenden über 2nd Color') >>> # -------------------------- >>> # --- >>> # Farbskalen an den Rändern abschneiden >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[5]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ,pAttributeColorMapUsageStart=3/15. ... ,pAttributeColorMapUsageEnd=12/15. ... ) >>> txt=axNfd.set_title('Farbskalen an den Rändern abschneiden') >>> # -------------------------- >>> # --- >>> # Farbskala diskretisieren >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[6]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinDiscrete=True ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ,CBTicks=[250,750,1250] ... ,CBTickLabels=['klein','mittel','groß'] ... ) >>> txt=axNfd.set_title('Farbskala diskretisieren') >>> # -------------------------- >>> # --- >>> # Unterkategorien >>> # -------------------------- >>> baseColorsDef="tab10" >>> catagoryColors=[9,6,1] >>> nOfSubCatsReq=4 >>> cm=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> axNfd = fig.add_subplot(gs[7]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMap=cm ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinTicks=16 ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ) >>> txt=axNfd.set_title('Unterkategorien') >>> # -------------------------- >>> gs.tight_layout(fig) >>> plt.show() >>> plt.savefig('pltNetPipes.pdf',format='pdf',dpi=dpiSize*2) >>> # ----- >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=dpiSize) >>> gs = gridspec.GridSpec(1, 1) >>> # --- >>> # >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' and row.LTGR_NAME=='NWDUF2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs (Ausschnitt)') >>> gs.tight_layout(fig) >>> plt.show() >>> # ----- >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3,dpi=dpiSize) >>> gs = gridspec.GridSpec(1, 1) >>> # --- >>> # >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' and row.LTGR_NAME=='NWDUF2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs (Ausschnitt)') >>> gs.tight_layout(fig) >>> plt.show() """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() # CB if 'CBFraction' not in keys: kwds['CBFraction']=5 # in % if 'CBHpad' not in keys: kwds['CBHpad']=0.05 if 'CBLabel' not in keys: kwds['CBLabel']=None # CB / Farbskala if 'CBBinTicks' not in keys: kwds['CBBinTicks']=None if 'CBBinDiscrete' not in keys: kwds['CBBinDiscrete']=False if kwds['CBBinDiscrete']: if kwds['CBBinTicks']==None: kwds['CBBinTicks']=4 # (d.h. 3 Kategorien) if 'CBBinBounds' not in keys: kwds['CBBinBounds']=None # customized yTicks if 'CBTicks' not in keys: kwds['CBTicks'] = None if 'CBTickLabels' not in keys: kwds['CBTickLabels'] = None # DATA if 'query' not in keys: kwds['query']=None # Exp.: = "KVR_i=='2' & KVR_k=='2'" if 'fmask' not in keys: kwds['fmask']=None # Exp.: =lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False if 'sort_values_by' not in keys: kwds['sort_values_by']=None if 'sort_values_ascending' not in keys: kwds['sort_values_ascending']=False # PIPE-Attribute if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pAttributeFunc' not in keys: logger.debug("{:s}pAttribute: not specified?! 'Attribute' will be used. pAttributeFunc is also not specified?!".format(logStr)) if 'pAttributeFunc' not in keys: kwds['pAttributeFunc']=None # PIPE-Color if 'pAttributeColorMap' not in keys: kwds['pAttributeColorMap']=plt.cm.cool if 'pAttributeColorMapMin' not in keys: kwds['pAttributeColorMapMin']=None if 'pAttributeColorMapMax' not in keys: kwds['pAttributeColorMapMax']=None # Trunc Cmap if 'pAttributeColorMapUsageStart' not in keys and 'pAttributeColorMapUsageEnd' not in keys: kwds['pAttributeColorMapTrunc']=False else: kwds['pAttributeColorMapTrunc']=True if 'pAttributeColorMapUsageStart' not in keys: kwds['pAttributeColorMapUsageStart']=0. if 'pAttributeColorMapUsageEnd' not in keys: kwds['pAttributeColorMapUsageEnd']=1. # PIPE-Color 1st/2nd - FMasks if 'pAttributeColorMapFmask' not in keys: kwds['pAttributeColorMapFmask']=lambda row: True else: logger.debug("{:s}Color 1st-PIPEs are filtered with fmask: {:s} ...".format(logStr,str(kwds['pAttributeColorMapFmask']))) if 'pAttributeColorMap2ndFmask' not in keys: kwds['pAttributeColorMap2ndFmask']=lambda row: False else: logger.debug("{:s}Color 2nd-PIPEs are filtered with fmask: {:s} ...".format(logStr,str(kwds['pAttributeColorMap2ndFmask']))) # PIPE-Color 2nd if 'pAttributeColorMap2nd' not in keys: kwds['pAttributeColorMap2nd']=plt.cm.binary if 'pAttributeColorMap2ndMin' not in keys: kwds['pAttributeColorMap2ndMin']=kwds['pAttributeColorMapMin'] if 'pAttributeColorMap2ndMax' not in keys: kwds['pAttributeColorMap2ndMax']=kwds['pAttributeColorMapMax'] # Trunc Cmap if 'pAttributeColorMap2ndUsageStart' not in keys and 'pAttributeColorMap2ndUsageEnd' not in keys: kwds['pAttributeColorMap2ndTrunc']=False else: kwds['pAttributeColorMap2ndTrunc']=True if 'pAttributeColorMap2ndUsageStart' not in keys: kwds['pAttributeColorMap2ndUsageStart']=0. if 'pAttributeColorMap2ndUsageEnd' not in keys: kwds['pAttributeColorMap2ndUsageEnd']=1. # PIPE-Linestyle if 'pAttributeLs' not in keys: kwds['pAttributeLs']='-' # PIPE-Linesize if 'pAttrLineSize' not in keys: kwds['pAttrLineSize']=None if 'pAttrLineSizeFactor' not in keys: kwds['pAttrLineSizeFactor']=None # PIPE-Geometry if 'pWAYPXCors' not in keys: kwds['pWAYPXCors']='pWAYPXCors' if 'pWAYPYCors' not in keys: kwds['pWAYPYCors']='pWAYPYCors' if 'pClip' not in keys: kwds['pClip']=True except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) try: # ggf. filtern if kwds['query'] != None: logger.debug("{:s}pDf is filtered with query: {:s} ...".format(logStr,str(kwds['query']))) pDf=pd.DataFrame(pDf.query(kwds['query']).values,columns=pDf.columns) if kwds['fmask'] != None: logger.debug("{:s}pDf is filtered with fmask: {:s} ...".format(logStr,str(kwds['fmask']))) pDf=pd.DataFrame(pDf[pDf.apply(kwds['fmask'],axis=1)].values,columns=pDf.columns) # ggf. zu plottende Spalte(n) neu ausrechnen bzw. Plotreihenfolge ändern: Kopie erstellen if kwds['pAttributeFunc'] != None or kwds['sort_values_by'] != None: # Kopie! logger.debug("{:s}pDf is copied ...".format(logStr)) pDf=pDf.copy(deep=True) # ggf. zu plottende Spalte(n) neu ausrechnen if kwds['pAttributeFunc'] != None: logger.debug("{:s}pAttribute: col '{:s}' is not used: ...".format(logStr,kwds['pAttribute'])) logger.debug("{:s}... pAttributeFunc {:s} is used to calculate a new col named 'pAttributeFunc'".format(logStr,str(kwds['pAttributeFunc']))) pDf['pAttributeFunc']=pDf.apply(kwds['pAttributeFunc'],axis=1) kwds['pAttribute']='pAttributeFunc' logger.debug("{:s}col '{:s}' is used as Attribute.".format(logStr,kwds['pAttribute'])) # Label für CB if kwds['CBLabel'] == None: kwds['CBLabel']=kwds['pAttribute'] # Spalte für Liniendicke ermitteln if kwds['pAttrLineSize'] == None: kwds['pAttrLineSize']=kwds['pAttribute'] logger.debug("{:s}col '{:s}' is used as LineSize.".format(logStr,kwds['pAttrLineSize'])) # Liniendicke skalieren if kwds['pAttrLineSizeFactor']==None: kwds['pAttrLineSizeFactor']=1./(pDf[kwds['pAttrLineSize']].std()*2.) logger.debug("{:s}Faktor Liniendicke: {:12.6f} - eine Linie mit Attributwert {:6.2f} wird in {:6.2f} Pts Dicke geplottet.".format(logStr ,kwds['pAttrLineSizeFactor'] ,pDf[kwds['pAttrLineSize']].std()*2. ,kwds['pAttrLineSizeFactor']*pDf[kwds['pAttrLineSize']].std()*2. )) logger.debug("{:s}min. Liniendicke: Attributwert {:9.2f} Pts: {:6.2f}.".format(logStr ,math.fabs(pDf[kwds['pAttrLineSize']].min()) ,kwds['pAttrLineSizeFactor']*math.fabs(pDf[kwds['pAttrLineSize']].min())) ) logger.debug("{:s}max. Liniendicke: Attributwert {:9.2f} Pts: {:6.2f}.".format(logStr ,math.fabs(pDf[kwds['pAttrLineSize']].max()) ,kwds['pAttrLineSizeFactor']*math.fabs(pDf[kwds['pAttrLineSize']].max())) ) # ggf. Plotreihenfolge ändern if kwds['sort_values_by'] != None: logger.debug("{:s}pDf is sorted (=Plotreihenfolge) by {:s} ascending={:s}.".format(logStr,str(kwds['sort_values_by']),str(kwds['sort_values_ascending']))) pDf.sort_values(by=kwds['sort_values_by'],ascending=kwds['sort_values_ascending'],inplace=True) # ---------------------------------------------------------------------------------------------------------------------------------------- # x,y-Achsen: Lims ermitteln und setzen (das Setzen beeinflusst Ticks und data_ratio; ohne dieses Setzen wären diese auf Standardwerten) # ---------------------------------------------------------------------------------------------------------------------------------------- xMin=923456789 yMin=923456789 xMax=0 yMax=0 for xs,ys in zip(pDf[kwds['pWAYPXCors']],pDf[kwds['pWAYPYCors']]): xMin=min(xMin,min(xs)) yMin=min(yMin,min(ys)) xMax=max(xMax,max(xs)) yMax=max(yMax,max(ys)) logger.debug("{:s}pWAYPXCors: {:s} Min: {:6.2f} Max: {:6.2f}".format(logStr,kwds['pWAYPXCors'],xMin,xMax)) logger.debug("{:s}pWAYPYCors: {:s} Min: {:6.2f} Max: {:6.2f}".format(logStr,kwds['pWAYPYCors'],yMin,yMax)) dx=xMax-xMin dy=yMax-yMin dxdy=dx/dy dydx=1./dxdy # i.d.R. "krumme" Grenzen (die Ticks werden von mpl i.d.R. trotzdem "glatt" ermittelt) kwds['pAx'].set_xlim(xMin,xMax) kwds['pAx'].set_ylim(yMin,yMax) # ---------------------------------------------------------------------------------------------------------------------------------------- # x,y-Achsen: Ticks ermitteln aber NICHT verändern ----------------------------------------------------------------- # auch bei "krummen" Grenzen setzt matplotlib i.d.R. "glatte" Ticks # ---------------------------------------------------------------------------------------------------------------------------------------- # Ticks ermitteln xTicks=kwds['pAx'].get_xticks() yTicks=kwds['pAx'].get_yticks() dxTick = xTicks[1]-xTicks[0] xTickSpan=xTicks[-1]-xTicks[0] dyTick = yTicks[1]-yTicks[0] yTickSpan=yTicks[-1]-yTicks[0] logger.debug("{:s}xTicks : {:s} dx: {:6.2f}".format(logStr,str(xTicks),dxTick)) logger.debug("{:s}yTicks : {:s} dy: {:6.2f}".format(logStr,str(yTicks),dyTick)) # dTick gleich setzen (deaktiviert) if dyTick == dxTick: pass # nichts zu tun elif dyTick > dxTick: # dyTick zu dxTick (kleinere) setzen dTickW=dxTick # erf. Anzahl numOfTicksErf=math.floor(dy/dTickW)+1 newTicks=[idx*dTickW+yTicks[0] for idx in range(numOfTicksErf)] #kwds['pAx'].set_yticks(newTicks) #yTicks=kwds['pAx'].get_yticks() #dyTick = yTicks[1]-yTicks[0] #logger.debug("{:s}yTicks NEU: {:s} dy: {:6.2f}".format(logStr,str(yTicks),dyTick)) else: # dxTick zu dyTick (kleinere) setzen dTickW=dyTick # erf. Anzahl numOfTicksErf=math.floor(dx/dTickW)+1 newTicks=[idx*dTickW+xTicks[0] for idx in range(numOfTicksErf)] #kwds['pAx'].set_xticks(newTicks) #xTicks=kwds['pAx'].get_xticks() #dxTick = xTicks[1]-xTicks[0] #logger.debug("{:s}xTicks NEU: {:s} dx: {:6.2f}".format(logStr,str(xTicks),dxTick)) # ---------------------------------------------------------------------------------------------------------------------------------------- # Grid und Aspect # ---------------------------------------------------------------------------------------------------------------------------------------- kwds['pAx'].grid() kwds['pAx'].set_aspect(aspect='equal') # zur Sicherheit; andere als verzerrungsfreie Darstellungen machen im Netz kaum Sinn kwds['pAx'].set_adjustable('box') kwds['pAx'].set_anchor('SW') ## x,y-Seitenverhältnisse ermitteln --------------------------------------------------------------------------- ## total figure size #figW, figH = kwds['pAx'].get_figure().get_size_inches() ## Axis pos. on figure #x0, y0, w, h = kwds['pAx'].get_position().bounds ## Ratio of display units #disp_ratio = (figH * h) / (figW * w) #disp_ratioA = (figH) / (figW ) #disp_ratioB = (h) / (w) ## Ratio of data units #data_ratio=kwds['pAx'].get_data_ratio() #logger.debug("{:s}figW: {:6.2f} figH: {:6.2f}".format(logStr,figW,figH)) #logger.debug("{:s}x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) #logger.debug("{:s}pWAYPCors: Y/X: {:6.2f}".format(logStr,dydx)) #logger.debug("{:s}Ticks: Y/X: {:6.2f}".format(logStr,yTickSpan/xTickSpan)) #logger.debug("{:s}disp_ratio: {:6.2f} data_ratio: {:6.2f}".format(logStr,disp_ratio,data_ratio)) #logger.debug("{:s}disp_ratioA: {:6.2f} disp_ratioB: {:6.2f}".format(logStr,disp_ratioA,disp_ratioB)) # PIPE-Color: Farbskalamapping: cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['CBBinDiscrete'] and hasattr(cMap,'from_list'): # diskrete Farbskala aus kontinuierlicher erzeugen N=kwds['CBBinTicks']-1 color_list = cMap(np.linspace(0, 1, N)) cmap_name = cMap.name + str(N) kwds['pAttributeColorMap']=cMap.from_list(cmap_name, color_list, N) minAttr=pDf[kwds['pAttribute']].min() maxAttr=pDf[kwds['pAttribute']].max() if kwds['pAttributeColorMapMin'] != None: minLine=kwds['pAttributeColorMapMin'] else: minLine=minAttr if kwds['pAttributeColorMapMax'] != None: maxLine=kwds['pAttributeColorMapMax'] else: maxLine=maxAttr logger.debug("{:s}Attribute: minLine (used for CM-Scaling): {:8.2f} min (Data): {:8.2f}".format(logStr,minLine,minAttr)) logger.debug("{:s}Attribute: maxLine (used for CM-Scaling): {:8.2f} max (Data): {:8.2f}".format(logStr,maxLine,maxAttr)) # Norm normLine=colors.Normalize(minLine,maxLine) # kont. Farbskala truncated: Farbskala und Norm anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['pAttributeColorMapTrunc'] and hasattr(cMap,'from_list'): # usageStartLineValue=minLine+kwds['pAttributeColorMapUsageStart']*(maxLine-minLine) usageStartLineColor=kwds['pAttributeColorMap'](normLine(usageStartLineValue)) logger.debug("{:s}pAttributeColorMapUsageStart: {:6.2f} ==> usageStartLineValue: {:8.2f} (minLine: {:8.2f}) color: {:s}".format(logStr ,kwds['pAttributeColorMapUsageStart'] ,usageStartLineValue,minLine,str(usageStartLineColor))) # usageEndLineValue=maxLine-(1.-kwds['pAttributeColorMapUsageEnd'])*(maxLine-minLine) usageEndLineColor=kwds['pAttributeColorMap'](normLine(usageEndLineValue)) logger.debug("{:s}pAttributeColorMapUsageEnd: {:6.2f} ==> usageEndLineValue: {:8.2f} (maxLine: {:8.2f}) color: {:s}".format(logStr ,kwds['pAttributeColorMapUsageEnd'] ,usageEndLineValue,maxLine,str(usageEndLineColor))) nColors=100 kwds['pAttributeColorMap'] = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cMap.name, a=kwds['pAttributeColorMapUsageStart'], b=kwds['pAttributeColorMapUsageEnd']) ,cMap(np.linspace(kwds['pAttributeColorMapUsageStart'],kwds['pAttributeColorMapUsageEnd'],nColors))) normLine=colors.Normalize(max(minLine,usageStartLineValue),min(maxLine,usageEndLineValue)) # diskrete Farbskala mit individuellen Kategorien: Norm anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['CBBinBounds'] != None and not hasattr(cMap,'from_list'): # diskrete Farbskala liegt vor und Bounds sind vorgegeben normLine = colors.BoundaryNorm(kwds['CBBinBounds'],cMap.N) #CBPropExtend='both' CBPropExtend='neither' else: CBPropExtend='neither' # PIPE-Color 2nd: Farbskalamapping: if kwds['pAttributeColorMap2ndMin'] != None: minLine2nd=kwds['pAttributeColorMap2ndMin'] else: minLine2nd=minAttr if kwds['pAttributeColorMap2ndMax'] != None: maxLine2nd=kwds['pAttributeColorMap2ndMax'] else: maxLine2nd=maxAttr logger.debug("{:s}Attribute: minLine2nd (used for CM-Scaling): {:8.2f} min (Data): {:8.2f}".format(logStr,minLine2nd,minAttr)) logger.debug("{:s}Attribute: maxLine2nd (used for CM-Scaling): {:8.2f} max (Data): {:8.2f}".format(logStr,maxLine2nd,maxAttr)) # Norm normLine2nd=colors.Normalize(minLine2nd,maxLine2nd) # kont. Farbskala truncated: Farbskala anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap2nd']) if kwds['pAttributeColorMap2ndTrunc'] and hasattr(cMap,'from_list'): # usageStartLineValue2nd=minLine2nd+kwds['pAttributeColorMap2ndUsageStart']*(maxLine2nd-minLine2nd) logger.debug("{:s}pAttributeColorMap2ndUsageStart: {:8.2f} ==> usageStartLineValue2nd: {:8.2f} (minLine2nd: {:8.2f})".format(logStr,kwds['pAttributeColorMap2ndUsageStart'],usageStartLineValue2nd,minLine2nd)) usageStartLineColor2nd=kwds['pAttributeColorMap2nd'](normLine2nd(usageStartLineValue2nd)) # usageEndLineValue2nd=maxLine2nd-(1.-kwds['pAttributeColorMap2ndUsageEnd'])*(maxLine2nd-minLine2nd) logger.debug("{:s}pAttributeColorMap2ndUsageEnd: {:8.2f} ==> usageEndLineValue2nd: {:8.2f} (maxLine2nd: {:8.2f})".format(logStr,kwds['pAttributeColorMap2ndUsageEnd'],usageEndLineValue2nd,maxLine2nd)) usageEndLineColor2nd=kwds['pAttributeColorMap2nd'](normLine2nd(usageEndLineValue2nd)) nColors=100 kwds['pAttributeColorMap2nd'] = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cMap.name, a=kwds['pAttributeColorMap2ndUsageStart'], b=kwds['pAttributeColorMap2ndUsageEnd']) ,cMap(np.linspace(kwds['pAttributeColorMap2ndUsageStart'],kwds['pAttributeColorMap2ndUsageEnd'],nColors))) # PIPE-Color 2nd: PLOT pDfColorMap2nd=pDf[pDf.apply(kwds['pAttributeColorMap2ndFmask'],axis=1)] (rows ,cols)=pDf.shape (rows2nd,cols)=pDfColorMap2nd.shape logger.debug("{:s}Color 2nd-PIPEs: {:d} von {:d}".format(logStr,rows2nd,rows)) for xs,ys,vLine,tLine in zip(pDfColorMap2nd[kwds['pWAYPXCors']],pDfColorMap2nd[kwds['pWAYPYCors']],pDfColorMap2nd[kwds['pAttribute']],pDfColorMap2nd[kwds['pAttrLineSize']]): #if vLine >= usageStartLineValue2nd and vLine <= usageEndLineValue2nd: # colorLine=kwds['pAttributeColorMap2nd'](normLine2nd(vLine)) #elif vLine > usageEndLineValue2nd: # colorLine=usageEndLineColor2nd #else: # colorLine=usageStartLineColor2nd colorLine=kwds['pAttributeColorMap2nd'](normLine2nd(vLine)) pcLines=kwds['pAx'].plot(xs,ys ,color=colorLine ,linewidth=kwds['pAttrLineSizeFactor']*math.fabs(tLine)#(vLine) ,ls=kwds['pAttributeLs'] ,solid_capstyle='round' ,aa=True ,clip_on=kwds['pClip'] ) # PIPE-Color: PLOT pDfColorMap=pDf[pDf.apply(kwds['pAttributeColorMapFmask'],axis=1)] (rows ,cols)=pDf.shape (rows1st,cols)=pDfColorMap.shape colorsCBValues=[] logger.debug("{:s}Color 1st-PIPEs: {:d} von {:d}".format(logStr,rows1st,rows)) for xs,ys,vLine,tLine in zip(pDfColorMap[kwds['pWAYPXCors']],pDfColorMap[kwds['pWAYPYCors']],pDfColorMap[kwds['pAttribute']],pDfColorMap[kwds['pAttrLineSize']]): #if vLine >= usageStartLineValue and vLine <= usageEndLineValue: # colorLine=kwds['pAttributeColorMap'](normLine(vLine)) # value=vLine #elif vLine > usageEndLineValue: # colorLine=usageEndLineColor # value=usageEndLineValue #else: # colorLine=usageStartLineColor # value=usageStartLineValue colorLine=kwds['pAttributeColorMap'](normLine(vLine)) colorsCBValues.append(vLine) pcLines=kwds['pAx'].plot(xs,ys ,color=colorLine ,linewidth=kwds['pAttrLineSizeFactor']*math.fabs(tLine)#(vLine) ,ls=kwds['pAttributeLs'] ,solid_capstyle='round' ,aa=True ,clip_on=kwds['pClip'] ) # PIPE-Color: PLOT der PIPE-Anfänge um Farbskala konstruieren zu koennen xScatter=[] yScatter=[] for xs,ys in zip(pDfColorMap[kwds['pWAYPXCors']],pDfColorMap[kwds['pWAYPYCors']]): xScatter.append(xs[0]) yScatter.append(ys[0]) s=kwds['pAttrLineSizeFactor']*pDfColorMap[kwds['pAttrLineSize']].apply(lambda x: math.fabs(x)) s=s.apply(lambda x: math.pow(x,2)) # https://stackoverflow.com/questions/14827650/pyplot-scatter-plot-marker-size #pcN=kwds['pAx'].scatter(pDfColorMap['pXCor_i'],pDfColorMap['pYCor_i'] pcN=kwds['pAx'].scatter(xScatter,yScatter ,s=s ,linewidth=0 # the linewidth of the marker edges # Farbskala ,cmap=kwds['pAttributeColorMap'] # Normierung Farbe ,norm=normLine # Werte ,c=colorsCBValues ,edgecolors='none' ,clip_on=kwds['pClip'] ) # CB: Axes divider = make_axes_locatable(kwds['pAx']) cax = divider.append_axes('right',size="{:f}%".format(kwds['CBFraction']),pad=kwds['CBHpad']) x0, y0, w, h = kwds['pAx'].get_position().bounds #logger.debug("{:s}ohne Änderung?!: x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) kwds['pAx'].set_aspect(1.) #! x0, y0, w, h = kwds['pAx'].get_position().bounds #logger.debug("{:s}ohne Änderung?!: x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) # CB cB=plt.gcf().colorbar(pcN, cax=cax, orientation='vertical',extend=CBPropExtend,spacing='proportional') # Label cB.set_label(kwds['CBLabel']) # CB Ticks if kwds['CBBinTicks'] != None: cB.set_ticks(np.linspace(minLine,maxLine,kwds['CBBinTicks'])) ticks=cB.get_ticks() try: ticks=np.unique(np.append(ticks,[usageStartLineValue,usageEndLineValue])) except: pass cB.set_ticks(ticks) # CB Ticklabels labels=cB.ax.get_yticklabels() if kwds['pAttributeColorMapUsageStart'] > 0: idx=np.where(ticks == usageStartLineValue) labels[idx[0][0]].set_text(labels[idx[0][0]].get_text()+" v=") if kwds['pAttributeColorMapUsageEnd'] < 1: idx=np.where(ticks == usageEndLineValue) labels[idx[0][0]].set_text(labels[idx[0][0]].get_text()+" ^=") if kwds['pAttributeColorMapMax'] != None and maxLine<maxAttr: labels[-1].set_text(labels[-1].get_text()+" >=") if kwds['pAttributeColorMapMin'] != None and minLine>minAttr: labels[0].set_text(labels[0].get_text()+" <=") cB.ax.set_yticklabels(labels) # customized yTicks -------------------- if kwds['CBTicks'] != None: cB.set_ticks(kwds['CBTicks']) if kwds['CBTickLabels'] != None: labels=cB.ax.get_yticklabels() if len(labels)==len(kwds['CBTickLabels']): for label,labelNew in zip(labels,kwds['CBTickLabels']): label.set_text(labelNew) cB.ax.set_yticklabels(labels) else: logStrFinal="{:s}Error: Anz. CB Ticklabels Ist: {:d} != Anz. Ticklabeles Soll: {:d} ?!".format(logStr,len(labels),len(kwds['CBTickLabels'])) logger.error(logStrFinal) raise RmError(logStrFinal) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) @classmethod def pltHP(cls,pDf,**kwds): """ Plots a Hydraulic Profile. Args: DATA: pDf: dataFrame defining the HPLINES (xy-curves) Identification: the different HPs in pDf are identified by the two cols NAMECol: default: 'NAME'; set to None if NAMECol is not criteria for Identification ... and LayerCol: default: 'Layer'; set to None if LayerCol is not criteria for Identification ... for each HP several lines (xy-curves) are plotted ... not criteria ... if NAMECol is None only LayerCol is used if LayerCol also is None, all rows are treated as "the" HPLINE defining the HPLINES (xy-curves) Geometry: * xCol: col in pDf for x; example: 'x' the col is the same for all HPs and all y * edgeNodesColSequence: cols to be used for start-node, end-node, next-node; default: ['NAME_i','NAME_k','nextNODE'] * 'NAME'_'Layer' (i.e. Nord-Süd_1) NAMECol_LayerCol is used as an Index in hpLineGeoms * hpLineGeoms - Example - = { 'V-Abzweig_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-3107','matchType':'starts'} } - masterHP: Bezugs-Schnitt - masterNode: muss es in masterHP geben - masterNode: muss es auch im Schnitt geben bei matchType='matches'; bei 'starts' wird der Anfang gemapped; bei 'ends' das Ende defining the HPLINES (xy-curves) y-Achsentypen (y-Axes): * hpLines: list of cols in pDf for y; example: ['P'] each col in hpLines defines a hpLine (a xy-curve) to be plotted for each identified HP all defined hpLines are plotted defining the HPLINES (xy-curves) Layout: # 'NAME'_'Layer'_'hpLineType' (i.e. Nord-Süd_1_P) is used as an Index in hpLineProps * hpLineProps - Example - = { 'Nord-Süd_1_P':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ,'Nord-Süd_2_P':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} } if 'NAME'_'Layer'_'hpLine' not in hpLineProps: default props are used if hpLineProps['NAME'_'Layer'_'hpLine'] == None: HPLINE is not plotted y-Achsentypen (y-Axes): * werden ermittelt aus hpLines * der Spaltenname - z.B. 'P' - wird dabei als Bezeichner für den Achsentyp benutzt * die Achsen werden erstellt in der Reihenfolge in der sie in hpLines auftreten * Bezeichner wie 'P','P_1',... werden dabei als vom selben Achsentyp 'P' (selbe y-Achse also) gewertet * P_1, P_2, ... können z.B. P zu verschiedenen Zeiten sein oder Aggregate über die Zeit wie Min/Max * yAxesDetectionPattern: regExp mit welcher die Achsentypen ermittelt werden; default: '([\w ]+)(_)(\d+)$' * yTwinedAxesPosDeltaHPStart: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 * yTwinedAxesPosDeltaHP: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 AXES: pAx: Axes to be plotted on; if not specified: gca() is used Return: yAxes: dct with AXES; key=y-Achsentypen yLines: dct with Line2Ds; key=Index from hpLineProps xNodeInfs: dct with NodeInformation; key=Index also used in i.e. hpLineGeoms key: NAMECol_LayerCol value: dct key: node value: dct kwds['xCol']: x in HP kwds['xCol']+'Plot': x in HP-Plot pDfIdx: Index in pDf >>> # -q -m 0 -s pltHP -y no -z no -w DHNetwork >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import math >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> xm=xms['DHNetwork'] >>> mx=mxs['DHNetwork'] >>> xm.MxAdd(mx=mx,aggReq=['TIME','TMIN','TMAX'],timeReq=3*[mx.df.index[0]],timeReq2nd=3*[mx.df.index[-1]],viewList=['vAGSN'],ForceNoH5Update=True) >>> vAGSN=xm.dataFrames['vAGSN'] >>> for PH,P,RHO,Z in zip(['PH','PH_1','PH_2'],['P','P_1','P_2'],['RHO','RHO_1','RHO_2'],['Z','Z_1','Z_2']): ... vAGSN[PH]=vAGSN.apply(lambda row: row[P]*math.pow(10.,5.)/(row[RHO]*9.81),axis=1) ... vAGSN[PH]=vAGSN[PH]+vAGSN[Z].astype('float64') >>> for bBzg,P,RHO,Z in zip(['bBzg','bBzg_1','bBzg_2'],['P','P_1','P_2'],['RHO','RHO_1','RHO_2'],['Z','Z_1','Z_2']): ... vAGSN[bBzg]=vAGSN.apply(lambda row: row[RHO]*9.81/math.pow(10.,5.),axis=1) ... vAGSN[bBzg]=vAGSN[P]+vAGSN[Z].astype('float64')*vAGSN[bBzg] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> yAxes,yLines,xNodeInfs=Rm.Rm.pltHP(vAGSN,pAx=axNfd ... ,hpLines=['bBzg','bBzg_1','bBzg_2','Q'] ... ,hpLineProps={ ... 'AGFW Symposium DH_1_bBzg':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg_1':{'label':'RL min','color':'blue','linestyle':'-.','linewidth':1} ... ,'AGFW Symposium DH_1_bBzg_2':{'label':'VL max','color':'red' ,'linestyle':'-.','linewidth':1} ... ,'AGFW Symposium DH_1_bBzg_1':None ... ,'AGFW Symposium DH_2_bBzg_2':None ... ,'AGFW Symposium DH_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'AGFW Symposium DH_2_Q':{'label':'RL Q','color':'lightblue','linestyle':'--','linewidth':2} ... } ... ) >>> yAxes.keys() dict_keys(['bBzg', 'Q']) >>> yLines.keys() dict_keys(['AGFW Symposium DH_1_bBzg', 'AGFW Symposium DH_1_bBzg_2', 'AGFW Symposium DH_1_Q', 'AGFW Symposium DH_2_bBzg', 'AGFW Symposium DH_2_bBzg_1', 'AGFW Symposium DH_2_Q']) >>> txt=axNfd.set_title('HP') >>> gs.tight_layout(fig) >>> plt.show() >>> ### >>> Rcuts=[ ... {'NAME':'R-Abzweig','nl':['R-3107','R-3427']} ... ,{'NAME':'R-EndsTest','nl':['R-HWSU','R-HKW3S']} ... ,{'NAME':'R-MatchesTest','nl':['R-HKW1','R-2104']} ... ] >>> Vcuts=[ ... {'NAME':'V-Abzweig','nl':['V-3107','V-3427']} ... ,{'NAME':'V-EndsTest','nl':['V-HWSU','V-HKW3S']} ... ,{'NAME':'V-MatchesTest','nl':['V-HKW1','V-2104']} ... ] >>> fV=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False >>> fR=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False >>> for vcut,rcut in zip(Vcuts,Rcuts): ... ret=xm.vAGSN_Add(nl=vcut['nl'],weight='L',Layer=1,AKTIV=None,NAME=vcut['NAME'],fmask=fV) ... ret=xm.vAGSN_Add(nl=rcut['nl'],weight='L',Layer=2,AKTIV=None,NAME=rcut['NAME'],fmask=fR) >>> # Schnitte erneut mit Ergebnissen versorgen, da Schnitte neu definiert wurden >>> xm.MxAdd(mx=mx,ForceNoH5Update=True) >>> vAGSN=xm.dataFrames['vAGSN'] >>> for PH,P,RHO,Z in zip(['PH'],['P'],['RHO'],['Z']): ... vAGSN[PH]=vAGSN.apply(lambda row: row[P]*math.pow(10.,5.)/(row[RHO]*9.81),axis=1) ... vAGSN[PH]=vAGSN[PH]+vAGSN[Z].astype('float64') >>> for bBzg,P,RHO,Z in zip(['bBzg'],['P'],['RHO'],['Z']): ... vAGSN[bBzg]=vAGSN.apply(lambda row: row[RHO]*9.81/math.pow(10.,5.),axis=1) ... vAGSN[bBzg]=vAGSN[P]+vAGSN[Z].astype('float64')*vAGSN[bBzg] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> yAxes,yLines,xNodeInfs=Rm.Rm.pltHP(vAGSN[vAGSN['NAME'].isin(['R-Abzweig','V-Abzweig','AGFW Symposium DH','R-EndsTest','V-EndsTest','R-MatchesTest','V-MatchesTest'])],pAx=axNfd ... ,hpLines=['bBzg','Q'] ... ,hpLineGeoms={ ... 'V-Abzweig_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-3107','matchType':'starts'} ... ,'R-Abzweig_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-3107','matchType':'starts'} ... ,'V-EndsTest_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-HKW3S','matchType':'ends'} ... ,'R-EndsTest_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-HKW3S','matchType':'ends'} ... ,'V-MatchesTest_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-1312','matchType':'matches','offset':-500} ... ,'R-MatchesTest_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-1312','matchType':'matches'} ... } ... ,hpLineProps={ ... 'AGFW Symposium DH_1_bBzg':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'AGFW Symposium DH_2_Q':{'label':'RL Q','color':'lightblue','linestyle':'--','linewidth':2} ... ,'V-Abzweig_1_bBzg':{'label':'VL','color':'tomato' ,'linestyle':'-','linewidth':3} ... ,'R-Abzweig_2_bBzg':{'label':'RL','color':'plum' ,'linestyle':'-','linewidth':3} ... ,'V-Abzweig_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-Abzweig_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... ,'V-EndsTest_1_bBzg':{'label':'VL','color':'lightcoral' ,'linestyle':'-','linewidth':3} ... ,'R-EndsTest_2_bBzg':{'label':'RL','color':'aquamarine' ,'linestyle':'-','linewidth':3} ... ,'V-EndsTest_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-EndsTest_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... #,'V-MatchesTest_1_bBzg':{'label':'VL','color':'orange' ,'linestyle':'-','linewidth':1} ... ,'R-MatchesTest_2_bBzg':{'label':'RL','color':'slateblue' ,'linestyle':'-','linewidth':1} ... ,'V-MatchesTest_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-MatchesTest_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... } ... ) >>> txt=axNfd.set_title('HP') >>> gs.tight_layout(fig) >>> plt.show() >>> sorted(xNodeInfs.keys()) ['AGFW Symposium DH_1', 'AGFW Symposium DH_2', 'R-Abzweig_2', 'R-EndsTest_2', 'R-MatchesTest_2', 'V-Abzweig_1', 'V-EndsTest_1', 'V-MatchesTest_1'] >>> xNodeInf=xNodeInfs['R-Abzweig_2'] >>> nl=Rcuts[0]['nl'] >>> nodeInfS=xNodeInf[nl[0]] >>> nodeInfE=xNodeInf[nl[-1]] >>> sorted(nodeInfS.keys()) ['pDfIdx', 'x', 'xPlot'] >>> dxPlot=nodeInfE['xPlot']-nodeInfS['xPlot'] >>> dxHP=nodeInfE['x']-nodeInfS['x'] >>> dxPlot==dxHP True >>> nodeInfE['x']=round(nodeInfE['x'],3) >>> nodeInfE['xPlot']=round(nodeInfE['xPlot'],3) >>> {key:value for key,value in nodeInfE.items() if key not in ['pDfIdx']} {'x': 3285.0, 'xPlot': 20312.428} >>> """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() if 'NAMECol' not in keys: kwds['NAMECol']='NAME' if 'LayerCol' not in keys: kwds['LayerCol']='Layer' if 'xCol' not in keys: kwds['xCol']='x' if 'hpLines' not in keys: kwds['hpLines']=['P'] if 'hpLineProps' not in keys: kwds['hpLineProps']={'NAME_1_P':{'label':'HP NAME Layer 1 P','color':'red','linestyle':'-','linewidth':3}} if 'hpLineGeoms' not in keys: kwds['hpLineGeoms']=None if 'edgeColSequence' not in keys: kwds['edgeColSequence']=['NAME_i','NAME_k','nextNODE'] if 'yTwinedAxesPosDeltaHPStart' not in keys: # (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 kwds['yTwinedAxesPosDeltaHPStart']=-0.0125 if 'yTwinedAxesPosDeltaHP' not in keys: # (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 kwds['yTwinedAxesPosDeltaHP']=-0.05 if 'yAxesDetectionPattern' not in keys: # regExp mit welcher die Achsentypen ermittelt werden kwds['yAxesDetectionPattern']='([\w ]+)(_)(\d+)$' logger.debug("{:s}xCol: {:s}.".format(logStr,kwds['xCol'])) logger.debug("{:s}hpLines: {:s}.".format(logStr,str(kwds['hpLines']))) logger.debug("{:s}hpLineProps: {:s}.".format(logStr,str(kwds['hpLineProps']))) logger.debug("{:s}hpLineGeoms: {:s}.".format(logStr,str(kwds['hpLineGeoms']))) logger.debug("{:s}edgeColSequence: {:s}.".format(logStr,str(kwds['edgeColSequence']))) logger.debug("{:s}yTwinedAxesPosDeltaHPStart: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHPStart']))) logger.debug("{:s}yTwinedAxesPosDeltaHP: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHP']))) logger.debug("{:s}yAxesDetectionPattern: {:s}.".format(logStr,str(kwds['yAxesDetectionPattern']))) # Schnitte und Layer ermitteln if kwds['NAMECol'] != None and kwds['LayerCol'] != None: hPs=pDf[[kwds['NAMECol'],kwds['LayerCol']]].drop_duplicates() elif kwds['NAMECol'] != None: hPs=pDf[[kwds['NAMECol']]].drop_duplicates() hPs['Layer']=None elif kwds['LayerCol'] != None: hPs=pDf[[kwds['LayerCol']]].drop_duplicates() hPs['NAME']=None hPs=hPs[['NAME','Layer']] else: hPs=pd.DataFrame(data={'NAME':[None],'Layer':[None]}) #logger.debug("{:s}hPs: {:s}.".format(logStr,hPs.to_string())) # hPs hat 2 Spalten: NAME und Layer # y-Achsen-Typen ermitteln hpLineTypesSequence=[col if re.search(kwds['yAxesDetectionPattern'],col)==None else re.search(kwds['yAxesDetectionPattern'],col).group(1) for col in kwds['hpLines']] # y-Achsen konstruieren yAxes={} colType1st=hpLineTypesSequence[0] axHP=kwds['pAx'] axHP.spines["left"].set_position(("axes",kwds['yTwinedAxesPosDeltaHPStart'] )) axHP.set_ylabel(colType1st) yAxes[colType1st]=axHP logger.debug("{:s}colType: {:s} is attached to Axes pcAx .".format(logStr,colType1st)) for idx,colType in enumerate(hpLineTypesSequence[1:]): if colType not in yAxes: yPos=kwds['yTwinedAxesPosDeltaHPStart']+kwds['yTwinedAxesPosDeltaHP']*len(yAxes) logger.debug("{:s}colType: {:s}: new Axes_ yPos: {:1.4f} ...".format(logStr,colType,yPos)) # weitere y-Achse axHP = axHP.twinx() axHP.spines["left"].set_position(("axes", yPos)) pltMakePatchSpinesInvisible(axHP) axHP.spines['left'].set_visible(True) axHP.yaxis.set_label_position('left') axHP.yaxis.set_ticks_position('left') axHP.set_ylabel(colType) yAxes[colType]=axHP yLines={} xNodeInfs={} for index,row in hPs.iterrows(): # über alle Schnitte (NAME) und Layer (Layer) def getKeyBaseAndDf(dfSource,col1Name,col2Name,col1Value,col2Value): #logger.debug("{:s}getKeyBaseAndDf: dfSource: {:s} ...".format(logStr,dfSource[[col1Name,col2Name,'nextNODE']].to_string())) # dfSource bzgl. cols filtern if col1Name != None and col2Name != None: dfFiltered=dfSource[ (dfSource[col1Name].astype(str)==str(col1Value)) & (dfSource[col2Name].astype(str)==str(col2Value)) ] keyBase=str(row[col1Name])+'_'+str(col2Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Schnitt: {!s:s} Layer: {!s:s} ...".format(logStr,col1Value,col2Value)) elif col1Name != None: dfFiltered=dfSource[ (dfSource[col1Name].astype(str)==str(col1Value)) ] keyBase=str(col1Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Schnitt: {!s:s} ...".format(logStr,col1Value)) elif col2Name != None: dfFiltered=dfSource[ (dfSource[col2Name].astype(str)==str(col2Value)) ] keyBase=str(col2Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Layer: {!s:s} ...".format(logStr,col2Value)) else: dfFiltered=dfSource keyBase='' #logger.debug("{:s}getKeyBaseAndDf: dfFiltered: {:s} ...".format(logStr,dfFiltered[[col1Name,col2Name,'nextNODE']].to_string())) return keyBase, dfFiltered # Schnitt+Layer nach hPpDf filtern keyBase,hPpDf=getKeyBaseAndDf(pDf ,kwds['NAMECol'] # Spaltenname 1 ,kwds['LayerCol'] # Spaltenname 2 ,row[kwds['NAMECol']] # Spaltenwert 1 ,row[kwds['LayerCol']] # Spaltenwert 2 ) if hPpDf.empty: logger.info("{:s}Schnitt: {!s:s} Layer: {!s:s}: NICHT in pDf ?! ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']])) continue xOffset=0 xOffsetStatic=0 xFactorStatic=1 if kwds['hpLineGeoms'] != None: if keyBase.rstrip('_') in kwds['hpLineGeoms'].keys(): hpLineGeom=kwds['hpLineGeoms'][keyBase.rstrip('_')] logger.debug("{:s}Line: {:s}: hpLineGeom: {:s} ...".format(logStr,keyBase.rstrip('_'),str(hpLineGeom))) if 'offset' in hpLineGeom.keys(): xOffsetStatic=hpLineGeom['offset'] if 'factor' in hpLineGeom.keys(): xFactorStatic=hpLineGeom['factor'] if 'masterHP' in hpLineGeom.keys(): masterHP=hpLineGeom['masterHP'] name=masterHP.split('_')[0] layer=masterHP.replace(name,'') layer=layer.replace('_','') keyBaseMaster,hPpDfMaster=getKeyBaseAndDf(pDf ,kwds['NAMECol'] # Spaltenname 1 ,kwds['LayerCol'] # Spaltenname 2 ,name # Spaltenwert 1 ,layer # Spaltenwert 2 ) if 'masterNode' in hpLineGeom.keys(): masterNode=hpLineGeom['masterNode'] def fGetMatchingRows(row,cols,matchNode): for col in cols: if row[col]==matchNode: return True return False # Anker x suchen anhand der Spalten ... if 'matchAnchorCols' in hpLineGeom.keys(): matchAnchorCols=hpLineGeom['matchAnchorCols'] else: matchAnchorCols=[kwds['edgeColSequence'][2]] # AnkerKnoten: Zeilen die in Frage kommen .... hPpDfMatched=hPpDf[hPpDf.apply(fGetMatchingRows,axis=1,cols=matchAnchorCols,matchNode=masterNode)] hPpDfMasterMatched=hPpDfMaster[hPpDfMaster.apply(fGetMatchingRows,axis=1,cols=matchAnchorCols,matchNode=masterNode)] if 'matchType' in hpLineGeom.keys(): matchType=hpLineGeom['matchType'] else: matchType='starts' # Anker x suchen in Master ------------------------- if 'matchAnchor' in hpLineGeom.keys(): matchAnchor=hpLineGeom['matchAnchor'] else: matchAnchor='max' if hPpDfMasterMatched.empty: logger.info("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s}: in Master in den cols {!s:s} NICHT gefunden. Loesung: xMasterOffset=0.".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,matchAnchorCols)) xMasterOffset=0 else: if matchAnchor=='min': hPpDfMasterMatched=hPpDfMaster.loc[hPpDfMasterMatched[kwds['xCol']].idxmin(),:] else: # matchAnchor=='max' hPpDfMasterMatched=hPpDfMaster.loc[hPpDfMasterMatched.iloc[::-1][kwds['xCol']].idxmax(),:] xMasterOffset=hPpDfMasterMatched[kwds['xCol']] logger.debug("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s} xMasterOffset={:9.3f} ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,xMasterOffset)) # Anker x suchen in HP selbst -------------------------- if 'matchAnchorChild' in hpLineGeom.keys(): matchAnchorChild=hpLineGeom['matchAnchorChild'] else: matchAnchorChild='max' if hPpDfMatched.empty: logStrTmp="{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s}: in Child in den cols {!s:s} NICHT gefunden.".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,matchAnchorCols) if matchType=='matches': logger.info(logStrTmp+' Loesung: xChildOffset=0.') else: if matchType=='ends': logger.debug(logStrTmp+' Child endet nicht mit masterNode. xChildOffset=0') else: logger.debug(logStrTmp+' Child startet evtl. mit masterNode. xChildOffset=0') xChildOffset=0 else: if matchAnchorChild=='min': hPpDfMatched=hPpDf.loc[hPpDfMatched[kwds['xCol']].idxmin(),:] else: # matchAnchorChild=='max' hPpDfMatched=hPpDf.loc[hPpDfMatched.iloc[::-1][kwds['xCol']].idxmax(),:] xChildOffset=hPpDfMatched[kwds['xCol']] logger.debug("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s} xChildOffset={:9.3f} ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,xChildOffset)) # xOffset errechnen if matchType=='starts': xOffset=xMasterOffset-hPpDf[kwds['xCol']].min() # der Beginn # matchNode ist Anfang if hPpDf[kwds['edgeColSequence'][2]].iloc[0] == hPpDf[kwds['edgeColSequence'][1]].iloc[0]: # nextNode = k matchNode=hPpDf[kwds['edgeColSequence'][0]].iloc[0] else: # nextNode = i matchNode=hPpDf[kwds['edgeColSequence'][1]].iloc[0] elif matchType=='ends': xOffset=xMasterOffset-hPpDf[kwds['xCol']].max() # das Ende # matchNode ist Ende if hPpDf[kwds['edgeColSequence'][2]].iloc[-1] == hPpDf[kwds['edgeColSequence'][1]].iloc[-1]: # nextNode = k matchNode=hPpDf[kwds['edgeColSequence'][1]].iloc[-1] else: # nextNode = i matchNode=hPpDf[kwds['edgeColSequence'][0]].iloc[-1] else: # 'matches' # per Knoten matchNode=masterNode xOffset=xMasterOffset-xChildOffset # xOffset wurde berechnet # masterNode und matchNode sind bekannt logger.debug("{:s}hPpDfMatched: {:s} ...".format(logStr,hPpDfMatched[[kwds['NAMECol'],kwds['LayerCol'],'nextNODE',kwds['xCol'],'NAME_i','NAME_k','OBJTYPE','IptIdx']].to_string())) logger.debug("{:s}hPpDfMasterMatched: {:s} ...".format(logStr,hPpDfMasterMatched[[kwds['NAMECol'],kwds['LayerCol'],'nextNODE',kwds['xCol'],'NAME_i','NAME_k','OBJTYPE','IptIdx']].to_string())) else: logger.debug("{:s}Line: {:s}: keine Geometrieeigenschaften definiert.".format(logStr,keyBase.rstrip('_'))) # xNodeInfs ermitteln nodeList=hPpDf[kwds['edgeColSequence'][2]].copy() if hPpDf[kwds['edgeColSequence'][2]].iloc[0] == hPpDf[kwds['edgeColSequence'][1]].iloc[0]: # nextNode = k # 1. Knoten i nodeList.iloc[0]=hPpDf[kwds['edgeColSequence'][0]].iloc[0] else: # nextNode = i # 1. Knoten k nodeList.iloc[0]=hPpDf[kwds['edgeColSequence'][1]].iloc[0] nodeList=nodeList.unique() xNodeInf={} for idx,node in enumerate(nodeList): nodeInf={} if idx==0: nodeInf[kwds['xCol']]=0 nodeInf['pDfIdx']=hPpDf.index.values[0] else: nodeInf[kwds['xCol']]=hPpDf[hPpDf[kwds['edgeColSequence'][2]]==node][kwds['xCol']].max() nodeInf['pDfIdx']=hPpDf[hPpDf[kwds['edgeColSequence'][2]]==node][kwds['xCol']].idxmax() nodeInf[kwds['xCol']+'Plot']=nodeInf[kwds['xCol']]*xFactorStatic+xOffset+xOffsetStatic xNodeInf[node]=nodeInf xNodeInfs[keyBase.rstrip('_')]=xNodeInf # über alle Spalten (d.h. darzustellenden y-Werten) for idx,hpLine in enumerate(kwds['hpLines']): key=keyBase+hpLine logger.debug("{:s}Line: {:s} ...".format(logStr,key)) if key in kwds['hpLineProps']: hpLineProp=kwds['hpLineProps'][key] if hpLineProp == None: logger.debug("{:s}Line: {:s} ...: kein Plot.".format(logStr,key)) continue # kein Plot label=key color='black' linestyle='-' linewidth=3 hpLineType=hpLineTypesSequence[idx] axHP=yAxes[hpLineType] lines=axHP.plot(hPpDf[kwds['xCol']]*xFactorStatic+xOffset+xOffsetStatic,hPpDf[hpLine],label=label,color=color,linestyle=linestyle,linewidth=linewidth) yLines[label]=lines[0] if key in kwds['hpLineProps']: hpLineProp=kwds['hpLineProps'][key] logger.debug("{:s}Line: {:s}: hpLineProp: {:s}.".format(logStr,key,str(hpLineProp))) for prop,value in hpLineProp.items(): plt.setp(yLines[label],"{:s}".format(prop),value) else: logger.debug("{:s}Line: {:s}: keine Eigenschaften definiert.".format(logStr,key)) continue except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return yAxes,yLines,xNodeInfs @classmethod def pltTC(cls,pDf,tcLines,**kwds): """ Plots a Time Curve Diagram. Args: DATA: pDf: dataFrame index: times cols: values (with mx.df colnames) tcLines: dct defining the Curves and their Layout: Key: OBJTYPE~NAME1~NAME2~ATTRTYPE is used as a key, d.h. OBJTYPE_PK ist nicht im Schluessel enthalten * tcLines - Example - = { 'KNOT~NAME1~~PH':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} } Definition der y-Achsentypen (y-Axes): * werden ermittelt aus den verschiedenen ATTRTYPEs in tcLines * ATTRTYPE - z.B. 'PH' - wird dabei als Bezeichner für den Achsentyp benutzt * die Achsen werden erstellt in der Reihenfolge in der sie in tcLines auftreten * yTwinedAxesPosDeltaHPStart: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 * yTwinedAxesPosDeltaHP: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 Attribute: * alle gültigen * + * forceYType * offset * factor * timeStart * timeEnd * legendInfosFmt * label AXES: pAx: Axes to be plotted on; if not specified: gca() is used x-Achsen-Formatierung: majLocator - Beispiele: mdates.MinuteLocator(interval=5) mdates.MinuteLocator(byminute=[0,5,10,15,20,25,30,35,40,45,50,55]) majFormatter - Beispiele: mdates.DateFormatter('%d.%m.%y: %H:%M') xTicksLabelsOff: wenn True, dann keine x-Achsen TickLabels Return: yAxes: dct with AXES; key=y-Achsentypen yLines: dct with Line2Ds; key=Index from tcLines vLines: dct with Line2Ds; key=Index from vLines yLinesLegendLabels: dct with Legendlabels; key=Index from tcLines >>> # -q -m 0 -s pltTC -y no -z no -w DHNetwork >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import matplotlib.dates as mdates >>> import math >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> # xm=xms['DHNetwork'] >>> mx=mxs['DHNetwork'] >>> sir3sID=mx.getSir3sIDFromSir3sIDoPK('ALLG~~~LINEPACKGEOM') # 'ALLG~~~5151766074450398225~LINEPACKGEOM' >>> # mx.df[sir3sID].describe() >>> # mx.df[sir3sID].iloc[0] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axTC = fig.add_subplot(gs[0]) >>> yAxes,yLines,vLines,yLinesLegendLabels=Rm.Rm.pltTC(mx.df ... ,tcLines={ ... 'ALLG~~~LINEPACKRATE':{'label':'Linepackrate','color':'red' ,'linestyle':'-','linewidth':3,'drawstyle':'steps','factor':10} ... ,'ALLG~~~LINEPACKGEOM':{'label':'Linepackgeometrie','color':'b' ,'linestyle':'-','linewidth':3,'offset':-mx.df[sir3sID].iloc[0] ... ,'timeStart':mx.df.index[0]+pd.Timedelta('10 Minutes') ... ,'timeEnd':mx.df.index[-1]-pd.Timedelta('10 Minutes')} ... ,'RSLW~wNA~~XA':{'label':'RSLW~wNA~~XA','color':'lime','forceYType':'N'} ... ,'PUMP~R-A-SS~R-A-DS~N':{'label':'PUMP~R-A-SS~R-A-DS~N','color':'aquamarine','linestyle':'--','legendInfosFmt':'{:4.0f}'} ... } ... ,pAx=axTC ... ,vLines={ ... 'a vLine Label':{'time': mx.df.index[0] + pd.Timedelta('10 Minutes') ... ,'color':'dimgrey' ... ,'linestyle':'--' ... ,'linewidth':5.} ... } ... ,majLocator=mdates.MinuteLocator(byminute=[0,5,10,15,20,25,30,35,40,45,50,55]) ... ,majFormatter=mdates.DateFormatter('%d.%m.%y: %H:%M') ... #,xTicksLabelsOff=True ... ) >>> sorted(yAxes.keys()) ['LINEPACKGEOM', 'LINEPACKRATE', 'N'] >>> sorted(yLines.keys()) ['ALLG~~~LINEPACKGEOM', 'ALLG~~~LINEPACKRATE', 'PUMP~R-A-SS~R-A-DS~N', 'RSLW~wNA~~XA'] >>> sorted(vLines.keys()) ['a vLine Label'] >>> gs.tight_layout(fig) >>> plt.show() >>> """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() if 'yTwinedAxesPosDeltaHPStart' not in keys: # (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 kwds['yTwinedAxesPosDeltaHPStart']=-0.0125 if 'yTwinedAxesPosDeltaHP' not in keys: # (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 kwds['yTwinedAxesPosDeltaHP']=-0.05 logger.debug("{:s}tcLines: {:s}.".format(logStr,str(tcLines))) logger.debug("{:s}yTwinedAxesPosDeltaHPStart: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHPStart']))) logger.debug("{:s}yTwinedAxesPosDeltaHP: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHP']))) if 'lLoc' not in keys: kwds['lLoc']='best' if 'lFramealpha' not in keys: kwds['lFramealpha']=matplotlib.rcParams["legend.framealpha"] if 'lFacecolor' not in keys: kwds['lFacecolor']='white' if 'lOff' not in keys: kwds['lOff']=False yAxes=yLines=vLines=None # fuer jede Spalte Schluessel ohne OBJTYPE_PK ermitteln == Schluessel in tcLines colFromTcKey={} for col in pDf.columns.tolist(): if pd.isna(col): continue try: colNew=Mx.getSir3sIDoPKFromSir3sID(col) colFromTcKey[colNew]=col # merken welche Originalspalte zu dem tcLines Schluessel gehoert logger.debug("{:s}Zu Spalte ohne Schlüssel: {:s} gehört Spalte: {:s} in pDf.".format(logStr,colNew,col)) except: logger.debug("{:s}keine Zuordnung gefunden (z.B. kein Mx.getSir3sIDoPKFromSir3sID-match) fuer pDf-Spalte: {:s}. Spaltenname(n) keine vollständigen SIR 3S Schluessel (mehr)?!".format(logStr,col)) # y-Achsen-Typen ermitteln yTypesSequence=[] for key,props in tcLines.items(): try: mo=re.match(Mx.reSir3sIDoPKcompiled,key) yType=mo.group('ATTRTYPE') if 'forceYType' in props.keys(): yType=props['forceYType'] if yType not in yTypesSequence: yTypesSequence.append(yType) logger.debug("{:s}neuer y-Achsentyp: {:s}.".format(logStr,yType)) except: logger.debug("{:s}kein Achsentyp ermittelt (z.B. kein Mx.reSir3sIDoPKcompiled-match) fuer: {:s}. tcLine(s) Schluessel kein SIR 3S Schluessel oPK?!".format(logStr,key)) # y-Achsen konstruieren yAxes={} colType1st=yTypesSequence[0] axTC=kwds['pAx'] axTC.spines["left"].set_position(("axes",kwds['yTwinedAxesPosDeltaHPStart'] )) axTC.set_ylabel(colType1st) yAxes[colType1st]=axTC logger.debug("{:s}colType: {:s}: is attached to 1st Axes.".format(logStr,colType1st)) for idx,colType in enumerate(yTypesSequence[1:]): # weitere y-Achse yPos=kwds['yTwinedAxesPosDeltaHPStart']+kwds['yTwinedAxesPosDeltaHP']*len(yAxes) logger.debug("{:s}colType: {:s}: is attached to a new Axes: yPos: {:1.4f} ...".format(logStr,colType,yPos)) axTC = axTC.twinx() axTC.spines["left"].set_position(("axes", yPos)) pltMakePatchSpinesInvisible(axTC) axTC.spines['left'].set_visible(True) axTC.yaxis.set_label_position('left') axTC.yaxis.set_ticks_position('left') axTC.set_ylabel(colType) yAxes[colType]=axTC # ueber alle definierten Kurven # max. Länge label vor Infos ermitteln labels=[] infos=[] for key,props in tcLines.items(): label=key if 'label' in props: label=props['label'] labels.append(label) if 'legendInfosFmt' in props: legendInfosFmt=props['legendInfosFmt'] else: legendInfosFmt='{:6.2f}' if key not in colFromTcKey.keys(): logger.debug("{:s}Line: {:s}: es konnte keine Spalte in pDf ermittelt werden. Spaltenname(n) kein SIR 3S Schluessel?! Kein Plot.".format(logStr,key)) continue else: col=colFromTcKey[key] logger.debug("{:s}Line: {:s}: Spalte in pDf: {:s}.".format(logStr,key,col)) if 'timeStart' in props: timeStart=props['timeStart'] else: timeStart=pDf.index[0] if 'timeEnd' in props: timeEnd=props['timeEnd'] else: timeEnd=pDf.index[-1] plotDf=pDf.loc[timeStart:timeEnd,:] infos.append(legendInfosFmt.format(plotDf[col].min())) infos.append(legendInfosFmt.format(plotDf[col].max())) labelsLength=[len(label) for label in labels] labelsLengthMax=max(labelsLength) infosLength=[len(info) for info in infos] infosLengthMax=max(infosLength) # zeichnen yLines={} yLinesLegendLabels={} # ueber alle definierten Kurven for key,props in tcLines.items(): if key not in colFromTcKey.keys(): logger.debug("{:s}Line: {:s}: es konnte keine Spalte in pDf ermittelt werden. Spaltenname(n) kein SIR 3S Schluessel?! Kein Plot.".format(logStr,key)) continue else: col=colFromTcKey[key] mo=re.match(Mx.reSir3sIDoPKcompiled,key) yType=mo.group('ATTRTYPE') if 'forceYType' in props.keys(): yType=props['forceYType'] axTC=yAxes[yType] logger.debug("{:s}Line: {:s} on Axes {:s} ...".format(logStr,key,yType)) label=key color='black' linestyle='-' linewidth=3 if 'offset' in props: offset=props['offset'] else: offset=0. if 'factor' in props: factor=props['factor'] else: factor=1. if 'timeStart' in props: timeStart=props['timeStart'] else: timeStart=pDf.index[0] if 'timeEnd' in props: timeEnd=props['timeEnd'] else: timeEnd=pDf.index[-1] if 'legendInfosFmt' in props: legendInfosFmt=props['legendInfosFmt'] else: legendInfosFmt='{:6.2f}' plotDf=pDf.loc[timeStart:timeEnd,:] lines=axTC.plot(plotDf.index.values,plotDf[col]*factor+offset,label=label,color=color,linestyle=linestyle,linewidth=linewidth) yLines[key]=lines[0] if 'label' in props: label=props['label'] else: label=label legendLabelFormat="Anf.: {:s} Ende: {:s} Min: {:s} Max: {:s}"#.format(*4*[legendInfosFmt]) legendLabelFormat="{:s} "+legendLabelFormat legendInfos=[plotDf[col].iloc[0],plotDf[col].iloc[-1],plotDf[col].min(),plotDf[col].max()] legendInfos=[factor*legendInfo+offset for legendInfo in legendInfos] legendLabel=legendLabelFormat.format(label.ljust(labelsLengthMax,' '), *["{:s}".format(legendInfosFmt).format(legendInfo).rjust(infosLengthMax,' ') for legendInfo in legendInfos] ) yLinesLegendLabels[key]=legendLabel logger.debug("{:s}legendLabel: {:s}.".format(logStr,legendLabel)) for prop,value in props.items(): if prop not in ['forceYType','offset','factor','timeStart','timeEnd','legendInfosFmt']: plt.setp(yLines[key],"{:s}".format(prop),value) # x-Achse # ueber alle Axes for key,ax in yAxes.items(): ax.set_xlim(pDf.index[0],pDf.index[-1]) if 'majLocator' in kwds.keys(): ax.xaxis.set_major_locator(kwds['majLocator']) if 'majFormatter' in kwds.keys(): ax.xaxis.set_major_formatter(kwds['majFormatter']) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.xaxis.grid() # Beschriftung ausschalten if 'xTicksLabelsOff' in kwds.keys(): # xTicksOff if kwds['xTicksLabelsOff']: logger.debug("{:s}Achse: {:s}: x-Achse Labels aus.".format(logStr,key)) #for tic in ax.xaxis.get_major_ticks(): # tic.tick1On = tic.tick2On = False ax.set_xticklabels([]) # vLines # ueber alle definierten vLines vLines={} if 'vLines' in kwds.keys(): for key,props in kwds['vLines'].items(): if 'time' in props.keys(): logger.debug("{:s}vLine: {:s} ....".format(logStr,key)) vLine=ax.axvline(x=props['time'], ymin=0, ymax=1, label=key) vLines[key]=vLine for prop,value in props.items(): if prop not in ['time']: plt.setp(vLine,"{:s}".format(prop),value) else: logger.debug("{:s}vLine: {:s}: time nicht definiert.".format(logStr,key)) # Legend import matplotlib.font_manager as font_manager font = font_manager.FontProperties(family='monospace' #weight='bold', #style='normal', #size=16 ) if not kwds['lOff']: l=kwds['pAx'].legend( tuple([yLines[yline] for yline in yLines]) , tuple([yLinesLegendLabels[yLine] for yLine in yLinesLegendLabels]) ,loc=kwds['lLoc'] ,framealpha=kwds['lFramealpha'] ,facecolor=kwds['lFacecolor'] ,prop=font ) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return yAxes,yLines,vLines,yLinesLegendLabels def __init__(self,xm=None,mx=None): """ Args: xm: Xm.Xm Object mx: Mx.Mx Object """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: self.xm=xm self.mx=mx try: vNRCV_Mx1=self.xm.dataFrames['vNRCV_Mx1'] # d.h. Sachdaten bereits annotiert mit MX1-Wissen except: logger.debug("{:s}{:s} not in {:s}. Sachdaten mit MX1-Wissen zu annotieren wird nachgeholt ...".format(logStr,'vNRCV_Mx1','dataFrames')) self.xm.MxSync(mx=self.mx) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetDHUS(self,**kwds): """Plot: Net: DistrictHeatingUnderSupply. Args (optional): TIMEs (als TIMEDELTA zu Szenariumbeginn): * timeDeltaToRef: Reference Scenariotime (for MeasureInRefPerc-Calculations) (default: pd.to_timedelta('0 seconds')) * timeDeltaToT: Scenariotime (default: pd.to_timedelta('0 seconds')) FWVB * pFWVBFilterFunction: Filterfunction to be applied to FWVB to determine the FWVB to be plotted * default: lambda df: (df.CONT_ID.astype(int).isin([1001])) & (df.W0LFK>0) * CONT_IDisIn: [1001] * um zu vermeiden, dass FWVB aus Bloecken gezeichnet werden (unwahrscheinlich, dass es solche gibt) * W0LFK>0: * um zu vermeiden, dass versucht wird, FWVB mit der Soll-Leistung 0 zu zeichnen (pFWVBAttribute default is 'W0LFK') FWVB Attribute (Size, z-Order) - from vFWVB * pFWVBAttribute: columnName (default: 'W0LFK') * the column must be able to be converted to a float * the conversion is done before FilterFunction * see ApplyFunction and NaNValue for conversion details: * pFWVBAttributeApplyFunction: Function to be applied to column pFWVBAttribute * default: lambda x: pd.to_numeric(x,errors='coerce') * pFWVBAttributeApplyFunctionNaNValue: Value for NaN-Values produced by pFWVBAttributeApplyFunction if any * default: 0 * .fillna(pFWVBAttributeApplyFunktionNaNValue).astype(float) is called after ApplyFunction * pFWVBAttributeAsc: z-Order (default: False d.h. "kleine auf große") * pFWVBAttributeRefSize: scatter Sy-Area in pts^2 of for RefSizeValue (default: 10**2) * corresponding RefSizeValue is Attribute.std() or Attribute.mean() if Attribute.std() is < 1 FWVB (plot only large (small, medium) FWVB ...) * quantil_pFWVBAttributeHigh <= (default: 1.) * quantil_pFWVBAttributeLow >= (default: .0) * default: all FWVB are plotted * note that Attribute >0 is a precondition FWVB Measure (Color) - from mx * pFWVBMeasure (default: 'FWVB~*~*~*~W') * float() must be possible * pFWVBMeasureInRefPerc (default: True d.h. Measure wird verarbeitet in Prozent T zu Ref) * 0-1 * if refValue is 0 than refPerc-Result is set to 1 * pFWVBMeasureAlpha/Colormap/Clip * 3Classes * pFWVBMeasure3Classes (default: False) * False: * Measure wird nicht in 3 Klassen dargestellt * die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt dennoch * CatTexts (werden verwendet wenn 3Classes Wahr gesetzt ist) * für CBLegend (3Classes) als _zusätzliche Beschriftung rechts * als Texte für die Spalte MCategory in return pFWVB * pMCatTopText * pMCatMidText * pMCatBotText * CatAttribs (werden verwendet wenn 3Classes Wahr gesetzt ist) * für die Knotendarstellung * pMCatTopAlpha/Color/Clip * pMCatMidAlpha/Colormap/Clip * pMCatBotAlpha/Color/Clip * CBFixedLimits * pFWVBMeasureCBFixedLimits (default: False d.h. Farbskala nach vorh. min./max. Wert) * wird Wahr gesetzt sein, wenn 3Classes Wahr gesetzt ist * damit die mittlere Farbskala den Klassengrenzen "gehorcht" * pFWVBMeasureCBFixedLimitLow (default: .10) * pFWVBMeasureCBFixedLimitHigh (default: .95) CB * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) * CBLabelPad (default: -50) * CBTicklabelsHPad (default: 0.) * CBAspect: ratio of long to short dimension (default: 10.) * CBShrink: fraction by which to shrink the colorbar (default: .3) * CBAnchorHorizontal: horizontaler Fußpunkt der colorbar in Plot-% (default: 0.) * CBAnchorVertical: vertikaler Fußpunkt der colorbar in Plot-% (default: 0.2) CBLegend (3Classes) - Parameterization of the representative Symbols * CBLe3cTopVPad (default: 1+1*1/4) * CBLe3cMidVPad (default: .5) * CBLe3cBotVPad (default: 0-1*1/4) * "1" is the height of the Colorbar * the VPads (the vertical Sy-Positions) are defined in cax.transAxes Coordinates * cax is the Colorbar Axes * CBLe3cSySize=10**2 (Sy-Area in pts^2) * CBLe3cSyType='o' ROHR * pROHRFilterFunction: Filterfunction to be applied to PIPEs to determine the PIPEs to be plotted * default: lambda df: (df.KVR.astype(int).isin([2])) & (df.CONT_ID.astype(int).isin([1001])) & (df.DI.astype(float)>0) * KVRisIn: [2] * 1: supply-line * 2: return-line * CONT_IDisIn: [1001] * um zu vermeiden, dass Rohre aus Bloecken gezeichnet werden (deren Koordinaten nicht zu den Koordinaten von Rohren aus dem Ansichtsblock passen) * DI>0: * um zu vermeiden, dass versucht wird, Rohre mit dem Innendurchmesser 0 zu zeichnen (pROHRAttribute default is 'DI') ROHR (PIPE-Line: Size and Color, z-Order) - from vROHR * pROHRAttribute: columnName (default: 'DI') * the column must be able to be converted to a float * the conversion is done before FilterFunction * see ApplyFunction and NaNValue for conversion details: * pROHRAttributeApplyFunction: Function to be applied to column pROHRAttribute * default: lambda x: pd.to_numeric(x,errors='coerce') * pROHRAttributeApplyFunctionNaNValue: Value for NaN-Values produced by pROHRAttributeApplyFunction if any * default: 0 * .fillna(pROHRAttributeApplyFunktionNaNValue).astype(float) is called after ApplyFunction * pROHRAttributeAsc: z-Order (default: False d.h. "kleine auf grosse") * pROHRAttributeLs (default: '-') * pROHRAttributeRefSize: plot linewidth in pts for RefSizeValue (default: 1.0) * pROHRAttributeSizeMin (default: None): if set: use pROHRAttributeSizeMin-Value as Attribute for LineSize if Attribute < pROHRAttributeSizeMin * corresponding RefSizeValue is Attribute.std() or Attribute.mean() if Attribute.std() is < 1 * pROHRAttributeColorMap (default: plt.cm.binary) * pROHRAttributeColorMapUsageStart (default: 1./3; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe haetten, bekommen die Farbe von UsageStart ROHR (plot only large (small, medium) pipes ...) * quantil_pROHRAttributeHigh <= (default: 1.) * quantil_pROHRAttributeLow >= (default: .75) * default: only the largest 25% are plotted * note that Attribute >0 is a precondition ROHR (PIPE-Marker: Size and Color) - from mx * pROHRMeasure columnName (default: 'ROHR~*~*~*~QMAV') * pROHRMeasureApplyFunction: Function to be applied to column pROHRMeasure (default: lambda x: math.fabs(x)) * pROHRMeasureMarker (default: '.') * pROHRMeasureRefSize: plot markersize for RefSizeValue in pts (default: 1.0) * pROHRMeasureSizeMin (default: None): if set: use pROHRMeasureSizeMin-Value as Measure for MarkerSize if Measure < pROHRMeasureSizeMin * corresponding RefSizeValue is Measure.std() or Measure.mean() if Measure.std() is < 1 * if pROHRMeasureRefSize is None: plot markersize will be plot linewidth * pROHRMeasureColorMap (default: plt.cm.cool) * pROHRMeasureColorMapUsageStart (default: 0.; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart NRCVs - NumeRiCal Values to be displayed * pFIGNrcv: List of Sir3sID RegExps to be displayed (i.e. ['KNOT~PKON-Knoten~\S*~\S+~QM']) default: None the 1st Match is used if a RegExp matches more than 1 Channel further Examples for RegExps (and corresponding Texts): * WBLZ~WärmeblnzGes~\S*~\S+~WES (Generation) * WBLZ~WärmeblnzGes~\S*~\S+~WVB (Load) * WBLZ~WärmeblnzGes~\S*~\S+~WVERL (Loss) WBLZ~[\S ]+~\S*~\S+~\S+: Example for a RegExp matching all Channels with OBJTYPE WBLZ * pFIGNrcvTxt: corresponding (same length required!) List of Texts (i.e. ['Kontrolle DH']) default: None * pFIGNrcvFmt (i.e. '{:12s}: {:8.2f} {:6s}') * Text (from pFIGNrcvTxt) * Value * UNIT (determined from Channel-Data) * pFIGNrcvPercFmt (i.e. ' {:6.1f}%') * ValueInRefPercent * if refValue==0: 100% * pFIGNrcvXStart (.5 default) * pFIGNrcvYStart (.5 default) Category - User Heat Balances to be displayed * pFWVBGCategory: List of Heat Balances to be displayed (i.e. ['BLNZ1u5u7']) default: None * pFWVBGCategoryUnit: Unit of all these Balances (default: '[kW]']) * pFWVBGCategoryXStart (.1 default) * pFWVBGCategoryYStart (.9 default) * pFWVBGCategoryCatFmt (i.e. '{:12s}: {:6.1f} {:4s}') * Category NAME * Category Load * pFWVBGCategoryUnit * pFWVBGCategoryPercFmt (i.e. ' {:6.1f}%') * Last Ist/Soll * pFWVBGCategory3cFmt (i.e. ' {:5d}/{:5d}/{:5d}') * NOfTops * NOfMids * NOfBots VICs - VeryImportantCustomers whose Values to be displayed * pVICsDf: DataFrame with VeryImportantCustomers (Text & Specification) columns expected: * Kundenname (i.e. 'VIC1') - Text * Knotenname (i.e. 'V-K007') - Specification by Supply-Node i.e.: pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']}) * pVICsPercFmt (i.e. '{:12s}: {:6.1f}%') * Kundenname * Load in Percent to Reference * pVICsFmt (i.e. '{:12s}: {:6.1f} {:6s}') * Kundenname * Load * pFWVBGCategoryUnit * pVICsXStart (.5 default) * pVICsYStart (.1 default) Figure: * pltTitle: title [not suptitle] (default: 'pltNetFigAx') * figFrameon: figure frame (background): displayed or invisible (default: True) * figEdgecolor: edge color of the Figure rectangle (default: 'black') * figFacecolor: face color of the Figure rectangle (default: 'white') Returns: pFWVB * columns changed (compared to vFWVB): * pFWVBAttribute (wg. z.B. pFWVBAttributeApplyFunction und .astype(float)) * columns added (compared to vFWVB): * Measure (in % zu Ref wenn pFWVBMeasureInRefPer=True) * MeasureRef (Wert von Measure im Referenzzustand) * MeasureOrig (Wert von Measure) * MCategory: str (Kategorisierung von Measure mit FixedLimitHigh/Low-Werten): * TopText or * MidText or * BotText * GCategory: list (non-empty only if req. GCategories are a subset of the available Categories and object belongs to a req. Category) * VIC (filled with Kundenname from pVICsDf) * rows (compared to vFWVB): * pFWVB enthaelt dieselben Objekte wie vFWVB * aber: die geplotteten Objekte sind ggf. nur eine Teilmenge (wg. z.B. pFWVBFilterFunction) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keysDefined=['CBAnchorHorizontal', 'CBAnchorVertical', 'CBAspect', 'CBFraction', 'CBHpad', 'CBLabelPad' ,'CBLe3cBotVPad', 'CBLe3cMidVPad', 'CBLe3cSySize', 'CBLe3cSyType', 'CBLe3cTopVPad' ,'CBShrink', 'CBTicklabelsHPad' ,'figEdgecolor', 'figFacecolor', 'figFrameon' ,'pFIGNrcv','pFIGNrcvFmt', 'pFIGNrcvPercFmt','pFIGNrcvTxt', 'pFIGNrcvXStart', 'pFIGNrcvYStart' ,'pFWVBFilterFunction' ,'pFWVBAttribute' ,'pFWVBAttributeApplyFunction','pFWVBAttributeApplyFunctionNaNValue' ,'pFWVBAttributeAsc' ,'pFWVBAttributeRefSize' ,'pFWVBGCategory', 'pFWVBGCategoryUnit','pFWVBGCategory3cFmt','pFWVBGCategoryCatFmt', 'pFWVBGCategoryPercFmt', 'pFWVBGCategoryXStart', 'pFWVBGCategoryYStart' ,'pFWVBMeasure', 'pFWVBMeasure3Classes', 'pFWVBMeasureAlpha', 'pFWVBMeasureCBFixedLimitHigh', 'pFWVBMeasureCBFixedLimitLow', 'pFWVBMeasureCBFixedLimits', 'pFWVBMeasureClip', 'pFWVBMeasureColorMap', 'pFWVBMeasureInRefPerc' ,'pMCatBotAlpha', 'pMCatBotClip', 'pMCatBotColor', 'pMCatBotText', 'pMCatMidAlpha', 'pMCatMidClip', 'pMCatMidColorMap', 'pMCatMidText', 'pMCatTopAlpha', 'pMCatTopClip', 'pMCatTopColor', 'pMCatTopText' ,'pROHRFilterFunction' ,'pROHRAttribute' ,'pROHRAttributeApplyFunction','pROHRAttributeApplyFunctionNaNValue' ,'pROHRAttributeAsc', 'pROHRAttributeColorMap', 'pROHRAttributeColorMapUsageStart', 'pROHRAttributeLs', 'pROHRAttributeRefSize','pROHRAttributeSizeMin' ,'pROHRMeasure','pROHRMeasureApplyFunction' ,'pROHRMeasureColorMap', 'pROHRMeasureColorMapUsageStart', 'pROHRMeasureMarker', 'pROHRMeasureRefSize','pROHRMeasureSizeMin' ,'pVICsDf','pVICsPercFmt','pVICsFmt','pVICsXStart', 'pVICsYStart' ,'pltTitle' ,'quantil_pFWVBAttributeHigh', 'quantil_pFWVBAttributeLow' ,'quantil_pROHRAttributeHigh', 'quantil_pROHRAttributeLow' ,'timeDeltaToRef', 'timeDeltaToT'] keys=sorted(kwds.keys()) for key in keys: if key in keysDefined: value=kwds[key] logger.debug("{0:s}kwd {1:s}: {2:s}".format(logStr,key,str(value))) else: logger.warning("{0:s}kwd {1:s} NOT defined!".format(logStr,key)) del kwds[key] # TIMEs if 'timeDeltaToRef' not in keys: kwds['timeDeltaToRef']=pd.to_timedelta('0 seconds') if 'timeDeltaToT' not in keys: kwds['timeDeltaToT']=pd.to_timedelta('0 seconds') # FWVB if 'pFWVBFilterFunction' not in keys: kwds['pFWVBFilterFunction']=lambda df: (df.CONT_ID.astype(int).isin([1001])) & (df.W0LFK.astype(float)>0) # FWVB Attribute (Size) if 'pFWVBAttribute' not in keys: kwds['pFWVBAttribute']='W0LFK' if 'pFWVBAttributeApplyFunction' not in keys: kwds['pFWVBAttributeApplyFunction']=lambda x: pd.to_numeric(x,errors='coerce') # .apply(kwds['pFWVBAttributeApplyFunktion']) if 'pFWVBAttributeApplyFunctionNaNValue' not in keys: kwds['pFWVBAttributeApplyFunctionNaNValue']=0 # .fillna(kwds['pFWVBAttributeApplyFunktionNaNValue']).astype(float) if 'pFWVBAttributeAsc' not in keys: kwds['pFWVBAttributeAsc']=False if 'pFWVBAttributeRefSize' not in keys: kwds['pFWVBAttributeRefSize']=10**2 if 'quantil_pFWVBAttributeHigh' not in keys: kwds['quantil_pFWVBAttributeHigh']=1. if 'quantil_pFWVBAttributeLow' not in keys: kwds['quantil_pFWVBAttributeLow']=.0 # FWVB Measure (Color) if 'pFWVBMeasure' not in keys: kwds['pFWVBMeasure']='FWVB~*~*~*~W' if 'pFWVBMeasureInRefPerc' not in keys: kwds['pFWVBMeasureInRefPerc']=True if 'pFWVBMeasureAlpha' not in keys: kwds['pFWVBMeasureAlpha']=0.9 if 'pFWVBMeasureColorMap' not in keys: kwds['pFWVBMeasureColorMap']=plt.cm.autumn if 'pFWVBMeasureClip' not in keys: kwds['pFWVBMeasureClip']=False # 3Classes if 'pFWVBMeasure3Classes' not in keys: kwds['pFWVBMeasure3Classes']=False # CatTexts (werden verwendet wenn 3Classes Wahr gesetzt ist) if 'pMCatTopText' not in keys: kwds['pMCatTopText']='Top' if 'pMCatMidText' not in keys: kwds['pMCatMidText']='Middle' if 'pMCatBotText' not in keys: kwds['pMCatBotText']='Bottom' # CatAttribs (werden verwendet wenn 3Classes Wahr gesetzt ist) if 'pMCatTopAlpha' not in keys: kwds['pMCatTopAlpha']=0.9 if 'pMCatTopColor' not in keys: kwds['pMCatTopColor']='palegreen' if 'pMCatTopClip' not in keys: kwds['pMCatTopClip']=False if 'pMCatMidAlpha' not in keys: kwds['pMCatMidAlpha']=0.9 if 'pMCatMidColorMap' not in keys: kwds['pMCatMidColorMap']=plt.cm.autumn if 'pMCatMidClip' not in keys: kwds['pMCatMidClip']=False if 'pMCatBotAlpha' not in keys: kwds['pMCatBotAlpha']=0.9 if 'pMCatBotColor' not in keys: kwds['pMCatBotColor']='violet' if 'pMCatBotClip' not in keys: kwds['pMCatBotClip']=False # CBFixedLimits if 'pFWVBMeasureCBFixedLimits' not in keys: kwds['pFWVBMeasureCBFixedLimits']=False if 'pFWVBMeasureCBFixedLimitLow' not in keys: kwds['pFWVBMeasureCBFixedLimitLow']=.10 if 'pFWVBMeasureCBFixedLimitHigh' not in keys: kwds['pFWVBMeasureCBFixedLimitHigh']=.95 # CB if 'CBFraction' not in keys: kwds['CBFraction']=0.05 if 'CBHpad' not in keys: kwds['CBHpad']=0.0275 if 'CBLabelPad' not in keys: kwds['CBLabelPad']=-50 if 'CBTicklabelsHPad' not in keys: kwds['CBTicklabelsHPad']=0 if 'CBAspect' not in keys: kwds['CBAspect']=10. if 'CBShrink' not in keys: kwds['CBShrink']=0.3 if 'CBAnchorHorizontal' not in keys: kwds['CBAnchorHorizontal']=0. if 'CBAnchorVertical' not in keys: kwds['CBAnchorVertical']=0.2 # CBLegend (3Classes) if 'CBLe3cTopVPad' not in keys: kwds['CBLe3cTopVPad']=1+1*1/4 if 'CBLe3cMidVPad' not in keys: kwds['CBLe3cMidVPad']=.5 if 'CBLe3cBotVPad' not in keys: kwds['CBLe3cBotVPad']=0-1*1/4 if 'CBLe3cSySize' not in keys: kwds['CBLe3cSySize']=10**2 if 'CBLe3cSyType' not in keys: kwds['CBLe3cSyType']='o' # ROHR if 'pROHRFilterFunction' not in keys: kwds['pROHRFilterFunction']=lambda df: (df.KVR.astype(int).isin([2])) & (df.CONT_ID.astype(int).isin([1001])) & (df.DI.astype(float)>0) # pROHR (PIPE-Line: Size and Color) if 'pROHRAttribute' not in keys: kwds['pROHRAttribute']='DI' if 'pROHRAttributeApplyFunction' not in keys: kwds['pROHRAttributeApplyFunction']=lambda x: pd.to_numeric(x,errors='coerce') # .apply(kwds['pROHRAttributeApplyFunktion']) if 'pROHRAttributeApplyFunctionNaNValue' not in keys: kwds['pROHRAttributeApplyFunctionNaNValue']=0 # .fillna(kwds['pROHRAttributeApplyFunktionNaNValue']).astype(float) if 'pROHRAttributeAsc' not in keys: kwds['pROHRAttributeAsc']=False if 'pROHRAttributeLs' not in keys: kwds['pROHRAttributeLs']='-' if 'pROHRAttributeRefSize' not in keys: kwds['pROHRAttributeRefSize']=1. if 'pROHRAttributeSizeMin' not in keys: kwds['pROHRAttributeSizeMin']=None if 'pROHRAttributeColorMap' not in keys: kwds['pROHRAttributeColorMap']=plt.cm.binary if 'pROHRAttributeColorMapUsageStart' not in keys: kwds['pROHRAttributeColorMapUsageStart']=1./3. if 'quantil_pROHRAttributeHigh' not in keys: kwds['quantil_pROHRAttributeHigh']=1. if 'quantil_pROHRAttributeLow' not in keys: kwds['quantil_pROHRAttributeLow']=.75 # pROHR (PIPE-Marker: Size and Color) if 'pROHRMeasure' not in keys: kwds['pROHRMeasure']='ROHR~*~*~*~QMAV' if 'pROHRMeasureApplyFunction' not in keys: kwds['pROHRMeasureApplyFunction']=lambda x: math.fabs(x) if 'pROHRMeasureMarker' not in keys: kwds['pROHRMeasureMarker']='.' if 'pROHRMeasureRefSize' not in keys: kwds['pROHRMeasureRefSize']=1.0 if 'pROHRMeasureSizeMin' not in keys: kwds['pROHRMeasureSizeMin']=None if 'pROHRMeasureColorMap' not in keys: kwds['pROHRMeasureColorMap']=plt.cm.cool if 'pROHRMeasureColorMapUsageStart' not in keys: kwds['pROHRMeasureColorMapUsageStart']=0. # NRCVs to be displayed if 'pFIGNrcv' not in keys: kwds['pFIGNrcv']=None #['KNOT~PKON-Knoten~\S*~\S+~QM'] if 'pFIGNrcvTxt' not in keys: kwds['pFIGNrcvTxt']=None #['Kontrolle DH'] if 'pFIGNrcvFmt' not in keys: kwds['pFIGNrcvFmt']='{:12s}: {:8.2f} {:6s}' if 'pFIGNrcvPercFmt' not in keys: kwds['pFIGNrcvPercFmt']=' {:6.1f}%' if 'pFIGNrcvXStart' not in keys: kwds['pFIGNrcvXStart']=.5 if 'pFIGNrcvYStart' not in keys: kwds['pFIGNrcvYStart']=.5 # User Heat Balances to be displayed if 'pFWVBGCategory' not in keys: kwds['pFWVBGCategory']=None #['BLNZ1u5u7'] if 'pFWVBGCategoryUnit' not in keys: kwds['pFWVBGCategoryUnit']='[kW]' if 'pFWVBGCategoryCatFmt' not in keys: kwds['pFWVBGCategoryCatFmt']='{:12s}: {:6.1f} {:4s}' if 'pFWVBGCategoryPercFmt' not in keys: kwds['pFWVBGCategoryPercFmt']=' {:6.1f}%' if 'pFWVBGCategory3cFmt' not in keys: kwds['pFWVBGCategory3cFmt']=' {:5d}/{:5d}/{:5d}' if 'pFWVBGCategoryXStart' not in keys: kwds['pFWVBGCategoryXStart']=.1 if 'pFWVBGCategoryYStart' not in keys: kwds['pFWVBGCategoryYStart']=.9 # VICs if 'pVICsDf' not in keys: kwds['pVICsDf']=None #pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']}) if 'pVICsPercFmt' not in keys: kwds['pVICsPercFmt']='{:12s}: {:6.1f}%' if 'pVICsFmt' not in keys: kwds['pVICsFmt']='{:12s}: {:6.1f} {:6s}' if 'pVICsXStart' not in keys: kwds['pVICsXStart']=.5 if 'pVICsYStart' not in keys: kwds['pVICsYStart']=.1 # Figure if 'pltTitle' not in keys: kwds['pltTitle']='pltNetDHUS' if 'figFrameon' not in keys: kwds['figFrameon']=True if 'figEdgecolor' not in keys: kwds['figEdgecolor']='black' if 'figFacecolor' not in keys: kwds['figFacecolor']='white' # Plausis if kwds['pFWVBMeasure3Classes'] and not kwds['pFWVBMeasureCBFixedLimits']: kwds['pFWVBMeasureCBFixedLimits']=True logger.debug("{0:s}kwd {1:s} set to {2:s} because kwd {3:s}={4:s}".format(logStr,'pFWVBMeasureCBFixedLimits',str(kwds['pFWVBMeasureCBFixedLimits']),'pFWVBMeasure3Classes',str(kwds['pFWVBMeasure3Classes']))) keys = sorted(kwds.keys()) logger.debug("{0:s}keys: {1:s}".format(logStr,str(keys))) for key in keys: value=kwds[key] logger.debug("{0:s}kwd {1:s}: {2:s}".format(logStr,key,str(value))) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) try: # 2 Szenrariumzeiten ermitteln =============================================== firstTime=self.mx.df.index[0] if isinstance(kwds['timeDeltaToRef'],pd.Timedelta): timeRef=firstTime+kwds['timeDeltaToRef'] else: logStrFinal="{:s}{:s} not Type {:s}.".format(logStr,'timeDeltaToRef','pd.Timedelta') logger.error(logStrFinal) raise RmError(logStrFinal) if isinstance(kwds['timeDeltaToT'],pd.Timedelta): timeT=firstTime+kwds['timeDeltaToT'] else: logStrFinal="{:s}{:s} not Type {:s}.".format(logStr,'timeDeltaToT','pd.Timedelta') logger.error(logStrFinal) raise RmError(logStrFinal) # Vektorergebnisse zu den 2 Zeiten holen =============================================== timesReq=[] timesReq.append(timeRef) timesReq.append(timeT) plotTimeDfs=self.mx.getMxsVecsFileData(timesReq=timesReq) timeRefIdx=0 timeTIdx=1 # Sachdatenbasis =============================================== vROHR=self.xm.dataFrames['vROHR'] vKNOT=self.xm.dataFrames['vKNOT'] vFWVB=self.xm.dataFrames['vFWVB'] vNRCV_Mx1=self.xm.dataFrames['vNRCV_Mx1'] if isinstance(kwds['pVICsDf'],pd.core.frame.DataFrame): vFWVB=vFWVB.merge(kwds['pVICsDf'],left_on='NAME_i',right_on='Knotenname',how='left') vFWVB.rename(columns={'Kundenname':'VIC'},inplace=True) vFWVB.drop('Knotenname',axis=1,inplace=True) # Einheit der Measures ermitteln (fuer Annotationen) pFWVBMeasureCh=self.mx.mx1Df[self.mx.mx1Df['Sir3sID'].str.startswith(kwds['pFWVBMeasure'])] pFWVBMeasureUNIT=pFWVBMeasureCh.iloc[0].UNIT pFWVBMeasureATTRTYPE=pFWVBMeasureCh.iloc[0].ATTRTYPE pROHRMeasureCh=self.mx.mx1Df[self.mx.mx1Df['Sir3sID'].str.startswith(kwds['pROHRMeasure'])] pROHRMeasureUNIT=pROHRMeasureCh.iloc[0].UNIT pROHRMeasureATTRTYPE=pROHRMeasureCh.iloc[0].ATTRTYPE # Sachdaten annotieren mit Spalte Measure # FWVB pFWVBMeasureValueRaw=plotTimeDfs[timeTIdx][kwds['pFWVBMeasure']].iloc[0] pFWVBMeasureValueRefRaw=plotTimeDfs[timeRefIdx][kwds['pFWVBMeasure']].iloc[0] pFWVBMeasureValue=[None for m in pFWVBMeasureValueRaw] pFWVBMeasureValueRef=[None for m in pFWVBMeasureValueRefRaw] for idx in range(len(pFWVBMeasureValueRaw)): mx2Idx=vFWVB['mx2Idx'].iloc[idx] m=pFWVBMeasureValueRaw[mx2Idx] pFWVBMeasureValue[idx]=m m=pFWVBMeasureValueRefRaw[mx2Idx] pFWVBMeasureValueRef[idx]=m if kwds['pFWVBMeasureInRefPerc']: # auch in diesem Fall traegt die Spalte Measure das Ergebnis pFWVBMeasureValuePerc=[float(m)/float(mRef) if float(mRef) >0 else 1 for m,mRef in zip(pFWVBMeasureValue,pFWVBMeasureValueRef)] pFWVB=vFWVB.assign(Measure=pd.Series(pFWVBMeasureValuePerc)) #! else: pFWVB=vFWVB.assign(Measure=pd.Series(pFWVBMeasureValue)) #! pFWVB=pFWVB.assign(MeasureOrig=pd.Series(pFWVBMeasureValue)) pFWVB=pFWVB.assign(MeasureRef=pd.Series(pFWVBMeasureValueRef)) # Sachdaten annotieren mit Spalte MCategory pFWVBCat=[] for index, row in pFWVB.iterrows(): if row.Measure >= kwds['pFWVBMeasureCBFixedLimitHigh']: pFWVBCat.append(kwds['pMCatTopText']) elif row.Measure <= kwds['pFWVBMeasureCBFixedLimitLow']: pFWVBCat.append(kwds['pMCatBotText']) else: pFWVBCat.append(kwds['pMCatMidText']) pFWVB=pFWVB.assign(MCategory=pd.Series(pFWVBCat)) # Sachdaten annotieren mit Spalte GCategory (mit den verlangten Waermebilanzen zu denen ein FWVB gehoert) if isinstance(kwds['pFWVBGCategory'],list): sCatReq=set(kwds['pFWVBGCategory']) pFWVBCat=[] for index, row in pFWVB.iterrows(): gCat=row.WBLZ sCat=set(gCat) s=sCat.intersection(sCatReq) if len(s) == 0: pFWVBCat.append('') elif len(s) > 1: pFWVBCat.append("{!s:s}".format(s)) else: pFWVBCat.append(s.pop()) pFWVB=pFWVB.assign(GCategory=pd.Series(pFWVBCat)) else: pFWVB=pFWVB.assign(GCategory=pd.Series()) # ROHR pROHRMeasureValueRaw=plotTimeDfs[timeTIdx][kwds['pROHRMeasure']].iloc[0] pROHRMeasureValue=[None for m in pROHRMeasureValueRaw] for idx in range(len(pROHRMeasureValueRaw)): mx2Idx=vROHR['mx2Idx'].iloc[idx] m=pROHRMeasureValueRaw[mx2Idx] mApplied=kwds['pROHRMeasureApplyFunction'](m) pROHRMeasureValue[idx]=mApplied pROHR=vROHR.assign(Measure=pd.Series(pROHRMeasureValue)) #! # ======================================== # ROHR Attribute-Behandlung wg. float & Filter # ======================================== pROHR[kwds['pROHRAttribute']]=pROHR[kwds['pROHRAttribute']].apply(kwds['pROHRAttributeApplyFunction']) pROHR[kwds['pROHRAttribute']]=pROHR[kwds['pROHRAttribute']].fillna(kwds['pROHRAttributeApplyFunctionNaNValue']).astype(float) # ROHRe filtern row,col=pROHR.shape logger.debug("{:s}pROHR vor filtern: Zeilen: {:d}".format(logStr,row)) f=kwds['pROHRFilterFunction'] logger.debug("{:s}pltROHR Filterfunktion: {:s}".format(logStr,str(f))) pltROHR=pROHR[f] #! row,col=pltROHR.shape logger.debug("{:s}pltROHR nach filtern: Zeilen: {:d}".format(logStr,row)) # ======================================== # FWVB Attribute-Behandlung wg. float & Filter # ======================================== pFWVB[kwds['pFWVBAttribute']]=pFWVB[kwds['pFWVBAttribute']].apply(kwds['pFWVBAttributeApplyFunction']) pFWVB[kwds['pFWVBAttribute']]=pFWVB[kwds['pFWVBAttribute']].fillna(kwds['pFWVBAttributeApplyFunctionNaNValue']).astype(float) # FWVB filtern row,col=pFWVB.shape logger.debug("{:s}pFWVB vor filtern: Zeilen: {:d}".format(logStr,row)) f=kwds['pFWVBFilterFunction'] logger.debug("{:s}pltFWVB Filterfunktion: {:s}".format(logStr,str(f))) pltFWVB=pFWVB[f] #! row,col=pltFWVB.shape logger.debug("{:s}pltFWVB nach filtern: Zeilen: {:d}".format(logStr,row)) pltFWVB=pltFWVB[(pltFWVB[kwds['pFWVBAttribute']]<=pltFWVB[kwds['pFWVBAttribute']].quantile(kwds['quantil_pFWVBAttributeHigh'])) & (pltFWVB[kwds['pFWVBAttribute']]>=pltFWVB[kwds['pFWVBAttribute']].quantile(kwds['quantil_pFWVBAttributeLow'])) ] logger.debug("{:s}pltROHR: quantil_pROHRAttributeHigh: {:f} f(): {:f}".format(logStr ,kwds['quantil_pROHRAttributeHigh'] ,pltROHR[kwds['pROHRAttribute']].quantile(kwds['quantil_pROHRAttributeHigh']) )) logger.debug("{:s}pltROHR: quantil_pROHRAttributeLow: {:f} f(): {:f}".format(logStr ,kwds['quantil_pROHRAttributeLow'] ,pltROHR[kwds['pROHRAttribute']].quantile(kwds['quantil_pROHRAttributeLow']) )) pltROHR=pltROHR[(pltROHR[kwds['pROHRAttribute']]<=pltROHR[kwds['pROHRAttribute']].quantile(kwds['quantil_pROHRAttributeHigh'])) & (pltROHR[kwds['pROHRAttribute']]>=pltROHR[kwds['pROHRAttribute']].quantile(kwds['quantil_pROHRAttributeLow'])) ] row,col=pltROHR.shape logger.debug("{:s}pltROHR nach selektieren: {:d}".format(logStr,row)) # Grundsortierung z-Order pltFWVB=pltFWVB.sort_values(by=[kwds['pFWVBAttribute']],ascending=kwds['pFWVBAttributeAsc']) pltROHR=pltROHR.sort_values(by=[kwds['pROHRAttribute']],ascending=kwds['pROHRAttributeAsc']) # ############################################################ # ============================================================ # Plotten # ============================================================ # ############################################################ pltNetFigAx( pDf=pltROHR ,pXCor_i='pXCor_i' # colName ,pYCor_i='pYCor_i' # colName ,pXCor_k='pXCor_k' # colName ,pYCor_k='pYCor_k' # colName ,CBFraction=kwds['CBFraction'] ,CBHpad=kwds['CBHpad'] ,pltTitle=kwds['pltTitle'] ,figFrameon=kwds['figFrameon'] #,figLinewidth=1. ,figEdgecolor=kwds['figEdgecolor'] ,figFacecolor=kwds['figFacecolor'] ) fig = plt.gcf() ax=plt.gca() pFWVBrefSizeValue=pltFWVB[kwds['pFWVBAttribute']].std() if pFWVBrefSizeValue < 1: pFWVBrefSizeValue=pltFWVB[kwds['pFWVBAttribute']].mean() logger.debug("{:s}pFWVBrefSizeValue (Attributwert): {:6.2f}".format(logStr,pFWVBrefSizeValue)) pFWVBSizeFactor=kwds['pFWVBAttributeRefSize']/pFWVBrefSizeValue pcFWVB, CBLimitLow, CBLimitHigh = pltNetNodes( # ALLG pDf=pltFWVB ,pMeasure3Classes=kwds['pFWVBMeasure3Classes'] ,CBFixedLimits=kwds['pFWVBMeasureCBFixedLimits'] ,CBFixedLimitLow=kwds['pFWVBMeasureCBFixedLimitLow'] ,CBFixedLimitHigh=kwds['pFWVBMeasureCBFixedLimitHigh'] # FWVB ,pMeasure='Measure' ,pAttribute=kwds['pFWVBAttribute'] ,pSizeFactor=pFWVBSizeFactor ,pMeasureColorMap=kwds['pFWVBMeasureColorMap'] ,pMeasureAlpha=kwds['pFWVBMeasureAlpha'] ,pMeasureClip=kwds['pFWVBMeasureClip'] ,pMCategory='MCategory' ,pMCatTopTxt=kwds['pMCatTopText'] # 'Top' ,pMCatBotTxt=kwds['pMCatBotText'] # 'Bottom' ,pMCatMidTxt=kwds['pMCatMidText'] # 'Middle' ,pMCatTopColor=kwds['pMCatTopColor'] ,pMCatTopAlpha=kwds['pMCatTopAlpha'] ,pMCatTopClip=kwds['pMCatTopClip'] ,pMCatBotColor=kwds['pMCatBotColor'] ,pMCatBotAlpha=kwds['pMCatBotAlpha'] ,pMCatBotClip=kwds['pMCatBotClip'] ,pMCatMidColorMap=kwds['pMCatMidColorMap'] ,pMCatMidAlpha=kwds['pMCatMidAlpha'] ,pMCatMidClip=kwds['pMCatMidClip'] ) #fig.sca(ax) pROHRMeasureRefSizeValue=pltROHR['Measure'].std() if pROHRMeasureRefSizeValue < 1: pROHRMeasureRefSizeValue=pltROHR['Measure'].mean() logger.debug("{:s}pROHRMeasureRefSizeValue: {:6.2f}".format(logStr,pROHRMeasureRefSizeValue)) pROHRMeasureSizeFactor=kwds['pROHRMeasureRefSize']/pROHRMeasureRefSizeValue pROHRAttributeRefSizeValue=pltROHR[kwds['pROHRAttribute']].std() if pROHRAttributeRefSizeValue < 1: pROHRAttributeRefSizeValue=pltROHR[kwds['pROHRAttribute']].mean() logger.debug("{:s}pROHRAttributeRefSizeValue: {:6.2f}".format(logStr,pROHRAttributeRefSizeValue)) pROHRAttributeSizeFactor=kwds['pROHRAttributeRefSize']/pROHRAttributeRefSizeValue pltNetPipes( pltROHR ,pAttribute=kwds['pROHRAttribute'] # Line ,pMeasure='Measure' # Marker ,pClip=False ,pAttributeLs=kwds['pROHRAttributeLs'] ,pMeasureMarker=kwds['pROHRMeasureMarker'] ,pAttributeColorMap=kwds['pROHRAttributeColorMap'] ,pAttributeColorMapUsageStart=kwds['pROHRAttributeColorMapUsageStart'] ,pAttributeSizeFactor=pROHRAttributeSizeFactor ,pAttributeSizeMin=kwds['pROHRAttributeSizeMin'] ,pMeasureColorMap=kwds['pROHRMeasureColorMap'] ,pMeasureColorMapUsageStart=kwds['pROHRMeasureColorMapUsageStart'] ,pMeasureSizeFactor=pROHRMeasureSizeFactor ,pMeasureSizeMin=kwds['pROHRMeasureSizeMin'] ) # ============================================================ # Legend # ============================================================ cax=pltNetLegendColorbar( # ALLG pc=pcFWVB # PathCollection aus pltNetNodes ,pDf=pltFWVB ,pMeasureInPerc=kwds['pFWVBMeasureInRefPerc'] ,pMeasure3Classes=kwds['pFWVBMeasure3Classes'] # Ticks (TickLabels und TickValues) ,CBFixedLimits=kwds['pFWVBMeasureCBFixedLimits'] ,CBFixedLimitLow=kwds['pFWVBMeasureCBFixedLimitLow'] ,CBFixedLimitHigh=kwds['pFWVBMeasureCBFixedLimitHigh'] # ,pMeasure='Measure' # Label ,pMeasureUNIT=pFWVBMeasureUNIT ,pMeasureTYPE=pFWVBMeasureATTRTYPE # Geometrie ,CBFraction=kwds['CBFraction'] ,CBHpad=kwds['CBHpad'] ,CBLabelPad=kwds['CBLabelPad'] ,CBTicklabelsHPad=kwds['CBTicklabelsHPad'] ,CBAspect=kwds['CBAspect'] ,CBShrink=kwds['CBShrink'] ,CBAnchorHorizontal=kwds['CBAnchorHorizontal'] ,CBAnchorVertical=kwds['CBAnchorVertical'] ) if kwds['pFWVBMeasure3Classes']: bbTop, bbMid, bbBot = pltNetLegendColorbar3Classes( pDf=pltFWVB ,pMCategory='MCategory' ,pMCatTopTxt=kwds['pMCatTopText'] ,pMCatBotTxt=kwds['pMCatBotText'] ,pMCatMidTxt=kwds['pMCatMidText'] ,pMCatBotColor=kwds['pMCatBotColor'] ,pMCatTopColor=kwds['pMCatTopColor'] ,CBLe3cTopVPad=kwds['CBLe3cTopVPad'] ,CBLe3cMidVPad=kwds['CBLe3cMidVPad'] ,CBLe3cBotVPad=kwds['CBLe3cBotVPad'] ,CBLe3cSySize=kwds['CBLe3cSySize'] ,CBLe3cSyType=kwds['CBLe3cSyType'] ) TBAV=1.15*bbTop.y1 else: TBAV=1.15 xmFileName,ext = os.path.splitext(os.path.basename(self.xm.xmlFile)) (wDir,modelDir,modelName,mx1File)=self.xm.getWDirModelDirModelName() Projekt=self.xm.dataFrames['MODELL']['PROJEKT'].iloc[0] Planer=self.xm.dataFrames['MODELL']['PLANER'].iloc[0] Inst=self.xm.dataFrames['MODELL']['INST'].iloc[0] Model="M: {:s}".format(xmFileName) Result="E: {:s}".format(mx1File) Times="TRef: {!s:s} T: {!s:s}".format(kwds['timeDeltaToRef'],kwds['timeDeltaToT']).replace('days','Tage') pltNetLegendTitleblock( text=str(Projekt)+'\n'+str(Planer)+'\n'+str(Inst)+'\n'+str(Model)+'\n'+str(Result)+'\n'+str(Times) ,anchorVertical=TBAV ) # ============================================================ # NRCVs to be displayed in Net # ============================================================ text=None if isinstance(kwds['pFIGNrcv'],list) and isinstance(kwds['pFIGNrcvTxt'],list): if len(kwds['pFIGNrcv']) == len(kwds['pFIGNrcvTxt']): for idx,Sir3sIDRexp in enumerate(kwds['pFIGNrcv']): try: sCh=self.mx.mx1Df[self.mx.mx1Df['Sir3sID'].str.contains(Sir3sIDRexp)].iloc[0] except: logger.debug("{:s} Sir3sIDRexp {:s} nicht in .MX1".format(logStr,Sir3sIDRexp)) continue # NRCV wird ausgelassen s=self.mx.df[sCh.Sir3sID] v=s[timeT] v0=s[timeRef] if v0==0: vp=100. else: vp=v/v0*100 fmtStr=kwds['pFIGNrcvFmt'] if kwds['pFWVBMeasureInRefPerc']: fmtStr=fmtStr+kwds['pFIGNrcvPercFmt'] txt=fmtStr.format(kwds['pFIGNrcvTxt'][idx],v,sCh.UNIT,vp) else: txt=fmtStr.format(kwds['pFIGNrcvTxt'][idx],v,sCh.UNIT) if text==None: text=txt else: text=text+'\n'+txt fig.sca(ax) pltNetTextblock(text=text,x=kwds['pFIGNrcvXStart'],y=kwds['pFIGNrcvYStart']) # ============================================================ # User Heat Balances to be displayed in Net # ============================================================ vWBLZ=self.xm.dataFrames['vWBLZ'] vWBLZ_vKNOT=pd.merge(vWBLZ,vKNOT,left_on='OBJID',right_on='pk') vWBLZ_vKNOT_pFWVB=
pd.merge(vWBLZ_vKNOT,pFWVB,left_on='NAME_y',right_on='NAME_i')
pandas.merge
import os import lightgbm as lgb import neptune from neptunecontrib.monitoring.lightgbm import neptune_monitor from neptunecontrib.versioning.data import log_data_version from neptunecontrib.api.utils import get_filepaths from neptunecontrib.monitoring.reporting import send_binary_classification_report from neptunecontrib.monitoring.utils import pickle_and_send_artifact import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score from src.utils import read_config, check_env_vars from src.models.utils import sample_negative_class from src.features.const import V1_CAT_COLS_FEATURES check_env_vars() CONFIG = read_config(config_path=os.getenv('CONFIG_PATH')) neptune.init(project_qualified_name=CONFIG.project) FEATURES_DATA_PATH = CONFIG.data.features_data_path PREDICTION_DATA_PATH = CONFIG.data.prediction_data_path SAMPLE_SUBMISSION_PATH = CONFIG.data.sample_submission_path FEATURE_NAME = 'v1' MODEL_NAME = 'lgbm' NROWS = None LOG_MODEL = True SEED = 1234 VALIDATION_PARAMS = {'validation_schema': 'holdout', 'validation_fraction': 0.26} MODEL_PARAMS = {'num_leaves': 256, 'min_child_samples': 79, 'objective': 'binary', 'max_depth': 15, 'learning_rate': 0.02, "boosting_type": "gbdt", "subsample_freq": 3, "subsample": 0.9, "bagging_seed": 11, "metric": 'auc', "verbosity": -1, 'reg_alpha': 0.3, 'reg_lambda': 0.3, 'colsample_bytree': 0.9, 'seed': 1234 } TRAINING_PARAMS = {'nrows': NROWS, 'negative_sample_fraction': 1.0, 'negative_sample_seed': SEED, 'num_boosting_rounds': 200, # 5000, 'early_stopping_rounds': 20 # 200 } def fit_predict(train, valid, test, model_params, training_params, fine_tuning=False, log_model=False): X_train = train.drop(['isFraud', 'TransactionDT', 'TransactionID'], axis=1) y_train = train['isFraud'] X_valid = valid.drop(['isFraud', 'TransactionDT', 'TransactionID'], axis=1) y_valid = valid['isFraud'] trn_data = lgb.Dataset(X_train, y_train) val_data = lgb.Dataset(X_valid, y_valid) if fine_tuning: callbacks = None else: callbacks = [neptune_monitor()] clf = lgb.train(model_params, trn_data, training_params['num_boosting_rounds'], feature_name=X_train.columns.tolist(), categorical_feature=V1_CAT_COLS_FEATURES, valid_sets=[trn_data, val_data], early_stopping_rounds=training_params['early_stopping_rounds'], callbacks=callbacks) valid_preds = clf.predict(X_valid, num_iteration=clf.best_iteration) if log_model: pickle_and_send_artifact(clf, 'lightgbm.pkl') if fine_tuning: return valid_preds else: train_preds = clf.predict(X_train, num_iteration=clf.best_iteration) X_test = test.drop(['TransactionDT', 'TransactionID'], axis=1) test_preds = clf.predict(X_test, num_iteration=clf.best_iteration) return train_preds, valid_preds, test_preds def fmt_preds(y_pred): return np.concatenate((1.0 - y_pred.reshape(-1, 1), y_pred.reshape(-1, 1)), axis=1) def main(): print('loading data') train_features_path = os.path.join(FEATURES_DATA_PATH, 'train_features_' + FEATURE_NAME + '.csv') test_features_path = os.path.join(FEATURES_DATA_PATH, 'test_features_' + FEATURE_NAME + '.csv') print('... train') train = pd.read_csv(train_features_path, nrows=TRAINING_PARAMS['nrows']) print('... test') test = pd.read_csv(test_features_path, nrows=TRAINING_PARAMS['nrows']) idx_split = int((1 - VALIDATION_PARAMS['validation_fraction']) * len(train)) train, valid = train[:idx_split], train[idx_split:] train = sample_negative_class(train, fraction=TRAINING_PARAMS['negative_sample_fraction'], seed=TRAINING_PARAMS['negative_sample_seed']) hyperparams = {**MODEL_PARAMS, **TRAINING_PARAMS, **VALIDATION_PARAMS} print('starting experiment') with neptune.create_experiment(name='model training', params=hyperparams, upload_source_files=get_filepaths(), tags=[MODEL_NAME, 'features_{}'.format(FEATURE_NAME), 'training']): print('logging data version') log_data_version(train_features_path, prefix='train_features_') log_data_version(test_features_path, prefix='test_features_') print('training') train_preds, valid_preds, test_preds = fit_predict(train, valid, test, MODEL_PARAMS, TRAINING_PARAMS, log_model=LOG_MODEL) print('logging metrics') train_auc = roc_auc_score(train['isFraud'], train_preds) valid_auc = roc_auc_score(valid['isFraud'], valid_preds) neptune.send_metric('train_auc', train_auc) neptune.send_metric('valid_auc', valid_auc) send_binary_classification_report(valid['isFraud'], fmt_preds(valid_preds), channel_name='valid_classification_report') print('postprocessing predictions') valid_predictions_path = os.path.join(PREDICTION_DATA_PATH, 'valid_prediction_{}_{}.csv'.format(FEATURE_NAME, MODEL_NAME)) test_predictions_path = os.path.join(PREDICTION_DATA_PATH, 'test_prediction_{}_{}.csv'.format(FEATURE_NAME, MODEL_NAME)) submission_path = os.path.join(PREDICTION_DATA_PATH, 'submission_{}_{}.csv'.format(FEATURE_NAME, MODEL_NAME)) submission = pd.read_csv(SAMPLE_SUBMISSION_PATH) valid = pd.concat([valid, pd.DataFrame(valid[["TransactionDT", 'TransactionID']], columns=['prediction'])], axis=1) test = pd.concat([test[["TransactionDT", 'TransactionID']], pd.DataFrame(test_preds, columns=['prediction'])], axis=1) submission['isFraud'] =
pd.merge(submission, test, on='TransactionID')
pandas.merge
import pandas as pd from multiprocessing import Pool import logging from src.helper import create_logger # Create the logger object logger = create_logger('Parser', 'logs/Hedging.log', logging.DEBUG, logging.WARNING) class Parser(): """ Parser class that calls parent and divide the data and apply factor construction using multiprocessing """ def __init__(self, caller): """ Args: caller (obj): caller class object """ self.factor = [] self.call = caller def import_plugins(self, *args, **kwargs): # Check bottom code to read a file and all the classes present in it. return 0 # def find_all_factor(self): # # Find factors in factors folder and their requirement # # lis = os.listdir("src/hedging/factors/") # self.factors = self.import_plugins( # "src/hedging/factors/", create_instance=False, filter_abstract=False) # return self.factors # # a = self.import_submodules("src/hedging/factors/") def run_factor(self, class_name, baby, time_chunk): """Create Factors Args: class_name : class in focus baby (obj): Child Object time_chunk (list/tuple): Time Deciles Returns: [type]: [description] """ obj = class_name(baby, market_name="^GSPC") pool = Pool() try: results = pool.map(obj.calculate, list(time_chunk)) except: pool.close() return pd.DataFrame() pool.close() pool.join() df =
pd.DataFrame()
pandas.DataFrame
__author__ = "unknow" __copyright__ = "Sprace.org.br" __version__ = "1.0.0" import pandas as pd import sys from math import sqrt import sys import os import ntpath import scipy.stats import seaborn as sns from matplotlib import pyplot as plt #sys.path.append('/home/silvio/git/track-ml-1/utils') #sys.path.append('../') from core.utils.tracktop import * #def create_graphic(reconstructed_tracks, original_tracks, tracks_diffs): def create_graphic_org(**kwargs): if kwargs.get('original_tracks'): original_tracks = kwargs.get('original_tracks') if kwargs.get('path_original_track'): path_original_track = kwargs.get('path_original_track') if kwargs.get('tracks'): tracks = kwargs.get('tracks') dfOriginal = pd.read_csv(original_tracks) # dfOriginal2=dfOriginal.iloc(10:,:) track_plot_new(dfOriginal, track_color = 'blue', n_tracks = tracks, title = 'Original to be Reconstructed', path=path_original_track) #def create_graphic(reconstructed_tracks, original_tracks, tracks_diffs): def create_graphic(**kwargs): if kwargs.get('reconstructed_tracks'): reconstructed_tracks = kwargs.get('reconstructed_tracks') if kwargs.get('original_tracks'): original_tracks = kwargs.get('original_tracks') if kwargs.get('tracks_diffs'): tracks_diffs = kwargs.get('tracks_diffs') if kwargs.get('path_original_track'): path_original_track = kwargs.get('path_original_track') if kwargs.get('path_recons_track'): path_recons_track = kwargs.get('path_recons_track') ''' dftracks_diffs_aux = pd.read_csv(tracks_diffs) dftracks_diffs=dftracks_diffs_aux.iloc[:,28:29] dfOriginal = pd.read_csv(original_tracks) dfaux3=dfOriginal.drop(dfOriginal.columns[0], axis=1) dfaux32=dfaux3.drop(dfaux3.columns[0], axis=1) dfaux32.insert(174, "diff", dftracks_diffs, True) org = dfaux32.sort_values(by=['diff']) dfRecons = pd.read_csv(reconstructed_tracks) dfaux33=dfRecons.drop(dfRecons.columns[0], axis=1) dfaux22=dfaux33.drop(dfaux33.columns[0], axis=1) dfaux22.insert(65, "diff", dftracks_diffs, True) org2 = dfaux22.sort_values(by=['diff']) ''' dfRecons = pd.read_csv(reconstructed_tracks) dfOriginal = pd.read_csv(original_tracks) dftracks_diffs_aux = pd.read_csv(tracks_diffs) dftracks_diffs=dftracks_diffs_aux.iloc[:,28:29] dfRecons.insert(171, "diff", dftracks_diffs, True) dfOriginal.insert(171, "diff", dftracks_diffs, True) recaux=dfRecons.iloc[:,12:] orgaux=dfOriginal.iloc[:,11:] org = orgaux.sort_values(by=['diff']) rec = recaux.sort_values(by=['diff']) track_plot_new(org, track_color = 'blue', n_tracks = 19, title = 'Original to be Reconstructed', path=path_original_track) #track_plot(org, track_color = 'blue', n_tracks = 20, title = 'Original to be Reconstructed', path=path_recons_track) track_plot_new(rec, track_color = 'red', n_tracks = 19, title = 'reconstructed LSTM', path=path_recons_track) #track_plot(org2, track_color = 'red', n_tracks = 20, title = 'reconstructed LSTM', path=path_original_track) #def create_histogram(tracks_diffs): def create_histogram(**kwargs): if kwargs.get('tracks_diffs'): tracks_diffs = kwargs.get('tracks_diffs') if kwargs.get('path_hist'): path_hist = kwargs.get('path_hist') dftracks_diffs_aux = pd.read_csv(tracks_diffs) dftracks_diffs = dftracks_diffs_aux.iloc[:,28:29] dftracks_diffs_aux[29] = (dftracks_diffs_aux.iloc[:,28:29]/10) dfff=dftracks_diffs_aux.sort_values(by=[29]) track_plot_hist(dfff.iloc[:,-1:], title = "AVG distance - Real x LSTM", x_title = "Average of Distance (cm)", y_title = "frequency", n_bins = 20, bar_color = 'indianred', path = path_hist) #def create_histogram_seaborn(tracks_diffs,outputfig): def create_histogram_seaborn(**kwargs): if kwargs.get('tracks_diffs'): tracks_diffs = kwargs.get('tracks_diffs') if kwargs.get('outputfig'): outputfig = kwargs.get('outputfig') dftracks_diffs_aux = pd.read_csv(tracks_diffs) dftracks_diffs = dftracks_diffs_aux.iloc[:,28:29] dftracks_diffs_aux[29] = (dftracks_diffs_aux.iloc[:,28:29]/10) dfff=dftracks_diffs_aux.sort_values(by=[29]) #sns_plot = sns.distplot(dfEval.iloc[:,[27]]) sns_plot = sns.distplot(dfff.iloc[:,-1:]) sns_plot.set(xlabel='Average Distance in MM', ylabel='Frequency') plt.savefig(outputfig) #def create_diference_per_track(reconstructed_tracks, original_tracks, eval_file): def create_diference_per_track(**kwargs): if kwargs.get('reconstructed_tracks'): reconstructed_tracks = kwargs.get('reconstructed_tracks') if kwargs.get('original_tracks'): original_tracks = kwargs.get('original_tracks') if kwargs.get('eval_file'): eval_file = kwargs.get('eval_file') dfOriginal = pd.read_csv(original_tracks) dfReconstructed = pd.read_csv(reconstructed_tracks) lines = dfOriginal.shape[0] columns = dfOriginal.shape[1] dfEval = pd.DataFrame(index=range(lines),columns=range(29)) ind_dfEval=0 #for hit in range(1, 28): for hit in range(1, 16): print(hit) print(dfOriginal.shape) print(dfReconstructed.shape) #original track dataOR=dfOriginal.iloc[:, [ (hit*8)+2,(hit*8)+3,(hit*8)+4 ]] #reconstructed track dataRE=dfReconstructed.iloc[:, [ (hit*8)+2,(hit*8)+3,(hit*8)+4 ]] dftemp = pd.DataFrame(index=range(lines),columns=range(7)) dftemp[0]=dataOR.iloc[:,[0]] dftemp[1]=dataOR.iloc[:,[1]] dftemp[2]=dataOR.iloc[:,[2]] dftemp[3]=dataRE.iloc[:,[0]] dftemp[4]=dataRE.iloc[:,[1]] dftemp[5]=dataRE.iloc[:,[2]] dftemp[6]= (((dftemp[0]-dftemp[3])**2)+((dftemp[1]-dftemp[4])**2)+((dftemp[2]-dftemp[5])**2)).pow(1./2) #Dataframe with geometric distante from hit to hit dfEval[ind_dfEval] = dftemp[6] ind_dfEval=ind_dfEval+1 ind=27 col = dfEval.loc[: , 0:26] dfEval[27] = col.mean(axis=1) dfEval.to_csv(eval_file) def create_input_data(**kwargs): #this function select a specific number of track with specific amount of hists maximunAmountofHitsinDB=20 columnsperhit=8 firstColumnAfterParticle=9 if kwargs.get('event_prefix'): event_prefix = kwargs.get('event_prefix') if kwargs.get('output_prefix'): output_prefix = kwargs.get('output_prefix') if kwargs.get('aux_am_per_hit'): aux_am_per_hit = kwargs.get('aux_am_per_hit') if kwargs.get('min'): min = kwargs.get('min') if kwargs.get('max'): max = kwargs.get('max') if kwargs.get('maximunAmountofHitsinDB'): maximunAmountofHitsinDB = kwargs.get('maximunAmountofHitsinDB') if kwargs.get('columnsperhit'): columnsperhit = kwargs.get('columnsperhit') if kwargs.get('firstColumnAfterParticle'): firstColumnAfterParticle = kwargs.get('firstColumnAfterParticle') nrowsvar=1500000 #1000 #500000 skip=0 totdf = pd.read_csv(event_prefix,skiprows=0,nrows=1) totdf = totdf.iloc[0:0] for z in range(1): dfOriginal = pd.read_csv(event_prefix,skiprows=skip,nrows=nrowsvar) #print(dfOriginal.shape) #dfOriginal2=dfOriginal.iloc[:,7:] dfOriginal2=dfOriginal.iloc[:,firstColumnAfterParticle:] #print(dfOriginal2) #all zero columns in a single line dfOriginal['totalZeros'] = (dfOriginal2 == 0.0).sum(axis=1) dfOriginal['totalHits'] = maximunAmountofHitsinDB-(dfOriginal['totalZeros']/columnsperhit) dfOriginal["totalHits"] = dfOriginal["totalHits"].astype(int) #print("min: " , dfOriginal.iloc[:,:-1].min()) #print("max: " , dfOriginal.iloc[:,:-1].max()) print(int(min)) print(int(max)+1) #print(dfOriginal['totalZeros']) #print(dfOriginal['totalHits']) for i in range(int(min), (int(max)+1)): #print("i: " , i) auxDF = dfOriginal.loc[dfOriginal['totalHits'] == i] auxDF2 = auxDF.iloc[0:aux_am_per_hit,:] totdf = totdf.append(auxDF2, sort=False) print("auxDF2.shape: ", i, auxDF2.shape) dfOriginal = dfOriginal.iloc[0:0] auxDF2 = auxDF2.iloc[0:0] auxDF = auxDF.iloc[0:0] skip=skip+nrowsvar totdf.drop('totalHits', axis=1, inplace=True) totdf.drop('totalZeros', axis=1, inplace=True) totdf.to_csv(output_prefix, index = False) def put_each_hit_in_a_single_line_train(**kwargs): if kwargs.get('event_prefix'): event_prefix = kwargs.get('event_prefix') if kwargs.get('output_prefix'): output_prefix = kwargs.get('output_prefix') print("event_prefix ", event_prefix, " output_prefix ", output_prefix) auxdf3 = pd.DataFrame() totfinaldfaux =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import argparse labels = [ "0", "B-answer", "I-answer", ] def find_answer_start(answer, sent): answer = [x.lower() for x in answer] sent = [x.lower() for x in sent] for idx, word in enumerate(sent): if answer[0] in word: is_match = True if len(answer) > 1: for i in range(1, len(answer)): c_len = idx+i if c_len < len(sent): c_ans = answer[i] c_word = sent[idx+i] if c_ans not in c_word: is_match = False if is_match: return idx return None def get_tokens_and_labels(sentences, answer, sent_with_ans_id): context_text = [] all_labels = [] # get the labels and tokens for current sentence for idx, sent in enumerate(sentences): context_text += sent # concatenate all sentences to a list of consecutive tokens labels = np.zeros(len(sent)) if idx == sent_with_ans_id: # the answer is contained in this sentence! idx_s = find_answer_start(answer, sent) if idx_s != None: labels[idx_s] = 1 for i in range(len(answer)-1): labels[idx_s + i + 1] = 2 else: print('ERROR: could not find start of answer..') print('ans: ', answer) print('sentence: ', sent) all_labels.append(labels) l = np.concatenate(all_labels).ravel() return context_text, l def label_data(df): data_map = {} num_removed = 0 num_exact_match = 0 for index, row in df.iterrows(): sentences = row['context_raw'] sent_with_ans_id = row['answer_location'] answer = row['correct_answer_raw'] context_id = row['context_id'] context_text, labels = get_tokens_and_labels(sentences, answer, sent_with_ans_id) # check if the current text is in the data map, and update the labels accordingly! if row['context'] in data_map: old_point = data_map[row['context']] o_labels = old_point['labels'].copy() add_answer_label = True for idx, label in enumerate(labels): if label > 0: if o_labels[idx] == 0: o_labels[idx] = label elif label != o_labels[idx]: # labels overlap, but are not an exact match # -> don't add the current answer. if add_answer_label: # only count the first for each answer num_removed += 1 add_answer_label = False # this means the answers are overlapping, but not equal! -> don't want this print('answer: ', answer) print('existing point: ', old_point) else: # labels match # -> don't add the current answer. if add_answer_label: num_exact_match += 1 add_answer_label = False if add_answer_label: old_point['labels'] = o_labels old_point['answers'].append(answer) data_map[row['context']] = old_point else: data_point = { 'context_id': context_id, 'id': index, 'labels': labels, 'tokens': context_text, 'answers': [answer] } data_map[row['context']] = data_point print('number of overlapping answers (removed): ', num_removed) print('number of exact matched: ', num_exact_match) for v in data_map.values(): v['labels'] = [ int(x) for x in v['labels']] labeled_data = list(data_map.values()) print('num labeled data points: ', len(labeled_data)) return labeled_data def main(args): df =
pd.read_pickle(args.data_path)
pandas.read_pickle
import sys import numpy as np import pandas as pd import wgdi.base as base class karyotype_mapping(): def __init__(self, options): self.position = 'order' self.limit_length = 5 for k, v in options: setattr(self, str(k), v) print(str(k), ' = ', v) def karyotype_left(self, pairs, ancestor, gff1, gff2): for index, row in ancestor.iterrows(): index1 = gff1[(gff1['chr'] == row[0]) & ( gff1['order'] >= row[1]) & (gff1['order'] <= row[2])].index gff1.loc[index1, 'color'] = row[3] gff1.loc[index1, 'classification'] = row[4] data = pd.merge(pairs, gff1, left_on=0, right_on=gff1.index, how='left') data.drop_duplicates(subset=[1], inplace=True) data.index = data[1].values gff2.loc[data.index, 'color'] = data['color'] gff2.loc[data.index, 'classification'] = data['classification'] return gff2 def karyotype_top(self, pairs, ancestor, gff1, gff2): for index, row in ancestor.iterrows(): index1 = gff2[(gff2['chr'] == row[0]) & ( gff2['order'] >= row[1]) & (gff2['order'] <= row[2])].index gff2.loc[index1, 'color'] = row[3] gff2.loc[index1, 'classification'] = row[4] data = pd.merge(pairs, gff2, left_on=1, right_on=gff2.index, how='left') data.drop_duplicates(subset=[0], inplace=True) data.index = data[0].values gff1.loc[data.index, 'color'] = data['color'] gff1.loc[data.index, 'classification'] = data['classification'] return gff1 def karyotype_map(self, gff, lens): gff = gff[gff['chr'].isin(lens.index)] gff = gff[gff['color'].notnull()] ancestor = [] for chr, group in gff.groupby(['chr']): color, classid, arr = '', 1, [] for index, row in group.iterrows(): if color == row['color'] and classid == row['classification']: arr.append(row['order']) else: if len(arr) >= int(self.limit_length): ancestor.append( [chr, min(arr), max(arr), color, classid, len(arr)]) arr = [] color = row['color'] classid = row['classification'] if len(ancestor) >= 1 and color == ancestor[-1][3] and classid == ancestor[-1][4] and chr == ancestor[-1][0]: arr.append(ancestor[-1][1]) arr += np.random.randint( ancestor[-1][1], ancestor[-1][2], size=ancestor[-1][5]-1).tolist() ancestor.pop() arr.append(row['order']) if len(arr) >= int(self.limit_length): ancestor.append( [chr, min(arr), max(arr), color, classid, len(arr)]) ancestor = pd.DataFrame(ancestor) for chr, group in ancestor.groupby([0]): ancestor.loc[group.index[0], 1] = 1 ancestor.loc[group.index[-1], 2] = lens[chr] ancestor[4] = ancestor[4].astype(int) return ancestor[[0,1,2,3,4]] def colinear_gene_pairs(self, bkinfo, gff1, gff2): data = [] bkinfo = bkinfo.sort_values(by=['length'], ascending=[True]) for index, row in bkinfo.iterrows(): b1 = list(map(int, row['block1'].split('_'))) b2 = list(map(int, row['block2'].split('_'))) newgff1 = gff1[(gff1['chr'] == row['chr1']) & (gff1['order'].isin(b1))] newgff2 = gff2[(gff2['chr'] == row['chr2']) & (gff2['order'].isin(b2))] for i in range(len(b1)): a, b = newgff1.loc[newgff1['order'] == b1[i] ].index[0], newgff2.loc[newgff2['order'] == b2[i]].index[0] data.append([a, b]) data = pd.DataFrame(data) return data def run(self): bkinfo =
pd.read_csv(self.blockinfo, index_col='id')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys, os, platform, copy import logging, re import pandas as pd import numpy as np import itertools import time, random from tqdm import tqdm tqdm.pandas() from conf import getworkdir, conf from models import run_model, CoxNMF_initialization from utils import feature_analysis_no_fig from dataset import getdata from plotting import plot_simulation_atlas, plot_TCGA_atlas import matplotlib.pyplot as plt from scipy.stats import spearmanr from main import prepare_results from models import run_model_and_save_logs def average_by_seeds(r): if np.sum(r['Success'].astype(bool)) < len(r): # One of the seeds doesn't generate results (failed to converge). Abandon all seeds. return None rmean = r.mean(skipna=True) rstd = r.std(skipna=True) r2 = r.iloc[0,:] r2['random_seed'] = 'averaged' for c in ['Fnorm', 'relative_error','CIndex','Runtime','silhouette_score', 'Accuracy','precision','recall','F1_score','IoU','Dice coefficient']: r2.loc[c] = (rmean.loc[c], rstd.loc[c]) return r2 def find_k_hat(x): imax = np.argmax([m for (m, v) in x['silhouette_score']]) x2 = x.iloc[imax,:] return x2 def model_selection(x, metric='CIndex'): #This is all possible combination of hyperparameters for one model if metric == 'CIndex' or metric == 'silhouette_score': idx = np.argmax([m for (m, v) in x[metric]]) x2 = x.iloc[idx,:] return x2 def get_final_perfomance(args, metric='CIndex'): # st = time.time() if args.dataset == 'simulation': folder = os.path.join(args.result_folder, 'Simulation=%s' % args.simulation_type, 'deathrate=%.2f_Wdistribution=%s_citol=%.2f_maxiter=%d' % (args.death_rate, args.W_distribution, args.ci_tol, args.max_iter), 'K=%d_P=%d_N=%d' % (args.K, args.P, args.N), 'Noise_X=%.2f_W=%.2f_H=%.2f' % (args.X_noise, args.W_noise, args.H_noise) ) elif args.dataset == 'TCGA': folder = os.path.join(args.result_folder, 'Cancer=%s' % args.cancer, 'meanq=%.2f_varq=%.2f_P=%d_N=%d_citol=%.2f_maxiter=%d' % \ (args.mean_quantile, args.var_quantile, args.P, args.N, args.ci_tol, args.max_iter) ) if not os.path.exists(folder): print('Folder not exists!') df = None if args.dataset == 'simulation': for seed in args.seed_list: df_dir = os.path.join(folder, 'result_df_seed=%d.csv' % seed) if not os.path.exists(df_dir): print(folder) raise Exception('All: Seed = %d path not exists!' % seed) continue if df is None: df = pd.read_csv(df_dir, index_col = 0) else: df = df.append(pd.read_csv(df_dir, index_col = 0),ignore_index=True) elif args.dataset == 'TCGA': for K_hat in args.K_hat_list: for seed in args.seed_list: df_dir = os.path.join(folder, 'result_df_Khat=%d_seed=%d.csv' % (K_hat, seed)) if not os.path.exists(df_dir): print(folder) raise Exception('K_hat = %d Seed = %d path not exists!' % (K_hat, seed)) continue if df is None: df = pd.read_csv(df_dir, index_col = 0) else: df = df.append(pd.read_csv(df_dir, index_col = 0),ignore_index=True) df = df.fillna(-1) # ============================================================================= # Average by seeds # ============================================================================= # print('Averaging results by seeds ...') df_seed = df.groupby(['Model','K', 'K_hat','alpha','penalizer', 'W_H_initialization','W_normalization','H_normalization','beta_normalization', ]).apply(lambda r: average_by_seeds(r)).reset_index(drop=True) df_seed.dropna(axis=0, how='any', inplace=True) # ============================================================================= # This step help each model find their own best alpha & penalizer w.r.t. CIndex/relative_error # ============================================================================= df_best_mdl = df_seed.groupby(['Model','K', 'K_hat', # For every K_hat, we select the best model w.r.t. CIndex/relative_error ]).apply(lambda x: model_selection(x, metric)).reset_index(drop=True) # ============================================================================= # Upon their optimal parameter determined, find their optimal K_hat final solutions. # ============================================================================= # print('Finding optimal K_hat w.r.t. CIndex ...') df_khat = df_best_mdl.groupby(['Model', ]).apply(lambda x: find_k_hat(x)).reset_index(drop=True) # print('Total time elapsed: %.2f seconds.' % (time.time() - st)) return df, df_seed, df_best_mdl, df_khat def generate_main_table(args, table, metrics, models, X_noise, metric='CIndex'): coxnmf_params = pd.DataFrame(index = args.K_list, columns = ['Simulation type','X_noise','K','K_hat','alpha','penalizer','initialization']) for K in args.K_list: print('K = %.2f' % K) args.K = K args.X_noise = X_noise X, W, H, t, e, labels = getdata(args) args.P, args.N = X.shape _, _, _, df_khat = get_final_perfomance(args, metric=metric) for mo in models: row = df_khat.loc[df_khat['Model'] == mo] for me in metrics: try: value = row.loc[:,me].values[0] except: print('No metric %s found for %s' % (me, mo)) if isinstance(value, tuple): value = '%.4f±%.2f' % (value[0],value[1]) table.loc[(me, mo),('X_noise=%.2f' % X_noise, '%d' % K)] = value alpha = df_khat.loc[df_khat['Model'] == 'CoxNMF','alpha'].values[0] penalizer = df_khat.loc[df_khat['Model'] == 'CoxNMF','penalizer'].values[0] initialization = df_khat.loc[df_khat['Model'] == 'CoxNMF','W_H_initialization'].values[0] K_hat = df_khat.loc[df_khat['Model'] == 'CoxNMF','K_hat'].values[0] coxnmf_params.loc[K, :] = args.simulation_type, args.X_noise, K, K_hat, alpha, penalizer, initialization return table, coxnmf_params def generate_table_supplementary(args, table, metrics, models, metric='CIndex'): alphalist = [] for K in args.K_list: print('K = %.2f' % K) for X_noise in args.X_noise_list: print(' X_noise = %.2f' % X_noise) args.K = K args.X_noise = X_noise X, W, H, t, e, labels = getdata(args) args.P, args.N = X.shape _, _, _, df_khat = get_final_perfomance(args, metric=metric) alphalist += list(df_khat.iloc[:4,6].values) for mo in models: if mo == '': table.loc[(K,mo),:] = '' continue if 'CoxNMF' in mo: row = df_khat.loc[df_khat['Model'] == mo] else: row = df_khat.loc[df_khat['Model'] == mo] for me in metrics: if me == '': table.loc[:,('X_noise=%.2f' % X_noise, me)] = '' continue value = row.loc[:,me].values[0] if isinstance(value, tuple): value = '%.4f±%.2f' % (value[0],value[1]) table.loc[(K,mo),('X_noise=%.2f' % X_noise, me)] = value return table def generate_table_massive_performances(args, metric='CIndex'): table = None for K in args.K_list: print('K = %.2f' % K) for X_noise in args.X_noise_list: print(' X_noise = %.2f' % X_noise) args.K = K args.X_noise = X_noise X, W, H, t, e, labels = getdata(args) args.P, args.N = X.shape _, df_seed, _, _ = get_final_perfomance(args, metric=metric) if table is None: table = df_seed else: table = table.append(df_seed, ignore_index=True) for r in range(table.shape[0]): for c in range(table.shape[1]): value = table.iloc[r,c] if isinstance(value, tuple): value = '%.4f±%.2f' % (value[0],value[1]) table.iloc[r,c] = value return table def get_simulation_performance(args, table, metric='CIndex'): # ============================================================================= # Table 2-3: Univariate Multivariate of accuracy and relative error # ============================================================================= models = ['TruncatedSVD','PCA','SparsePCA','NNDSVD','FactorAnalysis', 'NMF (CD)','NMF (MU)','SNMF','CoxNMF'] metrics = ['CIndex','relative_error','Accuracy','IoU','Dice coefficient'] coxnmf_params_all = pd.DataFrame() for X_noise in args.X_noise_list: print('X_noise = %.2f' % X_noise) col1 = ['X_noise=%.2f' % X_noise]*len(args.K_list) col2 = args.K_list columns = np.array([col1, col2]) indices = [(me,mo) for me in metrics for mo in models] for args.simulation_type in args.all_simulation_types: print(args.simulation_type) curr_table = pd.DataFrame(index = pd.MultiIndex.from_tuples(indices, names=['Metrics', 'Model']), columns =
pd.MultiIndex.from_arrays(columns)
pandas.MultiIndex.from_arrays
import datetime import integrationutils as ius import numpy as np import os import pathlib import pandas as pd import sqlite3 import sys import warnings ''' Direct questions and concerns regarding this script to <NAME> <EMAIL> ''' def find_abund_col(df): clist = [] for c in df.columns: if 'bundances (per File)' in c: clist.append(c) if len(clist) == 1: colname = clist[0] print('Found abundance column', colname) elif len(clist) == 0: colname = None print('Could not find abundance column in the Feature table') elif len(clist) > 1: colname = None print('Found more than one potential abundance column in the Feature table') return colname def fname_to_instrument(infname): '''Decides on the instrument name based on the file name''' infname = infname.lower() instrument_name = None if ('lumos_' in infname) and ('faims' in infname): instrument_name = 'Lumos_FAIMS' elif ('lumos_' in infname) and ('faims' not in infname): instrument_name = 'Lumos' elif ('fusion_' in infname) and ('faims' in infname): instrument_name = 'Fusion_FAIMS' elif ('fusion_' in infname) and ('faims' not in infname): instrument_name = 'Fusion' elif ('qehf_' in infname): instrument_name = 'QEHF' elif ('qe_' in infname): instrument_name = 'QE' elif ('elite_' in infname): instrument_name = 'Elite' return instrument_name def get_console_arg(): try: assert (len(sys.argv) == 2), "Script requires only one parameter" print('Input file',sys.argv[1]) injs = sys.argv[1] print('Current work dir', os.getcwd()) return injs except: print('Could not pass json file to the script') return None def parse_cons_features(in_dfs): """ If the Consensus Features table is present, returns the tuple with peak properties (for features with charge 2 or higher): (mean peak width in s, st dev of peak width in s, numpy array of peak widths in s, numpy array of feature intensity) If the Consensus Features table is absent, returns (None, None, numpy array of zeroes, None) """ if 'Consensus Features' in in_dfs.keys(): try: df = in_dfs['Consensus Features'] #df1 = df[df['Charge'] > 1] diff_array = np.subtract(np.array(df1['Right RT [min]']),np.array(df1['Left RT [min]'])) diff_array = 60*diff_array try: for c in df1.columns: if 'Abundances (per File)' in c: abundcol = c int_array = np.array(df1[abundcol]) except: warnings.warn('Could not find Consensus Feature intinsities', UserWarning) int_array = None if int_array is None: sum_abund = None else: sum_abund = np.sum(int_array) print('Sum of all intensities is',sum_abund) return (round(np.nanmean(diff_array),1), round(np.nanstd(diff_array),1), diff_array, sum_abund, int_array) except: warnings.warn('Could not process Consensus Features table', UserWarning) return (None, None, np.zeros(100,dtype=int), None, None) else: print('Could not find the Consensus Features table') return (None, None, np.zeros(100,dtype=int), None, None) def parse_table_input_file(in_dfs): """ Returns a tuple (instrument name list, creation date list, instr from name list, instr from metadata list) """ try: # Select the Input Files df from the dictionary df = in_dfs['Input Files'] # Select the rows with .RAW files (df in principle can contain many .RAW files, .MSF etc) df1 = df[df['File Name'].str.contains('.raw')] # Create a list of base filenames for .RAW files shortnames = [] for longname in df1['File Name']: shortnames.append(pathlib.Path(longname).name) filedates = list(df1['Creation Date']) instr_from_metadata = list(df1['Instrument Name']) instr_from_fnames = [] for n in shortnames: instr_from_fnames.append(fname_to_instrument(n)) return (shortnames,filedates,instr_from_fnames,instr_from_metadata) except: warnings.warn('Could not process Input Files table', UserWarning) return None def print_all_rows(conn, table): cur = conn.cursor() sql_command = "SELECT * FROM " + table cur.execute(sql_command) rows = cur.fetchall() for row in rows: print(row) cur.close() return True def return_last_rows(conn, table, index_col, num, colnames): cur = conn.cursor() sql_command = ('''SELECT * FROM ( SELECT * FROM ''' + table + " ORDER BY " + index_col + ''' DESC LIMIT ''' + str(num) + ''') ORDER BY ''' + index_col + " ASC;") cur.execute(sql_command) rows = cur.fetchall() list_of_tuples = [] for row in rows: list_of_tuples.append(row) cur.close() df = pd.DataFrame(list_of_tuples, columns=colnames) print('Fetched', num, 'latest results from the QC database') return df def return_latest_psm_is(df, id_col, file_col, instr_col, psm_col): ''' Extracts info on PSM number, search ID and Instrument from the last row in DB ''' last_row = df.iloc[-1] search_id = last_row[id_col] instr = last_row[instr_col] psm = last_row[psm_col] psm_string = str(psm) + ' PSMs in file ' + str(last_row[file_col]) print('String to put on the graph', psm_string) return (search_id, instr, psm, psm_string) def return_peptide_number(in_dfs): ''' Returns the number of peptides based on the Peptide table ''' try: # Select the Peptide Groups df from the dictionary df = in_dfs['Peptide Groups'] return (len(df.index)) except: warnings.warn('Could not process Peptide Groups table', UserWarning) return None def return_protein_number(in_dfs): """Returns the number of Master proteins based on the Proteins table""" try: # Select the Proteins df from the dictionary df = in_dfs['Proteins'] # Select the Master proteins df1 = df[df['Master'] == 'IsMasterProtein'] return (len(df1.index)) except: warnings.warn('Could not process Proteins table', UserWarning) return None def testing_load_example_files(): df_dict = {} df_dict['Proteins'] = pd.read_csv('TargetProtein.txt',delimiter='\t') df_dict['Peptide Groups'] = pd.read_csv('TargetPeptideGroup.txt',delimiter='\t') df_dict['PSMs'] = pd.read_csv('TargetPeptideSpectrumMatch.txt',delimiter='\t') df_dict['MS/MS Spectrum Info'] = pd.read_csv('MSnSpectrumInfo.txt',delimiter='\t') df_dict['Input Files'] =
pd.read_csv('WorkflowInputFile.txt',delimiter='\t')
pandas.read_csv
import pandas as pd import numpy as np import sys from tabulate import tabulate import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler import matplotlib.ticker as ticker # from pyutils import * # import dtale # dtale.show(df) # from pandas_profiling import ProfileReport # profile = ProfileReport(tr, explorative=True) def peek(df, rows=3): concat1 = pd.concat([df.dtypes, df.iloc[:3, :].T], axis=1).reset_index() concat1.columns = [''] * len(concat1.columns) return concat1 def dtypes(df): return pd.concat([df.nunique(), df.dtypes], keys=["count_unique", "dtype"], axis=1) def bin(df,column, bins = 5): return pd.cut(df[column], bins=5, right=True).value_counts(normalize=True).sort_index() * 100 def describe_df(df,floatfmt= '.3f'): # Numerical print("--" * 20) print('Columns:', df.shape[1]) print('Rows:', df.shape[0]) print("Memory usage:", (f"({(sys.getsizeof(df) / 1024 ** 2):.2f} Mb)")) print("--" * 20) print('NUMERICAL VARIABLES:') numerical = df.select_dtypes(include=np.number) concatenated_numerical = pd.concat([ round(numerical.isnull().sum() / df.shape[0] * 100, 2).astype(str) + "%", numerical.isnull().sum(), numerical.count(), numerical.min(), numerical.mean(), numerical.max() ], axis=1, keys=["%NULLS", "COUNT_NULLS", "NOT_NULL", 'MIN', 'MEAN', 'MAX'], sort=False).sort_values('COUNT_NULLS', ascending=False).reset_index().rename( columns={'index': ''}) t = numerical.mode().T t.rename(columns={0: 'MODE'}, inplace=True) concatenated_numerical = concatenated_numerical.merge(t, how='left', left_on='', right_on=t.index) concatenated_numerical.index = concatenated_numerical.index + 1 concatenated_numerical = concatenated_numerical.iloc[:, [0, 4, 5, 6, 7, 1, 2, 3]] print(tabulate(concatenated_numerical, headers= [ 'MIN', 'MEAN', 'MAX', 'MODE', "%NULLS", "#_NULLS", "NOT_NULL", ], tablefmt="presto", colalign=("right"), floatfmt=floatfmt)) # Categorical print('-----' * 20) print() print('CATEGORICAL VARIABLES:') categorical = df.select_dtypes(['object','category']) if categorical.shape[1] == 0: print("No Categorical Variables") else: concatenated_categorical = pd.concat([ round(categorical.isnull().sum() / df.shape[0] * 100, 2).astype(str) + "%", categorical.isnull().sum(), categorical.count() ], keys=["%<PASSWORD>", "COUNT_NULLS", "NOT_NULL"], axis=1, sort=False).sort_values('%NULLS', ascending=False).reset_index().rename( columns={'index': ''}) max_unique = 5 u_strs = [] for col in categorical: series = categorical.loc[categorical[col].notnull(), col] n_unique = series.nunique() if n_unique > max_unique: u_strs.append(str(n_unique) + ' unique values') else: u_strs.append(str(series.unique())) t = pd.DataFrame(u_strs, categorical.columns) t = t.reset_index() t = t.rename(columns={'index': '', 0: 'Unique_Values'}) concatenated_categorical = concatenated_categorical.merge(t, on='') concatenated_categorical.index = concatenated_categorical.index + 1 print(tabulate(concatenated_categorical, headers= [ "%NULLS", "#_NULLS", "NOT_NULL", "Unique_Values" ], tablefmt="presto", colalign=("left"))) def find_pretty_grid(n_plots, max_cols=5): """Determine a good grid shape for subplots. Tries to find a way to arange n_plots many subplots on a grid in a way that fills as many grid-cells as possible, while keeping the number of rows low and the number of columns below max_cols. Parameters ---------- n_plots : int Number of plots to arrange. max_cols : int, default=5 Maximum number of columns. Returns ------- n_rows : int Number of rows in grid. n_cols : int Number of columns in grid. Examples -------- >>> find_pretty_grid(16, 5) (4, 4) >>> find_pretty_grid(11, 5) (3, 4) >>> find_pretty_grid(10, 5) (2, 5) """ # we could probably do something with prime numbers here # but looks like that becomes a combinatorial problem again? if n_plots % max_cols == 0: # perfect fit! # if max_cols is 6 do we prefer 6x1 over 3x2? return int(n_plots / max_cols), max_cols # min number of rows needed min_rows = int(np.ceil(n_plots / max_cols)) best_empty = max_cols best_cols = max_cols for cols in range(max_cols, min_rows - 1, -1): # we only allow getting narrower if we have more cols than rows remainder = (n_plots % cols) empty = cols - remainder if remainder != 0 else 0 if empty == 0: return int(n_plots / cols), cols if empty < best_empty: best_empty = empty best_cols = cols return int(np.ceil(n_plots / best_cols)), best_cols def make_subplots(n_plots, max_cols=5, row_height=3): """Create a harmonious subplot grid. """ n_rows, n_cols = find_pretty_grid(n_plots, max_cols=max_cols) fig, axes = plt.subplots(n_rows, n_cols, figsize=(4 * n_cols, row_height * n_rows), constrained_layout=True) # we don't want ravel to fail, this is awkward! axes = np.atleast_2d(axes) return fig, axes def class_hists(data, column, target, bins="auto", ax=None, legend=False, scale_separately=True): """Grouped univariate histograms. Parameters ---------- data : pandas DataFrame Input data to plot column : column specifier Column in the data to compute histograms over (must be continuous). target : column specifier Target column in data, must be categorical. bins : string, int or array-like Number of bins, 'auto' or bin edges. Passed to np.histogram_bin_edges. We always show at least 5 bins for now. ax : matplotlib axes Axes to plot into legend : boolean, default=False Whether to create a legend. scale_separately : boolean, default=True Whether to scale each class separately. Examples -------- >>> from dabl.datasets import load_adult >>> data = load_adult() >>> class_hists(data, "age", "gender", legend=True) <matplotlib... """ col_data = data[column].dropna() if ax is None: ax = plt.gca() if col_data.nunique() > 10: ordinal = False # histograms bin_edges = np.histogram_bin_edges(col_data, bins=bins) if len(bin_edges) > 30: bin_edges = np.histogram_bin_edges(col_data, bins=30) counts = {} for name, group in data.groupby(target)[column]: this_counts, _ = np.histogram(group, bins=bin_edges) counts[name] = this_counts counts = pd.DataFrame(counts) else: ordinal = True # ordinal data, count distinct values counts = data.groupby(target)[column].value_counts().unstack(target) if scale_separately: # normalize by maximum counts = counts / counts.max() bottom = counts.max().max() * 1.1 for i, name in enumerate(counts.columns): if ordinal: ax.bar(range(counts.shape[0]), counts[name], width=.9, bottom=bottom * i, tick_label=counts.index, linewidth=2, edgecolor='k') xmin, xmax = 0 - .5, counts.shape[0] - .5 else: ax.bar(bin_edges[:-1], counts[name], bottom=bottom * i, label=name, align='edge', width=(bin_edges[1] - bin_edges[0]) * .9) xmin, xmax = bin_edges[0], bin_edges[-1] ax.hlines(bottom * i, xmin=xmin, xmax=xmax, linewidth=1) if legend: ax.legend() ax.set_yticks(()) ax.set_xlabel(column) return ax def plot_univariate_classification(df, target_name): df[[target_name]] = df[[target_name]].astype('object') continuous_cols = list(df.select_dtypes("number").columns) fig, axes = make_subplots(n_plots=len(continuous_cols), row_height=2) for i, (ind, ax) in enumerate(zip(continuous_cols, axes.ravel())): class_hists(df, continuous_cols[i], target_name, ax=ax, legend=i == 0) for j in range(i + 1, axes.size): # turn off axis if we didn't fill last row axes.ravel()[j].set_axis_off() return plt.show() def violin_plot_classification(df, target_name): continuous_cols = list(df.select_dtypes("number").columns) data = pd.DataFrame(StandardScaler().fit_transform(df[continuous_cols]), columns=df[continuous_cols].columns, index=df[continuous_cols].index) data = pd.concat([data, df[[target_name]]], axis=1) data = pd.melt(data, id_vars=target_name, var_name="features", value_name='value') plt.figure(figsize=(10, 10)) ax = sns.violinplot(x="features", y="value", hue=target_name, data=data, split=True, inner="quartile") for i in range(len(np.unique(data["features"])) - 1): ax.axvline(i + 0.5, color='grey', lw=1) plt.xticks(rotation=20) return plt.show() def box_plot_classification(df, target_name): df[target_name] = df[target_name].astype('object') continuous_cols = list(df.select_dtypes("number").columns) data = pd.DataFrame(StandardScaler().fit_transform(df[continuous_cols]), columns=df[continuous_cols].columns, index=df[continuous_cols].index) data = pd.concat([data, df[[target_name]]], axis=1) data = pd.melt(data, id_vars=target_name, var_name="features", value_name='value') plt.figure(figsize=(10, 10)) ax = sns.boxplot(x="features", y="value", hue=target_name, data=data) for i in range(len(np.unique(data["features"])) - 1): ax.axvline(i + 0.5, color='grey', lw=1) plt.xticks(rotation=20) return plt.show() def plot_density_numerical_for_whole_dataframe(df): continuous_cols = list(df.select_dtypes("number").columns) fig, axes = make_subplots(n_plots=len(continuous_cols), row_height=2) for i, (ind, ax) in enumerate(zip(continuous_cols, axes.ravel())): sns.kdeplot(df[continuous_cols[i]], color='black', shade=True, legend=True, ax=ax) for j in range(i + 1, axes.size): # turn off axis if we didn't fill last row axes.ravel()[j].set_axis_off() return plt.show() # def plot_histograms_categoricals_for_whole_dataframe(df): # categorical_cols = list(df.select_dtypes("object").columns) # fig, axes = make_subplots(n_plots=len(categorical_cols), row_height=2) # for i, (ind, ax) in enumerate(zip(categorical_cols, axes.ravel())): # ax = sns.histplot(x=df[categorical_cols[i]], data=df, color='green', ax=ax) # ax = ax.set_xticklabels(labels=df[categorical_cols[i]].value_counts().index.values, rotation=90) # # for j in range(i + 1, axes.size): # axes.ravel()[j].set_axis_off() # # plt.xticks(rotate=90) # plt.show() def plot_single_numerical(df): plt.figure() sns.kdeplot(df, color="black", shade="gray") return plt.show() def ordered_barplot(df, variable_name, rotate=0): s = df[~pd.isnull(df[[variable_name]])][variable_name] chart = pd.value_counts(s).to_frame(name='data') chart.index.name = 'labels' chart = chart.reset_index().sort_values(['data', 'labels'], ascending=[False, True]) plt.figure(figsize=(12, 8)) ax = sns.barplot(x="labels", y="data", data=chart) ncount = len(df[[variable_name]]) # plt.title('Distribution of Truck Configurations') # ax.set_xticklabels(labels=tr.state, rotation=90) plt.xlabel(variable_name) plt.xticks(rotation=rotate) # Make twin axis ax2 = ax.twinx() # Switch so count axis is on right, frequency on left ax2.yaxis.tick_left() ax.yaxis.tick_right() # Also switch the labels over ax.yaxis.set_label_position('right') ax2.yaxis.set_label_position('left') ax2.set_ylabel('Frequency [%]') for p in ax.patches: x = p.get_bbox().get_points()[:, 0] y = p.get_bbox().get_points()[1, 1] ax.annotate('{:.1f}%'.format(100. * y / ncount), (x.mean(), y), ha='center', va='bottom') # set the alignment of the text # Use a LinearLocator to ensure the correct number of ticks ax.yaxis.set_major_locator(ticker.LinearLocator(11)) # Fix the frequency range to 0-100 ax2.set_ylim(0, 100) ax.set_ylim(0, ncount) # And use a MultipleLocator to ensure a tick spacing of 10 ax2.yaxis.set_major_locator(ticker.MultipleLocator(10)) # Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars ax2.grid(None) ax2.grid(False) return plt.show() def ordered_barplot_h(df, variable_name, rotate=0): s = df[~pd.isnull(df[[variable_name]])][variable_name] chart =
pd.value_counts(s)
pandas.value_counts
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/8/27 15:59 Desc: REITs 行情及信息 http://quote.eastmoney.com/center/gridlist.html#fund_reits_all https://www.jisilu.cn/data/cnreits/#CnReits """ import pandas as pd import requests def reits_realtime_em() -> pd.DataFrame: """ 东方财富网-行情中心-REITs-沪深 REITs http://quote.eastmoney.com/center/gridlist.html#fund_reits_all :return: 沪深 REITs-实时行情 :rtype: pandas.DataFrame """ url = "http://95.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:9 e:97,m:0 t:10 e:97", "fields": "f2,f3,f4,f5,f6,f12,f14,f15,f16,f17,f18", "_": "1630048369992", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename( { "index": "序号", "f2": "最新价", "f3": "涨跌幅", "f4": "涨跌额", "f5": "成交量", "f6": "成交额", "f12": "代码", "f14": "名称", "f15": "最高价", "f16": "最低价", "f17": "开盘价", "f18": "昨收", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "成交量", "成交额", "开盘价", "最高价", "最低价", "昨收", ] ] return temp_df def reits_info_jsl() -> pd.DataFrame: """ 集思录-实时数据-REITs-A股 REITs https://www.jisilu.cn/data/cnreits/#CnReits :return: A股 REITs :rtype: pandas.DataFrame """ url = "https://www.jisilu.cn/data/cnreits/list/" params = {"___jsl": "LST___t=1630052485199"} payload = {"rp": "50", "page": "1"} r = requests.get(url, params=params, json=payload) data_json = r.json() temp_df = pd.DataFrame([item["cell"] for item in data_json["rows"]]) temp_df.rename( { "fund_id": "代码", "fund_nm": "简称", "full_nm": "全称", "project_type": "项目类型", "price": "现价", "increase_rt": "涨幅", "volume": "成交额", "nav": "净值", "nav_dt": "净值日期", "discount_rt": "折价率", "maturity_dt": "到期日", "fund_company": "基金公司", "urls": "链接地址", "last_dt": "更新日期", "last_time": "更新时间", "unit_total": "规模", "left_year": "剩余年限", }, axis=1, inplace=True, ) temp_df = temp_df[ [ "代码", "简称", "现价", "涨幅", "成交额", "净值", "净值日期", "折价率", "规模", "到期日", "剩余年限", "全称", "项目类型", "基金公司", ] ] temp_df['现价'] = pd.to_numeric(temp_df['现价']) temp_df['涨幅'] = pd.t
o_numeric(temp_df['涨幅'])
pandas.to_numeric
# LIBRARIES # set up backend for ssh -x11 figures import matplotlib matplotlib.use('Agg') # read and write import os import sys import glob import re import fnmatch import csv import shutil from datetime import datetime # maths import numpy as np import pandas as pd import math import random # miscellaneous import warnings import gc import timeit # sklearn from sklearn.utils import resample from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, log_loss, roc_auc_score, \ accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, average_precision_score from sklearn.utils.validation import check_is_fitted from sklearn.model_selection import KFold, PredefinedSplit, cross_validate from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression, ElasticNet from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import StandardScaler # Statistics from scipy.stats import pearsonr, ttest_rel, norm # Other tools for ensemble models building (<NAME>'s InnerCV class) from hyperopt import fmin, tpe, space_eval, Trials, hp, STATUS_OK from xgboost import XGBRegressor from lightgbm import LGBMRegressor # CPUs from multiprocessing import Pool # GPUs from GPUtil import GPUtil # tensorflow import tensorflow as tf # keras from keras_preprocessing.image import ImageDataGenerator, Iterator from keras_preprocessing.image.utils import load_img, img_to_array, array_to_img from tensorflow.keras.utils import Sequence from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling2D, concatenate from tensorflow.keras import regularizers from tensorflow.keras.optimizers import Adam, RMSprop, Adadelta from tensorflow.keras.callbacks import Callback, EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, CSVLogger from tensorflow.keras.losses import MeanSquaredError, BinaryCrossentropy from tensorflow.keras.metrics import RootMeanSquaredError, MeanAbsoluteError, AUC, BinaryAccuracy, Precision, Recall, \ TruePositives, FalsePositives, FalseNegatives, TrueNegatives from tensorflow_addons.metrics import RSquare, F1Score # Plots import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image from bioinfokit import visuz # Model's attention from keract import get_activations, get_gradients_of_activations from scipy.ndimage.interpolation import zoom # Survival from lifelines.utils import concordance_index # Necessary to define MyCSVLogger import collections import csv import io import six from tensorflow.python.lib.io import file_io from tensorflow.python.util.compat import collections_abc from tensorflow.keras.backend import eval # Set display parameters pd.set_option('display.max_rows', 200) # CLASSES class Basics: """ Root class herited by most other class. Includes handy helper functions """ def __init__(self): # seeds for reproducibility self.seed = 0 os.environ['PYTHONHASHSEED'] = str(self.seed) np.random.seed(self.seed) random.seed(self.seed) # other parameters self.path_data = '../data/' self.folds = ['train', 'val', 'test'] self.n_CV_outer_folds = 10 self.outer_folds = [str(x) for x in list(range(self.n_CV_outer_folds))] self.modes = ['', '_sd', '_str'] self.id_vars = ['id', 'eid', 'instance', 'outer_fold'] self.instances = ['0', '1', '1.5', '1.51', '1.52', '1.53', '1.54', '2', '3'] self.ethnicities_vars_forgot_Other = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.ethnicities_vars = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.demographic_vars = ['Age', 'Sex'] + self.ethnicities_vars self.names_model_parameters = ['target', 'organ', 'view', 'transformation', 'architecture', 'n_fc_layers', 'n_fc_nodes', 'optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'] self.targets_regression = ['Age'] self.targets_binary = ['Sex'] self.models_types = ['', '_bestmodels'] self.dict_prediction_types = {'Age': 'regression', 'Sex': 'binary'} self.dict_side_predictors = {'Age': ['Sex'] + self.ethnicities_vars_forgot_Other, 'Sex': ['Age'] + self.ethnicities_vars_forgot_Other} self.organs = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'] self.left_right_organs_views = ['Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees'] self.dict_organs_to_views = {'Brain': ['MRI'], 'Eyes': ['Fundus', 'OCT'], 'Arterial': ['Carotids'], 'Heart': ['MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody'], 'PhysicalActivity': ['FullWeek']} self.dict_organsviews_to_transformations = \ {'Brain_MRI': ['SagittalRaw', 'SagittalReference', 'CoronalRaw', 'CoronalReference', 'TransverseRaw', 'TransverseReference'], 'Arterial_Carotids': ['Mixed', 'LongAxis', 'CIMT120', 'CIMT150', 'ShortAxis'], 'Heart_MRI': ['2chambersRaw', '2chambersContrast', '3chambersRaw', '3chambersContrast', '4chambersRaw', '4chambersContrast'], 'Musculoskeletal_Spine': ['Sagittal', 'Coronal'], 'Musculoskeletal_FullBody': ['Mixed', 'Figure', 'Skeleton', 'Flesh'], 'PhysicalActivity_FullWeek': ['GramianAngularField1minDifference', 'GramianAngularField1minSummation', 'MarkovTransitionField1min', 'RecurrencePlots1min']} self.dict_organsviews_to_transformations.update(dict.fromkeys(['Eyes_Fundus', 'Eyes_OCT'], ['Raw'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Abdomen_Liver', 'Abdomen_Pancreas'], ['Raw', 'Contrast'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], ['MRI'])) self.organsviews_not_to_augment = [] self.organs_instances23 = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'] self.organs_XWAS = \ ['*', '*instances01', '*instances1.5x', '*instances23', 'Brain', 'BrainCognitive', 'BrainMRI', 'Eyes', 'EyesFundus', 'EyesOCT', 'Hearing', 'Lungs', 'Arterial', 'ArterialPulseWaveAnalysis', 'ArterialCarotids', 'Heart', 'HeartECG', 'HeartMRI', 'Abdomen', 'AbdomenLiver', 'AbdomenPancreas', 'Musculoskeletal', 'MusculoskeletalSpine', 'MusculoskeletalHips', 'MusculoskeletalKnees', 'MusculoskeletalFullBody', 'MusculoskeletalScalars', 'PhysicalActivity', 'Biochemistry', 'BiochemistryUrine', 'BiochemistryBlood', 'ImmuneSystem'] # Others if '/Users/Alan/' in os.getcwd(): os.chdir('/Users/Alan/Desktop/Aging/Medical_Images/scripts/') else: os.chdir('/n/groups/patel/Alan/Aging/Medical_Images/scripts/') gc.enable() # garbage collector warnings.filterwarnings('ignore') def _version_to_parameters(self, model_name): parameters = {} parameters_list = model_name.split('_') for i, parameter in enumerate(self.names_model_parameters): parameters[parameter] = parameters_list[i] if len(parameters_list) > 11: parameters['outer_fold'] = parameters_list[11] return parameters @staticmethod def _parameters_to_version(parameters): return '_'.join(parameters.values()) @staticmethod def convert_string_to_boolean(string): if string == 'True': boolean = True elif string == 'False': boolean = False else: print('ERROR: string must be either \'True\' or \'False\'') sys.exit(1) return boolean class Metrics(Basics): """ Helper class defining dictionaries of metrics and custom metrics """ def __init__(self): # Parameters Basics.__init__(self) self.metrics_displayed_in_int = ['True-Positives', 'True-Negatives', 'False-Positives', 'False-Negatives'] self.metrics_needing_classpred = ['F1-Score', 'Binary-Accuracy', 'Precision', 'Recall'] self.dict_metrics_names_K = {'regression': ['RMSE'], # For now, R-Square is buggy. Try again in a few months. 'binary': ['ROC-AUC', 'PR-AUC', 'F1-Score', 'Binary-Accuracy', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_metrics_names = {'regression': ['RMSE', 'MAE', 'R-Squared', 'Pearson-Correlation'], 'binary': ['ROC-AUC', 'F1-Score', 'PR-AUC', 'Binary-Accuracy', 'Sensitivity', 'Specificity', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_losses_names = {'regression': 'MSE', 'binary': 'Binary-Crossentropy', 'multiclass': 'categorical_crossentropy'} self.dict_main_metrics_names_K = {'Age': 'MAE', 'Sex': 'PR-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.dict_main_metrics_names = {'Age': 'R-Squared', 'Sex': 'ROC-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.main_metrics_modes = {'loss': 'min', 'R-Squared': 'max', 'Pearson-Correlation': 'max', 'RMSE': 'min', 'MAE': 'min', 'ROC-AUC': 'max', 'PR-AUC': 'max', 'F1-Score': 'max', 'C-Index': 'max', 'C-Index-difference': 'max'} self.n_bootstrap_iterations = 1000 def rmse(y_true, y_pred): return math.sqrt(mean_squared_error(y_true, y_pred)) def sensitivity_score(y, pred): _, _, fn, tp = confusion_matrix(y, pred.round()).ravel() return tp / (tp + fn) def specificity_score(y, pred): tn, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return tn / (tn + fp) def true_positives_score(y, pred): _, _, _, tp = confusion_matrix(y, pred.round()).ravel() return tp def false_positives_score(y, pred): _, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return fp def false_negatives_score(y, pred): _, _, fn, _ = confusion_matrix(y, pred.round()).ravel() return fn def true_negatives_score(y, pred): tn, _, _, _ = confusion_matrix(y, pred.round()).ravel() return tn self.dict_metrics_sklearn = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'RMSE': rmse, 'Pearson-Correlation': pearsonr, 'R-Squared': r2_score, 'Binary-Crossentropy': log_loss, 'ROC-AUC': roc_auc_score, 'F1-Score': f1_score, 'PR-AUC': average_precision_score, 'Binary-Accuracy': accuracy_score, 'Sensitivity': sensitivity_score, 'Specificity': specificity_score, 'Precision': precision_score, 'Recall': recall_score, 'True-Positives': true_positives_score, 'False-Positives': false_positives_score, 'False-Negatives': false_negatives_score, 'True-Negatives': true_negatives_score} def _bootstrap(self, data, function): results = [] for i in range(self.n_bootstrap_iterations): data_i = resample(data, replace=True, n_samples=len(data.index)) results.append(function(data_i['y'], data_i['pred'])) return np.mean(results), np.std(results) class PreprocessingMain(Basics): """ This class executes the code for step 01. It preprocesses the main dataframe by: - reformating the rows and columns - splitting the dataset into folds for the future cross validations - imputing key missing data - adding a new UKB instance for physical activity data - formating the demographics columns (age, sex and ethnicity) - reformating the dataframe so that different instances of the same participant are treated as different rows - saving the dataframe """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None def _add_outer_folds(self): outer_folds_split = pd.read_csv(self.path_data + 'All_eids.csv') outer_folds_split.rename(columns={'fold': 'outer_fold'}, inplace=True) outer_folds_split['eid'] = outer_folds_split['eid'].astype('str') outer_folds_split['outer_fold'] = outer_folds_split['outer_fold'].astype('str') outer_folds_split.set_index('eid', inplace=True) self.data_raw = self.data_raw.join(outer_folds_split) def _impute_missing_ecg_instances(self): data_ecgs = pd.read_csv('/n/groups/patel/Alan/Aging/TimeSeries/scripts/age_analysis/missing_samples.csv') data_ecgs['eid'] = data_ecgs['eid'].astype(str) data_ecgs['instance'] = data_ecgs['instance'].astype(str) for _, row in data_ecgs.iterrows(): self.data_raw.loc[row['eid'], 'Date_attended_center_' + row['instance']] = row['observation_date'] def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_sex(self): # Use genetic sex when available self.data_raw['Sex_genetic'][self.data_raw['Sex_genetic'].isna()] = \ self.data_raw['Sex'][self.data_raw['Sex_genetic'].isna()] self.data_raw.drop(['Sex'], axis=1, inplace=True) self.data_raw.rename(columns={'Sex_genetic': 'Sex'}, inplace=True) self.data_raw.dropna(subset=['Sex'], inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = \ self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _encode_ethnicity(self): # Fill NAs for ethnicity on instance 0 if available in other instances eids_missing_ethnicity = self.data_raw['eid'][self.data_raw['Ethnicity'].isna()] for eid in eids_missing_ethnicity: sample = self.data_raw.loc[eid, :] if not math.isnan(sample['Ethnicity_1']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_1'] elif not math.isnan(sample['Ethnicity_2']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_2'] self.data_raw.drop(['Ethnicity_1', 'Ethnicity_2'], axis=1, inplace=True) # One hot encode ethnicity dict_ethnicity_codes = {'1': 'Ethnicity.White', '1001': 'Ethnicity.British', '1002': 'Ethnicity.Irish', '1003': 'Ethnicity.White_Other', '2': 'Ethnicity.Mixed', '2001': 'Ethnicity.White_and_Black_Caribbean', '2002': 'Ethnicity.White_and_Black_African', '2003': 'Ethnicity.White_and_Asian', '2004': 'Ethnicity.Mixed_Other', '3': 'Ethnicity.Asian', '3001': 'Ethnicity.Indian', '3002': 'Ethnicity.Pakistani', '3003': 'Ethnicity.Bangladeshi', '3004': 'Ethnicity.Asian_Other', '4': 'Ethnicity.Black', '4001': 'Ethnicity.Caribbean', '4002': 'Ethnicity.African', '4003': 'Ethnicity.Black_Other', '5': 'Ethnicity.Chinese', '6': 'Ethnicity.Other_ethnicity', '-1': 'Ethnicity.Do_not_know', '-3': 'Ethnicity.Prefer_not_to_answer', '-5': 'Ethnicity.NA'} self.data_raw['Ethnicity'] = self.data_raw['Ethnicity'].fillna(-5).astype(int).astype(str) ethnicities = pd.get_dummies(self.data_raw['Ethnicity']) self.data_raw.drop(['Ethnicity'], axis=1, inplace=True) ethnicities.rename(columns=dict_ethnicity_codes, inplace=True) ethnicities['Ethnicity.White'] = ethnicities['Ethnicity.White'] + ethnicities['Ethnicity.British'] + \ ethnicities['Ethnicity.Irish'] + ethnicities['Ethnicity.White_Other'] ethnicities['Ethnicity.Mixed'] = ethnicities['Ethnicity.Mixed'] + \ ethnicities['Ethnicity.White_and_Black_Caribbean'] + \ ethnicities['Ethnicity.White_and_Black_African'] + \ ethnicities['Ethnicity.White_and_Asian'] + \ ethnicities['Ethnicity.Mixed_Other'] ethnicities['Ethnicity.Asian'] = ethnicities['Ethnicity.Asian'] + ethnicities['Ethnicity.Indian'] + \ ethnicities['Ethnicity.Pakistani'] + ethnicities['Ethnicity.Bangladeshi'] + \ ethnicities['Ethnicity.Asian_Other'] ethnicities['Ethnicity.Black'] = ethnicities['Ethnicity.Black'] + ethnicities['Ethnicity.Caribbean'] + \ ethnicities['Ethnicity.African'] + ethnicities['Ethnicity.Black_Other'] ethnicities['Ethnicity.Other'] = ethnicities['Ethnicity.Other_ethnicity'] + \ ethnicities['Ethnicity.Do_not_know'] + \ ethnicities['Ethnicity.Prefer_not_to_answer'] + \ ethnicities['Ethnicity.NA'] self.data_raw = self.data_raw.join(ethnicities) def generate_data(self): # Preprocessing dict_UKB_fields_to_names = {'34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3', '31-0.0': 'Sex', '22001-0.0': 'Sex_genetic', '21000-0.0': 'Ethnicity', '21000-1.0': 'Ethnicity_1', '21000-2.0': 'Ethnicity_2', '22414-2.0': 'Abdominal_images_quality'} self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=['eid', '31-0.0', '22001-0.0', '21000-0.0', '21000-1.0', '21000-2.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0', '22414-2.0']) # Formatting self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' self._add_outer_folds() self._impute_missing_ecg_instances() self._add_physicalactivity_instances() self._compute_sex() self._compute_age() self._encode_ethnicity() # Concatenate the data from the different instances self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw[['eid', 'outer_fold', 'Age_' + i, 'Sex'] + self.ethnicities_vars + ['Abdominal_images_quality']].dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) df_i.rename(columns={'Age_' + i: 'Age'}, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[self.id_vars + self.demographic_vars + ['Abdominal_images_quality']] if i != '2': df_i['Abdominal_images_quality'] = np.nan # not defined for instance 3, not relevant for instances 0, 1 if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Save age as a float32 instead of float64 self.data_features['Age'] = np.float32(self.data_features['Age']) # Shuffle the rows before saving the dataframe self.data_features = self.data_features.sample(frac=1) # Generate dataframe for eids pipeline as opposed to instances pipeline self.data_features_eids = self.data_features[self.data_features.instance == '0'] self.data_features_eids['instance'] = '*' self.data_features_eids['id'] = [ID.replace('_0', '_*') for ID in self.data_features_eids['id'].values] def save_data(self): self.data_features.to_csv(self.path_data + 'data-features_instances.csv', index=False) self.data_features_eids.to_csv(self.path_data + 'data-features_eids.csv', index=False) class PreprocessingImagesIDs(Basics): """ Splits the different images datasets into folds for the future cross validation """ def __init__(self): Basics.__init__(self) # Instances 2 and 3 datasets (most medical images, mostly medical images) self.instances23_eids = None self.HEART_EIDs = None self.heart_eids = None self.FOLDS_23_EIDS = None def _load_23_eids(self): data_features = pd.read_csv(self.path_data + 'data-features_instances.csv') images_eids = data_features['eid'][data_features['instance'].isin([2, 3])] self.images_eids = list(set(images_eids)) def _load_heart_eids(self): # IDs already used in Heart videos HEART_EIDS = {} heart_eids = [] for i in range(10): # Important: The i's data fold is used as *validation* fold for outer fold i. data_i = pd.read_csv( "/n/groups/patel/JbProst/Heart/Data/FoldsAugmented/data-features_Heart_20208_Augmented_Age_val_" + str( i) + ".csv") HEART_EIDS[i] = list(set([int(str(ID)[:7]) for ID in data_i['eid']])) heart_eids = heart_eids + HEART_EIDS[i] self.HEART_EIDS = HEART_EIDS self.heart_eids = heart_eids def _split_23_eids_folds(self): self._load_23_eids() self._load_heart_eids() # List extra images ids, and split them between the different folds. extra_eids = [eid for eid in self.images_eids if eid not in self.heart_eids] random.shuffle(extra_eids) n_samples = len(extra_eids) n_samples_by_fold = n_samples / self.n_CV_outer_folds FOLDS_EXTRAEIDS = {} FOLDS_EIDS = {} for outer_fold in self.outer_folds: FOLDS_EXTRAEIDS[outer_fold] = \ extra_eids[int((int(outer_fold)) * n_samples_by_fold):int((int(outer_fold) + 1) * n_samples_by_fold)] FOLDS_EIDS[outer_fold] = self.HEART_EIDS[int(outer_fold)] + FOLDS_EXTRAEIDS[outer_fold] self.FOLDS_23_EIDS = FOLDS_EIDS def _save_23_eids_folds(self): for outer_fold in self.outer_folds: with open(self.path_data + 'instances23_eids_' + outer_fold + '.csv', 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(self.FOLDS_23_EIDS[outer_fold]) def generate_eids_splits(self): print("Generating eids split for organs on instances 2 and 3") self._split_23_eids_folds() self._save_23_eids_folds() class PreprocessingFolds(Metrics): """ Splits the data into training, validation and testing sets for all CV folds """ def __init__(self, target, organ, regenerate_data): Metrics.__init__(self) self.target = target self.organ = organ self.list_ids_per_view_transformation = None # Check if these folds have already been generated if not regenerate_data: if len(glob.glob(self.path_data + 'data-features_' + organ + '_*_' + target + '_*.csv')) > 0: print("Error: The files already exist! Either change regenerate_data to True or delete the previous" " version.") sys.exit(1) self.side_predictors = self.dict_side_predictors[target] self.variables_to_normalize = self.side_predictors if target in self.targets_regression: self.variables_to_normalize.append(target) self.dict_image_quality_col = {'Liver': 'Abdominal_images_quality'} self.dict_image_quality_col.update( dict.fromkeys(['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'], None)) self.image_quality_col = self.dict_image_quality_col[organ] self.views = self.dict_organs_to_views[organ] self.list_ids = None self.list_ids_per_view = {} self.data = None self.EIDS = None self.EIDS_per_view = {'train': {}, 'val': {}, 'test': {}} self.data_fold = None def _get_list_ids(self): self.list_ids_per_view_transformation = {} list_ids = [] # if different views are available, take the union of the ids for view in self.views: self.list_ids_per_view_transformation[view] = {} for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: list_ids_transformation = [] path = '../images/' + self.organ + '/' + view + '/' + transformation + '/' # for paired organs, take the unions of the ids available on the right and the left sides if self.organ + '_' + view in self.left_right_organs_views: for side in ['right', 'left']: list_ids_transformation += os.listdir(path + side + '/') list_ids_transformation = np.unique(list_ids_transformation).tolist() else: list_ids_transformation += os.listdir(path) self.list_ids_per_view_transformation[view][transformation] = \ [im.replace('.jpg', '') for im in list_ids_transformation] list_ids += self.list_ids_per_view_transformation[view][transformation] self.list_ids = np.unique(list_ids).tolist() self.list_ids.sort() def _filter_and_format_data(self): """ Clean the data before it can be split between the rows """ cols_data = self.id_vars + self.demographic_vars if self.image_quality_col is not None: cols_data.append(self.dict_image_quality_col[self.organ]) data = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=cols_data) data.rename(columns={self.dict_image_quality_col[self.organ]: 'Data_quality'}, inplace=True) for col_name in self.id_vars: data[col_name] = data[col_name].astype(str) data.set_index('id', drop=False, inplace=True) if self.image_quality_col is not None: data = data[data['Data_quality'] != np.nan] data.drop('Data_quality', axis=1, inplace=True) # get rid of samples with NAs data.dropna(inplace=True) # list the samples' ids for which images are available data = data.loc[self.list_ids] self.data = data def _split_data(self): # Generate the data for each outer_fold for i, outer_fold in enumerate(self.outer_folds): of_val = outer_fold of_test = str((int(outer_fold) + 1) % len(self.outer_folds)) DATA = { 'train': self.data[~self.data['outer_fold'].isin([of_val, of_test])], 'val': self.data[self.data['outer_fold'] == of_val], 'test': self.data[self.data['outer_fold'] == of_test] } # Generate the data for the different views and transformations for view in self.views: for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: print('Splitting data for view ' + view + ', and transformation ' + transformation) DF = {} for fold in self.folds: idx = DATA[fold]['id'].isin(self.list_ids_per_view_transformation[view][transformation]).values DF[fold] = DATA[fold].iloc[idx, :] # compute values for scaling of variables normalizing_values = {} for var in self.variables_to_normalize: var_mean = DF['train'][var].mean() if len(DF['train'][var].unique()) < 2: print('Variable ' + var + ' has a single value in fold ' + outer_fold + '. Using 1 as std for normalization.') var_std = 1 else: var_std = DF['train'][var].std() normalizing_values[var] = {'mean': var_mean, 'std': var_std} # normalize the variables for fold in self.folds: for var in self.variables_to_normalize: DF[fold][var + '_raw'] = DF[fold][var] DF[fold][var] = (DF[fold][var] - normalizing_values[var]['mean']) \ / normalizing_values[var]['std'] # report issue if NAs were detected (most likely comes from a sample whose id did not match) n_mismatching_samples = DF[fold].isna().sum().max() if n_mismatching_samples > 0: print(DF[fold][DF[fold].isna().any(axis=1)]) print('/!\\ WARNING! ' + str(n_mismatching_samples) + ' ' + fold + ' images ids out of ' + str(len(DF[fold].index)) + ' did not match the dataframe!') # save the data DF[fold].to_csv(self.path_data + 'data-features_' + self.organ + '_' + view + '_' + transformation + '_' + self.target + '_' + fold + '_' + outer_fold + '.csv', index=False) print('For outer_fold ' + outer_fold + ', the ' + fold + ' fold has a sample size of ' + str(len(DF[fold].index))) def generate_folds(self): self._get_list_ids() self._filter_and_format_data() self._split_data() class PreprocessingSurvival(Basics): """ Preprocesses the main dataframe for survival purposes. Mirrors the PreprocessingMain class, but computes Death time and FollowTime for the future survival analysis """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None self.survival_vars = ['FollowUpTime', 'Death'] def _preprocessing(self): usecols = ['eid', '40000-0.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0'] self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=usecols) dict_UKB_fields_to_names = {'40000-0.0': 'FollowUpDate', '34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3'} self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' # Format survival data self.data_raw['Death'] = ~self.data_raw['FollowUpDate'].isna() self.data_raw['FollowUpDate'][self.data_raw['FollowUpDate'].isna()] = '2020-04-27' self.data_raw['FollowUpDate'] = self.data_raw['FollowUpDate'].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) assert ('FollowUpDate.1' not in self.data_raw.columns) def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw.dropna(subset=['Year_of_birth'], inplace=True) self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpDate'] - self.data_raw[ 'Date_attended_center_' + i] self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpTime_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth', 'FollowUpDate'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _concatenate_instances(self): self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw.dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) dict_names = {} features = ['Age', 'FollowUpTime'] for feature in features: dict_names[feature + '_' + i] = feature self.dict_names = dict_names df_i.rename(columns=dict_names, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[['id', 'eid', 'instance'] + self.survival_vars] if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Add * instance for eids survival_eids = self.data_features[self.data_features['instance'] == '0'] survival_eids['instance'] = '*' survival_eids['id'] = survival_eids['eid'] + '_' + survival_eids['instance'] self.data_features = self.data_features.append(survival_eids) def generate_data(self): # Formatting self._preprocessing() self._add_physicalactivity_instances() self._compute_age() self._concatenate_instances() # save data self.data_features.to_csv('../data/data_survival.csv', index=False) class MyImageDataGenerator(Basics, Sequence, ImageDataGenerator): """ Helper class: custom data generator for images. It handles several custom features such as: - provides batches of not only images, but also the scalar data (e.g demographics) that correspond to it - it performs random shuffling while making sure that no leftover data (the remainder of the modulo batch size) is being unused - it can handle paired data for paired organs (e.g left/right eyes) """ def __init__(self, target=None, organ=None, view=None, data_features=None, n_samples_per_subepoch=None, batch_size=None, training_mode=None, side_predictors=None, dir_images=None, images_width=None, images_height=None, data_augmentation=False, data_augmentation_factor=None, seed=None): # Parameters Basics.__init__(self) self.target = target if target in self.targets_regression: self.labels = data_features[target] else: self.labels = data_features[target + '_raw'] self.organ = organ self.view = view self.training_mode = training_mode self.data_features = data_features self.list_ids = data_features.index.values self.batch_size = batch_size # for paired organs, take twice fewer ids (two images for each id), and add organ_side as side predictor if organ + '_' + view in self.left_right_organs_views: self.data_features['organ_side'] = np.nan self.n_ids_batch = batch_size // 2 else: self.n_ids_batch = batch_size if self.training_mode & (n_samples_per_subepoch is not None): # during training, 1 epoch = number of samples self.steps = math.ceil(n_samples_per_subepoch / batch_size) else: # during prediction and other tasks, an epoch is defined as all the samples being seen once and only once self.steps = math.ceil(len(self.list_ids) / self.n_ids_batch) # learning_rate_patience if n_samples_per_subepoch is not None: self.n_subepochs_per_epoch = math.ceil(len(self.data_features.index) / n_samples_per_subepoch) # initiate the indices and shuffle the ids self.shuffle = training_mode # Only shuffle if the model is being trained. Otherwise no need. self.indices = np.arange(len(self.list_ids)) self.idx_end = 0 # Keep track of last indice to permute indices accordingly at the end of epoch. if self.shuffle: np.random.shuffle(self.indices) # Input for side NN and CNN self.side_predictors = side_predictors self.dir_images = dir_images self.images_width = images_width self.images_height = images_height # Data augmentation self.data_augmentation = data_augmentation self.data_augmentation_factor = data_augmentation_factor self.seed = seed # Parameters for data augmentation: (rotation range, width shift range, height shift range, zoom range) self.augmentation_parameters = \ pd.DataFrame(index=['Brain_MRI', 'Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees', 'Musculoskeletal_FullBody', 'PhysicalActivity_FullWeek', 'PhysicalActivity_Walking'], columns=['rotation', 'width_shift', 'height_shift', 'zoom']) self.augmentation_parameters.loc['Brain_MRI', :] = [10, 0.05, 0.1, 0.0] self.augmentation_parameters.loc['Eyes_Fundus', :] = [20, 0.02, 0.02, 0] self.augmentation_parameters.loc['Eyes_OCT', :] = [30, 0.1, 0.2, 0] self.augmentation_parameters.loc[['Arterial_Carotids'], :] = [0, 0.2, 0.0, 0.0] self.augmentation_parameters.loc[['Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine'], :] = [10, 0.1, 0.1, 0.0] self.augmentation_parameters.loc[['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], :] = [10, 0.1, 0.1, 0.1] self.augmentation_parameters.loc[['Musculoskeletal_FullBody'], :] = [10, 0.05, 0.02, 0.0] self.augmentation_parameters.loc[['PhysicalActivity_FullWeek'], :] = [0, 0, 0, 0.0] organ_view = organ + '_' + view ImageDataGenerator.__init__(self, rescale=1. / 255., rotation_range=self.augmentation_parameters.loc[organ_view, 'rotation'], width_shift_range=self.augmentation_parameters.loc[organ_view, 'width_shift'], height_shift_range=self.augmentation_parameters.loc[organ_view, 'height_shift'], zoom_range=self.augmentation_parameters.loc[organ_view, 'zoom']) def __len__(self): return self.steps def on_epoch_end(self): _ = gc.collect() self.indices = np.concatenate([self.indices[self.idx_end:], self.indices[:self.idx_end]]) def _generate_image(self, path_image): img = load_img(path_image, target_size=(self.images_width, self.images_height), color_mode='rgb') Xi = img_to_array(img) if hasattr(img, 'close'): img.close() if self.data_augmentation: params = self.get_random_transform(Xi.shape) Xi = self.apply_transform(Xi, params) Xi = self.standardize(Xi) return Xi def _data_generation(self, list_ids_batch): # initialize empty matrices n_samples_batch = min(len(list_ids_batch), self.batch_size) X = np.empty((n_samples_batch, self.images_width, self.images_height, 3)) * np.nan x = np.empty((n_samples_batch, len(self.side_predictors))) * np.nan y = np.empty((n_samples_batch, 1)) * np.nan # fill the matrices sample by sample for i, ID in enumerate(list_ids_batch): y[i] = self.labels[ID] x[i] = self.data_features.loc[ID, self.side_predictors] if self.organ + '_' + self.view in self.left_right_organs_views: if i % 2 == 0: path = self.dir_images + 'right/' x[i][-1] = 0 else: path = self.dir_images + 'left/' x[i][-1] = 1 if not os.path.exists(path + ID + '.jpg'): path = path.replace('/right/', '/left/') if i % 2 == 0 else path.replace('/left/', '/right/') x[i][-1] = 1 - x[i][-1] else: path = self.dir_images X[i, :, :, :] = self._generate_image(path_image=path + ID + '.jpg') return [X, x], y def __getitem__(self, index): # Select the indices idx_start = (index * self.n_ids_batch) % len(self.list_ids) idx_end = (((index + 1) * self.n_ids_batch) - 1) % len(self.list_ids) + 1 if idx_start > idx_end: # If this happens outside of training, that is a mistake if not self.training_mode: print('\nERROR: Outside of training, every sample should only be predicted once!') sys.exit(1) # Select part of the indices from the end of the epoch indices = self.indices[idx_start:] # Generate a new set of indices # print('\nThe end of the data was reached within this batch, looping.') if self.shuffle: np.random.shuffle(self.indices) # Complete the batch with samples from the new indices indices = np.concatenate([indices, self.indices[:idx_end]]) else: indices = self.indices[idx_start: idx_end] if idx_end == len(self.list_ids) & self.shuffle: # print('\nThe end of the data was reached. Shuffling for the next epoch.') np.random.shuffle(self.indices) # Keep track of last indice for end of subepoch self.idx_end = idx_end # Select the corresponding ids list_ids_batch = [self.list_ids[i] for i in indices] # For paired organs, two images (left, right eyes) are selected for each id. if self.organ + '_' + self.view in self.left_right_organs_views: list_ids_batch = [ID for ID in list_ids_batch for _ in ('right', 'left')] return self._data_generation(list_ids_batch) class MyCSVLogger(Callback): """ Custom CSV Logger callback class for Keras training: append to existing file if can be found. Allows to keep track of training over several jobs. """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True self.csv_file = None if six.PY2: self.file_flags = 'b' self._open_args = {} else: self.file_flags = '' self._open_args = {'newline': '\n'} Callback.__init__(self) def on_train_begin(self, logs=None): if self.append: if file_io.file_exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = io.open(self.filename, mode + self.file_flags, **self._open_args) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, collections_abc.Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch', 'learning_rate'] + self.keys if six.PY2: fieldnames = [unicode(x) for x in fieldnames] self.writer = csv.DictWriter( self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch, 'learning_rate': eval(self.model.optimizer.lr)}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None class MyModelCheckpoint(ModelCheckpoint): """ Custom checkpoint callback class for Keras training. Handles a baseline performance. """ def __init__(self, filepath, monitor='val_loss', baseline=-np.Inf, verbose=0, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch'): # Parameters ModelCheckpoint.__init__(self, filepath, monitor=monitor, verbose=verbose, save_best_only=save_best_only, save_weights_only=save_weights_only, mode=mode, save_freq=save_freq) if mode == 'min': self.monitor_op = np.less self.best = baseline elif mode == 'max': self.monitor_op = np.greater self.best = baseline else: print('Error. mode for metric must be either min or max') sys.exit(1) class DeepLearning(Metrics): """ Core helper class to train models. Used to: - build the data generators - generate the CNN architectures - load the weights """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, debug_mode=False): # Initialization Metrics.__init__(self) tf.random.set_seed(self.seed) # Model's version self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = int(n_fc_layers) self.n_fc_nodes = int(n_fc_nodes) self.optimizer = optimizer self.learning_rate = float(learning_rate) self.weight_decay = float(weight_decay) self.dropout_rate = float(dropout_rate) self.data_augmentation_factor = float(data_augmentation_factor) self.outer_fold = None self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # NNet's architecture and weights self.side_predictors = self.dict_side_predictors[target] if self.organ + '_' + self.view in self.left_right_organs_views: self.side_predictors.append('organ_side') self.dict_final_activations = {'regression': 'linear', 'binary': 'sigmoid', 'multiclass': 'softmax', 'saliency': 'linear'} self.path_load_weights = None self.keras_weights = None # Generators self.debug_mode = debug_mode self.debug_fraction = 0.005 self.DATA_FEATURES = {} self.mode = None self.n_cpus = len(os.sched_getaffinity(0)) self.dir_images = '../images/' + organ + '/' + view + '/' + transformation + '/' # define dictionary to fit the architecture's input size to the images sizes (take min (height, width)) self.dict_organ_view_transformation_to_image_size = { 'Eyes_Fundus_Raw': (316, 316), # initial size (1388, 1388) 'Eyes_OCT_Raw': (312, 320), # initial size (500, 512) 'Musculoskeletal_Spine_Sagittal': (466, 211), # initial size (1513, 684) 'Musculoskeletal_Spine_Coronal': (315, 313), # initial size (724, 720) 'Musculoskeletal_Hips_MRI': (329, 303), # initial size (626, 680) 'Musculoskeletal_Knees_MRI': (347, 286) # initial size (851, 700) } self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Brain_MRI_SagittalRaw', 'Brain_MRI_SagittalReference', 'Brain_MRI_CoronalRaw', 'Brain_MRI_CoronalReference', 'Brain_MRI_TransverseRaw', 'Brain_MRI_TransverseReference'], (316, 316))) # initial size (88, 88) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Arterial_Carotids_Mixed', 'Arterial_Carotids_LongAxis', 'Arterial_Carotids_CIMT120', 'Arterial_Carotids_CIMT150', 'Arterial_Carotids_ShortAxis'], (337, 291))) # initial size (505, 436) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Heart_MRI_2chambersRaw', 'Heart_MRI_2chambersContrast', 'Heart_MRI_3chambersRaw', 'Heart_MRI_3chambersContrast', 'Heart_MRI_4chambersRaw', 'Heart_MRI_4chambersContrast'], (316, 316))) # initial size (200, 200) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Liver_Raw', 'Abdomen_Liver_Contrast'], (288, 364))) # initial size (288, 364) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Pancreas_Raw', 'Abdomen_Pancreas_Contrast'], (288, 350))) # initial size (288, 350) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Musculoskeletal_FullBody_Figure', 'Musculoskeletal_FullBody_Skeleton', 'Musculoskeletal_FullBody_Flesh', 'Musculoskeletal_FullBody_Mixed'], (541, 181))) # initial size (811, 272) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['PhysicalActivity_FullWeek_GramianAngularField1minDifference', 'PhysicalActivity_FullWeek_GramianAngularField1minSummation', 'PhysicalActivity_FullWeek_MarkovTransitionField1min', 'PhysicalActivity_FullWeek_RecurrencePlots1min'], (316, 316))) # initial size (316, 316) self.dict_architecture_to_image_size = {'MobileNet': (224, 224), 'MobileNetV2': (224, 224), 'NASNetMobile': (224, 224), 'NASNetLarge': (331, 331)} if self.architecture in ['MobileNet', 'MobileNetV2', 'NASNetMobile', 'NASNetLarge']: self.image_width, self.image_height = self.dict_architecture_to_image_size[architecture] else: self.image_width, self.image_height = \ self.dict_organ_view_transformation_to_image_size[organ + '_' + view + '_' + transformation] # define dictionary of batch sizes to fit as many samples as the model's architecture allows self.dict_batch_sizes = { # Default, applies to all images with resized input ~100,000 pixels 'Default': {'VGG16': 32, 'VGG19': 32, 'DenseNet121': 16, 'DenseNet169': 16, 'DenseNet201': 16, 'Xception': 32, 'InceptionV3': 32, 'InceptionResNetV2': 8, 'ResNet50': 32, 'ResNet101': 16, 'ResNet152': 16, 'ResNet50V2': 32, 'ResNet101V2': 16, 'ResNet152V2': 16, 'ResNeXt50': 4, 'ResNeXt101': 8, 'EfficientNetB7': 4, 'MobileNet': 128, 'MobileNetV2': 64, 'NASNetMobile': 64, 'NASNetLarge': 4}} # Define batch size if organ + '_' + view in self.dict_batch_sizes.keys(): randoself.batch_size = self.dict_batch_sizes[organ + '_' + view][architecture] else: self.batch_size = self.dict_batch_sizes['Default'][architecture] # double the batch size for the teslaM40 cores that have bigger memory if len(GPUtil.getGPUs()) > 0: # make sure GPUs are available (not truesometimes for debugging) if GPUtil.getGPUs()[0].memoryTotal > 20000: self.batch_size *= 2 # Define number of ids per batch (twice fewer for paired organs, because left and right samples) self.n_ids_batch = self.batch_size if organ + '_' + view in self.left_right_organs_views: self.n_ids_batch //= 2 # Define number of samples per subepoch if debug_mode: self.n_samples_per_subepoch = self.batch_size * 4 else: self.n_samples_per_subepoch = 32768 if organ + '_' + view in self.left_right_organs_views: self.n_samples_per_subepoch //= 2 # dict to decide which field is used to generate the ids when several targets share the same ids self.dict_target_to_ids = dict.fromkeys(['Age', 'Sex'], 'Age') # Note: R-Squared and F1-Score are not available, because their batch based values are misleading. # For some reason, Sensitivity and Specificity are not available either. Might implement later. self.dict_losses_K = {'MSE': MeanSquaredError(name='MSE'), 'Binary-Crossentropy': BinaryCrossentropy(name='Binary-Crossentropy')} self.dict_metrics_K = {'R-Squared': RSquare(name='R-Squared', y_shape=(1,)), 'RMSE': RootMeanSquaredError(name='RMSE'), 'F1-Score': F1Score(name='F1-Score', num_classes=1, dtype=tf.float32), 'ROC-AUC': AUC(curve='ROC', name='ROC-AUC'), 'PR-AUC': AUC(curve='PR', name='PR-AUC'), 'Binary-Accuracy': BinaryAccuracy(name='Binary-Accuracy'), 'Precision': Precision(name='Precision'), 'Recall': Recall(name='Recall'), 'True-Positives': TruePositives(name='True-Positives'), 'False-Positives': FalsePositives(name='False-Positives'), 'False-Negatives': FalseNegatives(name='False-Negatives'), 'True-Negatives': TrueNegatives(name='True-Negatives')} # Metrics self.prediction_type = self.dict_prediction_types[target] self.loss_name = self.dict_losses_names[self.prediction_type] self.loss_function = self.dict_losses_K[self.loss_name] self.main_metric_name = self.dict_main_metrics_names_K[target] self.main_metric_mode = self.main_metrics_modes[self.main_metric_name] self.main_metric = self.dict_metrics_K[self.main_metric_name] self.metrics_names = [self.main_metric_name] self.metrics = [self.dict_metrics_K[metric_name] for metric_name in self.metrics_names] # Optimizers self.optimizers = {'Adam': Adam, 'RMSprop': RMSprop, 'Adadelta': Adadelta} # Model self.model = None @staticmethod def _append_ext(fn): return fn + ".jpg" def _load_data_features(self): for fold in self.folds: self.DATA_FEATURES[fold] = pd.read_csv( self.path_data + 'data-features_' + self.organ + '_' + self.view + '_' + self.transformation + '_' + self.dict_target_to_ids[self.target] + '_' + fold + '_' + self.outer_fold + '.csv') for col_name in self.id_vars: self.DATA_FEATURES[fold][col_name] = self.DATA_FEATURES[fold][col_name].astype(str) self.DATA_FEATURES[fold].set_index('id', drop=False, inplace=True) def _take_subset_to_debug(self): for fold in self.folds: # use +1 or +2 to test the leftovers pipeline leftovers_extra = {'train': 0, 'val': 1, 'test': 2} n_batches = 2 n_limit_fold = leftovers_extra[fold] + self.batch_size * n_batches self.DATA_FEATURES[fold] = self.DATA_FEATURES[fold].iloc[:n_limit_fold, :] def _generate_generators(self, DATA_FEATURES): GENERATORS = {} for fold in self.folds: # do not generate a generator if there are no samples (can happen for leftovers generators) if fold not in DATA_FEATURES.keys(): continue # parameters training_mode = True if self.mode == 'model_training' else False if (fold == 'train') & (self.mode == 'model_training') & \ (self.organ + '_' + self.view not in self.organsviews_not_to_augment): data_augmentation = True else: data_augmentation = False # define batch size for testing: data is split between a part that fits in batches, and leftovers if self.mode == 'model_testing': if self.organ + '_' + self.view in self.left_right_organs_views: n_samples = len(DATA_FEATURES[fold].index) * 2 else: n_samples = len(DATA_FEATURES[fold].index) batch_size_fold = min(self.batch_size, n_samples) else: batch_size_fold = self.batch_size if (fold == 'train') & (self.mode == 'model_training'): n_samples_per_subepoch = self.n_samples_per_subepoch else: n_samples_per_subepoch = None # generator GENERATORS[fold] = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=DATA_FEATURES[fold], n_samples_per_subepoch=n_samples_per_subepoch, batch_size=batch_size_fold, training_mode=training_mode, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=data_augmentation, data_augmentation_factor=self.data_augmentation_factor, seed=self.seed) return GENERATORS def _generate_class_weights(self): if self.dict_prediction_types[self.target] == 'binary': self.class_weights = {} counts = self.DATA_FEATURES['train'][self.target + '_raw'].value_counts() n_total = counts.sum() # weighting the samples for each class inversely proportional to their prevalence, with order of magnitude 1 for i in counts.index.values: self.class_weights[i] = n_total / (counts.loc[i] * len(counts.index)) def _generate_cnn(self): # define the arguments # take special initial weights for EfficientNetB7 (better) if (self.architecture == 'EfficientNetB7') & (self.keras_weights == 'imagenet'): w = 'noisy-student' else: w = self.keras_weights kwargs = {"include_top": False, "weights": w, "input_shape": (self.image_width, self.image_height, 3)} if self.architecture in ['ResNet50', 'ResNet101', 'ResNet152', 'ResNet50V2', 'ResNet101V2', 'ResNet152V2', 'ResNeXt50', 'ResNeXt101']: import tensorflow.keras kwargs.update( {"backend": tensorflow.keras.backend, "layers": tensorflow.keras.layers, "models": tensorflow.keras.models, "utils": tensorflow.keras.utils}) # load the architecture builder if self.architecture == 'VGG16': from tensorflow.keras.applications.vgg16 import VGG16 as ModelBuilder elif self.architecture == 'VGG19': from tensorflow.keras.applications.vgg19 import VGG19 as ModelBuilder elif self.architecture == 'DenseNet121': from tensorflow.keras.applications.densenet import DenseNet121 as ModelBuilder elif self.architecture == 'DenseNet169': from tensorflow.keras.applications.densenet import DenseNet169 as ModelBuilder elif self.architecture == 'DenseNet201': from tensorflow.keras.applications.densenet import DenseNet201 as ModelBuilder elif self.architecture == 'Xception': from tensorflow.keras.applications.xception import Xception as ModelBuilder elif self.architecture == 'InceptionV3': from tensorflow.keras.applications.inception_v3 import InceptionV3 as ModelBuilder elif self.architecture == 'InceptionResNetV2': from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 as ModelBuilder elif self.architecture == 'ResNet50': from keras_applications.resnet import ResNet50 as ModelBuilder elif self.architecture == 'ResNet101': from keras_applications.resnet import ResNet101 as ModelBuilder elif self.architecture == 'ResNet152': from keras_applications.resnet import ResNet152 as ModelBuilder elif self.architecture == 'ResNet50V2': from keras_applications.resnet_v2 import ResNet50V2 as ModelBuilder elif self.architecture == 'ResNet101V2': from keras_applications.resnet_v2 import ResNet101V2 as ModelBuilder elif self.architecture == 'ResNet152V2': from keras_applications.resnet_v2 import ResNet152V2 as ModelBuilder elif self.architecture == 'ResNeXt50': from keras_applications.resnext import ResNeXt50 as ModelBuilder elif self.architecture == 'ResNeXt101': from keras_applications.resnext import ResNeXt101 as ModelBuilder elif self.architecture == 'EfficientNetB7': from efficientnet.tfkeras import EfficientNetB7 as ModelBuilder # The following model have a fixed input size requirement elif self.architecture == 'NASNetMobile': from tensorflow.keras.applications.nasnet import NASNetMobile as ModelBuilder elif self.architecture == 'NASNetLarge': from tensorflow.keras.applications.nasnet import NASNetLarge as ModelBuilder elif self.architecture == 'MobileNet': from tensorflow.keras.applications.mobilenet import MobileNet as ModelBuilder elif self.architecture == 'MobileNetV2': from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 as ModelBuilder else: print('Architecture does not exist.') sys.exit(1) # build the model's base cnn = ModelBuilder(**kwargs) x = cnn.output # complete the model's base if self.architecture in ['VGG16', 'VGG19']: x = Flatten()(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) else: x = GlobalAveragePooling2D()(x) if self.architecture == 'EfficientNetB7': x = Dropout(self.dropout_rate)(x) cnn_output = x return cnn.input, cnn_output def _generate_side_nn(self): side_nn = Sequential() side_nn.add(Dense(16, input_dim=len(self.side_predictors), activation="relu", kernel_regularizer=regularizers.l2(self.weight_decay))) return side_nn.input, side_nn.output def _complete_architecture(self, cnn_input, cnn_output, side_nn_input, side_nn_output): x = concatenate([cnn_output, side_nn_output]) x = Dropout(self.dropout_rate)(x) for n in [int(self.n_fc_nodes * (2 ** (2 * (self.n_fc_layers - 1 - i)))) for i in range(self.n_fc_layers)]: x = Dense(n, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) # scale the dropout proportionally to the number of nodes in a layer. No dropout for the last layers if n > 16: x = Dropout(self.dropout_rate * n / 1024)(x) predictions = Dense(1, activation=self.dict_final_activations[self.prediction_type], kernel_regularizer=regularizers.l2(self.weight_decay))(x) self.model = Model(inputs=[cnn_input, side_nn_input], outputs=predictions) def _generate_architecture(self): cnn_input, cnn_output = self._generate_cnn() side_nn_input, side_nn_output = self._generate_side_nn() self._complete_architecture(cnn_input=cnn_input, cnn_output=cnn_output, side_nn_input=side_nn_input, side_nn_output=side_nn_output) def _load_model_weights(self): try: self.model.load_weights(self.path_load_weights) except (FileNotFoundError, TypeError): # load backup weights if the main weights are corrupted try: self.model.load_weights(self.path_load_weights.replace('model-weights', 'backup-model-weights')) except FileNotFoundError: print('Error. No file was found. imagenet weights should have been used. Bug somewhere.') sys.exit(1) @staticmethod def clean_exit(): # exit print('\nDone.\n') print('Killing JOB PID with kill...') os.system('touch ../eo/' + os.environ['SLURM_JOBID']) os.system('kill ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB PID with kill -9...') os.system('kill -9 ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB ID') os.system('scancel ' + os.environ['SLURM_JOBID']) time.sleep(60) print('Everything failed to kill the job. Hanging there until hitting walltime...') class Training(DeepLearning): """ Class to train CNN models: - Generates the architecture - Loads the best last weights so that a model can be trained over several jobs - Generates the callbacks - Compiles the model - Trains the model """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False, transfer_learning=None, continue_training=True, display_full_metrics=True): # parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.version = self.version + '_' + str(outer_fold) # NNet's architecture's weights self.continue_training = continue_training self.transfer_learning = transfer_learning self.list_parameters_to_match = ['organ', 'transformation', 'view'] # dict to decide in which order targets should be used when trying to transfer weight from a similar model self.dict_alternative_targets_for_transfer_learning = {'Age': ['Age', 'Sex'], 'Sex': ['Sex', 'Age']} # Generators self.folds = ['train', 'val'] self.mode = 'model_training' self.class_weights = None self.GENERATORS = None # Metrics self.baseline_performance = None if display_full_metrics: self.metrics_names = self.dict_metrics_names_K[self.prediction_type] # Model self.path_load_weights = self.path_data + 'model-weights_' + self.version + '.h5' if debug_mode: self.path_save_weights = self.path_data + 'model-weights-debug.h5' else: self.path_save_weights = self.path_data + 'model-weights_' + self.version + '.h5' self.n_epochs_max = 100000 self.callbacks = None # Load and preprocess the data, build the generators def data_preprocessing(self): self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._generate_class_weights() self.GENERATORS = self._generate_generators(self.DATA_FEATURES) # Determine which weights to load, if any. def _weights_for_transfer_learning(self): print('Looking for models to transfer weights from...') # define parameters parameters = self._version_to_parameters(self.version) # continue training if possible if self.continue_training and os.path.exists(self.path_load_weights): print('Loading the weights from the model\'s previous training iteration.') return # Initialize the weights using other the weights from other successful hyperparameters combinations if self.transfer_learning == 'hyperparameters': # Check if the same model with other hyperparameters have already been trained. Pick the best for transfer. params = self.version.split('_') params_tl_idx = \ [i for i in range(len(names_model_parameters)) if any(names_model_parameters[i] == p for p in ['optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'])] for idx in params_tl_idx: params[idx] = '*' versions = '../eo/MI02_' + '_'.join(params) + '.out' files = glob.glob(versions) if self.main_metric_mode == 'min': best_perf = np.Inf else: best_perf = -np.Inf for file in files: hand = open(file, 'r') # find best last performance final_improvement_line = None baseline_performance_line = None for line in hand: line = line.rstrip() if re.search('Baseline validation ' + self.main_metric_name + ' = ', line): baseline_performance_line = line if re.search('val_' + self.main_metric_name + ' improved from', line): final_improvement_line = line hand.close() if final_improvement_line is not None: perf = float(final_improvement_line.split(' ')[7].replace(',', '')) elif baseline_performance_line is not None: perf = float(baseline_performance_line.split(' ')[-1]) else: continue # Keep track of the file with the best performance if self.main_metric_mode == 'min': update = perf < best_perf else: update = perf > best_perf if update: best_perf = perf self.path_load_weights = \ file.replace('../eo/', self.path_data).replace('MI02', 'model-weights').replace('.out', '.h5') if best_perf not in [-np.Inf, np.Inf]: print('Transfering the weights from: ' + self.path_load_weights + ', with ' + self.main_metric_name + ' = ' + str(best_perf)) return # Initialize the weights based on models trained on different datasets, ranked by similarity if self.transfer_learning == 'datasets': while True: # print('Matching models for the following criterias:'); # print(['architecture', 'target'] + list_parameters_to_match) # start by looking for models trained on the same target, then move to other targets for target_to_load in self.dict_alternative_targets_for_transfer_learning[parameters['target']]: # print('Target used: ' + target_to_load) parameters_to_match = parameters.copy() parameters_to_match['target'] = target_to_load # load the ranked performances table to select the best performing model among the similar # models available path_performances_to_load = self.path_data + 'PERFORMANCES_ranked_' + \ parameters_to_match['target'] + '_' + 'val' + '.csv' try: Performances = pd.read_csv(path_performances_to_load) Performances['organ'] = Performances['organ'].astype(str) except FileNotFoundError: # print("Could not load the file: " + path_performances_to_load) break # iteratively get rid of models that are not similar enough, based on the list for parameter in ['architecture', 'target'] + self.list_parameters_to_match: Performances = Performances[Performances[parameter] == parameters_to_match[parameter]] # if at least one model is similar enough, load weights from the best of them if len(Performances.index) != 0: self.path_load_weights = self.path_data + 'model-weights_' + Performances['version'][0] + '.h5' self.keras_weights = None print('transfering the weights from: ' + self.path_load_weights) return # if no similar model was found, try again after getting rid of the last selection criteria if len(self.list_parameters_to_match) == 0: print('No model found for transfer learning.') break self.list_parameters_to_match.pop() # Otherwise use imagenet weights to initialize print('Using imagenet weights.') # using string instead of None for path to not ge self.path_load_weights = None self.keras_weights = 'imagenet' def _compile_model(self): # if learning rate was reduced with success according to logger, start with this reduced learning rate if self.path_load_weights is not None: path_logger = self.path_load_weights.replace('model-weights', 'logger').replace('.h5', '.csv') else: path_logger = self.path_data + 'logger_' + self.version + '.csv' if os.path.exists(path_logger): try: logger = pd.read_csv(path_logger) best_log = \ logger[logger['val_' + self.main_metric_name] == logger['val_' + self.main_metric_name].max()] lr = best_log['learning_rate'].values[0] except pd.errors.EmptyDataError: os.remove(path_logger) lr = self.learning_rate else: lr = self.learning_rate self.model.compile(optimizer=self.optimizers[self.optimizer](lr=lr, clipnorm=1.0), loss=self.loss_function, metrics=self.metrics) def _compute_baseline_performance(self): # calculate initial val_loss value if self.continue_training: idx_metric_name = ([self.loss_name] + self.metrics_names).index(self.main_metric_name) baseline_perfs = self.model.evaluate(self.GENERATORS['val'], steps=self.GENERATORS['val'].steps) self.baseline_performance = baseline_perfs[idx_metric_name] elif self.main_metric_mode == 'min': self.baseline_performance = np.Inf else: self.baseline_performance = -np.Inf print('Baseline validation ' + self.main_metric_name + ' = ' + str(self.baseline_performance)) def _define_callbacks(self): if self.debug_mode: path_logger = self.path_data + 'logger-debug.csv' append = False else: path_logger = self.path_data + 'logger_' + self.version + '.csv' append = self.continue_training csv_logger = MyCSVLogger(path_logger, separator=',', append=append) model_checkpoint_backup = MyModelCheckpoint(self.path_save_weights.replace('model-weights', 'backup-model-weights'), monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') model_checkpoint = MyModelCheckpoint(self.path_save_weights, monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') patience_reduce_lr = min(7, 3 * self.GENERATORS['train'].n_subepochs_per_epoch) reduce_lr_on_plateau = ReduceLROnPlateau(monitor='loss', factor=0.5, patience=patience_reduce_lr, verbose=1, mode='min', min_delta=0, cooldown=0, min_lr=0) early_stopping = EarlyStopping(monitor='val_' + self.main_metric.name, min_delta=0, patience=15, verbose=0, mode=self.main_metric_mode, baseline=self.baseline_performance, restore_best_weights=True) self.callbacks = [csv_logger, model_checkpoint_backup, model_checkpoint, early_stopping, reduce_lr_on_plateau] def build_model(self): self._weights_for_transfer_learning() self._generate_architecture() # Load weights if possible try: load_weights = True if os.path.exists(self.path_load_weights) else False except TypeError: load_weights = False if load_weights: self._load_model_weights() else: # save transferred weights as default, in case no better weights are found self.model.save_weights(self.path_save_weights.replace('model-weights', 'backup-model-weights')) self.model.save_weights(self.path_save_weights) self._compile_model() self._compute_baseline_performance() self._define_callbacks() def train_model(self): # garbage collector _ = gc.collect() # use more verbose when debugging verbose = 1 if self.debug_mode else 2 # train the model self.model.fit(self.GENERATORS['train'], steps_per_epoch=self.GENERATORS['train'].steps, validation_data=self.GENERATORS['val'], validation_steps=self.GENERATORS['val'].steps, shuffle=False, use_multiprocessing=False, workers=self.n_cpus, epochs=self.n_epochs_max, class_weight=self.class_weights, callbacks=self.callbacks, verbose=verbose) class PredictionsGenerate(DeepLearning): """ Generates the predictions for each model. Unscales the predictions. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False): # Initialize parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.mode = 'model_testing' # Define dictionaries attributes for data, generators and predictions self.DATA_FEATURES_BATCH = {} self.DATA_FEATURES_LEFTOVERS = {} self.GENERATORS_BATCH = None self.GENERATORS_LEFTOVERS = None self.PREDICTIONS = {} def _split_batch_leftovers(self): # split the samples into two groups: what can fit into the batch size, and the leftovers. for fold in self.folds: n_leftovers = len(self.DATA_FEATURES[fold].index) % self.n_ids_batch if n_leftovers > 0: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold].iloc[:-n_leftovers] self.DATA_FEATURES_LEFTOVERS[fold] = self.DATA_FEATURES[fold].tail(n_leftovers) else: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold] # special case for syntax if no leftovers if fold in self.DATA_FEATURES_LEFTOVERS.keys(): del self.DATA_FEATURES_LEFTOVERS[fold] def _generate_outerfold_predictions(self): # prepare unscaling if self.target in self.targets_regression: mean_train = self.DATA_FEATURES['train'][self.target + '_raw'].mean() std_train = self.DATA_FEATURES['train'][self.target + '_raw'].std() else: mean_train, std_train = None, None # Generate predictions for fold in self.folds: print('Predicting samples from fold ' + fold + '.') print(str(len(self.DATA_FEATURES[fold].index)) + ' samples to predict.') print('Predicting batches: ' + str(len(self.DATA_FEATURES_BATCH[fold].index)) + ' samples.') pred_batch = self.model.predict(self.GENERATORS_BATCH[fold], steps=self.GENERATORS_BATCH[fold].steps, verbose=1) if fold in self.GENERATORS_LEFTOVERS.keys(): print('Predicting leftovers: ' + str(len(self.DATA_FEATURES_LEFTOVERS[fold].index)) + ' samples.') pred_leftovers = self.model.predict(self.GENERATORS_LEFTOVERS[fold], steps=self.GENERATORS_LEFTOVERS[fold].steps, verbose=1) pred_full = np.concatenate((pred_batch, pred_leftovers)).squeeze() else: pred_full = pred_batch.squeeze() print('Predicted a total of ' + str(len(pred_full)) + ' samples.') # take the average between left and right predictions for paired organs if self.organ + '_' + self.view in self.left_right_organs_views: pred_full = np.mean(pred_full.reshape(-1, 2), axis=1) # unscale predictions if self.target in self.targets_regression: pred_full = pred_full * std_train + mean_train # format the dataframe self.DATA_FEATURES[fold]['pred'] = pred_full self.PREDICTIONS[fold] = self.DATA_FEATURES[fold] self.PREDICTIONS[fold]['id'] = [ID.replace('.jpg', '') for ID in self.PREDICTIONS[fold]['id']] def _generate_predictions(self): self.path_load_weights = self.path_data + 'model-weights_' + self.version + '_' + self.outer_fold + '.h5' self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._load_model_weights() self._split_batch_leftovers() # generate the generators self.GENERATORS_BATCH = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_BATCH) if self.DATA_FEATURES_LEFTOVERS is not None: self.GENERATORS_LEFTOVERS = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_LEFTOVERS) self._generate_outerfold_predictions() def _format_predictions(self): for fold in self.folds: perf_fun = self.dict_metrics_sklearn[self.dict_main_metrics_names[self.target]] perf = perf_fun(self.PREDICTIONS[fold][self.target + '_raw'], self.PREDICTIONS[fold]['pred']) print('The ' + fold + ' performance is: ' + str(perf)) # format the predictions self.PREDICTIONS[fold].index.name = 'column_names' self.PREDICTIONS[fold] = self.PREDICTIONS[fold][['id', 'outer_fold', 'pred']] def generate_predictions(self): self._generate_architecture() self._generate_predictions() self._format_predictions() def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + self.outer_fold + '.csv', index=False) class PredictionsConcatenate(Basics): """ Concatenates the predictions coming from the different cross validation folds. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None): # Initialize parameters Basics.__init__(self) self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # Define dictionaries attributes for data, generators and predictions self.PREDICTIONS = {} def concatenate_predictions(self): for fold in self.folds: for outer_fold in self.outer_folds: Predictions_fold = pd.read_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + outer_fold + '.csv') if fold in self.PREDICTIONS.keys(): self.PREDICTIONS[fold] = pd.concat([self.PREDICTIONS[fold], Predictions_fold]) else: self.PREDICTIONS[fold] = Predictions_fold def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '.csv', index=False) class PredictionsMerge(Basics): """ Merges the predictions from all models into a unified dataframe. """ def __init__(self, target=None, fold=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.data_features = None self.list_models = None self.Predictions_df_previous = None self.Predictions_df = None def _load_data_features(self): self.data_features = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=self.id_vars + self.demographic_vars) for var in self.id_vars: self.data_features[var] = self.data_features[var].astype(str) self.data_features.set_index('id', drop=False, inplace=True) self.data_features.index.name = 'column_names' def _preprocess_data_features(self): # For the training set, each sample is predicted n_CV_outer_folds times, so prepare a larger dataframe if self.fold == 'train': df_all_folds = None for outer_fold in self.outer_folds: df_fold = self.data_features.copy() df_all_folds = df_fold if outer_fold == self.outer_folds[0] else df_all_folds.append(df_fold) self.data_features = df_all_folds def _load_previous_merged_predictions(self): if os.path.exists(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv'): self.Predictions_df_previous = pd.read_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions_df_previous.drop(columns=['eid', 'instance'] + self.demographic_vars, inplace=True) def _list_models(self): # generate list of predictions that will be integrated in the Predictions dataframe self.list_models = glob.glob(self.path_data + 'Predictions_instances_' + self.target + '_*_' + self.fold + '.csv') # get rid of ensemble models and models already merged self.list_models = [model for model in self.list_models if ('*' not in model)] if self.Predictions_df_previous is not None: self.list_models = \ [model for model in self.list_models if ('pred_' + '_'.join(model.split('_')[2:-1]) not in self.Predictions_df_previous.columns)] self.list_models.sort() def preprocessing(self): self._load_data_features() self._preprocess_data_features() self._load_previous_merged_predictions() self._list_models() def merge_predictions(self): # merge the predictions print('There are ' + str(len(self.list_models)) + ' models to merge.') i = 0 # define subgroups to accelerate merging process list_subgroups = list(set(['_'.join(model.split('_')[3:7]) for model in self.list_models])) for subgroup in list_subgroups: print('Merging models from the subgroup ' + subgroup) models_subgroup = [model for model in self.list_models if subgroup in model] Predictions_subgroup = None # merge the models one by one for file_name in models_subgroup: i += 1 version = '_'.join(file_name.split('_')[2:-1]) if self.Predictions_df_previous is not None and \ 'pred_' + version in self.Predictions_df_previous.columns: print('The model ' + version + ' has already been merged before.') else: print('Merging the ' + str(i) + 'th model: ' + version) # load csv and format the predictions prediction = pd.read_csv(self.path_data + file_name) print('raw prediction\'s shape: ' + str(prediction.shape)) for var in ['id', 'outer_fold']: prediction[var] = prediction[var].apply(str) prediction.rename(columns={'pred': 'pred_' + version}, inplace=True) # merge data frames if Predictions_subgroup is None: Predictions_subgroup = prediction elif self.fold == 'train': Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id', 'outer_fold']) else: prediction.drop(['outer_fold'], axis=1, inplace=True) # not supported for panda version > 0.23.4 for now Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id']) # merge group predictions data frames if self.fold != 'train': Predictions_subgroup.drop(['outer_fold'], axis=1, inplace=True) if Predictions_subgroup is not None: if self.Predictions_df is None: self.Predictions_df = Predictions_subgroup elif self.fold == 'train': self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id']) print('Predictions_df\'s shape: ' + str(self.Predictions_df.shape)) # garbage collector gc.collect() # Merge with the previously merged predictions if (self.Predictions_df_previous is not None) & (self.Predictions_df is not None): if self.fold == 'train': self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: self.Predictions_df.drop(columns=['outer_fold'], inplace=True) # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id']) self.Predictions_df_previous = None elif self.Predictions_df is None: print('No new models to merge. Exiting.') print('Done.') sys.exit(0) # Reorder the columns alphabetically pred_versions = [col for col in self.Predictions_df.columns if 'pred_' in col] pred_versions.sort() id_cols = ['id', 'outer_fold'] if self.fold == 'train' else ['id'] self.Predictions_df = self.Predictions_df[id_cols + pred_versions] def postprocessing(self): # get rid of useless rows in data_features before merging to keep the memory requirements as low as possible self.data_features = self.data_features[self.data_features['id'].isin(self.Predictions_df['id'].values)] # merge data_features and predictions if self.fold == 'train': print('Starting to merge a massive dataframe') self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id']) print('Merging done') # remove rows for which no prediction is available (should be none) subset_cols = [col for col in self.Predictions_df.columns if 'pred_' in col] self.Predictions_df.dropna(subset=subset_cols, how='all', inplace=True) # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_df.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_df[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def save_merged_predictions(self): print('Writing the merged predictions...') self.Predictions_df.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv', index=False) class PredictionsEids(Basics): """ Computes the average age prediction across samples from different instances for every participant. (Scaled back to instance 0) """ def __init__(self, target=None, fold=None, debug_mode=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.debug_mode = debug_mode self.Predictions = None self.Predictions_chunk = None self.pred_versions = None self.res_versions = None self.target_0s = None self.Predictions_eids = None self.Predictions_eids_previous = None self.pred_versions_previous = None def preprocessing(self): # Load predictions self.Predictions = pd.read_csv( self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions.drop(columns=['id'], inplace=True) self.Predictions['eid'] = self.Predictions['eid'].astype(str) self.Predictions.index.name = 'column_names' self.pred_versions = [col for col in self.Predictions.columns.values if 'pred_' in col] # Prepare target values on instance 0 as a reference target_0s = pd.read_csv(self.path_data + 'data-features_eids.csv', usecols=['eid', self.target]) target_0s['eid'] = target_0s['eid'].astype(str) target_0s.set_index('eid', inplace=True) target_0s = target_0s[self.target] target_0s.name = 'target_0' target_0s = target_0s[self.Predictions['eid'].unique()] self.Predictions = self.Predictions.merge(target_0s, on='eid') # Compute biological ages reported to target_0 for pred in self.pred_versions: # Compute the biais of the predictions as a function of age print('Generating residuals for model ' + pred.replace('pred_', '')) df_model = self.Predictions[['Age', pred]] df_model.dropna(inplace=True) if (len(df_model.index)) > 0: age = df_model.loc[:, ['Age']] res = df_model['Age'] - df_model[pred] regr = LinearRegression() regr.fit(age, res) self.Predictions[pred.replace('pred_', 'correction_')] = regr.predict(self.Predictions[['Age']]) # Take the residuals bias into account when "translating" the prediction to instance 0 correction = self.Predictions['target_0'] - self.Predictions[self.target] + \ regr.predict(self.Predictions[['Age']]) - regr.predict(self.Predictions[['target_0']]) self.Predictions[pred] = self.Predictions[pred] + correction self.Predictions[self.target] = self.Predictions['target_0'] self.Predictions.drop(columns=['target_0'], inplace=True) self.Predictions.index.name = 'column_names' def processing(self): if self.fold == 'train': # Prepare template to which each model will be appended Predictions = self.Predictions[['eid'] + self.demographic_vars] Predictions = Predictions.groupby('eid', as_index=True).mean() Predictions.index.name = 'column_names' Predictions['eid'] = Predictions.index.values Predictions['instance'] = '*' Predictions['id'] = Predictions['eid'] + '_*' self.Predictions_eids = Predictions.copy() self.Predictions_eids['outer_fold'] = -1 for i in range(self.n_CV_outer_folds): Predictions_i = Predictions.copy() Predictions_i['outer_fold'] = i self.Predictions_eids = self.Predictions_eids.append(Predictions_i) # Append each model one by one because the folds are different print(str(len(self.pred_versions)) + ' models to compute.') for pred_version in self.pred_versions: if pred_version in self.pred_versions_previous: print(pred_version.replace('pred_', '') + ' had already been computed.') else: print("Computing results for version " + pred_version.replace('pred_', '')) Predictions_version = self.Predictions[['eid', pred_version, 'outer_fold']] # Use placeholder for NaN in outer_folds Predictions_version['outer_fold'][Predictions_version['outer_fold'].isna()] = -1 Predictions_version_eids = Predictions_version.groupby(['eid', 'outer_fold'], as_index=False).mean() self.Predictions_eids = self.Predictions_eids.merge(Predictions_version_eids, on=['eid', 'outer_fold'], how='outer') self.Predictions_eids[of_version] = self.Predictions_eids['outer_fold'] self.Predictions_eids[of_version][self.Predictions_eids[of_version] == -1] = np.nan del Predictions_version _ = gc.collect self.Predictions_eids.drop(columns=['outer_fold'], inplace=True) else: self.Predictions_eids = self.Predictions.groupby('eid').mean() self.Predictions_eids['eid'] = self.Predictions_eids.index.values self.Predictions_eids['instance'] = '*' self.Predictions_eids['id'] = self.Predictions_eids['eid'].astype(str) + '_' + \ self.Predictions_eids['instance'] # Re-order the columns self.Predictions_eids = self.Predictions_eids[self.id_vars + self.demographic_vars + self.pred_versions] def postprocessing(self): # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_eids.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_eids[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def _generate_single_model_predictions(self): for pred_version in self.pred_versions: path_save = \ self.path_data + 'Predictions_eids_' + '_'.join(pred_version.split('_')[1:]) + '_' + self.fold + '.csv' # Generate only if does not exist already. if not os.path.exists(path_save): Predictions_version = self.Predictions_eids[['id', 'outer_fold', pred_version]] Predictions_version.rename(columns={pred_version: 'pred'}, inplace=True) Predictions_version.dropna(subset=['pred'], inplace=True) Predictions_version.to_csv(path_save, index=False) def save_predictions(self): self.Predictions_eids.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_eids_' + self.target + '_' + self.fold + '.csv', index=False) # Generate and save files for every single model self._generate_single_model_predictions() class PerformancesGenerate(Metrics): """ Computes the performances for each model. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, fold=None, pred_type=None, debug_mode=False): Metrics.__init__(self) self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = n_fc_layers self.n_fc_nodes = n_fc_nodes self.optimizer = optimizer self.learning_rate = learning_rate self.weight_decay = weight_decay self.dropout_rate = dropout_rate self.data_augmentation_factor = data_augmentation_factor self.fold = fold self.pred_type = pred_type if debug_mode: self.n_bootstrap_iterations = 3 else: self.n_bootstrap_iterations = 1000 self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor self.names_metrics = self.dict_metrics_names[self.dict_prediction_types[target]] self.data_features = None self.Predictions = None self.PERFORMANCES = None def _preprocess_data_features_predictions_for_performances(self): # load dataset data_features = pd.read_csv(self.path_data + 'data-features_' + self.pred_type + '.csv', usecols=['id', 'Sex', 'Age']) # format data_features to extract y data_features.rename(columns={self.target: 'y'}, inplace=True) data_features = data_features[['id', 'y']] data_features['id'] = data_features['id'].astype(str) data_features['id'] = data_features['id'] data_features.set_index('id', drop=False, inplace=True) data_features.index.name = 'columns_names' self.data_features = data_features def _preprocess_predictions_for_performances(self): Predictions = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + self.version + '_' + self.fold + '.csv') Predictions['id'] = Predictions['id'].astype(str) self.Predictions = Predictions.merge(self.data_features, how='inner', on=['id']) # Initialize performances dataframes and compute sample sizes def _initiate_empty_performances_df(self): # Define an empty performances dataframe to store the performances computed row_names = ['all'] + self.outer_folds col_names_sample_sizes = ['N'] if self.target in self.targets_binary: col_names_sample_sizes.extend(['N_0', 'N_1']) col_names = ['outer_fold'] + col_names_sample_sizes col_names.extend(self.names_metrics) performances = np.empty((len(row_names), len(col_names),)) performances.fill(np.nan) performances = pd.DataFrame(performances) performances.index = row_names performances.columns = col_names performances['outer_fold'] = row_names # Convert float to int for sample sizes and some metrics. for col_name in col_names_sample_sizes: # need recent version of pandas to use type below. Otherwise nan cannot be int performances[col_name] = performances[col_name].astype('Int64') # compute sample sizes for the data frame performances.loc['all', 'N'] = len(self.Predictions.index) if self.target in self.targets_binary: performances.loc['all', 'N_0'] = len(self.Predictions.loc[self.Predictions['y'] == 0].index) performances.loc['all', 'N_1'] = len(self.Predictions.loc[self.Predictions['y'] == 1].index) for outer_fold in self.outer_folds: performances.loc[outer_fold, 'N'] = len( self.Predictions.loc[self.Predictions['outer_fold'] == int(outer_fold)].index) if self.target in self.targets_binary: performances.loc[outer_fold, 'N_0'] = len( self.Predictions.loc[ (self.Predictions['outer_fold'] == int(outer_fold)) & (self.Predictions['y'] == 0)].index) performances.loc[outer_fold, 'N_1'] = len( self.Predictions.loc[ (self.Predictions['outer_fold'] == int(outer_fold)) & (self.Predictions['y'] == 1)].index) # initialize the dataframes self.PERFORMANCES = {} for mode in self.modes: self.PERFORMANCES[mode] = performances.copy() # Convert float to int for sample sizes and some metrics. for col_name in self.PERFORMANCES[''].columns.values: if any(metric in col_name for metric in self.metrics_displayed_in_int): # need recent version of pandas to use type below. Otherwise nan cannot be int self.PERFORMANCES[''][col_name] = self.PERFORMANCES[''][col_name].astype('Int64') def preprocessing(self): self._preprocess_data_features_predictions_for_performances() self._preprocess_predictions_for_performances() self._initiate_empty_performances_df() # Fill the columns for this model, outer_fold by outer_fold def compute_performances(self): # fill it outer_fold by outer_fold for outer_fold in ['all'] + self.outer_folds: print('Calculating the performances for the outer fold ' + outer_fold) # Generate a subdataframe from the predictions table for each outerfold if outer_fold == 'all': predictions_fold = self.Predictions.copy() else: predictions_fold = self.Predictions.loc[self.Predictions['outer_fold'] == int(outer_fold), :] # if no samples are available for this fold, fill columns with nans if len(predictions_fold.index) == 0: print('NO SAMPLES AVAILABLE FOR MODEL ' + self.version + ' IN OUTER_FOLD ' + outer_fold) else: # For binary classification, generate class prediction if self.target in self.targets_binary: predictions_fold_class = predictions_fold.copy() predictions_fold_class['pred'] = predictions_fold_class['pred'].round() else: predictions_fold_class = None # Fill the Performances dataframe metric by metric for name_metric in self.names_metrics: # print('Calculating the performance using the metric ' + name_metric) if name_metric in self.metrics_needing_classpred: predictions_metric = predictions_fold_class else: predictions_metric = predictions_fold metric_function = self.dict_metrics_sklearn[name_metric] self.PERFORMANCES[''].loc[outer_fold, name_metric] = metric_function(predictions_metric['y'], predictions_metric['pred']) self.PERFORMANCES['_sd'].loc[outer_fold, name_metric] = \ self._bootstrap(predictions_metric, metric_function)[1] self.PERFORMANCES['_str'].loc[outer_fold, name_metric] = "{:.3f}".format( self.PERFORMANCES[''].loc[outer_fold, name_metric]) + '+-' + "{:.3f}".format( self.PERFORMANCES['_sd'].loc[outer_fold, name_metric]) # calculate the fold sd (variance between the metrics values obtained on the different folds) folds_sd = self.PERFORMANCES[''].iloc[1:, :].std(axis=0) for name_metric in self.names_metrics: self.PERFORMANCES['_str'].loc['all', name_metric] = "{:.3f}".format( self.PERFORMANCES[''].loc['all', name_metric]) + '+-' + "{:.3f}".format( folds_sd[name_metric]) + '+-' + "{:.3f}".format(self.PERFORMANCES['_sd'].loc['all', name_metric]) # print the performances print('Performances for model ' + self.version + ': ') print(self.PERFORMANCES['_str']) def save_performances(self): for mode in self.modes: path_save = self.path_data + 'Performances_' + self.pred_type + '_' + self.version + '_' + self.fold + \ mode + '.csv' self.PERFORMANCES[mode].to_csv(path_save, index=False) class PerformancesMerge(Metrics): """ Merges the performances of the different models into a unified dataframe. """ def __init__(self, target=None, fold=None, pred_type=None, ensemble_models=None): # Parameters Metrics.__init__(self) self.target = target self.fold = fold self.pred_type = pred_type self.ensemble_models = self.convert_string_to_boolean(ensemble_models) self.names_metrics = self.dict_metrics_names[self.dict_prediction_types[target]] self.main_metric_name = self.dict_main_metrics_names[target] # list the models that need to be merged self.list_models = glob.glob(self.path_data + 'Performances_' + pred_type + '_' + target + '_*_' + fold + '_str.csv') # get rid of ensemble models if self.ensemble_models: self.list_models = [model for model in self.list_models if '*' in model] else: self.list_models = [model for model in self.list_models if '*' not in model] self.Performances = None self.Performances_alphabetical = None self.Performances_ranked = None def _initiate_empty_performances_summary_df(self): # Define the columns of the Performances dataframe # columns for sample sizes names_sample_sizes = ['N'] if self.target in self.targets_binary: names_sample_sizes.extend(['N_0', 'N_1']) # columns for metrics names_metrics = self.dict_metrics_names[self.dict_prediction_types[self.target]] # for normal folds, keep track of metric and bootstrapped metric's sd names_metrics_with_sd = [] for name_metric in names_metrics: names_metrics_with_sd.extend([name_metric, name_metric + '_sd', name_metric + '_str']) # for the 'all' fold, also keep track of the 'folds_sd' (metric's sd calculated using the folds' results) names_metrics_with_folds_sd_and_sd = [] for name_metric in names_metrics: names_metrics_with_folds_sd_and_sd.extend( [name_metric, name_metric + '_folds_sd', name_metric + '_sd', name_metric + '_str']) # merge all the columns together. First description of the model, then sample sizes and metrics for each fold names_col_Performances = ['version'] + self.names_model_parameters # special outer fold 'all' names_col_Performances.extend( ['_'.join([name, 'all']) for name in names_sample_sizes + names_metrics_with_folds_sd_and_sd]) # other outer_folds for outer_fold in self.outer_folds: names_col_Performances.extend( ['_'.join([name, outer_fold]) for name in names_sample_sizes + names_metrics_with_sd]) # Generate the empty Performance table from the rows and columns. Performances = np.empty((len(self.list_models), len(names_col_Performances),)) Performances.fill(np.nan) Performances = pd.DataFrame(Performances) Performances.columns = names_col_Performances # Format the types of the columns for colname in Performances.columns.values: if (colname in self.names_model_parameters) | ('_str' in colname): col_type = str else: col_type = float Performances[colname] = Performances[colname].astype(col_type) self.Performances = Performances def merge_performances(self): # define parameters names_metrics = self.dict_metrics_names[self.dict_prediction_types[self.target]] # initiate dataframe self._initiate_empty_performances_summary_df() # Fill the Performance table row by row for i, model in enumerate(self.list_models): # load the performances subdataframe PERFORMANCES = {} for mode in self.modes: PERFORMANCES[mode] = pd.read_csv(model.replace('_str', mode)) PERFORMANCES[mode].set_index('outer_fold', drop=False, inplace=True) # Fill the columns corresponding to the model's parameters version = '_'.join(model.split('_')[2:-2]) parameters = self._version_to_parameters(version) # fill the columns for model parameters self.Performances['version'][i] = version for parameter_name in self.names_model_parameters: self.Performances[parameter_name][i] = parameters[parameter_name] # Fill the columns for this model, outer_fold by outer_fold for outer_fold in ['all'] + self.outer_folds: # Generate a subdataframe from the predictions table for each outerfold # Fill sample size columns self.Performances['N_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N'] # For binary classification, calculate sample sizes for each class and generate class prediction if self.target in self.targets_binary: self.Performances['N_0_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N_0'] self.Performances['N_1_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N_1'] # Fill the Performances dataframe metric by metric for name_metric in names_metrics: for mode in self.modes: self.Performances[name_metric + mode + '_' + outer_fold][i] = PERFORMANCES[mode].loc[ outer_fold, name_metric] # calculate the fold sd (variance between the metrics values obtained on the different folds) folds_sd = PERFORMANCES[''].iloc[1:, :].std(axis=0) for name_metric in names_metrics: self.Performances[name_metric + '_folds_sd_all'] = folds_sd[name_metric] # Convert float to int for sample sizes and some metrics. for name_col in self.Performances.columns.values: cond1 = name_col.startswith('N_') cond2 = any(metric in name_col for metric in self.metrics_displayed_in_int) cond3 = '_sd' not in name_col cond4 = '_str' not in name_col if cond1 | cond2 & cond3 & cond4: self.Performances[name_col] = self.Performances[name_col].astype('Int64') # need recent version of pandas to use this type. Otherwise nan cannot be int # For ensemble models, merge the new performances with the previously computed performances if self.ensemble_models: Performances_withoutEnsembles = pd.read_csv(self.path_data + 'PERFORMANCES_tuned_alphabetical_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') self.Performances = Performances_withoutEnsembles.append(self.Performances) # reorder the columns (weird: automatic alphabetical re-ordering happened when append was called for 'val') self.Performances = self.Performances[Performances_withoutEnsembles.columns] # Ranking, printing and saving self.Performances_alphabetical = self.Performances.sort_values(by='version') cols_to_print = ['version', self.main_metric_name + '_str_all'] print('Performances of the models ranked by models\'names:') print(self.Performances_alphabetical[cols_to_print]) sort_by = self.dict_main_metrics_names[self.target] + '_all' sort_ascending = self.main_metrics_modes[self.dict_main_metrics_names[self.target]] == 'min' self.Performances_ranked = self.Performances.sort_values(by=sort_by, ascending=sort_ascending) print('Performances of the models ranked by the performance on the main metric on all the samples:') print(self.Performances_ranked[cols_to_print]) def save_performances(self): name_extension = 'withEnsembles' if self.ensemble_models else 'withoutEnsembles' path = self.path_data + 'PERFORMANCES_' + name_extension + '_alphabetical_' + self.pred_type + '_' + \ self.target + '_' + self.fold + '.csv' self.Performances_alphabetical.to_csv(path, index=False) self.Performances_ranked.to_csv(path.replace('_alphabetical_', '_ranked_'), index=False) class PerformancesTuning(Metrics): """ For each model, selects the best hyperparameter combination. """ def __init__(self, target=None, pred_type=None): Metrics.__init__(self) self.target = target self.pred_type = pred_type self.PERFORMANCES = {} self.PREDICTIONS = {} self.Performances = None self.models = None self.folds = ['val', 'test'] def load_data(self): for fold in self.folds: path = self.path_data + 'PERFORMANCES_withoutEnsembles_ranked_' + self.pred_type + '_' + self.target + \ '_' + fold + '.csv' self.PERFORMANCES[fold] = pd.read_csv(path).set_index('version', drop=False) self.PERFORMANCES[fold]['organ'] = self.PERFORMANCES[fold]['organ'].astype(str) self.PERFORMANCES[fold].index.name = 'columns_names' self.PREDICTIONS[fold] = pd.read_csv(path.replace('PERFORMANCES', 'PREDICTIONS').replace('_ranked', '')) def preprocess_data(self): # Get list of distinct models without taking into account hyperparameters tuning self.Performances = self.PERFORMANCES['val'] self.Performances['model'] = self.Performances['organ'] + '_' + self.Performances['view'] + '_' + \ self.Performances['transformation'] + '_' + self.Performances['architecture'] self.models = self.Performances['model'].unique() def select_models(self): main_metric_name = self.dict_main_metrics_names[self.target] main_metric_mode = self.main_metrics_modes[main_metric_name] Perf_col_name = main_metric_name + '_all' for model in self.models: Performances_model = self.Performances[self.Performances['model'] == model] Performances_model.sort_values([Perf_col_name, 'n_fc_layers', 'n_fc_nodes', 'learning_rate', 'dropout_rate', 'weight_decay', 'data_augmentation_factor'], ascending=[main_metric_mode == 'min', True, True, False, False, False, False], inplace=True) best_version = Performances_model['version'][ Performances_model[Perf_col_name] == Performances_model[Perf_col_name].max()].values[0] versions_to_drop = [version for version in Performances_model['version'].values if not version == best_version] # define columns from predictions to drop cols_to_drop = ['pred_' + version for version in versions_to_drop] + ['outer_fold_' + version for version in versions_to_drop] for fold in self.folds: self.PERFORMANCES[fold].drop(versions_to_drop, inplace=True) self.PREDICTIONS[fold].drop(cols_to_drop, axis=1, inplace=True) # drop 'model' column self.Performances.drop(['model'], axis=1, inplace=True) # Display results for fold in self.folds: print('The tuned ' + fold + ' performances are:') print(self.PERFORMANCES[fold]) def save_data(self): # Save the files for fold in self.folds: path_pred = self.path_data + 'PREDICTIONS_tuned_' + self.pred_type + '_' + self.target + '_' + fold + \ '.csv' path_perf = self.path_data + 'PERFORMANCES_tuned_ranked_' + self.pred_type + '_' + self.target + '_' + \ fold + '.csv' self.PREDICTIONS[fold].to_csv(path_pred, index=False) self.PERFORMANCES[fold].to_csv(path_perf, index=False) Performances_alphabetical = self.PERFORMANCES[fold].sort_values(by='version') Performances_alphabetical.to_csv(path_perf.replace('ranked', 'alphabetical'), index=False) # This class was coded by <NAME>. class InnerCV: """ Helper class to perform an inner cross validation to tune the hyperparameters of models trained on scalar predictors """ def __init__(self, models, inner_splits, n_iter): self.inner_splits = inner_splits self.n_iter = n_iter if isinstance(models, str): models = [models] self.models = models @staticmethod def get_model(model_name, params): if model_name == 'ElasticNet': return ElasticNet(max_iter=2000, **params) elif model_name == 'RandomForest': return RandomForestRegressor(**params) elif model_name == 'GradientBoosting': return GradientBoostingRegressor(**params) elif model_name == 'Xgboost': return XGBRegressor(**params) elif model_name == 'LightGbm': return LGBMRegressor(**params) elif model_name == 'NeuralNetwork': return MLPRegressor(solver='adam', activation='relu', hidden_layer_sizes=(128, 64, 32), batch_size=1000, early_stopping=True, **params) @staticmethod def get_hyper_distribution(model_name): if model_name == 'ElasticNet': return { 'alpha': hp.loguniform('alpha', low=np.log(0.01), high=np.log(10)), 'l1_ratio': hp.uniform('l1_ratio', low=0.01, high=0.99) } elif model_name == 'RandomForest': return { 'n_estimators': hp.randint('n_estimators', upper=300) + 150, 'max_features': hp.choice('max_features', ['auto', 0.9, 0.8, 0.7, 0.6, 0.5, 0.4]), 'max_depth': hp.choice('max_depth', [None, 10, 8, 6]) } elif model_name == 'GradientBoosting': return { 'n_estimators': hp.randint('n_estimators', upper=300) + 150, 'max_features': hp.choice('max_features', ['auto', 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]), 'learning_rate': hp.uniform('learning_rate', low=0.01, high=0.3), 'max_depth': hp.randint('max_depth', 10) + 5 } elif model_name == 'Xgboost': return { 'colsample_bytree': hp.uniform('colsample_bytree', low=0.2, high=0.7), 'gamma': hp.uniform('gamma', low=0.1, high=0.5), 'learning_rate': hp.uniform('learning_rate', low=0.02, high=0.2), 'max_depth': hp.randint('max_depth', 10) + 5, 'n_estimators': hp.randint('n_estimators', 300) + 150, 'subsample': hp.uniform('subsample', 0.2, 0.8) } elif model_name == 'LightGbm': return { 'num_leaves': hp.randint('num_leaves', 40) + 5, 'min_child_samples': hp.randint('min_child_samples', 400) + 100, 'min_child_weight': hp.choice('min_child_weight', [1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4]), 'subsample': hp.uniform('subsample', low=0.2, high=0.8), 'colsample_bytree': hp.uniform('colsample_bytree', low=0.4, high=0.6), 'reg_alpha': hp.choice('reg_alpha', [0, 1e-1, 1, 2, 5, 7, 10, 50, 100]), 'reg_lambda': hp.choice('reg_lambda', [0, 1e-1, 1, 5, 10, 20, 50, 100]), 'n_estimators': hp.randint('n_estimators', 300) + 150 } elif model_name == 'NeuralNetwork': return { 'learning_rate_init': hp.loguniform('learning_rate_init', low=np.log(5e-5), high=np.log(2e-2)), 'alpha': hp.uniform('alpha', low=1e-6, high=1e3) } def create_folds(self, X, y): """ X columns : eid + features except target y columns : eid + target """ X_eid = X.drop_duplicates('eid') y_eid = y.drop_duplicates('eid') eids = X_eid.eid # Kfold on the eid, then regroup all ids inner_cv = KFold(n_splits=self.inner_splits, shuffle=False, random_state=0) list_test_folds = [elem[1] for elem in inner_cv.split(X_eid, y_eid)] list_test_folds_eid = [eids[elem].values for elem in list_test_folds] list_test_folds_id = [X.index[X.eid.isin(list_test_folds_eid[elem])].values for elem in range(len(list_test_folds_eid))] return list_test_folds_id def optimize_hyperparameters(self, X, y, scoring): """ input X : dataframe with features + eid input y : dataframe with target + eid """ if 'instance' in X.columns: X = X.drop(columns=['instance']) if 'instance' in y.columns: y = y.drop(columns=['instance']) list_test_folds_id = self.create_folds(X, y) X = X.drop(columns=['eid']) y = y.drop(columns=['eid']) # Create custom Splits list_test_folds_id_index = [np.array([X.index.get_loc(elem) for elem in list_test_folds_id[fold_num]]) for fold_num in range(len(list_test_folds_id))] test_folds = np.zeros(len(X), dtype='int') for fold_count in range(len(list_test_folds_id)): test_folds[list_test_folds_id_index[fold_count]] = fold_count inner_cv = PredefinedSplit(test_fold=test_folds) list_best_params = {} list_best_score = {} objective, model_name = None, None for model_name in self.models: def objective(hyperparameters): estimator_ = self.get_model(model_name, hyperparameters) pipeline = Pipeline([('scaler', StandardScaler()), ('estimator', estimator_)]) scores = cross_validate(pipeline, X.values, y, scoring=scoring, cv=inner_cv, n_jobs=self.inner_splits) return {'status': STATUS_OK, 'loss': -scores['test_score'].mean(), 'attachments': {'split_test_scores_and_params': (scores['test_score'], hyperparameters)}} space = self.get_hyper_distribution(model_name) trials = Trials() best = fmin(objective, space, algo=tpe.suggest, max_evals=self.n_iter, trials=trials) best_params = space_eval(space, best) list_best_params[model_name] = best_params list_best_score[model_name] = - min(trials.losses()) # Recover best between all models : best_model = max(list_best_score.keys(), key=(lambda k: list_best_score[k])) best_model_hyp = list_best_params[best_model] # Recreate best estim : estim = self.get_model(best_model, best_model_hyp) pipeline_best = Pipeline([('scaler', StandardScaler()), ('estimator', estim)]) pipeline_best.fit(X.values, y) return pipeline_best """ Useful for EnsemblesPredictions. This function needs to be global to allow pool to pickle it. """ def compute_ensemble_folds(ensemble_inputs): if len(ensemble_inputs[1]) < 100: print('Small sample size:' + str(len(ensemble_inputs[1]))) n_inner_splits = 5 else: n_inner_splits = 10 # Can use different models: models=['ElasticNet', 'LightGBM', 'NeuralNetwork'] cv = InnerCV(models=['ElasticNet'], inner_splits=n_inner_splits, n_iter=30) model = cv.optimize_hyperparameters(ensemble_inputs[0], ensemble_inputs[1], scoring='r2') return model class EnsemblesPredictions(Metrics): """ Hierarchically builds ensemble models from the already existing predictions. """ def __init__(self, target=None, pred_type=None, regenerate_models=False): # Parameters Metrics.__init__(self) self.target = target self.pred_type = pred_type self.folds = ['val', 'test'] self.regenerate_models = regenerate_models self.ensembles_performance_cutoff_percent = 0.5 self.parameters = {'target': target, 'organ': '*', 'view': '*', 'transformation': '*', 'architecture': '*', 'n_fc_layers': '*', 'n_fc_nodes': '*', 'optimizer': '*', 'learning_rate': '*', 'weight_decay': '*', 'dropout_rate': '*', 'data_augmentation_factor': '*'} self.version = self._parameters_to_version(self.parameters) self.main_metric_name = self.dict_main_metrics_names[target] self.init_perf = -np.Inf if self.main_metrics_modes[self.main_metric_name] == 'max' else np.Inf path_perf = self.path_data + 'PERFORMANCES_tuned_ranked_' + pred_type + '_' + target + '_val.csv' self.Performances = pd.read_csv(path_perf).set_index('version', drop=False) self.Performances['organ'] = self.Performances['organ'].astype(str) self.list_ensemble_levels = ['transformation', 'view', 'organ'] self.PREDICTIONS = {} self.weights_by_category = None self.weights_by_ensembles = None self.N_ensemble_CV_split = 10 self.instancesS = {'instances': ['01', '1.5x', '23'], 'eids': ['*']} self.instances_names_to_numbers = {'01': ['0', '1'], '1.5x': ['1.5', '1.51', '1.52', '1.53', '1.54'], '23': ['2', '3'], '*': ['*']} self.INSTANCES_DATASETS = { '01': ['Eyes', 'Hearing', 'Lungs', 'Arterial', 'Musculoskeletal', 'Biochemistry', 'ImmuneSystem'], '1.5x': ['PhysicalActivity'], '23': ['Brain', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'], '*': ['Brain', 'Eyes', 'Hearing', 'Lungs', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity', 'ImmuneSystem'] } # Get rid of columns and rows for the versions for which all samples as NANs @staticmethod def _drop_na_pred_versions(PREDS, Performances): # Select the versions for which only NAs are available pred_versions = [col for col in PREDS['val'].columns.values if 'pred_' in col] to_drop = [] for pv in pred_versions: for fold in PREDS.keys(): if PREDS[fold][pv].notna().sum() == 0: to_drop.append(pv) break # Drop the corresponding columns from preds, and rows from performances index_to_drop = [p.replace('pred_', '') for p in to_drop if '*' not in p] for fold in PREDS.keys(): PREDS[fold].drop(to_drop, axis=1, inplace=True) return Performances.drop(index_to_drop) def load_data(self): for fold in self.folds: self.PREDICTIONS[fold] = pd.read_csv( self.path_data + 'PREDICTIONS_tuned_' + self.pred_type + '_' + self.target + '_' + fold + '.csv') def _build_single_ensemble(self, PREDICTIONS, version): # Drop columns that are exclusively NaNs all_nan = PREDICTIONS['val'].isna().all() | PREDICTIONS['test'].isna().all() non_nan_cols = all_nan[~all_nan.values].index for fold in self.folds: PREDICTIONS[fold] = PREDICTIONS[fold][non_nan_cols] Predictions = PREDICTIONS['val'] # Select the columns for the model ensemble_preds_cols = [col for col in Predictions.columns.values if bool(re.compile('pred_' + version).match(col))] # If only one model in the ensemble, just copy the column. Otherwise build the ensemble model if len(ensemble_preds_cols) == 1: for fold in self.folds: PREDICTIONS[fold]['pred_' + version] = PREDICTIONS[fold][ensemble_preds_cols[0]] else: # Initiate the dictionaries PREDICTIONS_OUTERFOLDS = {} ENSEMBLE_INPUTS = {} for outer_fold in self.outer_folds: # take the subset of the rows that correspond to the outer_fold PREDICTIONS_OUTERFOLDS[outer_fold] = {} XS_outer_fold = {} YS_outer_fold = {} dict_fold_to_outer_folds = { 'val': [float(outer_fold)], 'test': [(float(outer_fold) + 1) % self.n_CV_outer_folds], 'train': [float(of) for of in self.outer_folds if float(of) not in [float(outer_fold), (float(outer_fold) + 1) % self.n_CV_outer_folds]] } for fold in self.folds: PREDICTIONS_OUTERFOLDS[outer_fold][fold] = \ PREDICTIONS[fold][PREDICTIONS[fold]['outer_fold'].isin(dict_fold_to_outer_folds[fold])] PREDICTIONS_OUTERFOLDS[outer_fold][fold] = PREDICTIONS_OUTERFOLDS[outer_fold][fold][ ['id', 'eid', 'instance', self.target] + ensemble_preds_cols].dropna() X = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'eid', 'instance'] + ensemble_preds_cols] X.set_index('id', inplace=True) XS_outer_fold[fold] = X y = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'eid', self.target]] y.set_index('id', inplace=True) YS_outer_fold[fold] = y ENSEMBLE_INPUTS[outer_fold] = [XS_outer_fold['val'], YS_outer_fold['val']] # Build ensemble model using ElasticNet and/or LightGBM, Neural Network. PREDICTIONS_ENSEMBLE = {} pool = Pool(self.N_ensemble_CV_split) MODELS = pool.map(compute_ensemble_folds, list(ENSEMBLE_INPUTS.values())) pool.close() pool.join() # Concatenate all outer folds for outer_fold in self.outer_folds: for fold in self.folds: X = PREDICTIONS_OUTERFOLDS[outer_fold][fold][ensemble_preds_cols] PREDICTIONS_OUTERFOLDS[outer_fold][fold]['pred_' + version] = MODELS[int(outer_fold)].predict(X) PREDICTIONS_OUTERFOLDS[outer_fold][fold]['outer_fold'] = float(outer_fold) df_outer_fold = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'outer_fold', 'pred_' + version]] # Initiate, or append if some previous outerfolds have already been concatenated if fold not in PREDICTIONS_ENSEMBLE.keys(): PREDICTIONS_ENSEMBLE[fold] = df_outer_fold else: PREDICTIONS_ENSEMBLE[fold] = PREDICTIONS_ENSEMBLE[fold].append(df_outer_fold) # Add the ensemble predictions to the dataframe for fold in self.folds: if fold == 'train': PREDICTIONS[fold] = PREDICTIONS[fold].merge(PREDICTIONS_ENSEMBLE[fold], how='outer', on=['id', 'outer_fold']) else: PREDICTIONS_ENSEMBLE[fold].drop('outer_fold', axis=1, inplace=True) PREDICTIONS[fold] = PREDICTIONS[fold].merge(PREDICTIONS_ENSEMBLE[fold], how='outer', on=['id']) def _build_single_ensemble_wrapper(self, version, ensemble_level): print('Building the ensemble model ' + version) pred_version = 'pred_' + version # Evaluate if the ensemble model should be built # 1 - separately on instance 0-1, 1.5 and 2-3 (for ensemble at the top level, since overlap between models is 0) # 2 - piece by piece on each outer_fold # 1-Compute instances 0-1, 1.5 and 2-3 separately if ensemble_level == 'organ': for fold in self.folds: self.PREDICTIONS[fold][pred_version] = np.nan # Add an ensemble for each instances (01, 1.5x, and 23) if self.pred_type == 'instances': for instances_names in self.instancesS[self.pred_type]: pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) self.PREDICTIONS[fold][pv] = np.nan for instances_names in self.instancesS[self.pred_type]: print('Building final ensemble model for samples in the instances: ' + instances_names) # Take subset of rows and columns instances = self.instances_names_to_numbers[instances_names] instances_datasets = self.INSTANCES_DATASETS[instances_names] versions = \ [col.replace('pred_', '') for col in self.PREDICTIONS['val'].columns if 'pred_' in col] instances_versions = [version for version in versions if any(dataset in version for dataset in instances_datasets)] cols_to_keep = self.id_vars + self.demographic_vars + \ ['pred_' + version for version in instances_versions] PREDICTIONS = {} for fold in self.folds: PREDICTIONS[fold] = self.PREDICTIONS[fold][self.PREDICTIONS[fold].instance.isin(instances)] PREDICTIONS[fold] = PREDICTIONS[fold][cols_to_keep] self._build_single_ensemble(PREDICTIONS, version) # Print a quick performance estimation for each instance(s) df_model = PREDICTIONS['test'][[self.target, 'pred_' + version]].dropna() print(instances_names) print(self.main_metric_name + ' for instance(s) ' + instances_names + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version]))) print('The sample size is ' + str(len(df_model.index)) + '.') # Add the predictions to the dataframe, chunck by chunk, instances by instances for fold in self.folds: self.PREDICTIONS[fold][pred_version][self.PREDICTIONS[fold].instance.isin(instances)] = \ PREDICTIONS[fold][pred_version].values # Add an ensemble for the instance(s) only if self.pred_type == 'instances': pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) self.PREDICTIONS[fold][pv][self.PREDICTIONS[fold].instance.isin(instances)] = \ PREDICTIONS[fold][pred_version].values # Add three extra ensemble models for eids, to allow larger sample sizes for GWAS purposes if self.pred_type == 'eids': for instances_names in ['01', '1.5x', '23']: print('Building final sub-ensemble model for samples in the instances: ' + instances_names) # Keep only relevant columns instances_datasets = self.INSTANCES_DATASETS[instances_names] versions = \ [col.replace('pred_', '') for col in self.PREDICTIONS['val'].columns if 'pred_' in col] instances_versions = [version for version in versions if any(dataset in version for dataset in instances_datasets)] cols_to_keep = self.id_vars + self.demographic_vars + \ ['pred_' + version for version in instances_versions] PREDICTIONS = {} for fold in self.folds: PREDICTIONS[fold] = self.PREDICTIONS[fold].copy() PREDICTIONS[fold] = PREDICTIONS[fold][cols_to_keep] self._build_single_ensemble(PREDICTIONS, version) # Print a quick performance estimation for each instance(s) df_model = PREDICTIONS['test'][[self.target, 'pred_' + version]].dropna() print(instances_names) print(self.main_metric_name + ' for instance(s) ' + instances_names + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version]))) print('The sample size is ' + str(len(df_model.index)) + '.') # Add the predictions to the dataframe pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) for fold in self.folds: self.PREDICTIONS[fold][pv] = PREDICTIONS[fold][pred_version].values # 2-Compute fold by fold else: self._build_single_ensemble(self.PREDICTIONS, version) # build and save a dataset for this specific ensemble model for fold in self.folds: df_single_ensemble = self.PREDICTIONS[fold][['id', 'outer_fold', pred_version]] df_single_ensemble.rename(columns={pred_version: 'pred'}, inplace=True) df_single_ensemble.dropna(inplace=True, subset=['pred']) df_single_ensemble.to_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version + '_' + fold + '.csv', index=False) # Add extra ensembles at organ level if ensemble_level == 'organ': for instances_names in ['01', '1.5x', '23']: pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) version_instances = version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) df_single_ensemble = self.PREDICTIONS[fold][['id', 'outer_fold', pv]] df_single_ensemble.rename(columns={pv: 'pred'}, inplace=True) df_single_ensemble.dropna(inplace=True, subset=['pred']) df_single_ensemble.to_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_instances + '_' + fold + '.csv', index=False) def _recursive_ensemble_builder(self, Performances_grandparent, parameters_parent, version_parent, list_ensemble_levels_parent): # Compute the ensemble models for the children first, so that they can be used for the parent model Performances_parent = Performances_grandparent[ Performances_grandparent['version'].isin( fnmatch.filter(Performances_grandparent['version'], version_parent))] # if the last ensemble level has not been reached, go down one level and create a branch for each child. # Otherwise the leaf has been reached if len(list_ensemble_levels_parent) > 0: list_ensemble_levels_child = list_ensemble_levels_parent.copy() ensemble_level = list_ensemble_levels_child.pop() list_children = Performances_parent[ensemble_level].unique() for child in list_children: parameters_child = parameters_parent.copy() parameters_child[ensemble_level] = child version_child = self._parameters_to_version(parameters_child) # recursive call to the function self._recursive_ensemble_builder(Performances_parent, parameters_child, version_child, list_ensemble_levels_child) else: ensemble_level = None # compute the ensemble model for the parent # Check if ensemble model has already been computed. If it has, load the predictions. If it has not, compute it. if not self.regenerate_models and \ os.path.exists(self.path_data + 'Predictions_' + self.pred_type + '_' + version_parent + '_test.csv'): print('The model ' + version_parent + ' has already been computed. Loading it...') for fold in self.folds: df_single_ensemble = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_parent + '_' + fold + '.csv') df_single_ensemble.rename(columns={'pred': 'pred_' + version_parent}, inplace=True) # Add the ensemble predictions to the dataframe if fold == 'train': self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id', 'outer_fold']) else: df_single_ensemble.drop(columns=['outer_fold'], inplace=True) self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id']) # Add the extra ensemble models at the 'organ' level if ensemble_level == 'organ': if self.pred_type == 'instances': instances = self.instancesS[self.pred_type] else: instances = ['01', '23'] for instances_names in instances: pv = 'pred_' + version_parent.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version_parent.split('_')[2:]) version_instances = version_parent.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version_parent.split('_')[2:]) df_single_ensemble = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_instances + '_' + fold + '.csv') df_single_ensemble.rename(columns={'pred': pv}, inplace=True) if fold == 'train': self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id', 'outer_fold']) else: df_single_ensemble.drop(columns=['outer_fold'], inplace=True) self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id']) else: self._build_single_ensemble_wrapper(version_parent, ensemble_level) # Print a quick performance estimation df_model = self.PREDICTIONS['test'][[self.target, 'pred_' + version_parent]].dropna() print(self.main_metric_name + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version_parent]))) print('The sample size is ' + str(len(df_model.index)) + '.') def generate_ensemble_predictions(self): self._recursive_ensemble_builder(self.Performances, self.parameters, self.version, self.list_ensemble_levels) # Reorder the columns alphabetically for fold in self.folds: pred_versions = [col for col in self.PREDICTIONS[fold].columns if 'pred_' in col] pred_versions.sort() self.PREDICTIONS[fold] = self.PREDICTIONS[fold][self.id_vars + self.demographic_vars + pred_versions] # Displaying the R2s for fold in self.folds: versions = [col.replace('pred_', '') for col in self.PREDICTIONS[fold].columns if 'pred_' in col] r2s = [] for version in versions: df = self.PREDICTIONS[fold][[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S =
pd.DataFrame({'version': versions, 'R2': r2s})
pandas.DataFrame
import time from collections import defaultdict from datetime import timedelta import cvxpy as cp import empiricalutilities as eu import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from transfer_entropy import TransferEntropy plt.style.use('fivethirtyeight') # %% eqs = 'SPY XLK XLV XLF IYZ XLY XLP XLI XLE XLU IYR XLB'\ ' DIA IWM ECH EWW EWC EWZ'.split() fi = 'AGG SHY IEI IEF TLT TIP LQD HYG MBB'.split() cmdtys = 'GLD SLV DBA DBC USO UNG'.split() assets = eqs + fi + cmdtys def cum_rets(rets): cum_rets = [] cum_rets.append(1) for i, ret in enumerate(rets): cum_rets.append(cum_rets[i]*(1+ret)) return cum_rets # %% q = 4 res = {} ete_mats = {} mod = TransferEntropy(assets=assets) months = mod.prices.index.to_period('M').unique().to_timestamp() iters = len(months)-1 with tqdm(total=iters) as pbar: for start, end in zip(months[:-1], months[1:]): end -= timedelta(1) mod.set_timeperiod(start, end) mod.compute_effective_transfer_entropy(sims=5) ete = mod.ete.copy() ete_out = ete.sum(axis=0) returns = mod.prices.iloc[-1]/mod.prices.iloc[0]-1 vols = mod.data.std() df =
pd.DataFrame({'returns': returns, 'vol': vols, 'ete': ete_out})
pandas.DataFrame
#Copyright 2021 <NAME>, <NAME>, <NAME> # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import pandas as pd import numpy as np import os from pandas.api.types import is_numeric_dtype import re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import joblib from .model_loading import decompress_pickle from typing import List, Tuple, Union RESOURCES_DIR = os.path.join(os.path.dirname(__file__), 'resources') rf_Filename = os.path.join(RESOURCES_DIR, "compressed_rf.pbz2") Pickled_LR_Model = decompress_pickle(filename=rf_Filename) del_pattern = r'([^,;\|]+[,;\|]{1}[^,;\|]+){1,}' del_reg = re.compile(del_pattern) delimeters = r"(,|;|\|)" delimeters = re.compile(delimeters) url_pat = r"(http|ftp|https):\/\/([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:/~+#-]*[\w@?^=%&/~+#-])?" url_reg = re.compile(url_pat) email_pat = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}\b" email_reg = re.compile(email_pat) stop_words = set(stopwords.words('english')) class_map = { 0: 'numeric', 1: 'categorical', 2: 'datetime', 3: 'sentence', 4: 'url', 5: 'embedded-number', 6: 'list', 7: 'not-generalizable', 8: 'context-specific' } ### Private Functions ### def summary_stats(dat, key_s): b_data = [] for col in key_s: nans = np.count_nonzero(pd.isnull(dat[col])) dist_val = len(pd.unique(dat[col].dropna())) Total_val = len(dat[col]) mean = 0 std_dev = 0 var = 0 min_val = 0 max_val = 0 if
is_numeric_dtype(dat[col])
pandas.api.types.is_numeric_dtype
######################################################## # <NAME> - drigols # # Last update: 21/09/2021 # ######################################################## def OLS(dic): import pandas as pd df =
pd.DataFrame(dic)
pandas.DataFrame
import numpy as np import pandas as pd from pyopenms import FeatureMap, FeatureXMLFile def extractNamesAndIntensities(feature_dir, sample_names, database): """ This function takes .featureXML files, the output of SmartPeak pre-processing, and extracts the metabolite's reference and its measured intensity. Furthermore, the peptide references are compared with a database that has also been used for SmartPeak processing. Only metabolites that appear in the database are being used. Their formula is added to the output dataframe. The names of the files that should be processed are added via a SmartPeak sequence file Parameters ---------- feature_dir : path the path to the directory holding the .featureXML files sample_names : string the extracted information from a sequence file database : pandas.DataFrame the organism specific database with the metabolite mapping Returns ------- extracted_data_all : pandas.DataFrame a dataframe containing the extracted information, the 4 columns include the sample name, the peptide reference for the metabolites, their corresponding formulas and the measured intensity """ metabolites_unique = database[0].unique() extracted_data_dict = {} cnt = 0 for name in sample_names: features = FeatureMap() FeatureXMLFile().load( feature_dir + "/" + name + ".featureXML", features ) for f in features: try: peptideRef = f.getMetaValue("PeptideRef").decode("utf-8") except AttributeError: peptideRef = f.getMetaValue("PeptideRef") if peptideRef in metabolites_unique: formula = database[database[0] == peptideRef][1] extracted_data_dict[cnt] = { "sample_group_name": name, "Metabolite": peptideRef, "Formula": list(formula)[0], "Intensity": f.getMetaValue("peak_apex_int"), } cnt = cnt + 1 extracted_data_all =
pd.DataFrame.from_dict(extracted_data_dict, "index")
pandas.DataFrame.from_dict
import warnings import os import numpy as np import pandas as pd from preprocessing.utils import remove_french_accents_and_cedillas_from_dataframe columns_to_drop = ['nr', 'patient_id', 'eds_end_4digit', 'eds_manual', 'DOB', 'begin_date', 'end_date', 'death_date', 'death_hosp', 'eds_final_id', 'eds_final_begin', 'eds_final_end', 'eds_final_patient_id', 'eds_final_birth', 'eds_final_death', 'eds_final_birth_str', 'date_from', 'date_to'] identification_columns = ['patient_admission_id', 'sample_date'] # defining equivalent dosage labels fibrinogen_equivalent_dosage_labels = ['fibrinogène', 'fibrinogène, antigène'] creatinine_equivalent_dosage_labels = ['créatinine', 'U-créatinine, colorimétrie', 'créatinine, colorimétrie'] hematocrit_equivalent_dosage_labels = ['hématocrite', 'G-Sgc-hématocrite, ABL', 'G-Sgv-hématocrite, ABL', 'Hématocrite, Smart 546', 'G-Sgv-hématocrite', 'hématocrite, pocH-100i', 'G-Sgvm-hématocrite, ABL', 'hématocrite, impédancemétrie', 'G-Sgv-hématocrite, ABL', 'G-Sga-hématocrite, ABL'] potassium_equivalent_dosage_labels = ['potassium', 'G-Sga-potassium, ABL', 'G-Sgv-potassium, ABL', 'Potassium, Piccolo', 'potassium, potentiométrie', 'G-Sgvm-potassium, ABL', 'G-Sgc-potassium, ABL', 'G-Sgv-potassium', 'U-potassium, potentiométrie indirecte'] sodium_equivalent_dosage_labels = ['sodium', 'G-Sga-sodium, ABL', 'G-Sgv-sodium, ABL', 'sodium, potentiométrie', 'Sodium, Piccolo', 'G-Sgvm-sodium, ABL', 'U-sodium, potentiométrie indirecte', 'G-Sgc-sodium, ABL', 'G-Sgv-sodium'] urea_equivalent_dosage_labels = ['urée', 'urée, colorimétrie', 'U-urée, colorimétrie'] hba1c_equivalent_dosage_labels = ['hémoglobine glyquée', 'hémoglobine glyquée (HbA1c), immunologique d\x92agglutination latex'] hemoglobin_equivalent_dosage_labels = ['hémoglobine', 'G-Sga-hémoglobine, ABL', 'G-Sgv-hémoglobine, ABL', 'hémoglobine, pocH-100i', 'hémoglobine, HemoCue 201', 'G-Sgvm-hémoglobine, ABL', 'G-Sgc-hémoglobine, ABL', 'G-Sgv-hémoglobine'] thrombocytes_equivalent_dosage_labels = ['thrombocytes', 'Thrombocytes, pocH-100i'] leucocytes_equivalent_dosage_labels = ['leucocytes', 'Leucocytes, pocH-100i'] erythrocytes_equivalent_dosage_labels = ['érythrocytes', 'érythrocytes, numération, impédancemétrie'] inr_equivalent_dosage_labels = ['INR', 'INR, turbodensitométrie'] crp_equivalent_dosage_labels = ['protéine C-réactive', 'Protéine C-Réactive (CRP), Piccolo', 'protéine C-réactive (CRP), immunoturbidimétrique latex CP', 'protéine C-réactive, Smart 546'] glucose_equivalent_dosage_labels = ['glucose', 'G-Sga-glucose, ABL', 'G-Sgv-glucose, ABL', 'Glucose', 'Glucose, Piccolo', 'glucose, PAP', 'G-Sgvm-glucose, ABL', 'G-Sgv-glucose', 'G-Sgc-glucose, ABL', 'U-glucose, PAP colorimétrie'] bilirubine_equivalent_dosage_labels = ['bilirubine totale', 'G-Sga-bilirubine totale, ABL', 'G-Sgv-bilirubine totale, ABL', 'Bilirubine totale, Piccolo', 'bilirubine totale, colorimétrie', 'G-Sgvm-bilirubine totale, ABL'] asat_equivalent_dosage_labels = ['ASAT', 'Aspartate aminotransférase (ASAT), Piccolo', 'aspartate aminotransférase (ASAT), colorimétrie'] alat_equivalent_dosage_labels = ['ALAT', 'Alanine aminotransférase (ALAT), Piccolo', 'alanine aminotransférase (ALAT), colorimétrie'] doac_xa_equivalent_dosage_labels = ['Activité anti-Xa (DOAC)', 'Activité anti-Xa (rivaroxaban)', 'Activité anti-Xa (apixaban)', 'Activité anti-Xa (edoxaban)', 'Activité anti-Xa (Apixaban)'] ldl_equivalent_dosage_labels = ['LDL cholestérol calculé', 'cholestérol non-HDL'] equivalence_lists = [fibrinogen_equivalent_dosage_labels, creatinine_equivalent_dosage_labels, hematocrit_equivalent_dosage_labels, potassium_equivalent_dosage_labels, sodium_equivalent_dosage_labels, urea_equivalent_dosage_labels, hba1c_equivalent_dosage_labels, hemoglobin_equivalent_dosage_labels, thrombocytes_equivalent_dosage_labels, leucocytes_equivalent_dosage_labels, erythrocytes_equivalent_dosage_labels, inr_equivalent_dosage_labels, crp_equivalent_dosage_labels, glucose_equivalent_dosage_labels, bilirubine_equivalent_dosage_labels, asat_equivalent_dosage_labels, alat_equivalent_dosage_labels, doac_xa_equivalent_dosage_labels, ldl_equivalent_dosage_labels] dosage_labels_to_exclude = ['érythrocytes agglutinés', 'Type d\'érythrocytes', 'Type des érythrocytes', 'érythrocytes en rouleaux', 'Cristaux cholestérol', 'potassium débit', 'urée débit', 'sodium débit', 'glucose débit', 'protéine C-réactive, POCT', 'activité anti-Xa (HBPM), autre posologie', 'activité anti-Xa (HBPM), thérapeutique, 1x /jour'] blood_material_equivalents = ['sga', 'sgv', 'sgvm', 'sgc'] material_to_exclude = ['LCR', 'liqu. pleural', 'épanchement', 'sg cordon', 'liqu. abdo.', 'liqu. ascite', 'liqu.'] non_numerical_values_to_remove = ['ERROR', 'nan', 'SANS RES.', 'Hémolysé', 'sans resultat', 'NON REALISE', 'NON INTERPRÉT.', 'COA', 'TAM'] def preprocess_labs(lab_df: pd.DataFrame, material_to_include: list = ['any_blood'], verbose: bool = True) -> pd.DataFrame: """ Preprocess the labs dataframe :param lab_df: :param material_to_include: list of materials to include where material is one of the following: 'any_blood', 'urine' :param verbose: print preprocessing safety details :return: """ lab_df = lab_df.copy() lab_df['patient_admission_id'] = lab_df['patient_id'].astype(str) + '_' + lab_df['begin_date'].apply( lambda bd: ''.join(bd.split(' ')[0].split('.'))) lab_df.drop(columns_to_drop, axis=1, inplace=True) lab_names = set([c.split('_')[0] for c in lab_df.columns if c not in identification_columns]) new_lab_column_headers = set( ['_'.join(c.split('_')[1:]) for c in lab_df.columns if c not in identification_columns]) print('Labs measured:', lab_names) # split lab df into individual lab dfs for every lab name lab_df_split_by_lab_name = [] for _, lab_name in enumerate(lab_names): selected_columns = identification_columns + [c for c in lab_df.columns if c.split('_')[0] == lab_name] individual_lab_df = lab_df[selected_columns].dropna(subset=[f'{lab_name}_value']) individual_lab_df.columns = identification_columns + ['_'.join(c.split('_')[1:]) for c in individual_lab_df.columns if c.startswith(lab_name)] individual_lab_df['lab_name'] = lab_name lab_df_split_by_lab_name.append(individual_lab_df) reorganised_lab_df = pd.concat(lab_df_split_by_lab_name, ignore_index=True) equalized_reorganised_lab_df = reorganised_lab_df.copy() for equivalence_list in equivalence_lists: equalized_reorganised_lab_df.loc[ reorganised_lab_df['dosage_label'].isin(equivalence_list[1:]), 'dosage_label'] = equivalence_list[0] equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['dosage_label'].isin(dosage_labels_to_exclude)] # check that units correspond for dosage_label in equalized_reorganised_lab_df['dosage_label'].unique(): units_for_dosage_label = \ equalized_reorganised_lab_df[equalized_reorganised_lab_df['dosage_label'] == dosage_label][ 'unit_of_measure'].unique() print(dosage_label, units_for_dosage_label) if len(units_for_dosage_label) > 1: warnings.warn(f'{dosage_label} has different units: {units_for_dosage_label}') raise ValueError(f'{dosage_label} has different units: {units_for_dosage_label}') # fixing material equivalents and materials to exclude # raise error if pO2, pCO2 or pH come from arterial and venous blood for dosage_label in ['pO2', 'pCO2', 'pH']: dosage_label_materials = \ equalized_reorganised_lab_df[equalized_reorganised_lab_df['dosage_label'].str.contains(dosage_label)][ 'material_label'].unique() if 'sga' in dosage_label_materials and len(dosage_label_materials) > 1: raise ValueError(f'{dosage_label} has arterial and other materials: {dosage_label_materials}') equalized_reorganised_lab_df.loc[ reorganised_lab_df['material_label'].isin(blood_material_equivalents), 'material_label'] = 'any_blood' equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['material_label'].isin(material_to_exclude)] equalized_reorganised_lab_df = equalized_reorganised_lab_df[ equalized_reorganised_lab_df['material_label'].isin(material_to_include)] # correct non numeric values equalized_reorganised_lab_df = correct_non_numerical_values(equalized_reorganised_lab_df) # remove non numerical values in value column equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['value'].isin(non_numerical_values_to_remove)] equalized_reorganised_lab_df.dropna(subset=['value'], inplace=True) remaining_non_numerical_values = \ equalized_reorganised_lab_df[
pd.to_numeric(equalized_reorganised_lab_df['value'], errors='coerce')
pandas.to_numeric
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (
TS('2015-01-04')
pandas.Timestamp
"""Electric grid models module.""" import cvxpy as cp import itertools from multimethod import multimethod import natsort import numpy as np import opendssdirect import pandas as pd import scipy.sparse as sp import scipy.sparse.linalg import typing import mesmo.config import mesmo.data_interface import mesmo.utils logger = mesmo.config.get_logger(__name__) class ElectricGridModel(mesmo.utils.ObjectBase): """Electric grid model object. Note: This abstract class only defines the expected variables of linear electric grid model objects, but does not implement any functionality. Attributes: timesteps (pd.Index): Index set of time steps of the current scenario. This is needed for optimization problem definitions within linear electric grid models (see ``LinearElectricGridModel``). phases (pd.Index): Index set of the phases. node_names (pd.Index): Index set of the node names. node_types (pd.Index): Index set of the node types. line_names (pd.Index): Index set of the line names. transformer_names (pd.Index): Index set of the transformer names. branch_names (pd.Index): Index set of the branch names, i.e., all line names and transformer names. branch_types (pd.Index): Index set of the branch types. der_names (pd.Index): Index set of the DER names. der_types (pd.Index): Index set of the DER types. nodes (pd.Index): Multi-level / tuple index set of the node types, node names and phases corresponding to the dimension of the node admittance matrices. branches (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases corresponding to the dimension of the branch admittance matrices. lines (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the lines only. transformers (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the transformers only. ders (pd.Index): Index set of the DER names, corresponding to the dimension of the DER power vector. node_voltage_vector_reference (np.ndarray): Node voltage reference / no load vector. branch_power_vector_magnitude_reference (np.ndarray): Branch power reference / rated power vector. der_power_vector_reference (np.ndarray): DER power reference / nominal power vector. is_single_phase_equivalent (bool): Singe-phase-equivalent modelling flag. If true, electric grid is modelled as single-phase-equivalent of three-phase balanced system. """ timesteps: pd.Index phases: pd.Index node_names: pd.Index node_types: pd.Index line_names: pd.Index transformer_names: pd.Index branch_names: pd.Index branch_types: pd.Index der_names: pd.Index der_types: pd.Index nodes: pd.Index branches: pd.Index lines: pd.Index transformers: pd.Index ders: pd.Index node_voltage_vector_reference: np.ndarray branch_power_vector_magnitude_reference: np.ndarray der_power_vector_reference: np.ndarray is_single_phase_equivalent: bool def __init__( self, electric_grid_data: mesmo.data_interface.ElectricGridData ): # Process overhead line type definitions. # - This is implemented as direct modification on the electric grid data object and therefore done first. electric_grid_data = self.process_line_types_overhead(electric_grid_data) # Obtain index set for time steps. # - This is needed for optimization problem definitions within linear electric grid models. self.timesteps = electric_grid_data.scenario_data.timesteps # Obtain index sets for phases / node names / node types / line names / transformer names / # branch types / DER names. self.phases = ( pd.Index( np.unique(np.concatenate( electric_grid_data.electric_grid_nodes.apply( mesmo.utils.get_element_phases_array, axis=1 ).values )) ) ) self.node_names = pd.Index(electric_grid_data.electric_grid_nodes['node_name']) self.node_types = pd.Index(['source', 'no_source']) self.line_names = pd.Index(electric_grid_data.electric_grid_lines['line_name']) self.transformer_names = pd.Index(electric_grid_data.electric_grid_transformers['transformer_name']) self.branch_types = pd.Index(['line', 'transformer']) self.der_names = pd.Index(electric_grid_data.electric_grid_ders['der_name']) self.der_types = pd.Index(electric_grid_data.electric_grid_ders['der_type'].unique()) # Obtain nodes index set, i.e., collection of all phases of all nodes # for generating indexing functions for the admittance matrix. # - The admittance matrix has one entry for each phase of each node in both dimensions. # - There cannot be "empty" dimensions for missing phases of nodes, because the matrix would become singular. # - Therefore the admittance matrix must have the exact number of existing phases of all nodes. node_dimension = ( int(electric_grid_data.electric_grid_nodes.loc[ :, [ 'is_phase_1_connected', 'is_phase_2_connected', 'is_phase_3_connected' ] ].sum().sum()) ) self.nodes = ( pd.DataFrame( None, index=range(node_dimension), columns=[ 'node_type', 'node_name', 'phase' ] ) ) # Fill `node_name`. self.nodes['node_name'] = ( pd.concat([ electric_grid_data.electric_grid_nodes.loc[ electric_grid_data.electric_grid_nodes['is_phase_1_connected'] == 1, 'node_name' ], electric_grid_data.electric_grid_nodes.loc[ electric_grid_data.electric_grid_nodes['is_phase_2_connected'] == 1, 'node_name' ], electric_grid_data.electric_grid_nodes.loc[ electric_grid_data.electric_grid_nodes['is_phase_3_connected'] == 1, 'node_name' ] ], ignore_index=True) ) # Fill `phase`. self.nodes['phase'] = ( np.concatenate([ np.repeat(1, sum(electric_grid_data.electric_grid_nodes['is_phase_1_connected'] == 1)), np.repeat(2, sum(electric_grid_data.electric_grid_nodes['is_phase_2_connected'] == 1)), np.repeat(3, sum(electric_grid_data.electric_grid_nodes['is_phase_3_connected'] == 1)) ]) ) # Fill `node_type`. self.nodes['node_type'] = 'no_source' # Set `node_type` for source node. self.nodes.loc[ self.nodes['node_name'] == (electric_grid_data.electric_grid['source_node_name']), 'node_type' ] = 'source' # Sort by `node_name`. self.nodes = ( self.nodes.reindex(index=natsort.order_by_index( self.nodes.index, natsort.index_natsorted(self.nodes.loc[:, 'node_name']) )) ) self.nodes = pd.MultiIndex.from_frame(self.nodes) # Obtain branches index set, i.e., collection of phases of all branches # for generating indexing functions for the branch admittance matrices. # - Branches consider all power delivery elements, i.e., lines as well as transformers. # - The second dimension of the branch admittance matrices is the number of phases of all nodes. # - Transformers must have same number of phases per winding and exactly two windings. line_dimension = ( int(electric_grid_data.electric_grid_lines.loc[ :, [ 'is_phase_1_connected', 'is_phase_2_connected', 'is_phase_3_connected' ] ].sum().sum()) ) transformer_dimension = ( int(electric_grid_data.electric_grid_transformers.loc[ :, [ 'is_phase_1_connected', 'is_phase_2_connected', 'is_phase_3_connected' ] ].sum().sum()) ) self.branches = ( pd.DataFrame( None, index=range(line_dimension + transformer_dimension), columns=[ 'branch_type', 'branch_name', 'phase' ] ) ) # Fill `branch_name`. self.branches['branch_name'] = ( pd.concat([ electric_grid_data.electric_grid_lines.loc[ electric_grid_data.electric_grid_lines['is_phase_1_connected'] == 1, 'line_name' ], electric_grid_data.electric_grid_lines.loc[ electric_grid_data.electric_grid_lines['is_phase_2_connected'] == 1, 'line_name' ], electric_grid_data.electric_grid_lines.loc[ electric_grid_data.electric_grid_lines['is_phase_3_connected'] == 1, 'line_name' ], electric_grid_data.electric_grid_transformers.loc[ electric_grid_data.electric_grid_transformers['is_phase_1_connected'] == 1, 'transformer_name' ], electric_grid_data.electric_grid_transformers.loc[ electric_grid_data.electric_grid_transformers['is_phase_2_connected'] == 1, 'transformer_name' ], electric_grid_data.electric_grid_transformers.loc[ electric_grid_data.electric_grid_transformers['is_phase_3_connected'] == 1, 'transformer_name' ] ], ignore_index=True) ) # Fill `phase`. self.branches['phase'] = ( np.concatenate([ np.repeat(1, sum(electric_grid_data.electric_grid_lines['is_phase_1_connected'] == 1)), np.repeat(2, sum(electric_grid_data.electric_grid_lines['is_phase_2_connected'] == 1)), np.repeat(3, sum(electric_grid_data.electric_grid_lines['is_phase_3_connected'] == 1)), np.repeat(1, sum(electric_grid_data.electric_grid_transformers['is_phase_1_connected'] == 1)), np.repeat(2, sum(electric_grid_data.electric_grid_transformers['is_phase_2_connected'] == 1)), np.repeat(3, sum(electric_grid_data.electric_grid_transformers['is_phase_3_connected'] == 1)) ]) ) # Fill `branch_type`. self.branches['branch_type'] = ( np.concatenate([ np.repeat('line', line_dimension), np.repeat('transformer', transformer_dimension) ]) ) # Sort by `branch_type` / `branch_name`. self.branches = ( self.branches.reindex(index=natsort.order_by_index( self.branches.index, natsort.index_natsorted(self.branches.loc[:, 'branch_name']) )) ) self.branches = ( self.branches.reindex(index=natsort.order_by_index( self.branches.index, natsort.index_natsorted(self.branches.loc[:, 'branch_type']) )) ) self.branches = pd.MultiIndex.from_frame(self.branches) # Obtain index sets for lines / transformers corresponding to branches. self.lines = ( self.branches[ mesmo.utils.get_index(self.branches, raise_empty_index_error=False, branch_type='line') ] ) self.transformers = ( self.branches[ mesmo.utils.get_index(self.branches, raise_empty_index_error=False, branch_type='transformer') ] ) # Obtain index set for DERs. self.ders = pd.MultiIndex.from_frame(electric_grid_data.electric_grid_ders[['der_type', 'der_name']]) # Obtain reference / no load voltage vector. self.node_voltage_vector_reference = np.zeros(len(self.nodes), dtype=complex) voltage_phase_factors = ( np.array([ np.exp(0 * 1j), # Phase 1. np.exp(- 2 * np.pi / 3 * 1j), # Phase 2. np.exp(2 * np.pi / 3 * 1j) # Phase 3. ]) ) for node_name, node in electric_grid_data.electric_grid_nodes.iterrows(): # Obtain phases index & node index for positioning the node voltage in the voltage vector. phases_index = mesmo.utils.get_element_phases_array(node) - 1 node_index = mesmo.utils.get_index(self.nodes, node_name=node_name) # Insert voltage into voltage vector. self.node_voltage_vector_reference[node_index] = ( voltage_phase_factors[phases_index] * node.at['voltage'] / np.sqrt(3) ) # Obtain reference / rated branch power vector. self.branch_power_vector_magnitude_reference = np.zeros(len(self.branches), dtype=float) for line_name, line in electric_grid_data.electric_grid_lines.iterrows(): # Obtain branch index. branch_index = mesmo.utils.get_index(self.branches, branch_type='line', branch_name=line_name) # Insert rated power into branch power vector. self.branch_power_vector_magnitude_reference[branch_index] = ( line.at['maximum_current'] * electric_grid_data.electric_grid_nodes.at[line.at['node_1_name'], 'voltage'] / np.sqrt(3) ) for transformer_name, transformer in electric_grid_data.electric_grid_transformers.iterrows(): # Obtain branch index. branch_index = mesmo.utils.get_index(self.branches, branch_type='transformer', branch_name=transformer_name) # Insert rated power into branch flow vector. self.branch_power_vector_magnitude_reference[branch_index] = ( transformer.at['apparent_power'] / len(branch_index) # Divide total capacity by number of phases. ) # Obtain reference / nominal DER power vector. self.der_power_vector_reference = ( ( electric_grid_data.electric_grid_ders.loc[:, 'active_power_nominal'] + 1.0j * electric_grid_data.electric_grid_ders.loc[:, 'reactive_power_nominal'] ).values ) # Obtain flag for single-phase-equivalent modelling. if electric_grid_data.electric_grid.at['is_single_phase_equivalent'] == 1: if len(self.phases) != 1: raise ValueError(f"Cannot model electric grid with {len(self.phases)} phase as single-phase-equivalent.") self.is_single_phase_equivalent = True else: self.is_single_phase_equivalent = False # Make modifications for single-phase-equivalent modelling. if self.is_single_phase_equivalent: self.branch_power_vector_magnitude_reference[mesmo.utils.get_index(self.branches, branch_type='line')] *= 3 @staticmethod def process_line_types_overhead( electric_grid_data: mesmo.data_interface.ElectricGridData ) -> mesmo.data_interface.ElectricGridData: """Process overhead line type definitions in electric grid data object.""" # Process over-head line type definitions. for line_type, line_type_data in electric_grid_data.electric_grid_line_types_overhead.iterrows(): # Obtain data shorthands. # - Only for phases which have `conductor_id` defined in `electric_grid_line_types_overhead`. phases = ( pd.Index([ 1 if pd.notnull(line_type_data.at['phase_1_conductor_id']) else None, 2 if pd.notnull(line_type_data.at['phase_2_conductor_id']) else None, 3 if pd.notnull(line_type_data.at['phase_3_conductor_id']) else None, 'n' if pd.notnull(line_type_data.at['neutral_conductor_id']) else None ]).dropna() ) phase_conductor_id = ( pd.Series({ 1: line_type_data.at['phase_1_conductor_id'], 2: line_type_data.at['phase_2_conductor_id'], 3: line_type_data.at['phase_3_conductor_id'], 'n': line_type_data.at['neutral_conductor_id'] }).loc[phases] ) phase_y = ( pd.Series({ 1: line_type_data.at['phase_1_y'], 2: line_type_data.at['phase_2_y'], 3: line_type_data.at['phase_3_y'], 'n': line_type_data.at['neutral_y'] }).loc[phases] ) phase_xy = ( pd.Series({ 1: np.array([line_type_data.at['phase_1_x'], line_type_data.at['phase_1_y']]), 2: np.array([line_type_data.at['phase_2_x'], line_type_data.at['phase_2_y']]), 3: np.array([line_type_data.at['phase_3_x'], line_type_data.at['phase_3_y']]), 'n': np.array([line_type_data.at['neutral_x'], line_type_data.at['neutral_y']]) }).loc[phases] ) phase_conductor_diameter = ( pd.Series([ electric_grid_data.electric_grid_line_types_overhead_conductors.at[ phase_conductor_id.at[phase], 'conductor_diameter' ] for phase in phases ], index=phases) * 1e-3 # mm to m. ) phase_conductor_geometric_mean_radius = ( pd.Series([ electric_grid_data.electric_grid_line_types_overhead_conductors.at[ phase_conductor_id.at[phase], 'conductor_geometric_mean_radius' ] for phase in phases ], index=phases) * 1e-3 # mm to m. ) phase_conductor_resistance = ( pd.Series([ electric_grid_data.electric_grid_line_types_overhead_conductors.at[ phase_conductor_id.at[phase], 'conductor_resistance' ] for phase in phases ], index=phases) ) phase_conductor_maximum_current = ( pd.Series([ electric_grid_data.electric_grid_line_types_overhead_conductors.at[ phase_conductor_id.at[phase], 'conductor_maximum_current' ] for phase in phases ], index=phases) ) # Obtain shorthands for neutral / non-neutral phases. # - This is needed for Kron reduction. phases_neutral = phases[phases.isin(['n'])] phases_non_neutral = phases[~phases.isin(['n'])] # Other parameter shorthands. frequency = electric_grid_data.electric_grid.at['base_frequency'] # In Hz. earth_resistivity = line_type_data.at['earth_resistivity'] # In Ωm. air_permittivity = line_type_data.at['air_permittivity'] # In nF/km. g_factor = 1e-4 # In Ω/km from 0.1609347e-3 Ω/mile from Kersting <https://doi.org/10.1201/9781315120782>. # Obtain impedance matrix in Ω/km based on Kersting <https://doi.org/10.1201/9781315120782>. z_matrix = pd.DataFrame(index=phases, columns=phases, dtype=complex) for phase_row, phase_col in itertools.product(phases, phases): # Calculate geometric parameters. d_distance = np.linalg.norm(phase_xy.at[phase_row] - phase_xy.at[phase_col]) s_distance = np.linalg.norm(phase_xy.at[phase_row] - np.array([1, -1]) * phase_xy.at[phase_col]) s_angle = np.pi / 2 - np.arcsin((phase_y.at[phase_row] + phase_y.at[phase_col]) / s_distance) # Calculate Kersting / Carson parameters. k_factor = ( 8.565e-4 * s_distance * np.sqrt(frequency / earth_resistivity) ) p_factor = ( np.pi / 8 - (3 * np.sqrt(2)) ** -1 * k_factor * np.cos(s_angle) - k_factor ** 2 / 16 * np.cos(2 * s_angle) * (0.6728 + np.log(2 / k_factor)) ) q_factor = ( -0.0386 + 0.5 * np.log(2 / k_factor) + (3 * np.sqrt(2)) ** -1 * k_factor * np.cos(2 * s_angle) ) x_factor = ( 2 * np.pi * frequency * g_factor * np.log( phase_conductor_diameter[phase_row] / phase_conductor_geometric_mean_radius.at[phase_row] ) ) # Calculate admittance according to Kersting / Carson <https://doi.org/10.1201/9781315120782>. if phase_row == phase_col: z_matrix.at[phase_row, phase_col] = ( phase_conductor_resistance.at[phase_row] + 4 * np.pi * frequency * p_factor * g_factor + 1j * ( x_factor + 2 * np.pi * frequency * g_factor * np.log(s_distance / phase_conductor_diameter[phase_row]) + 4 * np.pi * frequency * q_factor * g_factor ) ) else: z_matrix.at[phase_row, phase_col] = ( 4 * np.pi * frequency * p_factor * g_factor + 1j * ( 2 * np.pi * frequency * g_factor * np.log(s_distance / d_distance) + 4 * np.pi * frequency * q_factor * g_factor ) ) # Apply Kron reduction. z_matrix = ( pd.DataFrame( ( z_matrix.loc[phases_non_neutral, phases_non_neutral].values - z_matrix.loc[phases_non_neutral, phases_neutral].values @ z_matrix.loc[phases_neutral, phases_neutral].values ** -1 # Inverse of scalar value. @ z_matrix.loc[phases_neutral, phases_non_neutral].values ), index=phases_non_neutral, columns=phases_non_neutral ) ) # Obtain potentials matrix in km/nF based on Kersting <https://doi.org/10.1201/9781315120782>. p_matrix = pd.DataFrame(index=phases, columns=phases, dtype=float) for phase_row, phase_col in itertools.product(phases, phases): # Calculate geometric parameters. d_distance = np.linalg.norm(phase_xy.at[phase_row] - phase_xy.at[phase_col]) s_distance = np.linalg.norm(phase_xy.at[phase_row] - np.array([1, -1]) * phase_xy.at[phase_col]) # Calculate potential according to Kersting <https://doi.org/10.1201/9781315120782>. if phase_row == phase_col: p_matrix.at[phase_row, phase_col] = ( 1 / (2 * np.pi * air_permittivity) * np.log(s_distance / phase_conductor_diameter.at[phase_row]) ) else: p_matrix.at[phase_row, phase_col] = ( 1 / (2 * np.pi * air_permittivity) * np.log(s_distance / d_distance) ) # Apply Kron reduction. p_matrix = ( pd.DataFrame( ( p_matrix.loc[phases_non_neutral, phases_non_neutral].values - p_matrix.loc[phases_non_neutral, phases_neutral].values @ p_matrix.loc[phases_neutral, phases_neutral].values ** -1 # Inverse of scalar value. @ p_matrix.loc[phases_neutral, phases_non_neutral].values ), index=phases_non_neutral, columns=phases_non_neutral ) ) # Obtain capacitance matrix in nF/km. c_matrix = pd.DataFrame(np.linalg.inv(p_matrix), index=phases_non_neutral, columns=phases_non_neutral) # Obtain final element matrices. resistance_matrix = z_matrix.apply(np.real) # In Ω/km. reactance_matrix = z_matrix.apply(np.imag) # In Ω/km. capacitance_matrix = c_matrix # In nF/km. # Add to line type matrices definition. for phase_row in phases_non_neutral: for phase_col in phases_non_neutral[phases_non_neutral <= phase_row]: electric_grid_data.electric_grid_line_types_matrices = ( electric_grid_data.electric_grid_line_types_matrices.append( pd.Series({ 'line_type': line_type, 'row': phase_row, 'col': phase_col, 'resistance': resistance_matrix.at[phase_row, phase_col], 'reactance': reactance_matrix.at[phase_row, phase_col], 'capacitance': capacitance_matrix.at[phase_row, phase_col] }), ignore_index=True ) ) # Obtain number of phases. electric_grid_data.electric_grid_line_types.loc[line_type, 'n_phases'] = len(phases_non_neutral) # Obtain maximum current. # TODO: Validate this. electric_grid_data.electric_grid_line_types.loc[line_type, 'maximum_current'] = ( phase_conductor_maximum_current.loc[phases_non_neutral].mean() ) return electric_grid_data class ElectricGridModelDefault(ElectricGridModel): """Electric grid model object consisting of the index sets for node names / branch names / der names / phases / node types / branch types, the nodal admittance / transformation matrices, branch admittance / incidence matrices and DER incidence matrices. :syntax: - ``ElectricGridModelDefault(electric_grid_data)``: Instantiate electric grid model for given `electric_grid_data`. - ``ElectricGridModelDefault(scenario_name)``: Instantiate electric grid model for given `scenario_name`. The required `electric_grid_data` is obtained from the database. Arguments: electric_grid_data (mesmo.data_interface.ElectricGridData): Electric grid data object. scenario_name (str): MESMO scenario name. Attributes: phases (pd.Index): Index set of the phases. node_names (pd.Index): Index set of the node names. node_types (pd.Index): Index set of the node types. line_names (pd.Index): Index set of the line names. transformer_names (pd.Index): Index set of the transformer names. branch_names (pd.Index): Index set of the branch names, i.e., all line names and transformer names. branch_types (pd.Index): Index set of the branch types. der_names (pd.Index): Index set of the DER names. der_types (pd.Index): Index set of the DER types. nodes (pd.Index): Multi-level / tuple index set of the node types, node names and phases corresponding to the dimension of the node admittance matrices. branches (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases corresponding to the dimension of the branch admittance matrices. lines (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the lines only. transformers (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the transformers only. ders (pd.Index): Index set of the DER names, corresponding to the dimension of the DER power vector. node_voltage_vector_reference (np.ndarray): Node voltage reference / no load vector. branch_power_vector_magnitude_reference (np.ndarray): Branch power reference / rated power vector. der_power_vector_reference (np.ndarray): DER power reference / nominal power vector. is_single_phase_equivalent (bool): Singe-phase-equivalent modelling flag. If true, electric grid is modelled as single-phase-equivalent of three-phase balanced system. node_admittance_matrix (sp.spmatrix): Nodal admittance matrix. node_transformation_matrix (sp.spmatrix): Nodal transformation matrix. branch_admittance_1_matrix (sp.spmatrix): Branch admittance matrix in the 'from' direction. branch_admittance_2_matrix (sp.spmatrix): Branch admittance matrix in the 'to' direction. branch_incidence_1_matrix (sp.spmatrix): Branch incidence matrix in the 'from' direction. branch_incidence_2_matrix (sp.spmatrix): Branch incidence matrix in the 'to' direction. der_incidence_wye_matrix (sp.spmatrix): Load incidence matrix for 'wye' DERs. der_incidence_delta_matrix (sp.spmatrix): Load incidence matrix for 'delta' DERs. node_admittance_matrix_no_source (sp.spmatrix): Nodal admittance matrix from no-source to no-source nodes. node_transformation_matrix_no_source (sp.spmatrix): Nodal admittance matrix from source to no-source nodes. der_incidence_wye_matrix_no_source (sp.spmatrix): Incidence matrix from wye-conn. DERs to no-source nodes. der_incidence_delta_matrix_no_source (sp.spmatrix): Incidence matrix from delta-conn. DERs to no-source nodes. node_voltage_vector_reference_no_source (sp.spmatrix): Nodal reference voltage vector for no-source nodes. node_voltage_vector_reference_source (sp.spmatrix): Nodal reference voltage vector for source nodes. node_admittance_matrix_no_source_inverse (sp.spmatrix): Inverse of no-source nodal admittance matrix. """ node_admittance_matrix: sp.spmatrix node_transformation_matrix: sp.spmatrix branch_admittance_1_matrix: sp.spmatrix branch_admittance_2_matrix: sp.spmatrix branch_incidence_1_matrix: sp.spmatrix branch_incidence_2_matrix: sp.spmatrix der_incidence_wye_matrix: sp.spmatrix der_incidence_delta_matrix: sp.spmatrix node_admittance_matrix_no_source: sp.spmatrix node_admittance_matrix_source_to_no_source: sp.spmatrix node_transformation_matrix_no_source: sp.spmatrix der_incidence_wye_matrix_no_source: sp.spmatrix der_incidence_delta_matrix_no_source: sp.spmatrix node_voltage_vector_reference_no_source: sp.spmatrix node_voltage_vector_reference_source: sp.spmatrix node_admittance_matrix_no_source_inverse: sp.spmatrix @multimethod def __init__( self, scenario_name: str ): # Obtain electric grid data. electric_grid_data = mesmo.data_interface.ElectricGridData(scenario_name) # Instantiate electric grid model object. self.__init__( electric_grid_data ) @multimethod def __init__( self, electric_grid_data: mesmo.data_interface.ElectricGridData, ): # Obtain electric grid indexes, via `ElectricGridModel.__init__()`. super().__init__(electric_grid_data) # Define sparse matrices for nodal admittance, nodal transformation, # branch admittance, branch incidence and der incidence matrix entries. self.node_admittance_matrix = ( sp.dok_matrix((len(self.nodes), len(self.nodes)), dtype=complex) ) self.node_transformation_matrix = ( sp.dok_matrix((len(self.nodes), len(self.nodes)), dtype=int) ) self.branch_admittance_1_matrix = ( sp.dok_matrix((len(self.branches), len(self.nodes)), dtype=complex) ) self.branch_admittance_2_matrix = ( sp.dok_matrix((len(self.branches), len(self.nodes)), dtype=complex) ) self.branch_incidence_1_matrix = ( sp.dok_matrix((len(self.branches), len(self.nodes)), dtype=int) ) self.branch_incidence_2_matrix = ( sp.dok_matrix((len(self.branches), len(self.nodes)), dtype=int) ) self.der_incidence_wye_matrix = ( sp.dok_matrix((len(self.nodes), len(self.ders)), dtype=float) ) self.der_incidence_delta_matrix = ( sp.dok_matrix((len(self.nodes), len(self.ders)), dtype=float) ) # Add lines to admittance, transformation and incidence matrices. for line_index, line in electric_grid_data.electric_grid_lines.iterrows(): # Obtain phases vector. phases_vector = mesmo.utils.get_element_phases_array(line) # Obtain line resistance / reactance / capacitance matrix entries for the line. matrices_index = ( electric_grid_data.electric_grid_line_types_matrices.loc[:, 'line_type'] == line['line_type'] ) resistance_matrix = ( electric_grid_data.electric_grid_line_types_matrices.loc[matrices_index, 'resistance'].values ) reactance_matrix = ( electric_grid_data.electric_grid_line_types_matrices.loc[matrices_index, 'reactance'].values ) capacitance_matrix = ( electric_grid_data.electric_grid_line_types_matrices.loc[matrices_index, 'capacitance'].values ) # Obtain the full line resistance and reactance matrices. # Data only contains upper half entries. matrices_full_index = ( np.array([ [1, 2, 4], [2, 3, 5], [4, 5, 6] ]) - 1 ) matrices_full_index = ( matrices_full_index[:len(phases_vector), :len(phases_vector)] ) resistance_matrix = resistance_matrix[matrices_full_index] reactance_matrix = reactance_matrix[matrices_full_index] capacitance_matrix = capacitance_matrix[matrices_full_index] # Construct line series admittance matrix. series_admittance_matrix = ( np.linalg.inv( (resistance_matrix + 1j * reactance_matrix) * line['length'] ) ) # Construct line shunt admittance. # Note: nF to Ω with X = 1 / (2π * f * C) # TODO: Check line shunt admittance. shunt_admittance_matrix = ( capacitance_matrix * 2 * np.pi * electric_grid_data.electric_grid.at['base_frequency'] * 1e-9 * 0.5j * line['length'] ) # Construct line element admittance matrices according to: # https://doi.org/10.1109/TPWRS.2017.2728618 admittance_matrix_11 = ( series_admittance_matrix + shunt_admittance_matrix ) admittance_matrix_12 = ( - series_admittance_matrix ) admittance_matrix_21 = ( - series_admittance_matrix ) admittance_matrix_22 = ( series_admittance_matrix + shunt_admittance_matrix ) # Obtain indexes for positioning the line element matrices # in the full admittance matrices. node_index_1 = ( mesmo.utils.get_index( self.nodes, node_name=line['node_1_name'], phase=phases_vector ) ) node_index_2 = ( mesmo.utils.get_index( self.nodes, node_name=line['node_2_name'], phase=phases_vector ) ) branch_index = ( mesmo.utils.get_index( self.branches, branch_type='line', branch_name=line['line_name'] ) ) # Add line element matrices to the nodal admittance matrix. self.node_admittance_matrix[np.ix_(node_index_1, node_index_1)] += admittance_matrix_11 self.node_admittance_matrix[np.ix_(node_index_1, node_index_2)] += admittance_matrix_12 self.node_admittance_matrix[np.ix_(node_index_2, node_index_1)] += admittance_matrix_21 self.node_admittance_matrix[np.ix_(node_index_2, node_index_2)] += admittance_matrix_22 # Add line element matrices to the branch admittance matrices. self.branch_admittance_1_matrix[np.ix_(branch_index, node_index_1)] += admittance_matrix_11 self.branch_admittance_1_matrix[np.ix_(branch_index, node_index_2)] += admittance_matrix_12 self.branch_admittance_2_matrix[np.ix_(branch_index, node_index_1)] += admittance_matrix_21 self.branch_admittance_2_matrix[np.ix_(branch_index, node_index_2)] += admittance_matrix_22 # Add line element matrices to the branch incidence matrices. self.branch_incidence_1_matrix[np.ix_(branch_index, node_index_1)] += ( np.identity(len(branch_index), dtype=int) ) self.branch_incidence_2_matrix[np.ix_(branch_index, node_index_2)] += ( np.identity(len(branch_index), dtype=int) ) # Add transformers to admittance, transformation and incidence matrices. # - Note: This setup only works for transformers with exactly two windings # and identical number of phases at each winding / side. # Define transformer factor matrices according to: # https://doi.org/10.1109/TPWRS.2017.2728618 transformer_factors_1 = ( np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) ) transformer_factors_2 = ( 1 / 3 * np.array([ [2, -1, -1], [-1, 2, -1], [-1, -1, 2] ]) ) transformer_factors_3 = ( 1 / np.sqrt(3) * np.array([ [-1, 1, 0], [0, -1, 1], [1, 0, -1] ]) ) # Add transformers to admittance matrix. for transformer_index, transformer in electric_grid_data.electric_grid_transformers.iterrows(): # Raise error if transformer nominal power is not valid. if not (transformer.at['apparent_power'] > 0): raise ValueError( f"At transformer '{transformer.at['transformer_name']}', " f"found invalid value for `apparent_power`: {transformer.at['apparent_power']}`" ) # Calculate transformer admittance. admittance = ( ( ( 2 * transformer.at['resistance_percentage'] / 100 + 1j * transformer.at['reactance_percentage'] / 100 ) * ( electric_grid_data.electric_grid_nodes.at[transformer.at['node_2_name'], 'voltage'] ** 2 / transformer.at['apparent_power'] ) ) ** -1 ) # Calculate turn ratio. turn_ratio = ( ( 1.0 # TODO: Replace `1.0` with actual tap position. * electric_grid_data.electric_grid_nodes.at[transformer.at['node_1_name'], 'voltage'] ) / ( 1.0 # TODO: Replace `1.0` with actual tap position. * electric_grid_data.electric_grid_nodes.at[transformer.at['node_2_name'], 'voltage'] ) ) # Construct transformer element admittance matrices according to: # https://doi.org/10.1109/TPWRS.2017.2728618 if transformer.at['connection'] == "wye-wye": admittance_matrix_11 = ( admittance * transformer_factors_1 / turn_ratio ** 2 ) admittance_matrix_12 = ( - 1 * admittance * transformer_factors_1 / turn_ratio ) admittance_matrix_21 = ( - 1 * admittance * transformer_factors_1 / turn_ratio ) admittance_matrix_22 = ( admittance * transformer_factors_1 ) elif transformer.at['connection'] == "delta-wye": admittance_matrix_11 = ( admittance * transformer_factors_2 / turn_ratio ** 2 ) admittance_matrix_12 = ( - 1 * admittance * - 1 * np.transpose(transformer_factors_3) / turn_ratio ) admittance_matrix_21 = ( - 1 * admittance * - 1 * transformer_factors_3 / turn_ratio ) admittance_matrix_22 = ( admittance * transformer_factors_1 ) elif transformer.at['connection'] == "wye-delta": admittance_matrix_11 = ( admittance * transformer_factors_1 / turn_ratio ** 2 ) admittance_matrix_12 = ( - 1 * admittance * - 1 * transformer_factors_3 / turn_ratio ) admittance_matrix_21 = ( - 1 * admittance * - 1 * np.transpose(transformer_factors_3) / turn_ratio ) admittance_matrix_22 = ( admittance * transformer_factors_2 ) elif transformer.at['connection'] == "delta-delta": admittance_matrix_11 = ( admittance * transformer_factors_2 / turn_ratio ** 2 ) admittance_matrix_12 = ( - 1 * admittance * transformer_factors_2 / turn_ratio ) admittance_matrix_21 = ( - 1 * admittance * transformer_factors_2 / turn_ratio ) admittance_matrix_22 = ( admittance * transformer_factors_2 ) else: raise ValueError(f"Unknown transformer type: {transformer.at['connection']}") # Obtain phases vector. phases_vector = mesmo.utils.get_element_phases_array(transformer) # Obtain element admittance matrices for correct phases. admittance_matrix_11 = ( admittance_matrix_11[np.ix_(phases_vector - 1, phases_vector - 1)] ) admittance_matrix_12 = ( admittance_matrix_12[np.ix_(phases_vector - 1, phases_vector - 1)] ) admittance_matrix_21 = ( admittance_matrix_21[np.ix_(phases_vector - 1, phases_vector - 1)] ) admittance_matrix_22 = ( admittance_matrix_22[np.ix_(phases_vector - 1, phases_vector - 1)] ) # Obtain indexes for positioning the transformer element # matrices in the full matrices. node_index_1 = ( mesmo.utils.get_index( self.nodes, node_name=transformer.at['node_1_name'], phase=phases_vector ) ) node_index_2 = ( mesmo.utils.get_index( self.nodes, node_name=transformer.at['node_2_name'], phase=phases_vector ) ) branch_index = ( mesmo.utils.get_index( self.branches, branch_type='transformer', branch_name=transformer['transformer_name'] ) ) # Add transformer element matrices to the nodal admittance matrix. self.node_admittance_matrix[np.ix_(node_index_1, node_index_1)] += admittance_matrix_11 self.node_admittance_matrix[np.ix_(node_index_1, node_index_2)] += admittance_matrix_12 self.node_admittance_matrix[np.ix_(node_index_2, node_index_1)] += admittance_matrix_21 self.node_admittance_matrix[np.ix_(node_index_2, node_index_2)] += admittance_matrix_22 # Add transformer element matrices to the branch admittance matrices. self.branch_admittance_1_matrix[np.ix_(branch_index, node_index_1)] += admittance_matrix_11 self.branch_admittance_1_matrix[np.ix_(branch_index, node_index_2)] += admittance_matrix_12 self.branch_admittance_2_matrix[np.ix_(branch_index, node_index_1)] += admittance_matrix_21 self.branch_admittance_2_matrix[np.ix_(branch_index, node_index_2)] += admittance_matrix_22 # Add transformer element matrices to the branch incidence matrices. self.branch_incidence_1_matrix[np.ix_(branch_index, node_index_1)] += ( np.identity(len(branch_index), dtype=int) ) self.branch_incidence_2_matrix[np.ix_(branch_index, node_index_2)] += ( np.identity(len(branch_index), dtype=int) ) # Define transformation matrix according to: # https://doi.org/10.1109/TPWRS.2018.2823277 transformation_entries = ( np.array([ [1, -1, 0], [0, 1, -1], [-1, 0, 1] ]) ) for node_name, node in electric_grid_data.electric_grid_nodes.iterrows(): # Obtain node phases index. phases_index = mesmo.utils.get_element_phases_array(node) - 1 # Construct node transformation matrix. transformation_matrix = transformation_entries[np.ix_(phases_index, phases_index)] # Obtain index for positioning node transformation matrix in full transformation matrix. node_index = ( mesmo.utils.get_index( self.nodes, node_name=node['node_name'] ) ) # Add node transformation matrix to full transformation matrix. self.node_transformation_matrix[np.ix_(node_index, node_index)] = transformation_matrix # Add DERs to der incidence matrix. for der_name, der in electric_grid_data.electric_grid_ders.iterrows(): # Obtain der connection type. connection = der['connection'] # Obtain indexes for positioning the DER in the incidence matrix. node_index = ( mesmo.utils.get_index( self.nodes, node_name=der['node_name'], phase=mesmo.utils.get_element_phases_array(der) ) ) der_index = ( mesmo.utils.get_index( self.ders, der_name=der['der_name'] ) ) if connection == "wye": # Define incidence matrix entries. # - Wye ders are represented as balanced ders across all # their connected phases. incidence_matrix = ( np.ones((len(node_index), 1), dtype=float) / len(node_index) ) self.der_incidence_wye_matrix[np.ix_(node_index, der_index)] = incidence_matrix elif connection == "delta": # Obtain phases of the delta der. phases_list = mesmo.utils.get_element_phases_array(der).tolist() # Select connection node based on phase arrangement of delta der. # TODO: Why no multi-phase delta DERs? # - Delta DERs must be single-phase. if phases_list in ([1, 2], [2, 3]): node_index = [node_index[0]] elif phases_list == [1, 3]: node_index = [node_index[1]] else: raise ValueError(f"Unknown delta phase arrangement: {phases_list}") # Define incidence matrix entry. # - Delta ders are assumed to be single-phase. incidence_matrix = np.array([1]) self.der_incidence_delta_matrix[np.ix_(node_index, der_index)] = incidence_matrix else: raise ValueError(f"Unknown der connection type: {connection}") # Make modifications for single-phase-equivalent modelling. if self.is_single_phase_equivalent: self.der_incidence_wye_matrix /= 3 # Note that there won't be any delta loads in the single-phase-equivalent grid. # Convert sparse matrices for nodal admittance, nodal transformation, # branch admittance, branch incidence and der incidence matrices. # - Converting from DOK to CSR format for more efficient calculations # according to <https://docs.scipy.org/doc/scipy/reference/sparse.html>. self.node_admittance_matrix = self.node_admittance_matrix.tocsr() self.node_transformation_matrix = self.node_transformation_matrix.tocsr() self.branch_admittance_1_matrix = self.branch_admittance_1_matrix.tocsr() self.branch_admittance_2_matrix = self.branch_admittance_2_matrix.tocsr() self.branch_incidence_1_matrix = self.branch_incidence_1_matrix.tocsr() self.branch_incidence_2_matrix = self.branch_incidence_2_matrix.tocsr() self.der_incidence_wye_matrix = self.der_incidence_wye_matrix.tocsr() self.der_incidence_delta_matrix = self.der_incidence_delta_matrix.tocsr() # Define shorthands for no-source variables. # TODO: Add in class documentation. # TODO: Replace local variables in power flow / linear models. self.node_admittance_matrix_no_source = ( self.node_admittance_matrix[np.ix_( mesmo.utils.get_index(self.nodes, node_type='no_source'), mesmo.utils.get_index(self.nodes, node_type='no_source') )] ) self.node_admittance_matrix_source_to_no_source = ( self.node_admittance_matrix[np.ix_( mesmo.utils.get_index(self.nodes, node_type='no_source'), mesmo.utils.get_index(self.nodes, node_type='source') )] ) self.node_transformation_matrix_no_source = ( self.node_transformation_matrix[np.ix_( mesmo.utils.get_index(self.nodes, node_type='no_source'), mesmo.utils.get_index(self.nodes, node_type='no_source') )] ) self.der_incidence_wye_matrix_no_source = ( self.der_incidence_wye_matrix[ np.ix_( mesmo.utils.get_index(self.nodes, node_type='no_source'), range(len(self.ders)) ) ] ) self.der_incidence_delta_matrix_no_source = ( self.der_incidence_delta_matrix[ np.ix_( mesmo.utils.get_index(self.nodes, node_type='no_source'), range(len(self.ders)) ) ] ) self.node_voltage_vector_reference_no_source = ( self.node_voltage_vector_reference[ mesmo.utils.get_index(self.nodes, node_type='no_source') ] ) self.node_voltage_vector_reference_source = ( self.node_voltage_vector_reference[ mesmo.utils.get_index(self.nodes, node_type='source') ] ) # Calculate inverse of no-source node admittance matrix. # - Raise error if not invertible. # - Only checking invertibility of no-source node admittance matrix, because full node admittance matrix may # be non-invertible, e.g. zero entries when connecting a multi-phase line at three-phase source node. try: self.node_admittance_matrix_no_source_inverse = ( scipy.sparse.linalg.inv(self.node_admittance_matrix_no_source.tocsc()) ) assert not np.isnan(self.node_admittance_matrix_no_source_inverse.data).any() except (RuntimeError, AssertionError) as exception: raise ( ValueError(f"Node admittance matrix could not be inverted. Please check electric grid definition.") ) from exception class ElectricGridModelOpenDSS(ElectricGridModel): """OpenDSS electric grid model object. - Instantiate OpenDSS circuit by running generating OpenDSS commands corresponding to given `electric_grid_data`, utilizing the `OpenDSSDirect.py` package. - The OpenDSS circuit can be accessed with the API of `OpenDSSDirect.py`: http://dss-extensions.org/OpenDSSDirect.py/opendssdirect.html - Due to dependency on `OpenDSSDirect.py`, creating multiple objects of this type may result in erroneous behavior. :syntax: - ``ElectricGridModelOpenDSS(electric_grid_data)``: Initialize OpenDSS circuit model for given `electric_grid_data`. - ``ElectricGridModelOpenDSS(scenario_name)`` Initialize OpenDSS circuit model for given `scenario_name`. The required `electric_grid_data` is obtained from the database. Parameters: scenario_name (str): MESMO scenario name. electric_grid_data (mesmo.data_interface.ElectricGridData): Electric grid data object. Attributes: phases (pd.Index): Index set of the phases. node_names (pd.Index): Index set of the node names. node_types (pd.Index): Index set of the node types. line_names (pd.Index): Index set of the line names. transformer_names (pd.Index): Index set of the transformer names. branch_names (pd.Index): Index set of the branch names, i.e., all line names and transformer names. branch_types (pd.Index): Index set of the branch types. der_names (pd.Index): Index set of the DER names. der_types (pd.Index): Index set of the DER types. nodes (pd.Index): Multi-level / tuple index set of the node types, node names and phases corresponding to the dimension of the node admittance matrices. branches (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases corresponding to the dimension of the branch admittance matrices. lines (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the lines only. transformers (pd.Index): Multi-level / tuple index set of the branch types, branch names and phases for the transformers only. ders (pd.Index): Index set of the DER names, corresponding to the dimension of the DER power vector. node_voltage_vector_reference (np.ndarray): Node voltage reference / no load vector. branch_power_vector_magnitude_reference (np.ndarray): Branch power reference / rated power vector. der_power_vector_reference (np.ndarray): DER power reference / nominal power vector. is_single_phase_equivalent (bool): Singe-phase-equivalent modelling flag. If true, electric grid is modelled as single-phase-equivalent of three-phase balanced system. circuit_name (str): Circuit name, stored for validation that the correct OpenDSS model is being accessed. electric_grid_data: (mesmo.data_interface.ElectricGridData): Electric grid data object, stored for possible reinitialization of the OpenDSS model. """ circuit_name: str electric_grid_data: mesmo.data_interface.ElectricGridData @multimethod def __init__( self, scenario_name: str ): # Obtain electric grid data. electric_grid_data = ( mesmo.data_interface.ElectricGridData(scenario_name) ) self.__init__( electric_grid_data ) @multimethod def __init__( self, electric_grid_data: mesmo.data_interface.ElectricGridData ): # TODO: Add reset method to ensure correct circuit model is set in OpenDSS when handling multiple models. # Obtain electric grid indexes, via `ElectricGridModel.__init__()`. super().__init__(electric_grid_data) # Obtain circuit name. self.circuit_name = electric_grid_data.electric_grid.at['electric_grid_name'] # Store electric grid data. self.electric_grid_data = electric_grid_data # Clear OpenDSS. opendss_command_string = "clear" logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Obtain source voltage. source_voltage = ( electric_grid_data.electric_grid_nodes.at[ electric_grid_data.electric_grid.at['source_node_name'], 'voltage' ] ) # Adjust source voltage for single-phase, non-single-phase-equivalent modelling. if (len(self.phases) == 1) and not self.is_single_phase_equivalent: source_voltage /= np.sqrt(3) # Add circuit info to OpenDSS command string. opendss_command_string = ( f"set defaultbasefrequency={electric_grid_data.electric_grid.at['base_frequency']}" + f"\nnew circuit.{self.circuit_name}" + f" phases={len(self.phases)}" + f" bus1={electric_grid_data.electric_grid.at['source_node_name']}" + f" basekv={source_voltage / 1000}" + f" mvasc3=9999999999 9999999999" # Set near-infinite power limit for source node. ) # Create circuit in OpenDSS. logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Define line codes. for line_type_index, line_type in electric_grid_data.electric_grid_line_types.iterrows(): # Obtain line resistance and reactance matrix entries for the line. matrices = ( electric_grid_data.electric_grid_line_types_matrices.loc[ ( electric_grid_data.electric_grid_line_types_matrices.loc[:, 'line_type'] == line_type.at['line_type'] ), ['resistance', 'reactance', 'capacitance'] ] ) # Obtain number of phases. # - Only define as line types for as many phases as needed for current grid. n_phases = min(line_type.at['n_phases'], len(self.phases)) # Add line type name and number of phases to OpenDSS command string. opendss_command_string = ( f"new linecode.{line_type.at['line_type']}" + f" nphases={n_phases}" ) # Add resistance and reactance matrix entries to OpenDSS command string, # with formatting depending on number of phases. if n_phases == 1: opendss_command_string += ( " rmatrix = " + "[{:.8f}]".format(*matrices.loc[:, 'resistance']) + " xmatrix = " + "[{:.8f}]".format(*matrices.loc[:, 'reactance']) + " cmatrix = " + "[{:.8f}]".format(*matrices.loc[:, 'capacitance']) ) elif n_phases == 2: opendss_command_string += ( " rmatrix = " + "[{:.8f} | {:.8f} {:.8f}]".format(*matrices.loc[:, 'resistance']) + " xmatrix = " + "[{:.8f} | {:.8f} {:.8f}]".format(*matrices.loc[:, 'reactance']) + " cmatrix = " + "[{:.8f} | {:.8f} {:.8f}]".format(*matrices.loc[:, 'capacitance']) ) elif n_phases == 3: opendss_command_string += ( " rmatrix = " + "[{:.8f} | {:.8f} {:.8f} | {:.8f} {:.8f} {:.8f}]".format(*matrices.loc[:, 'resistance']) + f" xmatrix = " + "[{:.8f} | {:.8f} {:.8f} | {:.8f} {:.8f} {:.8f}]".format(*matrices.loc[:, 'reactance']) + f" cmatrix = " + "[{:.8f} | {:.8f} {:.8f} | {:.8f} {:.8f} {:.8f}]".format(*matrices.loc[:, 'capacitance']) ) # Create line code in OpenDSS. logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Define lines. for line_index, line in electric_grid_data.electric_grid_lines.iterrows(): # Obtain number of phases for the line. n_phases = len(mesmo.utils.get_element_phases_array(line)) # Add line name, phases, node connections, line type and length # to OpenDSS command string. opendss_command_string = ( f"new line.{line['line_name']}" + f" phases={n_phases}" + f" bus1={line['node_1_name']}{mesmo.utils.get_element_phases_string(line)}" + f" bus2={line['node_2_name']}{mesmo.utils.get_element_phases_string(line)}" + f" linecode={line['line_type']}" + f" length={line['length']}" ) # Create line in OpenDSS. logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Define transformers. for transformer_index, transformer in electric_grid_data.electric_grid_transformers.iterrows(): # Obtain number of phases. n_phases = len(mesmo.utils.get_element_phases_array(transformer)) # Add transformer name, number of phases / windings and reactances to OpenDSS command string. opendss_command_string = ( f"new transformer.{transformer.at['transformer_name']}" + f" phases={n_phases}" + f" windings=2" + f" xscarray=[{transformer.at['reactance_percentage']}]" ) # Add windings to OpenDSS command string. windings = [1, 2] for winding in windings: # Obtain nominal voltage level for each winding. voltage = electric_grid_data.electric_grid_nodes.at[transformer.at[f'node_{winding}_name'], 'voltage'] # Obtain node phases connection string for each winding. connection = transformer.at['connection'].split('-')[winding - 1] if connection == "wye": node_phases_string = ( mesmo.utils.get_element_phases_string(transformer) + ".0" # Enforce wye-grounded connection. ) elif connection == "delta": node_phases_string = ( mesmo.utils.get_element_phases_string(transformer) ) else: raise ValueError(f"Unknown transformer connection type: {connection}") # Add node connection, nominal voltage / power, resistance and maximum / minimum tap level # to OpenDSS command string for each winding. opendss_command_string += ( f" wdg={winding}" + f" bus={transformer.at[f'node_{winding}_name']}" + node_phases_string + f" conn={connection}" + f" kv={voltage / 1000}" + f" kva={transformer.at['apparent_power'] / 1000}" + f" %r={transformer.at['resistance_percentage']}" + f" maxtap=" + f"{transformer.at['tap_maximum_voltage_per_unit']}" + f" mintap=" + f"{transformer.at['tap_minimum_voltage_per_unit']}" ) # Create transformer in OpenDSS. logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Define DERs. # TODO: At the moment, all DERs are modelled as loads in OpenDSS. for der_index, der in electric_grid_data.electric_grid_ders.iterrows(): # Obtain number of phases for the DER. n_phases = len(mesmo.utils.get_element_phases_array(der)) # Obtain nominal voltage level for the DER. voltage = electric_grid_data.electric_grid_nodes.at[der['node_name'], 'voltage'] # Convert to line-to-neutral voltage for single-phase DERs, according to: # https://sourceforge.net/p/electricdss/discussion/861976/thread/9c9e0efb/ # - Not needed for single-phase-equivalent modelling. if (n_phases == 1) and not self.is_single_phase_equivalent: voltage /= np.sqrt(3) # Add explicit ground-phase connection for single-phase, wye DERs, according to: # https://sourceforge.net/p/electricdss/discussion/861976/thread/d420e8fb/ # - This does not seem to make a difference if omitted, but is kept here to follow the recommendation. # - Not needed for single-phase-equivalent modelling. if (n_phases == 1) and (der['connection'] == 'wye') and not self.is_single_phase_equivalent: ground_phase_string = ".0" else: ground_phase_string = "" # Add node connection, model type, voltage, nominal power to OpenDSS command string. opendss_command_string = ( f"new load.{der['der_name']}" + f" bus1={der['node_name']}{ground_phase_string}{mesmo.utils.get_element_phases_string(der)}" + f" phases={n_phases}" + f" conn={der['connection']}" # All loads are modelled as constant P/Q according to: # OpenDSS Manual April 2018, page 150, "Model" + f" model=1" + f" kv={voltage / 1000}" + f" kw={- der['active_power_nominal'] / 1000}" + f" kvar={- der['reactive_power_nominal'] / 1000}" # Set low V_min to avoid switching to impedance model according to: # OpenDSS Manual April 2018, page 150, "Vminpu" + f" vminpu=0.6" # Set high V_max to avoid switching to impedance model according to: # OpenDSS Manual April 2018, page 150, "Vmaxpu" + f" vmaxpu=1.4" ) # Create DER in OpenDSS. logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Obtain voltage bases. voltage_bases = ( np.unique( electric_grid_data.electric_grid_nodes.loc[:, 'voltage'].values / 1000 ).tolist() ) # Set control mode and voltage bases. opendss_command_string = ( f"set voltagebases={voltage_bases}" + f"\nset controlmode=off" + f"\ncalcvoltagebases" ) logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Set solution mode to "single snapshot power flow" according to: # OpenDSSComDoc, November 2016, page 1 opendss_command_string = "set mode=0" logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) class ElectricGridDEROperationResults(mesmo.utils.ResultsBase): der_active_power_vector: pd.DataFrame der_active_power_vector_per_unit: pd.DataFrame der_reactive_power_vector: pd.DataFrame der_reactive_power_vector_per_unit: pd.DataFrame class ElectricGridOperationResults(ElectricGridDEROperationResults): electric_grid_model: ElectricGridModel node_voltage_magnitude_vector: pd.DataFrame node_voltage_magnitude_vector_per_unit: pd.DataFrame node_voltage_angle_vector: pd.DataFrame branch_power_magnitude_vector_1: pd.DataFrame branch_power_magnitude_vector_1_per_unit: pd.DataFrame branch_active_power_vector_1: pd.DataFrame branch_active_power_vector_1_per_unit: pd.DataFrame branch_reactive_power_vector_1: pd.DataFrame branch_reactive_power_vector_1_per_unit: pd.DataFrame branch_power_magnitude_vector_2: pd.DataFrame branch_power_magnitude_vector_2_per_unit: pd.DataFrame branch_active_power_vector_2: pd.DataFrame branch_active_power_vector_2_per_unit: pd.DataFrame branch_reactive_power_vector_2: pd.DataFrame branch_reactive_power_vector_2_per_unit: pd.DataFrame loss_active: pd.DataFrame loss_reactive: pd.DataFrame class ElectricGridDLMPResults(mesmo.utils.ResultsBase): electric_grid_energy_dlmp_node_active_power: pd.DataFrame electric_grid_voltage_dlmp_node_active_power: pd.DataFrame electric_grid_congestion_dlmp_node_active_power: pd.DataFrame electric_grid_loss_dlmp_node_active_power: pd.DataFrame electric_grid_total_dlmp_node_active_power: pd.DataFrame electric_grid_voltage_dlmp_node_reactive_power: pd.DataFrame electric_grid_congestion_dlmp_node_reactive_power: pd.DataFrame electric_grid_loss_dlmp_node_reactive_power: pd.DataFrame electric_grid_energy_dlmp_node_reactive_power: pd.DataFrame electric_grid_total_dlmp_node_reactive_power: pd.DataFrame electric_grid_energy_dlmp_der_active_power: pd.DataFrame electric_grid_voltage_dlmp_der_active_power: pd.DataFrame electric_grid_congestion_dlmp_der_active_power: pd.DataFrame electric_grid_loss_dlmp_der_active_power: pd.DataFrame electric_grid_total_dlmp_der_active_power: pd.DataFrame electric_grid_voltage_dlmp_der_reactive_power: pd.DataFrame electric_grid_congestion_dlmp_der_reactive_power: pd.DataFrame electric_grid_loss_dlmp_der_reactive_power: pd.DataFrame electric_grid_energy_dlmp_der_reactive_power: pd.DataFrame electric_grid_total_dlmp_der_reactive_power: pd.DataFrame electric_grid_total_dlmp_price_timeseries: pd.DataFrame class PowerFlowSolution(mesmo.utils.ObjectBase): """Power flow solution object consisting of DER power vector and the corresponding solution for nodal voltage vector / branch power vector and total loss (all complex valued). """ der_power_vector: np.ndarray node_voltage_vector: np.ndarray branch_power_vector_1: np.ndarray branch_power_vector_2: np.ndarray loss: complex class PowerFlowSolutionFixedPoint(PowerFlowSolution): """Fixed point power flow solution object.""" @multimethod def __init__( self, scenario_name: str, **kwargs ): # Obtain `electric_grid_model`. electric_grid_model = ElectricGridModelDefault(scenario_name) self.__init__( electric_grid_model, **kwargs ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, **kwargs ): # Obtain `der_power_vector`, assuming nominal power conditions. der_power_vector = electric_grid_model.der_power_vector_reference self.__init__( electric_grid_model, der_power_vector, **kwargs ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, der_power_vector: np.ndarray, **kwargs ): # Store DER power vector. self.der_power_vector = der_power_vector.ravel() # Obtain voltage solution. self.node_voltage_vector = ( self.get_voltage( electric_grid_model, self.der_power_vector, **kwargs ) ) # Obtain branch flow solution. ( self.branch_power_vector_1, self.branch_power_vector_2 ) = ( self.get_branch_power( electric_grid_model, self.node_voltage_vector ) ) # Obtain loss solution. self.loss = ( self.get_loss( electric_grid_model, self.node_voltage_vector ) ) @staticmethod def check_solution_conditions( electric_grid_model: ElectricGridModelDefault, node_power_vector_wye_initial_no_source: np.ndarray, node_power_vector_delta_initial_no_source: np.ndarray, node_power_vector_wye_candidate_no_source: np.ndarray, node_power_vector_delta_candidate_no_source: np.ndarray, node_voltage_vector_initial_no_source: np.ndarray ) -> bool: """Check conditions for fixed-point solution existence, uniqueness and non-singularity for given power vector candidate and initial point. - Conditions are formulated according to: <https://arxiv.org/pdf/1702.03310.pdf> - Note the performance issues of this condition check algorithm due to the requirement for matrix inversions / solving of linear equations. """ # Calculate norm of the initial nodal power vector. xi_initial = ( np.max(np.sum( np.abs( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source, ( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * node_power_vector_wye_initial_no_source ) ) ), axis=1 )) + np.max(np.sum( np.abs( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source, ( ( electric_grid_model.node_transformation_matrix_no_source * ( np.abs(electric_grid_model.node_transformation_matrix_no_source) @ np.abs(electric_grid_model.node_voltage_vector_reference_no_source) ) ** -1 ) * node_power_vector_delta_initial_no_source ) ) ), axis=1 )) ) # Calculate norm of the candidate nodal power vector. xi_candidate = ( np.max(np.sum( np.abs( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source, ( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * ( node_power_vector_wye_candidate_no_source - node_power_vector_wye_initial_no_source ) ) ) ), axis=1 )) + np.max(np.sum( np.abs( (electric_grid_model.node_voltage_vector_reference_no_source ** -1) * scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source, ( ( electric_grid_model.node_transformation_matrix_no_source * ( np.abs(electric_grid_model.node_transformation_matrix_no_source) @ np.abs(electric_grid_model.node_voltage_vector_reference_no_source) ) ** -1 ) * ( node_power_vector_delta_candidate_no_source - node_power_vector_delta_initial_no_source ) ) ) ), axis=1 )) ) # Calculate norm of the initial nodal voltage vector. gamma = ( np.min([ np.min( np.abs(node_voltage_vector_initial_no_source) / np.abs(electric_grid_model.node_voltage_vector_reference_no_source) ), np.min( np.abs( electric_grid_model.node_transformation_matrix_no_source * node_voltage_vector_initial_no_source ) / ( np.abs(electric_grid_model.node_transformation_matrix_no_source) * np.abs(electric_grid_model.node_voltage_vector_reference_no_source) ) ) ]) ) # Obtain conditions for solution existence, uniqueness and non-singularity. condition_initial = ( xi_initial < (gamma ** 2) ) condition_candidate = ( xi_candidate < (0.25 * (((gamma ** 2) - xi_initial) / gamma) ** 2) ) is_valid = ( condition_initial & condition_candidate ) # If `condition_initial` is violated, the given initial nodal voltage vector and power vectors are not valid. # This suggests an error in the problem setup and hence triggers a warning. if ~condition_initial: logger.warning("Fixed point solution condition is not satisfied for the provided initial point.") return is_valid @staticmethod def get_voltage( electric_grid_model: ElectricGridModelDefault, der_power_vector: np.ndarray, outer_iteration_limit=100, outer_solution_algorithm='check_solution', # Choices: `check_conditions`, `check_solution`. power_candidate_iteration_limit=100, power_candidate_reduction_factor=0.5, voltage_iteration_limit=100, voltage_tolerance=1e-2 ) -> np.ndarray: """Get nodal voltage vector by solving with the fixed point algorithm. - Initial DER power vector / node voltage vector must be a valid solution to te fixed-point equation, e.g., a previous solution from a past operation point. - Fixed point equation according to: <https://arxiv.org/pdf/1702.03310.pdf> """ # TODO: Add proper documentation. # TODO: Validate fixed-point solution conditions. # Debug message. logger.debug("Starting fixed point solution algorithm...") # Obtain nodal power vectors. node_power_vector_wye_no_source = ( electric_grid_model.der_incidence_wye_matrix_no_source @ np.transpose([der_power_vector]) ).ravel() node_power_vector_delta_no_source = ( electric_grid_model.der_incidence_delta_matrix_no_source @ np.transpose([der_power_vector]) ).ravel() # Obtain initial nodal power and voltage vectors, assuming no power conditions. # TODO: Enable passing previous solution for fixed-point initialization. node_power_vector_wye_initial_no_source = np.zeros(node_power_vector_wye_no_source.shape, dtype=complex) node_power_vector_delta_initial_no_source = np.zeros(node_power_vector_delta_no_source.shape, dtype=complex) node_voltage_vector_initial_no_source = electric_grid_model.node_voltage_vector_reference_no_source.copy() # Define nodal power vector candidate to the desired nodal power vector. node_power_vector_wye_candidate_no_source = node_power_vector_wye_no_source.copy() node_power_vector_delta_candidate_no_source = node_power_vector_delta_no_source.copy() # Instantiate outer iteration variables. is_final = False outer_iteration = 0 # Outer iteration between power vector candidate selection and fixed point voltage solution algorithm # until a final solution is found. while ( ~is_final & (outer_iteration < outer_iteration_limit) ): # Outer solution algorithm based on fixed-point solution conditions check. # - Checks solution conditions and adjust power vector candidate if necessary, before solving for voltage. if outer_solution_algorithm == 'check_conditions': # Reset nodal power vector candidate to the desired nodal power vector. node_power_vector_wye_candidate_no_source = node_power_vector_wye_no_source.copy() node_power_vector_delta_candidate_no_source = node_power_vector_delta_no_source.copy() # Check solution conditions for nodal power vector candidate. is_final = ( PowerFlowSolutionFixedPoint.check_solution_conditions( electric_grid_model, node_power_vector_wye_initial_no_source, node_power_vector_delta_initial_no_source, node_power_vector_wye_candidate_no_source, node_power_vector_delta_candidate_no_source, node_voltage_vector_initial_no_source ) ) # Instantiate power candidate iteration variable. power_candidate_iteration = 0 is_valid = is_final.copy() # If solution conditions are violated, iteratively reduce power to find a power vector candidate # which satisfies the solution conditions. while ( ~is_valid & (power_candidate_iteration < power_candidate_iteration_limit) ): # Reduce nodal power vector candidate. node_power_vector_wye_candidate_no_source -= ( power_candidate_reduction_factor * ( node_power_vector_wye_candidate_no_source - node_power_vector_wye_initial_no_source ) ) node_power_vector_delta_candidate_no_source -= ( power_candidate_reduction_factor * ( node_power_vector_delta_candidate_no_source - node_power_vector_delta_initial_no_source ) ) is_valid = ( PowerFlowSolutionFixedPoint.check_solution_conditions( electric_grid_model, node_power_vector_wye_initial_no_source, node_power_vector_delta_initial_no_source, node_power_vector_wye_candidate_no_source, node_power_vector_delta_candidate_no_source, node_voltage_vector_initial_no_source, ) ) power_candidate_iteration += 1 # Reaching the iteration limit is considered undesired and triggers a warning. if power_candidate_iteration >= power_candidate_iteration_limit: logger.warning( "Power vector candidate selection algorithm for fixed-point solution reached " f"maximum limit of {power_candidate_iteration_limit} iterations." ) # Store current candidate power vectors as initial power vectors # for next round of computation of solution conditions. node_power_vector_wye_initial_no_source = ( node_power_vector_wye_candidate_no_source.copy() ) node_power_vector_delta_initial_no_source = ( node_power_vector_delta_candidate_no_source.copy() ) # Instantiate fixed point iteration variables. voltage_iteration = 0 voltage_change = np.inf while ( (voltage_iteration < voltage_iteration_limit) & (voltage_change > voltage_tolerance) ): # Calculate fixed point equation. node_voltage_vector_estimate_no_source = ( np.transpose([electric_grid_model.node_voltage_vector_reference_no_source]) + np.transpose([ scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source, ( ( ( np.conj(np.transpose([node_voltage_vector_initial_no_source])) ** -1 ) * np.conj(np.transpose([node_power_vector_wye_candidate_no_source])) ) + ( np.transpose(electric_grid_model.node_transformation_matrix_no_source) @ ( ( ( electric_grid_model.node_transformation_matrix_no_source @ np.conj(np.transpose([node_voltage_vector_initial_no_source])) ) ** -1 ) * np.conj(np.transpose([node_power_vector_delta_candidate_no_source])) ) ) ) ) ]) ).ravel() # Calculate voltage change from previous iteration. voltage_change = ( np.max(np.abs( node_voltage_vector_estimate_no_source - node_voltage_vector_initial_no_source )) ) # Set voltage solution as initial voltage for next iteration. node_voltage_vector_initial_no_source = node_voltage_vector_estimate_no_source.copy() # Increment voltage iteration counter. voltage_iteration += 1 # Outer solution algorithm based on voltage solution check. # - Checks if voltage solution exceeded iteration limit and adjusts power vector candidate if needed. if outer_solution_algorithm == 'check_solution': # If voltage solution exceeds iteration limit, reduce power and re-try voltage solution. if voltage_iteration >= voltage_iteration_limit: # Reduce nodal power vector candidate. node_power_vector_wye_candidate_no_source *= power_candidate_reduction_factor node_power_vector_delta_candidate_no_source *= power_candidate_reduction_factor # Reset initial nodal voltage vector. node_voltage_vector_initial_no_source = ( electric_grid_model.node_voltage_vector_reference_no_source.copy() ) # Otherwise, if power has previously been reduced, raise back power and re-try voltage solution. else: if ( (node_power_vector_wye_candidate_no_source != node_power_vector_wye_no_source).any() or (node_power_vector_delta_candidate_no_source != node_power_vector_delta_no_source).any() ): # Increase nodal power vector candidate. node_power_vector_wye_candidate_no_source *= power_candidate_reduction_factor ** -1 node_power_vector_delta_candidate_no_source *= power_candidate_reduction_factor ** -1 else: is_final = True # For fixed-point algorithm, reaching the iteration limit is considered undesired and triggers a warning elif voltage_iteration >= voltage_iteration_limit: logger.warning( "Fixed point voltage solution algorithm reached " f"maximum limit of {voltage_iteration_limit} iterations." ) # Increment outer iteration counter. outer_iteration += 1 # Reaching the outer iteration limit is considered undesired and triggers a warning. if outer_iteration >= outer_iteration_limit: logger.warning( "Outer wrapper algorithm for fixed-point solution reached " f"maximum limit of {outer_iteration_limit} iterations." ) # Debug message. logger.debug( "Completed fixed point solution algorithm. " f"Outer wrapper iterations: {outer_iteration}" ) # Get full voltage vector. node_voltage_vector = np.zeros(len(electric_grid_model.nodes), dtype=complex) node_voltage_vector[mesmo.utils.get_index(electric_grid_model.nodes, node_type='source')] += ( electric_grid_model.node_voltage_vector_reference_source ) node_voltage_vector[mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source')] += ( node_voltage_vector_initial_no_source # Takes value of `node_voltage_vector_estimate_no_source`. ) return node_voltage_vector @staticmethod def get_branch_power( electric_grid_model: ElectricGridModelDefault, node_voltage_vector: np.ndarray ): """Get branch power vectors by calculating power flow with given nodal voltage. - Returns two branch power vectors, where `branch_power_vector_1` represents the "from"-direction and `branch_power_vector_2` represents the "to"-direction. """ # Obtain branch admittance and incidence matrices. branch_admittance_1_matrix = ( electric_grid_model.branch_admittance_1_matrix ) branch_admittance_2_matrix = ( electric_grid_model.branch_admittance_2_matrix ) branch_incidence_1_matrix = ( electric_grid_model.branch_incidence_1_matrix ) branch_incidence_2_matrix = ( electric_grid_model.branch_incidence_2_matrix ) # Calculate branch power vectors. branch_power_vector_1 = ( ( branch_incidence_1_matrix @ np.transpose([node_voltage_vector]) ) * np.conj( branch_admittance_1_matrix @ np.transpose([node_voltage_vector]) ) ).ravel() branch_power_vector_2 = ( ( branch_incidence_2_matrix @ np.transpose([node_voltage_vector]) ) * np.conj( branch_admittance_2_matrix @ np.transpose([node_voltage_vector]) ) ).ravel() # Make modifications for single-phase-equivalent modelling. if electric_grid_model.is_single_phase_equivalent: branch_power_vector_1 *= 3 branch_power_vector_2 *= 3 return ( branch_power_vector_1, branch_power_vector_2 ) @staticmethod def get_loss( electric_grid_model: ElectricGridModelDefault, node_voltage_vector: np.ndarray ): """Get total electric losses with given nodal voltage.""" # Calculate total losses. # TODO: Check if summing up branch power is faster. # loss = ( # np.sum( # branch_power_vector_1 # + branch_power_vector_2 # ) # ) loss = ( np.array([node_voltage_vector]) @ np.conj(electric_grid_model.node_admittance_matrix) @ np.transpose([np.conj(node_voltage_vector)]) ).ravel() # Make modifications for single-phase-equivalent modelling. if electric_grid_model.is_single_phase_equivalent: loss *= 3 return loss class PowerFlowSolutionZBus(PowerFlowSolutionFixedPoint): """Implicit Z-bus power flow solution object.""" # Overwrite `check_solution_conditions`, which is invalid for the Z-bus power flow. @staticmethod def check_solution_conditions(*args, **kwargs): raise NotImplementedError("This method is invalid for the Z-bus power flow.") @staticmethod def get_voltage( electric_grid_model: ElectricGridModelDefault, der_power_vector: np.ndarray, voltage_iteration_limit=100, voltage_tolerance=1e-2, **kwargs ) -> np.ndarray: """Get nodal voltage vector by solving with the implicit Z-bus method.""" # Implicit Z-bus power flow solution (<NAME>). # - “Can, Can, Lah!” (literal meaning, can accomplish) # - <https://www.financialexpress.com/opinion/singapore-turns-50-the-remarkable-nation-that-can-lah/115775/> # Obtain nodal power vectors. node_power_vector_wye_no_source = ( electric_grid_model.der_incidence_wye_matrix_no_source @ np.transpose([der_power_vector]) ).ravel() node_power_vector_delta_no_source = ( electric_grid_model.der_incidence_delta_matrix_no_source @ np.transpose([der_power_vector]) ).ravel() # Obtain utility variables. node_admittance_matrix_no_source_inverse = ( scipy.sparse.linalg.inv(electric_grid_model.node_admittance_matrix_no_source.tocsc()) ) node_admittance_matrix_source_to_no_source = ( electric_grid_model.node_admittance_matrix[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='source') )] ) node_voltage_vector_initial_no_source = ( electric_grid_model.node_voltage_vector_reference_no_source.copy() ) # Instantiate implicit Z-bus power flow iteration variables. voltage_iteration = 0 voltage_change = np.inf while ( (voltage_iteration < voltage_iteration_limit) & (voltage_change > voltage_tolerance) ): # Calculate current injections. node_current_injection_delta_in_wye_no_source = ( electric_grid_model.node_transformation_matrix_no_source.transpose() @ np.conj( np.linalg.inv(np.diag(( electric_grid_model.node_transformation_matrix_no_source @ node_voltage_vector_initial_no_source ).ravel())) @ node_power_vector_wye_no_source ) ) node_current_injection_wye_no_source = ( np.conj(node_power_vector_delta_no_source) / np.conj(node_voltage_vector_initial_no_source) ) node_current_injection_no_source = ( node_current_injection_delta_in_wye_no_source + node_current_injection_wye_no_source ) # Calculate voltage. node_voltage_vector_estimate_no_source = ( node_admittance_matrix_no_source_inverse @ ( - node_admittance_matrix_source_to_no_source @ electric_grid_model.node_voltage_vector_reference_source + node_current_injection_no_source ) ) # node_voltage_vector_estimate_no_source = ( # electric_grid_model.node_voltage_vector_reference_no_source # + node_admittance_matrix_no_source_inverse @ node_current_injection_no_source # ) # Calculate voltage change from previous iteration. voltage_change = ( np.max(np.abs( node_voltage_vector_estimate_no_source - node_voltage_vector_initial_no_source )) ) # Set voltage estimate as new initial voltage for next iteration. node_voltage_vector_initial_no_source = node_voltage_vector_estimate_no_source.copy() # Increment voltage iteration counter. voltage_iteration += 1 # Reaching the iteration limit is considered undesired and triggers a warning. if voltage_iteration >= voltage_iteration_limit: logger.warning( "Z-bus solution algorithm reached " f"maximum limit of {voltage_iteration_limit} iterations." ) # Get full voltage vector. node_voltage_vector = np.zeros(len(electric_grid_model.nodes), dtype=complex) node_voltage_vector[mesmo.utils.get_index(electric_grid_model.nodes, node_type='source')] += ( electric_grid_model.node_voltage_vector_reference_source ) node_voltage_vector[mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source')] += ( node_voltage_vector_initial_no_source # Takes value of `node_voltage_vector_estimate_no_source`. ) return node_voltage_vector class PowerFlowSolutionOpenDSS(PowerFlowSolution): """OpenDSS power flow solution object.""" @multimethod def __init__( self, scenario_name: str, **kwargs ): # Obtain `electric_grid_model`. electric_grid_model = ElectricGridModelOpenDSS(scenario_name) self.__init__( electric_grid_model, **kwargs ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelOpenDSS, **kwargs ): # Obtain `der_power_vector`, assuming nominal power conditions. der_power_vector = electric_grid_model.der_power_vector_reference self.__init__( electric_grid_model, der_power_vector, **kwargs ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelOpenDSS, der_power_vector: np.ndarray, **kwargs ): # Store DER power vector. self.der_power_vector = der_power_vector.ravel() # Check if correct OpenDSS circuit is initialized, otherwise reinitialize. if opendssdirect.Circuit.Name() != electric_grid_model.circuit_name: electric_grid_model.__init__(electric_grid_model.electric_grid_data) # Set DER power vector in OpenDSS model. for der_index, der_name in enumerate(electric_grid_model.der_names): # TODO: For OpenDSS, all DERs are assumed to be loads. opendss_command_string = ( f"load.{der_name}.kw = {- np.real(self.der_power_vector[der_index]) / 1000.0}" + f"\nload.{der_name}.kvar = {- np.imag(self.der_power_vector[der_index]) / 1000.0}" ) logger.debug(f"opendss_command_string = \n{opendss_command_string}") opendssdirect.run_command(opendss_command_string) # Solve OpenDSS model. opendssdirect.run_command("solve") # Obtain voltage solution. self.node_voltage_vector = ( self.get_voltage( electric_grid_model ) ) # Obtain branch flow solution. ( self.branch_power_vector_1, self.branch_power_vector_2 ) = ( self.get_branch_power() ) # Obtain loss solution. self.loss = ( self.get_loss() ) @staticmethod def get_voltage( electric_grid_model: ElectricGridModelOpenDSS ): """Get nodal voltage vector by solving OpenDSS model. - OpenDSS model must be readily set up, with the desired power being set for all DERs. """ # Create index for OpenDSS nodes. opendss_nodes = pd.Series(opendssdirect.Circuit.AllNodeNames()).str.split('.', expand=True) opendss_nodes.columns = ['node_name', 'phase'] opendss_nodes.loc[:, 'phase'] = opendss_nodes.loc[:, 'phase'].astype(int) opendss_nodes = pd.MultiIndex.from_frame(opendss_nodes) # Extract nodal voltage vector and reindex to match MESMO nodes order. node_voltage_vector_solution = ( pd.Series( ( np.array(opendssdirect.Circuit.AllBusVolts()[0::2]) + 1j * np.array(opendssdirect.Circuit.AllBusVolts()[1::2]) ), index=opendss_nodes ).reindex( electric_grid_model.nodes.droplevel('node_type') ).values ) # Make modifications for single-phase-equivalent modelling. if electric_grid_model.is_single_phase_equivalent: node_voltage_vector_solution /= np.sqrt(3) return node_voltage_vector_solution @staticmethod def get_branch_power(): """Get branch power vectors by solving OpenDSS model. - OpenDSS model must be readily set up, with the desired power being set for all DERs. """ # Solve OpenDSS model. opendssdirect.run_command("solve") # Instantiate branch vectors. branch_power_vector_1 = ( np.full(((opendssdirect.Lines.Count() + opendssdirect.Transformers.Count()), 3), np.nan, dtype=complex) ) branch_power_vector_2 = ( np.full(((opendssdirect.Lines.Count() + opendssdirect.Transformers.Count()), 3), np.nan, dtype=complex) ) # Instantiate iteration variables. branch_vector_index = 0 line_index = opendssdirect.Lines.First() # Obtain line branch power vectors. while line_index > 0: branch_power_opendss = np.array(opendssdirect.CktElement.Powers()) * 1000.0 branch_phase_count = opendssdirect.CktElement.NumPhases() branch_power_vector_1[branch_vector_index, :branch_phase_count] = ( branch_power_opendss[0:(branch_phase_count * 2):2] + 1.0j * branch_power_opendss[1:(branch_phase_count * 2):2] ) branch_power_vector_2[branch_vector_index, :branch_phase_count] = ( branch_power_opendss[0 + (branch_phase_count * 2)::2] + 1.0j * branch_power_opendss[1 + (branch_phase_count * 2)::2] ) branch_vector_index += 1 line_index = opendssdirect.Lines.Next() # Obtain transformer branch power vectors. transformer_index = opendssdirect.Transformers.First() while transformer_index > 0: branch_power_opendss = np.array(opendssdirect.CktElement.Powers()) * 1000.0 branch_phase_count = opendssdirect.CktElement.NumPhases() skip_phase = 2 if 0 in opendssdirect.CktElement.NodeOrder() else 0 # Ignore ground nodes. branch_power_vector_1[branch_vector_index, :branch_phase_count] = ( branch_power_opendss[0:(branch_phase_count * 2):2] + 1.0j * branch_power_opendss[1:(branch_phase_count * 2):2] ) branch_power_vector_2[branch_vector_index, :branch_phase_count] = ( branch_power_opendss[0 + (branch_phase_count * 2) + skip_phase:-skip_phase:2] + 1.0j * branch_power_opendss[1 + (branch_phase_count * 2) + skip_phase:-skip_phase:2] ) branch_vector_index += 1 transformer_index = opendssdirect.Transformers.Next() # Reshape branch power vectors to appropriate size and remove entries for nonexistent phases. # TODO: Sort vector by branch name if not in order. branch_power_vector_1 = branch_power_vector_1.flatten() branch_power_vector_2 = branch_power_vector_2.flatten() branch_power_vector_1 = branch_power_vector_1[~np.isnan(branch_power_vector_1)] branch_power_vector_2 = branch_power_vector_2[~np.isnan(branch_power_vector_2)] return ( branch_power_vector_1, branch_power_vector_2 ) @staticmethod def get_loss(): """Get total loss by solving OpenDSS model. - OpenDSS model must be readily set up, with the desired power being set for all DERs. """ # Solve OpenDSS model. opendssdirect.run_command("solve") # Obtain loss. loss = opendssdirect.Circuit.Losses()[0] + 1.0j * opendssdirect.Circuit.Losses()[1] return loss class PowerFlowSolutionSet(mesmo.utils.ObjectBase): power_flow_solutions: typing.Dict[pd.Timestamp, PowerFlowSolution] electric_grid_model: ElectricGridModelDefault der_power_vector: pd.DataFrame timesteps: pd.Index @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, der_operation_results: ElectricGridDEROperationResults, **kwargs ): der_power_vector = ( der_operation_results.der_active_power_vector + 1.0j * der_operation_results.der_reactive_power_vector ) self.__init__( electric_grid_model, der_power_vector, **kwargs ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, der_power_vector: pd.DataFrame, power_flow_solution_method=PowerFlowSolutionFixedPoint ): # Store attributes. self.electric_grid_model = electric_grid_model self.der_power_vector = der_power_vector self.timesteps = self.electric_grid_model.timesteps # Obtain power flow solutions. power_flow_solutions = ( mesmo.utils.starmap( power_flow_solution_method, zip( itertools.repeat(self.electric_grid_model), der_power_vector.values ) ) ) self.power_flow_solutions = dict(zip(self.timesteps, power_flow_solutions)) def get_results(self) -> ElectricGridOperationResults: # Instantiate results variables. der_power_vector = ( pd.DataFrame(columns=self.electric_grid_model.ders, index=self.timesteps, dtype=complex) ) node_voltage_vector = ( pd.DataFrame(columns=self.electric_grid_model.nodes, index=self.timesteps, dtype=complex) ) branch_power_vector_1 = ( pd.DataFrame(columns=self.electric_grid_model.branches, index=self.timesteps, dtype=complex) ) branch_power_vector_2 = ( pd.DataFrame(columns=self.electric_grid_model.branches, index=self.timesteps, dtype=complex) ) loss = pd.DataFrame(columns=['total'], index=self.timesteps, dtype=complex) # Obtain results. for timestep in self.timesteps: power_flow_solution = self.power_flow_solutions[timestep] der_power_vector.loc[timestep, :] = power_flow_solution.der_power_vector node_voltage_vector.loc[timestep, :] = power_flow_solution.node_voltage_vector branch_power_vector_1.loc[timestep, :] = power_flow_solution.branch_power_vector_1 branch_power_vector_2.loc[timestep, :] = power_flow_solution.branch_power_vector_2 loss.loc[timestep, :] = power_flow_solution.loss der_active_power_vector = der_power_vector.apply(np.real) der_reactive_power_vector = der_power_vector.apply(np.imag) node_voltage_magnitude_vector = np.abs(node_voltage_vector) branch_power_magnitude_vector_1 = np.abs(branch_power_vector_1) branch_power_magnitude_vector_2 = np.abs(branch_power_vector_2) loss_active = loss.apply(np.real) loss_reactive = loss.apply(np.imag) # Obtain per-unit values. der_active_power_vector_per_unit = ( der_active_power_vector * mesmo.utils.get_inverse_with_zeros(np.real(self.electric_grid_model.der_power_vector_reference)) ) der_reactive_power_vector_per_unit = ( der_reactive_power_vector * mesmo.utils.get_inverse_with_zeros(np.imag(self.electric_grid_model.der_power_vector_reference)) ) node_voltage_magnitude_vector_per_unit = ( node_voltage_magnitude_vector * mesmo.utils.get_inverse_with_zeros(np.abs(self.electric_grid_model.node_voltage_vector_reference)) ) branch_power_magnitude_vector_1_per_unit = ( branch_power_magnitude_vector_1 * mesmo.utils.get_inverse_with_zeros(self.electric_grid_model.branch_power_vector_magnitude_reference) ) branch_power_magnitude_vector_2_per_unit = ( branch_power_magnitude_vector_2 * mesmo.utils.get_inverse_with_zeros(self.electric_grid_model.branch_power_vector_magnitude_reference) ) # Store results. return ElectricGridOperationResults( electric_grid_model=self.electric_grid_model, der_active_power_vector=der_active_power_vector, der_active_power_vector_per_unit=der_active_power_vector_per_unit, der_reactive_power_vector=der_reactive_power_vector, der_reactive_power_vector_per_unit=der_reactive_power_vector_per_unit, node_voltage_magnitude_vector=node_voltage_magnitude_vector, node_voltage_magnitude_vector_per_unit=node_voltage_magnitude_vector_per_unit, branch_power_magnitude_vector_1=branch_power_magnitude_vector_1, branch_power_magnitude_vector_1_per_unit=branch_power_magnitude_vector_1_per_unit, branch_power_magnitude_vector_2=branch_power_magnitude_vector_2, branch_power_magnitude_vector_2_per_unit=branch_power_magnitude_vector_2_per_unit, loss_active=loss_active, loss_reactive=loss_reactive ) class LinearElectricGridModel(mesmo.utils.ObjectBase): """Abstract linear electric model object, consisting of the sensitivity matrices for voltage / voltage magnitude / squared branch power / active loss / reactive loss by changes in nodal wye power / nodal delta power. Note: This abstract class only defines the expected variables of linear electric grid model objects, but does not implement any functionality. Attributes: electric_grid_model (ElectricGridModelDefault): Electric grid model object. power_flow_solution (PowerFlowSolution): Reference power flow solution object. sensitivity_voltage_by_power_wye_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active wye power vector. sensitivity_voltage_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive wye power vector. sensitivity_voltage_by_power_delta_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active delta power vector. sensitivity_voltage_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive delta power vector. sensitivity_voltage_by_der_power_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER active power vector. sensitivity_voltage_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER reactive power vector. sensitivity_voltage_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active wye power vector. sensitivity_voltage_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive wye power vector. sensitivity_voltage_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active delta power vector. sensitivity_voltage_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive delta power vector. sensitivity_voltage_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER active power vector. sensitivity_voltage_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER reactive power vector. sensitivity_branch_power_1_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER active power vector. sensitivity_branch_power_1_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER reactive power vector. sensitivity_branch_power_2_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER active power vector. sensitivity_branch_power_2_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER reactive power vector. sensitivity_branch_power_1_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER active power vector. sensitivity_branch_power_1_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER reactive power vector. sensitivity_branch_power_2_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER active power vector. sensitivity_branch_power_2_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER reactive power vector. sensitivity_loss_active_by_power_wye_active (sp.spmatrix): Sensitivity matrix for active loss by active wye power vector. sensitivity_loss_active_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive wye power vector. sensitivity_loss_active_by_power_delta_active (sp.spmatrix): Sensitivity matrix for active loss by active delta power vector. sensitivity_loss_active_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive delta power vector. sensitivity_loss_active_by_der_power_active (sp.spmatrix): Sensitivity matrix for active loss by DER active power vector. sensitivity_loss_active_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for active loss by DER reactive power vector. sensitivity_loss_reactive_by_power_wye_active (sp.spmatrix): Sensitivity matrix for reactive loss by active wye power vector. sensitivity_loss_reactive_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive wye power vector. sensitivity_loss_reactive_by_power_delta_active (sp.spmatrix): Sensitivity matrix for reactive loss by active delta power vector. sensitivity_loss_reactive_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive delta power vector. sensitivity_loss_reactive_by_der_power_active (sp.spmatrix): Sensitivity matrix for reactive loss by DER active power vector. sensitivity_loss_reactive_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by DER reactive power vector. """ electric_grid_model: ElectricGridModelDefault power_flow_solution: PowerFlowSolution sensitivity_voltage_by_power_wye_active: sp.spmatrix sensitivity_voltage_by_power_wye_reactive: sp.spmatrix sensitivity_voltage_by_power_delta_active: sp.spmatrix sensitivity_voltage_by_power_delta_reactive: sp.spmatrix sensitivity_voltage_by_der_power_active: sp.spmatrix sensitivity_voltage_by_der_power_reactive: sp.spmatrix sensitivity_voltage_magnitude_by_power_wye_active: sp.spmatrix sensitivity_voltage_magnitude_by_power_wye_reactive: sp.spmatrix sensitivity_voltage_magnitude_by_power_delta_active: sp.spmatrix sensitivity_voltage_magnitude_by_power_delta_reactive: sp.spmatrix sensitivity_voltage_magnitude_by_der_power_active: sp.spmatrix sensitivity_voltage_magnitude_by_der_power_reactive: sp.spmatrix sensitivity_branch_power_1_magnitude_by_power_wye_active: sp.spmatrix sensitivity_branch_power_1_magnitude_by_power_wye_reactive: sp.spmatrix sensitivity_branch_power_1_magnitude_by_power_delta_active: sp.spmatrix sensitivity_branch_power_1_magnitude_by_power_delta_reactive: sp.spmatrix sensitivity_branch_power_1_magnitude_by_der_power_active: sp.spmatrix sensitivity_branch_power_1_magnitude_by_der_power_reactive: sp.spmatrix sensitivity_branch_power_2_magnitude_by_power_wye_active: sp.spmatrix sensitivity_branch_power_2_magnitude_by_power_wye_reactive: sp.spmatrix sensitivity_branch_power_2_magnitude_by_power_delta_active: sp.spmatrix sensitivity_branch_power_2_magnitude_by_power_delta_reactive: sp.spmatrix sensitivity_branch_power_2_magnitude_by_der_power_active: sp.spmatrix sensitivity_branch_power_2_magnitude_by_der_power_reactive: sp.spmatrix sensitivity_branch_power_1_squared_by_power_wye_active: sp.spmatrix sensitivity_branch_power_1_squared_by_power_wye_reactive: sp.spmatrix sensitivity_branch_power_1_squared_by_power_delta_active: sp.spmatrix sensitivity_branch_power_1_squared_by_power_delta_reactive: sp.spmatrix sensitivity_branch_power_1_squared_by_der_power_active: sp.spmatrix sensitivity_branch_power_1_squared_by_der_power_reactive: sp.spmatrix sensitivity_branch_power_2_squared_by_power_wye_active: sp.spmatrix sensitivity_branch_power_2_squared_by_power_wye_reactive: sp.spmatrix sensitivity_branch_power_2_squared_by_power_delta_active: sp.spmatrix sensitivity_branch_power_2_squared_by_power_delta_reactive: sp.spmatrix sensitivity_branch_power_2_squared_by_der_power_active: sp.spmatrix sensitivity_branch_power_2_squared_by_der_power_reactive: sp.spmatrix sensitivity_loss_active_by_power_wye_active: sp.spmatrix sensitivity_loss_active_by_power_wye_reactive: sp.spmatrix sensitivity_loss_active_by_power_delta_active: sp.spmatrix sensitivity_loss_active_by_power_delta_reactive: sp.spmatrix sensitivity_loss_active_by_der_power_active: sp.spmatrix sensitivity_loss_active_by_der_power_reactive: sp.spmatrix sensitivity_loss_reactive_by_power_wye_active: sp.spmatrix sensitivity_loss_reactive_by_power_wye_reactive: sp.spmatrix sensitivity_loss_reactive_by_power_delta_active: sp.spmatrix sensitivity_loss_reactive_by_power_delta_reactive: sp.spmatrix sensitivity_loss_reactive_by_der_power_active: sp.spmatrix sensitivity_loss_reactive_by_der_power_reactive: sp.spmatrix class LinearElectricGridModelGlobal(LinearElectricGridModel): """Linear electric grid model object based on global approximations, consisting of the sensitivity matrices for voltage / voltage magnitude / squared branch power / active loss / reactive loss by changes in nodal wye power / nodal delta power. :syntax: - ``LinearElectricGridModelGlobal(electric_grid_model, power_flow_solution)``: Instantiate linear electric grid model object for given `electric_grid_model` and `power_flow_solution`. - ``LinearElectricGridModelGlobal(scenario_name)``: Instantiate linear electric grid model for given `scenario_name`. The required `electric_grid_model` is obtained for given `scenario_name` and the `power_flow_solution` is obtained for nominal power conditions. Parameters: electric_grid_model (ElectricGridModelDefault): Electric grid model object. power_flow_solution (PowerFlowSolution): Power flow solution object. scenario_name (str): MESMO scenario name. Attributes: electric_grid_model (ElectricGridModelDefault): Electric grid model object. power_flow_solution (PowerFlowSolution): Reference power flow solution object. sensitivity_voltage_by_power_wye_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active wye power vector. sensitivity_voltage_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive wye power vector. sensitivity_voltage_by_power_delta_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active delta power vector. sensitivity_voltage_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive delta power vector. sensitivity_voltage_by_der_power_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER active power vector. sensitivity_voltage_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER reactive power vector. sensitivity_voltage_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active wye power vector. sensitivity_voltage_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive wye power vector. sensitivity_voltage_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active delta power vector. sensitivity_voltage_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive delta power vector. sensitivity_voltage_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER active power vector. sensitivity_voltage_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER reactive power vector. sensitivity_branch_power_1_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER active power vector. sensitivity_branch_power_1_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER reactive power vector. sensitivity_branch_power_2_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER active power vector. sensitivity_branch_power_2_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER reactive power vector. sensitivity_branch_power_1_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER active power vector. sensitivity_branch_power_1_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER reactive power vector. sensitivity_branch_power_2_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER active power vector. sensitivity_branch_power_2_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER reactive power vector. sensitivity_loss_active_by_power_wye_active (sp.spmatrix): Sensitivity matrix for active loss by active wye power vector. sensitivity_loss_active_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive wye power vector. sensitivity_loss_active_by_power_delta_active (sp.spmatrix): Sensitivity matrix for active loss by active delta power vector. sensitivity_loss_active_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive delta power vector. sensitivity_loss_active_by_der_power_active (sp.spmatrix): Sensitivity matrix for active loss by DER active power vector. sensitivity_loss_active_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for active loss by DER reactive power vector. sensitivity_loss_reactive_by_power_wye_active (sp.spmatrix): Sensitivity matrix for reactive loss by active wye power vector. sensitivity_loss_reactive_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive wye power vector. sensitivity_loss_reactive_by_power_delta_active (sp.spmatrix): Sensitivity matrix for reactive loss by active delta power vector. sensitivity_loss_reactive_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive delta power vector. sensitivity_loss_reactive_by_der_power_active (sp.spmatrix): Sensitivity matrix for reactive loss by DER active power vector. sensitivity_loss_reactive_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by DER reactive power vector. """ @multimethod def __init__( self, scenario_name: str, ): # Obtain electric grid model. electric_grid_model = ( ElectricGridModelDefault(scenario_name) ) # Obtain der power vector. der_power_vector = ( electric_grid_model.der_power_vector_reference ) # Obtain power flow solution. power_flow_solution = ( PowerFlowSolutionFixedPoint( electric_grid_model, der_power_vector ) ) self.__init__( electric_grid_model, power_flow_solution ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, power_flow_solution: PowerFlowSolution ): # TODO: Validate linear model with delta DERs. # Store power flow solution. self.power_flow_solution = power_flow_solution # Store electric grid model. self.electric_grid_model = electric_grid_model # Obtain shorthands for no-source matrices and vectors. electric_grid_model.node_admittance_matrix_no_source = ( electric_grid_model.node_admittance_matrix[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] ) electric_grid_model.node_transformation_matrix_no_source = ( electric_grid_model.node_transformation_matrix[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] ) node_voltage_no_source = ( self.power_flow_solution.node_voltage_vector[ mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') ] ) # Instantiate voltage sensitivity matrices. self.sensitivity_voltage_by_power_wye_active = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_wye_reactive = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_delta_active = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_delta_reactive = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) # Calculate voltage sensitivity matrices. # TODO: Document the change in sign in the reactive part compared to Hanif. self.sensitivity_voltage_by_power_wye_active[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source.tocsc(), sp.diags(np.conj(node_voltage_no_source) ** -1, format='csc') ) ) self.sensitivity_voltage_by_power_wye_reactive[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( 1.0j * electric_grid_model.node_admittance_matrix_no_source.tocsc(), sp.diags(np.conj(node_voltage_no_source) ** -1, format='csc') ) ) self.sensitivity_voltage_by_power_delta_active[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( electric_grid_model.node_admittance_matrix_no_source.tocsc(), np.transpose(electric_grid_model.node_transformation_matrix_no_source) ) @ sp.diags( ( ( electric_grid_model.node_transformation_matrix_no_source @ np.conj(node_voltage_no_source) ) ** -1 ).ravel() ) ) self.sensitivity_voltage_by_power_delta_reactive[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( 1.0j * electric_grid_model.node_admittance_matrix_no_source.tocsc(), np.transpose(electric_grid_model.node_transformation_matrix_no_source) ) @ sp.diags( ( ( electric_grid_model.node_transformation_matrix_no_source * np.conj(node_voltage_no_source) ) ** -1 ).ravel() ) ) self.sensitivity_voltage_by_der_power_active = ( self.sensitivity_voltage_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_by_der_power_reactive = ( self.sensitivity_voltage_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_voltage_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_voltage_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_voltage_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_voltage_magnitude_by_der_power_active = ( self.sensitivity_voltage_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_magnitude_by_der_power_reactive = ( self.sensitivity_voltage_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) # Calculate branch power sensitivity matrices. sensitivity_branch_power_1_by_voltage = ( sp.diags(( np.conj(electric_grid_model.branch_admittance_1_matrix) @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_incidence_1_matrix + sp.diags(( electric_grid_model.branch_incidence_1_matrix @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_admittance_1_matrix * np.sqrt(3) ) sensitivity_branch_power_2_by_voltage = ( sp.diags(( np.conj(electric_grid_model.branch_admittance_2_matrix) @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_incidence_2_matrix + sp.diags(( electric_grid_model.branch_incidence_2_matrix @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_admittance_2_matrix * np.sqrt(3) ) self.sensitivity_branch_power_1_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_branch_power_1_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_branch_power_1_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_branch_power_1_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_branch_power_2_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_branch_power_2_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_branch_power_2_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_branch_power_2_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_branch_power_1_magnitude_by_der_power_active = ( self.sensitivity_branch_power_1_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_magnitude_by_der_power_reactive = ( self.sensitivity_branch_power_1_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_magnitude_by_der_power_active = ( self.sensitivity_branch_power_2_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_magnitude_by_der_power_reactive = ( self.sensitivity_branch_power_2_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_squared_by_power_wye_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) ) self.sensitivity_branch_power_1_squared_by_power_wye_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) ) self.sensitivity_branch_power_1_squared_by_power_delta_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) ) self.sensitivity_branch_power_1_squared_by_power_delta_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) ) self.sensitivity_branch_power_2_squared_by_power_wye_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) ) self.sensitivity_branch_power_2_squared_by_power_wye_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) ) self.sensitivity_branch_power_2_squared_by_power_delta_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) ) self.sensitivity_branch_power_2_squared_by_power_delta_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) ) self.sensitivity_branch_power_1_squared_by_der_power_active = ( self.sensitivity_branch_power_1_squared_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_squared_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_squared_by_der_power_reactive = ( self.sensitivity_branch_power_1_squared_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_squared_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_squared_by_der_power_active = ( self.sensitivity_branch_power_2_squared_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_squared_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_squared_by_der_power_reactive = ( self.sensitivity_branch_power_2_squared_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_squared_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) # Calculate loss sensitivity matrices. # sensitivity_loss_by_voltage = ( # np.array([self.power_flow_solution.node_voltage_vector]) # @ np.conj(electric_grid_model.node_admittance_matrix) # + np.transpose( # electric_grid_model.node_admittance_matrix # @ np.transpose([self.power_flow_solution.node_voltage_vector]) # ) # ) sensitivity_loss_by_voltage = ( sum(np.transpose( np.transpose(sensitivity_branch_power_1_by_voltage) + np.transpose(sensitivity_branch_power_2_by_voltage) )) ) self.sensitivity_loss_active_by_power_wye_active = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_wye_reactive = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_delta_active = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_delta_reactive = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_reactive_by_power_wye_active = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_wye_reactive = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_delta_active = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_delta_reactive = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) * -1 * np.sqrt(3) ) self.sensitivity_loss_active_by_der_power_active = ( self.sensitivity_loss_active_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_active_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_active_by_der_power_reactive = ( self.sensitivity_loss_active_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_active_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_reactive_by_der_power_active = ( self.sensitivity_loss_reactive_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_reactive_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_reactive_by_der_power_reactive = ( self.sensitivity_loss_reactive_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_reactive_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) class LinearElectricGridModelLocal(LinearElectricGridModel): """Linear electric grid model object based on local approximations, consisting of the sensitivity matrices for voltage / voltage magnitude / squared branch power / active loss / reactive loss by changes in nodal wye power / nodal delta power. :syntax: - ``LinearElectricGridModelLocal(electric_grid_model, power_flow_solution)``: Instantiate linear electric grid model object for given `electric_grid_model` and `power_flow_solution`. - ``LinearElectricGridModelLocal(scenario_name)``: Instantiate linear electric grid model for given `scenario_name`. The required `electric_grid_model` is obtained for given `scenario_name` and the `power_flow_solution` is obtained for nominal power conditions. Parameters: electric_grid_model (ElectricGridModelDefault): Electric grid model object. power_flow_solution (PowerFlowSolution): Power flow solution object. scenario_name (str): MESMO scenario name. Attributes: electric_grid_model (ElectricGridModelDefault): Electric grid model object. power_flow_solution (PowerFlowSolution): Reference power flow solution object. sensitivity_voltage_by_power_wye_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active wye power vector. sensitivity_voltage_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive wye power vector. sensitivity_voltage_by_power_delta_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by active delta power vector. sensitivity_voltage_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by reactive delta power vector. sensitivity_voltage_by_der_power_active (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER active power vector. sensitivity_voltage_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for complex voltage vector by DER reactive power vector. sensitivity_voltage_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active wye power vector. sensitivity_voltage_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive wye power vector. sensitivity_voltage_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by active delta power vector. sensitivity_voltage_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by reactive delta power vector. sensitivity_voltage_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER active power vector. sensitivity_voltage_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for voltage magnitude vector by DER reactive power vector. sensitivity_branch_power_1_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER active power vector. sensitivity_branch_power_1_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 1 by DER reactive power vector. sensitivity_branch_power_2_magnitude_by_power_wye_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_magnitude_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_magnitude_by_power_delta_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_magnitude_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_magnitude_by_der_power_active (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER active power vector. sensitivity_branch_power_2_magnitude_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for branch flow power magnitude vector 2 by DER reactive power vector. sensitivity_branch_power_1_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active wye power vector. sensitivity_branch_power_1_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive wye power vector. sensitivity_branch_power_1_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by active delta power vector. sensitivity_branch_power_1_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 ('from' direction) by reactive delta power vector. sensitivity_branch_power_1_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER active power vector. sensitivity_branch_power_1_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 1 by DER reactive power vector. sensitivity_branch_power_2_squared_by_power_wye_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active wye power vector. sensitivity_branch_power_2_squared_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive wye power vector. sensitivity_branch_power_2_squared_by_power_delta_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by active delta power vector. sensitivity_branch_power_2_squared_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 ('to' direction) by reactive delta power vector. sensitivity_branch_power_2_squared_by_der_power_active (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER active power vector. sensitivity_branch_power_2_squared_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for squared branch flow power vector 2 by DER reactive power vector. sensitivity_loss_active_by_power_wye_active (sp.spmatrix): Sensitivity matrix for active loss by active wye power vector. sensitivity_loss_active_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive wye power vector. sensitivity_loss_active_by_power_delta_active (sp.spmatrix): Sensitivity matrix for active loss by active delta power vector. sensitivity_loss_active_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for active loss by reactive delta power vector. sensitivity_loss_active_by_der_power_active (sp.spmatrix): Sensitivity matrix for active loss by DER active power vector. sensitivity_loss_active_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for active loss by DER reactive power vector. sensitivity_loss_reactive_by_power_wye_active (sp.spmatrix): Sensitivity matrix for reactive loss by active wye power vector. sensitivity_loss_reactive_by_power_wye_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive wye power vector. sensitivity_loss_reactive_by_power_delta_active (sp.spmatrix): Sensitivity matrix for reactive loss by active delta power vector. sensitivity_loss_reactive_by_power_delta_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by reactive delta power vector. sensitivity_loss_reactive_by_der_power_active (sp.spmatrix): Sensitivity matrix for reactive loss by DER active power vector. sensitivity_loss_reactive_by_der_power_reactive (sp.spmatrix): Sensitivity matrix for reactive loss by DER reactive power vector. """ @multimethod def __init__( self, scenario_name: str, ): # Obtain electric grid model. electric_grid_model = ( ElectricGridModelDefault(scenario_name) ) # Obtain der power vector. der_power_vector = ( electric_grid_model.der_power_vector_reference ) # Obtain power flow solution. power_flow_solution = ( PowerFlowSolutionFixedPoint( electric_grid_model, der_power_vector ) ) self.__init__( electric_grid_model, power_flow_solution ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, power_flow_solution: PowerFlowSolution ): # Store power flow solution. self.power_flow_solution = power_flow_solution # Store electric grid model. self.electric_grid_model = electric_grid_model # Obtain shorthands for no-source matrices and vectors. electric_grid_model.node_admittance_matrix_no_source = ( electric_grid_model.node_admittance_matrix[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] ) electric_grid_model.node_transformation_matrix_no_source = ( electric_grid_model.node_transformation_matrix[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] ) node_voltage_no_source = ( self.power_flow_solution.node_voltage_vector[ mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') ] ) # Instantiate voltage sensitivity matrices. self.sensitivity_voltage_by_power_wye_active = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_wye_reactive = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_delta_active = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) self.sensitivity_voltage_by_power_delta_reactive = ( sp.dok_matrix( (len(electric_grid_model.nodes), len(electric_grid_model.nodes)), dtype=complex ) ) # Calculate utility matrices. A_matrix_inverse = ( sp.diags(( electric_grid_model.node_admittance_matrix_source_to_no_source @ electric_grid_model.node_voltage_vector_reference_source + electric_grid_model.node_admittance_matrix_no_source @ node_voltage_no_source ) ** -1) ) A_matrix_conjugate = ( sp.diags(np.conj( electric_grid_model.node_admittance_matrix_source_to_no_source @ electric_grid_model.node_voltage_vector_reference_source + electric_grid_model.node_admittance_matrix_no_source @ node_voltage_no_source )) ) B_matrix = ( A_matrix_conjugate - sp.diags(node_voltage_no_source) @ np.conj(electric_grid_model.node_admittance_matrix_no_source) @ A_matrix_inverse @ sp.diags(np.conj(node_voltage_no_source)) @ electric_grid_model.node_admittance_matrix_no_source ) # Calculate voltage sensitivity matrices. # - TODO: Consider delta loads. self.sensitivity_voltage_by_power_wye_active[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( B_matrix.tocsc(), ( sp.identity(len(node_voltage_no_source)) - sp.diags(node_voltage_no_source) @ np.conj(electric_grid_model.node_admittance_matrix_no_source) @ A_matrix_inverse @ sp.identity(len(node_voltage_no_source)) ).tocsc() ) ) self.sensitivity_voltage_by_power_wye_reactive[np.ix_( mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') )] = ( scipy.sparse.linalg.spsolve( B_matrix.tocsc(), ( (1.0j * sp.identity(len(node_voltage_no_source))) - sp.diags(node_voltage_no_source) @ np.conj(electric_grid_model.node_admittance_matrix_no_source) @ A_matrix_inverse @ (-1.0j * sp.identity(len(node_voltage_no_source))) ).tocsc() ) ) # self.sensitivity_voltage_by_power_delta_active[np.ix_( # mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), # mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') # )] = ( # ??? # ) # self.sensitivity_voltage_by_power_delta_reactive[np.ix_( # mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source'), # mesmo.utils.get_index(electric_grid_model.nodes, node_type='no_source') # )] = ( # ??? # ) self.sensitivity_voltage_by_der_power_active = ( self.sensitivity_voltage_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_by_der_power_reactive = ( self.sensitivity_voltage_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_voltage_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_voltage_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_voltage_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.node_voltage_vector) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.node_voltage_vector)) @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_voltage_magnitude_by_der_power_active = ( self.sensitivity_voltage_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_voltage_magnitude_by_der_power_reactive = ( self.sensitivity_voltage_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_voltage_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) # Calculate branch power sensitivity matrices. sensitivity_branch_power_1_by_voltage = ( sp.diags(( np.conj(electric_grid_model.branch_admittance_1_matrix) @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_incidence_1_matrix + sp.diags(( electric_grid_model.branch_incidence_1_matrix @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_admittance_1_matrix * np.sqrt(3) ) sensitivity_branch_power_2_by_voltage = ( sp.diags(( np.conj(electric_grid_model.branch_admittance_2_matrix) @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_incidence_2_matrix + sp.diags(( electric_grid_model.branch_incidence_2_matrix @ np.conj(self.power_flow_solution.node_voltage_vector) ).ravel()) @ electric_grid_model.branch_admittance_2_matrix * np.sqrt(3) ) self.sensitivity_branch_power_1_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_branch_power_1_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_branch_power_1_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_branch_power_1_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_1) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_1)) @ sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_branch_power_2_magnitude_by_power_wye_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) self.sensitivity_branch_power_2_magnitude_by_power_wye_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) self.sensitivity_branch_power_2_magnitude_by_power_delta_active = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) self.sensitivity_branch_power_2_magnitude_by_power_delta_reactive = ( sp.diags(abs(self.power_flow_solution.branch_power_vector_2) ** -1) @ np.real( sp.diags(np.conj(self.power_flow_solution.branch_power_vector_2)) @ sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) self.sensitivity_branch_power_1_magnitude_by_der_power_active = ( self.sensitivity_branch_power_1_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_magnitude_by_der_power_reactive = ( self.sensitivity_branch_power_1_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_magnitude_by_der_power_active = ( self.sensitivity_branch_power_2_magnitude_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_magnitude_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_magnitude_by_der_power_reactive = ( self.sensitivity_branch_power_2_magnitude_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_magnitude_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_squared_by_power_wye_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) ) self.sensitivity_branch_power_1_squared_by_power_wye_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) ) self.sensitivity_branch_power_1_squared_by_power_delta_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) ) self.sensitivity_branch_power_1_squared_by_power_delta_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_1)) @ np.real( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_1)) @ np.imag( sensitivity_branch_power_1_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) ) self.sensitivity_branch_power_2_squared_by_power_wye_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) ) ) self.sensitivity_branch_power_2_squared_by_power_wye_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) ) ) self.sensitivity_branch_power_2_squared_by_power_delta_active = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) ) ) self.sensitivity_branch_power_2_squared_by_power_delta_reactive = ( ( sp.diags(np.real(self.power_flow_solution.branch_power_vector_2)) @ np.real( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) + ( sp.diags(np.imag(self.power_flow_solution.branch_power_vector_2)) @ np.imag( sensitivity_branch_power_2_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) ) ) self.sensitivity_branch_power_1_squared_by_der_power_active = ( self.sensitivity_branch_power_1_squared_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_squared_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_1_squared_by_der_power_reactive = ( self.sensitivity_branch_power_1_squared_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_1_squared_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_squared_by_der_power_active = ( self.sensitivity_branch_power_2_squared_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_squared_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_branch_power_2_squared_by_der_power_reactive = ( self.sensitivity_branch_power_2_squared_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_branch_power_2_squared_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) # Calculate loss sensitivity matrices. # sensitivity_loss_by_voltage = ( # np.array([self.power_flow_solution.node_voltage_vector]) # @ np.conj(electric_grid_model.node_admittance_matrix) # + np.transpose( # electric_grid_model.node_admittance_matrix # @ np.transpose([self.power_flow_solution.node_voltage_vector]) # ) # ) sensitivity_loss_by_voltage = ( sum(np.transpose( np.transpose(sensitivity_branch_power_1_by_voltage) + np.transpose(sensitivity_branch_power_2_by_voltage) )) ) self.sensitivity_loss_active_by_power_wye_active = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_wye_reactive = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_delta_active = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_active_by_power_delta_reactive = ( np.real( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) / (2 * np.sqrt(3)) ) self.sensitivity_loss_reactive_by_power_wye_active = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_active ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_wye_reactive = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_wye_reactive ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_delta_active = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_active ) * -1 * np.sqrt(3) ) self.sensitivity_loss_reactive_by_power_delta_reactive = ( np.imag( sensitivity_loss_by_voltage @ self.sensitivity_voltage_by_power_delta_reactive ) * -1 * np.sqrt(3) ) self.sensitivity_loss_active_by_der_power_active = ( self.sensitivity_loss_active_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_active_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_active_by_der_power_reactive = ( self.sensitivity_loss_active_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_active_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_reactive_by_der_power_active = ( self.sensitivity_loss_reactive_by_power_wye_active @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_reactive_by_power_delta_active @ electric_grid_model.der_incidence_delta_matrix ) self.sensitivity_loss_reactive_by_der_power_reactive = ( self.sensitivity_loss_reactive_by_power_wye_reactive @ electric_grid_model.der_incidence_wye_matrix + self.sensitivity_loss_reactive_by_power_delta_reactive @ electric_grid_model.der_incidence_delta_matrix ) class LinearElectricGridModelSet(mesmo.utils.ObjectBase): linear_electric_grid_models: typing.Dict[pd.Timestamp, LinearElectricGridModel] electric_grid_model: ElectricGridModelDefault timesteps: pd.Index @multimethod def __init__( self, scenario_name: str ): # Obtain electric grid model & reference power flow solution. electric_grid_model = ElectricGridModelDefault(scenario_name) power_flow_solution = PowerFlowSolutionFixedPoint(electric_grid_model) self.__init__( electric_grid_model, power_flow_solution ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, power_flow_solution: PowerFlowSolution, linear_electric_grid_model_method: typing.Type[LinearElectricGridModel] = LinearElectricGridModelGlobal ): self.check_linear_electric_grid_model_method(linear_electric_grid_model_method) # Obtain linear electric grid models. linear_electric_grid_model = linear_electric_grid_model_method(electric_grid_model, power_flow_solution) linear_electric_grid_models = ( dict(zip(electric_grid_model.timesteps, itertools.repeat(linear_electric_grid_model))) ) self.__init__( electric_grid_model, linear_electric_grid_models ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, power_flow_solution_set: PowerFlowSolutionSet, linear_electric_grid_model_method: typing.Type[LinearElectricGridModel] = LinearElectricGridModelLocal ): self.check_linear_electric_grid_model_method(linear_electric_grid_model_method) # Obtain linear electric grid models. linear_electric_grid_models = ( mesmo.utils.starmap( linear_electric_grid_model_method, zip( itertools.repeat(electric_grid_model), power_flow_solution_set.power_flow_solutions.values() ) ) ) linear_electric_grid_models = ( dict(zip(electric_grid_model.timesteps, linear_electric_grid_models)) ) self.__init__( electric_grid_model, linear_electric_grid_models ) @multimethod def __init__( self, electric_grid_model: ElectricGridModelDefault, linear_electric_grid_models: typing.Dict[pd.Timestamp, LinearElectricGridModel] ): # Store attributes. self.electric_grid_model = electric_grid_model self.timesteps = self.electric_grid_model.timesteps self.linear_electric_grid_models = linear_electric_grid_models @staticmethod def check_linear_electric_grid_model_method(linear_electric_grid_model_method): if not issubclass(linear_electric_grid_model_method, LinearElectricGridModel): raise ValueError(f"Invalid linear electric grid model method: {linear_electric_grid_model_method}") def define_optimization_problem( self, optimization_problem: mesmo.utils.OptimizationProblem, price_data: mesmo.data_interface.PriceData, scenarios: typing.Union[list, pd.Index] = None, **kwargs ): # Defined optimization problem definitions through respective sub-methods. self.define_optimization_variables(optimization_problem, scenarios=scenarios) self.define_optimization_parameters( optimization_problem, price_data, scenarios=scenarios, **kwargs ) self.define_optimization_constraints(optimization_problem, scenarios=scenarios) self.define_optimization_objective(optimization_problem, scenarios=scenarios) def define_optimization_variables( self, optimization_problem: mesmo.utils.OptimizationProblem, scenarios: typing.Union[list, pd.Index] = None ): # If no scenarios given, obtain default value. if scenarios is None: scenarios = [None] # Define DER power vector variables. optimization_problem.define_variable( 'der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders ) optimization_problem.define_variable( 'der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders ) # Define node voltage magnitude variable. optimization_problem.define_variable( 'node_voltage_magnitude_vector', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes ) # Define branch power magnitude variables. optimization_problem.define_variable( 'branch_power_magnitude_vector_1', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ) optimization_problem.define_variable( 'branch_power_magnitude_vector_2', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ) # Define loss variables. optimization_problem.define_variable( 'loss_active', scenario=scenarios, timestep=self.timesteps ) optimization_problem.define_variable( 'loss_reactive', scenario=scenarios, timestep=self.timesteps ) def define_optimization_parameters( self, optimization_problem: mesmo.utils.OptimizationProblem, price_data: mesmo.data_interface.PriceData, node_voltage_magnitude_vector_minimum: np.ndarray = None, node_voltage_magnitude_vector_maximum: np.ndarray = None, branch_power_magnitude_vector_maximum: np.ndarray = None, scenarios: typing.Union[list, pd.Index] = None ): # If no scenarios given, obtain default value. if scenarios is None: scenarios = [None] # Obtain timestep interval in hours, for conversion of power to energy. timestep_interval_hours = (self.timesteps[1] - self.timesteps[0]) / pd.Timedelta('1h') # Define voltage variable terms. optimization_problem.define_parameter( 'voltage_active_term', sp.block_diag([ sp.diags(np.abs(linear_electric_grid_model.electric_grid_model.node_voltage_vector_reference) ** -1) @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ sp.diags(np.real(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) optimization_problem.define_parameter( 'voltage_reactive_term', sp.block_diag([ sp.diags(np.abs(linear_electric_grid_model.electric_grid_model.node_voltage_vector_reference) ** -1) @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ sp.diags(np.imag(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define voltage constant term. optimization_problem.define_parameter( 'voltage_constant', np.concatenate([ sp.diags(np.abs(linear_electric_grid_model.electric_grid_model.node_voltage_vector_reference) ** -1) @ ( np.transpose([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) - linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) - linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define branch flow (direction 1) variable terms. optimization_problem.define_parameter( 'branch_power_1_active_term', sp.block_diag([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ sp.diags(np.real(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) optimization_problem.define_parameter( 'branch_power_1_reactive_term', sp.block_diag([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ sp.diags(np.imag(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define branch flow (direction 1) constant terms. optimization_problem.define_parameter( 'branch_power_1_constant', np.concatenate([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ ( np.transpose([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1)]) - linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) - linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define branch flow (direction 2) variable terms. optimization_problem.define_parameter( 'branch_power_2_active_term', sp.block_diag([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ sp.diags(np.real(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) optimization_problem.define_parameter( 'branch_power_2_reactive_term', sp.block_diag([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ sp.diags(np.imag(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define branch flow (direction 2) constant term. optimization_problem.define_parameter( 'branch_power_2_constant', np.concatenate([ sp.diags(linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference ** -1) @ ( np.transpose([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2)]) - linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) - linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define active loss variable terms. optimization_problem.define_parameter( 'loss_active_active_term', sp.block_diag([ linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ sp.diags(np.real(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) optimization_problem.define_parameter( 'loss_active_reactive_term', sp.block_diag([ linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ sp.diags(np.imag(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define active loss constant term. optimization_problem.define_parameter( 'loss_active_constant', np.concatenate([ np.real(linear_electric_grid_model.power_flow_solution.loss) - linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) - linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define reactive loss variable terms. optimization_problem.define_parameter( 'loss_reactive_active_term', sp.block_diag([ linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ sp.diags(np.real(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) optimization_problem.define_parameter( 'loss_reactive_reactive_term', sp.block_diag([ linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ sp.diags(np.imag(linear_electric_grid_model.electric_grid_model.der_power_vector_reference)) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define active loss constant term. optimization_problem.define_parameter( 'loss_reactive_constant', np.concatenate([ np.imag(linear_electric_grid_model.power_flow_solution.loss) - linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) - linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) ) # Define voltage limits. optimization_problem.define_parameter( 'voltage_limit_minimum', np.concatenate([ node_voltage_magnitude_vector_minimum.ravel() / np.abs(linear_electric_grid_model.electric_grid_model.node_voltage_vector_reference) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) if node_voltage_magnitude_vector_minimum is not None else -np.inf * np.ones((len(self.electric_grid_model.nodes) * len(self.timesteps), )) ) optimization_problem.define_parameter( 'voltage_limit_maximum', np.concatenate([ node_voltage_magnitude_vector_maximum.ravel() / np.abs(linear_electric_grid_model.electric_grid_model.node_voltage_vector_reference) for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) if node_voltage_magnitude_vector_maximum is not None else +np.inf * np.ones((len(self.electric_grid_model.nodes) * len(self.timesteps), )) ) # Define branch flow limits. optimization_problem.define_parameter( 'branch_power_minimum', np.concatenate([ - branch_power_magnitude_vector_maximum.ravel() / linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) if branch_power_magnitude_vector_maximum is not None else -np.inf * np.ones((len(self.electric_grid_model.branches) * len(self.timesteps), )) ) optimization_problem.define_parameter( 'branch_power_maximum', np.concatenate([ branch_power_magnitude_vector_maximum.ravel() / linear_electric_grid_model.electric_grid_model.branch_power_vector_magnitude_reference for linear_electric_grid_model in self.linear_electric_grid_models.values() ]) if branch_power_magnitude_vector_maximum is not None else +np.inf * np.ones((len(self.electric_grid_model.branches) * len(self.timesteps), )) ) # Define objective parameters. optimization_problem.define_parameter( 'electric_grid_active_power_cost', np.array([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) * -1.0 * timestep_interval_hours # In Wh. @ sp.block_diag( [np.array([np.real(self.electric_grid_model.der_power_vector_reference)])] * len(self.timesteps) ) ) optimization_problem.define_parameter( 'electric_grid_active_power_cost_sensitivity', price_data.price_sensitivity_coefficient * timestep_interval_hours # In Wh. * np.concatenate([np.real(self.electric_grid_model.der_power_vector_reference) ** 2] * len(self.timesteps)) ) optimization_problem.define_parameter( 'electric_grid_reactive_power_cost', np.array([price_data.price_timeseries.loc[:, ('reactive_power', 'source', 'source')].values]) * -1.0 * timestep_interval_hours # In Wh. @ sp.block_diag( [np.array([np.imag(self.electric_grid_model.der_power_vector_reference)])] * len(self.timesteps) ) ) optimization_problem.define_parameter( 'electric_grid_reactive_power_cost_sensitivity', price_data.price_sensitivity_coefficient * timestep_interval_hours # In Wh. * np.concatenate([np.imag(self.electric_grid_model.der_power_vector_reference) ** 2] * len(self.timesteps)) ) optimization_problem.define_parameter( 'electric_grid_loss_active_cost', price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values * timestep_interval_hours # In Wh. ) optimization_problem.define_parameter( 'electric_grid_loss_active_cost_sensitivity', price_data.price_sensitivity_coefficient * timestep_interval_hours # In Wh. ) def define_optimization_constraints( self, optimization_problem: mesmo.utils.OptimizationProblem, scenarios: typing.Union[list, pd.Index] = None ): # If no scenarios given, obtain default value. if scenarios is None: scenarios = [None] # Define voltage equation. optimization_problem.define_constraint( ('variable', 1.0, dict( name='node_voltage_magnitude_vector', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes )), '==', ('variable', 'voltage_active_term', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'voltage_reactive_term', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('constant', 'voltage_constant', dict(scenario=scenarios, timestep=self.timesteps)), broadcast='scenario' ) # Define branch flow (direction 1) equation. optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_1', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '==', ('variable', 'branch_power_1_active_term', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'branch_power_1_reactive_term', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('constant', 'branch_power_1_constant', dict(scenario=scenarios, timestep=self.timesteps)), broadcast='scenario' ) # Define branch flow (direction 2) equation. optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_2', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '==', ('variable', 'branch_power_2_active_term', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'branch_power_2_reactive_term', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('constant', 'branch_power_2_constant', dict(scenario=scenarios, timestep=self.timesteps)), broadcast='scenario' ) # Define active loss equation. optimization_problem.define_constraint( ('variable', 1.0, dict(name='loss_active', scenario=scenarios, timestep=self.timesteps)), '==', ('variable', 'loss_active_active_term', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'loss_active_reactive_term', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('constant', 'loss_active_constant', dict(scenario=scenarios, timestep=self.timesteps)), broadcast='scenario' ) # Define reactive loss equation. optimization_problem.define_constraint( ('variable', 1.0, dict(name='loss_reactive', scenario=scenarios, timestep=self.timesteps)), '==', ('variable', 'loss_reactive_active_term', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'loss_reactive_reactive_term', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('constant', 'loss_reactive_constant', dict(scenario=scenarios, timestep=self.timesteps)), broadcast='scenario' ) # Define voltage limits. # Add dedicated keys to enable retrieving dual variables. optimization_problem.define_constraint( ('variable', 1.0, dict( name='node_voltage_magnitude_vector', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes )), '>=', ('constant', 'voltage_limit_minimum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='voltage_magnitude_vector_minimum_constraint', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes ), broadcast='scenario' ) optimization_problem.define_constraint( ('variable', 1.0, dict( name='node_voltage_magnitude_vector', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes )), '<=', ('constant', 'voltage_limit_maximum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='voltage_magnitude_vector_maximum_constraint', scenario=scenarios, timestep=self.timesteps, node=self.electric_grid_model.nodes ), broadcast='scenario' ) # Define branch flow limits. # Add dedicated keys to enable retrieving dual variables. optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_1', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '>=', ('constant', 'branch_power_minimum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='branch_power_magnitude_vector_1_minimum_constraint', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ), broadcast='scenario' ) optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_1', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '<=', ('constant', 'branch_power_maximum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='branch_power_magnitude_vector_1_maximum_constraint', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ), broadcast='scenario' ) optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_2', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '>=', ('constant', 'branch_power_minimum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='branch_power_magnitude_vector_2_minimum_constraint', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ), broadcast='scenario' ) optimization_problem.define_constraint( ('variable', 1.0, dict( name='branch_power_magnitude_vector_2', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches )), '<=', ('constant', 'branch_power_maximum', dict(scenario=scenarios, timestep=self.timesteps)), keys=dict( name='branch_power_magnitude_vector_2_maximum_constraint', scenario=scenarios, timestep=self.timesteps, branch=self.electric_grid_model.branches ), broadcast='scenario' ) def define_optimization_objective( self, optimization_problem: mesmo.utils.OptimizationProblem, scenarios: typing.Union[list, pd.Index] = None ): # If no scenarios given, obtain default value. if scenarios is None: scenarios = [None] # Set objective flag. optimization_problem.flags['has_electric_grid_objective'] = True # Define objective for electric loads. # - Defined as cost of electric supply at electric grid source node. # - Only defined here, if not yet defined as cost of electric power supply at the DER node # in `mesmo.der_models.DERModel.define_optimization_objective`. if not optimization_problem.flags.get('has_der_objective'): # Active power cost / revenue. # - Cost for load / demand, revenue for generation / supply. optimization_problem.define_objective( ('variable', 'electric_grid_active_power_cost', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'electric_grid_active_power_cost_sensitivity', dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders ), dict( name='der_active_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), broadcast='scenario' ) # Reactive power cost / revenue. # - Cost for load / demand, revenue for generation / supply. optimization_problem.define_objective( ('variable', 'electric_grid_reactive_power_cost', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), ('variable', 'electric_grid_reactive_power_cost_sensitivity', dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders ), dict( name='der_reactive_power_vector', scenario=scenarios, timestep=self.timesteps, der=self.electric_grid_model.ders )), broadcast='scenario' ) # Define active loss cost. optimization_problem.define_objective( ('variable', 'electric_grid_loss_active_cost', dict( name='loss_active', scenario=scenarios, timestep=self.timesteps )), ('variable', 'electric_grid_loss_active_cost_sensitivity', dict( name='loss_active', scenario=scenarios, timestep=self.timesteps ), dict( name='loss_active', scenario=scenarios, timestep=self.timesteps )), broadcast='scenario' ) def evaluate_optimization_objective( self, results: ElectricGridOperationResults, price_data: mesmo.data_interface.PriceData ) -> float: # Instantiate optimization problem. optimization_problem = mesmo.utils.OptimizationProblem() self.define_optimization_parameters(optimization_problem, price_data) self.define_optimization_variables(optimization_problem) self.define_optimization_objective(optimization_problem) # Instantiate variable vector. x_vector = np.zeros((len(optimization_problem.variables), 1)) # Set variable vector values. objective_variable_names = [ 'der_active_power_vector_per_unit', 'der_reactive_power_vector_per_unit', 'loss_active' ] for variable_name in objective_variable_names: index = mesmo.utils.get_index(optimization_problem.variables, name=variable_name.replace('_per_unit', '')) x_vector[index, 0] = results[variable_name].values.ravel() # Obtain objective value. objective = optimization_problem.evaluate_objective(x_vector) return objective def get_optimization_dlmps( self, optimization_problem: mesmo.utils.OptimizationProblem, price_data: mesmo.data_interface.PriceData, scenarios: typing.Union[list, pd.Index] = None ) -> ElectricGridDLMPResults: # Obtain results index sets, depending on if / if not scenarios given. if scenarios in [None, [None]]: scenarios = [None] ders = self.electric_grid_model.ders nodes = self.electric_grid_model.nodes branches = self.electric_grid_model.branches else: ders = ( pd.MultiIndex.from_product( (scenarios, self.electric_grid_model.ders.to_flat_index()), names=['scenario', 'der'] ) ) nodes = ( pd.MultiIndex.from_product( (scenarios, self.electric_grid_model.nodes.to_flat_index()), names=['scenario', 'node'] ) ) branches = ( pd.MultiIndex.from_product( (scenarios, self.electric_grid_model.branches.to_flat_index()), names=['scenario', 'branch'] ) ) # Obtain individual duals. voltage_magnitude_vector_minimum_dual = ( optimization_problem.duals['voltage_magnitude_vector_minimum_constraint'].loc[ self.electric_grid_model.timesteps, nodes ] / np.concatenate([np.abs(self.electric_grid_model.node_voltage_vector_reference)] * len(scenarios)) ) voltage_magnitude_vector_maximum_dual = ( -1.0 * optimization_problem.duals['voltage_magnitude_vector_maximum_constraint'].loc[ self.electric_grid_model.timesteps, nodes ] / np.concatenate([np.abs(self.electric_grid_model.node_voltage_vector_reference)] * len(scenarios)) ) branch_power_magnitude_vector_1_minimum_dual = ( optimization_problem.duals['branch_power_magnitude_vector_1_minimum_constraint'].loc[ self.electric_grid_model.timesteps, branches ] / np.concatenate([self.electric_grid_model.branch_power_vector_magnitude_reference] * len(scenarios)) ) branch_power_magnitude_vector_1_maximum_dual = ( -1.0 * optimization_problem.duals['branch_power_magnitude_vector_1_maximum_constraint'].loc[ self.electric_grid_model.timesteps, branches ] / np.concatenate([self.electric_grid_model.branch_power_vector_magnitude_reference] * len(scenarios)) ) branch_power_magnitude_vector_2_minimum_dual = ( optimization_problem.duals['branch_power_magnitude_vector_2_minimum_constraint'].loc[ self.electric_grid_model.timesteps, branches ] / np.concatenate([self.electric_grid_model.branch_power_vector_magnitude_reference] * len(scenarios)) ) branch_power_magnitude_vector_2_maximum_dual = ( -1.0 * optimization_problem.duals['branch_power_magnitude_vector_2_maximum_constraint'].loc[ self.electric_grid_model.timesteps, branches ] / np.concatenate([self.electric_grid_model.branch_power_vector_magnitude_reference] * len(scenarios)) ) # Instantiate DLMP variables. # TODO: Consider delta connections in nodal DLMPs. # TODO: Consider single-phase DLMPs. electric_grid_energy_dlmp_node_active_power = ( pd.DataFrame(columns=nodes, index=self.electric_grid_model.timesteps, dtype=float) ) electric_grid_voltage_dlmp_node_active_power = ( pd.DataFrame(columns=nodes, index=self.electric_grid_model.timesteps, dtype=float) ) electric_grid_congestion_dlmp_node_active_power = ( pd.DataFrame(columns=nodes, index=self.electric_grid_model.timesteps, dtype=float) ) electric_grid_loss_dlmp_node_active_power = ( pd.DataFrame(columns=nodes, index=self.electric_grid_model.timesteps, dtype=float) ) electric_grid_energy_dlmp_node_reactive_power = (
pd.DataFrame(columns=nodes, index=self.electric_grid_model.timesteps, dtype=float)
pandas.DataFrame
import os import argparse import numpy as np import pandas as pd import nibabel as nib from ukbb_cardiac.common.cardiac_utils import get_frames from ukbb_cardiac.common.image_utils import np_categorical_dice if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_csv', metavar='csv_name', default='DM_table.csv', required=True) args = parser.parse_args() print('Creating accuracy spreadsheet file ...') if os.path.exists(args.output_csv): os.remove(args.output_csv) # Record ED ES frames to csv init = {'Data': [], 'EDLV': [], 'EDLVM': [], 'EDRV': [], 'ESLV': [], 'ESLVM': [], 'ESRV': [], } df =
pd.DataFrame(init)
pandas.DataFrame
# -------------- # import the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') # Code starts here df = pd.read_json(path,lines=True) df.columns=df.columns.str.strip().str.lower().str.replace(' ', '_') ##df.dropna(inplace=True) df.drop(columns=['waist', 'bust', 'user_name','review_text','review_summary','shoe_size','shoe_width'],axis=1,inplace=True) print(df.columns) y=df['fit'] X=df.drop('fit',axis=1) print(X.columns) X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33,random_state=6) print(y_train.shape) print(y_test.shape) # Code ends here # Code ends here # -------------- def plot_barh(df,col, cmap = None, stacked=False, norm = None): df.plot(kind='barh', colormap=cmap, stacked=stacked) fig = plt.gcf() fig.set_size_inches(24,12) plt.title("Category vs {}-feedback - cloth {}".format(col, '(Normalized)' if norm else ''), fontsize= 20) plt.ylabel('Category', fontsize = 18) plot = plt.xlabel('Frequency', fontsize=18) # Code starts here g_by_category = df.groupby('category') cat_fit=g_by_category.count()['fit'] # Code ends here # -------------- # Code starts here g_by_category = df.groupby('category') cat_len = g_by_category['length'].value_counts() print(cat_len) cat_len = cat_len.unstack() print(cat_len) plot_barh(cat_len, 'length') # Code ends here # -------------- # Code starts here def get_cms(x): if type(x) == type(1.0): return try: return (int(x[0])*30.48) + (int(x[4:-2])*2.54) except: return (int(x[0])*30.48) print(X_train['height'].isnull().sum()) ###X_train['height'].dropna(inplace=True) ##for i in range(len(X_train)): ## X_train['height'][i]= (int(X_train['height'][i][0])*30.48) + (int(X_train['height'][i][4:-2])*2.54) X_train['height']=X_train['height'].apply(get_cms) X_test['height']=X_test['height'].apply(get_cms) # Code ends here # -------------- # Code starts here print(X_train.isnull().sum()) X_train.dropna(subset=['height','length','quality'],inplace=True) X_test.dropna(subset=['height','length','quality'],inplace=True) X_train['bra_size'].fillna((X_train['bra_size'].mean()), inplace=True) X_test['bra_size'].fillna((X_test['bra_size'].mean()), inplace=True) mode_1=X_train['cup_size'].mode()[0] mode_2=X_test['cup_size'].mode()[0] X_train['cup_size']=X_train['cup_size'].replace(np.nan,mode_1) X_test['cup_size']=X_test['cup_size'].replace(np.nan,mode_2) # Code ends here # -------------- print(X_test.head(2)) X_train=pd.get_dummies(data=X_train,columns=["category", "cup_size","length"],prefix=["category", "cup_size","length"]) X_test=
pd.get_dummies(data=X_test,columns=["category", "cup_size","length"],prefix=["category", "cup_size","length"])
pandas.get_dummies
""" PRESSGRAPHS DASH CLIENT WEB GUI interface for PressGraphs WebAPI """ ################################### # IMPORTS ################################### #builtins from datetime import datetime from datetime import timedelta #3rd party import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import dash_table as dt import pandas as pd import plotly.express as px import plotly.graph_objects as go import requests from dash.dependencies import Input, Output, State #oww from md import md_txt ################################### # DEFINITIONS ################################### app = dash.Dash(__name__, external_stylesheets=[dbc.themes.CERULEAN]) app.title = 'Press Graphs' app.config.suppress_callback_exceptions = True server = app.server startup_time = datetime.now().strftime("%Y %m %d %H:%M") API_KEY = "" # register your own API key at http://pressgraphs.pythonanywhere.com/create/test_user MAX_REQUEST_DAY = 90 def build_layout(): """ def to serve app.layout every time the app loads """ layout = html.Div(style={"padding":"2vw"}, children=[dcc.Location(id='url', refresh=True), dbc.Nav([ dbc.NavItem(dbc.NavLink("kezdőlap", active=True, href="/")), dbc.NavItem(dbc.NavLink("dátum szerint", href="/all_date")), dbc.NavItem(dbc.NavLink("újságok szerint", href="/all_org")), dbc.NavItem(dbc.NavLink("újság szerint", href="/site_tab")), dbc.NavItem(dbc.NavLink("két újság összevetése", href="/site_vs_tab")), dbc.NavItem(dbc.NavLink("két szó összevetése", href="words_tab")), dbc.DropdownMenu( [dbc.DropdownMenuItem("újságok", href="mo"), dbc.DropdownMenuItem("útmutató", href ="manual"), dbc.DropdownMenuItem("elérhetőség", href="contact")], label="további info", nav=True)]), html.Hr(), html.Div(id='page-content'), html.Hr()]) return layout def md_linkler(url: str) ->str: """ transforms url to markdown type link """ md_link = f"[link]({url})" return md_link def update_dt_by_date(dataframe: pd.DataFrame()) -> dt.DataTable(): """ updates dash_table with passed dataframe returns dash_table """ dataframe["link"] = dataframe["url"].copy() dataframe["link"] = dataframe["link"].apply(md_linkler) columns = [{'name': 'dátum', 'id':'date'}, {'name': 'oldal', 'id':'site'}, {'name': 'cím', 'id':'title'}, {'name': 'link', 'id':'link', 'type':'text', 'presentation': 'markdown'}, {'name': 'url', 'id':'url'}] data = dataframe.to_dict('records') data_table = dt.DataTable( style_table={"padding": "50px", "maxHeight": '350px', "overflowY": "scroll"}, style_data={'whiteSpace': 'normal', 'height': 'auto'}, style_cell={'textAlign': 'left'}, style_cell_conditional=[ {'if': {'column_id': 'date'}, 'width': '30px'}, {'if': {'column_id': 'site'}, 'width': '30px'}, {'if': {'column_id': 'title'}, 'width': '250px'}, {'if': {'column_id': 'link'}, 'width': '30px'}, {'if': {'column_id': 'url'}, 'width': '100px'}], data=data, columns=columns, page_size=50, export_format="xlsx") return data_table def plot_all_by_date(*, dataframe: pd.DataFrame(), search_word: str) -> px.bar: """ :date_count:pd.DataFrame returns: plotly.express.px.bar """ if len(dataframe) > 0: dataframe.columns = ["találatok száma"] fig = px.bar(dataframe, height=500, x=dataframe.index, y="találatok száma", color="találatok száma", labels={"x": "dátum", "date": "cikkek száma"}, opacity=.75, color_continuous_scale="Geyser" ) fig.update_layout( title={'text': f"""A '{search_word}' szó száma a cikkek címeiben {dataframe.index.min()}--{dataframe.index.max()}.""", 'y': 0.900, 'x': 0.50}, xaxis_title="Dátum", yaxis_title="Cikkek száma", yaxis_tickformat = 'd', transition={'duration': 500}, plot_bgcolor="rgba(0,0,0,0)", font={"family":"Courier New, monospace", "size":11, "color":"#000000" }) fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=True, gridcolor = '#bdbdbd') if len(dataframe) < 5: fig.update_layout(xaxis_showticklabels = False, width=750) fig.update_yaxes(showgrid=False, dtick=1) return fig return px.bar() def plot_all_by_sites(*, dataframe: pd.DataFrame(), search_word: str): """ #Horizontal barchart with top n sites """ if len(dataframe) > 0: df = dataframe df.rename(columns={'title': 'darab'}, inplace=True) fig = px.bar(df, height=1500, orientation='h', x="darab", y=df.index, labels={"y": "orgánum", "x": "cikkek száma"}, opacity=.75, ) fig.update_layout( title={'text': "Találatok az elmúlt 90 napból"}, plot_bgcolor="rgba(0,0,0,0)", yaxis_title="Újságok", xaxis_title="Cikkek száma", font={ "family":"Courier New, monospace", "size":10, "color":"#000000" }) fig.update_traces(marker_color='black') fig.update_xaxes(showgrid=True, gridcolor='#bdbdbd') fig.update_yaxes(showgrid=False) return fig return px.bar() def compare_two_sites(*, search_word, site1_df, site2_df, site_1, site_2): """ #Comparison line chart """ if search_word: search_word = str(search_word).lower() site_corr = site1_df["count"].corr(site2_df["count"]) fig = go.Figure( layout=go.Layout( annotations=[go.layout.Annotation( text=f'Korrelációs együttható (r): {site_corr:.2f}', hovertext="""Tartomány: -1 és 1 között. Jelzi két tetszőleges érték közötti lineáris kapcsolat nagyságát és irányát.""", borderpad=1, bgcolor="#ffffcc", align='left', showarrow=False, xref='paper', yref='paper', x=0, y=1, bordercolor='grey', borderwidth=1)])) fig.add_trace(go.Scatter(x=site1_df.index, y=site1_df["count"], mode='lines', line_shape='linear', name=f'{site_1}')) fig.add_trace(go.Scatter(x=site2_df.index, y=site2_df["count"], mode='lines', line_shape='linear', name=f'{site_2}')) fig.update_layout( title=f"""'{site_1}' és '{site_2}': '{search_word}' szó száma a cikkek címeiben""", xaxis_title="Dátum", yaxis_title="Cikkek száma", plot_bgcolor="rgba(0,0,0,0)", ) fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=True, gridcolor='#bdbdbd') return fig return px.bar() def compare_two_search_words(*, sw_df_1, sw_df_2, search_word_1, search_word_2): """ #TODO """ if search_word_1: sw1 = search_word_1.split()[0].strip() sw2 = search_word_2.split()[0].strip() corr = sw_df_1["count"].corr(sw_df_2["count"]) fig = go.Figure( layout=go.Layout( annotations=[go.layout.Annotation( text=f'Korrelációs együttható (r): {corr:.2f}', hovertext="""Tartomány: -1 és 1 között.""", borderpad=1, bgcolor="#ffffcc", align='left', showarrow=False, xref='paper', yref='paper', x=0, y=1, bordercolor='grey', borderwidth=1)])) fig.add_trace(go.Scatter(x=sw_df_1.index, y=sw_df_1["count"], mode='lines', line_shape='linear', name=f'{sw1}')) fig.add_trace(go.Scatter(x=sw_df_2.index, y=sw_df_2["count"], mode='lines', line_shape='linear', name=f'{sw2}')) fig.update_layout( height=600, title={'text': f"'{sw1}' és '{sw2}' szavak száma a cikkek címeiben", 'y':0.90, 'x':0.5}, xaxis_title="Dátum", yaxis_title="Cikkek száma", plot_bgcolor="rgba(0,0,0,0)", font=dict( family="Courier New, monospace", size=11, color="#000000" )) fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=True, gridcolor='#bdbdbd') return fig return px.bar() ################################### # LAYOUT ################################### print("loading layout") app.layout = build_layout @app.callback( Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/all_date': return page_1_layout elif pathname == '/all_org': return page_2_layout elif pathname == '/site_tab': return page_3_layout elif pathname == '/site_vs_tab': return page_4_layout elif pathname == '/words_tab': return page_5_layout elif pathname == '/contact': return page_6_layout elif pathname == '/manual': return page_7_layout elif pathname == '/mo': return page_8_layout else: return index_page ################################### # INDEX ################################### index_page = html.Div([ dcc.Markdown(children=md_txt.index_txt)]) ################################### # PAGE 1 LAYOUT ################################### page_1_layout = html.Div([ dbc.Row(dbc.Col(html.Div( dbc.Input(id="search_input", placeholder="keresett szó...", type="text", value="")), width=3)), html.Br(), dbc.Button("Keresés", outline=True, color="info", className="mr-1", id='submit-button', n_clicks=0), dbc.Checklist(options=[{"label": "keresés szavakon belül", "value": 1}], value=[], id="switch-input", switch=True), dcc.Graph(id='max_date_bargraph'), html.Div(id="table1", style={'font-family': 'Impact'})]) ################################### # PAGE 1 CHART CALLBACK ################################### @app.callback(Output('max_date_bargraph', 'figure'), [Input('submit-button', 'n_clicks'), Input('search_input', 'n_submit'), Input('switch-input', 'value')], [State('search_input', 'value')]) def date_count_all_site(n_clicks, n_submit, switch_value, search_word): """ """ if n_clicks or n_submit: search_word = search_word.strip() if switch_value: switch_value = 1 else: switch_value = 0 site="all" today = datetime.today().strftime("%Y-%m-%d") from_date = (datetime.today() - \ timedelta(days = MAX_REQUEST_DAY)).strftime("%Y-%m-%d") api_url = f"http://pressgraphs.pythonanywhere.com/date/count/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] res_df = pd.DataFrame(content) if len(res_df) > 0: res_df.set_index("date", inplace=True) else: res_df = pd.DataFrame() fig = plot_all_by_date(dataframe=res_df, search_word=search_word) return fig ################################### # PAGE 1 DATA TABLE CALLBACK ################################### @app.callback(Output('table1', 'children'), [Input('max_date_bargraph', 'clickData'), Input('submit-button', 'n_clicks'), Input('switch-input', 'value')], [State('search_input', 'value')]) def update_table(clickData, n_clicks, switch_value, search_word): """ #TODO """ if clickData: search_word = search_word.strip() date = list(clickData["points"])[0]["label"] site = "all" if switch_value: switch_value = 1 else: switch_value = 0 api_url = f"http://pressgraphs.pythonanywhere.com/date/list/"\ f"{API_KEY}/{search_word}/{switch_value}/{date}/{date}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] df = pd.DataFrame(content) return update_dt_by_date(df) else: return ################################### # PAGE 2 LAYOUT ################################### page_2_layout = html.Div([ dbc.Row(dbc.Col(html.Div( dbc.Input(id="search_input", placeholder="keresett szó...", type="text", value="")), width=3)), html.Br(), dbc.Button("Keresés", outline=True, color="info", className="mr-1", id='submit-button', n_clicks=0), dbc.Checklist(options=[{"label": "keresés szavakon belül", "value": 1}], value=[], id="switch-input", switch=True), html.Div(id='my-output'), dcc.Graph(id='bargraph_2'), html.Div(id="table2", style={'font-family': 'Impact'})]) ################################### # PAGE 2 CHART CALLBACK ################################### @app.callback(Output('bargraph_2', 'figure'), [Input('submit-button', 'n_clicks'), Input('search_input', 'n_submit'), Input('switch-input', 'value')], [State('search_input', 'value')]) def update_by_site(n_clicks, n_submit, switch_value, search_word): if n_clicks or n_submit: search_word = search_word.strip() if switch_value: switch_value = 1 else: switch_value = 0 site="all" today = datetime.today().strftime("%Y-%m-%d") from_date = (datetime.today() - \ timedelta(days = MAX_REQUEST_DAY)).strftime("%Y-%m-%d") api_url = f"http://pressgraphs.pythonanywhere.com/date/list/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] res_df = pd.DataFrame(content) df = res_df.groupby(by="site").count()["title"] df = pd.DataFrame(df.sort_values(ascending=True)[:]) else: df = pd.DataFrame() fig = plot_all_by_sites(dataframe=df, search_word=search_word) return fig ################################### # PAGE 2 DATA TABLE CALLBACK ################################### @app.callback(Output('table2', 'children'), [Input('bargraph_2', 'clickData'), Input('submit-button', 'n_clicks'), Input('switch-input', 'value')], [State('search_input', 'value')]) def display_clickData_2(clickData, n_clicks, switch_value, search_word): if clickData: search_word = search_word.strip() today = datetime.today().strftime("%Y-%m-%d") from_date = (datetime.today() - \ timedelta(days = MAX_REQUEST_DAY)).strftime("%Y-%m-%d") site = list(clickData["points"])[0]["label"] if switch_value: switch_value = 1 else: switch_value = 0 api_url = f"http://pressgraphs.pythonanywhere.com/date/list/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] df = pd.DataFrame(content) return update_dt_by_date(df) else: return ################################### # PAGE 3 LAYOUT ################################### api_url = f"""http://pressgraphs.pythonanywhere.com/{API_KEY}/info/sites/all""" response = requests.get(api_url) schema = response.json()[0] st_options = pd.DataFrame(response.json()[1]["data"]) page_3_layout = html.Div([ html.H5("oldal szerinti keresés"), dbc.Row(dbc.Col(html.Div( dbc.Input(id="search_input", placeholder="keresett szó...", type="text", value='')), width=3)), html.Br(), dbc.Row(dbc.Col(html.Div(dcc.Dropdown( id="sites", options=[{ 'label': i, 'value': i } for i in st_options["site"]], placeholder="keresett oldal...", value='')), width=3)), html.Br(), dbc.Button("Keresés", outline=True, color="info", className="mr-1", id='submit-button', n_clicks=0), dbc.Checklist(options=[{"label": "keresés szavakon belül", "value": 1}], value=[], id="switch-input", switch=True), dcc.Graph(id='bargraph_3'), html.Div(id="table3")]) ################################### # PAGE 3 CHART CALLBACK ################################### @app.callback(Output('bargraph_3','figure'), [Input('submit-button', 'n_clicks'), Input('search_input', 'n_submit'), Input('switch-input', 'value')], [State('search_input', 'value'), State('sites', 'value')]) def update_site_graph(n_clicks, n_submit, switch_value, search_word, site): """ """ if n_clicks or n_submit: search_word = search_word.strip() if switch_value: switch_value = 1 else: switch_value = 0 site=site today = datetime.today().strftime("%Y-%m-%d") from_date = (datetime.today() - \ timedelta(days = MAX_REQUEST_DAY)).strftime("%Y-%m-%d") api_url = f"http://pressgraphs.pythonanywhere.com/date/count/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] res_df = pd.DataFrame(content) if len(res_df) > 0: res_df.set_index("date",inplace=True) else: res_df = pd.DataFrame() fig = plot_all_by_date(dataframe=res_df, search_word=search_word) return fig ################################### # PAGE 3 DATA TABLE CALLBACK ################################### @app.callback(Output('table3', 'children'), [Input('bargraph_3', 'clickData'), Input('submit-button', 'n_clicks'), Input('switch-input', 'value')], [State('search_input', 'value'), State('sites', 'value')]) def display_clickData_3(clickData, n_clicks, switch_value, search_word, site): """ #TODO """ if clickData: search_word = search_word.strip() date = list(clickData["points"])[0]["label"] if switch_value: switch_value = 1 else: switch_value = 0 api_url = f"http://pressgraphs.pythonanywhere.com/date/list/"\ f"{API_KEY}/{search_word}/{switch_value}/{date}/{date}/{site}" response = requests.get(api_url) content = response.json()[1]["data"] df = pd.DataFrame(content) return update_dt_by_date(df) else: return ################################### # PAGE 4 LAYOUT ################################### api_url = f"""http://pressgraphs.pythonanywhere.com/{API_KEY}/info/sites/all""" response = requests.get(api_url) schema = response.json()[0] st_options = pd.DataFrame(response.json()[1]["data"]) page_4_layout = html.Div([ html.H5("két oldal összevetése"), dbc.Row(dbc.Col(html.Div( dbc.Input(id="search_input", placeholder="keresett szó...", type="text", value='')),width=3)), html.Br(), dbc.Row(dbc.Col(html.Div(dcc.Dropdown( id="site_1", options=[{ 'label': i, 'value': i } for i in st_options["site"]], placeholder="első oldal...", value='')), width=3)), html.Br(), dbc.Row(dbc.Col(html.Div(dcc.Dropdown( id="site_2", options=[{ 'label': i, 'value': i } for i in st_options["site"]], placeholder="második oldal...", value='')), width=3)), html.Br(), dbc.Button("Keresés", outline=True, color="info", className="mr-1", id='submit-button', n_clicks=0), dbc.Checklist(options=[{"label": "keresés szavakon belül", "value": 1}], value=[], id="switch-input", switch=True, ), dcc.Graph(id='graph_4'), html.Div(id="table4")]) ################################### # PAGE 4 CAHRT CALLBACK ################################### @app.callback(Output('graph_4','figure'), [Input('submit-button', 'n_clicks'), Input('search_input', 'n_submit'), Input('switch-input', 'value')], [State('search_input', 'value'), State('site_1', 'value'), State('site_2', 'value')]) def update_site_comparison(n_clicks, n_submit, switch_value, search_word, st1, st2): """ #TODO """ if n_clicks or n_submit: search_word = search_word.strip() if switch_value: switch_value = 1 else: switch_value = 0 today = datetime.today().strftime("%Y-%m-%d") from_date = (datetime.today() - \ timedelta(days = MAX_REQUEST_DAY)).strftime("%Y-%m-%d") api_url = f"http://pressgraphs.pythonanywhere.com/date/count/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{st1}""" response = requests.get(api_url) s_1_content = response.json()[1]["data"] s1_df = pd.DataFrame(s_1_content) s1_df.set_index("date", inplace=True) api_url = f"http://pressgraphs.pythonanywhere.com/date/count/"\ f"{API_KEY}/{search_word}/{switch_value}/{from_date}/{today}/{st2}""" response = requests.get(api_url) s_2_content = response.json()[1]["data"] s2_df =
pd.DataFrame(s_2_content)
pandas.DataFrame
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # tz mismatch affecting to tz-aware raises TypeError/ValueError with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') msg = 'cannot be converted to datetime64' with pytest.raises(ValueError, match=msg): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') with pytest.raises(ValueError, match=msg): # passing tz should results in DatetimeIndex, then mismatch raises # TypeError Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') def test_construction_base_constructor(self): arr = [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) def test_construction_outofbounds(self): # GH 13663 dates = [datetime(3000, 1, 1), datetime(4000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)] exp = Index(dates, dtype=object) # coerces to object tm.assert_index_equal(Index(dates), exp) with pytest.raises(OutOfBoundsDatetime): # can't create DatetimeIndex DatetimeIndex(dates) def test_construction_with_ndarray(self): # GH 5152 dates = [datetime(2013, 10, 7), datetime(2013, 10, 8), datetime(2013, 10, 9)] data = DatetimeIndex(dates, freq=pd.offsets.BDay()).values result = DatetimeIndex(data, freq=pd.offsets.BDay()) expected = DatetimeIndex(['2013-10-07', '2013-10-08', '2013-10-09'], freq='B') tm.assert_index_equal(result, expected) def test_verify_integrity_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(['1/1/2000'], verify_integrity=False) def test_range_kwargs_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000', freq='D') def test_integer_values_and_tz_deprecated(self): # GH-24559 values = np.array([946684800000000000]) with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(values, tz='US/Central') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") tm.assert_index_equal(result, expected) # but UTC is *not* deprecated. with tm.assert_produces_warning(None): result = DatetimeIndex(values, tz='UTC') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) tm.assert_index_equal(rng, exp) msg = 'periods must be a number, got foo' with pytest.raises(TypeError, match=msg): date_range(start='1/1/2000', periods='foo', freq='D') with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000') with pytest.raises(TypeError): DatetimeIndex('1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) tm.assert_index_equal(result, expected) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # string with NaT strings = np.array(['2000-01-01', '2000-01-02', 'NaT']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # non-conforming pytest.raises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') pytest.raises(ValueError, date_range, start='2011-01-01', freq='b') pytest.raises(ValueError, date_range, end='2011-01-01', freq='B') pytest.raises(ValueError, date_range, periods=10, freq='D') @pytest.mark.parametrize('freq', ['AS', 'W-SUN']) def test_constructor_datetime64_tzformat(self, freq): # see GH#6572: ISO 8601 format results in pytz.FixedOffset idx = date_range('2013-01-01T00:00:00-05:00', '2016-01-01T23:59:59-05:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013-01-01T00:00:00+09:00', '2016-01-01T23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) # Non ISO 8601 format results in dateutil.tz.tzoffset idx = date_range('2013/1/1 0:00:00-5:00', '2016/1/1 23:59:59-5:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013/1/1 0:00:00+9:00', '2016/1/1 23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') expected = DatetimeIndex(['2013-01-01', '2013-01-02'] ).tz_localize('US/Eastern') tm.assert_index_equal(idx, expected) idx = DatetimeIndex(['2013-01-01', '2013-01-02'], tz='US/Eastern') tm.assert_index_equal(idx, expected) # if we already have a tz and its not the same, then raise idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') pytest.raises(ValueError, lambda: DatetimeIndex(idx, dtype='datetime64[ns]')) # this is effectively trying to convert tz's pytest.raises(TypeError, lambda: DatetimeIndex(idx, dtype='datetime64[ns, CET]')) pytest.raises(ValueError, lambda: DatetimeIndex( idx, tz='CET', dtype='datetime64[ns, US/Eastern]')) result = DatetimeIndex(idx, dtype='datetime64[ns, US/Eastern]') tm.assert_index_equal(idx, result) def test_constructor_name(self): idx = date_range(start='2000-01-01', periods=1, freq='A', name='TEST') assert idx.name == 'TEST' def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) assert idx.nanosecond[0] == t1.nanosecond def test_disallow_setting_tz(self): # GH 3746 dti = DatetimeIndex(['2010'], tz='UTC') with pytest.raises(AttributeError): dti.tz = pytz.timezone('US/Pacific') @pytest.mark.parametrize('tz', [ None, 'America/Los_Angeles', pytz.timezone('America/Los_Angeles'), Timestamp('2000', tz='America/Los_Angeles').tz]) def test_constructor_start_end_with_tz(self, tz): # GH 18595 start = Timestamp('2013-01-01 06:00:00', tz='America/Los_Angeles') end = Timestamp('2013-01-02 06:00:00', tz='America/Los_Angeles') result =
date_range(freq='D', start=start, end=end, tz=tz)
pandas.date_range
import requests import pandas as pd import ftplib import io import re import json import datetime try: from requests_html import HTMLSession except Exception: print("""Warning - Certain functionality requires requests_html, which is not installed. Install using: pip install requests_html After installation, you may have to restart your Python session.""") base_url = "https://query1.finance.yahoo.com/v8/finance/chart/" def build_url(ticker, start_date = None, end_date = None, interval = "1d"): if end_date is None: end_seconds = int(pd.Timestamp("now").timestamp()) else: end_seconds = int(pd.Timestamp(end_date).timestamp()) if start_date is None: start_seconds = 7223400 else: start_seconds = int(pd.Timestamp(start_date).timestamp()) site = base_url + ticker params = {"period1": start_seconds, "period2": end_seconds, "interval": interval.lower(), "events": "div,splits"} return site, params def force_float(elt): try: return float(elt) except: return elt def _convert_to_numeric(s): if "M" in s: s = s.strip("M") return force_float(s) * 1_000_000 if "B" in s: s = s.strip("B") return force_float(s) * 1_000_000_000 return force_float(s) def get_data(ticker, start_date = None, end_date = None, index_as_date = True, interval = "1d"): '''Downloads historical stock price data into a pandas data frame. Interval must be "1d", "1wk", "1mo", or "1m" for daily, weekly, monthly, or minute data. Intraday minute data is limited to 7 days. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True @param: interval = "1d" ''' if interval not in ("1d", "1wk", "1mo", "1m"): raise AssertionError("interval must be of of '1d', '1wk', '1mo', or '1m'") # build and connect to URL site, params = build_url(ticker, start_date, end_date, interval) resp = requests.get(site, params = params) if not resp.ok: raise AssertionError(resp.json()) # get JSON response data = resp.json() # get open / high / low / close data frame = pd.DataFrame(data["chart"]["result"][0]["indicators"]["quote"][0]) # get the date info temp_time = data["chart"]["result"][0]["timestamp"] if interval != "1m": # add in adjclose frame["adjclose"] = data["chart"]["result"][0]["indicators"]["adjclose"][0]["adjclose"] frame.index = pd.to_datetime(temp_time, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) frame = frame[["open", "high", "low", "close", "adjclose", "volume"]] else: frame.index = pd.to_datetime(temp_time, unit = "s") frame = frame[["open", "high", "low", "close", "volume"]] frame['ticker'] = ticker.upper() if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def tickers_sp500(include_company_data = False): '''Downloads list of tickers currently listed in the S&P 500 ''' # get list of all S&P 500 stocks sp500 = pd.read_html("https://en.wikipedia.org/wiki/List_of_S%26P_500_companies")[0] sp500["Symbol"] = sp500["Symbol"].str.replace(".", "-") if include_company_data: return sp500 sp_tickers = sp500.Symbol.tolist() sp_tickers = sorted(sp_tickers) return sp_tickers def tickers_nasdaq(include_company_data = False): '''Downloads list of tickers currently listed in the NASDAQ''' ftp = ftplib.FTP("ftp.nasdaqtrader.com") ftp.login() ftp.cwd("SymbolDirectory") r = io.BytesIO() ftp.retrbinary('RETR nasdaqlisted.txt', r.write) if include_company_data: r.seek(0) data = pd.read_csv(r, sep = "|") return data info = r.getvalue().decode() splits = info.split("|") tickers = [x for x in splits if "\r\n" in x] tickers = [x.split("\r\n")[1] for x in tickers if "NASDAQ" not in x != "\r\n"] tickers = [ticker for ticker in tickers if "File" not in ticker] ftp.close() return tickers def tickers_other(include_company_data = False): '''Downloads list of tickers currently listed in the "otherlisted.txt" file on "ftp.nasdaqtrader.com" ''' ftp = ftplib.FTP("ftp.nasdaqtrader.com") ftp.login() ftp.cwd("SymbolDirectory") r = io.BytesIO() ftp.retrbinary('RETR otherlisted.txt', r.write) if include_company_data: r.seek(0) data = pd.read_csv(r, sep = "|") return data info = r.getvalue().decode() splits = info.split("|") tickers = [x for x in splits if "\r\n" in x] tickers = [x.split("\r\n")[1] for x in tickers] tickers = [ticker for ticker in tickers if "File" not in ticker] ftp.close() return tickers def tickers_dow(include_company_data = False): '''Downloads list of currently traded tickers on the Dow''' site = "https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average" table = pd.read_html(site, attrs = {"id":"constituents"})[0] if include_company_data: return table dow_tickers = sorted(table['Symbol'].tolist()) return dow_tickers def tickers_ibovespa(include_company_data = False): '''Downloads list of currently traded tickers on the Ibovespa, Brazil''' table = pd.read_html("https://pt.wikipedia.org/wiki/Lista_de_companhias_citadas_no_Ibovespa")[0] table.columns = ["Symbol", "Share", "Sector", "Type", "Site"] if include_company_data: return table ibovespa_tickers = sorted(table.Symbol.tolist()) return ibovespa_tickers def tickers_nifty50(include_company_data = False): '''Downloads list of currently traded tickers on the NIFTY 50, India''' site = "https://finance.yahoo.com/quote/%5ENSEI/components?p=%5ENSEI" table = pd.read_html(site)[0] if include_company_data: return table nifty50 = sorted(table['Symbol'].tolist()) return nifty50 def tickers_niftybank(): ''' Currently traded tickers on the NIFTY BANK, India ''' niftybank = ['AXISBANK', 'KOTAKBANK', 'HDFCBANK', 'SBIN', 'BANKBARODA', 'INDUSINDBK', 'PNB', 'IDFCFIRSTB', 'ICICIBANK', 'RBLBANK', 'FEDERALBNK', 'BANDHANBNK'] return niftybank def tickers_ftse100(include_company_data = False): '''Downloads a list of the tickers traded on the FTSE 100 index''' table = pd.read_html("https://en.wikipedia.org/wiki/FTSE_100_Index", attrs = {"id": "constituents"})[0] if include_company_data: return table return sorted(table.EPIC.tolist()) def tickers_ftse250(include_company_data = False): '''Downloads a list of the tickers traded on the FTSE 250 index''' table = pd.read_html("https://en.wikipedia.org/wiki/FTSE_250_Index", attrs = {"id": "constituents"})[0] table.columns = ["Company", "Ticker"] if include_company_data: return table return sorted(table.Ticker.tolist()) def get_quote_table(ticker , dict_result = True, headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}): '''Scrapes data elements found on Yahoo Finance's quote page of input ticker @param: ticker @param: dict_result = True ''' site = "https://finance.yahoo.com/quote/" + ticker + "?p=" + ticker tables = pd.read_html(requests.get(site, headers=headers).text) data = tables[0].append(tables[1]) data.columns = ["attribute" , "value"] quote_price = pd.DataFrame(["Quote Price", get_live_price(ticker)]).transpose() quote_price.columns = data.columns.copy() data = data.append(quote_price) data = data.sort_values("attribute") data = data.drop_duplicates().reset_index(drop = True) data["value"] = data.value.map(force_float) if dict_result: result = {key : val for key,val in zip(data.attribute , data.value)} return result return data def get_stats(ticker, headers = {'User-agent': 'Mozilla/5.0'}): '''Scrapes information from the statistics tab on Yahoo Finance for an input ticker @param: ticker ''' stats_site = "https://finance.yahoo.com/quote/" + ticker + \ "/key-statistics?p=" + ticker tables = pd.read_html(requests.get(stats_site, headers=headers).text) tables = [table for table in tables[1:] if table.shape[1] == 2] table = tables[0] for elt in tables[1:]: table = table.append(elt) table.columns = ["Attribute" , "Value"] table = table.reset_index(drop = True) return table def get_stats_valuation(ticker, headers = {'User-agent': 'Mozilla/5.0'}): '''Scrapes Valuation Measures table from the statistics tab on Yahoo Finance for an input ticker @param: ticker ''' stats_site = "https://finance.yahoo.com/quote/" + ticker + \ "/key-statistics?p=" + ticker tables = pd.read_html(requests.get(stats_site, headers=headers).text) tables = [table for table in tables if "Trailing P/E" in table.iloc[:,0].tolist()] table = tables[0].reset_index(drop = True) return table def _parse_json(url, headers = {'User-agent': 'Mozilla/5.0'}): html = requests.get(url=url, headers = headers).text json_str = html.split('root.App.main =')[1].split( '(this)')[0].split(';\n}')[0].strip() try: data = json.loads(json_str)[ 'context']['dispatcher']['stores']['QuoteSummaryStore'] except: return '{}' else: # return data new_data = json.dumps(data).replace('{}', 'null') new_data = re.sub(r'\{[\'|\"]raw[\'|\"]:(.*?),(.*?)\}', r'\1', new_data) json_info = json.loads(new_data) return json_info def _parse_table(json_info): df = pd.DataFrame(json_info) if df.empty: return df del df["maxAge"] df.set_index("endDate", inplace=True) df.index = pd.to_datetime(df.index, unit="s") df = df.transpose() df.index.name = "Breakdown" return df def get_income_statement(ticker, yearly = True): '''Scrape income statement from Yahoo Finance for a given ticker @param: ticker ''' income_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(income_site) if yearly: temp = json_info["incomeStatementHistory"]["incomeStatementHistory"] else: temp = json_info["incomeStatementHistoryQuarterly"]["incomeStatementHistory"] return _parse_table(temp) def get_balance_sheet(ticker, yearly = True): '''Scrapes balance sheet from Yahoo Finance for an input ticker @param: ticker ''' balance_sheet_site = "https://finance.yahoo.com/quote/" + ticker + \ "/balance-sheet?p=" + ticker json_info = _parse_json(balance_sheet_site) try: if yearly: temp = json_info["balanceSheetHistory"]["balanceSheetStatements"] else: temp = json_info["balanceSheetHistoryQuarterly"]["balanceSheetStatements"] except: temp = [] return _parse_table(temp) def get_cash_flow(ticker, yearly = True): '''Scrapes the cash flow statement from Yahoo Finance for an input ticker @param: ticker ''' cash_flow_site = "https://finance.yahoo.com/quote/" + \ ticker + "/cash-flow?p=" + ticker json_info = _parse_json(cash_flow_site) if yearly: temp = json_info["cashflowStatementHistory"]["cashflowStatements"] else: temp = json_info["cashflowStatementHistoryQuarterly"]["cashflowStatements"] return _parse_table(temp) def get_financials(ticker, yearly = True, quarterly = True): '''Scrapes financials data from Yahoo Finance for an input ticker, including balance sheet, cash flow statement, and income statement. Returns dictionary of results. @param: ticker @param: yearly = True @param: quarterly = True ''' if not yearly and not quarterly: raise AssertionError("yearly or quarterly must be True") financials_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(financials_site) result = {} if yearly: temp = json_info["incomeStatementHistory"]["incomeStatementHistory"] table = _parse_table(temp) result["yearly_income_statement"] = table temp = json_info["balanceSheetHistory"]["balanceSheetStatements"] table = _parse_table(temp) result["yearly_balance_sheet"] = table temp = json_info["cashflowStatementHistory"]["cashflowStatements"] table = _parse_table(temp) result["yearly_cash_flow"] = table if quarterly: temp = json_info["incomeStatementHistoryQuarterly"]["incomeStatementHistory"] table = _parse_table(temp) result["quarterly_income_statement"] = table temp = json_info["balanceSheetHistoryQuarterly"]["balanceSheetStatements"] table = _parse_table(temp) result["quarterly_balance_sheet"] = table temp = json_info["cashflowStatementHistoryQuarterly"]["cashflowStatements"] table = _parse_table(temp) result["quarterly_cash_flow"] = table return result def get_holders(ticker, headers = {'User-agent': 'Mozilla/5.0'}): '''Scrapes the Holders page from Yahoo Finance for an input ticker @param: ticker ''' holders_site = "https://finance.yahoo.com/quote/" + \ ticker + "/holders?p=" + ticker tables = pd.read_html(requests.get(holders_site, headers=headers).text) table_names = ["Major Holders" , "Direct Holders (Forms 3 and 4)" , "Top Institutional Holders" , "Top Mutual Fund Holders"] table_mapper = {key : val for key,val in zip(table_names , tables)} return table_mapper def get_analysts_info(ticker, headers = {'User-agent': 'Mozilla/5.0'}): '''Scrapes the Analysts page from Yahoo Finance for an input ticker @param: ticker ''' analysts_site = "https://finance.yahoo.com/quote/" + ticker + \ "/analysts?p=" + ticker tables = pd.read_html(requests.get(analysts_site, headers=headers).text) table_names = [table.columns[0] for table in tables] table_mapper = {key : val for key , val in zip(table_names , tables)} return table_mapper def get_live_price(ticker): '''Gets the live price of input ticker @param: ticker ''' df = get_data(ticker, end_date = pd.Timestamp.today() + pd.DateOffset(10)) return df.close[-1] def _raw_get_daily_info(site): session = HTMLSession() resp = session.get(site) tables = pd.read_html(resp.html.raw_html) df = tables[0].copy() df.columns = tables[0].columns del df["52 Week Range"] df["% Change"] = df["% Change"].map(lambda x: float(x.strip("%+").replace(",", ""))) fields_to_change = [x for x in df.columns.tolist() if "Vol" in x \ or x == "Market Cap"] for field in fields_to_change: if type(df[field][0]) == str: df[field] = df[field].map(_convert_to_numeric) session.close() return df def get_day_most_active(count: int = 100): return _raw_get_daily_info(f"https://finance.yahoo.com/most-active?offset=0&count={count}") def get_day_gainers(count: int = 100): return _raw_get_daily_info(f"https://finance.yahoo.com/gainers?offset=0&count={count}") def get_day_losers(count: int = 100): return _raw_get_daily_info(f"https://finance.yahoo.com/losers?offset=0&count={count}") def get_top_crypto(): '''Gets the top 100 Cryptocurrencies by Market Cap''' session = HTMLSession() resp = session.get("https://finance.yahoo.com/cryptocurrencies?offset=0&count=100") tables = pd.read_html(resp.html.raw_html) df = tables[0].copy() df["% Change"] = df["% Change"].map(lambda x: float(str(x).strip("%").\ strip("+").\ replace(",", ""))) del df["52 Week Range"] del df["1 Day Chart"] fields_to_change = [x for x in df.columns.tolist() if "Volume" in x \ or x == "Market Cap" or x == "Circulating Supply"] for field in fields_to_change: if type(df[field][0]) == str: df[field] = df[field].map(lambda x: _convert_to_numeric(str(x))) session.close() return df def get_dividends(ticker, start_date = None, end_date = None, index_as_date = True): '''Downloads historical dividend data into a pandas data frame. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True ''' # build and connect to URL site, params = build_url(ticker, start_date, end_date, "1d") resp = requests.get(site, params = params) if not resp.ok: return pd.DataFrame() # get JSON response data = resp.json() # check if there is data available for dividends if "events" not in data["chart"]["result"][0] or "dividends" not in data["chart"]["result"][0]['events']: return pd.DataFrame() # get the dividend data frame = pd.DataFrame(data["chart"]["result"][0]['events']['dividends']) frame = frame.transpose() frame.index = pd.to_datetime(frame.index, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) # sort in chronological order frame = frame.sort_index() frame['ticker'] = ticker.upper() # remove old date column frame = frame.drop(columns='date') frame = frame.rename({'amount': 'dividend'}, axis = 'columns') if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def get_splits(ticker, start_date = None, end_date = None, index_as_date = True): '''Downloads historical stock split data into a pandas data frame. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True ''' # build and connect to URL site, params = build_url(ticker, start_date, end_date, "1d") resp = requests.get(site, params = params) if not resp.ok: raise AssertionError(resp.json()) # get JSON response data = resp.json() # check if there is data available for splits if "splits" not in data["chart"]["result"][0]['events']: raise AssertionError("There is no data available on stock splits, or none have occured") # get the split data frame = pd.DataFrame(data["chart"]["result"][0]['events']['splits']) frame = frame.transpose() frame.index = pd.to_datetime(frame.index, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) # sort in to chronological order frame = frame.sort_index() frame['ticker'] = ticker.upper() # remove unnecessary columns frame = frame.drop(columns=['date', 'denominator', 'numerator']) if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def get_earnings(ticker): '''Scrapes earnings data from Yahoo Finance for an input ticker @param: ticker ''' result = { "quarterly_results": pd.DataFrame(), "yearly_revenue_earnings": pd.DataFrame(), "quarterly_revenue_earnings": pd.DataFrame() } financials_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(financials_site) if "earnings" not in json_info: return result temp = json_info["earnings"] if temp == None: return result result["quarterly_results"] = pd.DataFrame.from_dict(temp["earningsChart"]["quarterly"]) result["yearly_revenue_earnings"] = pd.DataFrame.from_dict(temp["financialsChart"]["yearly"]) result["quarterly_revenue_earnings"] = pd.DataFrame.from_dict(temp["financialsChart"]["quarterly"]) return result ### Earnings functions def _parse_earnings_json(url): resp = requests.get(url) content = resp.content.decode(encoding='utf-8', errors='strict') page_data = [row for row in content.split( '\n') if row.startswith('root.App.main = ')][0][:-1] page_data = page_data.split('root.App.main = ', 1)[1] return json.loads(page_data) def get_next_earnings_date(ticker): base_earnings_url = 'https://finance.yahoo.com/quote' new_url = base_earnings_url + "/" + ticker parsed_result = _parse_earnings_json(new_url) temp = parsed_result['context']['dispatcher']['stores']['QuoteSummaryStore']['calendarEvents']['earnings']['earningsDate'][0]['raw'] return datetime.datetime.fromtimestamp(temp) def get_earnings_history(ticker): '''Inputs: @ticker Returns the earnings calendar history of the input ticker with EPS actual vs. expected data.''' url = 'https://finance.yahoo.com/calendar/earnings?symbol=' + ticker result = _parse_earnings_json(url) return result["context"]["dispatcher"]["stores"]["ScreenerResultsStore"]["results"]["rows"] def get_earnings_for_date(date, offset = 0, count = 1): '''Inputs: @date Returns a dictionary of stock tickers with earnings expected on the input date. The dictionary contains the expected EPS values for each stock if available.''' base_earnings_url = 'https://finance.yahoo.com/calendar/earnings' if offset >= count: return [] temp = pd.Timestamp(date) date = temp.strftime("%Y-%m-%d") dated_url = '{0}?day={1}&offset={2}&size={3}'.format( base_earnings_url, date, offset, 100) result = _parse_earnings_json(dated_url) stores = result['context']['dispatcher']['stores'] earnings_count = stores['ScreenerCriteriaStore']['meta']['total'] new_offset = offset + 100 more_earnings = get_earnings_for_date(date, new_offset, earnings_count) current_earnings = stores['ScreenerResultsStore']['results']['rows'] total_earnings = current_earnings + more_earnings return total_earnings def get_earnings_in_date_range(start_date, end_date): '''Inputs: @start_date @end_date Returns the stock tickers with expected EPS data for all dates in the input range (inclusive of the start_date and end_date.''' earnings_data = [] days_diff = pd.Timestamp(end_date) - pd.Timestamp(start_date) days_diff = days_diff.days current_date =
pd.Timestamp(start_date)
pandas.Timestamp
import fire from rest_api_asyncio import UniprotClient, get_db import pandas as pd from pandas import DataFrame import gtfparse import time from tqdm import tqdm from pathlib import Path from functools import reduce import glob import sys import urllib3 import asyncio OUT_HEADER_BASE = [ 'gene_id', 'gene_names', 'uniprot_id', 'protein_names', 'protein_existence'] OUT_HEADER_REF = [ 'go_id', 'go_term', 'interpro_ids', 'interpro_names', 'pfam_ids', 'pfam_names', 'feature_names', 'feature_dbs', 'pubmed_ids' ] DEFAULT_CONCUR_REQ = 10 DEFAULT_RETRY_TIMES = 2 def format_df(gene_df, sep=',', empty_rep=None, by='gene_id'): def my_unique(x, sep=','): unique_x = pd.unique(x.dropna()) if str(unique_x.dtype) == 'float64': unique_x = unique_x.astype('int') unique_x = [str(each) for each in unique_x] if not unique_x: if empty_rep is None: return None else: unique_x = [empty_rep] return sep.join(unique_x) gene_df = gene_df.groupby(by).agg(my_unique, sep) return gene_df.reset_index() def save_download(df, middle_file): middle_file = Path(middle_file) if middle_file.exists(): write_mode = 'a' write_header = False else: write_header = True write_mode = 'w' df.to_csv(middle_file, header=write_header, mode=write_mode, index=False, sep='\t') def save_download_to_dir(df, middle_file_dir, file_id): middle_file_dir = Path(middle_file_dir) middle_file_dir.mkdir(parents=True, exist_ok=True) middle_file = middle_file_dir / f'{file_id}.txt' df.to_csv(middle_file, index=False, sep='\t') def idlist2df(id_list, col_name, identity_map=None): if id_list: list_df = DataFrame(id_list, columns=[col_name]) if identity_map is not None: for key, val in identity_map.items(): list_df.loc[:, key] = val return list_df def refdb_anno(anno_db, db_name): db_ids = [each['id'] for each in anno_db if each['type'] == db_name] db_names = [each['properties']['entry name'] for each in anno_db if each['type'] == db_name] return db_ids, db_names def featuredb_anno(featuredb): no_use_ft = ('', 'DSL') feature_db_dict = dict() for each in featuredb: if 'description' not in each: continue elif each['description'] in no_use_ft: continue elif 'evidences' not in each: continue elif 'source' not in each['evidences'][0]: continue else: feature_db_name = each['evidences'][0]['source']['name'] feature_db_id = each['evidences'][0]['source']['id'] if feature_db_name == 'Pfam': continue feature_db_dict.setdefault( 'feature_names', []).append(each['description']) feature_db_f_name = f'{feature_db_name}:{feature_db_id}' feature_db_dict.setdefault( 'feature_dbs', [] ).append(feature_db_f_name) return feature_db_dict def commentdb_anno(commentdb): comment_db_dict = dict() for each in commentdb: each_type = f'uniprot_comments({each["type"]})' if 'text' not in each: continue for each_type_cm in each['text']: if 'value' in each_type_cm: comment_db_dict.setdefault(each_type, []).append( each_type_cm['value'] ) return comment_db_dict def extract_anno_inf(decoded, uniprot_id, middle_file): anno_dfs = list() identity_map = {'uniprot_id': uniprot_id} if 'gene' in decoded: gene_db = decoded['gene'] gene_names = [each['name']['value'] for each in gene_db if 'name' in each] anno_dfs.append(idlist2df(gene_names, 'gene_names', identity_map=identity_map)) if 'protein' in decoded: protein_db = decoded['protein'] products = None if 'submittedName' in protein_db: products = [each['fullName']['value'] for each in protein_db['submittedName'] if 'value' in each['fullName']] elif 'recommendedName' in protein_db: products = [protein_db['recommendedName']['fullName']['value']] if products is not None: anno_dfs.append(idlist2df(products, 'protein_names', identity_map=identity_map)) if 'proteinExistence' in decoded: anno_dfs.append(idlist2df([decoded['proteinExistence']], 'protein_existence', identity_map=identity_map)) if 'comments' in decoded: comment_db = decoded['comments'] comment_db_dict = commentdb_anno(comment_db) if comment_db_dict: for key, val in comment_db_dict.items(): anno_dfs.append(idlist2df(val, key, identity_map=identity_map)) if 'dbReferences' in decoded: anno_db = decoded['dbReferences'] interpro_ids, interpro_names = refdb_anno(anno_db, 'InterPro') if interpro_ids: anno_dfs.append(idlist2df(interpro_ids, 'interpro_ids', identity_map=identity_map)) anno_dfs.append(idlist2df(interpro_names, 'interpro_names', identity_map=identity_map)) pfam_ids, pfam_names = refdb_anno(anno_db, 'Pfam') if pfam_ids: anno_dfs.append(idlist2df(pfam_ids, 'pfam_ids', identity_map=identity_map)) anno_dfs.append(idlist2df(pfam_names, 'pfam_names', identity_map=identity_map)) if 'features' in decoded: feature_db = decoded['features'] feature_db_dict = featuredb_anno(feature_db) if feature_db_dict: for key, val in feature_db_dict.items(): anno_dfs.append(idlist2df(val, key, identity_map=identity_map)) if 'references' in decoded: citation_db = decoded['references'] pubmed_ids = [each['citation']['dbReferences'][0]['id'] for each in citation_db if 'dbReferences' in each['citation']] if pubmed_ids: anno_dfs.append(idlist2df(pubmed_ids, 'pubmed_ids', identity_map=identity_map)) if anno_dfs: anno_dfs = [each for each in anno_dfs if each is not None] anno_df = reduce(pd.merge, anno_dfs) else: anno_df =
DataFrame([None], columns=['protein_existence'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: <NAME> <<EMAIL>> Date: Oct 2019 """ import numpy as np import pandas as pd from .pipe import Pipe from .. import precomp_funs as _pf class CHPPlant(Pipe): """ Construct a CHP plant. Can be added to the simulation environment by using the following method: .add_part(Pipe, name, volume=..., grid_points=..., outer_diameter=..., shell_thickness=...) Part creation parameters ------------------------ Pipe : class name This parameter can\'t be changed and needs to be passed exactly like this. name : string Pipe identifier as string. Needs to be unique. length : integer, float Thermal energy storage volume in [m^3]. grid_points : integer Number of grid points to discretize the pipe with. For part initialization the following additional parameters need to be passed: .init_part(insulation_thickness=..., insulation_lambda=...) Part initialization parameters ------------------------------ insulation_thickness : float in [m] insulation_lambda : float in [W/(m*K)] """ def __init__( self, name, master_cls, eta_el=0.32733, p2h_ratio=0.516796, max_slope_el=0.05, min_off_time=600, min_on_time=600, chp_on_at_start=False, **kwds ): self.constr_type = 'CHPPlant' # define construction type # since this part is a subclass of Pipe, initialize Pipe: super().__init__( name, master_cls, **kwds, constr_type=self.constr_type ) # check for default args, print messages and set them to kwds defaults = ( ('p2h_ratio', 0.516796), ('eta_el', 0.32733), ('max_slope_el', 0.05), ('min_off_time', 600), ('min_on_time', 600), ) base_dflt_str = ( ' ---> CHP plant {0}: No `{1}` given. ' 'Using default value of `{2:.3f}`.' ) if not self._models.suppress_printing: print( 'Setting defaults. Set a value to `None` to get more ' 'information on effect, type and range.' ) for dflt_nm, dflt_val in defaults: if dflt_val == locals()[dflt_nm]: if dflt_val is not None: # only if not None, else print err if not master_cls.suppress_printing: print( base_dflt_str.format(self.name, dflt_nm, dflt_val) ) kwds[dflt_nm] = dflt_val else: kwds[dflt_nm] = locals()[dflt_nm] # define arguments and errors: self._aae = { # arguments and errors 'power_electrical': ( 'CHP plant electrical power output in [W]. Type: int, float. ' 'Range: X > 0' ), 'p2h_ratio': ( 'CHP plant power to heat ratio. Type: float. ' 'Range: 0 < X < 1' ), 'eta_el': ( 'CHP plant electrical efficiency. Type: float. ' 'Range: 0 < X < 1' ), 'modulation_range': ( 'CHP plant electrical modulation range. Type: list, tuple.' ), 'max_slope_el': ( 'CHP plant maximum electrical ramp in %/s. Type: float. ' 'Range: 0 < X <= 1' ), 'min_off_time': ( 'CHP plant minimum consecutive off time in [s] before ' 'switching on is allowed. Type: int, float. Range: X >= 0.' ), 'min_on_time': ( 'CHP plant minimum consecutive on time in [s] before ' 'switching off is allowed. Plant will be kept at min. ' 'modulation if shutdown is requested until min. on time is ' 'reached. Emergency shutdown due to overtemperature will ' 'override this timer. Type: int, float. Range: X >= 0.' ), 'heat_spread': ( 'CHP plant heat spread, that is if a \'single\' cell, a ' 'cell \'range\' or \'all\' cells of the CHP plant are heated ' 'by the thermal power output. Type: str.' ), 'lower_limit': ( 'Lower limit for controller action on the modulation. ' 'Type: int, float. Range: X >= 0.' ), 'upper_limit': ( 'Upper limit for controller action on the modulation. ' 'Type: int, float. Range: X <= 1.' ), } # check for arguments: self._print_arg_errs(self.constr_type, name, self._aae, kwds) assert isinstance(kwds['power_electrical'], (int, float)) and ( kwds['power_electrical'] > 0.0 ), ( self._base_err + self._arg_err.format('power_electrical') + self._aae['power_electrical'] ) self.chp_power_el = kwds['power_electrical'] assert isinstance(kwds['p2h_ratio'], float) and ( 0.0 < kwds['p2h_ratio'] < 1.0 ), ( self._base_err + self._arg_err.format('p2h_ratio') + self._aae['p2h_ratio'] ) self.p2h_ratio = kwds['p2h_ratio'] # base p2h-ratio of the CHP plant is about .5, the exact ratio is # given by: self._p2h_base = 1 / _pf.chp_thermal_power(1.0) # since this is already included in the polynomials, the given p2h # and the base p2h must be combined into an additional factor: self._p2h_ratio = self._p2h_base / self.p2h_ratio # electrical efficiency: assert isinstance(kwds['eta_el'], float) and ( 0.0 < kwds['eta_el'] < 1.0 ), ( self._base_err + self._arg_err.format('eta_el') + self._aae['eta_el'] ) self.eta_el = kwds['eta_el'] # to get the correct gas consumption given by polynomials in dependency # of Pel, an additional conversion factor must be calculated. The base # eta el used in the polynomials is self._eta_el_base = 1 / _pf.chp_gas_power(1.0) self._eta_el_fac = self._eta_el_base / self.eta_el # get thermal efficiency from eta el self.eta_th = self.eta_el / self.p2h_ratio if 'eta_sum' not in kwds: eta_sum = 0.961 assert (self.eta_el + self.eta_th) <= eta_sum, ( self._base_err + self._arg_err.format('eta_el + eta_th') + 'The current total CHP plant efficiency is {0:.4f}, but must ' 'be <={1:.3f}. If a higher total efficiency ' 'shall be set, adjust the `eta_sum` parameter.'.format( self.eta_el + self.eta_th, eta_sum ) ) else: assert ( isinstance(kwds['eta_sum'], (int, float)) and kwds['eta_sum'] > 0 ) assert (self.eta_el + self.eta_th) < kwds['eta_sum'], ( self._base_err + self._arg_err.format('eta_el + eta_th') + 'The total CHP plant efficiency must be lower than `eta_sum`.' ) # save thermal and gas power of chp plant at max power output self.chp_power_th = self.chp_power_el / self.p2h_ratio self.chp_power_gas = self.chp_power_el / self.eta_el # get modulation range: err_mod = ( 'The valid CHP plant modulation range has to be given with ' '`modulation_range=(lower, upper)` where lower and upper ' 'represent the lower and upper modulation bounds, f.i. ' '`(.5, 1)` if the CHP modulation can be set between 50% and ' '100%. Values must be in the range of 0 < x <= 1.' ) assert isinstance(kwds['modulation_range'], (tuple, list)), err_mod self._mod_range = kwds['modulation_range'] self._mod_lower = float(self._mod_range[0]) self._mod_upper = float(self._mod_range[1]) assert isinstance(self._mod_lower, (int, float)) and ( 0 < self._mod_lower <= 1 ), err_mod assert ( isinstance(self._mod_upper, (int, float)) and (0 < self._mod_upper <= 1) and (self._mod_lower < self._mod_upper) ), err_mod assert isinstance(kwds['max_slope_el'], float) and ( 0 < kwds['max_slope_el'] <= 1 ), ( self._base_err + self._arg_err.format('max_slope_el') + self._aae['max_slope_el'] ) self._max_ramp_el = kwds['max_slope_el'] self._max_ramp_th = 0.025 # 2.5%/s, NOT USED assert isinstance(kwds['min_off_time'], (int, float)) and ( 0 < kwds['min_off_time'] ), ( self._base_err + self._arg_err.format('min_off_time') + self._aae['min_off_time'] ) self._min_off_time = kwds['min_off_time'] assert isinstance(kwds['min_on_time'], (int, float)) and ( 0 < kwds['min_on_time'] ), ( self._base_err + self._arg_err.format('min_on_time') + self._aae['min_on_time'] ) self._min_on_time = kwds['min_on_time'] self._T_chp_in_max = 75.0 self._T_chp_in_max_emrgncy = 110.0 # immediate shutdown if >temp. # single cell array for heat flow rate: self._dQ_heating = np.zeros(1, dtype=np.float64) # result array for heating: self.res_dQ = np.zeros((1, 1), dtype=np.float64) # same for electric power: self._Pel = np.zeros(1, dtype=np.float64) self.res_Pel = np.zeros(1, dtype=np.float64) # and gas consumption self._Pgas = np.zeros(1, dtype=np.float64) self.res_Pgas = np.zeros(1, dtype=np.float64) # checker if chp plant is on, in startup, value for time passed since # startup, value for time passed since shutoff, # time in [s] to account for remaining heat after a recent shutdown, # array for current modulation of CHP plant self._chp_on = False self._chp_state = np.zeros(1, dtype=np.bool) # vector to save states self._shutdown_in_progress = False self._startup_duration = 0.0 self._off_duration = 0.0 self._startup_at_time = 0 # has never been switched on. min off time -1 to enable switching on # at the start of the sim. self._shutdown_at_time = -self._min_off_time - 1.0 self._remaining_heat = 0.0 self._power_modulation = np.zeros(1, dtype=np.float64) # max. overtemperature time. dt is the consecutive time since first # overtemp., max_temp_exc_time the maximum time allowed before shutdown self._dt_time_temp_exc = 0.0 # TODO: print('das noch durch kwds:') self._max_temp_exc_time = 2 * 60 # startup and shutdown factors for thermal and el (only startup, since # only heat can remain...) power if not chp_on_at_start: # if CHP was switched off at the beginning self._startup_factor_el = 0.0 self._startup_factor_th = 0.0 self._startup_factor_gas = 0.0 self._chp_on = False # chp is NOT on self._startup_in_progress = True # chp was off, thus startup req. self._shutdown_duration = 99999.0 self._bin_pow_fac = 0 else: self._startup_factor_el = 1.0 self._startup_factor_th = 1.0 self._startup_factor_gas = 1.0 # has never been switched on. min on time to enable switching off # at the start of the sim. self._startup_at_time = -self._min_on_time # has been switched on # has never been switched off self._shutdown_at_time = self._startup_at_time - 1 self._chp_on = True # chp IS on # chp was ON, thus NO startup required! self._startup_in_progress = False self._shutdown_duration = 99999.0 self._bin_pow_fac = 1 self._shutdown_factor_th = 0.0 # save last thermal power value before shutdown for shutdown process self._last_dQ = np.zeros_like(self._dQ_heating) # percentage values, at which the CHP plant is considered as on/off self._chp_on_perc = 0.999 self._chp_off_perc = 0.01 # power factors for on/off switching for Pth (on and off) and Pel # (only on): self._pth_power_factor = 0.0 self._pel_power_factor = 0.0 # differential of temperature due to heating: self.dT_heat = np.zeros_like(self.T) # memoryview to the inlet cell for max. temperature checking self._T_chp_in = self.T[0:1] # if the part CAN BE controlled by the control algorithm: self.is_actuator = True self._actuator_CV = self._power_modulation[:] # set to be controlled self._actuator_CV_name = 'el_power_modulation' self._unit = '[%]' # set unit of control variable # if the part HAS TO BE controlled by the control algorithm: self.control_req = True # if the part needs a special control algorithm (for parts with 2 or # more controllable inlets/outlets/...): self.actuator_special = False # initialize bool if control specified: self.ctrl_defined = False # get heat spread err_str = ( self._base_err + self._arg_err.format('heat_spread') + 'The heat spread has to be given with `heat_spread=X`, where ' 'X is one of the following:\n' ' - \'all\': The rate of heat flow is spread equally on all ' 'cells.\n' ' - \'single\': One single cell is heated with the total rate ' 'of heat flow. This may cause the simulation stepsize to decrease ' 'to very small stepsizes if the thermal intertia is low compared ' 'to the rate of heat flow.\n' ' - \'range\': The rate of heat flow is spread equally on a ' 'range of consecutive cells.' ) assert kwds['heat_spread'] in ['all', 'single', 'range'], err_str self._heat_spread = kwds['heat_spread'] # get other parameters depending on heated cells: if self._heat_spread == 'all': # all cells heated equally # cell wise rate of heat flow multiplicator: self._heat_mult = 1 / self.num_gp # set slice to full array: self._heated_cells = slice(0, self.num_gp) self._num_heated_cells = self.num_gp elif self._heat_spread == 'single': # single cell heated # get slice index to heated cells: err_str = ( self._base_err + self._arg_err.format('heated_cells') + 'The heated cells have to be given with `heated_cells=X`. ' 'Since `heat_spread=\'single\'` is set, X has to be an ' 'integer index to the target cell for the heat flow in the ' 'range of `0 <= X <= ' + str(self.num_gp - 1) + '`.' ) assert ( 'heated_cells' in kwds and type(kwds['heated_cells']) == int and 0 <= kwds['heated_cells'] <= (self.num_gp - 1) ), err_str self._heated_cells = slice( kwds['heated_cells'], kwds['heated_cells'] + 1 ) self._num_heated_cells = 1 # cell wise rate of heat flow multiplicator: self._heat_mult = 1.0 else: # range of cells cells heated equally # get slice index to heated cells: err_str = ( self._base_err + self._arg_err.format('heated_cells') + 'The heated cells have to be given with `heated_cells=X`. ' 'Since `heat_spread=\'range\'` is set, X has to be a range of ' 'target cells for the heat flow, given as a list with ' '`X=[start, end]` where both values are integer values. ' 'Additionally `start < end` and `0 <= start/end <= ' + str(self.num_gp - 1) + '` must be true.\n' 'As always with indexing in python/numpy, the end-index is ' 'NOT included in the selection. Thus `X=[2, 4]` will heat ' 'cells 2 and 3, but NOT cell 4.' ) assert ( 'heated_cells' in kwds and isinstance(kwds['heated_cells'], (list, tuple)) and len(kwds['heated_cells']) == 2 and isinstance(kwds['heated_cells'][0], int) and isinstance(kwds['heated_cells'][1], int) ), err_str start = kwds['heated_cells'][0] end = kwds['heated_cells'][1] # assert correct indices: assert start < end and start >= 0 and end < self.num_gp, err_str self._heated_cells = slice(start, end) self._num_heated_cells = end - start # cell wise rate of heat flow multiplicator self._heat_mult = 1 / self._num_heated_cells # create view to dT for easy access to heated cells: self._dT_heated = self.dT_heat[self._heated_cells] # view to heated cell's m*cp value: self._mcp_heated = self._mcp[self._heated_cells] err_str = ( self._base_err + self._arg_err.format('lower_limit, upper_limit') + 'The part was set to be an actuator and need a control with ' '`no_control=False`, thus `lower_limit` and `upper_limit` ' 'in {0} have to be passed to clip the controller action on ' 'the actuator to the limits.\n' 'The limits have to be given as integer or float values with ' '`lower_limit < upper_limit`.' ).format(self._unit) self._lims = np.array( # set limits to array [kwds['lower_limit'], kwds['upper_limit']], dtype=np.float64 ) self._llim = self._lims[0] # also save to single floats self._ulim = self._lims[1] # also save to single floats assert 0 <= self._lims[0] < self._lims[1], ( err_str + ' For HeatedPipe limits are additionally restricted ' 'to `0 <= lower_limit < upper_limit`.' ) # precalc arrays needed for shutdown-startup-procedure: self._tsteps_startup = np.arange(100000) # check for up to 1e5 s # thermal power factor during startup self._startuptsteps = _pf.chp_startup_th(self._tsteps_startup) # find step at which full power is reached. idx is also in seconds! idx_on = np.argmin(np.abs(self._startuptsteps - self._chp_on_perc)) # cut arrays to that size: self._tsteps_startup = self._tsteps_startup[1 : idx_on + 1] self._startuptsteps = self._startuptsteps[1 : idx_on + 1] # IMPORTANT: THIS VARIABLE **MUST NOT BE INHERITED BY SUB-CLASSES**!! # If sub-classes are inherited from this part, this bool checker AND # the following variables MUST BE OVERWRITTEN! # ist the diff function fully njitted AND are all input-variables # stored in a container? self._diff_fully_njit = False # self._diff_njit = pipe1D_diff # handle to njitted diff function # input args are created in simenv _create_diff_inputs method def init_part(self, start_modulation=0, fluegas_flow=70 / 61.1, **kwds): """Initialize part. Do stuff which requires built part dict.""" # since this part is a subclass of Pipe, call init_part of Pipe: super().init_part(**kwds) # check for default args, print messages and set them to kwds if fluegas_flow == 70 / 61.1: if not self._models.suppress_printing: print( ' ---> CHP plant {0}: No `{1}` given. ' 'Using default value of `{2:.3f}Nm3/kWh`.'.format( self.name, 'fluegas_flow', fluegas_flow ) ) kwds['fluegas_flow'] = fluegas_flow # define arguments and errors: self._aaei = { # arguments and errors 'connect_fluegas_hex': ( 'Connect a flue gas heat exchanger directly to the CHP plant? ' 'Exhaust gas flow will be passed to the HEX directly, wihout ' 'need for pipes and pumps. Type: bool.' ), # 'fluegas_flow_at_pmax': ( # 'Flue gas flow at maximum power output (100% modulation) in ' # '[Nm3/h]. Type: int, float. Range: X > 0') 'fluegas_flow': ( 'Specific flue gas flow relative to the gas consumption in ' '[Nm3/kWh], f.i. 1.146 for 70Nm3 per 61.1kW gas consumption ' '(lower heating vlaue). Type: int, float. Range: X > 0' ), } # check for arguments: self._print_arg_errs(self.constr_type, self.name, self._aaei, kwds) # check modulation parameters assert isinstance(start_modulation, (int, float)) and ( 0 <= start_modulation <= 1 ), 'Start modulation muss zwischen 0 und 1 liegen.' self._actuator_CV[:] = start_modulation # initialize the actuator self._initialize_actuator(variable_name='_power_modulation', **kwds) # if CHP is feeding a fluegas HEX: assert isinstance(kwds['connect_fluegas_hex'], bool), ( self._base_err + self._arg_err.format('connect_fluegas_hex') + self._aaei['connect_fluegas_hex'] ) self._connect_fg_hex = kwds['connect_fluegas_hex'] if self._connect_fg_hex: err_hex2 = ( self._base_err + self._arg_err.format('fg_hex_name') + 'Part name of the fluegas heat exchanger to connect.' ) assert 'fg_hex_name' in kwds, err_hex2 err_hex3 = self._base_err + self._arg_err.format( 'fg_hex_name' ) + 'The fluegas heat exchanger with the name `{0}` was not ' 'found.'.format( kwds['fg_hex_name'] ) assert kwds['fg_hex_name'] in self._models.parts, err_hex3 self._fg_hex_name = kwds['fg_hex_name'] # save ref to part: self._fg_hex = self._models.parts[self._fg_hex_name] # save view to fg hex gas volume flow cell to save values to # (in Nm3/s): self._fg_hex_gdv = self._fg_hex._dm_io[slice(1, 2)] # set flow channel in this part to solved: self._models.parts[self._fg_hex_name]._solved_ports.extend( ['fluegas_in', 'fluegas_out'] ) else: # fill values with dummies if no hex connected self._fg_hex_gdv = np.zeros(1, dtype=np.float64) # get flue gas flow: assert isinstance(kwds['fluegas_flow'], (int, float)), ( self._base_err + self._arg_err.format('fluegas_flow') + self._aaei['fluegas_flow'] ) # specific flue gas flow in Nm3/kWh self.fluegas_flow_specific = kwds['fluegas_flow'] # save in Nm3/s # self._fg_dv_at_pmax = kwds['fluegas_flow'] / 3600 self._fg_dv_at_pmax = ( self.chp_power_gas * self.fluegas_flow_specific / 3.6e6 ) assert 0 <= self._lims[0] < self._lims[1], ( self._base_err + self._arg_err.format('lower_limit, upper_limit') + ' For a CHP plant limits are additionally restricted ' 'to `0 <= lower_limit < upper_limit`.' ) # get maximum gas power at modulation == 1: self._Pgas_max = ( _pf.chp_gas_power(1.0) * self.chp_power_el * self._eta_el_fac ) def _special_array_init(self, num_steps): self.res_dQ = np.zeros((num_steps + 1,) + self._dQ_heating.shape) self.res_Pel = np.zeros((num_steps + 1,) + self._Pel.shape) self.res_Pgas = np.zeros((num_steps + 1,) + self._Pgas.shape) self._chp_state = np.zeros((num_steps + 1,) + self._chp_state.shape) def __deprecated_special_free_memory( self, disk_store, part, array_length, hdf_idx, stepnum ): disk_store['store_tmp'].append( part + '/heating', pd.DataFrame(data=self.res_dQ[:array_length, ...], index=hdf_idx), ) disk_store['store_tmp'].append( part + '/Pel', pd.DataFrame(data=self.res_Pel[:array_length, ...], index=hdf_idx), ) disk_store['store_tmp'].append( part + '/Pgas', pd.DataFrame( data=self.res_Pgas[:array_length, ...], index=hdf_idx ), ) disk_store['store_tmp'].append( part + '/chp_state', pd.DataFrame( data=self._chp_state[:array_length, ...], index=hdf_idx ), ) # set current result to row 0 of array and clear the rest: self.res_dQ[0, ...] = self.res_dQ[stepnum[0], ...] self.res_dQ[1:, ...] = 0.0 self.res_Pel[0, ...] = self.res_Pel[stepnum[0], ...] self.res_Pel[1:, ...] = 0.0 self.res_Pgas[0, ...] = self.res_Pgas[stepnum[0], ...] self.res_Pgas[1:, ...] = 0.0 self._chp_state[0, ...] = self._chp_state[stepnum[0], ...] self._chp_state[1:, ...] = 0.0 def _special_free_memory( self, disk_store, part, array_length, hdf_idx, stepnum ): disk_store.append( part + '/heating',
pd.DataFrame(data=self.res_dQ[:array_length, ...], index=hdf_idx)
pandas.DataFrame
import pandas as pd from recalibrate.unarycalibration.singelsystematiccalibration import single_systematic_calibration from pprint import pprint from sklearn.metrics import brier_score_loss from xgboost import XGBClassifier # Illustrates calibration of a single set of model probabilities (user selecting a product) if __name__=='__main__': df_big =
pd.read_csv('https://raw.githubusercontent.com/microprediction/recalibrate/main/examples/default_data/default.csv')
pandas.read_csv
"""Step 1: Solving the problem in a deterministic manner.""" import cvxpy as cp import fledge import numpy as np import os import pandas as pd import plotly.express as px import plotly.graph_objects as go import shutil def main(): # Settings. scenario_name = 'course_project_step_1' results_path = os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'results', 'step_1') run_primal = True run_dual = True run_kkt = True # Clear / instantiate results directory. try: if os.path.isdir(results_path): shutil.rmtree(results_path) os.mkdir(results_path) except PermissionError: pass # STEP 1.0: SETUP MODELS. # Read scenario definition into FLEDGE. # - Data directory from this repository is first added as additional data path. fledge.config.config['paths']['additional_data'].append( os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'data') ) fledge.data_interface.recreate_database() # Obtain data & models. # Flexible loads. der_model_set = fledge.der_models.DERModelSet(scenario_name) # Thermal grid. thermal_grid_model = fledge.thermal_grid_models.ThermalGridModel(scenario_name) thermal_grid_model.cooling_plant_efficiency = 10.0 # Change model parameter to incentivize use of thermal grid. thermal_power_flow_solution_reference = fledge.thermal_grid_models.ThermalPowerFlowSolution(thermal_grid_model) linear_thermal_grid_model = ( fledge.thermal_grid_models.LinearThermalGridModel(thermal_grid_model, thermal_power_flow_solution_reference) ) # Define arbitrary operation limits. node_head_vector_minimum = 1.5 * thermal_power_flow_solution_reference.node_head_vector branch_flow_vector_maximum = 10.0 * thermal_power_flow_solution_reference.branch_flow_vector # Electric grid. electric_grid_model = fledge.electric_grid_models.ElectricGridModelDefault(scenario_name) power_flow_solution_reference = fledge.electric_grid_models.PowerFlowSolutionFixedPoint(electric_grid_model) linear_electric_grid_model = ( fledge.electric_grid_models.LinearElectricGridModelGlobal(electric_grid_model, power_flow_solution_reference) ) # Define arbitrary operation limits. node_voltage_magnitude_vector_minimum = 0.5 * np.abs(electric_grid_model.node_voltage_vector_reference) node_voltage_magnitude_vector_maximum = 1.5 * np.abs(electric_grid_model.node_voltage_vector_reference) branch_power_magnitude_vector_maximum = 10.0 * electric_grid_model.branch_power_vector_magnitude_reference # Energy price. price_data = fledge.data_interface.PriceData(scenario_name) # Obtain time step index shorthands. scenario_data = fledge.data_interface.ScenarioData(scenario_name) timesteps = scenario_data.timesteps timestep_interval_hours = (timesteps[1] - timesteps[0]) / pd.Timedelta('1h') # Invert sign of losses. # - Power values of loads are negative by convention. Hence, sign of losses should be negative for power balance. # Thermal grid. linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= -1.0 linear_thermal_grid_model.thermal_power_flow_solution.pump_power *= -1.0 # Electric grid. linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= -1.0 linear_electric_grid_model.power_flow_solution.loss *= -1.0 # Apply base power / voltage scaling. # - Scale values to avoid numerical issues. base_power = 1e6 # in MW. base_voltage = 1e3 # in kV. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): der_model.mapping_active_power_by_output *= 1 / base_power der_model.mapping_reactive_power_by_output *= 1 / base_power der_model.mapping_thermal_power_by_output *= 1 / base_power # Thermal grid. linear_thermal_grid_model.sensitivity_node_head_by_der_power *= base_power linear_thermal_grid_model.sensitivity_branch_flow_by_der_power *= base_power linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= 1 # Electric grid. linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active *= base_power / base_voltage linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive *= base_power / base_voltage linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= 1 linear_electric_grid_model.power_flow_solution.der_power_vector *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_1 *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_2 *= 1 / base_power linear_electric_grid_model.power_flow_solution.loss *= 1 / base_power linear_electric_grid_model.power_flow_solution.node_voltage_vector *= 1 / base_voltage # Limits. node_voltage_magnitude_vector_minimum /= base_voltage node_voltage_magnitude_vector_maximum /= base_voltage branch_power_magnitude_vector_maximum /= base_power # Energy price. # - Conversion of price values from S$/kWh to S$/p.u. for convenience. Currency S$ is SGD. # - Power values of loads are negative by convention. Hence, sign of price values is inverted here. price_data.price_timeseries *= -1.0 * base_power / 1e3 * timestep_interval_hours # STEP 1.1: SOLVE PRIMAL PROBLEM. if run_primal or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. primal_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space vectors. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. primal_problem.state_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.control_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.output_vector = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: primal_problem.state_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].states) )) ) primal_problem.control_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].controls) )) ) primal_problem.output_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) # Flexible loads: Power vectors. primal_problem.der_thermal_power_vector = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) primal_problem.der_active_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) primal_problem.der_reactive_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Source variables. primal_problem.source_thermal_power = cp.Variable((len(timesteps), 1)) primal_problem.source_active_power = cp.Variable((len(timesteps), 1)) primal_problem.source_reactive_power = cp.Variable((len(timesteps), 1)) # Define constraints. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): # Initial state. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][0, :] == der_model.state_vector_initial.values ) # State equation. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][1:, :] == cp.transpose( der_model.state_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name][:-1, :]) + der_model.control_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name][:-1, :]) + der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.iloc[:-1, :].values) ) ) # Output equation. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] == cp.transpose( der_model.state_output_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name]) + der_model.control_output_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name]) + der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) ) # Output limits. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] >= der_model.output_minimum_timeseries.values ) primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] <= der_model.output_maximum_timeseries.replace(np.inf, 1e3).values ) # Power mapping. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) primal_problem.constraints.append( primal_problem.der_active_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_active_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_reactive_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_reactive_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_thermal_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_thermal_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) # Thermal grid. # Node head limit. primal_problem.constraints.append( np.array([node_head_vector_minimum.ravel()]) <= cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Branch flow limit. primal_problem.constraints.append( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) <= np.array([branch_flow_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( thermal_grid_model.cooling_plant_efficiency ** -1 * ( primal_problem.source_thermal_power + cp.sum(-1.0 * ( primal_problem.der_thermal_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. ) == cp.transpose( linear_thermal_grid_model.sensitivity_pump_power_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Electric grid. # Voltage limits. primal_problem.constraints.append( np.array([node_voltage_magnitude_vector_minimum.ravel()]) <= np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) # Branch flow limits. primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( primal_problem.source_active_power + cp.sum(-1.0 * ( primal_problem.der_active_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.real(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( primal_problem.source_reactive_power + cp.sum(-1.0 * ( primal_problem.der_reactive_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.imag(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) # Define objective. primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_thermal_power * thermal_grid_model.cooling_plant_efficiency ** -1 ) primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_active_power ) if run_primal: # Solve problem. fledge.utils.log_time('primal solution') primal_problem.solve() fledge.utils.log_time('primal solution') # Obtain results. # Flexible loads. primal_state_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.states) primal_control_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.controls) primal_output_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) for der_name in der_model_set.flexible_der_names: primal_state_vector.loc[:, (der_name, slice(None))] = ( primal_problem.state_vector[der_name].value ) primal_control_vector.loc[:, (der_name, slice(None))] = ( primal_problem.control_vector[der_name].value ) primal_output_vector.loc[:, (der_name, slice(None))] = ( primal_problem.output_vector[der_name].value ) # Thermal grid. primal_der_thermal_power_vector = ( pd.DataFrame( primal_problem.der_thermal_power_vector.value, columns=linear_thermal_grid_model.thermal_grid_model.ders, index=timesteps ) ) primal_source_thermal_power = ( pd.DataFrame( primal_problem.source_thermal_power.value, columns=['total'], index=timesteps ) ) # Electric grid. primal_der_active_power_vector = ( pd.DataFrame( primal_problem.der_active_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_der_reactive_power_vector = ( pd.DataFrame( primal_problem.der_reactive_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_source_active_power = ( pd.DataFrame( primal_problem.source_active_power.value, columns=['total'], index=timesteps ) ) primal_source_reactive_power = ( pd.DataFrame( primal_problem.source_reactive_power.value, columns=['total'], index=timesteps ) ) # Additional results. primal_node_head_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.nodes ) ) primal_branch_flow_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.branches ) ) primal_node_voltage_vector = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.nodes ) ) primal_branch_power_vector_1 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_branch_power_vector_2 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_node_head_vector_per_unit = ( primal_node_head_vector / thermal_grid_model.node_head_vector_reference ) primal_branch_flow_vector_per_unit = ( primal_branch_flow_vector / thermal_grid_model.branch_flow_vector_reference ) primal_node_voltage_vector_per_unit = ( primal_node_voltage_vector * base_voltage / np.abs(electric_grid_model.node_voltage_vector_reference) ) primal_branch_power_vector_1_per_unit = ( primal_branch_power_vector_1 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) primal_branch_power_vector_2_per_unit = ( primal_branch_power_vector_2 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) # Store results. primal_state_vector.to_csv(os.path.join(results_path, 'primal_state_vector.csv')) primal_control_vector.to_csv(os.path.join(results_path, 'primal_control_vector.csv')) primal_output_vector.to_csv(os.path.join(results_path, 'primal_output_vector.csv')) primal_der_thermal_power_vector.to_csv(os.path.join(results_path, 'primal_der_thermal_power_vector.csv')) primal_source_thermal_power.to_csv(os.path.join(results_path, 'primal_source_thermal_power.csv')) primal_der_active_power_vector.to_csv(os.path.join(results_path, 'primal_der_active_power_vector.csv')) primal_der_reactive_power_vector.to_csv(os.path.join(results_path, 'primal_der_reactive_power_vector.csv')) primal_source_active_power.to_csv(os.path.join(results_path, 'primal_source_active_power.csv')) primal_source_reactive_power.to_csv(os.path.join(results_path, 'primal_source_reactive_power.csv')) primal_node_head_vector.to_csv(os.path.join(results_path, 'primal_node_head_vector.csv')) primal_branch_flow_vector.to_csv(os.path.join(results_path, 'primal_branch_flow_vector.csv')) primal_node_voltage_vector.to_csv(os.path.join(results_path, 'primal_node_voltage_vector.csv')) primal_branch_power_vector_1.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1.csv')) primal_branch_power_vector_2.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2.csv')) primal_node_head_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_head_vector_per_unit.csv')) primal_branch_flow_vector_per_unit.to_csv(os.path.join(results_path, 'primal_branch_flow_vector_per_unit.csv')) primal_node_voltage_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_voltage_vector_per_unit.csv')) primal_branch_power_vector_1_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1_per_unit.csv')) primal_branch_power_vector_2_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2_per_unit.csv')) # Obtain variable count / dimensions. primal_variable_count = ( sum(np.multiply(*primal_problem.state_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.control_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.output_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + np.multiply(*primal_problem.der_thermal_power_vector.shape) + np.multiply(*primal_problem.der_active_power_vector.shape) + np.multiply(*primal_problem.der_reactive_power_vector.shape) + np.multiply(*primal_problem.source_thermal_power.shape) + np.multiply(*primal_problem.source_active_power.shape) + np.multiply(*primal_problem.source_reactive_power.shape) ) print(f"primal_variable_count = {primal_variable_count}") # Print objective. primal_objective = pd.Series(primal_problem.objective.value, index=['primal_objective']) primal_objective.to_csv(os.path.join(results_path, 'primal_objective.csv')) print(f"primal_objective = {primal_objective.values}") # STEP 1.2: SOLVE DUAL PROBLEM. if run_dual or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. dual_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space equations. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. dual_problem.lambda_initial_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_output_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_minimum = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_maximum = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: dual_problem.lambda_initial_state_equation[der_name] = ( cp.Variable(( 1, len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_state_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps[:-1]), len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_output_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) dual_problem.mu_output_minimum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) dual_problem.mu_output_maximum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) # Flexible loads: Power equations. dual_problem.lambda_thermal_power_equation = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) dual_problem.lambda_active_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) dual_problem.lambda_reactive_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Thermal grid. dual_problem.mu_node_head_minium = ( cp.Variable((len(timesteps), len(thermal_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_flow_maximum = ( cp.Variable((len(timesteps), len(thermal_grid_model.branches)), nonneg=True) ) dual_problem.lambda_pump_power_equation = ( cp.Variable((len(timesteps), 1)) ) # Electric grid. dual_problem.mu_node_voltage_magnitude_minimum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_node_voltage_magnitude_maximum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_1 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_2 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.lambda_loss_active_equation = cp.Variable((len(timesteps), 1)) dual_problem.lambda_loss_reactive_equation = cp.Variable((len(timesteps), 1)) # Define constraints. for der_model in der_model_set.flexible_der_models.values(): # Differential with respect to state vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_initial_state_equation[der_model.der_name] - ( dual_problem.lambda_state_equation[der_model.der_name][:1, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][0:-1, :] - ( dual_problem.lambda_state_equation[der_model.der_name][1:, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][1:-1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][-1:, :] - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.state_output_matrix.values ) ) ) # Differential with respect to control vector. dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_state_equation[der_model.der_name] @ der_model.control_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:-1, :] @ der_model.control_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.control_output_matrix.values ) ) ) # Differential with respect to output vector. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_output_equation[der_model.der_name] - dual_problem.mu_output_minimum[der_model.der_name] + dual_problem.mu_output_maximum[der_model.der_name] - ( dual_problem.lambda_thermal_power_equation[:, [der_index]] @ der_model.mapping_thermal_power_by_output.values ) - ( dual_problem.lambda_active_power_equation[:, [der_index]] @ der_model.mapping_active_power_by_output.values ) - ( dual_problem.lambda_reactive_power_equation[:, [der_index]] @ der_model.mapping_reactive_power_by_output.values ) ) ) # Differential with respect to thermal power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_thermal_power_equation - ( dual_problem.mu_node_head_minium @ linear_thermal_grid_model.sensitivity_node_head_by_der_power ) + ( dual_problem.mu_branch_flow_maximum @ linear_thermal_grid_model.sensitivity_branch_flow_by_der_power ) - ( dual_problem.lambda_pump_power_equation @ ( thermal_grid_model.cooling_plant_efficiency ** -1 * np.ones(linear_thermal_grid_model.sensitivity_pump_power_by_der_power.shape) + linear_thermal_grid_model.sensitivity_pump_power_by_der_power ) ) ) ) # Differential with respect to active power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_active_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active ) - ( dual_problem.lambda_loss_active_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_active_by_der_power_active.shape) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_active ) ) - ( dual_problem.lambda_loss_reactive_equation @ linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active ) ) ) # Differential with respect to reactive power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_reactive_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive ) - ( dual_problem.lambda_loss_active_equation @ linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive ) - ( dual_problem.lambda_loss_reactive_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive.shape) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive ) ) ) ) # Differential with respect to thermal source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_pump_power_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_loss_active_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_loss_reactive_equation ) ) if run_dual: # Define objective. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_initial_state_equation[der_model.der_name], np.array([der_model.state_vector_initial.values]) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_state_equation[der_model.der_name], cp.transpose( der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.values[:-1, :]) ) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_output_equation[der_model.der_name], cp.transpose( der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_output_minimum[der_model.der_name], der_model.output_minimum_timeseries.values )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.mu_output_maximum[der_model.der_name], der_model.output_maximum_timeseries.replace(np.inf, 1e3).values )) ) # Thermal grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_head_minium, ( np.array([node_head_vector_minimum]) # - node_head_vector_reference # + ( # linear_thermal_grid_model.sensitivity_node_head_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_flow_maximum, ( # - branch_flow_vector_reference # + ( # linear_thermal_grid_model.sensitivity_branch_flow_by_der_power # @ der_thermal_power_vector_reference # ) - 1.0 * np.array([branch_flow_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_pump_power_equation, ( 0.0 # - pump_power_reference # + ( # linear_thermal_grid_model.sensitivity_pump_power_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) # Electric grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_minimum, ( np.array([node_voltage_magnitude_vector_minimum]) - np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_maximum, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([node_voltage_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_1, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_2, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_active_equation, ( -1.0 * np.array([np.real(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_reactive_equation, ( -1.0 * np.array([np.imag(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) # Invert sign of objective for maximisation. dual_problem.objective *= -1.0 # Solve problem. fledge.utils.log_time('dual solution') dual_problem.solve() fledge.utils.log_time('dual solution') # Obtain results. # Flexible loads. dual_lambda_initial_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:1], columns=der_model_set.states) dual_lambda_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:-1], columns=der_model_set.states) dual_lambda_output_equation = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) dual_mu_output_minimum = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) dual_mu_output_maximum = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) for der_name in der_model_set.flexible_der_names: dual_lambda_initial_state_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_initial_state_equation[der_name].value ) dual_lambda_state_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_state_equation[der_name].value ) dual_lambda_output_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_output_equation[der_name].value ) dual_mu_output_minimum.loc[:, (der_name, slice(None))] = ( dual_problem.mu_output_minimum[der_name].value ) dual_mu_output_maximum.loc[:, (der_name, slice(None))] = ( dual_problem.mu_output_maximum[der_name].value ) # Flexible loads: Power equations. dual_lambda_thermal_power_equation = ( pd.DataFrame( dual_problem.lambda_thermal_power_equation.value, index=timesteps, columns=thermal_grid_model.ders ) ) dual_lambda_active_power_equation = ( pd.DataFrame( dual_problem.lambda_active_power_equation.value, index=timesteps, columns=electric_grid_model.ders ) ) dual_lambda_reactive_power_equation = ( pd.DataFrame( dual_problem.lambda_reactive_power_equation.value, index=timesteps, columns=electric_grid_model.ders ) ) # Thermal grid. dual_mu_node_head_minium = ( pd.DataFrame( dual_problem.mu_node_head_minium.value, index=timesteps, columns=thermal_grid_model.nodes ) ) dual_mu_branch_flow_maximum = ( pd.DataFrame( dual_problem.mu_branch_flow_maximum.value, index=timesteps, columns=thermal_grid_model.branches ) ) dual_lambda_pump_power_equation = ( pd.DataFrame( dual_problem.lambda_pump_power_equation.value, index=timesteps, columns=['total'] ) ) # Electric grid. dual_mu_node_voltage_magnitude_minimum = ( pd.DataFrame( dual_problem.mu_node_voltage_magnitude_minimum.value, index=timesteps, columns=electric_grid_model.nodes ) ) dual_mu_node_voltage_magnitude_maximum = ( pd.DataFrame( dual_problem.mu_node_voltage_magnitude_maximum.value, index=timesteps, columns=electric_grid_model.nodes ) ) dual_mu_branch_power_magnitude_maximum_1 = ( pd.DataFrame( dual_problem.mu_branch_power_magnitude_maximum_1.value, index=timesteps, columns=electric_grid_model.branches ) ) dual_mu_branch_power_magnitude_maximum_2 = ( pd.DataFrame( dual_problem.mu_branch_power_magnitude_maximum_2.value, index=timesteps, columns=electric_grid_model.branches ) ) dual_lambda_loss_active_equation = ( pd.DataFrame( dual_problem.lambda_loss_active_equation.value, index=timesteps, columns=['total'] ) ) dual_lambda_loss_reactive_equation = ( pd.DataFrame( dual_problem.lambda_loss_reactive_equation.value, index=timesteps, columns=['total'] ) ) # Store results. dual_lambda_initial_state_equation.to_csv(os.path.join(results_path, 'dual_lambda_initial_state_equation.csv')) dual_lambda_state_equation.to_csv(os.path.join(results_path, 'dual_lambda_state_equation.csv')) dual_lambda_output_equation.to_csv(os.path.join(results_path, 'dual_lambda_output_equation.csv')) dual_mu_output_minimum.to_csv(os.path.join(results_path, 'dual_mu_output_minimum.csv')) dual_mu_output_maximum.to_csv(os.path.join(results_path, 'dual_mu_output_maximum.csv')) dual_lambda_thermal_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_thermal_power_equation.csv')) dual_lambda_active_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_active_power_equation.csv')) dual_lambda_reactive_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_reactive_power_equation.csv')) dual_mu_node_head_minium.to_csv(os.path.join(results_path, 'dual_mu_node_head_minium.csv')) dual_mu_branch_flow_maximum.to_csv(os.path.join(results_path, 'dual_mu_branch_flow_maximum.csv')) dual_lambda_pump_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_pump_power_equation.csv')) dual_mu_node_voltage_magnitude_minimum.to_csv(os.path.join(results_path, 'dual_mu_node_voltage_magnitude_minimum.csv')) dual_mu_node_voltage_magnitude_maximum.to_csv(os.path.join(results_path, 'dual_mu_node_voltage_magnitude_maximum.csv')) dual_mu_branch_power_magnitude_maximum_1.to_csv(os.path.join(results_path, 'dual_mu_branch_power_magnitude_maximum_1.csv')) dual_mu_branch_power_magnitude_maximum_2.to_csv(os.path.join(results_path, 'dual_mu_branch_power_magnitude_maximum_2.csv')) dual_lambda_loss_active_equation.to_csv(os.path.join(results_path, 'dual_lambda_loss_active_equation.csv')) dual_lambda_loss_reactive_equation.to_csv(os.path.join(results_path, 'dual_lambda_loss_reactive_equation.csv')) # Obtain variable count / dimensions. dual_variable_count = ( sum(np.multiply(*dual_problem.lambda_initial_state_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.lambda_state_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.lambda_output_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.mu_output_minimum[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.mu_output_maximum[der_name].shape) for der_name in der_model_set.flexible_der_names) + np.multiply(*dual_problem.lambda_thermal_power_equation.shape) + np.multiply(*dual_problem.lambda_active_power_equation.shape) + np.multiply(*dual_problem.lambda_reactive_power_equation.shape) + np.multiply(*dual_problem.mu_node_head_minium.shape) + np.multiply(*dual_problem.mu_branch_flow_maximum.shape) + np.multiply(*dual_problem.lambda_pump_power_equation.shape) + np.multiply(*dual_problem.mu_node_voltage_magnitude_minimum.shape) + np.multiply(*dual_problem.mu_node_voltage_magnitude_maximum.shape) + np.multiply(*dual_problem.mu_branch_power_magnitude_maximum_1.shape) + np.multiply(*dual_problem.mu_branch_power_magnitude_maximum_2.shape) + np.multiply(*dual_problem.lambda_loss_active_equation.shape) + np.multiply(*dual_problem.lambda_loss_reactive_equation.shape) ) print(f"dual_variable_count = {dual_variable_count}") # Print objective. dual_objective = pd.Series(-1.0 * dual_problem.objective.value, index=['dual_objective']) dual_objective.to_csv(os.path.join(results_path, 'dual_objective.csv')) print(f"dual_objective = {dual_objective.values}") # STEP 1.3: SOLVE KKT CONDITIONS. if run_kkt: # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. kkt_problem = fledge.utils.OptimizationProblem() # Obtain primal and dual variables. # - Since primal and dual variables are part of the KKT conditions, the previous definitions are recycled. kkt_problem.state_vector = primal_problem.state_vector kkt_problem.control_vector = primal_problem.control_vector kkt_problem.output_vector = primal_problem.output_vector kkt_problem.der_thermal_power_vector = primal_problem.der_thermal_power_vector kkt_problem.der_active_power_vector = primal_problem.der_active_power_vector kkt_problem.der_reactive_power_vector = primal_problem.der_reactive_power_vector kkt_problem.source_thermal_power = primal_problem.source_thermal_power kkt_problem.source_active_power = primal_problem.source_active_power kkt_problem.source_reactive_power = primal_problem.source_reactive_power kkt_problem.lambda_initial_state_equation = dual_problem.lambda_initial_state_equation kkt_problem.lambda_state_equation = dual_problem.lambda_state_equation kkt_problem.lambda_output_equation = dual_problem.lambda_output_equation kkt_problem.mu_output_minimum = dual_problem.mu_output_minimum kkt_problem.mu_output_maximum = dual_problem.mu_output_maximum kkt_problem.lambda_thermal_power_equation = dual_problem.lambda_thermal_power_equation kkt_problem.lambda_active_power_equation = dual_problem.lambda_active_power_equation kkt_problem.lambda_reactive_power_equation = dual_problem.lambda_reactive_power_equation kkt_problem.mu_node_head_minium = dual_problem.mu_node_head_minium kkt_problem.mu_branch_flow_maximum = dual_problem.mu_branch_flow_maximum kkt_problem.lambda_pump_power_equation = dual_problem.lambda_pump_power_equation kkt_problem.mu_node_voltage_magnitude_minimum = dual_problem.mu_node_voltage_magnitude_minimum kkt_problem.mu_node_voltage_magnitude_maximum = dual_problem.mu_node_voltage_magnitude_maximum kkt_problem.mu_branch_power_magnitude_maximum_1 = dual_problem.mu_branch_power_magnitude_maximum_1 kkt_problem.mu_branch_power_magnitude_maximum_2 = dual_problem.mu_branch_power_magnitude_maximum_2 kkt_problem.lambda_loss_active_equation = dual_problem.lambda_loss_active_equation kkt_problem.lambda_loss_reactive_equation = dual_problem.lambda_loss_reactive_equation # Obtain primal and dual constraints. # - Since primal and dual constraints are part of the KKT conditions, the previous definitions are recycled. kkt_problem.constraints.extend(primal_problem.constraints) kkt_problem.constraints.extend(dual_problem.constraints) # Obtain primal and dual problem objective. # - For testing / debugging only, since the KKT problem does not technically have any objective. # kkt_problem.objective = primal_problem.objective # kkt_problem.objective = dual_problem.objective # Define complementarity binary variables. kkt_problem.psi_output_minimum = dict.fromkeys(der_model_set.flexible_der_names) kkt_problem.psi_output_maximum = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: kkt_problem.psi_output_minimum[der_name] = ( cp.Variable(kkt_problem.mu_output_minimum[der_name].shape, boolean=True) ) kkt_problem.psi_output_maximum[der_name] = ( cp.Variable(kkt_problem.mu_output_maximum[der_name].shape, boolean=True) ) kkt_problem.psi_node_head_minium = cp.Variable(kkt_problem.mu_node_head_minium.shape, boolean=True) kkt_problem.psi_branch_flow_maximum = cp.Variable(kkt_problem.mu_branch_flow_maximum.shape, boolean=True) kkt_problem.psi_node_voltage_magnitude_minimum = cp.Variable(kkt_problem.mu_node_voltage_magnitude_minimum.shape, boolean=True) kkt_problem.psi_node_voltage_magnitude_maximum = cp.Variable(kkt_problem.mu_node_voltage_magnitude_maximum.shape, boolean=True) kkt_problem.psi_branch_power_magnitude_maximum_1 = cp.Variable(kkt_problem.mu_branch_power_magnitude_maximum_1.shape, boolean=True) kkt_problem.psi_branch_power_magnitude_maximum_2 = cp.Variable(kkt_problem.mu_branch_power_magnitude_maximum_2.shape, boolean=True) # Define complementarity big M parameters. # - Big M values are chosen based on expected order of magnitude of constraints from primal / dual solution. kkt_problem.big_m_output_minimum = cp.Parameter(value=2e4) kkt_problem.big_m_output_maximum = cp.Parameter(value=2e4) kkt_problem.big_m_node_head_minium = cp.Parameter(value=1e2) kkt_problem.big_m_branch_flow_maximum = cp.Parameter(value=1e3) kkt_problem.big_m_node_voltage_magnitude_minimum = cp.Parameter(value=1e2) kkt_problem.big_m_node_voltage_magnitude_maximum = cp.Parameter(value=1e2) kkt_problem.big_m_branch_power_magnitude_maximum_1 = cp.Parameter(value=1e3) kkt_problem.big_m_branch_power_magnitude_maximum_2 = cp.Parameter(value=1e3) # Define complementarity constraints. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): # Output limits. kkt_problem.constraints.append( -1.0 * ( der_model.output_minimum_timeseries.values - kkt_problem.output_vector[der_model.der_name] ) <= kkt_problem.psi_output_minimum[der_model.der_name] * kkt_problem.big_m_output_minimum ) kkt_problem.constraints.append( kkt_problem.mu_output_minimum[der_model.der_name] <= (1 - kkt_problem.psi_output_minimum[der_model.der_name]) * kkt_problem.big_m_output_minimum ) kkt_problem.constraints.append( -1.0 * ( kkt_problem.output_vector[der_model.der_name] - der_model.output_maximum_timeseries.replace(np.inf, 1e4).values ) <= kkt_problem.psi_output_maximum[der_model.der_name] * kkt_problem.big_m_output_maximum ) kkt_problem.constraints.append( kkt_problem.mu_output_maximum[der_model.der_name] <= (1 - kkt_problem.psi_output_maximum[der_model.der_name]) * kkt_problem.big_m_output_maximum ) # Thermal grid. # Node head limit. kkt_problem.constraints.append( -1.0 * ( np.array([node_head_vector_minimum.ravel()]) - cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(kkt_problem.der_thermal_power_vector) ) ) <= kkt_problem.psi_node_head_minium * kkt_problem.big_m_node_head_minium ) kkt_problem.constraints.append( kkt_problem.mu_node_head_minium <= (1 - kkt_problem.psi_node_head_minium) * kkt_problem.big_m_node_head_minium ) # Branch flow limit. kkt_problem.constraints.append( -1.0 * ( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(kkt_problem.der_thermal_power_vector) ) - np.array([branch_flow_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_flow_maximum * kkt_problem.big_m_branch_flow_maximum ) kkt_problem.constraints.append( kkt_problem.mu_branch_flow_maximum <= (1 - kkt_problem.psi_branch_flow_maximum) * kkt_problem.big_m_branch_flow_maximum ) # Voltage limits. kkt_problem.constraints.append( -1.0 * ( np.array([node_voltage_magnitude_vector_minimum.ravel()]) - np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) - cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) <= kkt_problem.psi_node_voltage_magnitude_minimum * kkt_problem.big_m_node_voltage_magnitude_minimum ) kkt_problem.constraints.append( kkt_problem.mu_node_voltage_magnitude_minimum <= (1 - kkt_problem.psi_node_voltage_magnitude_minimum) * kkt_problem.big_m_node_voltage_magnitude_minimum ) kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_node_voltage_magnitude_maximum * kkt_problem.big_m_node_voltage_magnitude_maximum ) kkt_problem.constraints.append( kkt_problem.mu_node_voltage_magnitude_maximum <= (1 - kkt_problem.psi_node_voltage_magnitude_maximum) * kkt_problem.big_m_node_voltage_magnitude_maximum ) # Branch flow limits. kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([branch_power_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_power_magnitude_maximum_1 * kkt_problem.big_m_branch_power_magnitude_maximum_1 ) kkt_problem.constraints.append( kkt_problem.mu_branch_power_magnitude_maximum_1 <= (1 - kkt_problem.psi_branch_power_magnitude_maximum_1) * kkt_problem.big_m_branch_power_magnitude_maximum_1 ) kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([branch_power_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_power_magnitude_maximum_2 * kkt_problem.big_m_branch_power_magnitude_maximum_2 ) kkt_problem.constraints.append( kkt_problem.mu_branch_power_magnitude_maximum_2 <= (1 - kkt_problem.psi_branch_power_magnitude_maximum_2) * kkt_problem.big_m_branch_power_magnitude_maximum_2 ) # Solve problem. fledge.utils.log_time('KKT solution') kkt_problem.solve() fledge.utils.log_time('KKT solution') # Obtain results. # Flexible loads. kkt_state_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.states) kkt_control_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.controls) kkt_output_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) kkt_lambda_initial_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:1], columns=der_model_set.states) kkt_lambda_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:-1], columns=der_model_set.states) kkt_lambda_output_equation = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) kkt_mu_output_minimum =
pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs)
pandas.DataFrame
import numpy as np import pandas as pd import math from elopackage.elo import Elo from elopackage.player import Player class ResultsTable: def __init__(self, df): """ df - pd DataFrame of tournamenent results """ # self.df = df.sort_values(by='match_date_dt', ascending=True) self.df = df.copy(deep=True) self.elo = Elo('test') self.player_dict = {2000000: Player('dummy', 2000000)} self.dummy_tsid = 2000001 self.cold_start_threshold = 0 def add_players_to_dict(self, row, df_results, kfactor=None, sd=None): """ Adds all players from a row in the results table to player_dict, unless they already exist in player_dict Also, assigns temp tsid to players with missing tsid. This is a unique value starting at 2,000,001 :param row: pd.Series - row of results df :param df_results: pd DataFrame - results df :param kfactor: float - kfactor to assign to player object :param sd: float - sd to assign to player object :return: None """ row = row._asdict() if row['Doubles']: col_headings = [t + p + "_tsid" for t in ['winning_team_', 'losing_team_'] for p in ['p1', 'p2']] else: col_headings = [t + p + "_tsid" for t in ['winning_team_', 'losing_team_'] for p in ['p1']] tsids = [row[c] for c in col_headings] names = [row[c.split('_tsid')[0]] for c in col_headings] for ch, t, n in zip(col_headings, tsids, names): if np.isnan(t): self.player_dict[self.dummy_tsid] = Player(n, self.dummy_tsid, kfactor=kfactor, sd=sd) df_results.at[row['Index'], ch] = self.dummy_tsid self.dummy_tsid += 1 else: if t not in self.player_dict: self.player_dict[t] = Player(n, t, kfactor=kfactor, sd=sd) def get_unique_players_in_category(self, category): """ category - list (str) - tournament category e.g MS - <NAME> """ self.df = self.df[self.df['event_title'].isin(category)] df_unique = pd.DataFrame() for v in ['losing_team_p1', 'winning_team_p1']: # Get unique players available from 2019 season df_tmp = self.df[[f'{v}_tsid', v]].copy(deep=True) df_tmp.drop_duplicates(subset=[f'{v}_tsid'], inplace=True) df_tmp.columns = ['tsid', 'name'] df_unique =
pd.concat([df_unique, df_tmp])
pandas.concat
import os, sys, platform, json, operator, multiprocessing, io, random, itertools, warnings, h5py, \ statistics, inspect, requests, validators, math, time, pprint, datetime, importlib, fsspec, scipy # Python utils. from textwrap import dedent # External utils. from tqdm import tqdm #progress bar. from natsort import natsorted #file sorting. import appdirs #os-agonistic folder. # ORM. from peewee import Model, CharField, IntegerField, BlobField, BooleanField, DateTimeField, ForeignKeyField from playhouse.sqlite_ext import SqliteExtDatabase, JSONField from playhouse.fields import PickleField import dill as dill #complex serialization. # ETL. import pandas as pd import numpy as np from PIL import Image as Imaje # Preprocessing & metrics. import sklearn from sklearn.model_selection import train_test_split, StratifiedKFold, KFold #mandatory separate import. from sklearn.feature_extraction.text import CountVectorizer # Deep learning. import keras import torch # Visualization. import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff from .configuration import setup_database, destroy_database, get_db name = "aiqc" """ https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods - 'fork' makes all variables on main process available to child process. OS attempts not to duplicate all variables. - 'spawn' requires that variables be passed to child as args, and seems to play by pickle's rules (e.g. no func in func). - In Python 3.8, macOS changed default from 'fork' to 'spawn' , which is how I learned all this. - Windows does not support 'fork'. It supports 'spawn'. So basically I have to play by spawn/ pickle rules. - Spawn/ pickle dictates (1) where execute_jobs func is placed, (2) if MetricsCutoff func works, (3) if tqdm output is visible. - Update: now MetricsCutoff is not working in `fork` mode. - Wrote the `poll_progress` func for 'spawn' situations. - If everything hits the fan, `run_jobs(in_background=False)` for a normal for loop. - Tried `concurrent.futures` but it only works with `.py` from command line. """ if (os.name != 'nt'): # If `force=False`, then `importlib.reload(aiqc)` triggers `RuntimeError: context already set`. multiprocessing.set_start_method('fork', force=True) app_dir_no_trailing_slash = appdirs.user_data_dir("aiqc") # Adds either a trailing slash or backslashes depending on OS. app_dir = os.path.join(app_dir_no_trailing_slash, '') default_config_path = app_dir + "config.json" default_db_path = app_dir + "aiqc.sqlite3" #================================================== # CONFIGURATION #================================================== def setup(): setup_database([ File, Tabular, Image, Dataset, Label, Feature, Splitset, Featureset, Foldset, Fold, Encoderset, Labelcoder, Featurecoder, Algorithm, Hyperparamset, Hyperparamcombo, Queue, Jobset, Job, Predictor, Prediction, FittedEncoderset, FittedLabelcoder, Window ]) def destroy_db(confirm:bool=False, rebuild:bool=False): destroy_database([ File, Tabular, Image, Dataset, Label, Feature, Splitset, Featureset, Foldset, Fold, Encoderset, Labelcoder, Featurecoder, Algorithm, Hyperparamset, Hyperparamcombo, Queue, Jobset, Job, Predictor, Prediction, FittedEncoderset, FittedLabelcoder, Window ], confirm, rebuild) #================================================== # ORM #================================================== # --------- GLOBALS --------- categorical_encoders = [ 'OneHotEncoder', 'LabelEncoder', 'OrdinalEncoder', 'Binarizer', 'LabelBinarizer', 'MultiLabelBinarizer' ] # --------- HELPER FUNCTIONS --------- def listify(supposed_lst:object=None): """ - When only providing a single element, it's easy to forget to put it inside a list! """ if (supposed_lst is not None): if (not isinstance(supposed_lst, list)): supposed_lst = [supposed_lst] # If it was already a list, check it for emptiness and `None`. elif (isinstance(supposed_lst, list)): if (not supposed_lst): raise ValueError("Yikes - The list you provided is empty.") if (None in supposed_lst): raise ValueError(dedent( f"Yikes - The list you provided contained `None` as an element." \ f"{supposed_lst}" )) # Allow `is None` to pass through because we need it to trigger null conditions. return supposed_lst def dill_serialize(objekt:object): blob = io.BytesIO() dill.dump(objekt, blob) blob = blob.getvalue() return blob def dill_deserialize(blob:bytes): objekt = io.BytesIO(blob) objekt = dill.load(objekt) return objekt def dill_reveal_code(serialized_objekt:object, print_it:bool=True): code_str = ( dill.source.getsource( dill_deserialize(serialized_objekt).__code__ ) ) if (print_it == True): print(dedent(code_str)) return code_str def torch_batcher( features:object , labels:object , batch_size = 5 , enforce_sameSize:bool=False , allow_1Sample:bool=False ): features = torch.split(features, batch_size) labels = torch.split(labels, batch_size) features = torch_drop_invalid_batchSize(features) labels = torch_drop_invalid_batchSize(labels) return features, labels def torch_drop_invalid_batchSize( batched_data:object , batch_size = 5 , enforce_sameSize:bool=False , allow_1Sample:bool=False ): if (batch_size == 1): print("\nWarning - `batch_size==1` can lead to errors.\nE.g. running BatchNormalization on a single sample.\n") # Similar to a % remainder, this will only apply to the last element in the batch. last_batch_size = batched_data[-1].shape[0] if ( ((allow_1Sample == False) and (last_batch_size == 1)) or ((enforce_sameSize == True) and (batched_data[0].shape[0] != last_batch_size)) ): # So if there is a problem, just trim the last split. batched_data = batched_data[:-1] return batched_data def tf_batcher(features:object, labels:object, batch_size = 5): """ - `np.array_split` allows for subarrays to be of different sizes, which is rare. https://numpy.org/doc/stable/reference/generated/numpy.array_split.html - If there is a remainder, it will evenly distribute samples into the other arrays. - Have not tested this with >= 3D data yet. """ rows_per_batch = math.ceil(features.shape[0]/batch_size) batched_features = np.array_split(features, rows_per_batch) batched_features = np.array(batched_features, dtype=object) batched_labels = np.array_split(labels, rows_per_batch) batched_labels = np.array(batched_labels, dtype=object) return batched_features, batched_labels # --------- END HELPERS --------- class BaseModel(Model): """ - Runs when the package is imported. http://docs.peewee-orm.com/en/latest/peewee/models.html - ORM: by inheritting the BaseModel class, each Model class does not have to set Meta. """ class Meta: database = get_db() class Dataset(BaseModel): """ The sub-classes are not 1-1 tables. They simply provide namespacing for functions to avoid functions riddled with if statements about dataset_type and null parameters. """ dataset_type = CharField() #tabular, image, sequence, graph, audio. file_count = IntegerField() # only includes file_types that match the dataset_type. source_path = CharField(null=True) def make_label(id:int, columns:list): columns = listify(columns) l = Label.from_dataset(dataset_id=id, columns=columns) return l def make_feature( id:int , include_columns:list = None , exclude_columns:list = None ): include_columns = listify(include_columns) exclude_columns = listify(exclude_columns) feature = Feature.from_dataset( dataset_id = id , include_columns = include_columns , exclude_columns = exclude_columns ) return feature def to_pandas(id:int, columns:list=None, samples:list=None): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (dataset.dataset_type == 'tabular'): df = Dataset.Tabular.to_pandas(id=dataset.id, columns=columns, samples=samples) elif (dataset.dataset_type == 'text'): df = Dataset.Text.to_pandas(id=dataset.id, columns=columns, samples=samples) elif ((dataset.dataset_type == 'image') or (dataset.dataset_type == 'sequence')): raise ValueError("\nYikes - `dataset_type={dataset.dataset_type}` does not have a `to_pandas()` method.\n") return df def to_numpy(id:int, columns:list=None, samples:list=None): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (dataset.dataset_type == 'tabular'): arr = Dataset.Tabular.to_numpy(id=id, columns=columns, samples=samples) elif (dataset.dataset_type == 'image'): if (columns is not None): raise ValueError("\nYikes - `Dataset.Image.to_numpy` does not accept a `columns` argument.\n") arr = Dataset.Image.to_numpy(id=id, samples=samples) elif (dataset.dataset_type == 'text'): arr = Dataset.Text.to_numpy(id=id, columns=columns, samples=samples) elif (dataset.dataset_type == 'sequence'): arr = Dataset.Sequence.to_numpy(id=id, columns=columns, samples=samples) return arr def to_strings(id:int, samples:list=None): dataset = Dataset.get_by_id(id) samples = listify(samples) if (dataset.dataset_type == 'tabular' or dataset.dataset_type == 'image'): raise ValueError("\nYikes - This Dataset class does not have a `to_strings()` method.\n") elif (dataset.dataset_type == 'text'): return Dataset.Text.to_strings(id=dataset.id, samples=samples) def sorted_file_list(dir_path:str): if (not os.path.exists(dir_path)): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(dir_path)`:\n{dir_path}\n") path = os.path.abspath(dir_path) if (os.path.isdir(path) == False): raise ValueError(f"\nYikes - The path that you provided is not a directory:{path}\n") file_paths = os.listdir(path) # prune hidden files and directories. file_paths = [f for f in file_paths if not f.startswith('.')] file_paths = [f for f in file_paths if not os.path.isdir(f)] if not file_paths: raise ValueError(f"\nYikes - The directory that you provided has no files in it:{path}\n") # folder path is already absolute file_paths = [os.path.join(path, f) for f in file_paths] file_paths = natsorted(file_paths) return file_paths def get_main_file(id:int): dataset = Dataset.get_by_id(id) if (dataset.dataset_type == 'image'): raise ValueError("\n Dataset class does not support get_main_file() method for `image` data type,\n") file = File.select().join(Dataset).where( Dataset.id==id, File.file_type=='tabular', File.file_index==0 )[0] return file def get_main_tabular(id:int): """ Works on both `Dataset.Tabular`, `Dataset.Sequence`, and `Dataset.Text` """ file = Dataset.get_main_file(id) return file.tabulars[0] def arr_validate(ndarray): if (type(ndarray).__name__ != 'ndarray'): raise ValueError("\nYikes - The `ndarray` you provided is not of the type 'ndarray'.\n") if (ndarray.dtype.names is not None): raise ValueError(dedent(""" Yikes - Sorry, we do not support NumPy Structured Arrays. However, you can use the `dtype` dict and `column_names` to handle each column specifically. """)) if (ndarray.size == 0): raise ValueError("\nYikes - The ndarray you provided is empty: `ndarray.size == 0`.\n") class Tabular(): """ - Does not inherit the Dataset class e.g. `class Tabular(Dataset):` because then ORM would make a separate table for it. - It is just a collection of methods and default variables. """ dataset_type = 'tabular' file_index = 0 file_count = 1 def from_path( file_path:str , source_file_format:str , name:str = None , dtype:object = None , column_names:list = None , skip_header_rows:object = 'infer' , ingest:bool = True ): column_names = listify(column_names) accepted_formats = ['csv', 'tsv', 'parquet'] if (source_file_format not in accepted_formats): raise ValueError(f"\nYikes - Available file formats include csv, tsv, and parquet.\nYour file format: {source_file_format}\n") if (not os.path.exists(file_path)): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(file_path)`:\n{file_path}\n") if (not os.path.isfile(file_path)): raise ValueError(dedent( f"Yikes - The path you provided is a directory according to `os.path.isfile(file_path)`:" \ f"{file_path}" \ f"But `dataset_type=='tabular'` only supports a single file, not an entire directory.`" )) # Use the raw, not absolute path for the name. if (name is None): name = file_path source_path = os.path.abspath(file_path) dataset = Dataset.create( dataset_type = Dataset.Tabular.dataset_type , file_count = Dataset.Tabular.file_count , source_path = source_path , name = name ) try: File.Tabular.from_file( path = file_path , source_file_format = source_file_format , dtype = dtype , column_names = column_names , skip_header_rows = skip_header_rows , ingest = ingest , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def from_pandas( dataframe:object , name:str = None , dtype:object = None , column_names:list = None ): column_names = listify(column_names) if (type(dataframe).__name__ != 'DataFrame'): raise ValueError("\nYikes - The `dataframe` you provided is not `type(dataframe).__name__ == 'DataFrame'`\n") dataset = Dataset.create( file_count = Dataset.Tabular.file_count , dataset_type = Dataset.Tabular.dataset_type , name = name , source_path = None ) try: File.Tabular.from_pandas( dataframe = dataframe , dtype = dtype , column_names = column_names , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def from_numpy( ndarray:object , name:str = None , dtype:object = None , column_names:list = None ): column_names = listify(column_names) Dataset.arr_validate(ndarray) dimensions = len(ndarray.shape) if (dimensions > 2) or (dimensions < 1): raise ValueError(dedent(f""" Yikes - Tabular Datasets only support 1D and 2D arrays. Your array dimensions had <{dimensions}> dimensions. """)) dataset = Dataset.create( file_count = Dataset.Tabular.file_count , name = name , source_path = None , dataset_type = Dataset.Tabular.dataset_type ) try: File.Tabular.from_numpy( ndarray = ndarray , dtype = dtype , column_names = column_names , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def to_pandas( id:int , columns:list = None , samples:list = None ): file = Dataset.get_main_file(id)#`id` belongs to dataset, not file columns = listify(columns) samples = listify(samples) df = File.Tabular.to_pandas(id=file.id, samples=samples, columns=columns) return df def to_numpy( id:int , columns:list = None , samples:list = None ): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) # This calls the method above. It does not need `.Tabular` df = dataset.to_pandas(columns=columns, samples=samples) ndarray = df.to_numpy() return ndarray class Image(): dataset_type = 'image' def from_folder( folder_path:str , name:str = None , pillow_save:dict = {} , ingest:bool = True ): if ((pillow_save!={}) and (ingest==False)): raise ValueError("\nYikes - `pillow_save` cannot be defined if `ingest==False`.\n") if (name is None): name = folder_path source_path = os.path.abspath(folder_path) file_paths = Dataset.sorted_file_list(source_path) file_count = len(file_paths) dataset = Dataset.create( file_count = file_count , name = name , source_path = source_path , dataset_type = Dataset.Image.dataset_type ) #Make sure the shape and mode of each image are the same before writing the Dataset. sizes = [] modes = [] for i, path in enumerate(tqdm( file_paths , desc = "🖼️ Validating Images 🖼️" , ncols = 85 )): img = Imaje.open(path) sizes.append(img.size) modes.append(img.mode) if (len(set(sizes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same width and height. `PIL.Image.size`\nHere are the unique sizes you provided:\n{set(sizes)} """)) elif (len(set(modes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same mode aka colorscale. `PIL.Image.mode`\nHere are the unique modes you provided:\n{set(modes)} """)) try: for i, p in enumerate(tqdm( file_paths , desc = "🖼️ Ingesting Images 🖼️" , ncols = 85 )): File.Image.from_file( path = p , pillow_save = pillow_save , file_index = i , ingest = ingest , dataset_id = dataset.id ) except: dataset.delete_instance() raise return dataset def from_urls( urls:list , pillow_save:dict = {} , name:str = None , source_path:str = None , ingest:bool = True ): if ((pillow_save!={}) and (ingest==False)): raise ValueError("\nYikes - `pillow_save` cannot be defined if `ingest==False`.\n") urls = listify(urls) for u in urls: validation = validators.url(u) if (validation != True): #`== False` doesn't work. raise ValueError(f"\nYikes - Invalid url detected within `urls` list:\n'{u}'\n") file_count = len(urls) dataset = Dataset.create( file_count = file_count , name = name , dataset_type = Dataset.Image.dataset_type , source_path = source_path ) #Make sure the shape and mode of each image are the same before writing the Dataset. sizes = [] modes = [] for i, url in enumerate(tqdm( urls , desc = "🖼️ Validating Images 🖼️" , ncols = 85 )): img = Imaje.open( requests.get(url, stream=True).raw ) sizes.append(img.size) modes.append(img.mode) if (len(set(sizes)) > 1): raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same width and height. `PIL.Image.size`\nHere are the unique sizes you provided:\n{set(sizes)} """)) elif (len(set(modes)) > 1): raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same mode aka colorscale. `PIL.Image.mode`\nHere are the unique modes you provided:\n{set(modes)} """)) try: for i, url in enumerate(tqdm( urls , desc = "🖼️ Ingesting Images 🖼️" , ncols = 85 )): File.Image.from_url( url = url , pillow_save = pillow_save , file_index = i , ingest = ingest , dataset_id = dataset.id ) """ for i, url in enumerate(urls): file = File.Image.from_url( url = url , pillow_save = pillow_save , file_index = i , dataset_id = dataset.id ) """ except: dataset.delete_instance() # Orphaned. raise return dataset def to_pillow(id:int, samples:list=None): """ - This does not have `columns` attrbute because it is only for fetching images. - Have to fetch as image before feeding into numpy `numpy.array(Image.open())`. - Future: could return the tabular data along with it. - Might need this for Preprocess where rotate images and such. """ samples = listify(samples) files = Dataset.Image.get_image_files(id, samples=samples) images = [f.Image.to_pillow(f.id) for f in files] return images def to_numpy(id:int, samples:list=None): """ - Because Pillow works directly with numpy, there's no need for pandas right now. - But downstream methods are using pandas. """ samples = listify(samples) images = Dataset.Image.to_pillow(id, samples=samples) images = [np.array(img) for img in images] images = np.array(images) """ - Pixel values range from 0-255. - `np.set_printoptions(threshold=99999)` to inspect for yourself. - It will look like some are all 0, but that's just the black edges. """ images = images/255 return images def get_image_files(id:int, samples:list=None): samples = listify(samples) files = File.select().join(Dataset).where( Dataset.id==id, File.file_type=='image' ).order_by(File.file_index)# Ascending by default. # Select from list by index. if (samples is not None): files = [files[i] for i in samples] return files class Text(): dataset_type = 'text' file_count = 1 column_name = 'TextData' def from_strings( strings: list, name: str = None ): for expectedString in strings: if type(expectedString) != str: raise ValueError(f'\nThe input contains an object of type non-str type: {type(expectedString)}') dataframe = pd.DataFrame(strings, columns=[Dataset.Text.column_name], dtype="object") return Dataset.Text.from_pandas(dataframe, name) def from_pandas( dataframe:object, name:str = None, dtype:object = None, column_names:list = None ): if Dataset.Text.column_name not in list(dataframe.columns): raise ValueError("\nYikes - The `dataframe` you provided doesn't contain 'TextData' column. Please rename the column containing text data to 'TextData'`\n") if dataframe[Dataset.Text.column_name].dtypes != 'O': raise ValueError("\nYikes - The `dataframe` you provided contains 'TextData' column with incorrect dtype: column dtype != object\n") dataset = Dataset.Tabular.from_pandas(dataframe, name, dtype, column_names) dataset.dataset_type = Dataset.Text.dataset_type dataset.save() return dataset def from_path( file_path:str , source_file_format:str , name:str = None , dtype:object = None , column_names:list = None , skip_header_rows:object = 'infer' ): dataset = Dataset.Tabular.from_path(file_path, source_file_format, name, dtype, column_names, skip_header_rows) dataset.dataset_type = Dataset.Text.dataset_type dataset.save() return dataset def from_folder( folder_path:str, name:str = None ): if name is None: name = folder_path source_path = os.path.abspath(folder_path) input_files = Dataset.sorted_file_list(source_path) files_data = [] for input_file in input_files: with open(input_file, 'r') as file_pointer: files_data.extend([file_pointer.read()]) return Dataset.Text.from_strings(files_data, name) def to_pandas( id:int, columns:list = None, samples:list = None ): df = Dataset.Tabular.to_pandas(id, columns, samples) if Dataset.Text.column_name not in columns: return df word_counts, feature_names = Dataset.Text.get_feature_matrix(df) df = pd.DataFrame(word_counts.todense(), columns = feature_names) return df def to_numpy( id:int, columns:list = None, samples:list = None ): df = Dataset.Tabular.to_pandas(id, columns, samples) if Dataset.Text.column_name not in columns: return df.to_numpy() word_counts, feature_names = Dataset.Text.get_feature_matrix(df) return word_counts.todense() def get_feature_matrix( dataframe:object ): count_vect = CountVectorizer(max_features = 200) word_counts = count_vect.fit_transform(dataframe[Dataset.Text.column_name].tolist()) return word_counts, count_vect.get_feature_names() def to_strings( id:int, samples:list = None ): data_df = Dataset.Tabular.to_pandas(id, [Dataset.Text.column_name], samples) return data_df[Dataset.Text.column_name].tolist() class Sequence(): dataset_type = 'sequence' def from_numpy( ndarray3D_or_npyPath:object , name:str = None , dtype:object = None , column_names:list = None , ingest:bool = True ): if ((ingest==False) and (isinstance(dtype, dict))): raise ValueError("\nYikes - If `ingest==False` then `dtype` must be either a str or a single NumPy-based type.\n") # Fetch array from .npy if it is not an in-memory array. if (str(ndarray3D_or_npyPath.__class__) != "<class 'numpy.ndarray'>"): if (not isinstance(ndarray3D_or_npyPath, str)): raise ValueError("\nYikes - If `ndarray3D_or_npyPath` is not an array then it must be a string-based path.\n") if (not os.path.exists(ndarray3D_or_npyPath)): raise ValueError("\nYikes - The path you provided does not exist according to `os.path.exists(ndarray3D_or_npyPath)`\n") if (not os.path.isfile(ndarray3D_or_npyPath)): raise ValueError("\nYikes - The path you provided is not a file according to `os.path.isfile(ndarray3D_or_npyPath)`\n") source_path = ndarray3D_or_npyPath try: # `allow_pickle=False` prevented it from reading the file. ndarray_3D = np.load(file=ndarray3D_or_npyPath) except: print("\nYikes - Failed to `np.load(file=ndarray3D_or_npyPath)` with your `ndarray3D_or_npyPath`:\n") print(f"{ndarray3D_or_npyPath}\n") raise elif (str(ndarray3D_or_npyPath.__class__) == "<class 'numpy.ndarray'>"): source_path = None ndarray_3D = ndarray3D_or_npyPath column_names = listify(column_names) Dataset.arr_validate(ndarray_3D) dimensions = len(ndarray_3D.shape) if (dimensions != 3): raise ValueError(dedent(f""" Yikes - Sequence Datasets can only be constructed from 3D arrays. Your array dimensions had <{dimensions}> dimensions. """)) file_count = len(ndarray_3D) dataset = Dataset.create( file_count = file_count , name = name , dataset_type = Dataset.Sequence.dataset_type , source_path = source_path ) #Make sure the shape and mode of each image are the same before writing the Dataset. shapes = [] for i, arr in enumerate(tqdm( ndarray_3D , desc = "⏱️ Validating Sequences 🧬" , ncols = 85 )): shapes.append(arr.shape) if (len(set(shapes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All 2D arrays in the Dataset must be of the shape. `ndarray.shape`\nHere are the unique sizes you provided:\n{set(shapes)} """)) try: for i, arr in enumerate(tqdm( ndarray_3D , desc = "⏱️ Ingesting Sequences 🧬" , ncols = 85 )): File.Tabular.from_numpy( ndarray = arr , dataset_id = dataset.id , column_names = column_names , dtype = dtype , _file_index = i , ingest = ingest ) except: dataset.delete_instance() # Orphaned. raise return dataset def to_numpy( id:int, columns:list = None, samples:list = None ): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (samples is None): files = dataset.files elif (samples is not None): # Here the 'sample' is the entire file. Whereas, in 2D 'sample==row'. # So run a query to get those files: `<<` means `in`. files = File.select().join(Dataset).where( Dataset.id==dataset.id, File.file_index<<samples ) files = list(files) # Then call them with the column filter. # So don't pass `samples=samples` to the file. list_2D = [f.to_numpy(columns=columns) for f in files] arr_3D = np.array(list_2D) return arr_3D # Graph # handle nodes and edges as separate tabular types? # node_data is pretty much tabular sequence (varied length) data right down to the columns. # the only unique thing is an edge_data for each Graph file. # attach multiple file types to a file File(id=1).tabular, File(id=1).graph? class File(BaseModel): """ - Due to the fact that different types of Files have different attributes (e.g. File.Tabular columns=JSON or File.Graph nodes=Blob, edges=Blob), I am making each file type its own subclass and 1-1 table. This approach allows for the creation of custom File types. - If `blob=None` then isn't persisted therefore fetch from source_path or s3_path. - Note that `dtype` does not require every column to be included as a key in the dictionary. """ file_type = CharField() file_format = CharField() # png, jpg, parquet. file_index = IntegerField() # image, sequence, graph. shape = JSONField() is_ingested = BooleanField() skip_header_rows = PickleField(null=True) #Image does not have. source_path = CharField(null=True) # when `from_numpy` or `from_pandas`. blob = BlobField(null=True) # when `is_ingested==False`. dataset = ForeignKeyField(Dataset, backref='files') """ Classes are much cleaner than a knot of if statements in every method, and `=None` for every parameter. """ def to_numpy(id:int, columns:list=None, samples:list=None): file = File.get_by_id(id) columns = listify(columns) samples = listify(samples) if (file.file_type == 'tabular'): arr = File.Tabular.to_numpy(id=id, columns=columns, samples=samples) elif (file.file_type == 'image'): arr = File.Image.to_numpy(id=id, columns=columns, samples=samples) return arr class Tabular(): file_type = 'tabular' def from_pandas( dataframe:object , dataset_id:int , dtype:object = None # Accepts a single str for the entire df, but utlimate it gets saved as one dtype per column. , column_names:list = None , source_path:str = None # passed in via from_file, but not from_numpy. , ingest:bool = True # from_file() method overwrites this. , file_format:str = 'parquet' # from_file() method overwrites this. , skip_header_rows:int = 'infer' , _file_index:int = 0 # Dataset.Sequence overwrites this. ): column_names = listify(column_names) File.Tabular.df_validate(dataframe, column_names) # We need this metadata whether ingested or not. dataframe, columns, shape, dtype = File.Tabular.df_set_metadata( dataframe=dataframe, column_names=column_names, dtype=dtype ) if (ingest==True): blob = File.Tabular.df_to_compressed_parquet_bytes(dataframe) elif (ingest==False): blob = None dataset = Dataset.get_by_id(dataset_id) file = File.create( blob = blob , file_type = File.Tabular.file_type , file_format = file_format , file_index = _file_index , shape = shape , source_path = source_path , skip_header_rows = skip_header_rows , is_ingested = ingest , dataset = dataset ) try: Tabular.create( columns = columns , dtypes = dtype , file_id = file.id ) except: file.delete_instance() # Orphaned. raise return file def from_numpy( ndarray:object , dataset_id:int , column_names:list = None , dtype:object = None #Or single string. , _file_index:int = 0 , ingest:bool = True ): column_names = listify(column_names) """ Only supporting homogenous arrays because structured arrays are a pain when it comes time to convert them to dataframes. It complained about setting an index, scalar types, and dimensionality... yikes. Homogenous arrays keep dtype in `arr.dtype==dtype('int64')` Structured arrays keep column names in `arr.dtype.names==('ID', 'Ring')` Per column dtypes dtypes from structured array <https://stackoverflow.com/a/65224410/5739514> """ Dataset.arr_validate(ndarray) """ column_names and dict-based dtype will be handled by our `from_pandas()` method. `pd.DataFrame` method only accepts a single dtype str, or infers if None. """ df =
pd.DataFrame(data=ndarray)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Avatar : The Last Airbender # ### Machine Learning and Analysis of the show # In[1]: from IPython.display import Image Image (filename = "images (1).jpg") # ## Introduction : # # **Avatar: The Last Airbender (Avatar: The Legend of Aang in some regions)** is an American animated television series created by <NAME> and <NAME>, with <NAME> as head writer. It aired on Nickelodeon for three seasons, from February 2005 to July 2008. Avatar is set in an Asiatic-like world in which some people can manipulate one of the four elements—water, earth, fire, or air—with telekinetic variants of the Chinese martial arts known as "bending". The only individual who can bend all four elements, the "Avatar", is responsible for maintaining harmony between the world's four nations, and serves as the bridge between the spirit world and the physical world. The show is presented in a style that combines anime with American cartoons, and relies on the imagery of mainly East Asian culture, with some South Asian, New World, and Inuit and Sireniki influences. # # # The series is centered around the journey of 12-year-old Aang, the current Avatar and last survivor of his nation, the Air Nomads, along with his friends Sokka, Katara, and later Toph, as they strive to end the Fire Nation's war against the other nations of the world. It also follows the story of Zuko—the exiled prince of the Fire Nation, seeking to restore his lost honor by capturing Aang, accompanied by his wise uncle Iroh—and later, that of his ambitious sister Azula. # In[2]: import pandas as pd import numpy as np import plotly_express as px from plotly.subplots import make_subplots import plotly.graph_objects as go import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from nltk.sentiment.vader import SentimentIntensityAnalyzer from plotly.offline import init_notebook_mode init_notebook_mode() # In[3]: data = pd.read_csv('avatar_data.csv') series =
pd.read_csv('series_names.csv')
pandas.read_csv
# Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines to compute and compare the "signatures" of objective functions. These are useful to make sure two different studies were actually optimizing the same objective function (even if they say the same test case in the meta-data). """ import warnings import numpy as np import pandas as pd import bayesmark.random_search as rs # How many points to probe the function to get the signature N_SUGGESTIONS = 5 def get_func_signature(f, api_config): """Get the function signature for an objective function in an experiment. Parameters ---------- f : typing.Callable The objective function we want to compute the signature of. This function must take inputs in the form of ``dict(str, object)`` with one dictionary key per variable, and provide `float` as the output. api_config : dict(str, dict) Configuration of the optimization variables. See API description. Returns ------- signature_x : list(dict(str, object)) of shape (n_suggest,) The input locations probed on signature call. signature_y : list(float) of shape (n_suggest,) The objective function values at the inputs points. This is the real signature. """ # Make sure get same sequence on every call to be a signature random = np.random.RandomState(0) signature_x = rs.suggest_dict([], [], api_config, n_suggestions=N_SUGGESTIONS, random=random) # For now, we only take the first output as the signature. We can generalize this later. signature_y = [f(xx)[0] for xx in signature_x] assert np.all(np.isfinite(signature_y)), "non-finite values found in signature for function" return signature_x, signature_y def analyze_signatures(signatures): """Analyze function signatures from the experiment. Parameters ---------- signatures : dict(str, list(list(float))) The signatures should all be the same length, so it should be 2D array like. Returns ------- sig_errs : :class:`pandas:pandas.DataFrame` rows are test cases, columns are test points. signatures_median : dict(str, list(float)) Median signature across all repetition per test case. """ sig_errs = {} signatures_median = {} for test_case, signature_y in signatures.items(): assert len(signature_y) > 0, "signature with no cases found" assert np.all(np.isfinite(signature_y)), "non-finite values found in signature for function" minval = np.min(signature_y, axis=0) maxval = np.max(signature_y, axis=0) if not np.allclose(minval, maxval): # Arguably, the util should not raise the warning, and these should # be raised on the outside, but let's do this for simplicity. warnings.warn( "Signature diverged on %s betwen %s and %s" % (test_case, str(minval), str(maxval)), RuntimeWarning ) sig_errs[test_case] = maxval - minval # ensure serializable using tolist signatures_median[test_case] = np.median(signature_y, axis=0).tolist() # Convert to pandas so easy to append margins with max, better for disp. # If we let the user convert to pandas then we don't need dep on pandas. sig_errs =
pd.DataFrame(sig_errs)
pandas.DataFrame
from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import sklearn import json from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier import warnings warnings.simplefilter('ignore') testset = pd.read_csv('./public/Python_Scripts/Test.csv', header=None) dataset =
pd.read_csv('./public/Python_Scripts/Dataset.csv', header=None)
pandas.read_csv
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) tm.assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert com.all_none(*result.columns.names) result.columns.names = df.columns.names tm.assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = f"len of {i}, but only 5 lines in file" with pytest.raises(ParserError, match=msg): read_csv(path, header=list(range(i)), index_col=0) # write with cols msg = "cannot specify cols with a MultiIndex" with pytest.raises(TypeError, match=msg): df.to_csv(path, columns=["foo", "bar"]) with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_interval_index(self): # GH 28210 df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3)) with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: df.to_csv(path) result = self.read_csv(path, index_col=0) # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) expected = df.copy() expected.index = expected.index.astype(str) tm.assert_frame_equal(result, expected) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(",")[2] == "999" def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]}) with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path: df.to_csv(path) df2 = self.read_csv(path) tm.assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return [f"{name}{i:03d}" for i in range(5)] df_float = DataFrame( np.random.randn(100, 5), dtype="float64", columns=create_cols("float") ) df_int = DataFrame( np.random.randn(100, 5).astype("int64"), dtype="int64", columns=create_cols("int"), ) df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool")) df_object = DataFrame( "foo", index=df_float.index, columns=create_cols("object") ) df_dt = DataFrame( Timestamp("20010101"), index=df_float.index, columns=create_cols("date") ) # add in some nans df_float.iloc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), ("bool", np.bool_), ("object", object), ]: for c in create_cols(n): dtypes[c] = dtype with tm.ensure_clean() as filename: df.to_csv(filename) rs = read_csv( filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date") ) tm.assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame( np.random.randn(1000, 30), columns=list(range(15)) + list(range(15)), dtype="float64", ) with tm.ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns tm.assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype="float64") df_int = DataFrame(np.random.randn(1000, 3)).astype("int64") df_bool = DataFrame(True, index=df_float.index, columns=range(3)) df_object = DataFrame("foo", index=df_float.index, columns=range(3)) df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3)) df = pd.concat( [df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True ) df.columns = [0, 1, 2] * 5 with tm.ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ["0.4", "1.4", "2.4"]: result[i] = to_datetime(result[i]) result.columns = df.columns tm.assert_frame_equal(result, df) # GH3457 N = 10 df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] with tm.ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={"a.1": "a"}) tm.assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({"A": range(100000)}) aa["B"] = aa.A + 1.0 aa["C"] = aa.A + 2.0 aa["D"] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with tm.ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) tm.assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with tm.ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) tm.assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO("a,1.0\nb,2.0") df = self.read_csv(f1, header=None) newdf = DataFrame({"t": df[df.columns[0]]}) with tm.ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 tm.assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({"c/\u03c3": [1, 2, 3]}) with tm.ensure_clean() as path: df.to_csv(path, encoding="UTF-8") df2 =
read_csv(path, index_col=0, encoding="UTF-8")
pandas.read_csv
import numpy as np import xarray as xr import pandas as pd import os from collections import OrderedDict # from astropy.time import Time import logging import copy from typing import List, Dict, Union, Tuple import pysagereader class SAGEIILoaderV700(object): """ Class designed to load the v7.00 SAGE II spec and index files provided by NASA ADSC into python Data files must be accessible by the users machine, and can be downloaded from: https://eosweb.larc.nasa.gov/project/sage2/sage2_v7_table Parameters ---------- data_folder location of sage ii index and spec files. output_format format for the output data. If ``'xarray'`` the output is returned as an ``xarray.Dataset``. If None the output is returned as a dictionary of numpy arrays. **NOTE: the following options only apply to xarray output types** species Species to be returned in the output data. If None all species are returned. Options are ``aerosol``, ``ozone``, ``h2o``, and ``no2``. If more than one species is returned fields will be NaN-padded where data is not available. ``species`` is only used if ``'xarray'`` is set as the ``output_data`` format, otherwise it has no effect. cf_names If True then CF-1.7 naming conventions are used for the output_data when ``xarray`` is selected. filter_aerosol filter the aerosol using the cloud flag filter_ozone filter the ozone using the criteria recommended in the release notes * Exclusion of all data points with an uncertainty estimate of 300% or greater * Exclusion of all profiles with an uncertainty greater than 10% between 30 and 50 km * Exclusion of all data points at altitude and below the occurrence of an aerosol extinction value of greater than 0.006 km^-1 * Exclusion of all data points at altitude and below the occurrence of both the 525nm aerosol extinction value exceeding 0.001 km^-1 and the 525/1020 extinction ratio falling below 1.4 * Exclusion of all data points below 35km an 200% or larger uncertainty estimate enumerate_flags expand the index and species flags to their boolean values. normalize_percent_error give the species error as percent rather than percent * 100 return_separate_flags return the enumerated flags as a separate data array Example ------- >>> sage = SAGEIILoaderV700() >>> sage.data_folder = 'path/to/data' >>> data = sage.load_data('2004-1-1','2004-5-1') In addition to the sage ii fields reported in the files, two additional time fields are provided to allow for easier subsetting of the data. ``data['mjd']`` is a numpy array containing the modified julian dates of each scan ``date['time']`` is an pandas time series object containing the times of each scan """ def __init__(self, data_folder: str=None, output_format: str='xarray', species: List[str]=('aerosol', 'h2o', 'no2', 'ozone', 'background'), cf_names: bool=False, filter_aerosol: bool=False, filter_ozone: bool=False, enumerate_flags: bool=False, normalize_percent_error: bool=False, return_separate_flags: bool=False): if type(species) == str: species = [species] self.data_folder = data_folder # Type: str self.version = '7.00' self.index_file = 'SAGE_II_INDEX_' self.spec_file = 'SAGE_II_SPEC_' self.fill_value = np.nan self.spec_format = self.get_spec_format() self.index_format = self.get_index_format() self.output_format = output_format self.species = [s.lower() for s in species] self.cf_names = cf_names self.filter_aerosol = filter_aerosol self.filter_ozone = filter_ozone self.normalize_percent_error = normalize_percent_error self.enumerate_flags = enumerate_flags self.return_separate_flags = return_separate_flags @staticmethod def get_spec_format() -> Dict[str, Tuple[str, int]]: """ spec format taken from sg2_specinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict Ordered dictionary of variables provided in the spec file. Each dictionary field contains a tuple with the information (data type, number of data points). Ordering is important as the sage ii binary files are read sequentially. """ spec = OrderedDict() spec['Tan_Alt'] = ('float32', 8) # Subtangent Altitudes(km) spec['Tan_Lat'] = ('float32', 8) # Subtangent Latitudes @ Tan_Alt(deg) spec['Tan_Lon'] = ('float32', 8) # Subtangent Longitudes @ Tan_Alt(deg) spec['NMC_Pres'] = ('float32', 140) # Gridded Pressure profile(mb) spec['NMC_Temp'] = ('float32', 140) # Gridded Temperature profile(K) spec['NMC_Dens'] = ('float32', 140) # Gridded Density profile(cm ^ (-3)) spec['NMC_Dens_Err'] = ('int16', 140) # Error in NMC_Dens( % * 1000) spec['Trop_Height'] = ('float32', 1) # NMC Tropopause Height(km) spec['Wavelength'] = ('float32', 7) # Wavelength of each channel(nm) spec['O3'] = ('float32', 140) # O3 Density profile 0 - 70 Km(cm ^ (-3)) spec['NO2'] = ('float32', 100) # NO2 Density profile 0 - 50 Km(cm ^ (-3)) spec['H2O'] = ('float32', 100) # H2O Volume Mixing Ratio 0 - 50 Km(ppp) spec['Ext386'] = ('float32', 80) # 386 nm Extinction 0 - 40 Km(1 / km) spec['Ext452'] = ('float32', 80) # 452 nm Extinction 0 - 40 Km(1 / km) spec['Ext525'] = ('float32', 80) # 525 nm Extinction 0 - 40 Km(1 / km) spec['Ext1020'] = ('float32', 80) # 1020 nm Extinction 0 - 40 Km(1 / km) spec['Density'] = ('float32', 140) # Calculated Density 0 - 70 Km(cm ^ (-3)) spec['SurfDen'] = ('float32', 80) # Aerosol surface area dens 0 - 40 km(um ^ 2 / cm ^ 3) spec['Radius'] = ('float32', 80) # Aerosol effective radius 0 - 40 km(um) spec['Dens_Mid_Atm'] = ('float32', 70) # Middle Atmosphere Density(cm ^ (-3)) spec['O3_Err'] = ('int16', 140) # Error in O3 density profile( % * 100) spec['NO2_Err'] = ('int16', 100) # Error in NO2 density profile( % * 100) spec['H2O_Err'] = ('int16', 100) # Error in H2O mixing ratio( % * 100) spec['Ext386_Err'] = ('int16', 80) # Error in 386 nm Extinction( % * 100) spec['Ext452_Err'] = ('int16', 80) # Error in 452 nm Extinction( % * 100) spec['Ext525_Err'] = ('int16', 80) # Error in 525 nm Extinction( % * 100) spec['Ext1020_Err'] = ('int16', 80) # Error in 1019 nm Extinction( % * 100) spec['Density_Err'] = ('int16', 140) # Error in Density( % * 100) spec['SurfDen_Err'] = ('int16', 80) # Error in surface area dens( % * 100) spec['Radius_Err'] = ('int16', 80) # Error in aerosol radius( % * 100) spec['Dens_Mid_Atm_Err'] = ('int16', 70) # Error in Middle Atm.Density( % * 100) spec['InfVec'] = ('uint16', 140) # Informational Bit flags return spec @staticmethod def get_index_format() -> Dict[str, Tuple[str, int]]: """ index format taken from sg2_indexinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict an ordered dictionary of variables provided in the index file. Each dictionary field contains a tuple with the information (data type, length). Ordering is important as the sage ii binary files are read sequentially. """ info = OrderedDict() info['num_prof'] = ('uint32', 1) # Number of profiles in these files info['Met_Rev_Date'] = ('uint32', 1) # LaRC Met Model Revision Date(YYYYMMDD) info['Driver_Rev'] = ('S1', 8) # LaRC Driver Version(e.g. 6.20) info['Trans_Rev'] = ('S1', 8) # LaRC Transmission Version info['Inv_Rev'] = ('S1', 8) # LaRC Inversion Version info['Spec_Rev'] = ('S1', 8) # LaRC Inversion Version info['Eph_File_Name'] = ('S1', 32) # Ephemeris data file name info['Met_File_Name'] = ('S1', 32) # Meteorological data file name info['Ref_File_Name'] = ('S1', 32) # Refraction data file name info['Tran_File_Name'] = ('S1', 32) # Transmission data file name info['Spec_File_Name'] = ('S1', 32) # Species profile file name info['FillVal'] = ('float32', 1) # Fill value # Altitude grid and range info info['Grid_Size'] = ('float32', 1) # Altitude grid spacing(0.5 km) info['Alt_Grid'] = ('float32', 200) # Geometric altitudes(0.5, 1.0, ..., 100.0 km) info['Alt_Mid_Atm'] = ('float32', 70) # Middle atmosphere geometric altitudes info['Range_Trans'] = ('float32', 2) # Transmission min & max altitudes[0.5, 100.] info['Range_O3'] = ('float32', 2) # Ozone min & max altitudes[0.5, 70.0] info['Range_NO2'] = ('float32', 2) # NO2 min & max altitudes[0.5, 50.0] info['Range_H2O'] = ('float32', 2) # Water vapor min & max altitudes[0.5, 50.0] info['Range_Ext'] = ('float32', 2) # Aerosol extinction min & max altitudes[0.5, 40.0] info['Range_Dens'] = ('float32', 2) # Density min & max altitudes[0.5, 70.0] info['Spare'] = ('float32', 2) # # Event specific info useful for data subsetting info['YYYYMMDD'] = ('int32', 930) # Event date at 20km subtangent point info['Event_Num'] = ('int32', 930) # Event number info['HHMMSS'] = ('int32', 930) # Event time at 20km info['Day_Frac'] = ('float32', 930) # Time of year(DDD.frac) at 20 km info['Lat'] = ('float32', 930) # Subtangent latitude at 20 km(-90, +90) info['Lon'] = ('float32', 930) # Subtangent longitude at 20 km(-180, +180) info['Beta'] = ('float32', 930) # Spacecraft beta angle(deg) info['Duration'] = ('float32', 930) # Duration of event(sec) info['Type_Sat'] = ('int16', 930) # Event Type Instrument(0 = SR, 1 = SS) info['Type_Tan'] = ('int16', 930) # Event Type Local(0 = SR, 1 = SS) # Process tracking and flag info info['Dropped'] = ('int32', 930) # Dropped event flag info['InfVec'] = ('uint32', 930) # Bit flags relating to processing ( # NOTE: readme_sage2_v6.20.txt says InfVec is 16 bit but appears to actually be 32 (also in IDL software) # Record creation dates and times info['Eph_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Eph_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Met_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Met_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Ref_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Ref_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Tran_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Tran_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Spec_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Spec_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) return info def get_spec_filename(self, year: int, month: int) -> str: """ Returns the spec filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the spec file where the data is stored """ file = os.path.join(self.data_folder, self.spec_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def get_index_filename(self, year: int, month: int) -> str: """ Returns the index filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the index file where the data is stored """ file = os.path.join(self.data_folder, self.index_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def read_spec_file(self, file: str, num_profiles: int) -> List[Dict]: """ Parameters ---------- file name of the spec file to be read num_profiles number of profiles to read from the spec file (usually determined from the index file) Returns ------- list of dictionaries containing the spec data. Each list is one event """ # load the file into the buffer file_format = self.spec_format with open(file, "rb") as f: buffer = f.read() # initialize the list of dictionaries data = [None] * num_profiles for p in range(num_profiles): data[p] = dict() # load the data from the buffer bidx = 0 for p in range(num_profiles): for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] data[p][key] = copy.copy(np.frombuffer(buffer[bidx:bidx+nbytes], dtype=file_format[key][0])) bidx += nbytes return data def read_index_file(self, file: str) -> Dict: """ Read the binary file into a python data structure Parameters ---------- file filename to be read Returns ------- data from the file """ file_format = self.index_format with open(file, "rb") as f: buffer = f.read() data = dict() # load the data from file into a list bidx = 0 for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] if file_format[key][0] == 'S1': data[key] = copy.copy(buffer[bidx:bidx + nbytes].decode('utf-8')) else: data[key] = copy.copy(np.frombuffer(buffer[bidx:bidx + nbytes], dtype=file_format[key][0])) if len(data[key]) == 1: data[key] = data[key][0] bidx += nbytes # make a more useable time field date_str = [] # If the time overflows by less than the scan time just set it to midnight data['HHMMSS'][(data['HHMMSS'] >= 240000) & (data['HHMMSS'] < (240000 + data['Duration']))] = 235959 # otherwise, set it as invalid data['HHMMSS'][data['HHMMSS'] >= 240000] = -999 for idx, (ymd, hms) in enumerate(zip(data['YYYYMMDD'], data['HHMMSS'])): if (ymd < 0) | (hms < 0): date_str.append('1970-1-1 00:00:00') # invalid sage ii date else: hours = int(hms/10000) mins = int((hms % 10000)/100) secs = hms % 100 date_str.append(str(ymd)[0:4] + '-' + str(ymd)[4:6].zfill(2) + '-' + str(ymd)[6::].zfill(2) + ' ' + str(hours).zfill(2) + ':' + str(mins).zfill(2) + ':' + str(secs).zfill(2)) # data['time'] = Time(date_str, format='iso') data['time'] = pd.to_datetime(date_str) data['mjd'] = np.array((data['time'] - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D')) data['mjd'][data['mjd'] < 40588] = -999 # get rid of invalid dates return data def load_data(self, min_date: str, max_date: str, min_lat: float=-90, max_lat: float=90, min_lon: float=-180, max_lon: float=360) -> Union[Dict, xr.Dataset]: """ Load the SAGE II data for the specified dates and locations. Parameters ---------- min_date start date where data will be loaded in iso format, eg: '2004-1-1' max_date end date where data will be loaded in iso format, eg: '2004-1-1' min_lat minimum latitude (optional) max_lat maximum latitude (optional) min_lon minimum longitude (optional) max_lon maximum longitude (optional) Returns ------- Variables are returned as numpy arrays (1 or 2 dimensional depending on the variable) """ min_time = pd.Timestamp(min_date) max_time = pd.Timestamp(max_date) data = dict() init = False # create a list of unique year/month combinations between the start/end dates uniq = OrderedDict() for year in [(t.date().year, t.date().month) for t in pd.date_range(min_time, max_time+pd.Timedelta(27, 'D'), freq='27D')]: uniq[year] = year # load in the data from the desired months for (year, month) in list(uniq.values()): logging.info('loading data for : ' + str(year) + '/' + str(month)) indx_file = self.get_index_filename(year, month) # if the file does not exist move on to the next month if indx_file is None: continue indx_data = self.read_index_file(indx_file) numprof = indx_data['num_prof'] spec_data = self.read_spec_file(self.get_spec_filename(year, month), numprof) # get rid of the duplicate names for InfVec for sp in spec_data: sp['ProfileInfVec'] = copy.copy(sp['InfVec']) del sp['InfVec'] for key in indx_data.keys(): # get rid of extraneous profiles in the index so index and spec are the same lengths if hasattr(indx_data[key], '__len__'): indx_data[key] = np.delete(indx_data[key], np.arange(numprof, 930)) # add the index values to the data set if key in data.keys(): # we dont want to replicate certain fields if (key[0:3] != 'Alt') & (key[0:5] != 'Range') & (key[0:7] != 'FillVal'): data[key] = np.append(data[key], indx_data[key]) else: if key == 'FillVal': data[key] = indx_data[key] else: data[key] = [indx_data[key]] # initialize the data dictionaries as lists if init is False: for key in spec_data[0].keys(): data[key] = [] init = True # add the spec values to the data set for key in spec_data[0].keys(): data[key].append(np.asarray([sp[key] for sp in spec_data])) # join all of our lists into an array - this could be done more elegantly with vstack to avoid # the temporary lists, but this is much faster for key in data.keys(): if key == 'FillVal': data[key] = float(data[key]) # make this a simple float rather than zero dimensional array elif len(data[key][0].shape) > 0: data[key] = np.concatenate(data[key], axis=0) else: data[key] = np.asarray(data[key]) data = self.subset_data(data, min_date, max_date, min_lat, max_lat, min_lon, max_lon) if not data: return None if self.output_format == 'xarray': data = self.convert_to_xarray(data) return data @staticmethod def subset_data(data: Dict, min_date: str, max_date: str, min_lat: float, max_lat: float, min_lon: float, max_lon: float) -> Dict: """ Removes any data from the dictionary that does not meet the specified time, latitude and longitude requirements. Parameters ---------- data dictionary of sage ii data. Must have the fields 'mjd', 'Lat' and 'Lon'. All others are optional min_date start date where data will be loaded in iso format, eg: '2004-1-1' max_date end date where data will be loaded in iso format, eg: '2004-1-1' min_lat minimum latitude (optional) max_lat maximum latitude (optional) min_lon minimum longitude (optional) max_lon maximum longitude (optional) Returns ------- returns the dictionary with only data in the valid latitude, longitude and time range """ min_mjd = (pd.Timestamp(min_date) - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D') max_mjd = (pd.Timestamp(max_date) - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D') good = (data['mjd'] > min_mjd) & (data['mjd'] < max_mjd) & \ (data['Lat'] > min_lat) & (data['Lat'] < max_lat) & \ (data['Lon'] > min_lon) & (data['Lon'] < max_lon) if np.any(good): for key in data.keys(): if hasattr(data[key], '__len__'): if data[key].shape[0] == len(good): data[key] = data[key][good] else: print('no data satisfies the criteria') data = {} return data def convert_to_xarray(self, data: Dict) -> Union[xr.Dataset, Tuple[xr.Dataset, xr.Dataset]]: """ Parameters ---------- data Data from the ``load_data`` function Returns ------- data formatted to an xarray Dataset """ # split up the fields into one of different sizes and optional returns fields = dict() # not currently returned fields['geometry'] = ['Tan_Alt', 'Tan_Lat', 'Tan_Lon'] fields['flags'] = ['InfVec', 'Dropped'] fields['profile_flags'] = ['ProfileInfVec'] # always returned - 1 per profile fields['general'] = ['Event_Num', 'Lat', 'Lon', 'Beta', 'Duration', 'Type_Sat', 'Type_Tan', 'Trop_Height'] # optional return parameters fields['background'] = ['NMC_Pres', 'NMC_Temp', 'NMC_Dens', 'NMC_Dens_Err', 'Density', 'Density_Err'] fields['ozone'] = ['O3', 'O3_Err'] fields['no2'] = ['NO2', 'NO2_Err'] fields['h2o'] = ['H2O', 'H2O_Err'] fields['aerosol'] = ['Ext386', 'Ext452', 'Ext525', 'Ext1020', 'Ext386_Err', 'Ext452_Err', 'Ext525_Err', 'Ext1020_Err'] fields['particle_size'] = ['SurfDen', 'Radius', 'SurfDen_Err', 'Radius_Err'] xr_data = [] index_flags = self.convert_index_bit_flags(data) species_flags = self.convert_species_bit_flags(data) time = pd.to_timedelta(data['mjd'], 'D') + pd.Timestamp('1858-11-17') data['Trop_Height'] = data['Trop_Height'].flatten() for key in fields['general']: xr_data.append(xr.DataArray(data[key], coords=[time], dims=['time'], name=key)) if 'aerosol' in self.species or self.filter_ozone: # we need aerosol to filter ozone altitude = data['Alt_Grid'][0:80] wavel = np.array([386.0, 452.0, 525.0, 1020.0]) ext = np.array([data['Ext386'], data['Ext452'], data['Ext525'], data['Ext1020']]) xr_data.append(xr.DataArray(ext, coords=[wavel, time, altitude], dims=['wavelength', 'time', 'Alt_Grid'], name='Ext')) ext = np.array([data['Ext386_Err'], data['Ext452_Err'], data['Ext525_Err'], data['Ext1020_Err']]) xr_data.append(xr.DataArray(ext, coords=[wavel, time, altitude], dims=['wavelength', 'time', 'Alt_Grid'], name='Ext_Err')) for key in fields['particle_size']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'no2' in self.species: altitude = data['Alt_Grid'][0:100] for key in fields['no2']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'h2o' in self.species: altitude = data['Alt_Grid'][0:100] for key in fields['h2o']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if any(i in ['ozone', 'o3'] for i in self.species): altitude = data['Alt_Grid'][0:140] for key in fields['ozone']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'background' in self.species: altitude = data['Alt_Grid'][0:140] for key in fields['background']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) xr_data = xr.merge(xr_data) if self.enumerate_flags: xr_data = xr.merge([xr_data, index_flags, species_flags]) for var in xr_data.variables.keys(): if xr_data[var].dtype == 'float32' or 'Err' in var: xr_data[var] = xr_data[var].where(xr_data[var] != data['FillVal']) # determine cloud filter for aerosol data cloud_filter = xr.full_like(species_flags.Cloud_Bit_1, fill_value=True, dtype=bool) min_alt = (xr_data.Alt_Grid * (species_flags.Cloud_Bit_1 & species_flags.Cloud_Bit_2)).max(dim='Alt_Grid') cloud_filter = cloud_filter.where(cloud_filter.Alt_Grid > min_alt) xr_data['cloud_filter'] = np.isnan(cloud_filter) # determine valid ozone altitudes if any(i in ['ozone', 'o3'] for i in self.species): # add an ozone filter field for convenience ozone_good = xr.full_like(species_flags.Cloud_Bit_1, fill_value=True, dtype=bool) # Exclusion of all data points with an uncertainty estimate of 300% or greater ozone_good = ozone_good.where(xr_data.O3_Err < 30000) # Exclusion of all profiles with an uncertainty greater than 10% between 30 and 50 km no_good = (xr_data.O3_Err > 1000) & (xr_data.Alt_Grid > 30) & (xr_data.Alt_Grid < 50) ozone_good = ozone_good.where(~no_good) # Exclusion of all data points at altitude and below the occurrence of an aerosol extinction value of # greater than 0.006 km^-1 # NOTE: the wavelength to use as the filter is not specified in the documentation, so I have chosen the # wavelength with the smallest extinction and therefore the strictest filtering min_alt = (xr_data.Alt_Grid * (xr_data.Ext.sel(wavelength=1020) > 0.006)).max(dim='Alt_Grid') ozone_good = ozone_good.where(xr_data.Alt_Grid > min_alt) # Exclusion of all data points at altitude and below the occurrence of both the 525nm aerosol extinction # value exceeding 0.001 km^-1 and the 525/1020 extinction ratio falling below 1.4 min_alt = (xr_data.Alt_Grid * ((xr_data.Ext.sel(wavelength=525) > 0.001) & ((xr_data.Ext.sel(wavelength=525) / xr_data.Ext.sel( wavelength=1020)) < 1.4))).max(dim='Alt_Grid') ozone_good = ozone_good.where(xr_data.Alt_Grid > min_alt) # Exclusion of all data points below 35km an 200% or larger uncertainty estimate no_good = (xr_data.O3_Err > 20000) & (xr_data.Alt_Grid < 35) ozone_good = ~np.isnan(ozone_good.where(~no_good)) xr_data['ozone_filter'] = ozone_good if self.filter_aerosol: xr_data['Ext'] = xr_data.Ext.where(~xr_data.cloud_filter) if self.filter_ozone: xr_data['O3'] = xr_data.O3.where(ozone_good) # drop aerosol if not requested if self.filter_ozone and not ('aerosol' in self.species): xr_data.drop(['Ext', 'Ext_Err', 'wavelength']) if self.normalize_percent_error: for var in xr_data.variables.keys(): if 'Err' in var: # put error units back into percent xr_data[var] = (xr_data[var] / 100).astype('float32') xr_data = xr_data.transpose('time', 'Alt_Grid', 'wavelength') xr_data = self.apply_cf_conventions(xr_data) if self.return_separate_flags: return xr_data, xr.merge([index_flags, species_flags]) else: return xr_data def apply_cf_conventions(self, data): attrs = {'time': {'standard_name': 'time'}, 'Lat': {'standard_name': 'latitude', 'units': 'degrees_north'}, 'Lon': {'standard_name': 'longitude', 'units': 'degrees_east'}, 'Alt_Grid': {'units': 'km'}, 'wavelength': {'units': 'nm', 'description': 'wavelength at which aerosol extinction is retrieved'}, 'O3': {'standard_name': 'number_concentration_of_ozone_molecules_in_air', 'units': 'cm-3'}, 'NO2': {'standard_name': 'number_concentration_of_nitrogen_dioxide_molecules_in_air', 'units': 'cm-3'}, 'H2O': {'standard_name': 'number_concentration_of_water_vapor_in_air', 'units': 'cm-3'}, 'Ext': {'standard_name': 'volume_extinction_coefficient_in_air_due_to_ambient_aerosol_particles', 'units': 'km-1'}, 'O3_Err': {'standard_name': 'number_concentration_of_ozone_molecules_in_air_error', 'units': 'percent'}, 'NO2_Err': {'standard_name': 'number_concentration_of_nitrogen_dioxide_molecules_in_air_error', 'units': 'percent'}, 'H2O_Err': {'standard_name': 'number_concentration_of_water_vapor_in_air_error', 'units': 'percent'}, 'Ext_Err': {'standard_name': 'volume_extinction_coefficient_in_air_due_to_ambient_aerosol_' 'particles_error', 'units': 'percent'}, 'Duration': {'units': 'seconds', 'description': 'duration of the sunrise/sunset event'}, 'Beta': {'units': 'degrees', 'description': 'angle between the satellite orbit plane and the sun'}, 'Trop_Height': {'units': 'km'}, 'Radius': {'units': 'microns'}, 'SurfDen': {'units': 'microns2 cm-3'}} for key in attrs.keys(): data[key].attrs = attrs[key] data.attrs = {'description': 'Retrieved vertical profiles of aerosol extinction, ozone, ' 'nitrogen dioxide, water vapor, and meteorological profiles from SAGE II ' 'version 7.00', 'publication reference': '<NAME>., <NAME>., <NAME>., & <NAME>. (2013). ' 'SAGE version 7.0 algorithm: application to SAGE II. Atmospheric ' 'Measurement Techniques, 6(12), 3539-3561.', 'title': 'SAGE II version 7.00', 'date_created': pd.Timestamp.now().strftime('%B %d %Y'), 'source_code': 'repository: https://github.com/LandonRieger/pySAGE.git, revision: ' + pysagereader.__version__, 'source_data': 'https://eosweb.larc.nasa.gov/project/sage2/sage2_v7_table', 'version': pysagereader.__version__, 'Conventions': 'CF-1.7'} if self.cf_names: names = {'Lat': 'latitude', 'Lon': 'longitude', 'Alt_Grid': 'altitude', 'Beta': 'beta_angle', 'Ext': 'aerosol_extinction', 'Ext_Err': 'aerosol_extinction_error', 'O3': 'ozone', 'O3_Err': 'ozone_error', 'NO2': 'no2', 'NO2_Err': 'no2_error', 'SurfDen': 'surface_area_density', 'SurfDen_Err': 'surface_area_density_error', 'radius': 'effective_radius', 'radius_err': 'effective_radius_error', 'Density': 'air_density', 'Density_Err': 'air_density_error', 'Type_Sat': 'satellite_sunset', 'Type_Tan': 'local_sunset', 'Trop_Height': 'tropopause_altitude', 'Duration': 'event_duration'} for key in names.keys(): try: data.rename({key: names[key]}, inplace=True) except ValueError: pass return data @staticmethod def convert_index_bit_flags(data: Dict) -> xr.Dataset: """ Convert the int32 index flags to a dataset of distinct flags Parameters ---------- data Dictionary of input data as returned by ``load_data`` Returns ------- Dataset of the index bit flags """ flags = dict() flags['pmc_present'] = 0 flags['h2o_zero_found'] = 1 flags['h2o_slow_convergence'] = 2 flags['h2o_ega_failure'] = 3 flags['default_nmc_temp_errors'] = 4 flags['ch2_aero_model_A'] = 5 flags['ch2_aero_model_B'] = 6 flags['ch2_new_wavelength'] = 7 flags['incomplete_nmc_data'] = 8 flags['mirror_model'] = 15 flags['twomey_non_conv_rayleigh'] = 19 flags['twomey_non_conv_386_Aero'] = 20 flags['twomey_non_conv_452_Aero'] = 21 flags['twomey_non_conv_525_Aero'] = 22 flags['twomey_non_conv_1020_Aero'] = 23 flags['twomey_non_conv_NO2'] = 24 flags['twomey_non_conv_ozone'] = 25 flags['no_shock_correction'] = 30 f = dict() for key in flags.keys(): f[key] = (data['InfVec'] & 2 ** flags[key]) > 0 xr_data = [] time = pd.to_timedelta(data['mjd'], 'D') + pd.Timestamp('1858-11-17') for key in f.keys(): xr_data.append(xr.DataArray(f[key], coords=[time], dims=['time'], name=key)) return xr.merge(xr_data) @staticmethod def convert_species_bit_flags(data: Dict) -> xr.Dataset: """ Convert the int32 species flags to a dataset of distinct flags Parameters ---------- data Dictionary of input data as returned by `load_data` Returns ------- Dataset of the index bit flags """ flags = dict() flags['separation_method'] = [0, 1, 2] flags['one_chan_aerosol_corr'] = 3 flags['no_935_aerosol_corr'] = 4 flags['Large_1020_OD'] = 5 flags['NO2_Extrap'] = 6 flags['Water_vapor_ratio'] = [7, 8, 9, 10] flags['Cloud_Bit_1'] = 11 flags['Cloud_Bit_2'] = 12 flags['No_H2O_Corr'] = 13 flags['In_Troposphere'] = 14 separation_method = dict() separation_method['no_aerosol_method'] = 0 separation_method['trans_no_aero_to_five_chan'] = 1 separation_method['standard_method'] = 2 separation_method['trans_five_chan_to_low'] = 3 separation_method['four_chan_method'] = 4 separation_method['trans_four_chan_to_three_chan'] = 5 separation_method['three_chan_method'] = 6 separation_method['extension_method'] = 7 f = dict() for key in flags.keys(): if hasattr(flags[key], '__len__'): if key == 'separation_method': for k in separation_method.keys(): temp = data['ProfileInfVec'] & np.sum([2 ** k for k in flags[key]]) f[k] = temp == separation_method[k] else: temp = data['ProfileInfVec'] & np.sum([2 ** k for k in flags[key]]) f[key] = temp >> flags[key][0] # shift flag to save only significant bits else: f[key] = (data['ProfileInfVec'] & 2 ** flags[key]) > 0 xr_data = [] time = pd.to_timedelta(data['mjd'], 'D') +
pd.Timestamp('1858-11-17')
pandas.Timestamp
import sys import pandas as pd import numpy as np import json import os from datetime import date from scipy.stats import linregress import yaml from momentum_data import cfg DIR = os.path.dirname(os.path.realpath(__file__)) pd.set_option('display.max_rows', None) pd.set_option('display.width', None) pd.set_option('display.max_columns', None) try: with open('config.yaml', 'r') as stream: config = yaml.safe_load(stream) except FileNotFoundError: config = None except yaml.YAMLError as exc: print(exc) PRICE_DATA = os.path.join(DIR, "data", "price_history.json") ACCOUNT_VALUE = cfg("CASH") RISK_FACTOR_CFG = cfg("RISK_FACTOR") RISK_FACTOR = RISK_FACTOR_CFG or 0.002 MAX_STOCKS = cfg("STOCKS_COUNT_OUTPUT") SLOPE_DAYS = cfg("MOMENTUM_CALCULATION_PAST_DAYS") POS_COUNT_TARGET = cfg("POSITIONS_COUNT_TARGET") TITLE_RANK = "Rank" TITLE_TICKER = "Ticker" TITLE_SECTOR = "Sector" TITLE_UNIVERSE = "Universe" TITLE_MOMENTUM = "Momentum (%)" TITLE_RISK = "ATR20d" TITLE_PRICE = "Price" TITLE_AMOUNT = "Shares" TITLE_POS_SIZE = "Position ($)" TITLE_SUM = "Sum ($)" if not os.path.exists('output'): os.makedirs('output') def read_json(json_file): with open(json_file, "r") as fp: return json.load(fp) def momentum(closes): """Calculates slope of exp. regression normalized by rsquared""" returns = np.log(closes) indices = np.arange(len(returns)) slope, _, r, _, _ = linregress(indices, returns) # return ((1 + slope) ** 253) * (r**2) return (((np.exp(slope) ** 252) - 1) * 100) * (r**2) def atr_20(candles): """Calculates last 20d ATR""" daily_atrs = [] for idx, candle in enumerate(candles): high = candle["high"] low = candle["low"] prev_close = 0 if idx > 0: prev_close = candles[idx - 1]["close"] daily_atr = max(high-low, np.abs(high - prev_close), np.abs(low - prev_close)) daily_atrs.append(daily_atr) return pd.Series(daily_atrs).rolling(20).mean().tail(1).item() def calc_stocks_amount(account_value, risk_factor, risk_input): return (np.floor(account_value * risk_factor / risk_input)).astype(int) def calc_pos_size(amount, price): return np.round(amount * price, 2) def calc_sums(account_value, pos_size): sums = [] sum = 0 stocks_count = 0 for position in list(pos_size): sum = sum + position sums.append(sum) if sum < account_value: stocks_count = stocks_count + 1 return (sums, stocks_count) def positions(): """Returns a dataframe doubly sorted by deciles and momentum factor, with atr and position size""" json = read_json(PRICE_DATA) momentums = {} ranks = [] for ticker in json: try: closes = list(map(lambda candle: candle["close"], json[ticker]["candles"])) if closes: # calculate gaps of the last 90 days diffs = np.abs(pd.Series(closes[-SLOPE_DAYS[0]:]).pct_change().diff()).dropna() gaps = diffs[diffs > 0.15] ma = pd.Series(closes).rolling(100).mean().tail(1).item() if ma > closes[-1]: print("%s is below it's 100d moving average." % ticker) elif len(gaps): print("%s has a gap > 15%%" % ticker) else: ranks.append(len(ranks)+1) for slope_days in SLOPE_DAYS: if not slope_days in momentums: momentums[slope_days] = [] mmntm = momentum(
pd.Series(closes[-slope_days:])
pandas.Series
# kaggleのSMS Spam Collection Datasetでナイーブベイズを体験する # コード:https://qiita.com/fujin/items/50fe0e0227ef8457a473 import matplotlib.pyplot as pyplot import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import BernoulliNB # -データ準備- # CSV読み込み df =
pd.read_csv("./datasets/spam.csv", encoding="latin-1")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from src.tasks.preprocessing_funcs import load_dataloaders from src.tasks.trainer import train_and_fit from src.tasks.infer import infer_from_trained import logging from argparse import ArgumentParser from src.tasks.visualization import Graph from src.tasks.pdf_to_txt import PdfToTxt from src.tasks.merge_relations import MergeRelation from src.tasks.graph_visualization import GraphVisualization from src.tasks.get_training_data import get_candidates_for_train import glob,os import pandas as pd ''' This fine-tunes the BERT model on SemEval task ''' logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) logger = logging.getLogger('__file__') if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--train_data", type=str, default='/home/ying/PycharmProjects/biobert/datasets/RE/three_relations/train.tsv', \ help="training data .txt file path") parser.add_argument("--test_data", type=str, default='/home/ying/PycharmProjects/biobert/datasets/RE/three_relations/test.tsv', \ help="test data .txt file path") parser.add_argument("--use_pretrained_blanks", type=int, default=0, help="0: Don't use pre-trained blanks model, 1: use pre-trained blanks model") parser.add_argument("--num_classes", type=int, default=3, help='number of relation classes') parser.add_argument("--batch_size", type=int, default=8, help="Training batch size") parser.add_argument("--gradient_acc_steps", type=int, default=1, help="No. of steps of gradient accumulation") parser.add_argument("--max_norm", type=float, default=1.0, help="Clipped gradient norm") parser.add_argument("--fp16", type=int, default=0, help="1: use mixed precision ; 0: use floating point 32") # mixed precision doesn't seem to train well parser.add_argument("--num_epochs", type=int, default=10, help="No of epochs") parser.add_argument("--lr", type=float, default=2*0.00005, help="learning rate") parser.add_argument("--model_no", type=int, default=2, help='''Model ID: 0 - BERT\n 1 - ALBERT''') parser.add_argument("--train", type=int, default=1, help="0: Don't train, 1: train") parser.add_argument("--infer", type=int, default=1, help="0: Don't infer, 1: Infer") parser.add_argument("--freeze", type=int, default=0, help='''1: Freeze most layers until classifier layers\ \n0: Don\'t freeze \ (Probably best not to freeze if GPU memory is sufficient)''') args = parser.parse_args() if args.train == 1: net = train_and_fit(args) print("aaaa") if args.infer == 1: inferer = infer_from_trained(args, detect_entities=True) test2 = "exudry ® , omniderm ® , vigilon ® , duoderm ® , mepitel ® ) may aid in healing and reduce pain ." pred = inferer.infer_sentence(test2, detect_entities=True) print(pred) test3 = "Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer." pred = inferer.infer_sentence(test3, detect_entities=True) print(pred) test4 = "moreover , uft has proved to be effective for inoperable advanced malignancies such as colorectal cancer, especially in combination with leucovorin or cisplatin." pred = inferer.infer_sentence(test4, detect_entities=True) print(pred) test4 = "cancer can not be treated by dienogest." pred = inferer.infer_sentence(test4, detect_entities=True) print(pred) test5 = "In more severe cases with high fever or marked prostration , hospitalization may be needed with IV acyclovir , antibiotics , fluids , and pain medications ." pred = inferer.infer_sentence(test5, detect_entities=True) print(pred) test6 ="GIANT CELL TUMOR OF THE TENDON SHEATH A giant cell tumor of the tendon sheath is the most common tumor of the hand and presents with a firm enlarging nodule on the fingers ." pred = inferer.infer_sentence(test6, detect_entities=True) print(pred) test7 = "topical corticosteroids may improve the dermatitis, and chronic administration of oral acyclovir is appropriate for patients with eh " pred = inferer.infer_sentence(test7, detect_entities=True) print(pred) # # # # sents_for_pretraining =[] merged = MergeRelation() for file in glob.glob('data/PDF_FOR_PARSE/*.pdf'): csv_file = file.replace('.pdf', '.csv') if os.path.exists(csv_file): df = pd.read_csv(csv_file) merged.get_df(df) else: file_name = os.path.basename(file) sents_path = file.replace('.pdf', '_sents.csv') graph = Graph(file_name) input_sents = [] if os.path.exists(sents_path): df_sents = pd.read_csv(sents_path,index_col=0) for idx, row in df_sents.iterrows(): input_sents.append(row[0]) else: Pdf2txt = PdfToTxt(file,is_pdf=True) input_sents = Pdf2txt.get_processed_sents() sents_df =
pd.DataFrame(input_sents)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import covsirphy as cs def md(scenario, filename, name=None): with open(filename, "w") as fh: fh.write(scenario.summary(name=name).to_markdown()) def main(): print(cs.__version__) # Data loading data_loader = cs.DataLoader("input") jhu_data = data_loader.jhu(verbose=True) population_data = data_loader.population(verbose=True) # For Japan japan_data = data_loader.japan() jhu_data.replace(japan_data) print(japan_data.citation) # Records snl = cs.Scenario(jhu_data, population_data, country="Japan") snl.records(filename="records.jpg") # S-R trend analysis snl.trend(filename="trend.jpg") md(snl, "trend.md", "Main") # Disable snl.clear(name="A") snl.disable(phases=["0th", "3rd"], name="A") md(snl, "A.md", "A") snl.enable(phases=["0th"], name="A") md(snl, "A2.md", "A") # Combine snl.clear(name="B") snl.combine(phases=["1st", "5th"], name="B") md(snl, "B.md", "B") # Delete 0th phase snl.clear(name="C") snl.delete(phases=["0th"], name="C") md(snl, "C.md", "C") snl.enable(phases=["0th"], name="C") md(snl, "C2.md", "C2") # Delete 3rd phase snl.clear(name="D") snl.delete(phases=["3rd"], name="D") md(snl, "D.md", "D") # Delete last phase snl.clear(name="E") snl.delete(phases=["6th", "7th"], name="E") md(snl, "E.md", "E") # Add phase with end_date snl.add(end_date="31Aug2020", name="E") md(snl, "E2.md", "E") # Add phase with days snl.add(days=10, name="E") md(snl, "E3.md", "E") # Add phase with end_date=None and days=None snl.add(name="E") md(snl, "E4.md", "E") # Separate snl.clear(name="F", template="E") snl.separate(date="01Apr2020", name="F") md(snl, "F.md", "F") # Change snl.clear(name="G", template="F") snl.combine(phases=["0th", "1st"], name="G") snl.separate(date="12Apr2020", name="G") md(snl, "G.md", "G") # Optimize change point candidates = ["01Mar2020", "12Apr2020"] opt_dict = {date: {} for date in candidates} snl_opt = cs.Scenario(jhu_data, population_data, country="Japan", tau=720) snl_opt.trend(show_figure=False) for date in candidates: snl_opt.clear(name=date) snl_opt.combine(phases=["0th", "1st"], name=date) snl_opt.separate(date=date, name=date) snl_opt.estimate(cs.SIRF, phases=["0th", "1st"], name=date) opt_dict[date]["0th"] = snl_opt.get("RMSLE", phase="0th", name=date) opt_dict[date]["1st"] = snl_opt.get("RMSLE", phase="1st", name=date) with open("opt.md", "w") as fh: df =
pd.DataFrame.from_dict(opt_dict, orient="index")
pandas.DataFrame.from_dict
import re import pandas as pd import numpy as np class Resampler(object): """Resamples time-series data from one frequency to another frequency. """ min_in_freqs = { 'MIN': 1, 'MINUTE': 1, 'DAILY': 1440, 'D': 1440, 'HOURLY': 60, 'HOUR': 60, 'H': 60, 'MONTHLY': 43200, 'M': 43200, 'YEARLY': 525600 } def __init__(self, data, freq, how='mean', verbosity=1): """ Arguments: data : data to use freq : frequency at which to transform/resample how : string or dictionary mapping to columns in data defining how to resample the data. """ data = pd.DataFrame(data) self.orig_df = data.copy() self.target_freq = self.freq_in_mins_from_string(freq) self.how = self.check_how(how) self.verbosity = verbosity def __call__(self, *args, **kwargs): if self.target_freq > self.orig_freq: # we want to calculate at higher/larger time-step return self.downsample() else: # we want to calculate at smaller time-step return self.upsamle() @property def orig_freq(self): return self.freq_in_mins_from_string(pd.infer_freq(self.orig_df.index)) @property def allowed_freqs(self): return self.min_in_freqs.keys() def check_how(self, how): if not isinstance(how, str): assert isinstance(how, dict) assert len(how) == len(self.orig_df.columns) else: assert isinstance(how, str) how = {col:how for col in self.orig_df.columns} return how def downsample(self): df = pd.DataFrame() for col in self.orig_df: _df = downsample_df(self.orig_df[col], how=self.how[col], target_freq=self.target_freq) df = pd.concat([df, _df], axis=1) return df def upsamle(self, drop_nan=True): df = pd.DataFrame() for col in self.orig_df: _df = upsample_df(self.orig_df[col], how=self.how[col], target_freq=self.target_freq) df = pd.concat([df, _df], axis=1) # concatenation of dataframes where one sample was upsampled with linear and the other with same, will result # in different length and thus concatenation will add NaNs to the smaller column. if drop_nan: df = df.dropna() return df def str_to_mins(self, input_string: str) -> int: return self.min_in_freqs[input_string] def freq_in_mins_from_string(self, input_string: str) -> int: if has_numbers(input_string): in_minutes = split_freq(input_string) elif input_string.upper() in ['D', 'H', 'M', 'DAILY', 'HOURLY', 'MONTHLY', 'YEARLY', 'MIN', 'MINUTE']: in_minutes = self.str_to_mins(input_string.upper()) else: raise TypeError("invalid input string", input_string) return int(in_minutes) def downsample_df(df, how, target_freq): if isinstance(df, pd.Series): df = pd.DataFrame(df) assert how in ['mean', 'sum'] # from low timestep to high timestep i.e from 1 hour to 24 hour # For quantities like temprature, relative humidity, Q, wind speed if how == 'mean': return df.resample(f'{target_freq}min').mean() # For quantities like 'rain', solar radiation', evapotranspiration' elif how == 'sum': return df.resample(f'{target_freq}min').sum() def upsample_df(df, how:str, target_freq:int): """drop_nan: if how='linear', we may """ # from larger timestep to smaller timestep, such as from daily to hourly out_freq = str(target_freq) + 'min' if isinstance(df, pd.Series): df = pd.DataFrame(df) col_name = df.columns[0] nan_idx = df.isna() # preserving indices with nan values assert df.shape[1] <=1 nan_idx_r = nan_idx.resample(out_freq).ffill() nan_idx_r = nan_idx_r.fillna(False) # the first value was being filled with NaN, idk y? data_frame = df.copy() # For quantities like temprature, relative humidity, Q, wind speed, we would like to do an interpolation if how == 'linear': data_frame = data_frame.resample(out_freq).interpolate(method='linear') # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan # For quantities like 'rain', solar radiation', evapotranspiration', we would like to distribute them equally # at smaller time-steps. elif how == 'same': # distribute rainfall equally to smaller time steps. like hourly 17.4 will be 1.74 at 6 min resolution idx = data_frame.index[-1] + get_offset(data_frame.index.freqstr) data_frame = data_frame.append(data_frame.iloc[[-1]].rename({data_frame.index[-1]: idx})) data_frame = add_freq(data_frame) df1 = data_frame.resample(out_freq).ffill().iloc[:-1] df1[col_name ] /= df1.resample(data_frame.index.freqstr)[col_name ].transform('size') data_frame = df1.copy() # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan else: raise ValueError(f"unoknown method to transform '{how}'") return data_frame def add_freq(df, assert_feq=False, freq=None, method=None): idx = df.index.copy() if idx.freq is None: _freq =
pd.infer_freq(idx)
pandas.infer_freq
import re import time import argparse import numpy as np import pandas as pd import util as ut from collections import Counter from collections import defaultdict from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import NearestNeighbors # public def retrieve_chunk(df, max_size=5000000, chunk_number=0): if chunk_number == -1: return df for i in range(2, 50): ut.out('splitting into %d chunks...' % i) dfs = np.array_split(df, i) if len(dfs[0]) <= max_size: ut.out('return chunk %d...' % chunk_number) return dfs[chunk_number] return df def retrieve_max_id(in_dir='', chunk_number=0, info_type='text'): in_col = info_type + '_id' max_id = 0 if chunk_number > 0: fname = in_dir + str(chunk_number - 1) + '_' + info_type + '_sim.csv' df =
pd.read_csv(fname)
pandas.read_csv
import time import sorting import bst import timeit import platform import random import numpy as np import pandas as pd import matplotlib.pyplot as plt import heapq import copy random.seed(521) DEFAULT_NUMBER = 100000 # 100k DEFAULT_POPULATION = range(100000) # 1m DEFAULT_SIZES = [10, 100, 1000, 10000, 100000] def _statistify(array): """returns mean and confidence interval of a given array of numbers (assuming normality of the sampling population) """ mean, se = np.mean(array), 2 * (np.std(array) / np.sqrt(len(array))) return mean, se class TimeTest(object): """returns an object which tests the time efficiency of a multi-dimensional array of increasing sizes of random integers over functions of sorting, binary tree insertions and deletions and heap insertions/get/removal. There's the possibility to get a summary of the tests results with CPU information, OS infos and plot of array size/time of all the executed tests. Csv file writer of the tests results for statistical purposes has been implemented too. """ def __init__(self, array=None, max_val=DEFAULT_NUMBER): # this is the dict of dicts where the values obtained from the test_it func will be stored. self.test_result = dict(quick_sort={}, merge_sort={}, binary_insertion={}, binary_insertion_se={}, binary_get_random={}, binary_get_random_se={}, binary_delete={}, binary_delete_se={}, binary_get_max={}, binary_get_max_se={}, heap_insert={}, heap_insert_se={}, heap_get_max={}, heap_get_max_se={}, heap_remove_se={}, heap_remove={}) # dict of all the list to use for testing self.array_pool = {} # both for summary() purrrrrposes self.cpu = platform.processor() self.os = platform.platform() self.hashcode = random._sha512().hexdigest()[0:10] if array is None: # we generate the arrays of random numbers with a logarithmic distance one with the other for i in np.logspace(1.0, np.log10(max_val, dtype=float), base=10.0, endpoint=True, dtype=int): self.array_pool[i] = random.sample(DEFAULT_POPULATION, k=i) # to use a more accurate logarithmic scale, to improve plotting and statistics quality elif array is "e_log": for i in DEFAULT_SIZES: self.array_pool[i] = random.sample(DEFAULT_POPULATION, k=i) # optional # else: # for lst in array: # self.array_pool[len(lst)] = lst print("time test generated!") def test_it(self): """generates a number of arrays of increasing size each of random integers and tests them over the given functions. Eventually adds the results to the self.test_result dictionary with template: {function: {size_array: time_mean}, function_se: {size_array: time_confint}} """ for key, arr in self.array_pool.items(): # sorting algorithms self._test_it_quick_sort(key, arr) self._test_it_merge_sort(key, arr) print("sorting timing done!") # BSTs implementation insertion_counter = 0 global tree tree = bst.BinarySearchTree() for bst_key in self.array_pool[DEFAULT_NUMBER]: insertion_counter += 1 if insertion_counter in self.array_pool.keys(): self._test_it_binary_get_max(insertion_counter) self._test_it_binary_get_random(insertion_counter) # testing over 30 randomnumber AND NOT CHANGING THE TREE self._test_it_binary_insertion_deletion(insertion_counter, random.sample(self.array_pool[DEFAULT_NUMBER], k=50)) tree.put(bst_key, 0) else: # KEY, VALUE tree.put(bst_key, 0) print("binary insertion, get random, get max and deletion timing done!") # heap implementation global heaper heaper = [] heap_counter = 0 for heap_key in self.array_pool[DEFAULT_NUMBER]: heap_counter += 1 if heap_counter in self.array_pool.keys(): # they will add values to heap_temp self._test_it_heap_get_max(heap_counter) # NOT CHANGING THE HEAP self._test_it_heap_insert_delete(heap_counter, random.sample(self.array_pool[DEFAULT_NUMBER], k=50)) heapq.heappush(heaper, heap_key) else: heapq.heappush(heaper, heap_key) print("heap insertion, get max and deletion timing done!") self._pandator() def csv(self, name='common'): """generates a csv file with the results of the test_it function, returns a "Run test_it before requesting csv report" if the self.test_result field has not been populated already. """ if name is 'common': name = 'benchmark_analysis_' + self.hashcode + ".csv" with open(name, 'w') as f: f.write(self.test_result.to_csv()) print("csv file written! check current directory") def summary(self, pdf_report=True): """prints out a summary with CPU, OS infos, plots of all the tests [array_size/time] and POSSIBLY a pdf markdown with all of it in a beautiful graphics. Returns a "Run test_it before requesting a test summary" if the self.test_result field has not been populated already. """ # TODO needs fix with errorscatter plt.figure(figsize=(8, 11)) plt.suptitle("Benchmark analysis summary", fontsize=24) plt.subplots_adjust(top=0.88) # sorting repr plt.subplot(321) plt.tight_layout() plt.title("Quick sort") plt.grid() plt.xscale('log') plt.plot(self.test_result.quick_sort, marker='.', ms=0.99) plt.ylabel("time") plt.xlabel("$\log(size)$") plt.subplot(322) plt.tight_layout() plt.grid() plt.title("Merge Sort") plt.plot(self.test_result.merge_sort, marker='.', ms=0.99) plt.ylabel("time") plt.xlabel("$\log(size)$") plt.xscale('log') # binary tree repr plt.subplot(323) plt.tight_layout() plt.grid() plt.errorbar(self.test_result.binary_delete.index, self.test_result.binary_delete, self.test_result.binary_delete_se, label="Delete", ecolor='orange', fmt='b-o', ms=0.99, capsize=2) plt.errorbar(self.test_result.binary_insertion.index, self.test_result.binary_insertion, self.test_result.binary_insertion_se, label="Insert", ecolor='green', fmt='r-o', ms=0.99, capsize=2) plt.yscale('log') plt.ylabel("$\log(time)$") plt.xlabel("$\log(size)$") plt.xscale('log') plt.title("Binary insert and binary delete") plt.legend() plt.subplot(324) plt.tight_layout() plt.grid() plt.errorbar(self.test_result.binary_get_max.index, self.test_result.binary_get_max, self.test_result.binary_get_max_se, label="Get max", ecolor='green', fmt='r-o', ms=0.99, capsize=2) plt.errorbar(self.test_result.binary_get_random.index, self.test_result.binary_get_random, self.test_result.binary_get_random_se, label="Get random", ecolor='orange', fmt='b-o', ms=0.99, capsize=2) plt.ylabel("$\log(time)$") plt.xlabel("$\log(size)$") plt.xscale('log') plt.yscale('log') plt.legend() plt.title("Binary get max and binary get random") # heap repr plt.subplot(325) plt.tight_layout() plt.grid() plt.errorbar(self.test_result.heap_insert.index, self.test_result.heap_insert, self.test_result.heap_insert_se, label="Insertion", ecolor='green', fmt='r-o', ms=0.99, capsize=2) plt.errorbar(self.test_result.heap_remove.index, self.test_result.heap_remove, self.test_result.heap_remove_se, label="Deletion", ecolor='orange', fmt='b-o', ms=0.99, capsize=2) plt.xscale('log') plt.yscale('log') plt.ylabel("$\log(time)$") plt.xlabel("$\log(size)$") plt.legend() plt.title("Heap insertion, deletion") plt.subplot(326) plt.tight_layout() plt.errorbar(self.test_result.index, self.test_result.heap_get_max, self.test_result.heap_get_max_se, label="Get max", ecolor='red', ms=0.99, capsize=3) plt.title("Heap get max") plt.yscale('log') plt.xscale('log') plt.ylabel("$\log(time)$") plt.xlabel("$\log(size)$") plt.subplots_adjust(top=0.88) # text with infos self.print_info() if pdf_report: namefile = "benchmark_analysis_" + self.hashcode + ".pdf" plt.savefig(fname=namefile, papertype='a4', orientation='portrait') plt.show() # sorting impl def _test_it_quick_sort(self, key, arr): self.test_result['quick_sort'][key] = timeit.timeit("sorting.quick_sort(" + str(arr) + ")", globals=globals(), number=10) def _test_it_merge_sort(self, key, arr): self.test_result['merge_sort'][key] = timeit.timeit("sorting.merge(" + str(arr) + ")", globals=globals(), number=10) # bst impl def _test_it_binary_insertion_deletion(self, key, array): results_ins, results_del = [], [] for value in array: results_ins.append(timeit.timeit("tree.put(" + str(value) + ",0)", globals=globals(), number=1)) results_del.append(timeit.timeit("tree.delete(" + str(value) + ")", globals=globals(), number=1)) self.test_result['binary_insertion'][key], self.test_result['binary_insertion_se'][key] = _statistify( results_ins) self.test_result["binary_delete"][key], self.test_result["binary_delete_se"][key] = _statistify(results_del) def _test_it_binary_get_max(self, key): results = [] for _ in range(50): results.append(timeit.timeit("tree.findMax()", globals=globals(), number=10)) self.test_result['binary_get_max'][key], self.test_result['binary_get_max_se'][key] = _statistify(results) def _test_it_binary_get_random(self, key): results = [] for _ in range(50): rand_key = random.randint(0, len(tree)) results.append(timeit.timeit("tree.get(" + str(rand_key) + ")", globals=globals(), number=100)) self.test_result['binary_get_random'][key], self.test_result['binary_get_random_se'][key] = _statistify(results) # heap impl def _test_it_heap_insert_delete(self, key, array): results_ins, results_del = [], [] setupline = 'copy_heap = copy.deepcopy(heaper)' for value in array: results_ins.append( timeit.timeit('heapq.heappush(copy_heap,' + str(value) + ')', number=1, globals=globals(), setup=setupline)) results_del.append(timeit.timeit('heapq.heappop(copy_heap)', number=1, globals=globals(), setup=setupline)) self.test_result['heap_insert'][key], self.test_result['heap_insert_se'][key] = _statistify(results_ins) self.test_result['heap_remove'][key], self.test_result['heap_remove_se'][key] = _statistify(results_del) # TODO repair this function def _test_it_heap_get_max(self, key): results = [] for _ in range(30): results.append(timeit.timeit('heaper[0]', number=10, globals=globals())) self.test_result['heap_get_max'][key], self.test_result['heap_get_max_se'][key] = _statistify(results) # deprecated def _test_it_heap_del_max(self, key): self.test_result['heap_remove'][key] = timeit.timeit('heapq.heappop(heaper)', number=1, globals=globals()) # TODO fix this function def _pandator(self): """transform the collected results from dict to pandas DataFrames, merging them together into a unique Df""" # noinspection PyTypeChecker self.test_result =
pd.DataFrame.from_dict(self.test_result)
pandas.DataFrame.from_dict
r""" Baseline Calculation """ # Standard Library imports import argparse import cartopy.crs as ccrs import datetime import h5py import json import matplotlib.colors import matplotlib.dates as mdates import matplotlib.pyplot as plt import netCDF4 import numpy as np import os import pandas as pd import re import scipy.optimize import warnings import sys import xarray as xr # Third party imports from collections import OrderedDict # Semi-local imports import name_qch4_couple.io import name_qch4_couple.name import name_qch4_couple.plot import name_qch4_couple.plot_h2 import name_qch4_couple.region_EU import name_qch4_couple.routines import name_qch4_couple.util # Local imports import routines import chem_co # ============================================================================= # Settings # ============================================================================= # Argument Parser parser = argparse.ArgumentParser() parser.add_argument("-site", required=True) parser.add_argument("-species", required=True) parser.add_argument("-year", required=True, type=int) parser.add_argument("-window1", required=True, type=int) parser.add_argument("-window2", required=True, type=int) parser.add_argument("-force", required=True, type=int) parser.add_argument("-odir", required=True) args = parser.parse_args() site = args.site year = args.year species = args.species window1 = args.window1 window2 = args.window2 force_compute = bool(args.force) odir = args.odir #mode = 'all' site_ref = 'mhd' # HDF reference key p = 101325 # Pa T = 288.15 # K ofile_con = f'condition-{site}-{species}-{year}.nc' ofile_fil = f'filtered-{site}-{species}-{year}.nc' ofile_fin = f'baseline-{site}-{species}-{year}.nc' long_names = OrderedDict() locations = OrderedDict() with open(f'inputs/baseline/{site}.json', 'r') as f: st_info = json.load(f) long_names[site] = st_info['long_name'] locations[site] = st_info['location'] site1 = site.replace('_', '-') date_nodash = 'REPLACE' if species == 'ch4': #from chem_co import read_Q, read_obs, read_baseline var_name="chi_CH4" Dfile = ( f'inputs/baseline/footprints_mhd/' f'{site1}_UKV_EUROPE_{date_nodash}.nc' ) Q2obs = 1.e9 / 16.043 # M_H2 (g mol-1) - IUPAC ylabel = u'$\chi$ CH$_{4}$ (nmol mol$^{-1}$)' ylim = [1800., 2400.] yticks = np.arange(1800., 2400., 50.) var_long_name = 'mole_fraction_of_hydrogen' var_units = 'nmol mol-1' # ============================================================================= # Pre-processing # ============================================================================= print(f'Initialising') print(f' site = {site}') print(f' year = {year}') # Dates dt1 = pd.to_timedelta(window1//2, 'H') dt2 = pd.to_timedelta(window2//2, 'H') dt_large = max([dt1, dt2]) * 3 dates_tHour, dates_tDay = ( pd.date_range( pd.to_datetime(f'{year}') - dt_large, pd.to_datetime(f'{int(year) + 1}') + dt_large, freq='1H', closed='left' ) for freq in ['1H', '1D'] ) dates_tMonth = pd.date_range( (pd.to_datetime(f'{year}') - dt_large).strftime('%Y-%m'), (pd.to_datetime(f'{int(year) + 1}') + dt_large).strftime('%Y-%m'), freq='1MS', #closed='left' ) # Grid grid_info = routines.define_grid() dlat = grid_info['dlat'] nlat = grid_info['nlat'] nlon = grid_info['nlon'] area = grid_info['area'] grid_centre = grid_info['grid_centre'] grid_vertex = grid_info['grid_vertex'] nlat_odd = bool(nlat % 2) nlon_odd = bool(nlon % 2) nlat_half = nlat // 2 nlon_half = nlon // 2 # Fooprints #print('Read Footprints') def read_D(Dfile): h1 = 3.e3 h2 = 8.e3 with xr.open_dataset(Dfile) as ds_read: with ds_read.load() as Din: # time nt = Din.time.size # latlon nlat = Din.lat.size nlat_odd = bool(nlat % 2) nlat_half = nlat // 2 nlon = Din.lon.size nlon_odd = bool(nlon % 2) nlon_half = nlon // 2 # height lt = Din.height.values < h1 ut = (h1 <= Din.height.values) & (Din.height.values < h2) st = h2 <= Din.height.values # Footprint (lat, lon, time) D = Din.fp.transpose('time', 'lat', 'lon').values # End locations (height, lat/lon, time) end = np.zeros((nt, 17)) endn = Din.particle_locations_n.transpose('time', 'height', 'lon' ).values ends = Din.particle_locations_s.transpose('time', 'height', 'lon' ).values ende = Din.particle_locations_e.transpose('time', 'height', 'lat' ).values endw = Din.particle_locations_w.transpose('time', 'height', 'lat' ).values end[:, 0] += endn[:, lt, -nlon_half:].sum((1, 2)) end[:, 1] += ende[:, lt, :+nlat_half].sum((1, 2)) end[:, 2] += ende[:, lt, -nlat_half:].sum((1, 2)) end[:, 3] += ends[:, lt, :+nlon_half].sum((1, 2)) end[:, 4] += ends[:, lt, -nlon_half:].sum((1, 2)) end[:, 5] += endw[:, lt, :+nlat_half].sum((1, 2)) end[:, 6] += endw[:, lt, -nlat_half:].sum((1, 2)) end[:, 7] += endn[:, lt, :+nlon_half].sum((1, 2)) end[:, 8] += endn[:, ut, -nlon_half:].sum((1, 2)) end[:, 9] += ende[:, ut, :+nlat_half].sum((1, 2)) end[:, 10] += ende[:, ut, -nlat_half:].sum((1, 2)) end[:, 11] += ends[:, ut, :+nlon_half].sum((1, 2)) end[:, 12] += ends[:, ut, -nlon_half:].sum((1, 2)) end[:, 13] += endw[:, ut, :+nlat_half].sum((1, 2)) end[:, 14] += endw[:, ut, -nlat_half:].sum((1, 2)) end[:, 15] += endn[:, ut, :+nlon_half].sum((1, 2)) end[:, 16] += ( endn[:, st].sum((1, 2)) + ende[:, st].sum((1, 2)) + ends[:, st].sum((1, 2)) + endw[:, st].sum((1, 2)) ) if nlon_odd: end[:, 0] += endn[:, lt, nlon_half].sum((1,)) / 2 end[:, 1] += ende[:, lt, nlat_half].sum((1,)) / 2 end[:, 2] += ende[:, lt, nlat_half].sum((1,)) / 2 end[:, 3] += ends[:, lt, nlon_half].sum((1,)) / 2 end[:, 4] += ends[:, lt, nlon_half].sum((1,)) / 2 end[:, 5] += endw[:, lt, nlat_half].sum((1,)) / 2 end[:, 6] += endw[:, lt, nlat_half].sum((1,)) / 2 end[:, 7] += endn[:, lt, nlon_half].sum((1,)) / 2 end[:, 8] += endn[:, ut, nlon_half].sum((1,)) / 2 end[:, 9] += ende[:, ut, nlat_half].sum((1,)) / 2 end[:, 10] += ende[:, ut, nlat_half].sum((1,)) / 2 end[:, 11] += ends[:, ut, nlon_half].sum((1,)) / 2 end[:, 12] += ends[:, ut, nlon_half].sum((1,)) / 2 end[:, 13] += endw[:, ut, nlat_half].sum((1,)) / 2 end[:, 14] += endw[:, ut, nlat_half].sum((1,)) / 2 end[:, 15] += endn[:, ut, nlon_half].sum((1,)) / 2 return D, end # Observations def r_decc(fpath): odata = pd.read_csv( fpath, usecols=lambda x: x.lower() in ['time', 'ch4_ppb'], index_col=['time'], skipinitialspace=True, parse_dates=['time'] ).dropna() # odata = odata.dropna() odata.columns = odata.columns.str.lower() return odata def read_obs(timestamps, site, resample=False): date = timestamps[0].strftime('%Y-%m') t0 = timestamps[0].strftime('%Y-%m-%d %H') t1 = timestamps[-1].strftime('%Y-%m-%d %H') if site == 'WAO': ifile = 'inputs/obs/WAO_H2_oct2021.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 elif site == 'MHD_10magl': ifile = 'inputs/baseline/MHD_2018.csv' col_or_no = 'ch4_ppb' sigma_col_or_no = 0.2 else: ifile = False col_or_no = np.nan sigma_col_or_no = np.nan if ifile: all_obs_raw = r_decc(ifile).sort_index().loc[t0:t1] obs_raw = all_obs_raw[col_or_no] sigma_obs_raw = (all_obs_raw[sigma_col_or_no] if isinstance(sigma_col_or_no, str) else pd.Series(sigma_col_or_no, index=all_obs_raw.index)) if isinstance(col_or_no, str): obs = (obs_raw if resample is False else obs_raw.resample('1H').mean().reindex(timestamps)) else: obs = pd.Series(col_or_no, index=timestamps) if isinstance(sigma_col_or_no, str) or isinstance(col_or_no, str): sigma_obs = ( sigma_obs_raw if resample is False else sigma_obs_raw.resample('1H').apply( lambda x: np.sum(x**2)).reindex(timestamps)) else: sigma_obs = pd.Series(sigma_col_or_no, index=timestamps) return obs, sigma_obs obs, sigma_obs = read_obs(dates_tHour, site) # Filters - Footprint (should not exceed) filter1 = { k: np.zeros((nlat, nlon)) for k in ['f_local', 'f_europe', 'f_south'] } ## Local radius = 2 st_idx = [np.abs(grid_centre[i] - l).argmin() for i, l in enumerate(locations[site])] filter1['f_local'][ st_idx[1]-radius:st_idx[1]+radius+1, st_idx[0]-radius:st_idx[0]+radius+1 ] = 1. ## Europe filter1['f_europe'][ np.load('europe.npy', 'r') ] = 1. ## Southern lat_south = 30. filter1['f_south'][grid_centre[1] + 0.5*dlat <= lat_south] = 1. ## Population # filter1['f_pop'] = ## Thresholds filter_threshold = {k: 1. for k in filter1} filter_threshold['f_local'] = 10 filter_threshold['f_europe'] = 5 filter_threshold['f_south'] = 2 # Dilution sensitivity limit #dsl = 3.4 * 1.e6 / p * 8.314 * T dsl = 3.4 / p * 8.314 * T # Filters - Domain borders (should exceed) filter2 = { 'p_nw_all': [0, 5, 6, 7, 8, 13, 14, 15], # default } ## Thresholds filter_threshold['p_nw_all'] = 0.8 # ============================================================================= # Main Process # ============================================================================= print("Processing Main Routine") filters = list(filter1) + list(filter2) flag_con = (ofile_con and os.path.exists(os.path.join(odir, ofile_con)) and not force_compute) if flag_con: try: with xr.open_dataset(os.path.join(odir, ofile_con)) as ds_read: with ds_read.load() as ds: if any([i not in ds.variables for i in filter_threshold]): flag_con = False except: flag_con = False # Get conditions if flag_con: print(" Using pre-existing filters") with xr.open_dataset(os.path.join(odir, ofile_con)): with ds_read.load() as ds: condition = pd.concat([ ds[i].to_series() for i in filter_threshold ], axis=1) idx_H = condition.index else: print(" Applying filters") idx_H = dates_tHour condition = pd.DataFrame(0, index=idx_H, columns=filters) for month in dates_tMonth: print(f" {month}") month_idx = month.strftime('%Y-%m') try: hoursinmonth = pd.date_range( month, month + pd.offsets.MonthBegin(1), freq='1H', closed='left' ) Dfile_in = re.sub(date_nodash, month.strftime('%Y%m'), Dfile) D, end_loc = (i[hoursinmonth.isin(dates_tHour)] for i in read_D(Dfile_in)) condition.loc[month_idx, filter1] = pd.DataFrame( {k: (D * v).sum((1, 2)) for k, v in filter1.items()}, index=condition.loc[month_idx].index ) condition.loc[month_idx, filter2] = pd.DataFrame( {k: end_loc[:, v].sum((1,)) for k, v in filter2.items()}, index=condition.loc[month_idx].index ) except: condition.loc[month, filter1] = np.inf condition.loc[month, filter2] = -np.inf name_qch4_couple.io.w_nc( dim={ 'time': [ ( dates_tHour - pd.to_datetime('1990-01') ).astype('timedelta64[s]'), {'size': None}, {'datatype': np.float64, 'zlib': True}, { 'units': f'seconds since {pd.to_datetime("1990-01")}', 'long_name': 'time', 'calendar': 'gregorian', } ], }, var={ **{ k: [ condition[k].values, { 'dimensions': ('time'), 'datatype': np.float64, 'zlib': True }, { 'units': var_units, 'long_name': var_long_name } ] for k in filter_threshold }, }, ofile=os.path.join(odir, ofile_con) ) # Check if baseline condition filtered = pd.DataFrame(0, index=idx_H, columns=filters) for k in filter1: threshold = filter_threshold[k] filtered.loc[condition[k] / dsl <= threshold, k] = 1. for k in filter2: threshold = filter_threshold[k] filtered.loc[condition[k] >= threshold, k] = 1. # Baseline filters_fin = ['f_local', 'f_europe', 'f_south', 'p_nw_all'] oidx = obs.index nidx = oidx.floor('H') obs_filter = filtered.reindex(nidx).reset_index(drop=True) obs_filter.index = oidx baseline0 = obs[obs_filter[filters_fin].min(1) == 1.] baseline0_sigma = sigma_obs[obs_filter[filters_fin].min(1) == 1.] #baseline0 = baseline0.loc[baseline0.notnull()] #baseline0_sigma = baseline0_sigma.loc[baseline0.notnull()] if not force_compute and os.path.exists(os.path.join(odir, ofile_fin)): print(" Reading baselines") with xr.open_dataset(os.path.join(odir, ofile_fin)) as ds_read: with ds_read.load() as ds: baseline2 = ds[var_name].to_series() baseline2_var = ds[f'var_{var_name}'].to_series() else: print(" Processing baselines") warnings.simplefilter('ignore', np.RankWarning) check = pd.DataFrame(0., index=dates_tHour, columns=[]) meas_on_time = dates_tHour.intersection(baseline0.index) window1bef = dates_tHour.to_series().apply( lambda x: baseline0.loc[x - dt1//2 : x].size ) window1aft = dates_tHour.to_series().apply( lambda x: baseline0.loc[x : x + dt1//2].size ) window1minhalfwidth = dates_tHour.to_series().apply( lambda x: 2 if x in meas_on_time else 1 ) window1bef_more = window1minhalfwidth - window1bef window1aft_more = window1minhalfwidth - window1aft window1start = dates_tHour.to_series().apply(lambda x: ( x - dt1 if window1bef.loc[x] > window1minhalfwidth.loc[x] else baseline0.loc[:x - dt1].iloc[-window1bef_more[x]:].first_valid_index() if baseline0.loc[:x - dt1].iloc[-window1bef_more[x]:].size else dates_tHour[0] )) window1end = dates_tHour.to_series().apply( lambda x: ( x + dt1 if window1aft.loc[x] > window1minhalfwidth.loc[x] else baseline0.loc[x + dt1:].iloc[:window1aft_more[x]].last_valid_index() if baseline0.loc[x + dt1:].iloc[:window1aft_more[x]].size else dates_tHour[-1] )) def fit_func(value, sigma, time): nfront = value.loc[:time].size nback = value.loc[time:].size if value.size >= 2 and all([nfront, nback]): order = min(value.size, 2) t2H = (value.index - time).to_series() / pd.Timedelta(hours=1) fit = scipy.optimize.curve_fit( ( (lambda x, a, b, c: a + b*x + c*x**2) if order == 2 else (lambda x, a, b: a + b*x) ), t2H.values, value.values, sigma=sigma.values, absolute_sigma=True, method='trf' ) intercept = fit[0][0] variance = fit[1][0, 0] + np.var(value) elif value.size: intercept = value.values[0] variance = sigma.values[0] else: intercept = np.nan variance = np.nan return pd.Series([intercept, variance], index=['intercept', 'variance']) baseline1 = dates_tHour.to_series().apply(lambda x: fit_func(baseline0.loc[window1start[x]:window1end[x]], baseline0_sigma.loc[window1start[x]:window1end[x]], x)) baseline1.interpolate('time', inplace=True, limit_direction='both') baseline2 = baseline1['intercept'].rolling( window2+1, center=True ).mean().interpolate('time', limit_direction='both') baseline2_var = baseline1['variance'].rolling( window2+1, center=True ).mean().interpolate('time', limit_direction='both') name_qch4_couple.io.w_nc( dim={ 'time': [ ( dates_tHour[dates_tHour.year == year] - pd.to_datetime('1990-01') ).astype('timedelta64[s]'), {'size': None}, {'datatype': np.float64, 'zlib': True}, { 'units': f'seconds since {
pd.to_datetime("1990-01")
pandas.to_datetime
# this class is aimed at generating data for the redundant and noisy contexts import os import numpy as np import pandas as pd from os.path import join import random from runs.experiments import Experiment def generate_tr_vl_ts_splits(id, source_path, split_path, n_tr=3800, n_vl=872, n_ts=1821): """ Here we generate the train, validation, and test split starting from the training set of the SST2 only. The data are available at https://github.com/CS287/HW1/tree/master/data We save the three splits into three different files :param id: the id of the experiment, not necessary for computation :param source_path: where to retrieve the original splits :param split_path: where to save the result :param n_vl: number of validation examples :param n_ts: number of test examples """ train_sentences = pd.read_csv(join(source_path, 'train.csv'), index_col=0) train_labels = np.load(join(source_path, 'train.npy')) file_names = ['train', 'valid', 'test'] div = np.array([n_tr // 2, n_vl // 2, n_ts // 2]) splits = np.cumsum(div) seed = 10 pos_id = np.argwhere(train_labels == 1).squeeze() neg_id = np.argwhere(train_labels == 0).squeeze() random.Random(seed).shuffle(pos_id) random.Random(seed).shuffle(neg_id) splits_pos = np.split(pos_id, splits) # here we split in the three dataset splits_neg = np.split(neg_id, splits) for p_, n_, name_ in zip(splits_pos, splits_neg, file_names): df =
pd.concat([train_sentences.loc[p_], train_sentences.loc[n_]])
pandas.concat
import argparse import json import os import re from glob import glob import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set_style("dark") def parse_args(): description = """Measure how you spend time by tracking key presses and changes to window focus or title.""" p = argparse.ArgumentParser(description=description) p.add_argument("-b", "--between", help="Times in 'HH:MM HH:MM' format.") p.add_argument("-c", "--categories", help="Category dictionary (JSON).") p.add_argument("-d", "--data", nargs="*", help="Data files to load.") p.add_argument("-e", "--end", help="Date in YYYY-MM-DD format.") p.add_argument("-s", "--start", help="Date in YYYY-MM-DD format.") idle_help = "Max minutes between events before you're considered idle." p.add_argument("-i", "--idle", help=idle_help, default=10, type=int) freq_help = "Grouping frequency. See pandas freq docs for format." p.add_argument("-f", "--freq", help=freq_help, default="60min") return p.parse_args() def load_df(paths=None, freq="60min"): if not paths: home = os.environ.get("HOME") path = os.path.join(home, ".config", "dowut", "data", "data_*.csv") paths = sorted(glob(path)) df = pd.concat(pd.read_csv(path, parse_dates=["time"]) for path in paths) df.sort_values("time", inplace=True) df.set_index("time", drop=False, inplace=True) # If a duration straddles a grouping boundary (say we group hourly and the # event lasted from from 5:59 to 6:01), we need one minute allocated to the # 5:00 hour and one minute to the 6:00 hour. To make the calculations more # straightforward, we insert fake events at the grouping boundaries. l = df.time.min().floor(freq) u = df.time.max().ceil(freq) r = pd.date_range(l, u, freq=freq, closed="left") s = pd.Series(r) idx = pd.concat([s, df.time]).sort_values() df = df.reindex(idx) df["time"] = df.index # Insert a fake event type at "boundary" times. It inherits all values # except event_type from the previous row. This ensures the last event from # the previous group crosses the boundary while still having its duration # correctly allocated to both groups. df["event_type"].fillna("Fake", inplace=True) df.fillna(method="ffill", inplace=True) df.fillna("Fake", inplace=True) return df def load_categories(path): if not path: home = os.environ.get("HOME") path = os.path.join(home, ".config", "dowut", "categories.json") try: with open(path) as f: return json.load(f) except: return {} def plot_active(df, ax, freq, title, normalize=False, max_idle=None): df = df.copy() delta = df.shift(-1).time - df.time df["delta"] = delta.apply(lambda d: d.total_seconds() / 60) if max_idle: df["delta"] = df["delta"].apply(lambda d: d if d <= max_idle else 0) grouper =
pd.Grouper(key="time", freq=freq)
pandas.Grouper
from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time def buildFeatureFrame(filename,timepoint): temp = np.asarray(np.load(filename,allow_pickle=True)).item() imfilename = temp['filename'] img = io.imread(imfilename); masks = clear_border(temp['masks']) image_props = measure.regionprops_table(masks, intensity_image=img, properties=('label','area','filled_area', 'centroid', 'eccentricity','mean_intensity')) im_df = pd.DataFrame(image_props) im_df['time'] = timepoint return(im_df) def generateCandidates(image1, image2, im1_select, dist_multiplier=2): delX = np.sqrt((image1['centroid-0'][im1_select]-image2['centroid-0'])**2+ (image1['centroid-1'][im1_select]-image2['centroid-1'])**2) max_dist = dist_multiplier*min(delX) candidates = np.array(delX[delX < max_dist].index) return(candidates) def generateLinks(filename_t0, filename_t1,timepoint, nnDist = 10,costMax=35, mN_Int = 10, mN_Ecc=4, mN_Area=25, mN_Disp=1): ip0 = buildFeatureFrame(filename_t0,timepoint) ip1 = buildFeatureFrame(filename_t1,timepoint+1) arr = pd.DataFrame() for i in np.array(ip0.index): candidates = generateCandidates(ip0, ip1, i, dist_multiplier=nnDist) canFRAME = pd.DataFrame(candidates) canFRAME["1"] = i arr = arr.append(canFRAME) arr = arr.rename(columns={0: "t1", "1": "t0"}) arr = arr.reset_index(drop=True) properties = pd.DataFrame() mInt_0 = float(np.median(ip0.loc[:,['mean_intensity']])) mInt_1 = float(np.median(ip1.loc[:,['mean_intensity']])) for link in np.array(arr.index): tmp_props_0 = (ip0.loc[arr.loc[link,["t0"]],:]) tmp_props_1 = (ip1.loc[arr.loc[link,["t1"]],:]) deltaInt = (np.abs((int(tmp_props_0["mean_intensity"])/mInt_0)-(int(tmp_props_1["mean_intensity"])/mInt_1))/ np.mean([(int(tmp_props_0["mean_intensity"])/mInt_0),(int(tmp_props_1["mean_intensity"])/mInt_1)])) deltaArea = (np.abs(int(tmp_props_0['area']) - int(tmp_props_1['area']))/ np.mean([int(tmp_props_0["area"]),int(tmp_props_1["area"])])) deltaEcc = np.absolute(float(tmp_props_0['eccentricity']) - float(tmp_props_1['eccentricity'])) deltaX = np.sqrt((int(tmp_props_0['centroid-0'])-int(tmp_props_1['centroid-0']))**2+ (int(tmp_props_0['centroid-1'])-int(tmp_props_1['centroid-1']))**2) properties = properties.append(pd.DataFrame([int(tmp_props_0['label']),int(tmp_props_1['label']), deltaInt ,deltaArea,deltaEcc,deltaX]).T) properties = properties.rename(columns={0: "label_t0", 1: "label_t1", 2: "deltaInt", 3: "deltaArea", 4: "deltaEcc", 5: "deltaX"}) properties = properties.reset_index(drop=True) properties["Cost"]=(properties.loc[:,"deltaInt"]*mN_Int)+(properties.loc[:,"deltaEcc"]*mN_Ecc)+(properties.loc[:,"deltaArea"]*mN_Area)+(properties.loc[:,"deltaX"]*mN_Disp) properties["TransitionCapacity"]=1 properties = properties.loc[properties["Cost"]<costMax] properties = properties.reset_index(drop=True) return(properties) def DivSimScore(daughterCell_1, daughterCell_2, FrameNext): daughterStats_1 = FrameNext[(FrameNext['label'] == daughterCell_1)] daughterStats_2 = FrameNext[(FrameNext['label'] == daughterCell_2)] deltaInt = (np.abs((int(daughterStats_1["mean_intensity"]))-(int(daughterStats_2["mean_intensity"])))/ np.mean([(int(daughterStats_1["mean_intensity"])),(int(daughterStats_2["mean_intensity"]))])) deltaArea = (np.abs(int(daughterStats_1['area']) - int(daughterStats_2['area']))/ np.mean([int(daughterStats_1["area"]),int(daughterStats_2["area"])])) deltaEcc = np.absolute(float(daughterStats_1['eccentricity']) - float(daughterStats_2['eccentricity'])) deltaX = np.sqrt((int(daughterStats_1['centroid-0'])-int(daughterStats_2['centroid-0']))**2+ (int(daughterStats_1['centroid-1'])-int(daughterStats_2['centroid-1']))**2) sims = pd.DataFrame([int(daughterCell_1),int(daughterCell_2), deltaInt ,deltaArea,deltaEcc,deltaX]).T sims = sims.rename(columns={0: "label_D1", 1: "label_D2", 2: "D2deltaInt", 3: "D2deltaArea", 4: "D2deltaEcc", 5: "D2deltaX"}) return(sims) def DivSetupScore(motherCell, daughterCell_1, daughterCell_2, FrameCurr, FrameNext): #determine similarities between mother and daughters simDF = DivSimScore(daughterCell_1, daughterCell_2, FrameNext) #determine relative area of mother compared to daughters MotherArea = int(FrameCurr[(FrameCurr['label'] == motherCell)]['area']) daughterArea_1 = int(FrameNext[(FrameNext['label'] == daughterCell_1)]['area']) daughterArea_2 = int(FrameNext[(FrameNext['label'] == daughterCell_2)]['area']) areaChange = MotherArea/(daughterArea_1 + daughterArea_2) simDF["MDDeltaArea"] = areaChange return(simDF) def DivisionCanditates(propMtx, filename_t0,filename_t1,timepoint,mS_Area = 10, mS_Ecc = 2, mS_Int = 2, mS_Disp = 1, MDAR_thresh = 0.75, SDis_thresh = 20.0): ip0 = buildFeatureFrame(filename_t0,timepoint) ip1 = buildFeatureFrame(filename_t1,timepoint+1) Mothers = np.unique(propMtx.loc[:,['label_t0']]) DivCandidacy = pd.DataFrame() for cell in Mothers: DaughtersPossible = (propMtx[(propMtx['label_t0'] == cell)].loc[:,'label_t1']) DaughtersPairs = np.array(np.meshgrid(DaughtersPossible, DaughtersPossible)).T.reshape(-1,2) Sisters = np.unique(np.sort(DaughtersPairs),axis=0) for pair in range(Sisters.shape[0]): if (Sisters[pair,0] != Sisters[pair,1]): tmpScoreSetup = (DivSetupScore(cell,Sisters[pair,0], Sisters[pair,1], ip0,ip1)) LogicMDAR = (tmpScoreSetup["MDDeltaArea"]>MDAR_thresh) ScoreSDis = (mS_Int*tmpScoreSetup["D2deltaInt"]) + (mS_Area*tmpScoreSetup["D2deltaArea"]) + (mS_Ecc*tmpScoreSetup["D2deltaEcc"]) + (mS_Disp*tmpScoreSetup["D2deltaX"]) LogicSDis = (ScoreSDis<SDis_thresh) tmpCandidacy = pd.DataFrame([cell,Sisters[pair,0],Sisters[pair,1],(LogicSDis&LogicMDAR).bool()]).T DivCandidacy = DivCandidacy.append(tmpCandidacy) DivCandidacy = DivCandidacy.rename(columns={0: "Mother", 1: "Daughter1", 2: "Daughter2",3: "Div"}) DivCandidacy = DivCandidacy.reset_index(drop=True) # select true values DivSelect = DivCandidacy[(DivCandidacy['Div'] == True)] DivConnects_1 = DivSelect[['Mother','Daughter1','Div']] DivConnects_2 = DivSelect[['Mother','Daughter2','Div']] DivConnects_1 = DivConnects_1.rename(columns={'Mother': "label_t0", 'Daughter1': "label_t1"}) DivConnects_2 = DivConnects_2.rename(columns={'Mother': "label_t0", 'Daughter2': "label_t1"}) DivConnects = pd.concat([DivConnects_1,DivConnects_2]) DivConnects = DivConnects.reset_index(drop=True) return(DivConnects) def UpdateConnectionsDiv(propMtx,DivCandidatesMtx): propMtx.loc[propMtx['label_t0'].isin(np.unique(DivCandidatesMtx['label_t0'])),['TransitionCapacity']] = 2 for div in range(DivCandidatesMtx.shape[0]): tmp_prop = propMtx.loc[(DivCandidatesMtx.loc[div,'label_t0'] ==propMtx['label_t0'])&(DivCandidatesMtx.loc[div,'label_t1'] ==propMtx['label_t1']),] old_score = float(tmp_prop.loc[:,'Cost']) new_score = (old_score/2) propMtx.loc[(DivCandidatesMtx.loc[div,'label_t0'] ==propMtx['label_t0'])&(DivCandidatesMtx.loc[div,'label_t1'] ==propMtx['label_t1']),'Cost'] = new_score return(propMtx) def SolveMinCostTable(filename_t0, filename_t1, DivisionTable,timepoint, OpeningCost = 30, ClosingCost = 30): #rename ip0 = buildFeatureFrame(filename_t0,timepoint) ip0 = ip0.rename(columns={"label" : "label_t0"}) ip1 = buildFeatureFrame(filename_t1,timepoint+1) ip1 = ip1.rename(columns={"label" : "label_t1"}) ip0["slabel_t0"] = np.array(range(ip0.label_t0.shape[0]))+1 i0max = np.max(np.asarray(ip0["slabel_t0"])) ip1["slabel_t1"] = np.array(range(i0max,i0max+ip1.label_t1.shape[0]))+1 i1max = np.max(np.asarray(ip1["slabel_t1"])) i0_translation = ip0[["label_t0","slabel_t0"]] i1_translation = ip1[["label_t1","slabel_t1"]] result_tmp = pd.merge(DivisionTable, i0_translation, on=['label_t0']) result = pd.merge(result_tmp, i1_translation, on=['label_t1']) result_shorthand = result[['slabel_t0','slabel_t1','Cost','TransitionCapacity']] transNodes0 = np.array(result_shorthand['slabel_t0']) ; transNodes1 = np.array(result_shorthand['slabel_t1']) ; transCosts = np.array(result_shorthand['Cost']) ; transCaps = np.repeat(1,transNodes0.size) ; sourceNodes0 = np.repeat([0],i1max) sourceNodes1 = np.array(range(i1max))+1 sourceCosts = np.concatenate((np.repeat(1,ip0.shape[0]),np.repeat(OpeningCost,ip1.shape[0])), axis=None) #Source capacities are dictates by which node could be splitting. Source capacity = 2 if there was a division candidate tmpUnique0 = result_shorthand[["slabel_t0","TransitionCapacity"]].drop_duplicates() HighCaps = tmpUnique0.loc[tmpUnique0["TransitionCapacity"]==2,] LowCaps = pd.DataFrame(i0_translation).copy(deep=True) LowCaps['Cap'] = 1 LowCaps.loc[LowCaps['slabel_t0'].isin(np.array(HighCaps['slabel_t0'])),'Cap'] = 2 sourceCaps = np.concatenate((np.array(LowCaps['Cap']),np.repeat(1,ip1.shape[0])), axis=None) sinkNodes0 = np.array(range(i1max))+1 sinkNodes1 = np.repeat([i1max+1],i1max) sinkCosts = np.concatenate((np.repeat(ClosingCost,ip0.shape[0]),np.repeat(1,ip1.shape[0])), axis=None) sinkCaps = np.repeat(1,i1max) # Define the directed graph for the flow. min_cost_flow = pywrapgraph.SimpleMinCostFlow() start_nodes = np.concatenate((sourceNodes0, transNodes0, sinkNodes0)).tolist() end_nodes = np.concatenate((sourceNodes1, transNodes1, sinkNodes1)).tolist() capacities = np.concatenate((sourceCaps, transCaps, sinkCaps)).tolist() costs = np.concatenate((sourceCosts, transCosts, sinkCosts)).tolist() source = 0 sink = i1max+1 supply_amount = np.max([i0max,i1max-i0max]) supplies = np.concatenate(([supply_amount],np.repeat(0,i1max),[-1*supply_amount])).tolist() min_cost_flow = pywrapgraph.SimpleMinCostFlow() # Add each arc. for i in range(len(start_nodes)): min_cost_flow.AddArcWithCapacityAndUnitCost(start_nodes[i], end_nodes[i],capacities[i], int(costs[i])) # Add node supplies. for i in range(len(supplies)): min_cost_flow.SetNodeSupply(i, supplies[i]) ArcFrame = pd.DataFrame() # Find the minimum cost flow between node 0 and node 4. if min_cost_flow.Solve() == min_cost_flow.OPTIMAL: print('Minimum cost:', min_cost_flow.OptimalCost()) for i in range(min_cost_flow.NumArcs()): cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) ArcFrame = ArcFrame.append(pd.DataFrame([min_cost_flow.Tail(i), min_cost_flow.Head(i), min_cost_flow.Flow(i), min_cost_flow.Capacity(i), cost]).T) else: print('There was an issue with the min cost flow input.') ArcFrame = ArcFrame.rename(columns={0:'start',1:'end',2:"Flow",3:"Capacity",4:"Cost"}) #ArcFrame = ArcFrame.reset_index(drop=True) FinalFrame = ArcFrame.loc[ArcFrame["Flow"]!=0,] FinalFrame = FinalFrame.reset_index(drop=True) return(FinalFrame) def ReviewCostTable(minCostFlowtable, timepoint, OpeningCost=30,ClosingCost=30): sink = max(minCostFlowtable["end"]) Transitions = minCostFlowtable.loc[(minCostFlowtable["start"]!=0)&(minCostFlowtable["end"]!=sink),] trans_start_nodes = np.unique(Transitions["start"]) trans_end_nodes = np.unique(Transitions["end"]) #find nodes that either appear (no start) or disappear (no end) appearing = minCostFlowtable[(~minCostFlowtable.start.isin(trans_start_nodes))& (~minCostFlowtable.end.isin(trans_start_nodes))& (~minCostFlowtable.start.isin(trans_end_nodes))& (~minCostFlowtable.end.isin(trans_end_nodes))] appearing = appearing.loc[(appearing["Cost"] == OpeningCost)|(appearing["Cost"] == ClosingCost)] appearing = appearing.reset_index(drop=True) appearFrame =
pd.DataFrame()
pandas.DataFrame
#Usage # import sys # sys.path.insert(0,'path to this file') # import functions as f import pickle import pandas as pd import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Dense, Input, GlobalMaxPooling1D, Flatten from keras.layers import Conv1D, MaxPooling1D, Embedding, Attention,Concatenate from keras.models import Model from sklearn.metrics import roc_auc_score,roc_curve, auc from numpy import random from keras.layers import LSTM, Bidirectional, GlobalMaxPool1D, Dropout, GlobalAveragePooling1D from keras.optimizers import Adam from keras.utils.vis_utils import plot_model import seaborn as sns directory = '/content/drive/MyDrive/ML_Data/' #Use this to create nD format input. #For eg, to create 4D input, combine_AC(df,4) def combine_AC(df,chunksize=3,seperate_chunks=False): if not seperate_chunks: df.Human = df.Human.apply(lambda x: [''.join(x)[i:i+chunksize] for i in range(0, len(''.join(x))) if len(''.join(x)[i:i+chunksize])>=chunksize]) df.Yersinia = df.Yersinia.apply(lambda x: [''.join(x)[i:i+chunksize] for i in range(0, len(''.join(x))) if len(''.join(x)[i:i+chunksize])>=chunksize]) try: df.Joined = [df.loc[row]['Human']+df.loc[row]['Yersinia'] for row in range(df.shape[0])] except: df.Joined = df.Joined.apply(lambda x: [''.join(x)[i:i+chunksize] for i in range(0, len(''.join(x))) if len(''.join(x)[i:i+chunksize])>=chunksize]) return df #print("JHGVBJGHGHKHGKG") df.Human = df.Human.apply(lambda x: [''.join(x)[i:i+chunksize] for i in range(0, len(''.join(x)), chunksize)]) df.Yersinia = df.Yersinia.apply(lambda x: [''.join(x)[i:i+chunksize] for i in range(0, len(''.join(x)), chunksize)]) df.Joined = [df.loc[row]['Human']+df.loc[row]['Yersinia'] for row in range(df.shape[0])] return df def shuff_together(df1,df2): joined = pd.concat([df1,df2], axis=0) joined = joined.iloc[np.random.permutation(len(joined))].reset_index(drop=True) return joined.iloc[:df1.shape[0],:],joined.iloc[df1.shape[0]:,:].reset_index(drop=True) def load_data(D=1,randomize=False): try: with open(directory+'df_train_'+str(D)+'D.pickle', 'rb') as handle: df_train = pickle.load(handle) except: df_train = pd.read_pickle("C:/Users/nik00/py/proj/hyppi-train.pkl") try: with open(directory+'df_test_'+str(D)+'D.pickle', 'rb') as handle: df_test = pickle.load(handle) except: df_test =
pd.read_pickle("C:/Users/nik00/py/proj/hyppi-independent.pkl")
pandas.read_pickle
""" The aim of this project was to build a classifier on the titanic kaggle dataset. """ ### import libraries import numpy as np import pandas as pd import matplotlib matplotlib.use('Pdf') import matplotlib.pyplot as plt # import data preprocessing modules from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelBinarizer # import model selection modules from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score # import classifier modules from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC import tensorflow as tf from keras.models import Sequential from keras.layers import Dense # import model evaluation metrics modules from sklearn.metrics import precision_score from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix ### load data train_data = pd.read_csv("train.csv") test_data =
pd.read_csv("test.csv")
pandas.read_csv
#! /usr/bin/env python3 """ Model Checker Collection for the Model Checking Contest. """ import argparse import hashlib import math import logging import os import random import statistics # import getpass import json import pathlib import pickle import platform import re import sys import tempfile import tarfile import pandas import xmltodict import docker from mcc4mcc.analysis import known, learned, score_of, max_score, \ characteristics_of, REMOVE from mcc4mcc.model import Values, Data, value_of, CHARACTERISTICS VERDICTS = { "ORDINARY": "Ordinary", "SIMPLE_FREE_CHOICE": "Simple Free Choice", "EXTENDED_FREE_CHOICE": "Extended Free Choice", "STATE_MACHINE": "State Machine", "MARKED_GRAPH": "Marked Graph", "CONNECTED": "Connected", "STRONGLY_CONNECTED": "Strongly Connected", "SOURCE_PLACE": "Source Place", "SINK_PLACE": "Sink Place", "SOURCE_TRANSITION": "Source Transition", "SINK_TRANSITION": "Sink Transition", "LOOP_FREE": "Loop Free", "CONSERVATIVE": "Conservative", "SUBCONSERVATIVE": "Sub-Conservative", "NESTED_UNITS": "Nested Units", "SAFE": "Safe", "DEADLOCK": "Deadlock", "REVERSIBLE": "Reversible", "QUASI_LIVE": "Quasi Live", "LIVE": "Live", } RENAMING = { "tapaalPAR": "tapaal", "tapaalSEQ": "tapaal", "tapaalEXP": "tapaal", "sift": "tina", "tedd": "tina", } TEMPORARY = None def unarchive(filename): """ Extract the model from an archive. """ # pylint: disable=global-statement global TEMPORARY # pylint: enable=global-statement while True: if os.path.isfile(filename): directory = tempfile.TemporaryDirectory() TEMPORARY = directory logging.info( f"Extracting archive {filename} " f"to temporary directory {directory.name}.") with tarfile.open(name=filename) as tar: tar.extractall(path=directory.name) if platform.system() == "Darwin": filename = "/private" + directory.name else: filename = directory.name elif os.path.isdir(filename): if os.path.isfile(filename + "/model.pnml"): logging.info( f"Using directory {filename} for input, " f"as it contains a model.pnml file.") break else: parts = os.listdir(filename) if len(parts) == 1: filename = filename + "/" + parts[0] else: logging.error( f"Cannot use directory {filename} for input, " f"as it does not contain a model.pnml file.") return None else: logging.error( f"Cannot use directory {filename} for input, " f"as it does not contain a model.pnml file.") return None return filename def read_boolean(filename): """Read a Boolean file from the MCC.""" with open(filename, "r") as boolfile: what = boolfile.readline().strip() return value_of(what) def do_extract(arguments): """ Main function for the extract command. """ if arguments.exclude is None: arguments.exclude = [] else: arguments.exclude = sorted(arguments.exclude.split(",")) if arguments.forget is None: arguments.forget = [] else: arguments.forget = sorted(arguments.forget.split(",")) # Compute prefix for generated files: hasher = hashlib.md5() with open(arguments.characteristics, "rb") as hinput: hasher.update(hinput.read()) characteristics_hash = hasher.hexdigest() hasher = hashlib.md5() with open(arguments.results, "rb") as hinput: hasher.update(hinput.read()) results_hash = hasher.hexdigest() as_json = json.dumps({ "characteristics": characteristics_hash, "results": results_hash, "duplicates": arguments.duplicates, "exclude": arguments.exclude, "forget": arguments.forget, "training": arguments.training, "year": arguments.year, }, sort_keys=True) hasher = hashlib.md5() hasher.update(bytearray(as_json, "utf8")) prefix = hasher.hexdigest()[:8] logging.info(f"Prefix is {prefix}.") with open(f"{arguments.data}/{prefix}-configuration.json", "w") as output: output.write(as_json) # Load data: data = Data({ "characteristics": arguments.characteristics, "results": arguments.results, "renaming": RENAMING, "exclude": arguments.exclude, "year": arguments.year, }) options = { "Choice": True, "Duplicates": arguments.duplicates, "Output Trees": arguments.output_trees, "Directory": arguments.data, "Prefix": prefix, "Forget": arguments.forget, "Training": arguments.training, "Score": arguments.score, } # Read data: data.characteristics() # Compute the characteristics for models: characteristics_of(data, options) # Use results: data.results() examinations = {x["Examination"] for x in data.results()} tools = {x["Tool"] for x in data.results()} # Compute maximum score: maxs = max_score(data, options) total_score = 0 for _, subscore in maxs.items(): total_score += subscore logging.info(f"Maximum score is {total_score}:") for examination in examinations: score = maxs[examination] logging.info(f"* {examination}: {score}") # Extract known data: known_data = known(data) with open(f"{arguments.data}/{prefix}-known.json", "w") as output: json.dump(known_data, output) # Extract learned data: learned_data, values = learned(data, options) with open(f"{arguments.data}/{prefix}-values.json", "w") as output: json.dump(values.items, output) # Compute scores for tools: for tool in sorted(tools): logging.info(f"Computing score of tool: {tool}.") score = score_of(data, tool, options) subresult = { "Algorithm": tool, "Is-Tool": True, "Is-Algorithm": False, } total = 0 for key, value in score.items(): subresult[key] = value total = total + value learned_data.append(subresult) ratio = math.ceil(100*total/total_score) logging.info(f" Score: {total} / {total_score} ({ratio}%)") with open(f"{arguments.data}/{prefix}-learned.json", "w") as output: json.dump(learned_data, output) # Print per-examination scores: srt = [] for subresult in learned_data: for examination in examinations: srt.append({ "Name": subresult["Algorithm"], "Examination": examination, "Score": subresult[examination], }) srt = sorted(srt, key=lambda e: ( e["Examination"], e["Score"], e["Name"] ), reverse=True) for examination in sorted(examinations): subscore = maxs[examination] logging.info(f"In {examination}, maximum score {subscore}:") for element in [x for x in srt if x["Examination"] == examination]: score = element["Score"] name = element["Name"] if score > 0: ratio = math.ceil(100*score/subscore) logging.info(f"* {score} / {subscore} ({ratio}%) " f"for {name}.") def do_run(arguments): """ Main function for the run command. """ logging.info(f"Prefix is {arguments.prefix}.") # Load known info: logging.info( f"Reading known information " f"in {arguments.data}/{arguments.prefix}-known.json." ) with open(f"{arguments.data}/{arguments.prefix}-known.json", "r") as i: known_data = json.load(i) # Load learned info: logging.info( f"Reading learned information " f"in {arguments.data}/{arguments.prefix}-learned.json." ) with open(f"{arguments.data}/{arguments.prefix}-learned.json", "r") as i: learned_data = json.load(i) # Load translations: logging.info( f"Reading value translations " f"in {arguments.data}/{arguments.prefix}-values.json." ) with open(f"{arguments.data}/{arguments.prefix}-values.json", "r") as i: translations = json.load(i) values = Values(translations) # Find input: directory = unarchive(arguments.input) if directory is None: sys.exit(1) if arguments.instance is None: instance = pathlib.PurePath(directory).stem else: instance = arguments.instance split = re.search(r"([^-]+)\-([^-]+)\-([^-]+)$", instance) model = split.group(1) logging.info(f"Using {instance} as instance name.") logging.info(f"Using {model} as model name.") # Set tool: known_tools = None if arguments.tool is not None: known_tools = [{ "Tool": arguments.tool, "Time": None, "Memory": None, }] else: # Find known tools: if arguments.examination not in known_data: if instance not in known_data[arguments.examination]: known_tools = known_data[arguments.examination][instance] elif model not in known_data[arguments.examination]: known_tools = known_data[arguments.examination][model] if known_tools is None: logging.warning( f"Cannot find known information " f"for examination {arguments.examination} " f"on instance {instance} or model {model}.") # Set algorithm: learned_tools = None if arguments.algorithm: algorithm = sorted( [x for x in learned_data if x["Algorithm"] == arguments.algorithm], key=lambda e: e[arguments.examination], reverse=True, )[0]["Algorithm"] filename = f"{arguments.data}/{arguments.prefix}-learned.{algorithm}.p" with open(filename, "rb") as i: model = pickle.load(i) else: algorithm = sorted( [x for x in learned_data if x["Is-Algorithm"]], key=lambda e: e[arguments.examination], reverse=True, )[0]["Algorithm"] filename = f"{arguments.data}/{arguments.prefix}-learned.{algorithm}.p" with open(filename, "rb") as i: model = pickle.load(i) logging.info(f"Using algorithm or tool {algorithm}.") # Find learned tools: is_colored = read_boolean(f"{directory}/iscolored") if is_colored: has_pt = read_boolean(f"{directory}/equiv_pt") else: has_colored = read_boolean(f"{directory}/equiv_col") with open(f"{directory}/GenericPropertiesVerdict.xml", "r") as i: verdict = xmltodict.parse(i.read()) characteristics = { "Examination": arguments.examination, "Place/Transition": (not is_colored) or has_pt, "Colored": is_colored or has_colored, "Relative-Time": 1, # FIXME "Relative-Memory": 1, # FIXME } for value in verdict["toolspecific"]["verdict"]: if value["@value"] == "true": characteristics[VERDICTS[value["@reference"]]] = True elif value["@value"] == "false": characteristics[VERDICTS[value["@reference"]]] = False else: characteristics[VERDICTS[value["@reference"]]] = None logging.info(f"Model characteristics are: {characteristics}.") # Load characteristics for machine learning: test = {} for key, value in characteristics.items(): test[key] = values.to_learning(value) # http://scikit-learn.org/stable/modules/model_persistence.html predicted = model.predict(
pandas.DataFrame([test])
pandas.DataFrame
import logging import pandas as pd from scipy.cluster.vq import kmeans2 from django.http import JsonResponse from django.views import View from . import forms from . import models logger = logging.getLogger(__name__) class LocationListAPI(View): def get(self, request, *args, **kwargs): """Summarize IPv6 density per location using the current API data. Limit locations to a geographical region by passing in "north", "south", "east", and "west" boundaries. Reduce the size of the data by specifying a number of clusters. """ # Find the current version of API data. self.version = models.Version.objects.get_current_version() if not self.version: error_msg = "Current version has not been configured." logger.error(error_msg) return JsonResponse({'error': error_msg}, status=404) # Allow filtering locations by geographical bounds. form = forms.LocationFilter(data=self.request.GET) if not form.is_valid(): return JsonResponse({ 'error': "Invalid boundary parameters.", 'form_errors': form.errors, }, status=400) # Find the location objects we're interested in. locations = self.version.location_set.filter(**form.get_filters()) locations = locations.values_list('latitude', 'longitude', 'density') locations = [(float(lat), float(lng), int(n)) for lat, lng, n in locations] num_clusters = form.cleaned_data.get('clusters') if num_clusters: # Group lat/lng values into geographical groups. df = pd.DataFrame(locations, columns=['lat', 'lng', 'density']) coordinates, indices = kmeans2(df[['lat', 'lng']], num_clusters) # Sum the density per group. result = [pd.DataFrame(indices, columns=['coord']), df[['density']]] result =
pd.concat(result, axis=1)
pandas.concat
from IPython.display import display import pandas as pd import pyomo.environ as pe import numpy as np import csv import os import shutil class inosys: def __init__(self, inp_folder, ref_bus, dshed_cost = 1000000, rshed_cost = 500, phase = 3, vmin=0.85, vmax=1.15, sbase = 1, sc_fa = 1): ''' Initialise the investment and operation problem. :param str inp_folder: The input directory for the data. It expects to find several CSV files detailing the system input data (Default current folder) :param float dshed_cost: Demand Shedding Price (Default 1000000) :param float rshed_cost: Renewable Shedding Price (Default 500) :param int phase: Number of Phases (Default 3) :param float vmin: Minimum node voltage (Default 0.85) :param float vmax: Maximum node voltage (Default 1.15) :param float sbase: Base Apparent Power (Default 1 kW) :param int ref_bus: Reference node :param float sc_fa: Scaling Factor (Default 1) :Example: >>> import pyeplan >>> sys_inv = pyeplan.inosys("wat_inv", ref_bus = 260) ''' self.cgen = pd.read_csv(inp_folder + os.sep + 'cgen_dist.csv') self.egen = pd.read_csv(inp_folder + os.sep + 'egen_dist.csv') self.csol = pd.read_csv(inp_folder + os.sep + 'csol_dist.csv') self.esol = pd.read_csv(inp_folder + os.sep + 'esol_dist.csv') self.cwin = pd.read_csv(inp_folder + os.sep + 'cwin_dist.csv') self.ewin = pd.read_csv(inp_folder + os.sep + 'ewin_dist.csv') self.cbat = pd.read_csv(inp_folder + os.sep + 'cbat_dist.csv') self.elin = pd.read_csv(inp_folder + os.sep + 'elin_dist.csv') self.pdem = pd.read_csv(inp_folder + os.sep + 'pdem_dist.csv') self.qdem = pd.read_csv(inp_folder + os.sep + 'qdem_dist.csv') self.prep = pd.read_csv(inp_folder + os.sep + 'prep_dist.csv') self.qrep =
pd.read_csv(inp_folder + os.sep + 'qrep_dist.csv')
pandas.read_csv
from unittest.mock import ANY, MagicMock, patch import pytest import pandas as pd from pandas._testing import assert_frame_equal from muttlib.dbconn.base import BaseClient, EngineBaseClient @pytest.fixture def engine_baseClient(): client = EngineBaseClient( database="database", host="host", password="password", port=5544, username="username", dialect="mysql", ) return client def test_base_insert_from_frame_connection_not_none(engine_baseClient): df = pd.DataFrame({'col1': ['1'], 'col2': ['3.0']}) with patch("muttlib.dbconn.base.create_engine") as create_engine, patch.object( df, 'to_sql' ) as mock_to_sql: table = "test_table" engine = engine_baseClient._connect() engine_baseClient.insert_from_frame(df, table, connection=engine) create_engine.assert_called_once_with( engine_baseClient.conn_str, connect_args=ANY, echo=ANY ) mock_to_sql.assert_called_once_with( table, engine, if_exists='append', index=False, ) def test_base_execute_connection_and_params_not_none(engine_baseClient): with patch("muttlib.dbconn.base.create_engine") as create_engine: engine = engine_baseClient._connect() q = "SELECT * FROM {table} WHERE {condition1}" params = {"table": "test", "condition1": "id = 1"} engine_baseClient.execute(q, params, connection=engine) engine.execute.assert_called_once_with(q.format(**params)) def test_base_to_frame_data_none(engine_baseClient): with patch("muttlib.dbconn.base.create_engine") as create_engine: q = "SELECT *" create_engine.return_value.connect.return_value.__enter__.return_value.execute.return_value.fetchall.return_value = ( None ) df = engine_baseClient.to_frame(q) assert_frame_equal(df, pd.DataFrame()) def test_base_setattr_getattr(engine_baseClient): engine_baseClient.__setattr__('driver', "pymysql") assert engine_baseClient.__getattr__('driver') == "pymysql" engine_baseClient.__setattr__('dialect', "mysql") assert engine_baseClient.__getattr__('dialect') == "mysql" @patch("muttlib.dbconn.base.BaseClient.__abstractmethods__", set()) def test_base_to_frame_rise_not_implemented_method(): with patch("muttlib.dbconn.base.create_engine") as create_engine: base_cli = BaseClient(dialect="mysql",) q = "SELECT *" with pytest.raises(NotImplementedError): base_cli.to_frame(q) @patch("muttlib.dbconn.base.BaseClient.__abstractmethods__", set()) def test_base_insert_from_frame_if_exists_replace_fail_rise_not_implemented_method(): with patch("muttlib.dbconn.base.create_engine") as create_engine: base_cli = BaseClient(dialect="mysql",) df = pd.DataFrame({'col1': ['1'], 'col2': ['3.0']}) table = "test_table" with pytest.raises(NotImplementedError): base_cli.insert_from_frame(df, table, if_exists='replace') with pytest.raises(NotImplementedError): base_cli.insert_from_frame(df, table, if_exists='fail') @patch("muttlib.dbconn.base.BaseClient.__abstractmethods__", set()) def test_base_insert_from_frame_index_true_rise_not_implemented_method(): with patch("muttlib.dbconn.base.create_engine") as create_engine: base_cli = BaseClient(dialect="mysql",) df = pd.DataFrame({'col1': ['1'], 'col2': ['3.0']}) table = "test_table" with pytest.raises(NotImplementedError): base_cli.insert_from_frame(df, table, index=True) @patch("muttlib.dbconn.base.BaseClient.__abstractmethods__", set()) def test_base_insert_from_frame_chunk(): with patch("muttlib.dbconn.base.create_engine") as create_engine: base_cli = BaseClient(dialect="mysql",) base_cli._connect = create_engine.get_engine() df =
pd.DataFrame({'col1': ['1'], 'col2': ['3.0']})
pandas.DataFrame
import pathlib import numpy as np import pandas as pd import matplotlib.pyplot as plt from prophet import Prophet from sklearn import metrics def get_prophet_data(stock_path): with open(stock_path, 'r', encoding='utf-8') as f: df = pd.read_json(f.read(), orient='records') print(df) # rename df.rename(columns={'Date': 'ds', 'Close': 'y'}, inplace=True) print(df) return df def predict_single_var_future(df_data, header_name, forecast_periods): df_data.rename(columns={header_name: 'y'}, inplace=True) df_log = df_data.copy() df_log['y'] = np.log(df_log['y']) m = Prophet() m.fit(df_log) future = m.make_future_dataframe(periods=forecast_periods) forecast = m.predict(future) print(forecast.head()) print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()) # fig1 = m.plot(forecast) # fig2 = m.plot_components(forecast) df_close = pd.DataFrame(df_data[['ds', 'y']]).set_index('ds') print(df_close) forecast_with_org_data = forecast.set_index('ds').join(df_close) print(forecast_with_org_data) forecast_with_org_data = forecast_with_org_data[['y', 'yhat', 'yhat_upper', 'yhat_lower']] forecast_with_org_data['yhat'] = np.exp(forecast_with_org_data.yhat) forecast_with_org_data['yhat_upper'] = np.exp(forecast_with_org_data.yhat_upper) forecast_with_org_data['yhat_lower'] = np.exp(forecast_with_org_data.yhat_lower) forecast_with_org_data[['y', 'yhat', 'yhat_upper', 'yhat_lower']].plot(figsize=(8, 6)) print(forecast_with_org_data) # plt.show() forecast_with_org_data.rename(columns={'yhat': header_name}, inplace=True) return forecast_with_org_data[header_name][-1*forecast_periods:] def main():
pd.set_option('display.max_columns', None)
pandas.set_option
from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestToFrame: def test_to_frame(self, datetime_series): datetime_series.name = None rs = datetime_series.to_frame() xp = DataFrame(datetime_series.values, index=datetime_series.index) tm.assert_frame_equal(rs, xp) datetime_series.name = "testname" rs = datetime_series.to_frame() xp = DataFrame( {"testname": datetime_series.values}, index=datetime_series.index ) tm.assert_frame_equal(rs, xp) rs = datetime_series.to_frame(name="testdifferent") xp = DataFrame( {"testdifferent": datetime_series.values}, index=datetime_series.index ) tm.assert_frame_equal(rs, xp) def test_to_frame_expanddim(self): # GH#9762 class SubclassedSeries(Series): @property def _constructor_expanddim(self): return SubclassedFrame class SubclassedFrame(DataFrame): pass ser = SubclassedSeries([1, 2, 3], name="X") result = ser.to_frame() assert isinstance(result, SubclassedFrame) expected = SubclassedFrame({"X": [1, 2, 3]})
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' from pathlib import Path import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from gensim.models import LdaModel from gensim.matutils import Sparse2Corpus from scipy import sparse from itertools import product from random import shuffle from time import time import spacy import logging pd.set_option('display.expand_frame_repr', False) np.random.seed(42) nlp = spacy.load('en') logging.basicConfig( filename='gensim.log', level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%H:%M:%S') def format_time(t): m_, s = divmod(t, 60) h, m = divmod(m_, 60) return f'{h:>02.0f}:{m:>02.0f}:{s:>02.0f}' clean_text = Path('clean_text.txt') # experiment setup cols = ['vocab_size', 'test_vocab', 'min_df', 'max_df', 'binary', 'num_topics', 'passes', 'perplexity'] experiment_path = Path('experiments') # get text files clean_docs = clean_text.read_text().split('\n') print('\n', len(clean_docs)) train_docs, test_docs = train_test_split(clean_docs, test_size=.1) # dtm params min_dfs = [50, 100, 250, 500] max_dfs = [.1, .25, .5, 1.0] binarys = [True, False] dtm_params = list(product(*[min_dfs, max_dfs, binarys])) n = len(dtm_params) shuffle(dtm_params) topicss = [3, 5, 7, 10, 15, 20, 25, 50] passess = [1, 25] model_params = list(product(*[topicss, passess])) corpus = id2word = train_corpus = train_tokens = test_corpus = vocab_size = test_vocab = None start = time() for i, (min_df, max_df, binary) in enumerate(dtm_params, 1): print(min_df, max_df, binary) result = [] vocab_path = experiment_path / str(min_df) / str(max_df) / str(int(binary)) if vocab_path.exists(): continue else: vocab_path.mkdir(exist_ok=True, parents=True) vectorizer = CountVectorizer(min_df=min_df, max_df=max_df, binary=binary) train_dtm = vectorizer.fit_transform(train_docs) train_corpus = Sparse2Corpus(train_dtm, documents_columns=False) train_tokens = vectorizer.get_feature_names() test_dtm = vectorizer.transform(test_docs) test_corpus = Sparse2Corpus(test_dtm, documents_columns=False) test_vocab = test_dtm.count_nonzero() dtm = vectorizer.fit_transform(clean_docs) sparse.save_npz(vocab_path / f'dtm.npz', dtm) tokens = vectorizer.get_feature_names() vocab_size = len(tokens) pd.Series(tokens).to_csv(vocab_path / f'tokens.csv', index=False) id2word = pd.Series(tokens).to_dict() corpus = Sparse2Corpus(dtm, documents_columns=False) coherence = pd.DataFrame() for num_topics, passes in model_params: model_path = vocab_path / str(num_topics) / str(passes) if not model_path.exists(): model_path.mkdir(exist_ok=True, parents=True) print((num_topics, passes), end=' ', flush=True) lda = LdaModel(corpus=corpus, num_topics=num_topics, id2word=id2word, passes=passes, eval_every=None, random_state=42) doc_topics =
pd.DataFrame()
pandas.DataFrame
from typing import Union, Optional import pytest import scanpy as sc import cellrank.external as cre from anndata import AnnData from cellrank.tl.kernels import ConnectivityKernel from cellrank.external.kernels._utils import MarkerGenes from cellrank.external.kernels._wot_kernel import LastTimePoint import numpy as np import pandas as pd from scipy.sparse import spmatrix, csr_matrix from pandas.core.dtypes.common import is_categorical_dtype from matplotlib.cm import get_cmap from matplotlib.colors import to_hex class TestOTKernel: def test_no_connectivities(self, adata_large: AnnData): del adata_large.obsp["connectivities"] terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) assert ok._conn is None np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) def test_method_not_implemented(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) with pytest.raises( NotImplementedError, match="Method `'unbal'` is not yet implemented." ): ok.compute_transition_matrix(1, 0.001, method="unbal") def test_no_terminal_states(self, adata_large: AnnData): with pytest.raises(RuntimeError, match="Unable to initialize the kernel."): cre.kernels.StationaryOTKernel( adata_large, g=np.ones((adata_large.n_obs,), dtype=np.float64), ) def test_normal_run(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=
pd.Series(terminal_states)
pandas.Series
#!/usr/bin/env python """Tests for `pubchem_api` package.""" import os import numpy as np import pandas as pd import scipy from scipy.spatial import distance import unittest # from click.testing import CliRunner # from structure_prediction import cli class TestDataPreprocessing(unittest.TestCase): """Tests for `data pre-processing` package.""" def setUp(self): """Set up test fixtures, if any.""" def tearDown(self): """Tear down test fixtures, if any.""" def test_001_adjacency_matrix_ok(self): """ Tests to ensure that adjacency matrix prepared correctly To show that distance.pdist function calculates correctly on a simple test array """ print("Test One... To show that distance.pdist function calculates correctly on a simple test array") test_array_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) a = np.sqrt(((1-1)**2) + ((2-2)**2) + ((3-3)**2)) b = np.sqrt(((1-4)**2) + ((2-5)**2) + ((3-6)**2)) c = np.sqrt(((1-7)**2) + ((2-8)**2) + ((3-9)**2)) d = np.sqrt(((1-10)**2) + ((2-11)**2) + ((3-12)**2)) e = np.sqrt(((4-1)**2) + ((5-2)**2) + ((6-3)**2)) f = np.sqrt(((4-4)**2) + ((5-5)**2) + ((6-6)**2)) g = np.sqrt(((4-7)**2) + ((5-8)**2) + ((6-9)**2)) h = np.sqrt(((4-10)**2) + ((5-11)**2) + ((6-12)**2)) i = np.sqrt(((7-1)**2) + ((8-2)**2) + ((9-3)**2)) j = np.sqrt(((7-4)**2) + ((8-5)**2) + ((9-6)**2)) k = np.sqrt(((7-7)**2) + ((8-8)**2) + ((9-9)**2)) l = np.sqrt(((7-10)**2) + ((8-11)**2) + ((9-12)**2)) m = np.sqrt(((10-1)**2) + ((11-2)**2) + ((12-3)**2)) n = np.sqrt(((10-4)**2) + ((11-5)**2) + ((12-6)**2)) o = np.sqrt(((10-7)**2) + ((11-8)**2) + ((12-9)**2)) p = np.sqrt(((10-10)**2) + ((11-11)**2) + ((12-12)**2)) result_array = np.array([[a, b, c, d], [e, f, g, h], [i, j, k, l], [m, n, o, p]]) print(result_array) calculate_distances = distance.pdist(test_array_1, 'euclidean') make_square = distance.squareform(calculate_distances) print(make_square) assert np.array_equal(result_array, make_square) def test_002_adjacency_matrix_ok(self): """ Tests to ensure that adjacency matrix prepared correctly To show that distance.pdist function calculates correctly on a simple test array """ print(("Test Two... To show that distance.pdist function calculates correctly on a simple test array")) test_array_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) a = np.sqrt(((1-1)**2) + ((2-2)**2) + ((3-3)**2)) b = np.sqrt(((1-4)**2) + ((2-5)**2) + ((3-6)**2)) c = np.sqrt(((1-7)**2) + ((2-8)**2) + ((3-9)**2)) d = np.sqrt(((1-10)**2) + ((2-11)**2) + ((3-12)**2)) e = np.sqrt(((4-1)**2) + ((5-2)**2) + ((6-3)**2)) f = np.sqrt(((4-4)**2) + ((5-5)**2) + ((6-6)**2)) g = np.sqrt(((4-7)**2) + ((5-8)**2) + ((6-9)**2)) h = np.sqrt(((4-10)**2) + ((5-11)**2) + ((6-12)**2)) i = np.sqrt(((7-1)**2) + ((8-2)**2) + ((9-3)**2)) j = np.sqrt(((7-4)**2) + ((8-5)**2) + ((9-6)**2)) k = np.sqrt(((7-7)**2) + ((8-8)**2) + ((9-9)**2)) l = np.sqrt(((7-10)**2) + ((8-11)**2) + ((9-12)**2)) m = np.sqrt(((10-1)**2) + ((11-2)**2) + ((12-3)**2)) n = np.sqrt(((10-4)**2) + ((11-5)**2) + ((12-6)**2)) o = np.sqrt(((10-7)**2) + ((11-8)**2) + ((12-9)**2)) p = np.sqrt(((10-10)**2) + ((11-11)**2) + ((12-12)**2)) result_array = np.array([[a, b, c, d], [e, f, g, h], [i, j, k, l], [m, n, o, p]]) calculate_distances = distance.pdist(test_array_1, 'euclidean') make_square = distance.squareform(calculate_distances) for i in range(0,result_array.shape[1]): # print(result_array[i,i]) self.assertEqual(result_array[i,i], 0) for i in range(0,make_square.shape[1]): # print(make_square[i,i]) self.assertEqual(make_square[i,i], 0) def test_003_adjacency_matrix_ok(self): """ Tests to ensure that adjacency matrix prepared correctly To show that distance.pdist function calculates correctly on a pdb.cif file """ print("Test Three... To show that distance.pdist function calculates correctly on a pdb.cif file") with open('./extracted_test_data/1j5a.cif') as infile: target_list = infile.read().split('\n') df_1 = pd.DataFrame(data=target_list, columns=["header"]) # Put list in a dataframe m X 1 column df_1 = df_1[:-1] # Removes additional row that is included cif_to_df_2 = df_1.header.str.split(expand=True) # Put dataframe to m x 20 columns critical_info_to_df_3 = cif_to_df_2.drop(columns=[0, 1, 2, 3, 4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20], axis=1) # df containing aa & coordinate positions print(critical_info_to_df_3.head()) convert_to_array = critical_info_to_df_3.drop(columns=[5], axis=1).to_numpy() # Removes aa flag & contains only coordinate info calculate_distances = distance.pdist(convert_to_array, 'euclidean') make_square = distance.squareform(calculate_distances) print(make_square) assert df_1.shape[0] == cif_to_df_2.shape[0] assert cif_to_df_2.shape[0] == critical_info_to_df_3.shape[0] def test_004_adjacency_matrix_ok(self): """ Tests to ensure that adjacency matrix prepared correctly To show that distance.pdist function calculates correctly on a pdb.cif file """ print("Test Four... To show that distance.pdist function calculates correctly on a pdb.cif file") with open('./extracted_test_data/1j5a.cif') as infile: target_list = infile.read().split('\n') df_1 = pd.DataFrame(data=target_list, columns=["header"]) # Put list in a dataframe m X 1 column df_1 = df_1[:-1] # Removes additional row that is included cif_to_df_2 = df_1.header.str.split(expand=True) # Put dataframe to m x 20 columns critical_info_to_df_3 = cif_to_df_2.drop(columns=[0, 1, 2, 3, 4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20], axis=1) # df containing aa & coordinate positions convert_to_array = critical_info_to_df_3.drop(columns=[5], axis=1).to_numpy() # Removes aa flag & contains only coordinate info calculate_distances = distance.pdist(convert_to_array, 'euclidean') make_square = distance.squareform(calculate_distances) for i in range(0,make_square.shape[1]): print(make_square[i,i]) self.assertEqual(make_square[i,i], 0) def test_005_adjacency_matrix_ok(self): """ Tests to ensure that adjacency matrix prepared correctly To show that adjacency matrix maintains its form when converted back into a dataframe """ print("Test Five...") with open('./extracted_test_data/1j5a.cif') as infile: target_list = infile.read().split('\n') df_1 = pd.DataFrame(data=target_list, columns=["header"]) # Put list in a dataframe m X 1 column df_1 = df_1[:-1] # Removes additional row that is included cif_to_df_2 = df_1.header.str.split(expand=True) # Put dataframe to m x 20 columns critical_info_to_df_3 = cif_to_df_2.drop(columns=[0, 1, 2, 3, 4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20], axis=1) # df containing aa & coordinate positions convert_to_array = critical_info_to_df_3.drop(columns=[5], axis=1).to_numpy() # Removes aa flag & contains only coordinate info calculate_distances = distance.pdist(convert_to_array, 'euclidean') make_square = distance.squareform(calculate_distances) adjacency_matrix_df_4 =
pd.DataFrame(make_square)
pandas.DataFrame
import numpy as np import pandas as pd import os import pickle from sklearn.model_selection import KFold from sklearn.metrics import precision_recall_curve import sklearn.metrics as metrics from model import lightgbm_train from glob import glob from utils import * import shap from collections import defaultdict def load_data(all_fpath, n, f): """ params all_fpath: a list of path of all sample files n: int last n records used for prediction f: list extra features yields all_matrix: Numpy array all feature matrix of all files in all_fpath fnames: list featrue names """ all_matrix =[] for fpath in all_fpath: assert os.path.exists(fpath), "File '"+fpath+"' not exist!" d=pd.read_csv(fpath, sep = '|', header = 0) m, fnames = construct_feature_matrix(d, n, f) all_matrix.append(m) all_matrix=np.concatenate(all_matrix, axis = 0) return all_matrix, fnames def evaluation(gs,pred): """ params gs pred yields the_auc the_auprc """ #auc fpr, tpr, thresholds = metrics.roc_curve(gs, pred, pos_label=1) the_auc=metrics.auc(fpr, tpr) #aurpc precision, recall, thresholds = precision_recall_curve(gs, pred) the_auprc = metrics.auc(recall, precision) return the_auc, the_auprc def five_fold_cv(gs_filepath, n, f, shap): """ params gs_filepath n f yields """ gs_file = pd.read_csv(gs_filepath, header = None) f_path = gs_file[0].to_list() f_gs = gs_file[1].to_list() kf = KFold(n_splits=5, random_state= 0, shuffle= True) out_eva = open('eva.tsv', 'w') out_eva.write("%s\t%s\t%s\n" %('fold', 'AUROC', 'AUPRC')) if shap: all_feature_shap = [] all_t_shap = [] for i,(train_idx, test_idx) in enumerate(kf.split(f_path)): print("Start fold "+str(i)+" in five-fold cross-validation ..") # load train print("Load training data ...") train_f = [f_path[j] for j in train_idx] train_matrix, _ = load_data(train_f, n, f) train_gs = [f_gs[j] for j in train_idx] # train model print("Start training ...") gbm = lightgbm_train(train_matrix, train_gs) os.makedirs('./models', exist_ok = True) filename = './models/finalized_model.sav.'+str(i) print('Saving model to '+ filename+ '...') # save model to file pickle.dump(gbm, open(filename, 'wb')) # load test print("Load test data ...") test_f = [f_path[j] for j in test_idx] test_matrix,f_names = load_data(test_f, n, f) test_gs = [f_gs[j] for j in test_idx] # test model print("Start evaludation ...") test_pred = gbm.predict(test_matrix) # evaluation the_auc, the_auprc = evaluation(test_gs, test_pred) print("AUC:%.4f; AUPRC: %.4f" % (the_auc, the_auprc)) out_eva.write("%d\t%.4f\t%.4f\n" %(i, the_auc, the_auprc)) # SHAP if shap: print("Start SHAP analysis ...") feature_shap, t_shap = shap_analysis(gbm, test_matrix, f_names) feature_shap['fold'] = i t_shap['fold'] = i all_feature_shap.append(feature_shap) all_t_shap.append(t_shap) out_eva.close() if shap: all_feature_shap = pd.concat(all_feature_shap) all_t_shap = pd.concat(all_t_shap) all_feature_shap.to_csv('shap_group_by_measurment.csv', index = False) all_t_shap.to_csv('shap_group_by_timeslot.csv', index = False) def specific_evaluation(gs_filepath, n, f): """ Conduct specific evaludation and shap analysis at the specified dataset Params gs_filepath n f Yields """ gs_file = pd.read_csv(gs_filepath, header = None) f_path = gs_file[0].to_list() f_gs = gs_file[1].to_list() test_idx = [55,73,75,78,86,92,93,95]# range(len(f_path)) print(test_idx) model_paths = glob('./models/finalized_model.sav.*') for p in model_paths: gbm = pickle.load(open(p, 'rb')) # load test test_f = [f_path[j] for j in test_idx] test_matrix, f_names = load_data(test_f, n, f) test_gs = [f_gs[j] for j in test_idx] test_pred =gbm.predict(test_matrix) # evaluation the_auc, the_auprc = evaluation(test_gs, test_pred) print(the_auc, the_auprc) # SHAP analysis feature_shap, t_shap = shap_analysis(gbm, test_matrix, f_names) feature_shap.to_csv('shap_group_by_measurment.csv', index= False) t_shap.to_csv('shap_group_by_timeslot.csv', index = False) def shap_analysis(regressor, Test_X, f_names): """ SHAP analysis on a sspecific dataset Params regressor df Yields """ shap_values = shap.TreeExplainer(regressor).shap_values(Test_X) all_f_dict = defaultdict(lambda:[]) for i, n in enumerate(f_names): all_f_dict[n.split('|')[0]].append(i) # get all unique features #print(all_f_dict) time_p_dict = defaultdict(lambda:[]) for i, n in enumerate(f_names): if n.endswith('ori') or n.endswith('norm'): time_p_dict[n.split('|')[2]].append(i) # ge all unique timepoints #print(time_p_dict) # combine subfeatures for each time slots feature_shap = {"feature":[], "mean|SHAP val|":[]} for k, v in all_f_dict.items(): feature_shap["feature"].append(k) feature_shap["mean|SHAP val|"].append(abs(shap_values[:, v].sum(axis = 1)).mean()) feature_shap = pd.DataFrame.from_dict(feature_shap) #.sort_values(by="mean|SHAP val|", ascending = False).set_index('feature') # combine subfeatures for each feature types t_shap = {"the_last_nth_timepoint":[], "mean|SHAP val|":[]} for k, v in time_p_dict.items(): t_shap["the_last_nth_timepoint"].append(k) t_shap["mean|SHAP val|"].append(abs(shap_values[:, v].sum(axis = 1)).mean()) t_shap =
pd.DataFrame.from_dict(t_shap)
pandas.DataFrame.from_dict
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2017 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from odps.tests.core import TestBase from odps.config import option_context from odps.compat import unittest from odps.models import Schema from odps.df.expr.expressions import * from odps.df.expr.core import ExprDictionary from odps.df.expr import errors from odps.df.expr.tests.core import MockTable from odps.df.expr.arithmetic import Add class Test(TestBase): def setup(self): schema = Schema.from_lists(['name', 'id', 'fid'], [types.string, types.int64, types.float64]) table = MockTable(name='pyodps_test_expr_table', schema=schema) table._client = self.config.odps.rest self.expr = CollectionExpr(_source_data=table, _schema=schema) schema2 = Schema.from_lists(['name', 'id', 'fid'], [types.string, types.int64, types.float64], ['part1', 'part2'], [types.string, types.int64]) table2 = MockTable(name='pyodps_test_expr_table2', schema=schema2) table2._client = self.config.odps.rest self.expr2 = CollectionExpr(_source_data=table2, _schema=schema2) def testDir(self): expr_dir = dir(self.expr) self.assertIn('id', expr_dir) self.assertIn('fid', expr_dir) new_df = self.expr[self.expr.id, self.expr.fid, self.expr.name.rename('if')] self.assertNotIn('if', dir(new_df)) self.assertEqual(self.expr._id, self.expr.copy()._id) def testProjection(self): projected = self.expr['name', self.expr.id.rename('new_id')] self.assertIsInstance(projected, CollectionExpr) self.assertEqual(projected._schema, Schema.from_lists(['name', 'new_id'], [types.string, types.int64])) projected = self.expr[[self.expr.name, self.expr.id.astype('string')]] self.assertIsInstance(projected, ProjectCollectionExpr) self.assertEqual(projected._schema, Schema.from_lists(['name', 'id'], [types.string, types.string])) projected = self.expr.select(self.expr.name, Scalar('abc').rename('word'), size=5) self.assertIsInstance(projected, ProjectCollectionExpr) self.assertEqual(projected._schema, Schema.from_lists(['name', 'word', 'size'], [types.string, types.string, types.int8])) self.assertIsInstance(projected._fields[1], StringScalar) self.assertEqual(projected._fields[1].value, 'abc') self.assertIsInstance(projected._fields[2], Int8Scalar) self.assertEqual(projected._fields[2].value, 5) expr = self.expr[lambda x: x.exclude('id')] self.assertEqual(expr.schema.names, [n for n in expr.schema.names if n != 'id']) self.assertRaises(ExpressionError, lambda: self.expr[self.expr.distinct('id', 'fid'), 'name']) self.assertRaises(ExpressionError, lambda: self.expr[[self.expr.id + self.expr.fid]]) with option_context() as options: options.interactive = True self.expr['name', 'id'][[self.expr.name, ]] self.assertRaises(ExpressionError, lambda: self.expr[self.expr.name]) self.assertRaises(ExpressionError, lambda: self.expr['name', self.expr.groupby('name').id.sum()]) expr = self.expr.filter(self.expr.id < 0) expr[self.expr.name, self.expr.id] def testFilter(self): filtered = self.expr[(self.expr.id < 10) & (self.expr.name == 'test')] self.assertIsInstance(filtered, FilterCollectionExpr) filtered = self.expr.filter(self.expr.id < 10, self.expr.name == 'test') self.assertIsInstance(filtered, FilterCollectionExpr) def testSlice(self): sliced = self.expr[:100] self.assertIsInstance(sliced, SliceCollectionExpr) self.assertEqual(sliced._schema, self.expr._schema) self.assertIsInstance(sliced._indexes, tuple) not_sliced = self.expr[:] self.assertNotIsInstance(not_sliced, SliceCollectionExpr) self.assertIsInstance(not_sliced, CollectionExpr) def testAsType(self): fid = self.expr.id.astype('float') self.assertIsInstance(fid._source_data_type, types.Int64) self.assertIsInstance(fid._data_type, types.Float64) self.assertIsInstance(fid, Float64SequenceExpr) self.assertNotIsInstance(fid, Int64SequenceExpr) int_fid = fid.astype('int') self.assertIsInstance(int_fid._source_data_type, types.Int64) self.assertIsInstance(int_fid._data_type, types.Int64) self.assertIsInstance(int_fid, Int64SequenceExpr) self.assertNotIsInstance(int_fid, Float64SequenceExpr) float_fid = (fid + 1).astype('float32') self.assertIsInstance(float_fid, Float32SequenceExpr) self.assertNotIsInstance(float_fid, Int32SequenceExpr) self.assertIsInstance(float_fid, AsTypedSequenceExpr) def testRename(self): new_id = self.expr.id.rename('new_id') self.assertIsInstance(new_id, SequenceExpr) self.assertEqual(new_id._source_name, 'id') self.assertEqual(new_id._name, 'new_id') double_new_id = new_id.rename('2new_id') self.assertIsInstance(double_new_id, SequenceExpr) self.assertEqual(double_new_id._source_name, 'id') self.assertEqual(double_new_id._name, '2new_id') self.assertIsNot(double_new_id, new_id) add_id = (self.expr.id + self.expr.fid).rename('add_id') self.assertIsInstance(add_id, Float64SequenceExpr) self.assertNotIsInstance(add_id, Int64SequenceExpr) self.assertIsNone(add_id._source_name) self.assertIsInstance(add_id, Add) self.assertEqual(add_id.name, 'add_id') self.assertIsInstance(add_id._lhs, Int64SequenceExpr) self.assertIsInstance(add_id._rhs, Float64SequenceExpr) self.assertEqual(add_id._lhs._source_name, 'id') self.assertEqual(add_id._rhs._source_name, 'fid') add_scalar_id = (self.expr.id + 5).rename('add_s_id') self.assertNotIsInstance(add_scalar_id, Float64SequenceExpr) self.assertIsInstance(add_scalar_id, Int64SequenceExpr) self.assertIsInstance(add_scalar_id, Add) self.assertEqual(add_scalar_id.name, 'add_s_id') self.assertEqual(add_scalar_id._lhs._source_name, 'id') def testNewSequence(self): column = Column(_data_type='int32') self.assertIn(Int32SequenceExpr, type(column).mro()) self.assertIsInstance(column, Int32SequenceExpr) column = type(column)._new(_data_type='string') self.assertNotIn(Int32SequenceExpr, type(column).mro()) self.assertIn(StringSequenceExpr, type(column).mro()) self.assertIsInstance(column, StringSequenceExpr) self.assertNotIsInstance(column, Int32SequenceExpr) self.assertIsInstance(column, Column) seq = SequenceExpr(_data_type='int64') self.assertIsInstance(seq, Int64SequenceExpr) seq = BooleanSequenceExpr(_data_type='boolean') self.assertIsInstance(seq, BooleanSequenceExpr) seq = DatetimeSequenceExpr(_data_type='float32') self.assertIsInstance(seq, Float32SequenceExpr) class Int64Column(Column): __slots__ = 'test', column = Int64Column(_data_type='float64', test='value') self.assertIsInstance(column, Float64SequenceExpr) self.assertNotIsInstance(column, Int64SequenceExpr) column = type(column)._new(_data_type='int8', test=column.test) self.assertEqual(column.test, 'value') self.assertIsInstance(column, Int8SequenceExpr) self.assertNotIsInstance(column, Float64SequenceExpr) self.assertNotIsInstance(column, Int64SequenceExpr) self.assertIsInstance(column, Int64Column) class Int64Column(Int64SequenceExpr): pass column = Int64Column(_data_type='float64') self.assertIsInstance(column, Float64SequenceExpr) self.assertNotIsInstance(column, Int64SequenceExpr) column = type(column)._new(_data_type='int8') self.assertIsInstance(column, Int8SequenceExpr) self.assertNotIsInstance(column, Float64SequenceExpr) self.assertNotIsInstance(column, Int64SequenceExpr) self.assertNotIsInstance(column, Int64Column) def testSequenceCache(self): df = self.expr.name self.assertRaises(ExpressionError, lambda: df.cache()) def testExprFieldValidation(self): df = self.expr self.assertRaises(errors.ExpressionError, lambda: df[df[:10].id]) df2 = self.expr[['id']] self.assertRaises(errors.ExpressionError, lambda: df[df2.id]) def testFilterPartition(self): self.assertRaises(ExpressionError, lambda: self.expr.filter_partition(None)) self.assertRaises(ExpressionError, lambda: self.expr.filter_partition('part1=a/part2=1,part1=b/part2=2')) self.assertRaises(ExpressionError, lambda: self.expr2.filter_partition('part1/part2=1,part1=b/part2=2')) filtered1 = self.expr2.filter_partition('part1=a/part2=1,part1=b/part2=2') self.assertIsInstance(filtered1, FilterPartitionCollectionExpr) self.assertEqual(filtered1.schema, self.expr.schema) self.assertEqual(filtered1.predicate_string, 'part1=a/part2=1,part1=b/part2=2') filtered2 = self.expr2.filter_partition('part1=a/part2=1,part1=b/part2=2', exclude=False) self.assertIsInstance(filtered2, FilterCollectionExpr) try: import pandas as pd from odps.df import DataFrame pd_df =
pd.DataFrame([['Col1', 1], ['Col2', 2]], columns=['Field1', 'Field2'])
pandas.DataFrame
""" Also test support for datetime64[ns] in Series / DataFrame """ from datetime import datetime, timedelta import re import numpy as np import pytest from pandas._libs import iNaT import pandas._libs.index as _index import pandas as pd from pandas import DataFrame, DatetimeIndex, NaT, Series, Timestamp, date_range import pandas._testing as tm def test_fancy_getitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) assert s[48] == 48 assert s["1/2/2009"] == 48 assert s["2009-1-2"] == 48 assert s[datetime(2009, 1, 2)] == 48 assert s[Timestamp(datetime(2009, 1, 2))] == 48 with pytest.raises(KeyError, match=r"^'2009-1-3'$"): s["2009-1-3"] tm.assert_series_equal( s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)] ) def test_fancy_setitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 assert s[48] == -1 s["1/2/2009"] = -2 assert s[48] == -2 s["1/2/2009":"2009-06-05"] = -3 assert (s[48:54] == -3).all() def test_dti_reset_index_round_trip(): dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) d1 = DataFrame({"v": np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() assert d2.dtypes[0] == np.dtype("M8[ns]") d3 = d2.set_index("index") tm.assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) df = df.set_index("Date") assert df.index[0] == stamp assert df.reset_index()["Date"][0] == stamp @pytest.mark.slow def test_slice_locs_indexerror(): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(range(100000), times) s.loc[datetime(1900, 1, 1) : datetime(2100, 1, 1)] def test_slicing_datetimes(): # GH 7523 # unique df = DataFrame( np.arange(4.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) # duplicates df = DataFrame( np.arange(5.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) def test_getitem_setitem_datetime_tz_pytz(): from pytz import timezone as tz N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() # comparison dates with datetime MUST be localized! date = tz("US/Central").localize(datetime(1990, 1, 1, 3)) result[date] = 0 result[date] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_dateutil(): from dateutil.tz import tzutc from pandas._libs.tslibs.timezones import dateutil_gettz as gettz tz = ( lambda x: tzutc() if x == "UTC" else gettz(x) ) # handle special case for utc in dateutil N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="America/New_York") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = 0 result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetimeindex(): N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04:00:00"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04:00:00"] = 0 result["1990-01-01 04:00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04:00:00" rb = "1990-01-01 07:00:00" # GH#18435 strings get a pass from tzawareness compat result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) lb = "1990-01-01 04:00:00-0500" rb = "1990-01-01 07:00:00-0500" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # But we do not give datetimes a pass on tzawareness compat # TODO: do the same with Timestamps and dt64 msg = "Cannot compare tz-naive and tz-aware datetime-like objects" naive = datetime(1990, 1, 1, 4) with tm.assert_produces_warning(FutureWarning): # GH#36148 will require tzawareness compat result = ts[naive] expected = ts[4] assert result == expected result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = ts[4] tm.assert_series_equal(result, ts) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result = ts[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = ts[4:8] tm.assert_series_equal(result, ts) lb = datetime(1990, 1, 1, 4) rb = datetime(1990, 1, 1, 7) msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime" with pytest.raises(TypeError, match=msg): # tznaive vs tzaware comparison is invalid # see GH#18376, GH#18162 ts[(ts.index >= lb) & (ts.index <= rb)] lb = pd.Timestamp(datetime(1990, 1, 1, 4)).tz_localize(rng.tzinfo) rb = pd.Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo) result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) # also test partial date slicing result = ts["1990-01-02"] expected = ts[24:48] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-02"] = 0 result["1990-01-02"] = ts[24:48] tm.assert_series_equal(result, ts) def test_getitem_setitem_periodindex(): from pandas import period_range N = 50 rng = period_range("1/1/1990", periods=N, freq="H") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04"] = 0 result["1990-01-01 04"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04":"1990-01-01 07"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04":"1990-01-01 07"] = 0 result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04" rb = "1990-01-01 07" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # GH 2782 result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) def test_datetime_indexing(): index = date_range("1/1/2000", "1/7/2000") index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp("1/8/2000") with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 # not monotonic s = Series(len(index), index=index) s = s[::-1] with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 """ test duplicates in time series """ @pytest.fixture def dups(): dates = [ datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5), ] return Series(np.random.randn(len(dates)), index=dates) def test_constructor(dups): assert isinstance(dups, Series) assert isinstance(dups.index, DatetimeIndex) def test_is_unique_monotonic(dups): assert not dups.index.is_unique def test_index_unique(dups): uniques = dups.index.unique() expected = DatetimeIndex( [ datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), ] ) assert uniques.dtype == "M8[ns]" # sanity tm.assert_index_equal(uniques, expected) assert dups.index.nunique() == 4 # #2563 assert isinstance(uniques, DatetimeIndex) dups_local = dups.index.tz_localize("US/Eastern") dups_local.name = "foo" result = dups_local.unique() expected = DatetimeIndex(expected, name="foo") expected = expected.tz_localize("US/Eastern") assert result.tz is not None assert result.name == "foo" tm.assert_index_equal(result, expected) # NaT, note this is excluded arr = [1370745748 + t for t in range(20)] + [iNaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 arr = [ Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 def test_duplicate_dates_indexing(dups): ts = dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: tm.assert_series_equal(result, expected) else: tm.assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index)
tm.assert_series_equal(cp, expected)
pandas._testing.assert_series_equal
# Copyright 2021 Fedlearn authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # assume cwd is ./opensource/ import logging import os import socket import sys import pandas sys.path.append(os.getcwd()) print(sys.path) from core.entity.common.machineinfo import MachineInfo from demos.random_forest.coordinator import RandomForestCoordinator from demos.random_forest.client import RandomForestClient # load and align train data g1 = pandas.read_csv("data/classificationA/train0.csv") g2 = pandas.read_csv("data/classificationA/train1.csv") g3 = pandas.read_csv("data/classificationA/train2.csv") uid = g1.loc[:, ["uid"]] uid =
pandas.merge(uid, g2.loc[:, ["uid"]], on="uid", how="inner")
pandas.merge
import numpy as np import pandas as pd from numba import njit import pytest from vectorbt import defaults from vectorbt.utils import checks, config, decorators, math, array from tests.utils import hash # ############# config.py ############# # class TestConfig: def test_config(self): conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=False) conf['b']['d'] = 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=True) conf['a'] = 2 with pytest.raises(Exception) as e_info: conf['d'] = 2 # go deeper conf['b']['c'] = 2 with pytest.raises(Exception) as e_info: conf['b']['d'] = 2 def test_merge_kwargs(self): assert config.merge_kwargs({'a': 1}, {'b': 2}) == {'a': 1, 'b': 2} assert config.merge_kwargs({'a': 1}, {'a': 2}) == {'a': 2} assert config.merge_kwargs({'a': {'b': 2}}, {'a': {'c': 3}}) == {'a': {'b': 2, 'c': 3}} assert config.merge_kwargs({'a': {'b': 2}}, {'a': {'b': 3}}) == {'a': {'b': 3}} # ############# decorators.py ############# # class TestDecorators: def test_class_or_instancemethod(self): class G: @decorators.class_or_instancemethod def g(self_or_cls): if isinstance(self_or_cls, type): return True # class return False # instance assert G.g() assert not G().g() def test_custom_property(self): class G: @decorators.custom_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_custom_method(self): class G: @decorators.custom_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_cached_property(self): class G: @decorators.cached_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' class G: @decorators.cached_property def cache_me(self): return np.random.uniform() g = G() # general caching cached_number = g.cache_me assert g.cache_me == cached_number # clear_cache method G.cache_me.clear_cache(g) cached_number2 = g.cache_me assert cached_number2 != cached_number assert g.cache_me == cached_number2 # disabled locally G.cache_me.disabled = True cached_number3 = g.cache_me assert cached_number3 != cached_number2 assert g.cache_me != cached_number3 G.cache_me.disabled = False # disabled globally defaults.caching = False cached_number4 = g.cache_me assert cached_number4 != cached_number3 assert g.cache_me != cached_number4 defaults.caching = True def test_cached_method(self): class G: @decorators.cached_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' class G: @decorators.cached_method def cache_me(self, b=10): return np.random.uniform() * 10 g = G() # general caching cached_number = g.cache_me() assert g.cache_me() == cached_number # clear_cache method G.cache_me.clear_cache(g) cached_number2 = g.cache_me() assert cached_number2 != cached_number assert g.cache_me() == cached_number2 # disabled locally G.cache_me.disabled = True cached_number3 = g.cache_me() assert cached_number3 != cached_number2 assert g.cache_me() != cached_number3 G.cache_me.disabled = False # disabled globally defaults.caching = False cached_number4 = g.cache_me() assert cached_number4 != cached_number3 assert g.cache_me() != cached_number4 defaults.caching = True # disabled by non-hashable args cached_number5 = g.cache_me(b=np.zeros(1)) assert cached_number5 != cached_number4 assert g.cache_me(b=np.zeros(1)) != cached_number5 def test_traverse_attr_kwargs(self): class A: @decorators.custom_property(some_key=0) def a(self): pass class B: @decorators.cached_property(some_key=0, child_cls=A) def a(self): pass @decorators.custom_method(some_key=1) def b(self): pass class C: @decorators.cached_method(some_key=0, child_cls=B) def b(self): pass @decorators.custom_property(some_key=1) def c(self): pass assert hash(str(decorators.traverse_attr_kwargs(C))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key'))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=1))) == 703070484833749378 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=(0, 1)))) == 16728515581653529580 # ############# checks.py ############# # class TestChecks: def test_is_pandas(self): assert not checks.is_pandas(0) assert not checks.is_pandas(np.array([0])) assert checks.is_pandas(pd.Series([1, 2, 3])) assert checks.is_pandas(pd.DataFrame([1, 2, 3])) def test_is_series(self): assert not checks.is_series(0) assert not checks.is_series(np.array([0])) assert checks.is_series(pd.Series([1, 2, 3])) assert not checks.is_series(pd.DataFrame([1, 2, 3])) def test_is_frame(self): assert not checks.is_frame(0) assert not checks.is_frame(np.array([0])) assert not checks.is_frame(pd.Series([1, 2, 3])) assert checks.is_frame(pd.DataFrame([1, 2, 3])) def test_is_array(self): assert not checks.is_array(0) assert checks.is_array(np.array([0])) assert checks.is_array(pd.Series([1, 2, 3])) assert checks.is_array(pd.DataFrame([1, 2, 3])) def test_is_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x assert not checks.is_numba_func(test_func) assert checks.is_numba_func(test_func_nb) def test_is_hashable(self): assert checks.is_hashable(2) assert not checks.is_hashable(np.asarray(2)) def test_is_index_equal(self): assert checks.is_index_equal( pd.Index([0]), pd.Index([0]) ) assert not checks.is_index_equal( pd.Index([0]), pd.Index([1]) ) assert not checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.Index([0]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.MultiIndex.from_arrays([[0], [1]]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name3', 'name4']) ) def test_is_default_index(self): assert checks.is_default_index(pd.DataFrame([[1, 2, 3]]).columns) assert checks.is_default_index(pd.Series([1, 2, 3]).to_frame().columns) assert checks.is_default_index(pd.Index([0, 1, 2])) assert not checks.is_default_index(pd.Index([0, 1, 2], name='name')) def test_is_equal(self): assert checks.is_equal(np.arange(3), np.arange(3), np.array_equal) assert not checks.is_equal(np.arange(3), None, np.array_equal) assert not checks.is_equal(None, np.arange(3), np.array_equal) assert checks.is_equal(None, None, np.array_equal) def test_assert_value_in(self): checks.assert_value_in(0, (0, 1)) with pytest.raises(Exception) as e_info: checks.assert_value_in(2, (0, 1)) def test_assert_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x checks.assert_numba_func(test_func_nb) with pytest.raises(Exception) as e_info: checks.assert_numba_func(test_func) def test_assert_not_none(self): checks.assert_not_none(0) with pytest.raises(Exception) as e_info: checks.assert_not_none(None) def test_assert_type(self): checks.assert_type(0, int) checks.assert_type(np.zeros(1), (np.ndarray, pd.Series)) checks.assert_type(pd.Series([1, 2, 3]), (np.ndarray, pd.Series)) with pytest.raises(Exception) as e_info: checks.assert_type(pd.DataFrame([1, 2, 3]), (np.ndarray, pd.Series)) def test_assert_subclass(self): class A: pass class B(A): pass class C(B): pass checks.assert_subclass(B, A) checks.assert_subclass(C, B) checks.assert_subclass(C, A) with pytest.raises(Exception) as e_info: checks.assert_subclass(A, B) def test_assert_same_type(self): checks.assert_same_type(0, 1) checks.assert_same_type(np.zeros(1), np.empty(1)) with pytest.raises(Exception) as e_info: checks.assert_type(0, np.zeros(1)) def test_assert_dtype(self): checks.assert_dtype(np.zeros(1), np.float) checks.assert_dtype(pd.Series([1, 2, 3]), np.int) checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3, 4]}), np.int) with pytest.raises(Exception) as e_info: checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.int) def test_assert_subdtype(self): checks.assert_subdtype([0], np.number) checks.assert_subdtype(np.array([1, 2, 3]), np.number) checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.number) with pytest.raises(Exception) as e_info: checks.assert_subdtype(np.array([1, 2, 3]), np.float) with pytest.raises(Exception) as e_info: checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.float) def test_assert_same_dtype(self): checks.assert_same_dtype([1], [1, 1, 1]) checks.assert_same_dtype(pd.Series([1, 2, 3]), pd.DataFrame([[1, 2, 3]])) checks.assert_same_dtype(pd.DataFrame([[1, 2, 3.]]), pd.DataFrame([[1, 2, 3.]])) with pytest.raises(Exception) as e_info: checks.assert_same_dtype(pd.DataFrame([[1, 2, 3]]), pd.DataFrame([[1, 2, 3.]])) def test_assert_ndim(self): checks.assert_ndim(0, 0) checks.assert_ndim(np.zeros(1), 1) checks.assert_ndim(pd.Series([1, 2, 3]), (1, 2)) checks.assert_ndim(pd.DataFrame([1, 2, 3]), (1, 2)) with pytest.raises(Exception) as e_info: checks.assert_ndim(np.zeros((3, 3, 3)), (1, 2)) def test_assert_same_len(self): checks.assert_same_len([[1]], [[2]]) checks.assert_same_len([[1]], [[2, 3]]) with pytest.raises(Exception) as e_info: checks.assert_same_len([[1]], [[2], [3]]) def test_assert_same_shape(self): checks.assert_same_shape(0, 1) checks.assert_same_shape([1, 2, 3], np.asarray([1, 2, 3])) checks.assert_same_shape([1, 2, 3], pd.Series([1, 2, 3])) checks.assert_same_shape(np.zeros((3, 3)), pd.Series([1, 2, 3]), axis=0) checks.assert_same_shape(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(1, 0)) with pytest.raises(Exception) as e_info: checks.assert_same_shape(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(0, 1)) def test_assert_same_index(self): index = ['a', 'b', 'c'] checks.assert_same_index(pd.Series([1, 2, 3], index=index), pd.DataFrame([1, 2, 3], index=index)) with pytest.raises(Exception) as e_info: checks.assert_same_index(pd.Series([1, 2, 3]), pd.DataFrame([1, 2, 3], index=index)) def test_assert_same_columns(self): columns = ['a', 'b', 'c'] checks.assert_same_columns(pd.DataFrame([[1, 2, 3]], columns=columns), pd.DataFrame([[1, 2, 3]], columns=columns)) with pytest.raises(Exception) as e_info: checks.assert_same_columns(pd.DataFrame([[1, 2, 3]]), pd.DataFrame([[1, 2, 3]], columns=columns)) def test_assert_same_meta(self): index = ['x', 'y', 'z'] columns = ['a', 'b', 'c'] checks.assert_same_meta(np.array([1, 2, 3]), np.array([1, 2, 3])) checks.assert_same_meta(pd.Series([1, 2, 3], index=index),
pd.Series([1, 2, 3], index=index)
pandas.Series
import pandas import os import re import numpy as np import math import warnings from modin.error_message import ErrorMessage from modin.engines.base.io import BaseIO from modin.data_management.utils import compute_chunksize from modin import __execution_engine__ if __execution_engine__ == "Ray": import ray PQ_INDEX_REGEX = re.compile("__index_level_\d+__") # noqa W605 class RayIO(BaseIO): frame_partition_cls = None query_compiler_cls = None frame_cls = None # IMPORTANT NOTE # # Specify these in the child classes to extend the functionality from this class. # The tasks must return a very specific set of objects in the correct order to be # correct. The following must be returned from these remote tasks: # 1.) A number of partitions equal to the `num_partitions` value. If there is not # enough data to fill the number of partitions, returning empty partitions is # okay as well. # 2.) The index object if the index is anything but the default type (`RangeIndex`), # otherwise return the length of the object in the remote task and the logic # will build the `RangeIndex` correctly. May of these methods have a `index_col` # parameter that will tell you whether or not to use the default index. read_parquet_remote_task = None # For reading parquet files in parallel, this task should read based on the `cols` # value in the task signature. Each task will read a subset of the columns. # # Signature: (path, cols, num_splits, kwargs) read_json_remote_task = None # For reading JSON files and other text files in parallel, this task should read # based on the offsets in the signature (`start` and `stop` are byte offsets). # # Signature: (filepath, num_splits, start, stop, kwargs) read_hdf_remote_task = None # For reading HDF5 files in parallel, this task should read based on the `columns` # parameter in the task signature. Each task will read a subset of the columns. # # Signature: (path_or_buf, columns, num_splits, kwargs) read_feather_remote_task = None # For reading Feather file format in parallel, this task should read based on the # `columns` parameter in the task signature. Each task will read a subset of the # columns. # # Signature: (path, columns, num_splits) read_sql_remote_task = None # For reading SQL tables in parallel, this task should read a number of rows based # on the `sql` string passed to the task. Each task will be given a different LIMIT # and OFFSET as a part of the `sql` query string, so the tasks should perform only # the logic required to read the SQL query and determine the Index (information # above). # # Signature: (num_splits, sql, con, index_col, kwargs) @classmethod def read_parquet(cls, path, engine, columns, **kwargs): """Load a parquet object from the file path, returning a DataFrame. Ray DataFrame only supports pyarrow engine for now. Args: path: The filepath of the parquet file. We only support local files for now. engine: Ray only support pyarrow reader. This argument doesn't do anything for now. kwargs: Pass into parquet's read_pandas function. Notes: ParquetFile API is used. Please refer to the documentation here https://arrow.apache.org/docs/python/parquet.html """ from pyarrow.parquet import ParquetFile, ParquetDataset if cls.read_parquet_remote_task is None: return super(RayIO, cls).read_parquet(path, engine, columns, **kwargs) file_path = path if os.path.isdir(path): directory = True partitioned_columns = set() # We do a tree walk of the path directory because partitioned # parquet directories have a unique column at each directory level. # Thus, we can use os.walk(), which does a dfs search, to walk # through the different columns that the data is partitioned on for (root, dir_names, files) in os.walk(path): if dir_names: partitioned_columns.add(dir_names[0].split("=")[0]) if files: # Metadata files, git files, .DSStore if files[0][0] == ".": continue file_path = os.path.join(root, files[0]) break partitioned_columns = list(partitioned_columns) else: directory = False if not columns: if directory: # Path of the sample file that we will read to get the remaining # columns. from pyarrow import ArrowIOError try: pd = ParquetDataset(file_path) except ArrowIOError: pd = ParquetDataset(path) column_names = pd.schema.names else: pf = ParquetFile(path) column_names = pf.metadata.schema.names columns = [name for name in column_names if not PQ_INDEX_REGEX.match(name)] # Cannot read in parquet file by only reading in the partitioned column. # Thus, we have to remove the partition columns from the columns to # ensure that when we do the math for the blocks, the partition column # will be read in along with a non partition column. if columns and directory and any(col in partitioned_columns for col in columns): columns = [col for col in columns if col not in partitioned_columns] # If all of the columns wanted are partition columns, return an # empty dataframe with the desired columns. if len(columns) == 0: return cls.from_pandas(pandas.DataFrame(columns=partitioned_columns)) from modin.pandas import DEFAULT_NPARTITIONS num_partitions = DEFAULT_NPARTITIONS num_splits = min(len(columns), num_partitions) # Each item in this list will be a list of column names of the original df column_splits = ( len(columns) // num_partitions if len(columns) % num_partitions == 0 else len(columns) // num_partitions + 1 ) col_partitions = [ columns[i : i + column_splits] for i in range(0, len(columns), column_splits) ] column_widths = [len(c) for c in col_partitions] # Each item in this list will be a list of columns of original df # partitioned to smaller pieces along rows. # We need to transpose the oids array to fit our schema. # TODO (williamma12): This part can be parallelized even more if we # separate the partitioned parquet file code path from the default one. # The workers return multiple objects for each part of the file read: # - The first n - 2 objects are partitions of data # - The n - 1 object is the length of the partition. # - The nth object is the dtypes of the partition. We combine these to # form the final dtypes below. blk_partitions = np.array( [ cls.read_parquet_remote_task._remote( args=(path, cols + partitioned_columns, num_splits, kwargs), num_return_vals=num_splits + 2, ) if directory and cols == col_partitions[len(col_partitions) - 1] else cls.read_parquet_remote_task._remote( args=(path, cols, num_splits, kwargs), num_return_vals=num_splits + 2, ) for cols in col_partitions ] ).T # Metadata index_len = ray.get(blk_partitions[-2][0]) index = pandas.RangeIndex(index_len) index_chunksize = compute_chunksize(
pandas.DataFrame(index=index)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from sklearn import metrics from epiquark import ScoreCalculator def test_non_case_imputation(shared_datadir, paper_example_score: ScoreCalculator) -> None: cases = pd.read_csv(shared_datadir / "paper_example/cases_long.csv") imputed = paper_example_score._impute_non_case(cases) imputed_expected = pd.read_csv(shared_datadir / "paper_example/non_case_imputed_long.csv") pd.testing.assert_frame_equal(imputed, imputed_expected, check_dtype=False) def test_p_di_given_x(shared_datadir, paper_example_score: ScoreCalculator) -> None: p_di_given_x = paper_example_score._p_di_given_x() p_di_given_x_expected = pd.read_csv(shared_datadir / "paper_example/p_di_given_x.csv") pd.testing.assert_frame_equal(p_di_given_x, p_di_given_x_expected, check_dtype=False) def test_p_sj_given_x(shared_datadir, paper_example_score: ScoreCalculator) -> None: p_sj_given_x = paper_example_score._p_sj_given_x() p_sj_given_x_expected = pd.read_csv(shared_datadir / "paper_example/p_sj_given_x_long.csv") pd.testing.assert_frame_equal(p_sj_given_x, p_sj_given_x_expected, check_dtype=False) def test_p_di_given_sj(shared_datadir, paper_example_score: ScoreCalculator) -> None: p_di_given_sj_x = paper_example_score._p_di_given_sj() p_di_given_sj_x_expected = pd.read_csv(shared_datadir / "paper_example/p_di_given_sj.csv") str_cols = list(p_di_given_sj_x.select_dtypes(exclude="number").columns) pd.testing.assert_frame_equal( p_di_given_sj_x.sort_values(by=str_cols).reset_index(drop=True), p_di_given_sj_x_expected.sort_values(by=str_cols).reset_index(drop=True), check_dtype=False, ) def test_p_hat_di(shared_datadir, paper_example_score: ScoreCalculator) -> None: p_hat_di = ( paper_example_score._p_hat_di().sort_values(by=["x1", "x2", "d_i"]).reset_index(drop=True) ) p_hat_di_expected = (
pd.read_csv(shared_datadir / "paper_example/p_hat_di.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Sep 14 10:59:05 2021 @author: franc """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import json from collections import Counter, OrderedDict import math import torchtext from torchtext.data import get_tokenizer from googletrans import Translator # from deep_translator import GoogleTranslator # pip install googletrans==4.0.0rc1 import pickle # pip install pickle-mixin import nltk from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet as wn # python -m spacy download es_core_news_sm import spacy import fasttext.util import contractions import re # libreria de expresiones regulares import string # libreria de cadena de caracteres import itertools import sys sys.path.append("/tmp/TEST") from treetagger import TreeTagger import pathlib from scipy.spatial import distance from scipy.stats import kurtosis from scipy.stats import skew class NLPClass: def __init__(self): self.numero = 1 nltk.download('wordnet') def translations_dictionary(self, df_translate=None, path=""): ''' It appends to a dictionary different animals names in spanish and english languages. It adds them so that english animals names appear in WordNet synset. Parameters ---------- df_translate : pandas.dataframe, optional. If it's not None, the rows are appended. Otherwise it's initialized and then the rows are appended. The default is None. path : string, optional The path where to save the pickle file with the dictionary. Unless path is empty. The default is "". Returns ------- df_translate : pandas.dataframe. Pandas.dataframe with the new rows appended. ''' df_auxiliar = pd.DataFrame(columns=['spanish','english']) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yaguareté"], 'english': ["jaguar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["llama"], 'english': ["llama"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["picaflor"], 'english': ["hummingbird"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chita"], 'english': ["cheetah"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["torcaza"], 'english': ["dove"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yacaré"], 'english': ["alligator"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["corvina"], 'english': ["croaker"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vizcacha"], 'english': ["viscacha"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(
pd.DataFrame({'spanish': ["orca"], 'english': ["killer_whale"]})
pandas.DataFrame
import uuid import traceback import os import numpy as np import pandas import nrrd import glob import argparse import random from PIL import Image import csv from shutil import rmtree from collections import defaultdict from keras.preprocessing.image import ImageDataGenerator, Iterator from keras.utils import to_categorical from tqdm import tqdm import matplotlib.pyplot as plt from segmentation import calculate_percentile_slice, select_slice, bounding_box, crop, resize, calculate_volume, calculate_top3_slices from config import config from filenames import IMAGE, SEGMENTATION, T1, T2, T1C clinical_features = [ "age", "sex", "location" ] def all_input(t1, t2, t1c, features, labels): t1_image = np.array(t1) t1_image = np.rollaxis(t1_image, 0, 3) t2_image = np.array(t2) t2_image = np.rollaxis(t2_image, 0, 3) t1c_image = np.array(t1c) t1c_image = np.rollaxis(t1c_image, 0, 3) return (t1_image, t2_image, t1c_image), features, labels def t1_input(t1, t2, t1c, features, labels): t1_image = np.array(t1) t1_image = np.rollaxis(t1_image, 0, 3) return (t1_image, None, None), [], labels def t1c_input(t1, t2, t1c, features, labels): t1c_image = np.array(t1c) t1c_image = np.rollaxis(t1c_image, 0, 3) return (None, None, t1c_image), [], labels def t2_input(t1, t2, t1c, features, labels): t2_image = np.array(t2) t2_image = np.rollaxis(t2_image, 0, 3) return (None, t2_image, None), [], labels def t1_t2_input(t1, t2, t1c, features, labels): t1_image = np.array(t1) t1_image = np.rollaxis(t1_image, 0, 3) t2_image = np.array(t2) t2_image = np.rollaxis(t2_image, 0, 3) return (t1_image, t2_image, None), [], labels def t1c_t2_input(t1, t2, t1c, features, labels): t1c_image = np.array(t1c) t1c_image = np.rollaxis(t1c_image, 0, 3) t2_image = np.array(t2) t2_image = np.rollaxis(t2_image, 0, 3) return (None, t2_image, t1c_image), [], labels def t1_features_input(t1, t2, t1c, features, labels): t1_image = np.array(t1) t1_image = np.rollaxis(t1_image, 0, 3) return (t1_image, None, None), features, labels def t2_features_input(t1, t2, t1c, features, labels): t2_image = np.array(t2) t2_image = np.rollaxis(t2_image, 0, 3) return (None, t2_image, None), features, labels def features_input(t1, t2, t1c, features, labels): return (None, None, None), features, labels def t1c_features_input(t1, t2, t1c, features, labels): t1c_image = np.array(t1c) t1c_image = np.rollaxis(t1c_image, 0, 3) return (None, None, t1c_image), features, labels INPUT_FORMS = { "all": all_input, "t1": t1_input, "t2": t2_input, "t1c": t1c_input, "t1-t2": t1_t2_input, "t1c-t2": t1c_t2_input, "t1-features": t1_features_input, "t2-features": t2_features_input, "t1c-features": t1c_features_input, "features": features_input, } INPUT_FORM_PARAMETERS = { "all": { "t1": True, "t2": True, "t1c": True, "features": True, }, "t1": { "t1": True, "t2": False, "t1c": False, "features": False, }, "t2": { "t1": False, "t2": True, "t1c": False, "features": False, }, "t1c": { "t1": False, "t2": False, "t1c": True, "features": False, }, "t1-t2": { "t1": True, "t2": True, "t1c": False, "features": False, }, "t1c-t2": { "t1": False, "t2": True, "t1c": True, "features": False, }, "t1-features": { "t1": True, "t2": False, "t1c": False, "features": True, }, "t2-features": { "t1": False, "t2": True, "t1c": False, "features": True, }, "t1c-features": { "t1": False, "t2": False, "t1c": True, "features": True, }, "features": { "t1": False, "t2": False, "t1c": False, "features": True, }, } #available = {} #with open(config.SEQ_AVAIL) as seq_avail: # reader = csv.reader(seq_avail) # headers = next(reader, None) # for h in headers: # available[h] = [] # for row in reader: # available['pd'].append(row[1]) # available['t1'].append(row[2]) # available['t1c'].append(row[3]) # available['t2'].append(row[4]) # available['t2-t1'].append(row[5]) # available['t2-t1c'].append(row[6]) class Features(Iterator): """ tf.keras.preprocessing.image.Iterator(n, batch_size, shuffle, seed) n: Integer, total number of samples in the dataset to loop over. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seeding for data shuffling. """ def __init__(self, features, shuffle, seed): super(Features, self).__init__(len(features), config.BATCH_SIZE, shuffle, hash(seed) % 2**32 ) self.features = np.array(features) def _get_batches_of_transformed_samples(self, index_array): return self.features[index_array] #get features of given batch def next(self): with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array) class Dataset(object): def __init__(self, images, features, labels, names, augment=False, shuffle=False, seed=None, input_form="all", three=False): self.shuffle = shuffle self.seed = seed self.augment = augment self.input_form = input_form self.names = names self.parameters = INPUT_FORM_PARAMETERS[input_form] #ex. {"t1": True, "t2": False, "t1c": False, "features": False} features = list(zip(*features)) self.labels = labels self.features = features self.features_size = 0 self.features_int = [] self.features_list = [] for row in self.features: #ex. [0,1,[0,0,0,1,0,0,0,0,0,0,0,0,0,0]] new_row_int = [] new_row_list = [] for item in row: if not isinstance(item, list): new_row_int.append(item) # [0,43] else: #if it's a list new_row_list = item #[0,0,0,1,0,0,0,0,0,0,0,0,0,0] self.features_int.append(new_row_int) #[[0,43], [1,12],...] self.features_list.append(new_row_list) #[[0,0,0,1,0,0,0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0,0,0,0,0],...] if self.parameters["features"]: self.features_size = len(features[0]) #3 -> [age, sex, location] self.features_int_generator = Features(self.features_int, self.shuffle, self.seed) self.features_list_generator = Features(self.features_list, self.shuffle, self.seed) self.features_generator = Features(self.features, self.shuffle, self.seed) self.n = len(labels) unique, index, inverse, counts = np.unique(self.labels, return_index=True, return_inverse=True, return_counts=True) self.y = inverse if three: self.y = to_categorical(inverse) self.classes = inverse self.class_indices = { u: i for i, u in enumerate(unique) } separate_images = list(zip(*images)) if self.parameters["t1"]: self.t1 = np.array(separate_images[0]) self.datagen1 = self._get_data_generator() if self.parameters["t2"]: self.t2 = np.array(separate_images[1]) self.datagen2 = self._get_data_generator() if self.parameters["t1c"]: self.t1c = np.array(separate_images[2]) self.datagen1c = self._get_data_generator() self.reset() def __len__(self): return self.n def __iter__(self): return self def __next__(self): return self.next() def reset(self): if self.parameters["features"]: self.features_int_generator = Features(self.features_int, self.shuffle, self.seed) self.features_list_generator = Features(self.features_list, self.shuffle, self.seed) self.features_generator = Features(self.features, self.shuffle, self.seed) if self.parameters["t1"]: self.generator_t1 = self.datagen1.flow( x=self.t1, y=self.y, batch_size=config.BATCH_SIZE, shuffle=self.shuffle, seed=hash(self.seed) % 2**32, ) if self.parameters["t2"]: self.generator_t2 = self.datagen2.flow( x=self.t2, y=self.y, batch_size=config.BATCH_SIZE, shuffle=self.shuffle, seed=hash(self.seed) % 2**32, ) if self.parameters["t1c"]: self.generator_t1c = self.datagen1c.flow( x=self.t1c, y=self.y, batch_size=config.BATCH_SIZE, shuffle=self.shuffle, seed=hash(self.seed) % 2**32, ) self.labels_generator = Features(self.y, self.shuffle, self.seed) def _get_data_generator(self): if self.augment: return ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, vertical_flip=True, ) return ImageDataGenerator( rescale=1. / 255, ) def next(self): labels = self.labels_generator.next() inputs = list() if self.parameters["t2"]: inputs.append(self.generator_t2.next()[0]) if self.parameters["t1"]: inputs.append(self.generator_t1.next()[0]) if self.parameters["t1c"]: inputs.append(self.generator_t1c.next()[0]) if self.parameters["features"]: inputs.append([self.features_int_generator.next(),self.features_list_generator.next()]) #inputs.append(self.features_generator.next()) if len(inputs) == 1: inputs = inputs[0] return (inputs, labels) def get_names(self): return self.names def outcome_feature(row, label): label = row[label] features = [ row[f] for f in clinical_features ] return label, features #(label, [age, sex, location]) -> ex. (1, [32, 0, [0,0,0,0,1,0,0,0,0,0,0,0,0,0]]) LABEL_FORMS = { "outcome_3": outcome_feature, "outcome_pos": outcome_feature, "outcome_neg": outcome_feature } def get_label_features(row, label="outcome"): """returns label, features, sample name""" return (*LABEL_FORMS[label](row, label), row.name) #(outcome_feature(row, label), row.name) -> (label, features, patientID) def input_data_form(t1, t2, t1c, features, labels, input_form=config.INPUT_FORM): images, features, labels = INPUT_FORMS[input_form](t1, t2, t1c, features, labels) #ex. t2_input(t1, t2, t1c, features, labels) #ex. for t2 input -> (None, t2_image, None), [], labels #ex. for features input -> (None, None, None), features, labels return images, features, labels def load_image(image_path, segmentation_path, verbose=False): image, _ = nrrd.read(image_path) #import image nrrd segmentation, _ = nrrd.read(segmentation_path) #import segmentation nrrd if verbose: print(""" image: {} seg: {} """.format(image.shape, segmentation.shape)) return [mask_image_percentile(image, segmentation, 100, a) for a in (0, 1, 2)] #3 masked images, 1 for each axis. changed to use the "actual" image on each channel, cuts lack appropriate resolution #return multicut_1axis_mask(image, segmentation, axis=2) def mask_image_percentile(image, segmentation, percentile=100, axis=2): if image.ndim == 4: print("4dim") image = image[0] plane = calculate_percentile_slice(segmentation, percentile, axis) #find largest slice image, segmentation = select_slice(image, segmentation, plane, axis) #select the largest slide bounds = bounding_box(segmentation) #create a bounding box the size of the segmentation image, segmentation = crop(image, segmentation, bounds) #crop to size of the segmentation masked = image * segmentation #mask everything in image except what was segmented masked = resize(masked, (config.IMAGE_SIZE, config.IMAGE_SIZE)) #resize to desired image size #plt.imsave("data_gen_images/" + str(uuid.uuid4()) + ".png", masked) #print(np.isnan(masked).any()) return masked def multicut_1axis_mask(image, segmentation, axis=2): plane1, plane2, plane3 = calculate_top3_slices(segmentation, axis) #find largest slice if image.ndim == 4: print("4dim") image = image[0] image1, segmentation1 = select_slice(image, segmentation, plane1, axis) #select the largest slice bounds = bounding_box(segmentation1) #create a bounding box the size of the segmentation image1, segmentation1 = crop(image1, segmentation1, bounds) #crop to size of the segmentation masked1 = image1 * segmentation1 #mask everything in image except what was segmented masked1 = resize(masked1, (config.IMAGE_SIZE, config.IMAGE_SIZE)) #resize to desired image size image2, segmentation2 = select_slice(image, segmentation, plane2, axis) #select the second largest slice bounds = bounding_box(segmentation2) #create a bounding box the size of the segmentation image2, segmentation2 = crop(image2, segmentation2, bounds) #crop to size of the segmentation masked2 = image2 * segmentation2 #mask everything in image except what was segmented masked2 = resize(masked2, (config.IMAGE_SIZE, config.IMAGE_SIZE)) #resize to desired image size image3, segmentation3 = select_slice(image, segmentation, plane3, axis) #select the third largest slice bounds = bounding_box(segmentation3) #create a bounding box the size of the segmentation image3, segmentation3 = crop(image3, segmentation3, bounds) #crop to size of the segmentation masked3 = image3 * segmentation3 #mask everything in image except what was segmented masked3 = resize(masked3, (config.IMAGE_SIZE, config.IMAGE_SIZE)) #resize to desired image size #plt.imsave("/Volumes/external/datagentest.png", masked1) return [masked1, masked2, masked3] SHAPES_OUTPUT = """ SHAPES {}:""" def generate_from_features(df, input_form=config.INPUT_FORM, label_form="outcome", verbose=False, source=config.PREPROCESSED_DIR): #determine which features you need to get #ex. {"t1": True, "t2": False, "t1c": False, "features": False} parameters = INPUT_FORM_PARAMETERS[input_form] for index, row in tqdm(df.iterrows(), total=len(df)): #for each patient print(index) t1_image_file = os.path.join(source, "{}-{}-{}".format(index, T1, IMAGE)) t1_seg_file = os.path.join(source, "{}-{}-{}".format(index, T1, SEGMENTATION)) t2_image_file = os.path.join(source, "{}-{}-{}".format(index, T2, IMAGE)) t2_seg_file = os.path.join(source, "{}-{}-{}".format(index, T2, SEGMENTATION)) t1c_image_file = os.path.join(source, "{}-{}-{}".format(index, T1C, IMAGE)) t1c_seg_file = os.path.join(source, "{}-{}-{}".format(index, T1C, SEGMENTATION)) t1_masked = None t2_masked = None t1c_masked = None if parameters["t1"]: try: print("I'm doing the thing.") if verbose: print(SHAPES_OUTPUT.format("t1")) t1_masked = load_image(t1_image_file, t1_seg_file, verbose=verbose) #t1c_masked = load_image(t1c_image_file, t1c_seg_file, verbose=verbose) except Exception as e: print() print("#" * 80) print("Exception occurred for: {}\n{}".format(row, e)) print("T1 image unavailable") print(traceback.format_exc()) continue if parameters["t2"]: try: print("I'm doing the thing.") if verbose: print(SHAPES_OUTPUT.format("t2")) t2_masked = load_image(t2_image_file, t2_seg_file, verbose=verbose) #t1c_masked = load_image(t1c_image_file, t1c_seg_file, verbose=verbose) print("I'm doing the thing.") #if verbose: # print(SHAPES_OUTPUT.format("t1c")) #t1c_masked = load_image(t1c_image_file, t1c_seg_file, verbose=verbose) except Exception as e: print() print("#" * 80) print("Exception occurred for: {}\n{}".format(row, e)) print("T2 image unavailable") print(traceback.format_exc()) continue if parameters["t1c"]: try: print("I'm doing the thing.") if verbose: print(SHAPES_OUTPUT.format("t1c")) #t1c_masked = load_image(t1c_image_file, t1c_seg_file, verbose=verbose) except Exception as e: print() print("#" * 80) print("Exception occurred for: {}\n{}".format(row, e)) print("T1C image unavailable") print(traceback.format_exc()) continue # if parameters["features"]: # try: # print("I'm doing the thing.") # if verbose: # print(SHAPES_OUTPUT.format("t1c")) # t1c_masked = load_image(t1c_image_file, t1c_seg_file, verbose=verbose) # except Exception as e: # print() # print("#" * 80) # print("Exception occurred for: {}\n{}".format(row, e)) # print("T1C image unavailable") # print(traceback.format_exc()) # continue #ex. (1, [32, 0, [0,0,0,0,1,0,0,0,0,0,0,0,0,0]], "bone-penn-453") labels, features, name = get_label_features(row, label=label_form) #ex. for t2 input -> (None, t2_image, None), [], labels #ex. for features input -> (None, None, None), features, labels images, features, labels = input_data_form(t1_masked, t2_masked, t1c_masked, features, labels, input_form=input_form) #ex. (None, t2_image, None), [], labels, "bone-penn-453" yield images, features, labels, name def sort(validation_fraction=0.2, test_fraction=0.1, seed=None, label_form="outcome", input_form="all"): f = pandas.read_pickle(config.FEATURES) #pickle with all training features for all available patients # print(f) # print(len(f)) # f = f.drop('bone-penn-479') # print(len(f)) train_fraction = 1 - validation_fraction - test_fraction #fraction of points going to training set #filter data set to include only patients with desired studies available #input_form_map = { # "all": lambda f: f[f.index.isin(available['t1']).isin(available['t2']).isin(available['t1c'])], # "t1": lambda f: f[f.index.isin(available['t2-t1'])], #only using patients with T1 and T2 # "t2": lambda f: f[f.index.isin(available['t2-t1'])], #only using patients with T1 and T2 # "t1c": lambda f: f[f.index.isin(available['t1c'])], # "t2-t1": lambda f: f[f.index.isin(available['t2-t1'])], # "t1c-t2": lambda f: f[f.index.isin(available['t1c']) & f.index.isin(available['t2'])], # "t1-features": lambda f: f[f.index.isin(available['t1'])], # "t2-features": lambda f: f[f.index.isin(available['t2'])], # "t1c-features": lambda f: f[f.index.isin(available['t1c'])], # "features": lambda f: f # } #f = input_form_map[input_form](f) #CSV with all training features for patients with given imaging modality remaining = f.copy() sort_dict = { "train": train_fraction, "validation": validation_fraction, "test": test_fraction, } # calculate goal numbers for train/validation/test by label properties labels = f[label_form].unique() # 1 (malignant) or 0 (benign) goal_sort = dict() for l in labels: label_fraction = len(remaining[remaining[label_form] == l])/len(remaining) # no. pts. with given label/total no. of pts. = % benign (ex.) for s in ["train", "validation", "test"]: goal_sort[(l, s)] = int(len(remaining) * label_fraction * sort_dict[s]) #ex. goal_sort[(benign, train)] = total no. of pts. * %benign * %train all_train = list() all_validation = list() all_test = list() sorted_dict = { "train": all_train, "validation": all_validation, "test": all_test, } # get preassigned sorts train = f[f["sort"] == "train"] #all patients pre-assigned to training validation = f[f["sort"] == "validation"] #all patients pre-assigned to validation test = f[f["sort"] == "test"] #all patients pre-assigned to testing presort_dict = { "train": train, "validation": validation, "test": test, } # recalculate goals based on preassigned sorts for s in ["train", "validation", "test"]: presorted = presort_dict[s] for l in labels: goal_sort[(l, s)] = max(0, goal_sort[(l, s)] - len(presorted[presorted[label_form] == l])) # add preassigned sorts and remove from lesions to sort all_train.append(train) all_validation.append(validation) all_test.append(test) remaining = remaining.drop(train.index) remaining = remaining.drop(validation.index) remaining = remaining.drop(test.index) # sort remaining lesions for l in labels: for s in ["train", "validation", "test"]: label_set = remaining[remaining[label_form] == l] label_set = label_set.sample(n = min(goal_sort[(l, s)], len(label_set)), random_state=(int(seed) % 2 ** 32)) remaining = remaining.drop(label_set.index) sorted_dict[s].append(label_set) # append any left over to training set all_train.append(remaining) train =
pandas.concat(all_train)
pandas.concat
""" Created on Thu Jan 26 17:04:11 2017 @author: <NAME>, <EMAIL> """ #%matplotlib inline import numpy as np import pandas as pd import dicom import os import scipy.ndimage as ndimage import matplotlib.pyplot as plt import scipy.ndimage # added for scaling import cv2 import time import glob from skimage import measure, morphology, segmentation import SimpleITK as sitk RESIZE_SPACING = [2,2,2] # z, y, x (x & y MUST be the same) RESOLUTION_STR = "2x2x2" img_rows = 448 img_cols = 448 # global values DO_NOT_USE_SEGMENTED = True #STAGE = "stage1" STAGE_DIR_BASE = "../input/%s/" # on one cluster we had input_shared LUNA_MASKS_DIR = "../luna/data/original_lung_masks/" luna_subset = 0 # initial LUNA_BASE_DIR = "../luna/data/original_lungs/subset%s/" # added on AWS; data as well LUNA_DIR = LUNA_BASE_DIR % luna_subset CSVFILES = "../luna/data/original_lungs/CSVFILES/%s" LUNA_ANNOTATIONS = CSVFILES % "annotations.csv" LUNA_CANDIDATES = CSVFILES % "candidates.csv" # Load the scans in given folder path (loads the most recent acquisition) def load_scan(path): slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] #slices.sort(key = lambda x: int(x.InstanceNumber)) acquisitions = [x.AcquisitionNumber for x in slices] vals, counts = np.unique(acquisitions, return_counts=True) vals = vals[::-1] # reverse order so the later acquisitions are first (the np.uniques seems to always return the ordered 1 2 etc. counts = counts[::-1] ## take the acquistions that has more entries; if these are identical take the later entrye acq_val_sel = vals[np.argmax(counts)] ##acquisitions = sorted(np.unique(acquisitions), reverse=True) if len(vals) > 1: print ("WARNING ##########: MULTIPLE acquisitions & counts, acq_val_sel, path: ", vals, counts, acq_val_sel, path) slices2= [x for x in slices if x.AcquisitionNumber == acq_val_sel] slices = slices2 ## ONE path includes 2 acquisitions (2 sets), take the latter acquiisiton only whihch cyupically is better than the first/previous ones. ## example of the '../input/stage1/b8bb02d229361a623a4dc57aa0e5c485' #slices.sort(key = lambda x: int(x.ImagePositionPatient[2])) # from v 8, BUG should be float slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 try: slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) except: slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation) for s in slices: s.SliceThickness = slice_thickness return slices def get_3d_data_slices(slices): # get data in Hunsfield Units slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # ensure int16 (it may be here uint16 for some images ) image[image == -2000] = 0 #correcting cyindrical bound entrioes to 0 # Convert to Hounsfield units (HU) # The intercept is usually -1024 for slice_number in range(len(slices)): # from v 8 intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: # added 16 Jan 2016, evening image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) def get_pixels_hu(slices): image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # Set outside-of-scan pixels to 0 # The intercept is usually -1024, so air is approximately 0 image[image == -2000] = 0 # Convert to Hounsfield units (HU) ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96) ### Changes/correction - 31.01.2017 for slice_number in range(len(slices)): intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) MARKER_INTERNAL_THRESH = -400 MARKER_FRAME_WIDTH = 9 # 9 seems OK for the half special case ... def generate_markers(image): #Creation of the internal Marker useTestPlot = False if useTestPlot: timg = image plt.imshow(timg, cmap='gray') plt.show() add_frame_vertical = True if add_frame_vertical: # add frame for potentially closing the lungs that touch the edge, but only vertically fw = MARKER_FRAME_WIDTH # frame width (it looks that 2 is the minimum width for the algorithms implemented here, namely the first 2 operations for the marker_internal) xdim = image.shape[1] #ydim = image.shape[0] img2 = np.copy(image) #y3 = ydim // 3 img2 [:, 0] = -1024 img2 [:, 1:fw] = 0 img2 [:, xdim-1:xdim] = -1024 img2 [:, xdim-fw:xdim-1] = 0 marker_internal = img2 < MARKER_INTERNAL_THRESH else: marker_internal = image < MARKER_INTERNAL_THRESH # was -400 useTestPlot = False if useTestPlot: timg = marker_internal plt.imshow(timg, cmap='gray') plt.show() correct_edges2 = False ## NOT a good idea - no added value if correct_edges2: marker_internal[0,:] = 0 marker_internal[:,0] = 0 #marker_internal[:,1] = True #marker_internal[:,2] = True marker_internal[511,:] = 0 marker_internal[:,511] = 0 marker_internal = segmentation.clear_border(marker_internal, buffer_size=0) marker_internal_labels = measure.label(marker_internal) areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker external_a = ndimage.binary_dilation(marker_internal, iterations=10) # was 10 external_b = ndimage.binary_dilation(marker_internal, iterations=55) # was 55 marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed # Some of the starting Code is taken from ArnavJain, since it's more readable then my own def generate_markers_3d(image): #Creation of the internal Marker marker_internal = image < -400 marker_internal_labels = np.zeros(image.shape).astype(np.int16) for i in range(marker_internal.shape[0]): marker_internal[i] = segmentation.clear_border(marker_internal[i]) marker_internal_labels[i] = measure.label(marker_internal[i]) #areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas = [r.area for i in range(marker_internal.shape[0]) for r in measure.regionprops(marker_internal_labels[i])] for i in range(marker_internal.shape[0]): areas = [r.area for r in measure.regionprops(marker_internal_labels[i])] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels[i]): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[i, coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker # 3x3 structuring element with connectivity 1, used by default struct1 = ndimage.generate_binary_structure(2, 1) struct1 = struct1[np.newaxis,:,:] # expand by z axis . external_a = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=10) external_b = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=55) marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed BINARY_CLOSING_SIZE = 7 #was 7 before final; 5 for disk seems sufficient - for safety let's go with 6 or even 7 def seperate_lungs(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512))) ### was -2000 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def rescale_n(n,reduce_factor): return max( 1, int(round(n / reduce_factor))) def seperate_lungs_cv2(image): # for increased speed #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #image_size = image.shape[0] reduce_factor = 512 / image.shape[0] #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) useTestPlot = False if useTestPlot: timg = sobel_gradient plt.imshow(timg, cmap='gray') plt.show() #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) if useTestPlot: timg = marker_external plt.imshow(timg, cmap='gray') plt.show() #Reducing the image created by the Watershed algorithm to its outline #wsize = rescale_n(3,reduce_factor) # THIS IS TOO SMALL, dynamically adjusting the size for the watersehed algorithm outline = ndimage.morphological_gradient(watershed, size=(3,3)) # original (3,3), (wsize, wsize) is too small to create an outline outline = outline.astype(bool) outline_u = outline.astype(np.uint8) #added #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] use_reduce_factor = True if use_reduce_factor: blackhat_struct = ndimage.iterate_structure(blackhat_struct, rescale_n(8,reduce_factor)) # dyanmically adjust the number of iterattions; original was 8 else: blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct_cv2 = blackhat_struct.astype(np.uint8) #Perform the Black-Hat #outline += ndimage.black_tophat(outline, structure=blackhat_struct) # original slow #outline1 = outline + (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) #outline2 = outline + ndimage.black_tophat(outline, structure=blackhat_struct) #np.array_equal(outline1,outline2) # True outline += (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) # fats if useTestPlot: timg = outline plt.imshow(timg, cmap='gray') plt.show() #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) if useTestPlot: timg = lungfilter plt.imshow(timg, cmap='gray') plt.show() #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure2 = morphology.disk(2) # used to fill the gaos/holes close to the border (otherwise the large sttructure would create a gap by the edge) if use_reduce_factor: structure3 = morphology.disk(rescale_n(BINARY_CLOSING_SIZE,reduce_factor)) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case else: structure3 = morphology.disk(BINARY_CLOSING_SIZE) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case ##lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, ORIGINAL iterations=3) # was structure=np.ones((5,5)) lungfilter2 = ndimage.morphology.binary_closing(lungfilter, structure=structure2, iterations=3) # ADDED lungfilter3 = ndimage.morphology.binary_closing(lungfilter, structure=structure3, iterations=3) lungfilter = np.bitwise_or(lungfilter2, lungfilter3) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) #image.shape #segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)).astype(np.int16)) # was -2000 someone suggested 30 segmented = np.where(lungfilter == 1, image, -2000*np.ones(image.shape).astype(np.int16)) # was -2000 someone suggested 30 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def seperate_lungs_3d(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers_3d(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, axis=2) sobel_filtered_dy = ndimage.sobel(image, axis=1) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(1,3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct = blackhat_struct[np.newaxis,:,:] #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) # very long time #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case structure = structure[np.newaxis,:,:] lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones(marker_internal.shape)) return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def get_slice_location(dcm): return float(dcm[0x0020, 0x1041].value) def thru_plane_position(dcm): """Gets spatial coordinate of image origin whose axis is perpendicular to image plane. """ orientation = tuple((float(o) for o in dcm.ImageOrientationPatient)) position = tuple((float(p) for p in dcm.ImagePositionPatient)) rowvec, colvec = orientation[:3], orientation[3:] normal_vector = np.cross(rowvec, colvec) slice_pos = np.dot(position, normal_vector) return slice_pos def resample(image, scan, new_spacing=[1,1,1]): # Determine current pixel spacing spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing)) spacing = np.array(list(spacing)) #scan[2].SliceThickness resize_factor = spacing / new_spacing new_real_shape = image.shape * resize_factor new_shape = np.round(new_real_shape) real_resize_factor = new_shape / image.shape new_spacing = spacing / real_resize_factor image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest') ### early orig modified return image, new_spacing def segment_all(stage, part=0, processors=1, showSummaryPlot=True): # stage added to simplify the stage1 and stage2 calculations count = 0 STAGE_DIR = STAGE_DIR_BASE % stage folders = glob.glob(''.join([STAGE_DIR,'*'])) if len(folders) == 0: print ("ERROR, check directory, no folders found in: ", STAGE_DIR ) for folder in folders: count += 1 if count % processors == part: # do this part in this process, otherwise skip path = folder slices = load_scan(path) image_slices = get_3d_data_slices(slices) #mid = len(image_slices) // 2 #img_sel = mid useTestPlot = False if useTestPlot: print("Shape before segmenting\t", image_slices.shape) plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() start = time.time() resampleImages = True if resampleImages: image_resampled, spacing = resample(image_slices, slices, RESIZE_SPACING) # let's start wkith this small resolutuion for workign our the system (then perhaps 2, 0.667, 0.667) print("Shape_before_&_after_resampling\t", image_slices.shape,image_resampled.shape) if useTestPlot: plt.imshow(image_slices[image_slices.shape[0]//2], cmap=plt.cm.bone) plt.show() plt.imshow(image_resampled[image_resampled.shape[0]//2], cmap=plt.cm.bone) np.max(image_slices) np.max(image_resampled) np.min(image_slices) np.min(image_resampled) plt.show() image_slices = image_resampled shape = image_slices.shape l_segmented = np.zeros(shape).astype(np.int16) l_lungfilter = np.zeros(shape).astype(np.bool) l_outline = np.zeros(shape).astype(np.bool) l_watershed = np.zeros(shape).astype(np.int16) l_sobel_gradient = np.zeros(shape).astype(np.float32) l_marker_internal = np.zeros(shape).astype(np.bool) l_marker_external = np.zeros(shape).astype(np.bool) l_marker_watershed = np.zeros(shape).astype(np.int16) # start = time.time() i=0 for i in range(shape[0]): l_segmented[i], l_lungfilter[i], l_outline[i], l_watershed[i], l_sobel_gradient[i], l_marker_internal[i], l_marker_external[i], l_marker_watershed[i] = seperate_lungs_cv2(image_slices[i]) print("Rescale & Seg time, and path: ", ((time.time() - start)), path ) if useTestPlot: plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() plt.hist(l_segmented.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() img_sel_i = shape[0] // 2 # Show some slice in the middle plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() path_rescaled = path.replace(stage, ''.join([stage, "_", RESOLUTION_STR]), 1) path_segmented = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR]), 1) path_segmented_crop = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR, "_crop"]), 1) np.savez_compressed (path_rescaled, image_slices) np.savez_compressed (path_segmented, l_segmented) mask = l_lungfilter.astype(np.int8) regions = measure.regionprops(mask) # this measures the largest region and is a bug when the mask is not the largest region !!! bb = regions[0].bbox #print(bb) zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] dx = 0 # could be reduced ## have to reduce dx as for istance at least image the lungs stretch right to the border evebn without cropping ## namely for '../input/stage1/be57c648eb683a31e8499e278a89c5a0' crop_max_ratio_z = 0.6 # 0.8 is to big make_submit2(45, 1) crop_max_ratio_y = 0.4 crop_max_ratio_x = 0.6 bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) mask_shape= mask.shape image_shape = l_segmented.shape mask_volume = zlen*ylen*zlen /(mask_shape[0] * mask_shape[1] * mask_shape[2]) mask_volume_thresh = 0.08 # anything below is too small (maybe just one half of the lung or something very small0) mask_volume_check = mask_volume > mask_volume_thresh # print ("Mask Volume: ", mask_volume ) ### DO NOT allow the mask to touch x & y ---> if it does it is likely a wrong one as for: ## folders[3] , path = '../input/stage1/9ba5fbcccfbc9e08edcfe2258ddf7 maskOK = False if bxy_min >0 and bxy_max < 512 and mask_volume_check and zlen/mask_shape[0] > crop_max_ratio_z and ylen/mask_shape[1] > crop_max_ratio_y and xlen/mask_shape[2] > crop_max_ratio_x: ## square crop and at least dx elements on both sides on x & y bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) if bxy_min == 0 or bxy_max == 512: # Mask to bigg, auto-correct print("The following mask likely too big, autoreducing by:", dx) bxy_min = np.max((bxy_min, dx)) bxy_max = np.min ((bxy_max, mask_shape[1] - dx)) image = l_segmented[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] mask = mask[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] #maskOK = True print ("Shape, cropped, bbox ", mask_shape, mask.shape, bb) elif bxy_min> 0 and bxy_max < 512 and mask_volume_check and zlen/mask.shape[0] > crop_max_ratio_z: ## cut on z at least image = l_segmented[bb[0]:bb[3], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[bb[0]:bb[3], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask too small, NOT auto-cropping x-y: shape, cropped, bbox, ratios, violume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) else: image = l_segmented[0:mask_shape[0], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[0:mask_shape[0], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask wrong, NOT auto-cropping: shape, cropped, bbox, ratios, volume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) if showSummaryPlot: img_sel_i = shape[0] // 2 # Show some slice in the middle useSeparatePlots = False if useSeparatePlots: plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() else: f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(image_slices[img_sel_i],cmap=plt.cm.bone) ax[1].imshow(l_segmented[img_sel_i],cmap=plt.cm.bone) plt.show() # Show some slice in the middle #plt.imshow(image[image.shape[0] // 2], cmap='gray') # don't show it for simpler review #plt.show() np.savez_compressed(path_segmented_crop, image) #print("Mask count: ", count) #print ("Shape: ", image.shape) return part, processors, count # the following 3 functions to read LUNA files are from: https://www.kaggle.com/arnavkj95/data-science-bowl-2017/candidate-generation-and-luna16-preprocessing/notebook ''' This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image. ''' def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' #image = lung_img #spacing = new_spacing def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask ''' This function takes the path to a '.mhd' file as input and is used to create the nodule masks and segmented lungs after rescaling to 1mm size in all directions. It saved them in the .npz format. It also takes the list of nodule locations in that CT Scan as input. ''' def load_scans_masks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations =
pd.read_csv(LUNA_ANNOTATIONS)
pandas.read_csv
"""This module is meant to contain the Solscan class""" from messari.dataloader import DataLoader from messari.utils import validate_input from string import Template from typing import Union, List, Dict from .helpers import unpack_dataframe_of_dicts import pandas as pd #### Block BLOCK_LAST_URL = 'https://public-api.solscan.io/block/last' BLOCK_TRANSACTIONS_URL = 'https://public-api.solscan.io/block/transactions' BLOCK_BLOCK_URL = Template('https://public-api.solscan.io/block/$block') #### Transaction TRANSACTION_LAST_URL = 'https://public-api.solscan.io/transaction/last' TRANSACTION_SIGNATURE_URL = Template('https://public-api.solscan.io/transaction/$signature') #### Account ACCOUNT_TOKENS_URL = 'https://public-api.solscan.io/account/tokens' ACCOUNT_TRANSACTIONS_URL = 'https://public-api.solscan.io/account/transactions' ACCOUNT_STAKE_URL = 'https://public-api.solscan.io/account/stakeAccounts' ACCOUNT_SPL_TXNS_URL = 'https://public-api.solscan.io/account/splTransfers' ACCOUNT_SOL_TXNS_URL = 'https://public-api.solscan.io/account/solTransfers' ACCOUNT_EXPORT_TXNS_URL = 'https://public-api.solscan.io/account/exportTransactions' ACCOUNT_ACCOUNT_URL = Template('https://public-api.solscan.io/account/$account') #### Token TOKEN_HOLDERS_URL = 'https://public-api.solscan.io/token/holders' TOKEN_META_URL = 'https://public-api.solscan.io/token/meta' TOKEN_LIST_URL = 'https://public-api.solscan.io/token/list' #### Market MARKET_INFO_URL = Template('https://public-api.solscan.io/market/token/$tokenAddress') #### Chain Information CHAIN_INFO_URL = 'https://public-api.solscan.io/chaininfo' #TODO max this clean/ not hardcoded? look into how this works HEADERS={'accept': 'application/json', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'} # pylint: disable=line-too-long class Solscan(DataLoader): """This class is a wrapper around the Solscan API """ def __init__(self): DataLoader.__init__(self, api_dict=None, taxonomy_dict=None) ################# # Block endpoints def get_last_blocks(self, num_blocks=1) -> pd.DataFrame: """returns info for last blocks (default is 1, limit is 20) Parameters ---------- num_blocks: int (default is 1) number of blocks to return, max is 20 Returns ------- DataFrame DataFrame with block information """ # Max value is 20 or API bricks limit=num_blocks if num_blocks < 21 else 20 params = {'limit': limit} last_blocks = self.get_response(BLOCK_LAST_URL, params=params, headers=HEADERS) last_blocks_df = pd.DataFrame(last_blocks) last_blocks_df.set_index('currentSlot', inplace=True) last_blocks_df = unpack_dataframe_of_dicts(last_blocks_df) # TODO, extract data from 'result' return last_blocks_df def get_block_last_transactions(self, blocks_in: Union[str, List], offset=0, num_transactions=10) -> pd.DataFrame: """get last num_transactions of given block numbers Parameters ---------- blocks_in: str, List single block in or list of blocks in num_transactions: int (default is 10) number of transactions to return Returns ------- DataFrame dataframe with transaction details """ blocks = validate_input(blocks_in) df_list = [] for block in blocks: params = {'block': block, 'offset': offset, 'limit': num_transactions} txns = self.get_response(BLOCK_TRANSACTIONS_URL, params=params, headers=HEADERS) txns_df = pd.DataFrame(txns) df_list.append(txns_df) fin_df = pd.concat(df_list, keys=blocks, axis=1) fin_df = unpack_dataframe_of_dicts(fin_df) return fin_df def get_block(self, blocks_in: Union[str, List]) -> pd.DataFrame: """Return information of given block(s) Parameters ---------- blocks_in: str, List single block in or list of blocks in Returns ------- DataFrame DataFrame with block information """ blocks = validate_input(blocks_in) df_list = [] for block in blocks: endpoint_url = BLOCK_BLOCK_URL.substitute(block=block) response = self.get_response(endpoint_url, headers=HEADERS) df = pd.DataFrame(response) df.drop('currentSlot', axis=1) df_list.append(df) fin_df = pd.concat(df_list, keys=blocks, axis=1) fin_df = fin_df.xs('result', axis=1, level=1) return fin_df ####################### # Transaction endpoints def get_last_transactions(self, num_transactions=10) -> pd.DataFrame: """Return last num_transactions transactions Parameters ---------- num_transactions: int (default is 10) number of transactions to return, limit is 20 Returns ------- DataFrame dataframe with transaction details """ # 20 limit=num_transactions if num_transactions < 21 else 20 params = {'limit': limit} response = self.get_response(TRANSACTION_LAST_URL, params=params, headers=HEADERS) df = pd.DataFrame(response) fin_df = unpack_dataframe_of_dicts(df) return fin_df def get_transaction(self, signatures_in: Union[str, List]) -> pd.DataFrame: """Return information of given transaction signature(s) Parameters ---------- signatures_in: str, List single signature in or list of signatures in Returns ------- DataFrame DataFrame with transaction details """ signatures = validate_input(signatures_in) series_list = [] for signature in signatures: endpoint_url = TRANSACTION_SIGNATURE_URL.substitute(signature=signature) response = self.get_response(endpoint_url, headers=HEADERS) #print(response) series = pd.Series(response) series_list.append(series) fin_df = pd.concat(series_list, keys=signatures, axis=1) return fin_df ################### # Account endpoints def get_account_tokens(self, accounts_in: Union[str, List]) -> pd.DataFrame: """Return token balances of the given account(s) Parameters ---------- accounts_in: str, List single account in or list of accounts in Returns ------- DataFrame DataFrame with token balances of given accounts """ accounts = validate_input(accounts_in) df_list=[] for account in accounts: params={'account':account} response = self.get_response(ACCOUNT_TOKENS_URL, params=params, headers=HEADERS) df = pd.DataFrame(response) df_list.append(df) fin_df = pd.concat(df_list, keys=accounts, axis=1) return fin_df def get_account_transactions(self, accounts_in: Union[str,List]) -> pd.DataFrame: """Return DataFrame of transactions of the given account(s) Parameters ---------- accounts_in: str, List single account in or list of accounts in Returns ------- DataFrame DataFrame with transactions of given accounts """ accounts = validate_input(accounts_in) df_list=[] for account in accounts: params={'account':account} response = self.get_response(ACCOUNT_TRANSACTIONS_URL, params=params, headers=HEADERS) df = pd.DataFrame(response) df_list.append(df) fin_df = pd.concat(df_list, keys=accounts, axis=1) return fin_df def get_account_stake(self, accounts_in: Union[str, List]) -> pd.DataFrame: """Get staking accounts of the given account(s) Parameters ---------- accounts_in: str, List single account in or list of accounts in Returns ------- DataFrame DataFrame with staking accounts of given accounts """ accounts = validate_input(accounts_in) df_list=[] for account in accounts: params={'account':account} response = self.get_response(ACCOUNT_STAKE_URL, params=params, headers=HEADERS) df = pd.DataFrame(response) df_list.append(df) fin_df =
pd.concat(df_list, keys=accounts, axis=1)
pandas.concat
# TODO(*): Move to ib/medata and rename contract_metadata.py import logging import os from typing import List import ib_insync import pandas as pd import helpers.io_ as hio import im.ib.data.extract.gateway.utils as videgu _LOG = logging.getLogger(__name__) class IbMetadata: def __init__(self, file_name: str) -> None: self.file_name = file_name def load(self) -> pd.DataFrame: """ Load the data generated through update. The df looks like: conId,secType,symbol,lastTradeDateOrContractMonth,strike,right,multiplier, exchange,primaryExchange,currency,localSymbol,tradingClass, includeExpired,secIdType,secId,comboLegsDescrip,comboLegs, deltaNeutralContract 81596321,FUT,NG,20190327,0.0,,10000,NYMEX,,USD,NGJ9,NG,False,,,,[], 81596321,FUT,NG,20190327,0.0,,10000,QBALGO,,USD,NGJ9,NG,False,,,,[], 81596324,FUT,NG,20190426,0.0,,10000,NYMEX,,USD,NGK9,NG,False,,,,[], """ if os.path.exists(self.file_name): df = pd.read_csv(self.file_name, index_col=0) df = self._clean(df) else: _LOG.debug("No file '%s'", self.file_name) df = pd.DataFrame() return df def update( self, ib: ib_insync.ib.IB, contracts: List[ib_insync.Contract], append: bool = False, ) -> None: """ Update metadata in `file_name` for the given contracts. :param append: if True it keeps appending """ dfs = [] for contract in contracts: df_tmp = videgu.get_contract_details(ib, contract) dfs.append(df_tmp) df =
pd.concat(dfs, axis=0)
pandas.concat
import pandas as pd import numpy as np import unittest from dstools.preprocessing.Bucketizer import Bucketizer class TestBucketizer(unittest.TestCase): def compare_DataFrame(self, df_transformed, df_transformed_correct): """ helper function to compare the values of the transformed DataFrame with the values of a correctly transformed DataFrame """ #same number of columns self.assertEqual(len(df_transformed.columns), len(df_transformed_correct.columns)) #check for every column in correct DataFrame, that all items are equal for column in df_transformed_correct.columns: #compare every element for x, y in zip(df_transformed[column], df_transformed_correct[column]): #if both values are np.NaN, the assertion fails, although they are equal #if np.isnan(x)==True and np.isnan(y)==True: --> doesn't work with strings if pd.isnull(x)==True and pd.isnull(y)==True: pass else: self.assertEqual(x, y) def test_no_numeric_feature(self): """ no transformation should be performed """ df=pd.DataFrame({'x':[np.NaN,'b','c']}) df_transformed_correct=pd.DataFrame({'x':[np.NaN,'b','c']}) bucket = Bucketizer(features=['x']) df_transformed = bucket.fit_transform(df) self.compare_DataFrame(df_transformed, df_transformed_correct) def test_one_numeric_feature_no_transformation(self): """ no transformation should be performed """ df=
pd.DataFrame({'x':[1,2,3]})
pandas.DataFrame
import numpy as np import pandas as pd from scipy import interpolate import pickle # to serialise objects from scipy import stats import seaborn as sns from sklearn import metrics from sklearn.model_selection import train_test_split sns.set(style='whitegrid', palette='muted', font_scale=1.5) RANDOM_SEED = 42 dataset_train = pd.read_csv('final_training_set_8people.csv') training_set = pd.DataFrame(dataset_train.iloc[:,:].values) training_set.columns = ["User","Activity", "Timeframe", "X axis", "Y axis", "Z axis"] X = training_set.iloc[:, 3] X = X.astype(float) X = (X*1000000).astype('int64') Y = training_set.iloc[:, 4] Y = Y.astype(float) Y = (Y*1000000).astype('int64') Z = training_set.iloc[:, 5] Z = Z.astype(float) Z = (Z*1000000).astype('int64') Old_T = (training_set.iloc[:, 2]).astype(float) Old_T = (Old_T * 1000000) Old_T = Old_T.astype('int64') New_T = np.arange(0, 12509996000, 50000) New_T = New_T.astype('int64') # find interpolation function interpolate_function = interpolate.interp1d(Old_T, X, axis = 0, fill_value="extrapolate") X_Final = interpolate_function((New_T)) interpolate_function = interpolate.interp1d(Old_T, Y, axis = 0, fill_value="extrapolate") Y_Final = interpolate_function((New_T)) interpolate_function = interpolate.interp1d(Old_T, Z, axis = 0, fill_value="extrapolate") Z_Final = interpolate_function((New_T)) #Combining data into one pandas dataframe Dataset = pd.DataFrame() Dataset['X_Final'] = X_Final Dataset['Y_Final'] = Y_Final Dataset['Z_Final'] = Z_Final Dataset['New_Timeframe'] = New_T Dataset = Dataset/1e6 Dataset = Dataset[['New_Timeframe', 'X_Final', 'Y_Final', 'Z_Final']] Dataset['New_Activity'] = "" #Dataset = Dataset.astype('int64') Dataset = Dataset[['New_Activity', 'New_Timeframe', 'X_Final', 'Y_Final', 'Z_Final']] #function to fill in new dataset with related activity Dataset = Dataset.to_numpy() training_set = training_set.to_numpy() time = 0 temp = training_set[0][1] var_to_assign = "" last_row = 0 new_row = 0 for i in range(len(training_set)-1): if(training_set[i][1] == temp): continue if (training_set[i][1] != temp): var_to_assign = temp temp = training_set[i][1] time = training_set[i][2] a1 = [x for x in Dataset[:, 1] if x <= time] new_row = len(a1) Dataset[last_row:new_row+1, 0] = var_to_assign last_row = new_row continue #converting both arrays back to Dataframes Dataset = pd.DataFrame(Dataset) Dataset.columns = ['New_Activity', 'New_Timeframe', 'X_Final', 'Y_Final', 'Z_Final'] training_set =
pd.DataFrame(training_set)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jan 25 16:14:45 2021 @author: bdobson """ import os import pandas as pd import geopandas as gpd from matplotlib import pyplot as plt root = os.path.join("C:\\", "Users", "bdobson", "Documents", "GitHub", "cwsd_sewer","data") catchment = "cranbrook" cluster = 'cluster_Louv_266' rain = "august" dt = "sim_dt_30_s" cluster_root = os.path.join(root,catchment,"results","2021-03-02",cluster,dt) results_root = os.path.join(cluster_root, rain) plots_root = os.path.join(root, catchment, "results", "2021-03-02", "plots") info_fid = os.path.join(results_root, "highfid_flows.gzip") flow_fid = os.path.join(results_root, "flows.gzip") dep_fid = os.path.join(results_root, "depths.gzip") info_df = pd.read_parquet(info_fid).set_index('time') info_df.index = pd.to_datetime(info_df.index) flow_df = pd.read_parquet(flow_fid) flow_df.index = pd.to_datetime(flow_df.index) edges_gdf = gpd.read_file(os.path.join(cluster_root, "compartment_edges.geojson")) nodes_gdf = gpd.read_file(os.path.join(cluster_root, "compartment_nodes.geojson")) info_fid = os.path.join(results_root, "highfid_nodes.gzip") node_fid = os.path.join(results_root, "storages.gzip") infon_df = pd.read_parquet(info_fid).set_index('time') infon_df.index = pd.to_datetime(infon_df.index) # infon_df['volume'] = infon_df['volume'] + infon_df['floodvol'] node_df =
pd.read_parquet(node_fid)
pandas.read_parquet
import pandas as pd import argparse from matplotlib_venn import venn3 import matplotlib.pyplot as plt import math def get_args(): desc = 'Given sj files, see which splice junctions are shared/unique between datasets' parser = argparse.ArgumentParser(description=desc) parser.add_argument('-sj_1', dest='sj_1', help = '1st splice junction file') parser.add_argument('-sj_1_name', dest='sj_1_name', help = '1st splice junction file sample name ie "Gencode"') parser.add_argument('-sj_2', dest='sj_2', help = '2nd splice junction file') parser.add_argument('-sj_2_name', dest='sj_2_name', help = '2nd splice junction file sample name ie "Gencode"') parser.add_argument('-sj_3', dest='sj_3', help = '3rd splice junction file') parser.add_argument('-sj_3_name', dest='sj_3_name', help = '3rd splice junction file sample name ie "Gencode"') parser.add_argument('-sample', dest='sample_name', help = 'Sample name ie "PacBio GM12878"') parser.add_argument('--log', dest='log_sizes', default=False, action='store_true', help = 'Log the sizes of the circles') args = parser.parse_args() return args def read_sj_file(infile, dtype): df = pd.read_csv(infile, sep='\t', names=['chrom', 'start', 'stop', 'strand'], usecols=[0,1,2,3]) # df.drop_duplicates(inplace=True) return df def find_intersect_counts(dfa, dfb, dfc, args): # intersection of all (a,b,c) temp = pd.merge(dfa, dfb, how='inner', on=['chrom', 'start', 'stop', 'strand']) temp = pd.merge(temp, dfc, how='inner', on=['chrom', 'start', 'stop', 'strand']) count_abc = len(temp.index) # intersection of (a,b) temp = pd.merge(dfa, dfb, how='inner', on=['chrom', 'start', 'stop', 'strand']) count_ab = len(temp.index) - count_abc # intersection of (a,c) temp =
pd.merge(dfa, dfc, how='inner', on=['chrom', 'start', 'stop', 'strand'])
pandas.merge
#!/usr/bin/env python3 #libraries import pandas as pd import numpy as np import re import os pd.set_option('display.max_rows',200) pd.set_option('display.max_columns',200) import matplotlib.pyplot as plt import seaborn as sns import pymysql from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from datetime import timedelta import warnings warnings.filterwarnings("ignore") def read_sql_table(table_name): db = pymysql.connect(host='localhost', user="###",passwd="####" ) cur = db.cursor() sql="SELECT * FROM {} ".format(table_name) in_data = pd.read_sql(sql,db) return in_data uspa_subset = read_sql_table("recoms.uspa_subset") uspa_subset['mobile'] = uspa_subset['mobile'].astype(str) billing_data = uspa_subset[['first_name','mobile','bill_date','Bill_time','bill_date_time','bill_amount','bill_discount','total_quantity']] billing_data['key'] = billing_data['mobile'] + ' ' + billing_data['bill_date'].astype(str) billing_data.drop_duplicates('key',inplace=True) billing_avg = billing_data.groupby(['mobile']).agg({'bill_amount':'mean','bill_discount':'mean', 'total_quantity':'mean','key':'count', 'bill_date':'max'}).reset_index() billing_avg_temp = billing_data.groupby(['mobile']).agg({'bill_date':'min'}).reset_index() billing_avg.rename(columns = {'bill_amount':'average_bill_amount','bill_discount':'average_bill_discount', 'total_quantity':'quantities_per_visit','key':'visit_count','bill_date':'last_visit_date'},inplace=True) def visit_freq_bins(visit_counts,frequency=45): visit_count_bin = visit_counts//frequency if (visit_counts > 359): formatted_bin = '> 1 year' else: formatted_bin = str(visit_count_bin * frequency) + "-" + str((visit_count_bin +1) * frequency) return formatted_bin billing_avg_temp.rename(columns={'bill_date':'first_visit_date'},inplace=True) billing_avg = pd.merge(billing_avg,billing_avg_temp,left_on = 'mobile',right_on = 'mobile',how='left') billing_avg['last_visit_date'] = pd.to_datetime(billing_avg['last_visit_date']) billing_avg['first_visit_date'] = pd.to_datetime(billing_avg['first_visit_date']) billing_avg['total_days'] = (billing_avg['last_visit_date'] - billing_avg['first_visit_date']).dt.days billing_avg['average_visit_days'] = billing_avg['total_days'] / billing_avg['visit_count'] billing_avg['average_visit_days_round'] = billing_avg['average_visit_days'].apply(np.ceil).astype(int) temp = billing_avg['average_visit_days'].apply(lambda x:pd.Timedelta(x,unit='D')) billing_avg['proj_next_visit'] = billing_avg['last_visit_date'] + temp billing_avg['proj_next_visit'] = billing_avg['proj_next_visit'].dt.date billing_avg['visit_count_bin'] = billing_avg['average_visit_days_round'].apply(visit_freq_bins) uspa_color = uspa_subset[['mobile','variantdescription']] uspa_color['key'] = uspa_color['mobile'] + ' ' + uspa_color['variantdescription'] uspa_color['key'] = uspa_color['key'].apply(lambda x:str(x).lower()) uspa_preferred_color = uspa_color['key'].value_counts().to_frame().reset_index().rename(columns={'index':'mob_col','key':'count'}) uspa_preferred_color = uspa_preferred_color[uspa_preferred_color['mob_col'] != 'nan'] uspa_preferred_color['mobile'] = uspa_preferred_color['mob_col'].apply(lambda x:x.split(' ')[0]) uspa_preferred_color['color'] = uspa_preferred_color['mob_col'].apply(lambda x:x.split(' ')[1]) uspa_preferred_color_temp = uspa_preferred_color.groupby(['mobile']).agg({'count':'max'}).reset_index() uspa_preferred_color_temp['key_1'] = uspa_preferred_color_temp['mobile'].astype(str) + ' ' + uspa_preferred_color_temp['count'].astype(str) uspa_preferred_color['key_1'] = uspa_preferred_color['mobile'].astype(str) + ' ' + uspa_preferred_color['count'].astype(str) uspa_color_final_1 = pd.merge(uspa_preferred_color,uspa_preferred_color_temp, left_on='key_1',right_on ='key_1',how='left') uspa_color_final_1 = uspa_color_final_1.drop_duplicates(['mobile_x']) uspa_color_dataframe = uspa_color_final_1[['mobile_x','color']] billing_avg = pd.merge(billing_avg,uspa_color_dataframe, left_on = 'mobile',right_on='mobile_x',how = 'left') billing_avg.drop(['mobile_x'],axis=1,inplace=True) uspa_prod_type = uspa_subset[['mobile','materialtypedescription']] uspa_prod_type['key'] = uspa_prod_type['mobile'] + ' ' + uspa_prod_type['materialtypedescription'] uspa_prod_type['key'] = uspa_prod_type['key'].apply(lambda x:str(x).lower()) uspa_preferred_prod = uspa_prod_type['key'].value_counts().to_frame().reset_index().rename(columns={'index':'mob_prod','key':'count'}) uspa_preferred_prod = uspa_preferred_prod[uspa_preferred_prod['mob_prod'] != 'nan'] uspa_preferred_prod['mobile'] = uspa_preferred_prod['mob_prod'].apply(lambda x:x.split(' ')[0]) uspa_preferred_prod['prod'] = uspa_preferred_prod['mob_prod'].apply(lambda x:x.split(' ')[1]) uspa_preferred_prod_temp = uspa_preferred_prod.groupby(['mobile']).agg({'count':'max'}).reset_index() uspa_preferred_prod_temp['key_1'] = uspa_preferred_prod_temp['mobile'].astype(str) + ' ' + uspa_preferred_prod_temp['count'].astype(str) uspa_preferred_prod['key_1'] = uspa_preferred_prod['mobile'].astype(str) + ' ' + uspa_preferred_color['count'].astype(str) uspa_prod_final_1 = pd.merge(uspa_preferred_prod,uspa_preferred_prod_temp, left_on='key_1',right_on ='key_1',how='left') uspa_prod_final_1 = uspa_prod_final_1.drop_duplicates(['mobile_x']) uspa_prod_dataframe = uspa_prod_final_1[['mobile_x','prod']] billing_avg = pd.merge(billing_avg,uspa_prod_dataframe, left_on = 'mobile',right_on='mobile_x',how = 'left') billing_avg.drop(['mobile_x'],axis=1,inplace=True) uspa_prod_type = uspa_subset[['mobile','gender']] uspa_prod_type['key'] = uspa_prod_type['mobile'] + ' ' + uspa_prod_type['gender'] uspa_prod_type['key'] = uspa_prod_type['key'].apply(lambda x:str(x).lower()) uspa_preferred_prod = uspa_prod_type['key'].value_counts().to_frame().reset_index().rename(columns={'index':'mob_prod','key':'count'}) uspa_preferred_prod = uspa_preferred_prod[uspa_preferred_prod['mob_prod'] != 'nan'] uspa_preferred_prod['mobile'] = uspa_preferred_prod['mob_prod'].apply(lambda x:x.split(' ')[0]) uspa_preferred_prod['gender'] = uspa_preferred_prod['mob_prod'].apply(lambda x:x.split(' ')[1]) uspa_preferred_prod_temp = uspa_preferred_prod.groupby(['mobile']).agg({'count':'max'}).reset_index() uspa_preferred_prod_temp['key_1'] = uspa_preferred_prod_temp['mobile'].astype(str) + ' ' + uspa_preferred_prod_temp['count'].astype(str) uspa_preferred_prod['key_1'] = uspa_preferred_prod['mobile'].astype(str) + ' ' + uspa_preferred_color['count'].astype(str) uspa_prod_final_1 = pd.merge(uspa_preferred_prod,uspa_preferred_prod_temp, left_on='key_1',right_on ='key_1',how='left') uspa_prod_final_1 = uspa_prod_final_1.drop_duplicates(['mobile_x']) uspa_prod_dataframe = uspa_prod_final_1[['mobile_x','gender']] billing_avg =
pd.merge(billing_avg,uspa_prod_dataframe, left_on = 'mobile',right_on='mobile_x',how = 'left')
pandas.merge
# Author: <NAME> <<EMAIL>> # # License: BSD (3-clause) import os.path as op import pandas as pd import numpy as np import mne from mne.transforms import apply_trans, _get_trans from mne.utils import _validate_type, _check_fname from mne.io import BaseRaw def _read_fold_xls(fname, atlas="Juelich"): """Read fOLD toolbox xls file. The values are then manipulated in to a tidy dataframe. Note the xls files are not included as no license is provided. Parameters ---------- fname : str Path to xls file. atlas : str Requested atlas. """ page_reference = {"AAL2": 2, "AICHA": 5, "Brodmann": 8, "Juelich": 11, "Loni": 14} tbl = pd.read_excel(fname, sheet_name=page_reference[atlas]) # Remove the spacing between rows empty_rows = np.where(np.isnan(tbl["Specificity"]))[0] tbl = tbl.drop(empty_rows).reset_index(drop=True) # Empty values in the table mean its the same as above for row_idx in range(1, tbl.shape[0]): for col_idx, col in enumerate(tbl.columns): if not isinstance(tbl[col][row_idx], str): if np.isnan(tbl[col][row_idx]): tbl.iloc[row_idx, col_idx] = \ tbl.iloc[row_idx - 1, col_idx] tbl["Specificity"] = tbl["Specificity"] * 100 tbl["brainSens"] = tbl["brainSens"] * 100 return tbl def _generate_montage_locations(montage='standard_1005'): """Get standard montage locations in dataframe. Data is returned in the same format as the eeg_positions library. Parameters ---------- montage : str Standard MNE montage to use. """ montage = mne.channels.make_standard_montage(montage) coords = pd.DataFrame.from_dict( montage.get_positions()['ch_pos']).T coords["label"] = coords.index coords = coords.rename(columns={0: "x", 1: "y", 2: "z"}) return coords.reset_index(drop=True) def _find_closest_standard_location(position, reference, trans_pos='mri'): """Return closest montage label to coordinates. Parameters ---------- position : array Coordinates. reference : dataframe As generated by _generate_montage_locations. trans_pos : str Apply a transformation to positions to specified frame. Use None for no transformation. """ p0 = np.array(position) if trans_pos is not None: head_mri_t, _ = _get_trans('fsaverage', 'head', 'mri') p0 = apply_trans(head_mri_t, p0) dists = np.zeros(reference["x"].shape) for idx in range(len(dists)): p1 = np.array([reference["x"][idx], reference["y"][idx], reference["z"][idx]]) dists[idx] = np.linalg.norm(p0 - p1) min_idx = np.argmin(dists) return reference["label"][min_idx] def fold_landmark_specificity(raw, landmark, fold_files=None, atlas="Juelich"): """Return the specificity of each channel to a specified brain landmark. Parameters ---------- raw : BaseRaw The fNIRS data. landmark : str Landmark of interest. Must be present in fOLD toolbox data file. fold_files : list | path-like | None If None, will use the MNE_NIRS_FOLD_PATH config variable. If path-like, should be a path to a directory containing '10-10.xls' and '10-5.xls'. If list, should be paths to the fold toolbox files. See the Notes section of :func:`~mne_nirs.io.fold_channel_specificity` for details. atlas : str Brain atlas to use. Returns ------- spec : array Specificity values for each channel to brain landmark. See Also -------- fold_landmark_specificity Notes ----- Specificity values are provided by the fOLD toolbox :footcite:`morais2018fnirs` excel files. See the Notes section of :func:`~mne_nirs.io.fold_channel_specificity` for more details. References ---------- .. footbibliography:: """ _validate_type(landmark, str, 'landmark') _validate_type(raw, BaseRaw, 'raw') reference_locations = _generate_montage_locations() fold_tbl = _check_load_fold(fold_files, atlas) specificity = np.zeros(len(raw.ch_names)) for cidx in range(len(raw.ch_names)): tbl = _source_detector_fold_table(raw, cidx, reference_locations, fold_tbl) if len(tbl) > 0: tbl["ContainsLmk"] = [landmark in la for la in tbl["Landmark"]] tbl = tbl.query("ContainsLmk == True")["Specificity"] if len(tbl) == 0: continue # print(f"No data for {src_name}-{det_name}") elif len(tbl) == 1: specificity[cidx] = tbl.values[0] else: raise RuntimeError("Multiple specificity values returned") return np.array(specificity) def fold_channel_specificity(raw, fold_files=None, atlas="Juelich"): """Return the landmarks and specificity a channel is sensitive to. Parameters ---------- raw : BaseRaw The fNIRS data. fold_files : list | path-like | None If None, will use the MNE_NIRS_FOLD_PATH config variable. If path-like, should be a path to a directory containing '10-10.xls' and '10-5.xls'. If list, should be paths to the fold toolbox files. See Notes for details. atlas : str Brain atlas to use. Returns ------- spec : list of dataframes List of dataframes, one for each channel. See Also -------- fold_landmark_specificity Notes ----- Specificity values are provided by the fOLD toolbox :footcite:`morais2018fnirs` excel files. For licensing reasons, these files are not distributed with MNE-NIRS. You need to download them from `the author's website <https://github.com/nirx/fOLD-public>`__. To automatically utilize the ``MNE_NIRS_FOLD_PATH`` config for the ``fold_files`` parameter, you can download the entire ``fOLD-public`` repository `as a zip <https://github.com/nirx/fOLD-public/archive/refs/heads/master.zip>`__ and expand it to some suitable location like ``~/mne_data/fOLD/fOLD-public-master``, and then set the config value on your machine by using :func:`mne:mne.set_config` like:: >>> mne.set_config('MNE_NIRS_FOLD_PATH', '~/mne_data/fOLD/fOLD-public-master/Supplementary') From then on, :func:`~mne_nirs.io.fold_channel_specificity` and :func:`~mne_nirs.io.fold_landmark_specificity` will automatically use this directory to find the fOLD xls files when you pass ``fold_files=None`` (which is the default). We recommend following this procedure so that the files can be reused automatically. References ---------- .. footbibliography:: """ # noqa: E501 _validate_type(raw, BaseRaw, 'raw') reference_locations = _generate_montage_locations() fold_tbl = _check_load_fold(fold_files, atlas) chan_spec = list() for cidx in range(len(raw.ch_names)): tbl = _source_detector_fold_table(raw, cidx, reference_locations, fold_tbl) chan_spec.append(tbl.reset_index(drop=True)) return chan_spec def _check_load_fold(fold_files, atlas): _validate_type(fold_files, (list, 'path-like', None), 'fold_files') if fold_files is None: fold_files = mne.get_config('MNE_NIRS_FOLD_PATH') if fold_files is None: raise ValueError( 'MNE_NIRS_FOLD_PATH not set, either set it using ' 'mne.set_config or pass fold_files as str or list') if not isinstance(fold_files, list): # path-like fold_files = _check_fname( fold_files, overwrite='read', must_exist=True, name='fold_files', need_dir=True) fold_files = [op.join(fold_files, f'10-{x}.xls') for x in (5, 10)] fold_tbl =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """dlw9383-bandofthehawk-output.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/154b5GvPxORu_mhpHDIsNlWvyBxMIwEw2 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize':(15,10)}) pd.set_option("precision", 10) import os train=pd.read_csv("/content/PricingData.csv") train.shape train.isnull().sum() train.info() train = pd.concat([train, train['Seat Fare Type 1'].str.split(',', expand=True)], axis=1) train.columns = train.columns.map(str) train = train.rename({'0': 'berth1_1','1': 'berth2_1', '2': 'berth3_1','3': 'berth4_1', '4': 'berth5_1','5': 'berth6_1', '6': 'berth7_1'},axis='columns') train.update(train[['berth1_1','berth2_1','berth3_1','berth4_1', 'berth5_1', 'berth6_1','berth7_1']].fillna(0)) train = pd.concat([train, train['Seat Fare Type 2'].str.split(',', expand=True)], axis=1) train.columns = train.columns.map(str) train = train.rename({'0': 'berth1_2','1': 'berth2_2', '2': 'berth3_2','3': 'berth4_2'},axis='columns') train.update(train[['berth1_2','berth2_2','berth3_2','berth4_2']].fillna(0)) train.drop(['Seat Fare Type 1', 'Seat Fare Type 2','Service Date','RecordedAt'], axis=1, inplace=True) train[train.columns[1:]] = train[train.columns[1:]].astype(float) train.drop_duplicates(keep='first', inplace=True) id = train["Bus"] train.drop(['Bus'], axis=1, inplace=True) reduced_data = train.values from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() reduced_data = min_max_scaler.fit_transform(reduced_data) from sklearn.cluster import KMeans data_frame = reduced_data Sum_of_squared_distances = [] K = range(1,10) for num_clusters in K : kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(data_frame) Sum_of_squared_distances.append(kmeans.inertia_) plt.plot(K,Sum_of_squared_distances,'bx-') plt.xlabel('Values of K') plt.ylabel('Sum of squared distances/Inertia') plt.title('Elbow Method For Optimal k') plt.show() from sklearn.decomposition import PCA reduced_data = PCA(n_components=2).fit_transform(train) results = pd.DataFrame(reduced_data,columns=['pca1','pca2']) kmeansmodel = KMeans(n_clusters=4, init='k-means++', random_state=0) y_kmeans= kmeansmodel.fit_predict(reduced_data) y_k=
pd.DataFrame(y_kmeans, columns=['Clusters'])
pandas.DataFrame
import pandas as pd import plotly.express as px # Passo 1 -Importar a basa de dados para o python tabela =
pd.read_csv(r"C:\Users\jose_\OneDrive\Documentos\Estudos\arquivos_pyton\telecom_users.csv")
pandas.read_csv
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) msg = "The 'errors' keyword in " with tm.assert_produces_warning(FutureWarning, match=msg): # where (we ignore the errors=) result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) # infer int64 from float64 when fillna value is a dict ser = Series([1.0, np.nan]) result = ser.fillna({1: 0}, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) def test_timedelta_fillna(self, frame_or_series): # GH#3371 ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) td = ser.diff() obj = frame_or_series(td) # reg fillna result = obj.fillna(Timedelta(seconds=0)) expected = Series( [ timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # interpreted as seconds, no longer supported msg = "value should be a 'Timedelta', 'NaT', or array of those. Got 'int'" with pytest.raises(TypeError, match=msg): obj.fillna(1) result = obj.fillna(Timedelta(seconds=1)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(timedelta(days=1, seconds=1)) expected = Series( [ timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(np.timedelta64(10 ** 9)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = Series( [ NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ], dtype="m8[ns]", ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # ffill td[2] = np.nan obj = frame_or_series(td) result = obj.ffill() expected = td.fillna(Timedelta(seconds=0)) expected[0] = np.nan expected = frame_or_series(expected) tm.assert_equal(result, expected) # bfill td[2] = np.nan obj = frame_or_series(td) result = obj.bfill() expected = td.fillna(Timedelta(seconds=0)) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) expected = frame_or_series(expected) tm.assert_equal(result, expected) def test_datetime64_fillna(self): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan # ffill result = ser.ffill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) # bfill result = ser.bfill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) def test_datetime64_fillna_backfill(self): # GH#6587 # make sure that we are treating as integer when filling msg = "containing strings is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): # this also tests inference of a datetime-like with NaT's ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"]) expected = Series( [ "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", ], dtype="M8[ns]", ) result = ser.fillna(method="backfill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) def test_datetime64_tz_fillna(self, tz): # DatetimeLikeBlock ser = Series( [ Timestamp("2011-01-01 10:00"), NaT, Timestamp("2011-01-03 10:00"), NaT, ] ) null_loc = Series([False, True, False, True]) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) # check s is not changed tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00"), "AAA", Timestamp("2011-01-03 10:00"), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # DatetimeTZBlock idx = DatetimeIndex(["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz) ser = Series(idx) assert ser.dtype == f"datetime64[ns, {tz}]" tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), "AAA", Timestamp("2011-01-03 10:00", tz=tz), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00", tz=tz), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # filling with a naive/other zone, coerce to object result = ser.fillna(Timestamp("20130101")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"): result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(
isna(ser)
pandas.isna
from typing import List import pandas as pd # Not covered: Essentially a script over other unit tested functions def clean_data(df: pd.DataFrame) -> pd.DataFrame: # pragma: no cover """Parse * location information to append city, state, zip code, and neighborhood columns * salary information to append minimum and maximum annual salary in dollars :param df: Dataframe with "location" column :return: Dataframe with "location" column dropped but expanded into other, finer-detailed columns """ result = df.drop_duplicates() result = expand_location(result) result = expand_salary(result) return result def expand_salary(df: pd.DataFrame) -> pd.DataFrame: """ Replace "salary" column with "min_annual_salary_$" and "max_annual_salary_$" columns extracted from it. :param df: Dataframe with "salary" column :return: Dataframe with "salary" column dropped and "min_annual_salary_$" and "max_annual_salary_$" columns appended """ original_cols = df.columns salary = "salary" replacement_columns = ["annual_salary_min_$", "annual_salary_max_$"] columns_to_expanded = {salary: replacement_columns} # Parse salary information into list df["parsed_salary"] = df[df[salary].notnull()].apply( func=lambda row: parse_salary(row[salary]), axis=1 ) # Explode (non-null) parsed list into its own columns df_expanded_salary = ( df[["link", salary, "parsed_salary"]][df[salary].notnull()] .apply( func=lambda row: pd.concat( [row, pd.Series([e for e in row["parsed_salary"]])], axis=0 ), axis=1, ) .drop([salary, "parsed_salary"], axis=1) # Rename the default-named exploded columns .rename(columns={i: col for i, col in enumerate(replacement_columns)}) ) # Join non-null columns back in on unique identifier df =
pd.merge(df, df_expanded_salary, how="outer", on="link")
pandas.merge
""" Also test support for datetime64[ns] in Series / DataFrame """ from datetime import datetime, timedelta import re import numpy as np import pytest from pandas._libs import iNaT import pandas._libs.index as _index import pandas as pd from pandas import DataFrame, DatetimeIndex, NaT, Series, Timestamp, date_range import pandas._testing as tm def test_fancy_getitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) assert s[48] == 48 assert s["1/2/2009"] == 48 assert s["2009-1-2"] == 48 assert s[datetime(2009, 1, 2)] == 48 assert s[Timestamp(datetime(2009, 1, 2))] == 48 with pytest.raises(KeyError, match=r"^'2009-1-3'$"): s["2009-1-3"] tm.assert_series_equal( s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)] ) def test_fancy_setitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 assert s[48] == -1 s["1/2/2009"] = -2 assert s[48] == -2 s["1/2/2009":"2009-06-05"] = -3 assert (s[48:54] == -3).all() def test_dti_reset_index_round_trip(): dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) d1 = DataFrame({"v": np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() assert d2.dtypes[0] == np.dtype("M8[ns]") d3 = d2.set_index("index") tm.assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) df = df.set_index("Date") assert df.index[0] == stamp assert df.reset_index()["Date"][0] == stamp @pytest.mark.slow def test_slice_locs_indexerror(): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(range(100000), times) s.loc[datetime(1900, 1, 1) : datetime(2100, 1, 1)] def test_slicing_datetimes(): # GH 7523 # unique df = DataFrame( np.arange(4.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) # duplicates df = DataFrame( np.arange(5.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) def test_getitem_setitem_datetime_tz_pytz(): from pytz import timezone as tz N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() # comparison dates with datetime MUST be localized! date = tz("US/Central").localize(datetime(1990, 1, 1, 3)) result[date] = 0 result[date] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_dateutil(): from dateutil.tz import tzutc from pandas._libs.tslibs.timezones import dateutil_gettz as gettz tz = ( lambda x: tzutc() if x == "UTC" else gettz(x) ) # handle special case for utc in dateutil N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="America/New_York") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = 0 result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetimeindex(): N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04:00:00"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04:00:00"] = 0 result["1990-01-01 04:00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04:00:00" rb = "1990-01-01 07:00:00" # GH#18435 strings get a pass from tzawareness compat result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) lb = "1990-01-01 04:00:00-0500" rb = "1990-01-01 07:00:00-0500" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # But we do not give datetimes a pass on tzawareness compat # TODO: do the same with Timestamps and dt64 msg = "Cannot compare tz-naive and tz-aware datetime-like objects" naive = datetime(1990, 1, 1, 4) with tm.assert_produces_warning(FutureWarning): # GH#36148 will require tzawareness compat result = ts[naive] expected = ts[4] assert result == expected result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = ts[4] tm.assert_series_equal(result, ts) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result = ts[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = ts[4:8] tm.assert_series_equal(result, ts) lb = datetime(1990, 1, 1, 4) rb = datetime(1990, 1, 1, 7) msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime" with pytest.raises(TypeError, match=msg): # tznaive vs tzaware comparison is invalid # see GH#18376, GH#18162 ts[(ts.index >= lb) & (ts.index <= rb)] lb = pd.Timestamp(datetime(1990, 1, 1, 4)).tz_localize(rng.tzinfo) rb = pd.Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo) result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) # also test partial date slicing result = ts["1990-01-02"] expected = ts[24:48] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-02"] = 0 result["1990-01-02"] = ts[24:48] tm.assert_series_equal(result, ts) def test_getitem_setitem_periodindex(): from pandas import period_range N = 50 rng = period_range("1/1/1990", periods=N, freq="H") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04"] = 0 result["1990-01-01 04"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04":"1990-01-01 07"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04":"1990-01-01 07"] = 0 result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04" rb = "1990-01-01 07" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # GH 2782 result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) def test_datetime_indexing(): index = date_range("1/1/2000", "1/7/2000") index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp("1/8/2000") with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 # not monotonic s = Series(len(index), index=index) s = s[::-1] with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 """ test duplicates in time series """ @pytest.fixture def dups(): dates = [ datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5), ] return Series(np.random.randn(len(dates)), index=dates) def test_constructor(dups): assert isinstance(dups, Series) assert isinstance(dups.index, DatetimeIndex) def test_is_unique_monotonic(dups): assert not dups.index.is_unique def test_index_unique(dups): uniques = dups.index.unique() expected = DatetimeIndex( [ datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), ] ) assert uniques.dtype == "M8[ns]" # sanity tm.assert_index_equal(uniques, expected) assert dups.index.nunique() == 4 # #2563 assert isinstance(uniques, DatetimeIndex) dups_local = dups.index.tz_localize("US/Eastern") dups_local.name = "foo" result = dups_local.unique() expected = DatetimeIndex(expected, name="foo") expected = expected.tz_localize("US/Eastern") assert result.tz is not None assert result.name == "foo" tm.assert_index_equal(result, expected) # NaT, note this is excluded arr = [1370745748 + t for t in range(20)] + [iNaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 arr = [ Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 def test_duplicate_dates_indexing(dups): ts = dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: tm.assert_series_equal(result, expected) else: tm.assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) tm.assert_series_equal(cp, expected) key = datetime(2000, 1, 6) with pytest.raises(KeyError, match=re.escape(repr(key))): ts[key] # new index ts[datetime(2000, 1, 6)] = 0 assert ts[datetime(2000, 1, 6)] == 0 def test_range_slice(): idx = DatetimeIndex(["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]) ts = Series(np.random.randn(len(idx)), index=idx) result = ts["1/2/2000":] expected = ts[1:] tm.assert_series_equal(result, expected) result = ts["1/2/2000":"1/3/2000"] expected = ts[1:4] tm.assert_series_equal(result, expected) def test_groupby_average_dup_values(dups): result = dups.groupby(level=0).mean() expected = dups.groupby(dups.index).mean()
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import numpy as np np.random.seed(1337) # for reproducibility import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics._regression import r2_score, mean_squared_error from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score from dbn import SupervisedDBNRegression from dbn import SupervisedDBNClassification import time import matplotlib.pyplot as plt def testing(csv_filepath , save_output_image , model_path): df = pd.read_csv(csv_filepath) dt = list() for i in range(len(df)): dt.append(df['Date'][i]+ " " +df['Time'][i]) df['DateTime'] = dt df['DateTime'] = pd.to_datetime(df['DateTime']) df.index = df['DateTime'] df.drop(df[df['Volume']==0].index , axis=0 ,inplace=True) idx = df[df['Low']==df['High']].index df.drop(idx , axis=0 , inplace=True) df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
import pandas from copy import deepcopy from palm.base.target_data import TargetData from palm.discrete_state_trajectory import DiscreteStateTrajectory,\ DiscreteDwellSegment class BlinkTargetData(TargetData): """ A dwell trajectory loaded from a file. The trajectory should be a series of dark and bright observations and the duration of each observation. Expecting csv file with this format: class,dwell time dark,1.5 bright,0.3 dark,1.2 bright,0.1 . . . Attributes ---------- trajectory_factory : class A class that makes Trajectory objects. segment_factory : class A class that makes TrajectorySegment objects. trajectory : Trajectory Represents a time trace of dark and bright observations. filename : string The trajectory data is loaded from this path. """ def __init__(self): super(BlinkTargetData, self).__init__() self.trajectory_factory = DiscreteStateTrajectory self.segment_factory = DiscreteDwellSegment self.trajectory = None self.filename = None def __len__(self): return len(self.trajectory) def load_data(self, data_file): """ Load trajectory from file. Parameters ---------- data_file : string Path of file to load. """ self.filename = data_file data_table =
pandas.read_csv(data_file, header=0)
pandas.read_csv
import unittest import pandas as pd import numpy as np from ..timeseries import TimeSeries class TimeSeriesTestCase(unittest.TestCase): times = pd.date_range('20130101', '20130110') pd_series1 = pd.Series(range(10), index=times) pd_series2 = pd.Series(range(5, 15), index=times) pd_series3 = pd.Series(range(15, 25), index=times) series1: TimeSeries = TimeSeries(pd_series1) series2: TimeSeries = TimeSeries(pd_series1, pd_series2, pd_series3) series3: TimeSeries = TimeSeries(pd_series2) def test_creation(self): with self.assertRaises(ValueError): # Index is dateTimeIndex TimeSeries(pd.Series(range(10), range(10))) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_lo = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, pd_lo) with self.assertRaises(ValueError): # Conf interval must be same length as main series pd_hi = pd.Series(range(5, 14), index=pd.date_range('20130101', '20130109')) TimeSeries(self.pd_series1, None, pd_hi) with self.assertRaises(ValueError): # Conf interval must have same time index as main series pd_lo = pd.Series(range(5, 15), index=pd.date_range('20130102', '20130111')) TimeSeries(self.pd_series1, None, pd_lo) with self.assertRaises(ValueError): # Main series cannot have date holes range_ = pd.date_range('20130101', '20130104').append(pd.date_range('20130106', '20130110')) TimeSeries(pd.Series(range(9), index=range_)) series_test = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) def test_alt_creation(self): with self.assertRaises(ValueError): # Series cannot be lower than three index = pd.date_range('20130101', '20130102') TimeSeries.from_times_and_values(index, self.pd_series1.values[:2]) with self.assertRaises(ValueError): # all array must have same length TimeSeries.from_times_and_values(self.pd_series1.index, self.pd_series1.values[:-1], self.pd_series2[:-2], self.pd_series3[:-1]) # test if reordering is correct rand_perm = np.random.permutation(range(1, 11)) index = pd.to_datetime(['201301{:02d}'.format(i) for i in rand_perm]) series_test = TimeSeries.from_times_and_values(index, self.pd_series1.values[rand_perm-1], self.pd_series2[rand_perm-1], self.pd_series3[rand_perm-1].tolist()) self.assertTrue(series_test.start_time() == pd.to_datetime('20130101')) self.assertTrue(series_test.end_time() == pd.to_datetime('20130110')) self.assertTrue(series_test.pd_series().equals(self.pd_series1)) self.assertTrue(series_test.conf_lo_pd_series().equals(self.pd_series2)) self.assertTrue(series_test.conf_hi_pd_series().equals(self.pd_series3)) self.assertTrue(series_test.freq() == self.series1.freq()) # TODO test over to_dataframe when multiple features choice is decided def test_eq(self): seriesA: TimeSeries = TimeSeries(self.pd_series1) self.assertTrue(self.series1 == seriesA) # with a defined CI seriesB: TimeSeries = TimeSeries(self.pd_series1, confidence_hi=pd.Series(range(10, 20), index=pd.date_range('20130101', '20130110'))) self.assertFalse(self.series1 == seriesB) self.assertTrue(self.series1 != seriesB) # with different dates seriesC = TimeSeries(pd.Series(range(10), index=pd.date_range('20130102', '20130111'))) self.assertFalse(self.series1 == seriesC) # compare with both CI seriesD: TimeSeries = TimeSeries(self.pd_series1, self.pd_series2, self.pd_series3) seriesE: TimeSeries = TimeSeries(self.pd_series1, self.pd_series3, self.pd_series2) self.assertTrue(self.series2 == seriesD) self.assertFalse(self.series2 == seriesE) def test_dates(self): self.assertEqual(self.series1.start_time(), pd.Timestamp('20130101')) self.assertEqual(self.series1.end_time(), pd.Timestamp('20130110')) self.assertEqual(self.series1.duration(), pd.Timedelta(days=9)) def test_slice(self): # base case seriesA = self.series1.slice(pd.Timestamp('20130104'),
pd.Timestamp('20130107')
pandas.Timestamp
#python imports import os import gc import string import random import time import pickle import shutil from datetime import datetime #internal imports from modules.Signal import Signal from modules.Database import Database from modules.Predictor import Classifier, ComplexBuilder from modules.utils import calculateDistanceP, chunks, cleanPath, minMaxNorm, extractMeanByBounds, extractMetricByShiftBounds import joblib from joblib import Parallel, delayed, dump, load import pandas as pd import numpy as np from collections import OrderedDict from itertools import combinations from multiprocessing import Pool, Value from joblib import wrap_non_picklable_objects #plotting import matplotlib.pyplot as plt import seaborn as sns #sklearn imports from sklearn.metrics import classification_report, homogeneity_score, v_measure_score, completeness_score from sklearn.model_selection import ParameterGrid from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LinearRegression from sklearn.neighbors import RadiusNeighborsRegressor, KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import scale, minmax_scale, robust_scale from scipy.stats import ttest_ind, f_oneway #dimensional reduction import umap __VERSION__ = "0.4.48" filePath = os.path.dirname(os.path.realpath(__file__)) pathToTmp = os.path.join(filePath,"tmp") alignModels = { "LinearRegression": LinearRegression, "RadiusNeighborsRegressor" : RadiusNeighborsRegressor, "KNeighborsRegressor":KNeighborsRegressor } alignModelsParams = { "LinearRegression": {}, "RadiusNeighborsRegressor" : {"weights":"distance","radius":30} , "KNeighborsRegressor":{"weights":"distance","n_neighbors":10} } STACKING_CLASSIFIER_GRID = { 'rf__max_depth': [70,None,30],#30,, #'rf__max_features': ['auto'], # 'rf__min_samples_leaf': [2, 3, 5], 'rf__min_samples_split': [2,4],#[2, 3, 4], #'rf__n_estimators': [200], "SVM__C" : [1, 10,1000], "SVM__kernel": ['rbf','poly'], 'SVM__gamma': [0.01,10,100] } OPTICS_PARAM_GRID = { "min_samples":[2,3,5,8], "max_eps": [np.inf,2,1,0.9,0.8], "xi": np.linspace(0,0.3,num=30), "cluster_method" : ["xi"] } AGGLO_PARAM_GRID = { "n_clusters":[None,115,110,105,100,90,95], "distance_threshold":[None,0.5,0.4,0.2,0.1,0.05,0.01], "linkage":["complete","single","average"] } AFF_PRO_PARAM = {"damping":np.linspace(0.5,1,num=50)} HDBSCAN_PROPS = { "min_cluster_size":[2,3,4,6], "min_samples":[2,3,4,5] } #{"min_cluster_size":[2,3,4,6],"min_samples":[2,3,4,5,8,10]} CLUSTER_PARAMS = { "OPTICS":OPTICS_PARAM_GRID, "AGGLOMERATIVE_CLUSTERING":AGGLO_PARAM_GRID, "AFFINITY_PROPAGATION":AFF_PRO_PARAM, "HDBSCAN":HDBSCAN_PROPS } svm_param_grid = { 'C': [1, 10, 100, 1000], 'kernel': ['linear','rbf','poly'], 'gamma': [0.01,0.1,1,2,3,4,5] } RF_GRID_SEARCH = { 'max_depth': [70,None,30,50,10],#30,,,50,5 'max_features': ['auto'], 'min_samples_leaf': [2,5,3,15], # 5, 15 'min_samples_split': [2 ,3,10], 'n_estimators': [300, 500, 600] } entriesInChunks = dict() class ComplexFinder(object): def __init__(self, addImpurity = 0.0, alignMethod = "RadiusNeighborsRegressor",#"RadiusNeighborsRegressor",#"KNeighborsRegressor",#"LinearRegression", # RadiusNeighborsRegressor alignRuns = False, alignWindow = 3, allowSingleFractionQuant = False, analysisMode = "label-free", #[label-free,SILAC,SILAC-TMT] analysisName = None, binaryDatabase = False, classifierClass = "random_forest", classifierTestSize = 0.25, classiferGridSearch = RF_GRID_SEARCH,#STACKING_CLASSIFIER_GRID,# compTabFormat = False, considerOnlyInteractionsPresentInAllRuns = 2, correlationWindowSize = 5, databaseFilter = {'Organism': ["Human"]},#{'Organism': ["Human"]},#{"Confidence" : [1,2,3,4]} - for hu.map2.0,# {} for HUMAN_COMPLEX_PORTAL databaseIDColumn = "subunits(UniProt IDs)", databaseFileName = "20190823_CORUM.txt",#"humap2.txt databaseHasComplexAnnotations = True, databaseEntrySplitString = ";", decoySizeFactor = 1.2, grouping = {"WT": ["D3_WT_03.txt"]}, hdbscanDefaultKwargs = {"min_cluster_size":4,"min_samples":1}, indexIsID = False, idColumn = "Uniprot ID", interactionProbabCutoff = 0.7, justFitAndMatchPeaks = False, keepOnlySignalsValidInAllConditions = False, kFold = 3, maxPeaksPerSignal = 15, maxPeakCenterDifference = 1.8, metrices = ["apex","pearson","euclidean","cosine","max_location","rollingCorrelation"], #"umap-dist" metricesForPrediction = None,#["pearson","euclidean","apex"], metricQuantileCutoff = 0.001, minDistanceBetweenTwoPeaks = 3, minimumPPsPerFeature = 6, minPeakHeightOfMax = 0.05, n_jobs = 12, noDatabaseForPredictions = False, normValueDict = {}, noDistanceCalculationAndPrediction = False, peakModel = "LorentzianModel",#"GaussianModel",#"SkewedGaussianModel",#"LorentzianModel", plotSignalProfiles = False, plotComplexProfiles = False, precision = 0.5, r2Thresh = 0.85, removeSingleDataPointPeaks = True, restartAnalysis = False, retrainClassifier = False, recalculateDistance = False, rollingWinType = None, runName = None, scaleRawDataBeforeDimensionalReduction = True, smoothSignal = True, smoothWindow = 2, takeRondomSampleFromData =False, topNCorrFeaturesForUMAPAlignment = 200, TMTPoolMethod = "sum", transformQuantDataBy = None, useRawDataForDimensionalReduction = False, useFWHMForQuant = True, umapDefaultKwargs = {"min_dist":0.001,"n_neighbors":5,"n_components":2,"random_state":120}, quantFiles = [], usePeakCentricFeatures = False ): """ Init ComplexFinder Class Parameters ---------- * alignMethod = "RadiusNeighborsRegressor", * alignRuns = False, Alignment of runs is based on signal profiles that were found to have a single modelled peak. A refrence run is assign by correlation anaylsis and choosen based on a maximum R2 value. Then fraction-shifts per signal profile is calculated (must be in the window given by *alignWindow*). The fraction residuals are then modelled using the method provided in *alignMethod*. Model peak centers are then adjusted based on the regression results. Of note, the alignment is performed after peak-modelling and before distance calculations. * alignWindow = 3, Number of fraction +/- single-peal profile are accepted for the run alignment. * analysisMode = "label-free", #[label-free,SILAC,SILAC-TMT] * analysisName = None, * binaryDatabase = False, * classifierClass = "random_forest", * classifierTestSize = 0.25, Fraction of the created database containing positive and negative protein-protein interactions that will be used for testing (for example ROC curve analysis) and classification report. * classiferGridSearch = RF_GRID_SEARCH. Dict with keywords matching parameters/settings of estimator (SVM, random forest) and list of values forming the grid used to find the best estimator settings (evaluated by k-fold cross validation). Runtime is effected by number of parameter settings as well as k-fold. * compTabFormat = False True indicates that the data are in the CompBat data format which was recently introduced. In contrast to standard txt files generated by for example MaxQuant. It contains multiple headers. More information can be found here https://www3.cmbi.umcn.nl/cedar/browse/comptab ComplexFinder will try to identifiy the samples and fractions and create separeted txt files. * considerOnlyInteractionsPresentInAllRuns = 2, Can be either bool to filter for protein - protein interactions that are present in all runs. If an integer is provided. the pp interactions are filtered based on the number of runs in which they were quantified. A value of 4 would indicate that the pp interaction must have been predicted in all runs. * correlationWindowSize = 5, Number of fractions used for rolling pearson correlation * databaseFilter = {'Organism': ["Human"]}, Filter dict used to find relevant complexes from database. By default, the corum database is filtered based on the column 'Organism' using 'Mouse' as a search string. If no filtering is required, pass an empty dict {}. * databaseIDColumn = "subunits(UniProt IDs)", * databaseFileName = "20190823_CORUM.txt", * databaseHasComplexAnnotations = True, Indicates if the provided database does contain complex annotations. If you have a database with only pairwise interactions, this setting should be *False*. Clusters are identified by dimensional reduction and density based clustering (HDBSCAN). In order to alter UMAP and HDBSCAN settings use the kewywords *hdbscanDefaultKwargs* and *umapDefaultKwargs*. * databaseEntrySplitString = ";", String by which complex members are separated in the provided database. CORUM = ";", Embl ComplexMap = "|" * decoySizeFactor = 1.2, Size factor for creating the decoy database from the positive proterin connectivity database such as CORUM. * grouping = {"WT": ["D3_WT_04.txt","D3_WT_02.txt"],"KO":["D3_KO_01.txt","D3_KO_02.txt"]}, None or dict. Indicates which samples (file) belong to one group. Let's assume 4 files with the name 'KO_01.txt', 'KO_02.txt', 'WT_01.txt' and 'WT_02.txt' are being analysed. The grouping dict should like this : {"KO":[KO_01.txt','KO_02.txt'],"WT":['WT_01.txt','WT_02.txt']} in order to combine them for statistical testing (e.g. t-test of log2 transformed peak-AUCs). Note that when analysis multiple runs (e.g. grouping present) then calling ComplexFinder().run(X) - X must be a path to a folder containing the files. When using compTabFormat = True. Provide the sample name as <compTabFileName>:<SampleName>. * hdbscanDefaultKwargs = {"min_cluster_size":4,"min_samples":1}, * indexIsID = False, * idColumn = "Uniprot ID", * interactionProbabCutoff = 0.7 Cutoff for estimator probability. Interactions with probabilities below threshold will be removed. * keepOnlySignalsValidInAllConditions = False If True, removes all Signals that were not found to be valid in all files (experiments). * kFold = 3 Cross validation of classifier optimization. * justFitAndMatchPeaks = False If true, the pipeline stops after peak detection/model fitting and matching of peaks (if more than one file is supplied.) * maxPeaksPerSignal = 15 Number of peaks allowed for on signal profile. * maxPeakCenterDifference = 1.8 * metrices = ["apex","pearson","euclidean","p_pearson","max_location","umap-dist","rollingCorrelation"], Metrices to access distance between two profiles. Can be either a list of strings and/or dict. In case of a list of dicts, each dict must contain the keywords: 'fn' and 'name' providing a callable function with 'fn' that returns a single floating number and takes two arrays as an input. * metricesForPrediction = None * metricQuantileCutoff = 0.90 * minDistanceBetweenTwoPeaks = 3 Distance in fractions (int) between two peaks. Setting this to a smaller number results in more peaks. * n_jobs = 12, Number of workers to model peaks, to calculate distance pairs and to train and use the classifer. * noDatabaseForPredictions = False, If you want to use ComplexFinder without any database. Set this to *True*. * normValueDict = {}, * noDistanceCalculationAndPrediction = False, Set to *True* to use ComplexFinder without distance calculation and database prediction. * peakModel = "GaussianModel", Indicates which model should be used to model signal profiles. In principle all models from lmfit can be used. However, the initial parameters are only optimized for GaussianModel and LaurentzianModel. This might effect runtimes dramatically. * plotSignalProfiles = False, If True, each profile is plotted against the fractio along with the fitted models. If you are concerned about time, you might set this to False at the cost of losing visible asessment of the fit quality. * plotComplexProfiles = False, * precision = 0.5 Precision to use to filter protein-protein interactions. If None, the filtering will be performed based on the parameter *interactionProbabCutoff*. * r2Thresh = 0.85 R2 threshold to accept a model fit. Models below the threshold will be ignored. * removeSingleDataPointPeaks = True, * restartAnalysis = False, bool. Set True if you want to restart the anaylsis from scratch. If the tmp folder exsists, items and dirs will be deleted first. * retrainClassifier = False, Even if the trainedClassifier.sav file is found, the classifier is loaded and the training is skipped. If you change the classifierGridSearch, you should set this to True. This will ensure that the classifier training is never skipped. * recalculateDistance = False, * rollingWinType = None, If None, all points are evenly weighted. Can be any string of scipy.signal window function. (https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows) * runName = None, * <del>savePeakModels = True</del> *depracted. always True and will be removed in the next version*. * scaleRawDataBeforeDimensionalReduction = True, If raw data should be used (*useRawDataForDimensionalReduction*) enable this if you want to scale them. Scaling will be performed that values of each row are scaled between zero and one. * smoothSignal = True Enable/disable smoothing. Defaults to True. A moving average of at least 3 adjacent datapoints is calculated using pandas rolling function. Effects the analysis time as well as the nmaximal number of peaks detected. * smoothWindow = 2, * topNCorrFeaturesForUMAPAlignment = 200, Number of profiles used for UMAP Alignment. Only used if useRawDataForDimensionalReduction = True or noDistanceCalculationAndPrediction = True. The Features will be identified by calculating the Pearson correlation coefficient. * useRawDataForDimensionalReduction = False, Setting this to true, will force the pipeline to use the raw values for dimensional reduction. Distance calculations are not automatically turned off and the output is generated but they are not used. * useFWHMForQuant = True If quantFiles is specific, will use the FWHM for peak centric quantification. By default at least a mean of +/- peak centric fraction will be consider (e.g. 3 fraction). However you cann allow single fraction quantification for narrow peaks by setting 'allowSingleFractionQuant' to True. * umapDefaultKwargs = {"min_dist":0.0000001,"n_neighbors":3,"n_components":2}, If you want to perform an aligned UMPA consider altering the parameter alignment_window_size and alignment_regularisation. Find more information here (https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html#aligning-varying-parameters) * quantFiles = dict * Quantifiaction files. dict with key name of co-fraction file and values with the path to the quantificaation file Assuming your grouping is something like: {"WT":["WT_01.txt","WT_02.txt"]}. Then the quantification files must contain a key for each file: something like {"WT_01.txt":"myCoolProject/quant/WT01_quant.txt","WT_02.txt":"myCoolProject/quant/WT02_quant.txt"}. Assuming the folder myCoolProject/ exists where the main file is. If analysing a TMT-SILAC experiment it is required to provide TMT labelings for heavy and light peaks separately, the provided dict should look something like this: { "HEAVY_WT_01.txt":"myCoolProject/quant/WT01_quant_heavy.txt", "LIGHT_WT_01.txt":"myCoolProject/quant/WT01_quant_light.txt" } Returns ------- None """ self.params = { "addImpurity" : addImpurity, "indexIsID" : indexIsID, "idColumn" : idColumn, "n_jobs" : n_jobs, "kFold" : kFold, "analysisName" : analysisName, "restartAnalysis" : restartAnalysis, "metrices" : metrices, "peakModel" : peakModel, "smoothWindow" : smoothWindow, "classifierClass" : classifierClass, "retrainClassifier" : retrainClassifier, "interactionProbabCutoff":interactionProbabCutoff, "maxPeaksPerSignal" : maxPeaksPerSignal, "maxPeakCenterDifference" : maxPeakCenterDifference, "classiferGridSearch" : classiferGridSearch, "plotSignalProfiles" : plotSignalProfiles, "savePeakModels" : True, #must be true to process pipeline, depracted, remove from class arguments. "removeSingleDataPointPeaks" : removeSingleDataPointPeaks, "grouping" : grouping, "analysisMode" : analysisMode, "normValueDict" : normValueDict, "databaseFilter" : databaseFilter, "databaseIDColumn" : databaseIDColumn, "databaseFileName" : databaseFileName, "databaseHasComplexAnnotations" : databaseHasComplexAnnotations, "r2Thresh" : r2Thresh, "smoothSignal" : smoothSignal, "umapDefaultKwargs" : umapDefaultKwargs, "hdbscanDefaultKwargs" : hdbscanDefaultKwargs, "noDatabaseForPredictions" : noDatabaseForPredictions, "alignRuns" : alignRuns, "alignMethod" : alignMethod, "runName" : runName, "useRawDataForDimensionalReduction" : useRawDataForDimensionalReduction, "scaleRawDataBeforeDimensionalReduction" : scaleRawDataBeforeDimensionalReduction, "metricQuantileCutoff": metricQuantileCutoff, "recalculateDistance" : recalculateDistance, "metricesForPrediction" : metricesForPrediction, "minDistanceBetweenTwoPeaks" : minDistanceBetweenTwoPeaks, "minimumPPsPerFeature" : minimumPPsPerFeature, "plotComplexProfiles" : plotComplexProfiles, "decoySizeFactor" : decoySizeFactor, "classifierTestSize" : classifierTestSize, "considerOnlyInteractionsPresentInAllRuns" : considerOnlyInteractionsPresentInAllRuns, "precision" : precision, "quantFiles" : quantFiles, "compTabFormat" : compTabFormat, "correlationWindowSize" : correlationWindowSize, "takeRondomSampleFromData" : takeRondomSampleFromData, "minPeakHeightOfMax" : minPeakHeightOfMax, "justFitAndMatchPeaks" : justFitAndMatchPeaks, "keepOnlySignalsValidInAllConditions" : keepOnlySignalsValidInAllConditions, "noDistanceCalculationAndPrediction" : noDistanceCalculationAndPrediction, "topNCorrFeaturesForUMAPAlignment" : topNCorrFeaturesForUMAPAlignment, "databaseEntrySplitString": databaseEntrySplitString, "version" : __VERSION__, "usePeakCentricFeatures" : usePeakCentricFeatures, "allowSingleFractionQuant" : allowSingleFractionQuant, "useFWHMForQuant" : useFWHMForQuant, "TMTPoolMethod" : TMTPoolMethod, "transformQuantDataBy" : transformQuantDataBy } print("\n" + str(self.params)) self._checkParameterInput() def _addMetricesToDB(self,analysisName): """ Adds distance metrices to the database entries that were found in the co-elution profiles. Parameters ---------- Returns ------- None """ if self.params["noDistanceCalculationAndPrediction"]: print("Info :: Skipping matching metrices to DB.") return if "signalDiff" in self.params["metrices"]: self.params["metrices"] = [x for x in self.params["metrices"] if x != "signalDiff"] + ["{}-diff".format(x) for x in np.arange(self.Xs[analysisName].columns.size)] metricColumns = self.params["metrices"] if not self.params["noDatabaseForPredictions"]: self.DB.matchMetrices(self.params["pathToTmp"][analysisName],entriesInChunks[analysisName],metricColumns,analysisName,forceRematch=self.params["recalculateDistance"]) def _addMetricToStats(self,metricName, value): """ Adds a metric to the stats data frame. Does not check if metric is represent, if present, it will just overwrite. Parameters ---------- metricName str Name of metric to add value str Value of metric Returns ------- None """ if metricName in self.stats.columns: self.stats.loc[self.currentAnalysisName,metricName] = value def _addModelToSignals(self,signalModels): """ Adds fitted models to Signals. If not a valid model was found, then the signal profile is removed. Parameters ---------- signalModels - list List of modelfits (dict) Returns ------- None """ for fitModel in signalModels: modelID = fitModel["id"] if len(fitModel) == 1: del self.Signals[self.currentAnalysisName][modelID] if modelID in self.Signals[self.currentAnalysisName]: for k,v in fitModel.items(): if k != 'id': setattr(self.Signals[self.currentAnalysisName][modelID],k,v) self.Signals[self.currentAnalysisName][modelID].saveResults() def _attachQuantificationDetails(self, combinedPeakModels = None): """ """ if self.params["analysisMode"] == "label-free": if len(self.params["quantFiles"]) != 0: print("Warning :: Quant files have been specified but anaylsis mode is label-free. Please define SILAC or TMT or SILAC-TMT") print("Info :: Label-free mode selected. No additation quantification performed..") return if len(self.params["quantFiles"]) > 0: files = np.array(list(self.params["grouping"].values())).flatten() print(files) print(self.params["quantFiles"].keys()) if len(self.params["quantFiles"]) != files.size and self.params["analysisMode"] != "SILAC-TMT": print("Warning :: Different number of quantFiles and groupings provided.") if self.params["analysisMode"] != "SILAC-TMT": initFilesFound = [k for k in self.params["quantFiles"].keys() if k in files] else: print(self.params["quantFiles"]) for k in self.params["quantFiles"].keys(): print(k.split("HEAVY_",maxsplit=1)) initFilesFound = [k for k in self.params["quantFiles"].keys() if k.split("HEAVY_",maxsplit=1)[-1] in files or k.split("LIGHT_",maxsplit=1)[-1] in files] print("Info :: For the following files and correpsonding co-elution profile data was detected") print(initFilesFound) print("Warning :: other files will be ignored.") # elif self.params["analysisMode"] == "SILAC-TMT": # if not all(f.startswith("HEAVY") or f.startswith("LIGHT") for f in self.params["quantFiles"].keys()): # print("Warning :: If using a SILAC-TMT experiment, please provide 'HEAVY' and 'LIGHT' before the file in the dict 'quantFile' such as 'HEAVY_WT_01.txt':<path to quant file> as well as 'LIGHT_WT_01.txt':<path to quant file>") print("combining Peaks!!") if combinedPeakModels is None: ## load combined peak reuslts txtOutput = os.path.join(self.params["pathToComb"],"CombinedPeakModelResults.txt") if os.path.exists(txtOutput): combinedPeakModels = pd.read_csv(txtOutput,sep="\t") else: print("Warning :: Combined peak model reuslts not found. Deleted? Skipping peak centric quantification.") return print("Info :: Starting peak centric quantification. In total {} peaks were found".format(combinedPeakModels.index.size)) print("Info :: Loading quantification files.") if not all(os.path.exists(pathToQuantFile) for pathToQuantFile in self.params["quantFiles"].values()): print("Warning :: Not all quant files found!") if self.params["analysisMode"] != "SILAC-TMT": print(self.params["quantFiles"].values()) path = list(self.params["quantFiles"].values()) print(os.path.abspath(path[0])) quantFilesLoaded = [(k,pd.read_csv(v,sep="\t",index_col = 0),False) for k,v in self.params["quantFiles"].items() if os.path.exists(v) and k in initFilesFound] else: quantFilesLoaded = [(k.split("HEAVY_",maxsplit=1)[-1] if "HEAVY" in k else k.split("LIGHT_",maxsplit=1)[-1],pd.read_csv(v,sep="\t",index_col = 0),"LIGHT" in k) for k,v in self.params["quantFiles"].items() if os.path.exists(v) and k in initFilesFound] if len(quantFilesLoaded) == 0: print("Warning :: No quant files found. Skipping peak-centric quantification.") return if self.params["analysisMode"] == "SILAC": print("Info :: Peak centric quantification using SILAC :: Assuming one SILAC ratio per fraction .") elif self.params["analysisMode"] == "TMT": print("Info :: Peak centric quantification using TMT :: Assuming the following order:") print("Ignoring column headers, just uses the column index as follow..") print("Fraction 1 - TMT reporter 1, Fraction 1 - TMT reporter 2, Faction 2 - TMT reporter 3 .... Fraction 2 - TMT reporter 1") extractedQuantFiles = [] for k,quantFile,isLightQuantData in quantFilesLoaded: print("Info :: Quantification of ", k) centerColumnName = "Center_{}".format(k) fwhmColumnName = "fwhm_{}".format(k) quantFileName = "Q({})".format(k) combinedPeakModelsFiltered = combinedPeakModels.dropna(subset=[centerColumnName]) lowerBound = combinedPeakModelsFiltered[centerColumnName] - combinedPeakModelsFiltered[fwhmColumnName]/1.7 upperBound = combinedPeakModelsFiltered[centerColumnName] + combinedPeakModelsFiltered[fwhmColumnName]/1.7 peakBounds = np.concatenate([lowerBound.values.reshape(-1,1),upperBound.values.reshape(-1,1)],axis=1) peakBounds[:,1] += 1 #add one extra to use bounds as a range in python #check bounds peakBounds[peakBounds[:,0] < 0, 0] = 0 peakBounds[peakBounds[:,1] >= quantFile.columns.size, 1] = quantFile.columns.size - 1 #transform bounds to ints peakBounds = np.around(peakBounds,0).astype(np.int64) quantData = quantFile.loc[combinedPeakModelsFiltered["Key"].values].values if self.params["analysisMode"] == "SILAC": print("Info :: Peak centric quantification using SILAC :: extracting mean from file {}.".format(k)) out = extractMeanByBounds( NPeakModels = combinedPeakModelsFiltered.index.size, peakBounds = peakBounds, quantData = quantData ) quantColumnNames = ["SILAC({})_Mean".format(quantFileName),"SILAC({})_Error".format(quantFileName)] print(out) print(quantColumnNames) dfResult =
pd.DataFrame(out,index=combinedPeakModelsFiltered.index, columns = quantColumnNames)
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_target(): algo = algos.WeighTarget('target') s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) target = pd.DataFrame(index=dts[:2], columns=['c1', 'c2'], data=0.5) target['c1'].loc[dts[1]] = 1.0 target['c2'].loc[dts[1]] = 0.0 s.setup( data, target = target ) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.5 assert weights['c2'] == 0.5 s.update(dts[1]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 1.0 assert weights['c2'] == 0.0 s.update(dts[2]) assert not algo(s) def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].loc[dts[1]] = 105 data['c1'].loc[dts[2]] = 95 data['c1'].loc[dts[3]] = 105 data['c1'].loc[dts[4]] = 95 # low vol c2 data['c2'].loc[dts[1]] = 100.1 data['c2'].loc[dts[2]] = 99.9 data['c2'].loc[dts[3]] = 100.1 data['c2'].loc[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_randomly(): s = bt.Strategy('s') s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.WeighRandomly() assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 assert sum( weights.values() ) == 1. algo = algos.WeighRandomly( (0.3,0.5), 0.95) assert algo(s) weights = s.temp['weights'] assert len( weights ) == 3 aae( sum( weights.values() ), 0.95 ) for c in s.temp['selected']: assert weights[c] <= 0.5 assert weights[c] >= 0.3 def test_set_stat(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( 'test_stat' ) s.setup(data, test_stat = stat) s.update(dts[0]) print() print(s.get_data('test_stat')) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_set_stat_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[1]] = 105 data['c2'].loc[dts[1]] = 95 stat = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=4.) stat['c1'].loc[dts[1]] = 5. stat['c2'].loc[dts[1]] = 6. algo = algos.SetStat( stat ) s.setup(data) s.update(dts[0]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 4. assert stat['c2'] == 4. s.update(dts[1]) assert algo(s) stat = s.temp['stat'] assert stat['c1'] == 5. assert stat['c2'] == 6. def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[2]] = 105 data['c2'].loc[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) actual = s.temp['selected'] assert len(actual) == 1 assert 'c1' in actual def test_limit_weights(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 0.6, 'c2':0.2, 'c3':0.2} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.5 assert w['c2'] == 0.25 assert w['c3'] == 0.25 algo = algos.LimitWeights(0.3) assert algo(s) w = s.temp['weights'] assert w == {} s.temp['weights'] = {'c1': 0.4, 'c2':0.3, 'c3':0.3} algo = algos.LimitWeights(0.5) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.4 assert w['c2'] == 0.3 assert w['c3'] == 0.3 def test_limit_deltas(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.temp['weights'] = {'c1': 1} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.1 s.temp['weights'] = {'c1': 0.05} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert w['c1'] == 0.05 s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == 0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.1 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.5 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas({'c1': 0.1, 'c2': 0.3}) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.1 assert w['c2'] == -0.3 # set exisitng weight s.children['c1'] = bt.core.SecurityBase('c1') s.children['c1']._weight = 0.3 s.children['c2'] = bt.core.SecurityBase('c2') s.children['c2']._weight = -0.7 s.temp['weights'] = {'c1': 0.5, 'c2': -0.5} algo = algos.LimitDeltas(0.1) assert algo(s) w = s.temp['weights'] assert len(w) == 2 assert w['c1'] == 0.4 assert w['c2'] == -0.6 def test_rebalance_over_time(): target = mock.MagicMock() rb = mock.MagicMock() algo = algos.RebalanceOverTime(n=2) # patch in rb function algo._rb = rb target.temp = {} target.temp['weights'] = {'a': 1, 'b': 0} a = mock.MagicMock() a.weight = 0. b = mock.MagicMock() b.weight = 1. target.children = {'a': a, 'b': b} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 0.5 assert w['b'] == 0.5 assert rb.called called_tgt = rb.call_args[0][0] called_tgt_w = called_tgt.temp['weights'] assert len(called_tgt_w) == 2 assert called_tgt_w['a'] == 0.5 assert called_tgt_w['b'] == 0.5 # update weights for next call a.weight = 0.5 b.weight = 0.5 # clear out temp - same as would Strategy target.temp = {} assert algo(target) w = target.temp['weights'] assert len(w) == 2 assert w['a'] == 1. assert w['b'] == 0. assert rb.call_count == 2 # update weights for next call # should do nothing now a.weight = 1 b.weight = 0 # clear out temp - same as would Strategy target.temp = {} assert algo(target) # no diff in call_count since last time assert rb.call_count == 2 def test_require(): target = mock.MagicMock() target.temp = {} algo = algos.Require(lambda x: len(x) > 0, 'selected') assert not algo(target) target.temp['selected'] = [] assert not algo(target) target.temp['selected'] = ['a', 'b'] assert algo(target) def test_run_every_n_periods(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=0) target.now = pd.to_datetime('2010-01-01') assert algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert algo(target) target.now = pd.to_datetime('2010-01-05') assert not algo(target) def test_run_every_n_periods_offset(): target = mock.MagicMock() target.temp = {} algo = algos.RunEveryNPeriods(n=3, offset=1) target.now = pd.to_datetime('2010-01-01') assert not algo(target) # run again w/ no date change should not trigger assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) target.now = pd.to_datetime('2010-01-04') assert not algo(target) target.now = pd.to_datetime('2010-01-05') assert algo(target) def test_not(): target = mock.MagicMock() target.temp = {} #run except on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) notAlgo = algos.Not(runOnDateAlgo) target.now = pd.to_datetime('2018-01-01') assert notAlgo(target) target.now = pd.to_datetime('2018-01-02') assert not notAlgo(target) def test_or(): target = mock.MagicMock() target.temp = {} #run on the 1/2/18 runOnDateAlgo = algos.RunOnDate(pd.to_datetime('2018-01-02')) runOnDateAlgo2 = algos.RunOnDate(pd.to_datetime('2018-01-03')) runOnDateAlgo3 = algos.RunOnDate(pd.to_datetime('2018-01-04')) runOnDateAlgo4 = algos.RunOnDate(pd.to_datetime('2018-01-04')) orAlgo = algos.Or([runOnDateAlgo, runOnDateAlgo2, runOnDateAlgo3, runOnDateAlgo4]) #verify it returns false when neither is true target.now = pd.to_datetime('2018-01-01') assert not orAlgo(target) # verify it returns true when the first is true target.now = pd.to_datetime('2018-01-02') assert orAlgo(target) # verify it returns true when the second is true target.now = pd.to_datetime('2018-01-03') assert orAlgo(target) # verify it returns true when both algos return true target.now = pd.to_datetime('2018-01-04') assert orAlgo(target) def test_TargetVol(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=7) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data.loc[dts[0],'c1'] = 95 data.loc[dts[1],'c1'] = 105 data.loc[dts[2],'c1'] = 95 data.loc[dts[3],'c1'] = 105 data.loc[dts[4],'c1'] = 95 data.loc[dts[5],'c1'] = 105 data.loc[dts[6],'c1'] = 95 # low vol c2 data.loc[dts[0], 'c2'] = 99 data.loc[dts[1], 'c2'] = 101 data.loc[dts[2], 'c2'] = 99 data.loc[dts[3], 'c2'] = 101 data.loc[dts[4], 'c2'] = 99 data.loc[dts[5], 'c2'] = 101 data.loc[dts[6], 'c2'] = 99 targetVolAlgo = algos.TargetVol( 0.1, lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=1 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1':0.5, 'c2':0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'],weights['c1']) unannualized_c2_weight = weights['c1'] targetVolAlgo = algos.TargetVol( 0.1*np.sqrt(252), lookback=pd.DateOffset(days=5), lag=pd.DateOffset(days=1), covar_method='standard', annualization_factor=252 ) s.setup(data) s.update(dts[6]) s.temp['weights'] = {'c1': 0.5, 'c2': 0.5} assert targetVolAlgo(s) weights = s.temp['weights'] assert len(weights) == 2 assert np.isclose(weights['c2'], weights['c1']) assert np.isclose(unannualized_c2_weight, weights['c2']) def test_PTE_Rebalance(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=30*4) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 # low vol c2 for i,dt in enumerate(dts[:-2]): if i % 2 == 0: data.loc[dt,'c1'] = 95 data.loc[dt,'c2'] = 101 else: data.loc[dt, 'c1'] = 105 data.loc[dt, 'c2'] = 99 dt = dts[-2] data.loc[dt,'c1'] = 115 data.loc[dt,'c2'] = 97 s.setup(data) s.update(dts[-2]) s.adjust(1000000) s.rebalance(0.4,'c1') s.rebalance(0.6,'c2') wdf = pd.DataFrame( np.zeros(data.shape), columns=data.columns, index=data.index ) wdf['c1'] = 0.5 wdf['c2'] = 0.5 PTE_rebalance_Algo = bt.algos.PTE_Rebalance( 0.01, wdf, lookback=
pd.DateOffset(months=3)
pandas.DateOffset
#!/usr/bin/python -u # + import pandas as pd import numpy as np import matplotlib.pyplot as plt import random import os SEED = 123 random.seed(SEED) np.random.seed(SEED) # + #Load the train and test files with pchembl values (used for end-to-end deep learning) train_with_label_df = pd.read_csv("../data/Train_Compound_Viral_interactions_for_Supervised_Learning.csv",header='infer') test_with_label_df = pd.read_csv("../data/Test_Compound_Viral_interactions_for_Supervised_Learning.csv",header='infer') print(train_with_label_df.shape) print(test_with_label_df.shape) #Load the train and test embedding representation for compounds train_compound_df = pd.read_csv("../data/Train_Compound_LS.csv",header='infer') test_compound_df = pd.read_csv("../data/Test_Compound_LS.csv",header='infer') print(train_compound_df.shape) print(test_compound_df.shape) #Load the train and test morgan fingerprint representation for compounds train_compound_mfp_df = pd.read_csv("../data/Train_Compound_MFP.csv",header='infer') test_compound_mfp_df = pd.read_csv("../data/Test_Compound_MFP.csv",header='infer') print(train_compound_mfp_df.shape) print(test_compound_mfp_df.shape) #Load the train and test embedding representation for proteins train_protein_df =
pd.read_csv("../data/Train_Protein_LS.csv",header=None)
pandas.read_csv
import os from src.corpus.brat_writer import write_file from typing import Dict, List import pandas as pd class DocumentMerger: def __init__( self, ent_id2label, rel_id2label, true_doc_tokens: Dict[str, List[List[str]]], save_dir="val" ) -> None: super().__init__() self.pred_doc_bins = {} self.merged_docs = None self.true_doc_tokens = true_doc_tokens self.ent_id2label = ent_id2label self.rel_id2label = rel_id2label self.save_dir = save_dir def load_partitions( self, tokens2d: List[List[str]], ents: pd.DataFrame, rels: pd.DataFrame, orig_doc_key: str, partition_key: int, ): doc = dict( partition_key=partition_key, tokens2d=tokens2d, ents=ents, rels=rels ) if orig_doc_key in self.pred_doc_bins: self.pred_doc_bins[orig_doc_key].append(doc) else: self.pred_doc_bins[orig_doc_key] = [doc] def merge_partitions(self, key, docs): """Iteratively, merge document partitions (defined by their predicted `ents` and `rels`) into a doc based on their `orig_doc`. In other words, ents and rels having the same `orig_doc` will be combined. Args: ents (pd.DataFrame): [description] rels (pd.DataFrame): [description] doc_key (str): [description] """ tokens2d = [] entities = pd.DataFrame(columns=['start', 'end', 'step_idx', 'label']) relations =
pd.DataFrame()
pandas.DataFrame
# author: <NAME>, <NAME> # date: 2021-11-25 """This script takes two file paths. It takes in the input path which includes the clean train and test data and the output directory to store the results in. It performs machine learning analysis. This script will have 4 outputs: 3 tables and 1 figure. Usage: src/machine_learning.py --input_path_train=<input_path_train> --input_path_test=<input_path_test> --output_dir=<output_dir> Options: --input_path_train=<input_path_train> The path including filename to the raw data of white wine (csv file) --input_path_test=<input_path_test> The path including filename to the raw data of red wine (csv file) --output_dir=<output_dir> The directory to the tables and figures """ from docopt import docopt import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.dummy import DummyClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.model_selection import RandomizedSearchCV, cross_validate from sklearn.metrics import ConfusionMatrixDisplay opt = docopt(__doc__) def main(input_path_train, input_path_test, output_dir): # input_path_train = "data/processed/train_df.csv" # input_path_test = "data/processed/test_df.csv" # output_dir = "results" # read in data train_df = pd.read_csv(input_path_train) test_df = pd.read_csv(input_path_test) # combine classes to deal with the issue of under-populated classes train_df.loc[train_df["quality"] == 3, "quality"] = 4 train_df.loc[train_df["quality"] == 9, "quality"] = 8 train_df["quality"] = train_df["quality"].map(str) test_df.loc[test_df["quality"] == 3, "quality"] = 4 test_df.loc[test_df["quality"] == 9, "quality"] = 8 test_df["quality"] = test_df["quality"].map(str) # X_train and y_trian X_train, y_train = train_df.drop(columns=["quality"]), train_df["quality"] X_test, y_test = test_df.drop(columns=["quality"]), test_df["quality"] # define the transformer numeric_features = list(X_train.select_dtypes(include="number").columns) categorical_features = ["type"] preprocessor = make_column_transformer( (StandardScaler(), numeric_features), (OneHotEncoder(handle_unknown="ignore", sparse=False), categorical_features), ) # models dummy = make_pipeline( preprocessor, DummyClassifier(strategy="stratified", random_state=123) ) svc = make_pipeline( preprocessor, SVC(kernel="linear", probability=True, random_state=123) ) lr = make_pipeline( preprocessor, LogisticRegression(max_iter=5000, random_state=123) ) rf = make_pipeline(preprocessor, RandomForestClassifier(random_state=123)) models = {} models["Dummy"] = dummy models["SVC"] = svc models["Logistic Regression"] = lr models["Random Forest"] = rf # scoring metrics scoring = ["accuracy", "f1_macro", "roc_auc_ovr", "roc_auc_ovo"] # perform cross_validation results = {} for key, value in models.items(): results[key] = mean_std_cross_val_scores( value, X_train, y_train, return_train_score=True, scoring=scoring, error_score="raise", ) cross_val_results = ( pd.DataFrame(results).rename(index={"test_score": "cross_validation_score"}).T ) # hyperparameter optimization for the best model (random forest classifier) param_grid_rf = { "randomforestclassifier__n_estimators": np.logspace(1, 4, 10, dtype=int), "randomforestclassifier__max_depth": np.linspace(1, 30, 10, dtype=int), } search_rf = RandomizedSearchCV( rf, param_distributions=param_grid_rf, return_train_score=True, n_jobs=2, n_iter=30, cv=5, random_state=123, scoring="roc_auc_ovr", error_score="raise", ) search_rf.fit(X_train, y_train) # results of random forest rf_results = { "Random Forest Best n_estimators": search_rf.best_params_[ "randomforestclassifier__n_estimators" ], "Random Forest Best max_depth": search_rf.best_params_[ "randomforestclassifier__max_depth" ], "Random Forest Best Validation Score": search_rf.best_score_, "Random Forest Roc_Auc Test Score": search_rf.best_estimator_.score( X_test, y_test ), } rf_results = pd.DataFrame(rf_results, index=[0]) # confusion matrix test_cm = ConfusionMatrixDisplay.from_estimator( search_rf.best_estimator_, X_test, y_test, display_labels=['<=4', '5', '6', '7', '>=8'] ) # feature importances categorical_columns = list( search_rf.best_estimator_.named_steps["columntransformer"] .named_transformers_["onehotencoder"] .get_feature_names_out() ) all_columns = numeric_features + categorical_columns feature_importances = pd.DataFrame( search_rf.best_estimator_.named_steps[ "randomforestclassifier" ].feature_importances_, index=all_columns, columns=["Feature Importances"], ).sort_values(by="Feature Importances", ascending=False).drop(index='Unnamed: 0') # export tables, figures and model try: cross_val_results.to_csv(f"{output_dir}/cross_val_results.csv") except: os.makedirs(os.path.dirname(f"{output_dir}/cross_val_results.csv")) cross_val_results.to_csv(f"{output_dir}/cross_val_results.csv") try: rf_results.to_csv(f"{output_dir}/random_forest_results.csv") except: os.makedirs(os.path.dirname(f"{output_dir}/random_forest_results.csv")) rf_results.to_csv(f"{output_dir}/random_forest_results.csv") try: feature_importances.to_csv(f"{output_dir}/feature_importances.csv") except: os.makedirs(os.path.dirname(f"{output_dir}/feature_importances.csv")) feature_importances.to_csv(f"{output_dir}/feature_importances.csv") try: plt.savefig(f"{output_dir}/test_cm.png") except: os.makedirs(os.path.dirname(f"{output_dir}/test_cm_png")) plt.savefig(f"{output_dir}/test_cm.png") try: pickle.dump(search_rf.best_estimator_, open(f"{output_dir}/random_forest.rds", "wb")) except: os.makedirs(os.path.dirname(f"{output_dir}/random_forest.rds")) pickle.dump(search_rf.best_estimator_, open(f"{output_dir}/random_forest.rds", "wb")) # helper function, adapted from 573 lecture 4 # https://pages.github.ubc.ca/mds-2021-22/DSCI_573_feat-model-select_students/lectures/04_feat-importances-selection.html def mean_std_cross_val_scores(model, X_train, y_train, **kwargs): """ Returns mean and std of cross validation Parameters ---------- model : scikit-learn model X_train : numpy array or pandas DataFrame X in the training data y_train : y in the training data Returns ---------- pandas Series with mean scores from cross_validation """ scores = cross_validate(model, X_train, y_train, **kwargs, n_jobs=2) mean_scores = pd.DataFrame(scores).mean() std_scores = pd.DataFrame(scores).std() out_col = [] for i in range(len(mean_scores)): out_col.append((f"%0.3f (+/- %0.3f)" % (mean_scores[i], std_scores[i]))) return
pd.Series(data=out_col, index=mean_scores.index)
pandas.Series
import numpy as np import pandas as pd import math import matplotlib.pyplot as plt import yfinance as yf from pandas_datareader import data as web import datetime as dt from empyrical import* import quantstats as qs from darts.models import* from darts import TimeSeries from darts.utils.missing_values import fill_missing_values from darts.metrics import mape import yahoo_fin.stock_info as si from yahoofinancials import YahooFinancials from pypfopt import EfficientFrontier, risk_models, expected_returns, HRPOpt, objective_functions import logging import warnings from warnings import filterwarnings from IPython.display import display import copy # ------------------------------------------------------------------------------------------ today = dt.date.today() # ------------------------------------------------------------------------------------------ class Engine: def __init__(self,start_date, portfolio, weights=None, rebalance=None, benchmark=['SPY'], end_date=today, optimizer=None, max_vol=0.15): self.start_date = start_date self.end_date = end_date self.portfolio = portfolio self.weights = weights self.benchmark = benchmark self.optimizer = optimizer self.max_vol = max_vol self.rebalance = rebalance if self.weights==None: self.weights = [1.0/len(self.portfolio)]*len(self.portfolio) if self.optimizer=="EF": self.weights = efficient_frontier(self, perf="False") if self.optimizer=="MV": self.weights = mean_var(self, vol_max=max_vol, perf="False") if self.optimizer=="HRP": self.weights = hrp(self, perf="False") if self.rebalance!=None: self.rebalance = make_rebalance(self.start_date, self.end_date, self.optimizer, self.portfolio, self.rebalance) #------------------------------------------------------------------------------------------- def get_returns(stocks,wts, start_date, end_date=today): if len(stocks) > 1: assets = web.DataReader(stocks, data_source='yahoo', start = start_date, end= end_date)['Adj Close'] ret_data = assets.pct_change()[1:] returns = (ret_data * wts).sum(axis = 1) return returns else: df = web.DataReader(stocks, data_source='yahoo', start = start_date, end= end_date)['Adj Close'] df = pd.DataFrame(df) returns = df.pct_change() return returns # ------------------------------------------------------------------------------------------ def get_pricing(stocks, start_date, end_date=today, pricing="Adj Close", wts=1): if len(stocks) > 1: assets = web.DataReader(stocks, data_source='yahoo', start = start_date, end= end_date)[pricing] return assets else: df = web.DataReader(stocks, data_source='yahoo', start = start_date, end= end_date)[pricing] return df # ------------------------------------------------------------------------------------------ def get_data(stocks, period="max", trading_year_days=252): p = {"period": period} for stock in stocks: years = { '1mo' : math.ceil(trading_year_days/12), '3mo' : math.ceil(trading_year_days/4), '6mo' : math.ceil(trading_year_days/2), '1y': trading_year_days, '2y' : 2*trading_year_days, '5y' : 5*trading_year_days, '10y' : 10*trading_year_days, '20y' : 20*trading_year_days, 'max' : len(yf.Ticker(stock).history(**p)['Close'].pct_change()) } df = web.DataReader(stocks, data_source='yahoo', start = "1980-01-01", end= today) df = pd.DataFrame(df) df = df.tail(years[period]) df = pd.DataFrame(df) df = df.drop(['Adj Close'], axis=1) df = df[["Open", "High", "Low", "Close", "Volume"]] return df # ------------------------------------------------------------------------------------------ #reformat def creturns(stocks,wts=1, period="max", benchmark= None, plot=True, pricing="Adj Close", trading_year_days=252, end_date = today): p = {"period": period} for stock in stocks: years = { '1mo' : math.ceil(trading_year_days/12), '3mo' : math.ceil(trading_year_days/4), '6mo' : math.ceil(trading_year_days/2), '1y': trading_year_days, '2y' : 2*trading_year_days, '5y' : 5*trading_year_days, '10y' : 10*trading_year_days, '20y' : 20*trading_year_days, 'max' : len(yf.Ticker(stock).history(**p)['Close'].pct_change()) } if len(stocks) > 1: df = web.DataReader(stocks, data_source='yahoo', start = "1980-01-01", end= end_date)[pricing] if benchmark != None: df2 = web.DataReader(benchmark, data_source='yahoo', start = "1980-01-01", end= end_date)[pricing] df = pd.DataFrame(df) df = df.tail(years[period]) df2 = df2.tail(years[period]) return_df2 = df2.pct_change()[1:] ret_data = df.pct_change()[1:] ret_data = (ret_data + 1).cumprod() port_ret = (ret_data * wts).sum(axis = 1) return_df2 = (return_df2 + 1).cumprod() ret_data['Portfolio'] = port_ret ret_data['Benchmark'] = return_df2 ret_data = pd.DataFrame(ret_data) else: df = pd.DataFrame(df) df = df.tail(years[period]) ret_data = df.pct_change()[1:] ret_data = (ret_data + 1).cumprod() port_ret = (ret_data * wts).sum(axis = 1) ret_data['Portfolio'] = port_ret ret_data =
pd.DataFrame(ret_data)
pandas.DataFrame
import sys import csv import numpy as np import gpflow import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" import pandas as pd import h5py from sklearn.model_selection import train_test_split import tensorflow as tf from scipy.cluster.vq import kmeans tf.set_random_seed(1234) import pickle def loaddata(subID, whichModel='PSwitch'): ''' Loads data for subject-level modeling ''' data = h5py.File('penaltykickdata.h5','r') subID1HE = np.array(data.get('subID')).astype('float32') otherdata = np.array(data.get('otherfeatures')).astype('float32') switchBool = np.array(data.get('targets')).astype('float32') #did they switch at time t+1 trialidx = np.array(data.get('trialidx')).astype('float32') time = np.array(data.get('time')).astype('int32') if whichModel == 'PSwitch': targets = np.array(data.get('targets')).astype('float32') elif whichModel == 'ExtraEV': targets = np.array(data.get('EVtargets').value).astype('int32') otherdata = np.hstack((otherdata, switchBool)) Xfeatures_totaldata = np.hstack((otherdata, subID1HE)) Xfeatures_totaldata = pd.DataFrame(Xfeatures_totaldata) offset = otherdata.shape[1] subdata = Xfeatures_totaldata[Xfeatures_totaldata[offset+subID]==1] subtargets =
pd.DataFrame(targets)
pandas.DataFrame
import pytest import numpy as np import pandas as pd from six import StringIO from dae.tools.generate_histogram import ( ScoreHistogramInfo, GenerateScoresHistograms, ) # pytestmark = pytest.mark.xfail class MyStringIO(StringIO): def __add__(self, other): return "" @pytest.fixture def score_files(): score = pd.DataFrame({"SCORE": [1, 2, 3, 4, 4, 5, 6]}) rankscore = pd.DataFrame({"RANKSCORE": [1, 10, 100, 100, 1000, 10000]}) rankscore_zero_start = pd.DataFrame( {"RANKSCORE_0": [0, 1, 10, 100, 100, 1000, 10000]} ) return [score, rankscore, rankscore_zero_start] @pytest.fixture def score_files_by_chunks(): score = [ pd.DataFrame({"SCORE": [1, 2, 3]}), pd.DataFrame({"SCORE": [4, 4, 5]}), pd.DataFrame({"SCORE": [6]}), ] rankscore = [ pd.DataFrame({"RANKSCORE": [1, 10, 100]}), pd.DataFrame({"RANKSCORE": [100, 1000, 10000]}), pd.DataFrame({"RANKSCORE": [1000000]}), ] rankscore_zero_start = [ pd.DataFrame({"RANKSCORE_0": [0, 1, 10]}), pd.DataFrame({"RANKSCORE_0": [100, 100, 1000]}), pd.DataFrame({"RANKSCORE_0": [10000]}), ] return [ score, score, rankscore, rankscore_zero_start, rankscore_zero_start, ] @pytest.fixture def score_files_with_start_end(): score = [ pd.DataFrame( {"SCORE": [1, 2, 3], "start": [5, 10, 20], "end": [5, 11, 23]} ), pd.DataFrame( {"SCORE": [4, 4, 5], "start": [5, 10, 20], "end": [5, 11, 23]} ), pd.DataFrame({"SCORE": [6], "start": [100], "end": [100]}), ] rankscore = [ pd.DataFrame( { "RANKSCORE": [1, 10, 100], "start": [5, 10, 20], "end": [5, 10, 20], } ), pd.DataFrame( { "RANKSCORE": [100, 1000, 10000], "start": [5, 10, 20], "end": [5, 10, 20], } ), pd.DataFrame({"RANKSCORE": [1000000], "start": [100], "end": [100]}), ] rankscore_zero_start = [ pd.DataFrame( { "RANKSCORE_0": [0, 1, 10], "start": [5, 10, 20], "end": [5, 10, 20], } ), pd.DataFrame( { "RANKSCORE_0": [100, 100, 1000], "start": [5, 10, 20], "end": [5, 10, 20], } ),
pd.DataFrame({"RANKSCORE_0": [10000], "start": [100], "end": [100]})
pandas.DataFrame
# -*- coding: utf-8 -*- """data_augmentation.py # Notebook: Generate Training Dataset In this Notebook, we want to simulate training dataset from the real world dataset. There are two steps in making such data: * 1) Create pair of trajectories from the original set * 2) Create label per pair of trajectories # Required packages """ import numpy as np from numpy import save, load import pandas as pd import matplotlib.pyplot as plt import glob """# Define functions""" def read_data(path, format, n, min_len): data_list=[] c=0 for file in glob.glob(path+format): #print(file) try: df = pd.read_csv(file, header=None, sep=',|;') except: df = pd.DataFrame () if ((len(df)>min_len)): data_list.append(df) c = c + 1 if c >= n: break dataset=pd.concat(data_list) dataset.columns=['id', 'date', 'lng', 'lat'] dataset=dataset.reset_index(drop=True) print ('Step1: Read files') return dataset def linux_TS(df): df.date=pd.to_datetime(df.date) df['TS'] = (pd.DatetimeIndex(df.date-pd.Timedelta('02:00:00')).astype(np.int64) // 10**9) return df def min_drop_func(df, min_len): data_list=[] ids=np.unique(df.id) for i in ids: temp=df[df.id==i] if len (temp) > min_len: data_list.append(temp) data_list =
pd.concat(data_list)
pandas.concat
import numpy as np import pandas as pd import os # http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 # Load .csv file path = 'german/german_final.csv' data =
pd.read_csv(path, header=None)
pandas.read_csv
# coding: utf-8 """ Aurelio_Amerio_Higgs_v4.py In this analysis, I have used several MLP models, applied to the Kaggle Higgs dataset, in order to distinguish signal from noise. ---------------------------------------------------------------------- author: <NAME> (<EMAIL>) Student ID: QT08313 Date: 03/08/2018 ---------------------------------------------------------------------- """ # # Import data and preprocess it # In[49]: import pandas as pd import numpy as np import tensorflow as tf import matplotlib.pyplot as plt use_all_features = True use_full_data = True test_sml_size = 3000 # In[50]: #file paths train_sig_path_sml = "data/train_sml_sig.csv" train_bg_path_sml = "data/train_sml_bg.csv" train_sig_path = "data/train_sig.csv" train_bg_path = "data/train_bg.csv" test_sig_path = "data/test_sig.csv" test_bg_path = "data/test_bg.csv" #read csv train_sig_sml =
pd.read_csv(train_sig_path_sml, header=0)
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = pd.unique(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), Series([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), Series(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = pd.date_range('20130101', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = pd.timedelta_range('1 day', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = pd.date_range('20000101', periods=2000000, freq='s').values result = algos.isin(s, s[0:2]) expected = np.zeros(len(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Series(Categorical(1).from_codes(vals, cats)) St = Series(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.isin(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.isin(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_value_counts(self): np.random.seed(1234) from pandas.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert isinstance(factor, n) result = algos.value_counts(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True)) expected = Series([1, 1, 1, 1], index=index) tm.assert_series_equal(result.sort_index(), expected.sort_index()) def test_value_counts_bins(self): s = [1, 2, 3, 4] result = algos.value_counts(s, bins=1) expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_series_equal(result, expected) result = algos.value_counts(s, bins=2, sort=False) expected = Series([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_series_equal(result, expected) def test_value_counts_dtypes(self): result = algos.value_counts([1, 1.]) assert len(result) == 1 result = algos.value_counts([1, 1.], bins=1) assert len(result) == 1 result = algos.value_counts(Series([1, 1., '1'])) # object assert len(result) == 2 pytest.raises(TypeError, lambda s:
algos.value_counts(s, bins=1)
pandas.core.algorithms.value_counts
import numpy as np import pandas as pd import pytest from sid.shared import boolean_choices from src.create_initial_states.create_initial_immunity import ( _calculate_endog_immunity_prob, ) from src.create_initial_states.create_initial_immunity import ( _calculate_exog_immunity_prob, ) from src.create_initial_states.create_initial_immunity import ( _calculate_total_immunity_prob, ) from src.create_initial_states.create_initial_immunity import create_initial_immunity def date(month, day): return pd.Timestamp(f"2020-{month:0d}-{day:0d}") @pytest.fixture def empirical_infections(): df = pd.DataFrame() df["date"] = [date(3, 1), date(3, 1), date(3, 3), date(3, 5), date(3, 5)] df["county"] = ["A", "A", "A", "B", "B"] df["age_group_rki"] = ["young", "old", "young", "young", "old"] df["newly_infected"] = [1, 1, 2, 2, 2] return df.set_index(["date", "county", "age_group_rki"])["newly_infected"] @pytest.fixture def synthetic_data(): df = pd.DataFrame() df["county"] = ["A"] * 5 + ["B"] * 5 df["age_group_rki"] = ["young"] * 3 + ["old"] * 2 + ["young"] * 2 + ["old"] * 3 return df def test_calculate_total_immunity_prob(synthetic_data): total_immunity = pd.DataFrame() total_immunity["county"] = list("AABB") total_immunity["age_group_rki"] = ["old", "young"] * 2 total_immunity["cases"] = [2, 6, 4, 4] total_immunity = total_immunity.set_index(["age_group_rki", "county"])["cases"] undetected_multiplier = 2 population_size = 100 expected = pd.DataFrame() expected["county"] = list("AABB") expected["age_group_rki"] = ["old", "young"] * 2 expected["prob"] = [4 / 20, 12 / 30, 8 / 30, 8 / 20] expected = expected.set_index(["age_group_rki", "county"])["prob"] res = _calculate_total_immunity_prob( total_immunity=undetected_multiplier * total_immunity, synthetic_data=synthetic_data, population_size=population_size, ) pd.testing.assert_series_equal( res.sort_index(), expected.sort_index(), check_names=False ) def test_calculate_endog_immunity_prob(synthetic_data): initial_infections =
pd.DataFrame()
pandas.DataFrame
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pytest import numpy as np import pandas from modin.pandas.utils import to_pandas import modin.pandas as pd from pathlib import Path import pyarrow as pa import os import sys from .utils import df_equals # needed to resolve ray-project/ray#3744 pa.__version__ = "0.11.0" pd.DEFAULT_NPARTITIONS = 4 PY2 = sys.version_info[0] == 2 TEST_PARQUET_FILENAME = "test.parquet" TEST_CSV_FILENAME = "test.csv" TEST_JSON_FILENAME = "test.json" TEST_HTML_FILENAME = "test.html" TEST_EXCEL_FILENAME = "test.xlsx" TEST_FEATHER_FILENAME = "test.feather" TEST_READ_HDF_FILENAME = "test.hdf" TEST_WRITE_HDF_FILENAME_MODIN = "test_write_modin.hdf" TEST_WRITE_HDF_FILENAME_PANDAS = "test_write_pandas.hdf" TEST_MSGPACK_FILENAME = "test.msg" TEST_STATA_FILENAME = "test.dta" TEST_PICKLE_FILENAME = "test.pkl" TEST_SAS_FILENAME = os.getcwd() + "/data/test1.sas7bdat" TEST_FWF_FILENAME = "test_fwf.txt" TEST_GBQ_FILENAME = "test_gbq." SMALL_ROW_SIZE = 2000 def modin_df_equals_pandas(modin_df, pandas_df): return to_pandas(modin_df).sort_index().equals(pandas_df.sort_index()) def setup_parquet_file(row_size, force=False): if os.path.exists(TEST_PARQUET_FILENAME) and not force: pass else: pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ).to_parquet(TEST_PARQUET_FILENAME) def create_test_ray_dataframe(): df = pd.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } ) return df def create_test_pandas_dataframe(): df = pandas.DataFrame( { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } ) return df @pytest.fixture def test_files_eq(path1, path2): with open(path1, "rb") as file1, open(path2, "rb") as file2: file1_content = file1.read() file2_content = file2.read() if file1_content == file2_content: return True else: return False def teardown_test_file(test_path): if os.path.exists(test_path): os.remove(test_path) def teardown_parquet_file(): if os.path.exists(TEST_PARQUET_FILENAME): os.remove(TEST_PARQUET_FILENAME) @pytest.fixture def make_csv_file(): """Pytest fixture factory that makes temp csv files for testing. Yields: Function that generates csv files """ filenames = [] def _make_csv_file( filename=TEST_CSV_FILENAME, row_size=SMALL_ROW_SIZE, force=False, delimiter=",", encoding=None, ): if os.path.exists(filename) and not force: pass else: dates = pandas.date_range("2000", freq="h", periods=row_size) df = pandas.DataFrame( { "col1": np.arange(row_size), "col2": [str(x.date()) for x in dates], "col3": np.arange(row_size), "col4": [str(x.time()) for x in dates], } ) df.to_csv(filename, sep=delimiter, encoding=encoding) filenames.append(filename) return df # Return function that generates csv files yield _make_csv_file # Delete csv files that were created for filename in filenames: if os.path.exists(filename): os.remove(filename) def setup_json_file(row_size, force=False): if os.path.exists(TEST_JSON_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_json(TEST_JSON_FILENAME) def teardown_json_file(): if os.path.exists(TEST_JSON_FILENAME): os.remove(TEST_JSON_FILENAME) def setup_html_file(row_size, force=False): if os.path.exists(TEST_HTML_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_html(TEST_HTML_FILENAME) def teardown_html_file(): if os.path.exists(TEST_HTML_FILENAME): os.remove(TEST_HTML_FILENAME) def setup_clipboard(row_size, force=False): df = pandas.DataFrame({"col1": np.arange(row_size), "col2": np.arange(row_size)}) df.to_clipboard() def setup_excel_file(row_size, force=False): if os.path.exists(TEST_EXCEL_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_excel(TEST_EXCEL_FILENAME) def teardown_excel_file(): if os.path.exists(TEST_EXCEL_FILENAME): os.remove(TEST_EXCEL_FILENAME) def setup_feather_file(row_size, force=False): if os.path.exists(TEST_FEATHER_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_feather(TEST_FEATHER_FILENAME) def teardown_feather_file(): if os.path.exists(TEST_FEATHER_FILENAME): os.remove(TEST_FEATHER_FILENAME) def setup_hdf_file(row_size, force=False, format=None): if os.path.exists(TEST_READ_HDF_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_hdf(TEST_READ_HDF_FILENAME, key="df", format=format) def teardown_hdf_file(): if os.path.exists(TEST_READ_HDF_FILENAME): os.remove(TEST_READ_HDF_FILENAME) def setup_msgpack_file(row_size, force=False): if os.path.exists(TEST_MSGPACK_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_msgpack(TEST_MSGPACK_FILENAME) def teardown_msgpack_file(): if os.path.exists(TEST_MSGPACK_FILENAME): os.remove(TEST_MSGPACK_FILENAME) def setup_stata_file(row_size, force=False): if os.path.exists(TEST_STATA_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_stata(TEST_STATA_FILENAME) def teardown_stata_file(): if os.path.exists(TEST_STATA_FILENAME): os.remove(TEST_STATA_FILENAME) def setup_pickle_file(row_size, force=False): if os.path.exists(TEST_PICKLE_FILENAME) and not force: pass else: df = pandas.DataFrame( {"col1": np.arange(row_size), "col2": np.arange(row_size)} ) df.to_pickle(TEST_PICKLE_FILENAME) def teardown_pickle_file(): if os.path.exists(TEST_PICKLE_FILENAME): os.remove(TEST_PICKLE_FILENAME) @pytest.fixture def make_sql_connection(): """Sets up sql connections and takes them down after the caller is done. Yields: Factory that generates sql connection objects """ filenames = [] def _sql_connection(filename, table=""): # Remove file if exists if os.path.exists(filename): os.remove(filename) filenames.append(filename) # Create connection and, if needed, table conn = "sqlite:///{}".format(filename) if table: df = pandas.DataFrame( { "col1": [0, 1, 2, 3, 4, 5, 6], "col2": [7, 8, 9, 10, 11, 12, 13], "col3": [14, 15, 16, 17, 18, 19, 20], "col4": [21, 22, 23, 24, 25, 26, 27], "col5": [0, 0, 0, 0, 0, 0, 0], } ) df.to_sql(table, conn) return conn yield _sql_connection # Takedown the fixture for filename in filenames: if os.path.exists(filename): os.remove(filename) def setup_fwf_file(): if os.path.exists(TEST_FWF_FILENAME): return fwf_data = """id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3""" with open(TEST_FWF_FILENAME, "w") as f: f.write(fwf_data) def teardown_fwf_file(): if os.path.exists(TEST_FWF_FILENAME): os.remove(TEST_FWF_FILENAME) def test_from_parquet(): setup_parquet_file(SMALL_ROW_SIZE) pandas_df = pandas.read_parquet(TEST_PARQUET_FILENAME) modin_df = pd.read_parquet(TEST_PARQUET_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_parquet_file() def test_from_parquet_with_columns(): setup_parquet_file(SMALL_ROW_SIZE) pandas_df = pandas.read_parquet(TEST_PARQUET_FILENAME, columns=["col1"]) modin_df = pd.read_parquet(TEST_PARQUET_FILENAME, columns=["col1"]) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_parquet_file() def test_from_json(): setup_json_file(SMALL_ROW_SIZE) pandas_df = pandas.read_json(TEST_JSON_FILENAME) modin_df = pd.read_json(TEST_JSON_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_json_file() def test_from_html(): setup_html_file(SMALL_ROW_SIZE) pandas_df = pandas.read_html(TEST_HTML_FILENAME)[0] modin_df = pd.read_html(TEST_HTML_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_html_file() @pytest.mark.skip(reason="No clipboard on Travis") def test_from_clipboard(): setup_clipboard(SMALL_ROW_SIZE) pandas_df = pandas.read_clipboard() modin_df = pd.read_clipboard() assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_excel(): setup_excel_file(SMALL_ROW_SIZE) pandas_df = pandas.read_excel(TEST_EXCEL_FILENAME) modin_df = pd.read_excel(TEST_EXCEL_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_excel_file() # @pytest.mark.skip(reason="Arrow version mismatch between Pandas and Feather") def test_from_feather(): setup_feather_file(SMALL_ROW_SIZE) pandas_df = pandas.read_feather(TEST_FEATHER_FILENAME) modin_df = pd.read_feather(TEST_FEATHER_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_feather_file() def test_from_hdf(): setup_hdf_file(SMALL_ROW_SIZE, format=None) pandas_df = pandas.read_hdf(TEST_READ_HDF_FILENAME, key="df") modin_df = pd.read_hdf(TEST_READ_HDF_FILENAME, key="df") assert modin_df_equals_pandas(modin_df, pandas_df) teardown_hdf_file() def test_from_hdf_format(): setup_hdf_file(SMALL_ROW_SIZE, format="table") pandas_df = pandas.read_hdf(TEST_READ_HDF_FILENAME, key="df") modin_df = pd.read_hdf(TEST_READ_HDF_FILENAME, key="df") assert modin_df_equals_pandas(modin_df, pandas_df) teardown_hdf_file() def test_from_msgpack(): setup_msgpack_file(SMALL_ROW_SIZE) pandas_df = pandas.read_msgpack(TEST_MSGPACK_FILENAME) modin_df = pd.read_msgpack(TEST_MSGPACK_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_msgpack_file() def test_from_stata(): setup_stata_file(SMALL_ROW_SIZE) pandas_df = pandas.read_stata(TEST_STATA_FILENAME) modin_df = pd.read_stata(TEST_STATA_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_stata_file() def test_from_pickle(): setup_pickle_file(SMALL_ROW_SIZE) pandas_df = pandas.read_pickle(TEST_PICKLE_FILENAME) modin_df = pd.read_pickle(TEST_PICKLE_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) teardown_pickle_file() def test_from_sql(make_sql_connection): filename = "test_from_sql.db" table = "test_from_sql" conn = make_sql_connection(filename, table) query = "select * from {0}".format(table) pandas_df = pandas.read_sql(query, conn) modin_df = pd.read_sql(query, conn) assert modin_df_equals_pandas(modin_df, pandas_df) with pytest.warns(UserWarning): pd.read_sql_query(query, conn) with pytest.warns(UserWarning): pd.read_sql_table(table, conn) @pytest.mark.skip(reason="No SAS write methods in Pandas") def test_from_sas(): pandas_df = pandas.read_sas(TEST_SAS_FILENAME) modin_df = pd.read_sas(TEST_SAS_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv(make_csv_file): make_csv_file() pandas_df = pandas.read_csv(TEST_CSV_FILENAME) modin_df = pd.read_csv(TEST_CSV_FILENAME) assert modin_df_equals_pandas(modin_df, pandas_df) if not PY2: pandas_df = pandas.read_csv(Path(TEST_CSV_FILENAME)) modin_df = pd.read_csv(Path(TEST_CSV_FILENAME)) assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_chunksize(make_csv_file): make_csv_file() # Tests __next__ and correctness of reader as an iterator # Use larger chunksize to read through file quicker rdf_reader = pd.read_csv(TEST_CSV_FILENAME, chunksize=500) pd_reader = pandas.read_csv(TEST_CSV_FILENAME, chunksize=500) for modin_df, pd_df in zip(rdf_reader, pd_reader): assert modin_df_equals_pandas(modin_df, pd_df) # Tests that get_chunk works correctly rdf_reader = pd.read_csv(TEST_CSV_FILENAME, chunksize=1) pd_reader = pandas.read_csv(TEST_CSV_FILENAME, chunksize=1) modin_df = rdf_reader.get_chunk(1) pd_df = pd_reader.get_chunk(1) assert modin_df_equals_pandas(modin_df, pd_df) # Tests that read works correctly rdf_reader = pd.read_csv(TEST_CSV_FILENAME, chunksize=1) pd_reader = pandas.read_csv(TEST_CSV_FILENAME, chunksize=1) modin_df = rdf_reader.read() pd_df = pd_reader.read() assert modin_df_equals_pandas(modin_df, pd_df) def test_from_csv_delimiter(make_csv_file): make_csv_file(delimiter="|") pandas_df = pandas.read_csv(TEST_CSV_FILENAME, sep="|") modin_df = pd.read_csv(TEST_CSV_FILENAME, sep="|") assert modin_df_equals_pandas(modin_df, pandas_df) modin_df = pd.DataFrame.from_csv( TEST_CSV_FILENAME, sep="|", parse_dates=False, header="infer", index_col=None ) pandas_df = pandas.DataFrame.from_csv( TEST_CSV_FILENAME, sep="|", parse_dates=False, header="infer", index_col=None ) assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_skiprows(make_csv_file): make_csv_file() pandas_df = pandas.read_csv(TEST_CSV_FILENAME, skiprows=2) modin_df = pd.read_csv(TEST_CSV_FILENAME, skiprows=2) assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_encoding(make_csv_file): make_csv_file(encoding="latin8") pandas_df = pandas.read_csv(TEST_CSV_FILENAME, encoding="latin8") modin_df = pd.read_csv(TEST_CSV_FILENAME, encoding="latin8") assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_default_to_pandas_behavior(make_csv_file): make_csv_file() with pytest.warns(UserWarning): # Test nrows pd.read_csv(TEST_CSV_FILENAME, nrows=10) if not PY2: with pytest.warns(UserWarning): # This tests that we default to pandas on a buffer from io import StringIO pd.read_csv(StringIO(open(TEST_CSV_FILENAME, "r").read())) with pytest.warns(UserWarning): pd.read_csv(TEST_CSV_FILENAME, skiprows=lambda x: x in [0, 2]) def test_from_csv_index_col(make_csv_file): make_csv_file() pandas_df = pandas.read_csv(TEST_CSV_FILENAME, index_col="col1") modin_df = pd.read_csv(TEST_CSV_FILENAME, index_col="col1") assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_skipfooter(make_csv_file): make_csv_file() pandas_df = pandas.read_csv(TEST_CSV_FILENAME, skipfooter=13) modin_df = pd.read_csv(TEST_CSV_FILENAME, skipfooter=13) assert modin_df_equals_pandas(modin_df, pandas_df) def test_from_csv_parse_dates(make_csv_file): make_csv_file(force=True) pandas_df = pandas.read_csv(TEST_CSV_FILENAME, parse_dates=[["col2", "col4"]]) modin_df = pd.read_csv(TEST_CSV_FILENAME, parse_dates=[["col2", "col4"]]) assert modin_df_equals_pandas(modin_df, pandas_df) pandas_df = pandas.read_csv( TEST_CSV_FILENAME, parse_dates={"time": ["col2", "col4"]} ) modin_df = pd.read_csv(TEST_CSV_FILENAME, parse_dates={"time": ["col2", "col4"]}) assert modin_df_equals_pandas(modin_df, pandas_df) @pytest.mark.skip(reason="No clipboard on Travis") def test_to_clipboard(): modin_df = create_test_ray_dataframe() pandas_df = create_test_pandas_dataframe() modin_df.to_clipboard() modin_as_clip =
pandas.read_clipboard()
pandas.read_clipboard
import os import sys import numpy as np import pytest import pandas as pd from pandas import DataFrame, compat from pandas.util import testing as tm class TestToCSV: @pytest.mark.xfail((3, 6, 5) > sys.version_info >= (3, 5), reason=("Python csv library bug " "(see https://bugs.python.org/issue32255)")) def test_to_csv_with_single_column(self): # see gh-18676, https://bugs.python.org/issue32255 # # Python's CSV library adds an extraneous '""' # before the newline when the NaN-value is in # the first row. Otherwise, only the newline # character is added. This behavior is inconsistent # and was patched in https://bugs.python.org/pull_request4672. df1 = DataFrame([None, 1]) expected1 = """\ "" 1.0 """ with tm.ensure_clean('test.csv') as path: df1.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected1 df2 = DataFrame([1, None]) expected2 = """\ 1.0 "" """ with tm.ensure_clean('test.csv') as path: df2.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected2 def test_to_csv_defualt_encoding(self): # GH17097 df = DataFrame({'col': ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]}) with tm.ensure_clean('test.csv') as path: # the default to_csv encoding is uft-8. df.to_csv(path) tm.assert_frame_equal(pd.read_csv(path, index_col=0), df) def test_to_csv_quotechar(self): df = DataFrame({'col': [1, 2]}) expected = """\ "","col" "0","1" "1","2" """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1) # 1=QUOTE_ALL with open(path, 'r') as f: assert f.read() == expected expected = """\ $$,$col$ $0$,$1$ $1$,$2$ """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1, quotechar="$") with open(path, 'r') as f: assert f.read() == expected with tm.ensure_clean('test.csv') as path: with pytest.raises(TypeError, match='quotechar'): df.to_csv(path, quoting=1, quotechar=None) def test_to_csv_doublequote(self): df = DataFrame({'col': ['a"a', '"bb"']}) expected = '''\ "","col" "0","a""a" "1","""bb""" ''' with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1, doublequote=True) # QUOTE_ALL with open(path, 'r') as f: assert f.read() == expected from _csv import Error with tm.ensure_clean('test.csv') as path: with pytest.raises(Error, match='escapechar'): df.to_csv(path, doublequote=False) # no escapechar set def test_to_csv_escapechar(self): df = DataFrame({'col': ['a"a', '"bb"']}) expected = '''\ "","col" "0","a\\"a" "1","\\"bb\\"" ''' with tm.ensure_clean('test.csv') as path: # QUOTE_ALL df.to_csv(path, quoting=1, doublequote=False, escapechar='\\') with open(path, 'r') as f: assert f.read() == expected df = DataFrame({'col': ['a,a', ',bb,']}) expected = """\ ,col 0,a\\,a 1,\\,bb\\, """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=3, escapechar='\\') # QUOTE_NONE with open(path, 'r') as f: assert f.read() == expected def test_csv_to_string(self): df = DataFrame({'col': [1, 2]}) expected_rows = [',col', '0,1', '1,2'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv() == expected def test_to_csv_decimal(self): # see gh-781 df = DataFrame({'col1': [1], 'col2': ['a'], 'col3': [10.1]}) expected_rows = [',col1,col2,col3', '0,1,a,10.1'] expected_default = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv() == expected_default expected_rows = [';col1;col2;col3', '0;1;a;10,1'] expected_european_excel = tm.convert_rows_list_to_csv_str( expected_rows) assert df.to_csv(decimal=',', sep=';') == expected_european_excel expected_rows = [',col1,col2,col3', '0,1,a,10.10'] expected_float_format_default = tm.convert_rows_list_to_csv_str( expected_rows) assert df.to_csv(float_format='%.2f') == expected_float_format_default expected_rows = [';col1;col2;col3', '0;1;a;10,10'] expected_float_format = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv(decimal=',', sep=';', float_format='%.2f') == expected_float_format # see gh-11553: testing if decimal is taken into account for '0.0' df = pd.DataFrame({'a': [0, 1.1], 'b': [2.2, 3.3], 'c': 1}) expected_rows = ['a,b,c', '0^0,2^2,1', '1^1,3^3,1'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv(index=False, decimal='^') == expected # same but for an index assert df.set_index('a').to_csv(decimal='^') == expected # same for a multi-index assert df.set_index(['a', 'b']).to_csv(decimal="^") == expected def test_to_csv_float_format(self): # testing if float_format is taken into account for the index # GH 11553 df = pd.DataFrame({'a': [0, 1], 'b': [2.2, 3.3], 'c': 1}) expected_rows = ['a,b,c', '0,2.20,1', '1,3.30,1'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(float_format='%.2f') == expected # same for a multi-index assert df.set_index(['a', 'b']).to_csv( float_format='%.2f') == expected def test_to_csv_na_rep(self): # see gh-11553 # # Testing if NaN values are correctly represented in the index. df = DataFrame({'a': [0, np.NaN], 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '0.0,0,2', '_,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected # now with an index containing only NaNs df = DataFrame({'a': np.NaN, 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '_,0,2', '_,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected # check if na_rep parameter does not break anything when no NaN df = DataFrame({'a': 0, 'b': [0, 1], 'c': [2, 3]}) expected_rows = ['a,b,c', '0,0,2', '0,1,3'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.set_index('a').to_csv(na_rep='_') == expected assert df.set_index(['a', 'b']).to_csv(na_rep='_') == expected def test_to_csv_date_format(self): # GH 10209 df_sec = DataFrame({'A': pd.date_range('20130101', periods=5, freq='s') }) df_day = DataFrame({'A': pd.date_range('20130101', periods=5, freq='d') }) expected_rows = [',A', '0,2013-01-01 00:00:00', '1,2013-01-01 00:00:01', '2,2013-01-01 00:00:02', '3,2013-01-01 00:00:03', '4,2013-01-01 00:00:04'] expected_default_sec = tm.convert_rows_list_to_csv_str(expected_rows) assert df_sec.to_csv() == expected_default_sec expected_rows = [',A', '0,2013-01-01 00:00:00', '1,2013-01-02 00:00:00', '2,2013-01-03 00:00:00', '3,2013-01-04 00:00:00', '4,2013-01-05 00:00:00'] expected_ymdhms_day = tm.convert_rows_list_to_csv_str(expected_rows) assert (df_day.to_csv(date_format='%Y-%m-%d %H:%M:%S') == expected_ymdhms_day) expected_rows = [',A', '0,2013-01-01', '1,2013-01-01', '2,2013-01-01', '3,2013-01-01', '4,2013-01-01'] expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) assert df_sec.to_csv(date_format='%Y-%m-%d') == expected_ymd_sec expected_rows = [',A', '0,2013-01-01', '1,2013-01-02', '2,2013-01-03', '3,2013-01-04', '4,2013-01-05'] expected_default_day = tm.convert_rows_list_to_csv_str(expected_rows) assert df_day.to_csv() == expected_default_day assert df_day.to_csv(date_format='%Y-%m-%d') == expected_default_day # see gh-7791 # # Testing if date_format parameter is taken into account # for multi-indexed DataFrames. df_sec['B'] = 0 df_sec['C'] = 1 expected_rows = ['A,B,C', '2013-01-01,0,1'] expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) df_sec_grouped = df_sec.groupby([pd.Grouper(key='A', freq='1h'), 'B']) assert (df_sec_grouped.mean().to_csv(date_format='%Y-%m-%d') == expected_ymd_sec) def test_to_csv_multi_index(self): # see gh-6618 df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]])) exp_rows = [',1', ',2', '0,1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv() == exp exp_rows = ['1', '2', '1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv(index=False) == exp df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]]), index=pd.MultiIndex.from_arrays([[1], [2]])) exp_rows = [',,1', ',,2', '1,2,1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv() == exp exp_rows = ['1', '2', '1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv(index=False) == exp df = DataFrame( [1], columns=pd.MultiIndex.from_arrays([['foo'], ['bar']])) exp_rows = [',foo', ',bar', '0,1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv() == exp exp_rows = ['foo', 'bar', '1'] exp = tm.convert_rows_list_to_csv_str(exp_rows) assert df.to_csv(index=False) == exp @pytest.mark.parametrize("ind,expected", [ (pd.MultiIndex(levels=[[1.0]], codes=[[0]], names=["x"]), "x,data\n1.0,1\n"), (pd.MultiIndex(levels=[[1.], [2.]], codes=[[0], [0]], names=["x", "y"]), "x,y,data\n1.0,2.0,1\n") ]) @pytest.mark.parametrize("klass", [ pd.DataFrame, pd.Series ]) def test_to_csv_single_level_multi_index(self, ind, expected, klass): # see gh-19589 result = klass(
pd.Series([1], ind, name="data")
pandas.Series
import requests from bs4 import BeautifulSoup import pandas as pd def get_tables(urls, link=False): """Returns a dataframes list with the tables of the different groups. Keyword arguments: urls -- list with urls of the different groups link -- indicates whether you want to include the url of every team in the dataframe (default False).""" # Declare header variable with browsers info headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/47.0.2526.106 Safari/537.36'} tables_list = [] # Save results in a list try: # Create BeautifulSoup objects from our responses for i, url in enumerate(urls): response = requests.get(url, headers=headers) url_bs = BeautifulSoup(response.content, 'html.parser') # Lists header = [] datos = [] # The find_all() method returns the tags with the required information. tags_header = url_bs.find_all("div", {"class": "classificationHeadingItem"}) tags_data = url_bs.find_all("div", {"class": ["classificationItemOddWrapper", "classificationItemEvenWrapper"]}) tags_link = url_bs.find_all("a", {"class": "classificationTeam"}) # Extract headers, teams, goals and url links. for tag_header in tags_header: header.append(tag_header.text) header.insert(0, 'Equipo'), header.insert(0, 'POS') header = header[:-1] for tag_data in tags_data: datos.append(tag_data.text) links_lst = [] for tag_link in tags_link: links_lst.append('https://www.futboleras.es' + tag_link.get('href')) # Format and put the data into a dataframe. df = pd.DataFrame([sub.split(' ') for sub in datos]) df.drop(df.columns[[0, 10, 11]], axis=1, inplace=True) splitcol = df[2].str.split(' ', 2, expand=True) # Add the points, group and url links of each team. df.insert(1, 'Equipo', splitcol[1]), df.insert(2, 'PTOS', splitcol[2]) del (df[2]) df.columns = header df.insert(2, 'Grupo', i + 1) if link: df['Link'] = links_lst tables_list.append(df) return tables_list except Exception: print('Enter a valid url list.') def general_table(tables_list): """Returns the general table with all the teams. Keyword arguments: table_list -- list with all tables stored in dataframes""" # Concatenate all dataframes. df =
pd.concat(tables_list, axis=0)
pandas.concat