id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3495217
#!/usr/bin/python # a timing script for FFTs and convolutions using OpenMP import sys, getopt import numpy as np from math import * from subprocess import * # for popen, running processes import os import re # regexp package import shutil def mvals_from_file(filename): mvals = [] if os.path.isfile(filename): with open(filename, 'r') as fin: for line in fin: if not line.startswith("#"): mvals.append(int(line.split()[0])) return mvals def max_m(p, RAM, runtype): print "program:", p print "runtype:", runtype print "ram:", RAM b = 0 if "transpose" in p: # NB: assumes Z=1 and out-of-place return int(floor(log(RAM / 32) / log(2) / 2)) if "cconv2" in p: if runtype == "implicit": # A * 2m^2 * 16 return int(floor(log(RAM / 64) / ( 2 * log(2)) )) else: # A * 4m^2 * 16 return int(floor(log(RAM / 128) / (2 * log(2)) )) if "cconv3" in p: if runtype == "implicit": # A * 2m^3 * 16 return int(floor( log(RAM / 64) / (3 * log(2)) )) else: # A * 8m^3 * 16 return int(floor( log(RAM / 256) / (3 * log(2)) )) if "cconv" in p: b = int(floor(log(RAM / 4) / log(2))) b = min(b, 20) # because we aren't crazy return b if "tconv2" in p: if runtype == "implicit": # A * 6m^2 * 16 return int(floor( log(RAM / 192) / (2 * log(2)) )) else: # A * 12m^2 * 16 return int(floor( log(RAM / 768) / (2 * log(2)) )) if "tconv" in p: b = int(floor(log(RAM / 6) / log(2))) b = min(b, 20) # because we aren't crazy return b if "conv2" in p: if runtype == "implicit": # A * 3 m^2 * 16 return int(floor(log(RAM / 96) / (2 * log(2)) )) else: # A * 4.5 m^2 * 16 return int(floor(log(RAM / 144) / (2 * log(2)) )) if "conv3" in p: # A * 6 m^3 * 16 return int(floor(log(RAM / 192) / (3 * log(2)) )) if "conv" in p: b = int(floor(log(RAM / 6) / log(2))) b = min(b, 20) # because we aren't crazy return b if "mft1" in p: return int(floor(0.5 * log(RAM / 64) / log(2))) if "fft1" in p: return int(floor(0.5 * log(RAM / 64) / log(2))) if p == "fft2": return int(floor(log(RAM / 32) / log(2) / 2)) if p == "fft2r": return int(floor(log(RAM / 32) / log(2) / 2)) if p == "fft3": return int(floor(log(RAM / 32) / log(2) / 3)) if p == "fft3r": return int(floor(log(RAM / 32) / log(2) / 3)) if p == "transpose": return int(floor(log(RAM / 32) / log(2) / 2)) print "Error! Failed to determine b." return 0 def default_outdir(p): outdir="" if p == "cconv": outdir = "timings1c" if p == "cconv2": outdir = "timings2c" if p == "cconv3": outdir = "timings3c" if p == "conv": outdir = "timings1r" if p == "conv2": outdir = "timings2r" if p == "conv3": outdir = "timings3r" if p == "tconv": outdir = "timings1t" if p == "tconv2": outdir="timings2t" if p == "fft1": outdir = "timingsf1" if p == "mfft1": outdir = "timingsmf1" if p == "fft2": outdir = "timingsf2" if p == "transpose": outdir="transpose2" return outdir def main(argv): usage = '''Usage: \ntimings.py -a<start> -b<stop> -p<cconv,cconv2,cconv3,conv,conv2,conv3,tconv,tconv2> -T<number of threads> -A<quoted arg list for timed program> -B<pre-commands (eg srun)> -r<implicit/explicit/pruned/fft> -R<ram in gigabytes> -d dry run -o<output file name> -D<outdir> -o<outfile> -P<path to executable> -g<grep string> -N<int> Number of tests to perform -e<0 or 1>: append to the timing data already existent (skipping already-done problem sizes). -c<string>: extra commentary for output file. -v: verbose output ''' dryrun = False #dryrun = True bset = 0 dorun = True T = 0 # number of threads p = "" # program name B = [] # precommands A = [] # postcommands E = [] # environment variables (eg: -EGOMP_CPU_AFFINITY -E"0 1 2 3") a = 6 # minimum log of problem size b = 0 # maximum log of problem size runtype = "implicit" # type of run RAM = 0 # ram limit in GB outdir = "" # output directory outfile = "" # output filename rname = "" # output grep string N = 0 # number of tests appendtofile = False stats = 0 path = "./" verbose = False extracomment = "" try: opts, args = getopt.getopt(argv,"hdp:T:a:b:c:A:B:E:e:r:R:S:o:P:D:g:N:v") except getopt.GetoptError: print "error in parsing arguments." print usage sys.exit(2) for opt, arg in opts: if opt in ("-p"): p = arg if opt in ("-T"): T = arg elif opt in ("-a"): a = int(arg) elif opt in ("-N"): N = int(arg) elif opt in ("-b"): b = int(arg) elif opt in ("-c"): extracomment = arg elif opt in ("-A"): A += [str(arg)] elif opt in ("-B"): B += [str(arg)] elif opt in ("-E"): E += [str(arg)] elif opt in ("-e"): appendtofile = (int(arg) == 1) elif opt in ("-r"): runtype = str(arg) elif opt in ("-R"): print "ram arg:", arg RAM = float(arg)*2**30 elif opt in ("-S"): stats = int(arg) elif opt in ("-d"): dryrun = True elif opt in ("-o"): outfile = str(arg) elif opt in ("-P"): path = arg elif opt in ("-D"): outdir = str(arg) elif opt in ("-g"): rname = str(arg) elif opt in ("-v"): verbose = True elif opt in ("-h"): print usage sys.exit(0) if dryrun: print "Dry run! No output actually created." if p == "": print "please specify a program with -p" print usage sys.exit(2) print "RAM:", RAM # if both the max problem size and the ram are unset, go up to 2^8 if (b == 0 and RAM == 0): b = 8 hermitian = False ternary = False if p == "cconv": if(runtype == "pruned"): print p + " has no pruned option" dorun = False if p == "conv": hermitian = True if(runtype == "pruned"): print p + " has no pruned option" dorun = False if p == "conv2": hermitian = True if p == "conv3": hermitian = True if(runtype != "implicit"): print p + " has no " + r + " option" dorun = False if p == "tconv": ternary = True if(runtype == "pruned"): print p + " has no pruned option" dorun = False if p == "tconv2": ternary = True if p == "fft1": runtype = "fft" if p == "mfft1": runtype = "fft" if p == "fft2": runtype = "fft" if p == "transpose": runtype = "transpose" if outdir == "": outdir = default_outdir(p) if outdir == "": print "empty outdir: please select a program or specify an outdir (-D)" print print usage sys.exit(2) if RAM != 0: b = max_m(p, RAM, runtype) print "max value of b with ram provided:", b if outfile == "": outfile = "implicit" goodruns = [] badruns = [] if dorun: if RAM != 0: print "max problem size is "+str(2**b) if rname == "": if runtype == "implicit": rname = "Implicit" if runtype == "explicit": rname = "Explicit" if runtype == "pruned": rname = "rune" if runtype == "fft": rname = "fft" if runtype == "transpose": rname = "transpose" print "Search string for timing: " + rname filename = outdir + "/" + outfile print "output in", filename mdone = mvals_from_file(filename) print "problem sizes already done:", mdone print "environment variables:", E if not dryrun: os.system("mkdir -p " + outdir) with open(outdir + "/log", "a") as logfile: logfile.write(str(sys.argv)) logfile.write("\n") logfile.write("intial exponent: " + str(a) + "\n") logfile.write("final exponent: " + str(b) + "\n") if not appendtofile: os.system("rm -f " + filename) cmd = [] i = 0 while i < len(B): cmd.append(B[i]); i += 1 cmd += [path + str(p)] if not os.path.isfile(path + str(p)): print path + str(p), "does not exist!" sys.exit(1) if not "fft" in p: if(runtype == "explicit"): cmd.append("-e") if(runtype == "pruned"): cmd.append("-p") if(runtype == "implicit"): cmd.append("-i") cmd.append("-S" + str(stats)) if(N > 0): cmd.append("-N" + str(N)) if(T > 0): cmd.append("-T" + T) # Add the extra arguments to the program being timed. i = 0 while i < len(A): cmd.append(A[i]); i += 1 print " ".join(cmd) if not dryrun and stats == -1: try: os.remove("timing.dat") except OSError: pass if not dryrun: comment = "#" # Add the base run command as a comment comment += " " + " ".join(cmd) # Add the run date as a comment import time date = time.strftime("%Y-%m-%d") comment += "\t" + date if extracomment == "": # If we can get the commit and commit date, add as a comment vcmd = [] vcmd.append("git") vcmd.append("log") vcmd.append("-1") vcmd.append("--format=%h") vp = Popen(vcmd, stdout = PIPE, stderr = PIPE) vp.wait() prc = vp.returncode if prc == 0: out, err = vp.communicate() comment += "\t" + out.rstrip() vcmd = [] vcmd.append("git") vcmd.append("log") vcmd.append("-1") vcmd.append("--format=%ci") vp = Popen(vcmd, stdout = PIPE, stderr = PIPE) vp.wait() prc = vp.returncode if prc == 0: out, err = vp.communicate() out = out.rstrip() comment += " (" + out[0:10] + ")" else: comment += "\t" + extracomment comment += "\n" if(appendtofile): if os.path.isfile(filename): with open(filename, "a") as myfile: myfile.write(comment) else: with open(filename, "a") as myfile: myfile.write(comment) else: if stats == -1: with open("timing.dat", "w") as myfile: myfile.write(comment) else: with open(filename, "w") as myfile: myfile.write(comment) for i in range(a, b + 1): if not hermitian or runtype == "implicit": m = str(int(pow(2, i))) else: if not ternary: m = str(int(floor((pow(2, i + 1) + 2) / 3))) else: m = str(int(floor((pow(2, i + 2) + 3) / 4))) print str(i) + " m=" + str(m) dothism = True if appendtofile and int(m) in mdone: print "problem size", m, "is already done; skipping." dothism = False if dothism: mcmd = cmd + ["-m" + str(m)] if dryrun: #print mcmd print " ".join(mcmd) else: denv = dict(os.environ) i = 0 while i < len(E): denv[E[i]] = E[i + 1] i += 2 p = Popen(mcmd, stdout = PIPE, stderr = PIPE, env = denv) p.wait() # sets the return code prc = p.returncode out, err = p.communicate() # capture output if(verbose): print "Output from timing.py's popen:" #print " ".join(mcmd) print "cwd:" , os.getcwd() print "out:" print out print "err:" print err # copy the output and error to a log file. with open(outdir + "/log", "a") as logfile: logfile.write(" ".join(mcmd)) logfile.write("\n") logfile.write(out) logfile.write(err) if (prc == 0): # did the process succeed? #print out outlines = out.split('\n') itline = 0 dataline = "" while itline < len(outlines): line = outlines[itline] #print line re.search(rname, line) if re.search(rname, line) is not None: print "\t" + str(outlines[itline]) print "\t" + str(outlines[itline + 1]) dataline = outlines[itline + 1] itline = len(outlines) itline += 1 if not stats == -1: if not dataline == "": goodruns.append(mcmd) # append to output file with open(filename, "a") as myfile: myfile.write(dataline + "\n") else: print "ERROR: no timing data found" badruns.append(mcmd) else: goodruns.append(mcmd) else: print "FAILURE:" print cmd print "with, return code:" print prc print "output:" print out print "error:" print err badruns.append(mcmd) if not dryrun and (stats == -1 and os.path.isfile("timing.dat")): if(appendtofile): # Append the new data ot the output. with open(filename, "a") as fout: with open("timing.dat") as fin: lines = [] for line in fin: lines.append(line) fout.write(lines[len(lines) - 1]) else: shutil.copyfile("timing.dat", filename) if not dryrun and stats == -1: try: os.remove("timing.dat") except OSError: pass if not dryrun: with open(outdir + "/log", "a") as logfile: goodbads = "" if len(goodruns) > 0: goodbads += "Successful runs:\n" for mcmd in goodruns: goodbads += " ".join(mcmd) + "\n" if len(badruns) > 0: goodbads += "Unsuccessful runs:\n" for mcmd in badruns: goodbads += " ".join(mcmd) + "\n" logfile.write(goodbads) print goodbads if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
3283254
<reponame>ndkruif/8dm40-machine-learning10 import numpy as np def lsq(X, y): """ Least squares linear regression :param X: Input data matrix :param y: Target vector :return: Estimated coefficient vector for the linear regression """ # add column of ones for the intercept ones = np.ones((len(X), 1)) X = np.concatenate((ones, X), axis=1) # calculate the coefficients beta = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, y)) return beta
StarcoderdataPython
12845598
<filename>paprika/actions/files/Pipe.py from paprika.repositories.FileRepository import FileRepository from paprika.repositories.ProcessPropertyRepository import ProcessPropertyRepository from paprika.repositories.ProcessRepository import ProcessRepository from paprika.system.logger.Logger import Logger from paprika.actions.Actionable import Actionable class Pipe(Actionable): def __init__(self): Actionable.__init__(self) def execute(self, connector, process_action): job_name = process_action['job_name'] logger = Logger(connector, self) file_repository = FileRepository(connector) process_repository = ProcessRepository(connector) process_property_repository = ProcessPropertyRepository(connector) # retrieve the file properties process = process_repository.find_by_id(process_action['pcs_id']) file_id = process_property_repository.get_property(process, 'file_id') file = file_repository.find_by_id(file_id) filename = file['filename'] locked = file_repository.locked(file) if locked: logger.info(job_name, 'file: ' + filename + " locked ") return process_action else: logger.info(job_name, 'file: ' + filename + " not locked ") logger.info(job_name, filename + " state: " + file['state'])
StarcoderdataPython
158568
<gh_stars>0 import utility from sklearn.model_selection import train_test_split from sklearn.neighbors import NearestNeighbors import static_sim_functions as smf # import ts_preprocessing as ts_data import numpy as np import os from pathlib import Path import ast ''' This class is created to simulate models for UI for especially similarity comparison. Uses the same functionalities as per other ML modelling classes. Is maintained as a separate file. The simulated data itself is created from the jupyter notebook file Synthethic Test Data.ipynb. ''' def common_processing(df): # Getting percentage between 0 to 1 rather than score values df["tschq12"] = df["tschq12"].apply(lambda x: x / 100) df["tschq16"] = df["tschq16"].apply(lambda x: x / 100) df["tschq17"] = df["tschq17"].apply(lambda x: x / 100) df["tschq04"] = df.apply(create_cols_family_hist, axis=1) return df # Common elements # Feature engineering family history def create_cols_family_hist(x): if x["tschq04-1"] == "YES": if isinstance(x["tschq04-2"], str): res = ast.literal_eval(x["tschq04-2"]) else: res = x["tschq04-2"] lst_sorted = sorted(res) list_to_str = "_".join([val for val in lst_sorted]) return list_to_str else: return x["tschq04-1"] def get_common_cols(col1, col2): common_elements = set(col1).intersection(col2) return common_elements import properties import pandas as pd def check_access(location): if location.exists() and location.is_file(): return True else: return False def initial_processing(): # Read the csv of the tschq data and make the necessary things tschq = pd.read_pickle(properties.registration_file_location) hq = pd.read_pickle(properties.hearing_file_location) # If simulation file for tchq dataset exists add it. path_access = Path(properties.simulate_registration_file_location) hearing_path_access = Path(properties.simulate_hearing_file_location) if check_access(path_access): simulation_reg_file = pd.read_pickle(properties.simulate_registration_file_location) # Append the simulation file alongside when True tschq = tschq.append(simulation_reg_file) else: print("Simulated registration file is not created !!!") if check_access(hearing_path_access): simulation_hearing_file = pd.read_pickle(properties.simulate_hearing_file_location) hq = hq.append(simulation_hearing_file) else: print("Simulated hearing file is not created !!!") # Dropping users who do not have their time series drop_indexs = [] drop_user_ids = [54, 60, 140, 170, 4, 6, 7, 9, 12, 19, 25, 53, 59, 130, 144, 145, 148, 156, 167] # indexes to be obtained for val in drop_user_ids: drop_indexs.append(tschq[tschq["user_id"] == val].index[0]) # Drop those indexes of the users who do not have their time recordings tschq.drop(drop_indexs, inplace=True) tschq.reset_index(inplace=True, drop=True) # Cleaning tschq05 question. There is an abstraction for a row we add common value def filter_age(x): if isinstance(x, int): # Append the most common value obtained return tschq["tschq05"].value_counts().head(1).index[0] else: return x tschq["tschq05"] = tschq["tschq05"].apply(filter_age) # Drop the questionnaire_id and created_at tschq.drop(["questionnaire_id", "created_at"], axis=1, inplace=True) hq.isna().sum(axis=0) # By looking at the output we are sure that h5 and h6 do not contribute much and can be dropped hq.drop(["hq05", "hq06"], axis=1, inplace=True) hq_df = hq.set_index("user_id") df = tschq.join(hq_df.iloc[:, 2:], on="user_id") # Repeated code but it should be okay # Looking at the output, we can drop tschq25, tschq07-02, tschq04-2 drop_cols = ["tschq01", "tschq25", "tschq07-2", "tschq13", "tschq04-1", "tschq04-2"] # Getting percentage between 0 to 1 rather than score values df["tschq12"] = df["tschq12"].apply(lambda x: x / 100) df["tschq16"] = df["tschq16"].apply(lambda x: x / 100) df["tschq17"] = df["tschq17"].apply(lambda x: x / 100) df["tschq04"] = df.apply(create_cols_family_hist, axis=1) df.drop(drop_cols, axis=1, inplace=True) # Set the heom object, while using the required similarity # Alternative # Categorical boolean mask categorical_feature_mask = df.iloc[:, 1:].infer_objects().dtypes == object other_feature_mask = df.iloc[:, 1:].infer_objects().dtypes != object # filter categorical columns using mask and turn it into a list categorical_cols = df.iloc[:, 1:].columns[categorical_feature_mask].tolist() num_cols = df.iloc[:, 1:].columns[other_feature_mask].tolist() cat_idx = [df.iloc[:, 1:].columns.get_loc(val) for val in categorical_cols] num_idx = [df.iloc[:, 1:].columns.get_loc(val) for val in num_cols] return cat_idx, num_idx, df import os import traceback def save_data_objs(df, quest_cmbs="all"): try: if not os.path.isdir(properties.model_location + "/simulate/" + quest_cmbs): os.makedirs(properties.model_location + "/simulate/" + quest_cmbs) utility.save_model("".join("/simulate/" + quest_cmbs + "/" + quest_cmbs + "_stat_q_data"), df) encoded_combined_df = smf.preprocess(df, quest_cmbs, age_bin=False, process_model_name="".join("/simulate/" + quest_cmbs + "/" + quest_cmbs + "_stat_q_data_oe_model"), prediction=False) # Save this encoded_data utility.save_model("".join("/simulate/" + quest_cmbs + "/" + quest_cmbs + "_stat_q_data_encoded"), encoded_combined_df) return encoded_combined_df # Use this data to build the data model over static data. except Exception: print(traceback.print_exc()) def weighted_average(distress_list): average = np.asarray(distress_list, dtype=float).mean() return average # Function computes the weighted average as predictions for given prediction time point def compute_weighted_avg(n_idx, encoded_data, pred_at_list, method="mean", dist_nn=None, wt_flag=False): preds = list() # Prediction for four time points for pval in pred_at_list: distress_list = list() for vals in n_idx: # print(user_id) # For this user now get the time series. # might have to iterate over as well. u_id = encoded_data["user_id"].iloc[vals] user_ts = tsg_data.get_usr_mday_ts_predict(int(u_id)) # 3rd val of the series is s03 of the neighbor print("{}, {} Values ".format(int(pval), int(u_id))) if len(user_ts) > int(pval): value = user_ts[int(pval), :][3] elif len(user_ts) <= int(pval): value = user_ts[len(user_ts) - 1, :][3] distress_list.append(value) if wt_flag: print("Calling by weighted distance prediction for distress") preds.append(weighted_distance_prediction(distress_list, dist_nn)) else: print("Calling weighted average to predict distress") preds.append(weighted_average(distress_list)) return preds def weighted_distance_prediction(p_preds, distance): # Inverse distance so that highest weight is given to the nearest one and least to the farther inv_dist = np.divide(1, distance) # s03 - tinnitus distress weighted by distance is given as s03_pred = (np.sum(np.multiply(p_preds, inv_dist)) / (np.sum(inv_dist))) return s03_pred def compute(test_nn, encoded_data, pred_list, method="mean", dist_nn=None, wt_dist=False): # test_nn = [0, 3, 4] # pred_list = [0.1,0.23,0.27] from sklearn.linear_model import LinearRegression preds = list() for point in pred_list: nn_preds = list() intercepts_list = list() coeff_list = list() for nn in test_nn: u_id = encoded_data["user_id"].iloc[nn] user_ts = tsg_data.get_usr_mday_ts_predict(int(u_id)) # Obtain the time series until time point and fit the data for linear regression diff_arr = np.abs(np.subtract(point, user_ts[:, 1])) diff_near_idx = np.where(diff_arr == diff_arr.min()) print("minimum to the time point is at -- ", diff_near_idx) # difference near index. Handling for the length of users usr_idx = diff_near_idx[0][0] user_ts_p = user_ts[:usr_idx] user_ts_df = pd.DataFrame(user_ts_p, columns=["day", "day_sess_index", "s02", "s03", "s04", "s05", "s06", "s07"]) X = user_ts_df[["day_sess_index"]] # We show for tinnitus distress. This can be extended to other physiological variables as well. y = user_ts_df[["s03"]] # Fit on X axis as time and Y as the s03 predictive value. reg_fit = LinearRegression(normalize=True) reg_fit.fit(X, y) # If weighted_distance is true, then predict by each of the nn_user and add to list. This will be used for # calculating weighted_distance_predictions. if wt_dist: nn_pred = reg_fit.predict(np.asarray(point).reshape(1, -1)) nn_preds.append(nn_pred[0][0]) else: intercepts_list.append(reg_fit.intercept_) coeff_list.append(reg_fit.coef_) if wt_dist: print("Predicting the value of s03 for the user by a weighted average weighted by distance") preds.append(weighted_distance_prediction(nn_preds, dist_nn)) else: print("Predicting the value of s3 over the averaged slope and intercepts of " "observations of the neighbors") # y = mx + c, where m is the average slope of the neighbors and c is the average intercept obtained. print("The equation to estimate s03 for the user is {}".format("".join(str(np.asarray(coeff_list).mean())) + "* time_index + " + str(np.asarray(intercepts_list).mean()))) y = np.multiply(np.asarray(coeff_list).mean(), point) + np.asarray(intercepts_list).mean() preds.append(y) return preds # Create test label as ground truth at prediction point. def create_y_labels(test_data, prediction_at, method="mean"): y_test = list() for i in range(0, len(test_data)): test_ts_test1 = tsg_data.get_usr_mday_ts_predict(int(test_data.iloc[i]["user_id"])) # print(len(test_ts_test1)) if len(test_ts_test1) >= prediction_at: y_test.append(test_ts_test1[prediction_at - 1][2]) elif len(test_ts_test1) < prediction_at: y_test.append(test_ts_test1[len(test_ts_test1) - 1][2]) return y_test # Create reference points for multiple reference predictions def get_pred_ref_points(user_id, ndays, method="mean"): # Using the default tsg which is mean observations of the user test_user_ts = tsg_data.get_usr_mday_ts_predict(user_id) # user_ts = tsg.get_usr_mday_ts_index_corrected(int(user_id)) user_ts_idx = test_user_ts[:, 1] # ["date", "time_idx", "s02", "s03", "s04", "s05", "s06", "s07] user_distress = test_user_ts[:, 3] # Near evaluation. Change this for farther evaluations # Near -> 0.25 # Far -> 1 - (Near) # Near points are of the sequence of observation because we are sure all stay until here. prediction_at = 10 # Far prediction point is the last N% of the test user time series # prediction_at = round(len(user_ts_idx) * 0.80) y_labels = user_distress[prediction_at:prediction_at + ndays].tolist() prediction_at_list = user_ts_idx[prediction_at:prediction_at + ndays].tolist() return y_labels, prediction_at_list def do_test(test_data, out_writer, csv_out_writer, ndays, near_idxs, encoded_data, fold_count="final", method="mean", dist_nn=None, wt_dist_flag=False): for i in range(0, len(test_data)): user_id = int(test_data.iloc[i]["user_id"]) print("User- Id ", user_id) y_labels, prediction_at_list = get_pred_ref_points(user_id, ndays, method=method) # y_labels = create_y_labels(X_test, preds, method="mean") if wt_dist_flag: test_user_nn = near_idxs[i] test_user_dist = dist_nn[i] pred_weighted_average = compute_weighted_avg(test_user_nn, encoded_data, prediction_at_list, method=method, dist_nn=test_user_dist, wt_flag=wt_dist_flag) pred_lr = compute(test_user_nn, encoded_data, prediction_at_list, method=method, dist_nn=test_user_dist, wt_dist=wt_dist_flag) else: test_user_nn = near_idxs[i] pred_weighted_average = compute_weighted_avg(test_user_nn, encoded_data, prediction_at_list, method=method, dist_nn=None, wt_flag=False) pred_lr = compute(test_user_nn, encoded_data, prediction_at_list, method=method, dist_nn=None, wt_dist=False) # calculate MAE, MSE, RMSE if not fold_count == "final": print("Evaluating for the fold-" + str(count) + " for the forecast reference points - " + str(prediction_at_list)) out_writer.write("Evaluating for the fold-" + str(count) + " for the forecast reference points -- " + str(prediction_at_list) + "for the method evaluation -- " + str(method) + "\n") else: print("Evaluating for the final model over the " + " forecast reference points - " + str(prediction_at_list)) out_writer.write("Evaluating for the final model over the" + " forecast reference points -- " + str(prediction_at_list) + "for the method evaluation -- " + str(method) + "\n") print("Computing MAE, MSE, RMSE for weighted average based predictions on the User -- " + str(user_id)) out_writer.write("Computing MAE, MSE, RMSE for weighted average based predictions" " plain and on N days on the User -- " + str(user_id) + "\n") print("---------------------------------------------------------------") out_writer.write("---------------------------------------------------------------\n") print("MAE -- ", mean_absolute_error(y_labels, pred_weighted_average)) out_writer.write("MAE -- " + str(mean_absolute_error(y_labels, pred_weighted_average)) + "\n") # MAE for N days print("MAE for N days -- ", str(mean_absolute_error(y_labels, pred_weighted_average) / ndays)) out_writer.write("MAE for N days -- " + str(mean_absolute_error(y_labels, pred_weighted_average) / ndays) + "\n") print("MSE -- ", mean_squared_error(y_labels, pred_weighted_average)) out_writer.write("MSE -- " + str(mean_squared_error(y_labels, pred_weighted_average)) + "\n") # MSE for N days print("MSE for N days-- ", str(mean_squared_error(y_labels, pred_weighted_average) / ndays)) out_writer.write( "MSE for N days -- " + str(mean_squared_error(y_labels, pred_weighted_average) / ndays) + "\n") print("RMSE -- ", np.sqrt(mean_squared_error(y_labels, pred_weighted_average))) out_writer.write("RMSE -- " + str(np.sqrt(mean_squared_error(y_labels, pred_weighted_average))) + "\n") # RMSE for N days print("RMSE for N days -- ", str(np.sqrt(mean_squared_error(y_labels, pred_weighted_average)) / ndays)) out_writer.write("RMSE for N days -- " + str( np.sqrt(mean_squared_error(y_labels, pred_weighted_average)) / ndays) + "\n") # pred_lr = compute_linear_regression(test_user_nn, encoded_data, prediction_at_list , method="mean") m_count = 0 # Writing to csv file if not fold_count == "final": csv_out_writer.write("".join(str(user_id) + "," + str(count) + "," + str(mean_absolute_error(y_labels, pred_weighted_average)) + "," + str(mean_squared_error(y_labels, pred_weighted_average)) + "," + str(np.sqrt(mean_squared_error(y_labels, pred_weighted_average))) + "," + "weighted_average" + "," # str(y_labels) + "," + # str(pred_weighted_average) + str(y_labels[0]) + "," + str(y_labels[1]) + "," + str(y_labels[2]) + "," + str(pred_weighted_average[0]) + "," + str(pred_weighted_average[1]) + "," + str(pred_weighted_average[2]) + "\n")) else: csv_out_writer.write("".join(str(user_id) + "," + str("test") + "," + str(mean_absolute_error(y_labels, pred_weighted_average)) + "," + str(mean_squared_error(y_labels, pred_weighted_average)) + "," + str(np.sqrt(mean_squared_error(y_labels, pred_weighted_average))) + "," + "weighted_average" + "," + str(y_labels[0]) + "," + str(y_labels[1]) + "," + str(y_labels[2]) + "," + str(pred_weighted_average[0]) + "," + str(pred_weighted_average[1]) + "," + str(pred_weighted_average[2]) + "\n")) # + str(y_labels) + str(pred_weighted_average) print("---------------------------------------------------------------") out_writer.write("---------------------------------------------------------------\n") print("Computing MAE, MSE, RMSE for {} {} based predictions for the user -- {}" .format(str("weighted_distance" + str(wt_dist_flag)), str("linear_regression"), str(user_id))) out_writer.write("Computing MAE, MSE, RMSE for {} {} based predictions for the user -- {} \n" .format(str("weighted_distance" + str(wt_dist_flag)), str("linear_regression"), str(user_id))) print("MAE -- ", mean_absolute_error(y_labels, pred_lr)) out_writer.write("MAE -- " + str(mean_absolute_error(y_labels, pred_lr)) + "\n") print("MSE -- ", mean_squared_error(y_labels, pred_lr)) out_writer.write("MSE -- " + str(mean_squared_error(y_labels, pred_lr)) + "\n") print("RMSE -- ", np.sqrt(mean_squared_error(y_labels, pred_lr))) out_writer.write("RMSE -- " + str(np.sqrt(mean_squared_error(y_labels, pred_lr))) + "\n") print("---------------------------------------------------------------") out_writer.write("---------------------------------------------------------------\n") # Write to csv file if not fold_count == "final": csv_out_writer.write("".join(str(user_id) + "," + str(count) + "," + str(mean_absolute_error(y_labels, pred_lr)) + "," + str(mean_squared_error(y_labels, pred_lr)) + "," + str(np.sqrt(mean_squared_error(y_labels, pred_lr))) + "," + str("lr") + "," + str(y_labels[0]) + "," + str(y_labels[1]) + "," + str(y_labels[2]) + "," + str(pred_lr[0]) + "," + str(pred_lr[1]) + "," + str( pred_lr[2]) + "\n")) else: csv_out_writer.write("".join(str(user_id) + "," + str("test") + "," + str(mean_absolute_error(y_labels, pred_lr)) + "," + str(mean_squared_error(y_labels, pred_lr)) + "," + str(np.sqrt(mean_squared_error(y_labels, pred_lr))) + "," + str("lr") + "," + str(y_labels[0]) + "," + str(y_labels[1]) + "," + str(y_labels[2]) + "," + str(pred_lr[0]) + "," + str(pred_lr[1]) + "," + str( pred_lr[2]) + "\n")) import properties from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold # Create prediction reference points from sklearn.metrics import * # Here, to change to different evaluations from time_series_grp import TimeSeriesGroupProcessing from HEOM import HEOM from scipy.spatial.distance import pdist, squareform # Change method and execute to get the predictions appropriately, these are configurations eval_method = "mean" wt_distance = False # Random Neighbors rand_neighbors = False # Default day readings for all test users must be at mean and prediction are between min - mean - max tsg_data = TimeSeriesGroupProcessing(method=eval_method) # For all combinations evaluation it must be set to True quest_cmb_all = True # Same random state needs to be maintained to get consistent test data over all combinations and repeatable results random_state = 1220 # It is the setting to get the ahead prediction for tinnitus distress, 3 here means for 3 days # min it is a day and max of about 60days between points which is not an usual scenario ndays = 3 # Load user build models over the time series observations # user_best_models = utility.load_ts_model("best_params_usr_models") # user_best_estimators = utility.load_ts_model("cross_val_estimators") # KFOLDS - Evaluation over K=5 folds are done. # Build the default model with all the combination. if not quest_cmb_all: for key, val in properties.quest_comb.items(): # Build model for each category print("Building model for the question combination -- " + str(key)) out_writer = open("".join("output/output_simulate_" + str(key) + "_" + str(eval_method) + "_heom_norm.txt"), "w+") csv_out_writer = open("".join("output/output__simulate_" + str(key) + "_" + str(eval_method) + "_heom_norm.csv"), "w+") # key = "bg_tinnitus_history" # val = properties.quest_comb[key] cat_idx, num_idx, combined_df = smf.initial_processing(key, val, append_synthethic=True) # Build and get the knn model for prediction over test instances. # Save the data objs encoded_data = save_data_objs(combined_df, key) csv_out_writer.write("".join("user_id,fold,mae,mse,rmse,algorithm," "ref_p1,ref_p2,ref_p3,pred_p1,pred_p2,pred_p3\n")) # Create a specific test set as per requirements to contain digital twin, outlier and normal instances random_user_ids = encoded_data["user_id"].sample(n=3, random_state=42).to_list() """ 10 test users in following format: 1. Outliers -- [8,20,27,149] 2. DT - [44428, 444154, 444133] 3. Random Users - random_user_ids with random state same so always same test set is retrieved. """ test_simulation_ids = [8, 20, 27, 149, 44428, 444154, 444133] + random_user_ids test = encoded_data[encoded_data["user_id"].isin(test_simulation_ids)] X = encoded_data[~encoded_data["user_id"].isin(test_simulation_ids)] def filter_train_ids(x): # print(x) if x["user_id"] in train_user_ids: return x def filter_test_ids(x): # print(x) if x["user_id"] in test_user_ids: return x train_user_ids = X["user_id"].to_list() X_train_data_ui = combined_df.apply(filter_train_ids, axis=1, result_type="broadcast").dropna() X_train_data_ui["user_id"] = X_train_data_ui["user_id"].apply(int) # Save the non encoded train data for visualization purposes utility.save_model("".join("/simulate/" + key + "/" + key + "_train_stat_q_data"), X_train_data_ui) # filter and get the data to show to the UI for the test data. test_user_ids = test["user_id"].to_list() X_test_data_ui = combined_df.apply(filter_test_ids, axis=1, result_type="broadcast").dropna() X_test_data_ui["user_id"] = X_test_data_ui["user_id"].apply(int) # Save the data_ui object as json test_data = {} test_data["users"] = X_test_data_ui.to_dict("r") utility.save_data("".join("simulate/test_data_ui_" + key), test_data) heom = HEOM(X.to_numpy(), cat_idx, num_idx) sim_matrix = pdist(X.to_numpy()[:, 1:], heom.heom_distance) mean_heom_distance = sim_matrix.mean() knn = NearestNeighbors(n_neighbors=5, metric=heom.heom_distance, radius=mean_heom_distance) knn.fit(X.iloc[:, 1:]) dist, test_idx = knn.kneighbors(test.to_numpy()[:, 1:], n_neighbors=5) do_test(test, out_writer, csv_out_writer, ndays, test_idx, X, fold_count="final", method=eval_method, dist_nn=None, wt_dist_flag=wt_distance) utility.save_model("".join("simulate/" + key + "/" + "knn_static"), knn) utility.save_model("".join("simulate/" + key + "/" + "train_sim_data.pckl"), X) out_writer.close() csv_out_writer.close() else: cat_idx, num_idx, combined_df = initial_processing() # Build model for each category print("Building model for the question combination -- " + str("overall")) # Take this combined_df and split into train and test. # Split some data out of test as part unseen from the UI # data_ui_val, data = combined_df.iloc[:5, :], combined_df.iloc[5:, :] # Save the data objs encoded_data = save_data_objs(combined_df, "overall") random_user_ids = encoded_data["user_id"].sample(n=3, random_state=42).to_list() test_simulation_ids = [8, 20, 27, 149, 44428, 444154, 444133] + random_user_ids test = encoded_data[encoded_data["user_id"].isin(test_simulation_ids)] X = encoded_data[~encoded_data["user_id"].isin(test_simulation_ids)] def filter_train_ids(x): # print(x) if x["user_id"] in train_user_ids: return x def filter_test_ids(x): # print(x) if x["user_id"] in test_user_ids: return x train_user_ids = X["user_id"].to_list() X_train_data_ui = combined_df.apply(filter_train_ids, axis=1, result_type="broadcast").dropna() X_train_data_ui["user_id"] = X_train_data_ui["user_id"].apply(int) utility.save_model("".join("/simulate/" + "overall" + "/" + "overall" + "_train_stat_q_data"), X_train_data_ui) # filter and get the data to show to the UI for the test data. test_user_ids = test["user_id"].to_list() X_test_data_ui = combined_df.apply(filter_test_ids, axis=1, result_type="broadcast").dropna() X_test_data_ui["user_id"] = X_test_data_ui["user_id"].apply(int) # Save the data_ui object as json test_data = {} test_data["users"] = X_test_data_ui.to_dict("r") utility.save_data("simulate/test_data_ui_x_test", test_data) count = 0 out_writer = open("output/simulate_overall_output_folds_" + str(eval_method) + ".txt", "w+") csv_out_writer = open("output/simulate_overall_output_folds_" + str(eval_method) + ".csv", "w+") # First get the time series for a given test patient and the reference point and iterate to evaluate csv_out_writer.write("user_id,fold,mae,mse,rmse,algorithm," "ref_p1,ref_p2,ref_p3,pred_p1,pred_p2,pred_p3\n") # Split the data into train and test and evaluate as a final model from sklearn.model_selection import train_test_split import utility from HEOM import HEOM # Can be done at prediction too. from sklearn.metrics.pairwise import cosine_distances from sklearn.linear_model import LinearRegression from scipy.spatial.distance import pdist, squareform heom = HEOM(X.to_numpy()[:, 1:], cat_idx, num_idx) sim_matrix = pdist(X.to_numpy()[:, 1:], heom.heom_distance) mean_heom_distance = sim_matrix.mean() knn = NearestNeighbors(n_neighbors=5, metric=heom.heom_distance, radius=mean_heom_distance) knn.fit(X.to_numpy()[:, 1:]) dist, idx_test = knn.kneighbors(test.to_numpy()[:, 1:], n_neighbors=5) do_test(test, out_writer, csv_out_writer, ndays, idx_test, X, fold_count="final", method=eval_method, dist_nn=None, wt_dist_flag=wt_distance) out_writer.close() csv_out_writer.close() # Save the simulated neighborhood results utility.save_model("".join("/simulate/overall/" + "knn_static"), knn) utility.save_model("".join("/simulate/overall" + "/" + "train_sim_data.pckl"), X)
StarcoderdataPython
6641437
############################################################################## # Copyright 2016-2019 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import sys from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast import networkx as nx import numpy as np from pyquil.quilatom import Parameter, unpack_qubit from pyquil.quilbase import Gate if sys.version_info < (3, 7): from pyquil.external.dataclasses import dataclass else: from dataclasses import dataclass DEFAULT_QUBIT_TYPE = "Xhalves" DEFAULT_EDGE_TYPE = "CZ" THETA = Parameter("theta") "Used as the symbolic parameter in RZ, CPHASE gates." @dataclass class MeasureInfo: operator: Optional[str] = None qubit: Optional[Union[int, str]] = None target: Optional[Union[int, str]] = None duration: Optional[float] = None fidelity: Optional[float] = None @dataclass class GateInfo: operator: Optional[str] = None parameters: Optional[Sequence[Union[str, float]]] = None arguments: Optional[Sequence[Union[str, float]]] = None duration: Optional[float] = None fidelity: Optional[float] = None @dataclass class Qubit: id: int type: Optional[str] = None dead: Optional[bool] = None gates: Optional[Sequence[Union[GateInfo, MeasureInfo]]] = None @dataclass class Edge: targets: Tuple[int, ...] type: Optional[Union[List[str], str]] = None dead: Optional[bool] = None gates: Optional[Sequence[GateInfo]] = None @dataclass class ISA: """ Basic Instruction Set Architecture specification. :ivar qubits: The qubits associated with the ISA. :ivar edges: The multi-qubit gates. """ qubits: Sequence[Qubit] edges: Sequence[Edge] def to_dict(self) -> Dict[str, Any]: """ Create a JSON-serializable representation of the ISA. The dictionary representation is of the form:: { "1Q": { "0": { "type": "Xhalves" }, "1": { "type": "Xhalves", "dead": True }, ... }, "2Q": { "1-4": { "type": "CZ" }, "1-5": { "type": "CZ" }, ... }, ... } :return: A dictionary representation of self. """ def _maybe_configure(o: Union[Qubit, Edge], t: Union[str, List[str]]) -> Dict[str, Any]: """ Exclude default values from generated dictionary. :param o: The object to serialize :param t: The default value for ``o.type``. :return: d """ d: Dict[str, Any] = {} if o.gates is None or len(o.gates) == 0: inferred_type = o.type if (o.type is not None and o.type != t) else t inferred_gates = convert_gate_type_to_gate_information(inferred_type) else: inferred_gates = cast(List[Union[GateInfo, MeasureInfo]], o.gates) d["gates"] = [ { "operator": i.operator, "parameters": i.parameters, "arguments": i.arguments, "fidelity": i.fidelity, "duration": i.duration, } if isinstance(i, GateInfo) else { "operator": "MEASURE", "qubit": i.qubit, "target": i.target, "duration": i.duration, "fidelity": i.fidelity, } for i in inferred_gates ] if o.dead: d["dead"] = o.dead return d return { "1Q": {"{}".format(q.id): _maybe_configure(q, DEFAULT_QUBIT_TYPE) for q in self.qubits}, "2Q": { "{}-{}".format(*edge.targets): _maybe_configure(edge, DEFAULT_EDGE_TYPE) for edge in self.edges }, } @staticmethod def from_dict(d: Dict[str, Any]) -> "ISA": """ Re-create the ISA from a dictionary representation. :param d: The dictionary representation. :return: The restored ISA. """ return ISA( qubits=sorted( [ Qubit( id=int(qid), type=q.get("type", DEFAULT_QUBIT_TYPE), dead=q.get("dead", False), ) for qid, q in d["1Q"].items() ], key=lambda qubit: qubit.id, ), edges=sorted( [ Edge( targets=tuple(int(q) for q in eid.split("-")), type=e.get("type", DEFAULT_EDGE_TYPE), dead=e.get("dead", False), ) for eid, e in d["2Q"].items() ], key=lambda edge: edge.targets, ), ) def convert_gate_type_to_gate_information( gate_type: Union[str, List[str]] ) -> List[Union[GateInfo, MeasureInfo]]: if isinstance(gate_type, str): gate_type = [gate_type] gate_information: List[Union[GateInfo, MeasureInfo]] = [] for type_keyword in gate_type: if type_keyword == "Xhalves": gate_information.extend( [ GateInfo("I", [], ["_"]), GateInfo("RX", [np.pi / 2], ["_"]), GateInfo("RX", [-np.pi / 2], ["_"]), GateInfo("RX", [np.pi], ["_"]), GateInfo("RX", [-np.pi], ["_"]), GateInfo("RZ", ["theta"], ["_"]), MeasureInfo(operator="MEASURE", qubit="_", target="_"), MeasureInfo(operator="MEASURE", qubit="_", target=None), ] ) elif type_keyword == "WILDCARD": gate_information.extend([GateInfo("_", "_", ["_"]), GateInfo("_", "_", ["_", "_"])]) elif type_keyword == "CZ": gate_information.extend([GateInfo("CZ", [], ["_", "_"])]) elif type_keyword == "ISWAP": gate_information.extend([GateInfo("ISWAP", [], ["_", "_"])]) elif type_keyword == "CPHASE": gate_information.extend([GateInfo("CPHASE", ["theta"], ["_", "_"])]) elif type_keyword == "XY": gate_information.extend([GateInfo("XY", ["theta"], ["_", "_"])]) else: raise ValueError("Unknown edge type: {}".format(type_keyword)) return gate_information def gates_in_isa(isa: ISA) -> List[Gate]: """ Generate the full gateset associated with an ISA. :param isa: The instruction set architecture for a QPU. :return: A sequence of Gate objects encapsulating all gates compatible with the ISA. """ gates = [] for q in isa.qubits: if q.dead: # TODO: dead qubits may in the future lead to some implicit re-indexing continue if q.type == "Xhalves": gates.extend( [ Gate("I", [], [unpack_qubit(q.id)]), Gate("RX", [np.pi / 2], [unpack_qubit(q.id)]), Gate("RX", [-np.pi / 2], [unpack_qubit(q.id)]), Gate("RX", [np.pi], [unpack_qubit(q.id)]), Gate("RX", [-np.pi], [unpack_qubit(q.id)]), Gate("RZ", [THETA], [unpack_qubit(q.id)]), ] ) elif q.type == "WILDCARD": gates.extend([Gate("_", "_", [unpack_qubit(q.id)])]) else: # pragma no coverage raise ValueError("Unknown qubit type: {}".format(q.type)) for e in isa.edges: if e.dead: continue targets = [unpack_qubit(t) for t in e.targets] assert e.type is not None edge_type = e.type if isinstance(e.type, list) else [e.type] if "CZ" in edge_type: gates.append(Gate("CZ", [], targets)) gates.append(Gate("CZ", [], targets[::-1])) continue if "ISWAP" in edge_type: gates.append(Gate("ISWAP", [], targets)) gates.append(Gate("ISWAP", [], targets[::-1])) continue if "CPHASE" in edge_type: gates.append(Gate("CPHASE", [THETA], targets)) gates.append(Gate("CPHASE", [THETA], targets[::-1])) continue if "XY" in edge_type: gates.append(Gate("XY", [THETA], targets)) gates.append(Gate("XY", [THETA], targets[::-1])) continue assert e.type is not None if "WILDCARD" in e.type: gates.append(Gate("_", "_", targets)) gates.append(Gate("_", "_", targets[::-1])) continue raise ValueError("Unknown edge type: {}".format(e.type)) return gates def isa_from_graph( graph: nx.Graph, oneq_type: str = "Xhalves", twoq_type: Optional[Union[str, List[str]]] = None ) -> ISA: """ Generate an ISA object from a NetworkX graph. :param graph: The graph :param oneq_type: The type of 1-qubit gate. Currently 'Xhalves' :param twoq_type: The type of 2-qubit gate. One or more of 'CZ', 'CPHASE', 'ISWAP', 'XY'. The default, None, is a synonym for ["CZ", "XY"]. """ all_qubits = list(range(max(graph.nodes) + 1)) qubits = [Qubit(i, type=oneq_type, dead=i not in graph.nodes) for i in all_qubits] edges = [ Edge( tuple(sorted((a, b))), type=["CZ", "XY"] if twoq_type is None else twoq_type, dead=False ) for a, b in graph.edges ] return ISA(qubits, edges) def isa_to_graph(isa: ISA) -> nx.Graph: """ Construct a NetworkX qubit topology from an ISA object. This discards information about supported gates. :param isa: The ISA. """ return nx.from_edgelist(e.targets for e in isa.edges if not e.dead)
StarcoderdataPython
12828348
#!/usr/bin/env python3 import json import logging import os import traceback import git import requests import yaml root_logger = logging.getLogger() root_logger.setLevel(logging.DEBUG) root_logger.addHandler(logging.StreamHandler()) def post(path: str, data: dict, params=None): if params is None: params = {} headers = {'Content-Type': 'application/json'} params['token'] = TOKEN if DEBUG: logging.info("post: {} data: {}".format(path, data)) return None # Attempt to contact the pipeline API try: res = requests.post( 'http://pipeline-api:5000' + path, headers=headers, params=params, json=data, ) except: logging.error('UNABLE TO REPORT POST TO PIPELINE API') exit(0) # If the call to the api failed we're in trouble, # and need to abort. if res.status_code != 200: logging.error('UNABLE TO REPORT POST TO PIPELINE API') exit(0) return res def report_panic(message: str, traceback: str, ): """ Report and error to the API :param message: error message :param traceback: optional traceback :return: """ data = { 'token': TOKEN, 'commit': COMMIT, 'message': message, 'traceback': traceback, } print(traceback) logging.info('report_error {}'.format(json.dumps(data, indent=2))) post('/pipeline/report/panic/{}'.format(SUBMISSION_ID), data) try: import assignment except ImportError: report_panic('Unable to import assignment', traceback.format_exc()) exit(0) from utils import registered_tests, build_function from utils import fix_permissions, Panic, DEBUG git_creds = os.environ.get('GIT_CRED', default=None) if git_creds is not None: del os.environ['GIT_CRED'] with open(os.environ.get('HOME') + '/.git-credentials', 'w') as f: f.write(git_creds) f.close() with open(os.environ.get('HOME') + '/.gitconfig', 'w') as f: f.write('[credential]\n') f.write('\thelper = store\n') f.close() TOKEN = os.environ.get('TOKEN') COMMIT = os.environ.get('COMMIT') GIT_REPO = os.environ.get('GIT_REPO') SUBMISSION_ID = os.environ.get('SUBMISSION_ID') del os.environ['TOKEN'] def report_state(state: str, params=None): """ Report a state update for the current submission :param params: :param state: text representation of state :return: """ data = { 'token': TOKEN, 'commit': COMMIT, 'state': state, } logging.info('report_state {}'.format(json.dumps(data, indent=2))) post('/pipeline/report/state/{}'.format(SUBMISSION_ID), data, params=params) def report_build_results(stdout: str, passed: bool): """ Report the results of a given build. :param stdout: :param passed: :return: """ data = { 'token': TOKEN, 'commit': COMMIT, # 'stdout': base64.b16encode(stdout).decode(), 'stdout': stdout, 'passed': passed, } logging.info('report_build {}'.format(json.dumps(data, indent=2))) post('/pipeline/report/build/{}'.format(SUBMISSION_ID), data) def report_test_results(test_name: str, stdout: str, message: str, passed: bool): """ Report a single test result to the pipeline API. :param test_name: :param stdout: :param message: :param passed: :return: """ data = { 'token': TOKEN, 'commit': COMMIT, 'test_name': test_name, # 'stdout': base64.b16encode(stdout).decode(), 'stdout': stdout, 'message': message, 'passed': passed, } logging.info('report_test_results {}'.format(json.dumps(data, indent=2))) post('/pipeline/report/test/{}'.format(SUBMISSION_ID), data) def get_assignment_data() -> dict: """ Load the assignment metadata out from the assignment yaml file :return: """ # Figure out filename assignment_filename = None for assignment_filename_option in ['meta.yml', 'meta.yaml']: if os.path.isfile(assignment_filename_option): assignment_filename = assignment_filename_option break # Make sure we figured out the metadata filename if assignment_filename is None: report_panic('No meta.yml was found', '') exit(0) # Load yaml with open(assignment_filename, 'r') as f: try: assignment_data = yaml.safe_load(f.read()) except yaml.YAMLError: report_panic('Unable to read assignment yaml', traceback.format_exc()) logging.info(assignment_data) return assignment_data def clone(): """ Clone the assigment repo into the student folder. File permissions will need to be updated. :return: """ report_state('Cloning repo') # Clone try: repo = git.Repo.clone_from(GIT_REPO, './student') if COMMIT.lower() != 'null': repo.git.checkout(COMMIT) except git.exc.GitCommandError: report_panic('Git error', traceback.format_exc()) exit(0) fix_permissions() os.system('rm -rf ./student/.git') os.system('rm -rf /home/anubis/.git-credentials') os.system('rm -rf /home/anubis/.gitconfig') def run_build(assignment_data: dict): """ Build the student repo. :param assignment_data: assignment meta :return: """ # build report_state('Running Build...') result = build_function() report_build_results(result.stdout, result.passed) if not result.passed: exit(0) def run_tests(assignment_data: dict): """ Run the assignment test scripts. Update submission state as you go. :param assignment_data: :return: """ # Tests for test_name in registered_tests: report_state('Running test: {}'.format(test_name)) result = registered_tests[test_name]() report_test_results(test_name, result.stdout, result.message, result.passed) def main(): try: assignment_data = get_assignment_data() clone() os.chdir('./student') run_build(assignment_data) run_tests(assignment_data) report_state('Finished!', params={'processed': '1'}) except Panic as e: report_panic(repr(e), traceback.format_exc()) except Exception as e: report_panic(repr(e), traceback.format_exc()) if __name__ == '__main__': main()
StarcoderdataPython
3373397
<reponame>eherr/vis_utils #!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. from ...graphics.renderer import lines from ...graphics.renderer import primitive_shapes from ..scene_object import SceneObject from ...graphics.utils import get_translation_matrix class CoordinateSystemObject(SceneObject): def __init__(self, scale=1.0): SceneObject.__init__(self) #super(self, CoordinateSystemObject).__init__() self.visualization = lines.CoordinateSystemRenderer(scale) self.active = True def setPosition(self, position): self.transformation = get_translation_matrix(position) def draw(self, viewMatrix, projectionMatrix, lightSources): if self.active: self.visualization.draw(self.transformation, viewMatrix, projectionMatrix) class PlaneObject(SceneObject): def __init__(self,width = 1000, depth =1000,segments =10, r =0.5,g=0.5,b=0.5): SceneObject.__init__(self) self.visualization = lines.WireframePlaneRenderer(width, depth, segments, r, g, b) def draw(self,viewMatrix,projectionMatrix,lightSources): self.visualization.draw(self.transformation,viewMatrix,projectionMatrix) def intersectRay(self,start,rayDir): return self.visualization.intersectRay(start,rayDir) class TravelledPathObject(SceneObject): def __init__(self,r = 1.0,g = 1.0,b = 1.0,maxLength = 2000): SceneObject.__init__(self) self.line = lines.ExtendingLineRenderer(r, g, b, maxLength) def addPoint(self,point): self.line.addPoint(point) def clear(self): self.line.clear() def draw(self,viewMatrix,projectionMatrix,lightSources): self.line.draw(self.transformation,viewMatrix, projectionMatrix) class PointCloudObject(SceneObject): def __init__(self): SceneObject.__init__(self) self.sphere = primitive_shapes.SphereRenderer(20, 20, 1.0, material=CustomShaders.redMaterial) self.transformations = [] return def addPoint(self,point): print("got point", point) transformation = get_translation_matrix(point) self.transformations.append(transformation) def clear(self): self.transformations.clear() def draw(self,viewMatrix,projectionMatrix,lightSources): for transformation in self.transformations: self.sphere.draw(transformation,viewMatrix, projectionMatrix,lightSources) class TravelledPathWithCorrespondencesObject(SceneObject): def __init__(self,r = 1.0,g = 1.0,b = 1.0,maxLength = 2000): SceneObject.__init__(self) self.line = lines.ExtendingLineRenderer(r, g, b, maxLength) self.correspondences = lines.ExtendingLineRenderer(1.0, 0.0, 0.0, maxLength * 2) def addPoint(self,point): self.line.addPoint(point) def addCorrespondence(self,point,correspondence): self.correspondences.addPoint(point) self.correspondences.addPoint(correspondence) def clear(self): self.line.clear() self.correspondences.clear() def draw(self,viewMatrix,projectionMatrix,lightSources): self.line.draw(self.transformation,viewMatrix, projectionMatrix) self.correspondences.draw(self.transformation,viewMatrix, projectionMatrix) class TravelledPathWithMarkersObject(SceneObject): def __init__(self): SceneObject.__init__(self) self.line = lines.ExtendingLineRenderer(0.0, 1.0, 0.0) self.markers = lines.ExtendingMarkerListRenderer(1.0, 0.0, 0.0) def addMarker(self,point): self.markers.addPoint(point) def addPoint(self,point): self.line.addPoint(point) def clear(self): self.line.clear() self.markers.clear() def draw(self,viewMatrix,projectionMatrix,lightSources): self.line.draw(self.transformation,viewMatrix, projectionMatrix) self.markers.draw(self.transformation,viewMatrix, projectionMatrix) class ListOfLocalCoordinateSystemsObject(SceneObject): def __init__(self,scaleFactor = 0.5): SceneObject.__init__(self) self.scaleFactor = scaleFactor self.coordinateSystems =[] def addCoordinateSystem(self,transformation): cs = lines.CoordinateSystemRenderer(scale = self.scaleFactor) print("transformation matrix",transformation.shape) self.coordinateSystems.append((cs,transformation)) def clear(self): self.coordinateSystems = [] def draw(self, viewMatrix, projectionMatrix, lightSources): for cs,transformation in self.coordinateSystems: #print "draw cs" cs.draw(transformation,viewMatrix, projectionMatrix)
StarcoderdataPython
9608210
<gh_stars>1-10 #!/usr/bin/env python3 from datetime import datetime as dt2 from dateutil.relativedelta import * from dateutil.rrule import * import os, sys, re, traceback, calendar, datetime import json, unicodedata from bpaTools import Logger def isInteger(s:str) -> bool: try: n:int = int(s) return True except ValueError: return False def isFloat(s:str) -> bool: try: n:float = float(s) return True except ValueError: return False def cleanAccent(s:str) -> str: return unicodedata.normalize('NFKD', s).encode('ASCII', 'ignore') def str2bool(v:str) -> bool: return bool(v.lower() in ("true","t","vrai","v","yes","y","1","-1")) def theQuit(): sys.exit() return def sysExit(): sys.exit() return def sysExitError(sError:str) -> None: sys.stderr.write(sError) traceback.print_exc(file=sys.stdout) sys.exit(sError) return def ctrlPythonVersion() -> None: pyMajorVersion, pyMinorVersion = sys.version_info[:2] if not (pyMajorVersion==3 and pyMinorVersion>=5): sysExitError("Sorry, only Python 3.5 or and higher are supported at this time.\n") return #Use: bpaTools.initEvent(__file__) def initEvent(sFile:str, oLog:Logger=None, isSilent:bool=False) -> None: msg = "({0}) Initialisation".format(getFileName(sFile)) if oLog: oLog.debug(msg, level=9, outConsole=True) elif not isSilent: print(msg) return #Extract data, samples: # getContentOf("{"1":"Value}", "{", "}", bRetSep=True) -> {"1":"Value} # getContentOf("*AActiv [HX] ...", "[", "]") -> "HX" # getContentOf("UTC(01/01->31/12)", "(", ")") -> "01/01->31/12" # getContentOf("tyty et toto sur ", "(", ")") -> None # getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")") -> 120.700 # getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=1) -> 120.700 # getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=2) -> GLIDER # getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=3) -> None def getContentOf(sSrc:str, sSepLeft:str, sSepRight:str, iNoInst:int=1, bRetSep:bool=False) -> str: lIdxLeft:int = -1 lIdxRight:int = -1 for idx in range(0, iNoInst): lIdxLeft = sSrc.find(sSepLeft, lIdxLeft+1) lIdxRight = sSrc.find(sSepRight, lIdxLeft+1) if lIdxLeft<0 or lIdxRight<0: break if lIdxLeft>=0 and lIdxRight>=0: if bRetSep: return sSrc[lIdxLeft:lIdxRight+len(sSepRight)] else: return sSrc[lIdxLeft+len(sSepLeft):lIdxRight] else: return None #Extract data, samples: # getLeftOf("UTC(01/01->31/12)", "(") -> "UTC" # getLeftOf("tyty et toto sur ", "(",) -> None def getLeftOf(sSrc:str, sFind:str) -> str: lIdxFind = sSrc.find(sFind) if lIdxFind>=0: return sSrc[:lIdxFind] else: return None #Extract data, samples: # getRightOf("*AActiv [HX] tyty et toto", "]") -> " tyty et toto" # getRightOf("tyty et toto sur ", ")",) -> None def getRightOf(sSrc:str, sFind:str) -> str: lIdxFind = sSrc.find(sFind) if lIdxFind>=0: return sSrc[lIdxFind+1] else: return None def getFileName(sFile:str) -> str: return os.path.basename(sFile).split(".")[0] def getFileExt(sFile:str) -> str: return os.path.splitext(sFile)[1] def getFilePath(sFile:str) -> str: #return os.path.dirname(sFile) + "/" #Non-Fonctionnel sous Linux return os.path.dirname(os.path.abspath(sFile)) + "/" #Fonctionnel sous Linux def getFileModificationDate(sFile:str) -> datetime: try: mtime:float = os.path.getmtime(sFile) except OSError: mtime:float = 0 return dt2.fromtimestamp(mtime) def getFileCreationDate(sFile:str) -> datetime: try: ctime:float = os.path.getctime(sFile) except OSError: ctime:float = 0 return dt2.fromtimestamp(ctime) #Samples # str(bpaTools.getNow()) -> "2020-11-16 12:50:03.726297" # bpaTools.getNow().strftime("%Y%m%d-%H%M%S") -> Specific format "20201208-164204" def getNow() -> datetime: return datetime.datetime.now() #Sample bpaTools.getNowISO() -> ISO Format "2020-11-16T12:45:29.405387" def getNowISO() -> str: return datetime.datetime.now().isoformat() #Samples # bpaTools.getDateNow() -> "20201116" # bpaTools.getDateNow(frmt="ymd") -> "20201116" # bpaTools.getDateNow(frmt="dmy") -> "16112020" # bpaTools.getDateNow(frmt="dmy") -> "16112020" # bpaTools.getDateNow(sep="/", frmt="dmy") -> "16/11/2020" # bpaTools.getDateNow(frmt="%Y%m%d-%H%M%S") -> Specific format "20201208-164204" def getDateNow(sep:str="", frmt="ymd") -> str: return getDate(datetime.datetime.now(), sep=sep, frmt=frmt) #Samples # bpaTools.getDate(datetime.datetime.now()) -> "20201116" # bpaTools.getDate(datetime.datetime.now(), frmt="ymd") -> "20201116" # bpaTools.getDate(datetime.datetime.now(), frmt="dmy") -> "16112020" # bpaTools.getDate(datetime.datetime.now(), frmt="dmy") -> "16112020" # bpaTools.getDate(datetime.datetime.now(), sep="/", frmt="dmy") -> "16/11/2020" # bpaTools.getDate(datetime.datetime.now(), "%Y%m%d-%H%M%S") -> Specific format "20201208-164204" def getDate(date:datetime, sep:str="", frmt="ymd") -> str: if frmt=="ymd": sFrmt = "%Y" + sep + "%m" + sep + "%d" elif frmt=="dmy": sFrmt = "%d" + sep + "%m" + sep + "%Y" else: sFrmt = frmt #Specific format return date.strftime(sFrmt) #Samples # theDate = datetime.datetime.now() #or datetime.date.today() or datetime(2021,2,16) # print("Now ", addDatetime(theDate)) # print("minutes= -1", addDatetime(theDate, minutes=-1)) # print("minutes=+10", addDatetime(theDate, minutes=+10)) # print(" hours= -1", addDatetime(theDate, hours=-1)) # print(" hours= +2", addDatetime(theDate, hours=+2)) # print(" days= -1", addDatetime(theDate, days=-1)) # print(" days= +2", addDatetime(theDate, days=+2)) # print(" days=+31", addDatetime(theDate, days=+31)) # print(" weeks= -1", addDatetime(theDate, weeks=-1)) # print(" weeks= +2", addDatetime(theDate, weeks=+2)) # print(" months= -1", addDatetime(theDate, months=-1)) # print(" months= +2", addDatetime(theDate, months=+2)) # print(" months=+12", addDatetime(theDate, months=+12)) # print(" months=+24", addDatetime(theDate, months=+24)) # print(" years= -1" , addDatetime(theDate, years=-1)) # print(" years= +2" , addDatetime(theDate, years=+2)) # print("last day of month " , addDatetime(theDate, day=31)) # print("last day of last month " , addDatetime(addDatetime(theDate, months=-1), day=31)) # print("last day of next month " , addDatetime(addDatetime(theDate, months=+1), day=31)) # print("previous day of next month" , addDatetime(addDatetime(theDate, months=+1), days=-1)) # #Use datetime.strftime("%Y/%d/%m") -> datetime.datetime(2021, 1, 28).strftime("%Y/%m/%d") def addDatetime(srcdate:datetime, minutes:int=0, hours:int=0, day:int=0, days:int=0, weeks:int=0, months:int=0, years:int=0) -> datetime: ret:datetime = srcdate if minutes: ret += datetime.timedelta(minutes=minutes) if hours: ret += datetime.timedelta(hours=hours) if day: ret += relativedelta(day=day) if days: ret += datetime.timedelta(days=days) if weeks: ret += datetime.timedelta(weeks=weeks) if months: ret += relativedelta(months=months) if years: ret += relativedelta(years=years) return ret def getVersionFile(versionPath:str="", versionFile:str="_version.py") -> str: fileContent = open(versionPath + versionFile, "rt").read() token = r"^__version__ = ['\"](.*)['\"]" #old - r"^__version__ = ['\"]([^'\"]*)['\"]" oFound = re.search(token, fileContent, re.M) if oFound: sVersion = oFound.group(1) else: raise RuntimeError("Unable to find version string in %s." % (versionFile,)) return sVersion def getParamTxtFile(sFile:str, paramVar:str, valueType:str="str") -> str: fileContent = open(sFile, "rt").read() token = r"^" + paramVar if valueType=="str": token += " = ['\"](.*)['\"]" #get __version__ = "2.1.3" elif valueType=="lst": token += " = ['](.*)[']" #get __webPublicationDates__ = '["02/01/2014","28/01/2014", ... , "14/06/2014"]' oFound = re.search(token, fileContent, re.M) if oFound: sParam = oFound.group(1) else: raise RuntimeError("Unable to find param:{0} in file:{1}".format(paramVar, sFile)) return sParam def getParamJsonFile(sFile:str, paramVar:str): fileContent:dict = readJsonFile(sFile) if paramVar in fileContent: oRet = fileContent[paramVar] else: raise RuntimeError("Unable to find param:{0} in file:{1}".format(paramVar, sFile)) return oRet def readJsonFile(sFile:str) -> dict: if os.path.exists(sFile): jsonFile = open(sFile, "rt", encoding="utf-8") jdata = json.load(jsonFile) jsonFile.close() else: jdata = {} return jdata def writeJsonFile(sFile:str, jdata:dict) -> None: jsonFile = open(sFile, "w", encoding="utf-8") json.dump(jdata, jsonFile, ensure_ascii=False) jsonFile.close() return def writeTextFile(sFile:str, stext:str, sencoding:str="cp1252"): textFile = open(sFile, "w", encoding=sencoding, errors="replace") textFile.write(stext) textFile.close() return ### Default file encoding def defaultEncoding() -> str: return encodingUTF8() def encodingUTF8() -> str: return 'utf-8' ### Create folder if not exists def createFolder(path:str) -> None: try: if not os.path.exists(path): os.mkdir(path) except OSError as e: print("Erreur en création du dossier {0}. ".format(e)) return ### Remove file if exixts def deleteFile(file:str) -> None: try: if os.path.exists(file): os.remove(file) except OSError as e: print("Erreur en supression du fichier. {0}".format(e)) return ### Collect Command-Line Options in a dictionary # Samples: # python aixmParser.py -h # argv = ['aixmParser.py', '-h'] # opts = {'-h': '-h'} # python aixmParser.py -json srcfile # argv = ['aixmParser.py', 'srcfile', '-json'] # opts = {'-json': '-json'} # python aixmParser.py param0 -idx1 param1 -idx2 param2 # argv = ['aixmParser.py', 'srcfile', '-json', '-Openair' '-CleanLog'] # opts = {'-json': '-json', '-Openair': '-Openair', '-CleanLog': '-CleanLog'} def getCommandLineOptions(argv) -> dict: #print(argv) opts = dict() while argv: if argv[0][0]=='-': #Found a "-name value" pair aSplit = argv[0].split("=") #find combined attribute if len(aSplit)==2: opts[aSplit[0]] = aSplit[1] else: opts[argv[0]] = argv[0] #Add key and value to the dictionary argv = argv[1:] #Reduce the argument list #print(opts) return opts if __name__ == '__main__': #sFile = __file__ #dCre = getFileCreationDate(sFile) #dMod = getFileModificationDate(sFile) #print(sFile, "\n", dCre, "\n", dMod, "\n", getDate(dMod)) """ print(addMonths(datetime.date.today(), -1)) print(addMonths(datetime.date.today(), +0)) print(addMonths(datetime.date.today(), +1)) print(addMonths(datetime.date.today(), +2)) print(addMonths(datetime.date.today(), +3)) print(addMonths(datetime.date.today(), 12)) print(addMonths(datetime.date.today(), 25)) print(datetime.date.today() + datetime.timedelta(days=-1)) print(datetime.date.today() + datetime.timedelta(days=0)) print(datetime.date.today() + datetime.timedelta(days=1)) print(datetime.date.today() + datetime.timedelta(days=10)) print(datetime.date.today() + datetime.timedelta(days=20)) print(datetime.date.today() + datetime.timedelta(days=31)) """ theDate = datetime.datetime.now() #or datetime.date.today() or datetime(2021,2,16) print("Now ", addDatetime(theDate)) print("minutes= -1", addDatetime(theDate, minutes=-1)) print("minutes=+10", addDatetime(theDate, minutes=+10)) print(" hours= -1", addDatetime(theDate, hours=-1)) print(" hours= +2", addDatetime(theDate, hours=+2)) print(" days= -1", addDatetime(theDate, days=-1)) print(" days= +2", addDatetime(theDate, days=+2)) print(" days=+31", addDatetime(theDate, days=+31)) print(" weeks= -1", addDatetime(theDate, weeks=-1)) print(" weeks= +2", addDatetime(theDate, weeks=+2)) print(" months= -1", addDatetime(theDate, months=-1)) print(" months= +2", addDatetime(theDate, months=+2)) print(" months=+12", addDatetime(theDate, months=+12)) print(" months=+24", addDatetime(theDate, months=+24)) print(" years= -1" , addDatetime(theDate, years=-1)) print(" years= +2" , addDatetime(theDate, years=+2)) print("last day of month " , addDatetime(theDate, day=31)) print("last day of last month " , addDatetime(addDatetime(theDate, months=-1), day=31)) print("last day of next month " , addDatetime(addDatetime(theDate, months=+1), day=31)) print("previous day of next month" , addDatetime(addDatetime(theDate, months=+1), days=-1)) print() #Calculate the last day of last month theDate = theDate + relativedelta(months=-1) theDate = theDate + relativedelta(day=31) #Generate a list of the last day for 9 months from the calculated date x = list(rrule(freq=MONTHLY, count=9, dtstart=theDate, bymonthday=(-1,))) print("Last day") for ld in x: print(ld) #Generate a list of the 2nd Tuesday in each of the next 9 months from the calculated date print("\n2nd Tuesday") x = list(rrule(freq=MONTHLY, count=9, dtstart=theDate, byweekday=TU(2))) for tuesday in x: print(tuesday) """ print(getContentOf('{"1":"Value"}', "{", "}", bRetSep=True)) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")")) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", " (", ")")) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=1)) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=2)) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=3)) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=5)) print(getContentOf("FFVP-Prot RMZ Selestat App(120.700) (GLIDER)", "(", ")", iNoInst=10)) """
StarcoderdataPython
4863446
import os import pickle import sys from typing import List import numpy as np import pandas as pd os.environ["OPENBLAS_NUM_THREADS"] = "1" sys.path.append("../../") from advertising.data_structure.Campaign import Campaign from advertising.optimizers.CampaignOptimizer import CampaignOptimizer from environments.Settings.EnvironmentManager import EnvironmentManager from environments.Settings.Scenario import Scenario from utils.folder_management import handle_folder_creation from utils.stats.StochasticFunction import IStochasticFunction FOLDER_RESULT = "../../report/csv/advertising_2/" CSV_CUM_REGRET = True SCENARIO_NAME = "linear_scenario" N_ARMS_ADV = 11 BUDGET = 1000 PRICE_PLOT_N_POINTS = 100 ADS_PLOT_N_POINTS = 100 MIN_PRICE = 15 MAX_PRICE = 25 FIXED_COST = 12 REWARD_FILE_LIST = ["../../report/project_point_2/Jun30_09-05-01/reward_GPBandit.pkl", "../../report/project_point_2/Jun30_09-19-33/reward_GaussianBandit.pkl"] BANDIT_NAME = ["GPBandit", "GaussianBandit"] n_bandit = len(BANDIT_NAME) _, folder_path_with_date = handle_folder_creation(result_path=FOLDER_RESULT, retrieve_text_file=False) assert len(REWARD_FILE_LIST) == len(BANDIT_NAME), "Number of bandits and file list does not match" # Reading file list total_reward_list = [] for curr_day, _ in enumerate(BANDIT_NAME): rewards = [] with (open(REWARD_FILE_LIST[curr_day], "rb")) as openfile: while True: try: rewards.append(pickle.load(openfile)) except EOFError: break rewards = rewards[0] total_reward_list.append(rewards) # Compute N-days n_days = len(total_reward_list[0][0][0]) # Compute mean and standard deviation for each day mean_reward = np.zeros(shape=(n_bandit + 1, n_days)) std_reward = np.zeros(shape=(n_bandit + 1, n_days)) mean_reward[-1] = np.arange(n_days) + 1 std_reward[-1] = np.arange(n_days) + 1 for bandit_idx in range(len(BANDIT_NAME)): n_exp = len(total_reward_list[bandit_idx]) for curr_day in range(n_days): daily_values = [] for exp in range(n_exp): daily_values.append(total_reward_list[bandit_idx][exp][0][curr_day]) mean_reward[bandit_idx][curr_day] = np.array(daily_values).mean() std_reward[bandit_idx][curr_day] = np.array(daily_values).std() mean_df = pd.DataFrame(mean_reward.transpose()) std_df = pd.DataFrame(std_reward.transpose()) for bandit_idx, name in enumerate(BANDIT_NAME): mean_df.rename(columns={bandit_idx: "mean_reward_{}".format(name)}, inplace=True) mean_df.rename(columns={n_bandit: "day"}, inplace=True) for bandit_idx, name in enumerate(BANDIT_NAME): std_df.rename(columns={bandit_idx: "mean_std_{}".format(name)}, inplace=True) std_df.rename(columns={n_bandit: "day"}, inplace=True) total_df = mean_df.merge(std_df, left_on="day", right_on="day") total_df.to_csv("{}instant_reward.csv".format(folder_path_with_date), index=False) # Something mean_scenario: Scenario = EnvironmentManager.load_scenario(SCENARIO_NAME, get_mean_function=True) click_function_list: List[IStochasticFunction] = mean_scenario.get_phases()[0].get_n_clicks_function() # Optimal point computation campaign = Campaign(n_sub_campaigns=mean_scenario.get_n_subcampaigns(), cum_budget=BUDGET, n_arms=N_ARMS_ADV) for i in range(campaign.get_n_sub_campaigns()): sub_campaign_values = [click_function_list[i].draw_sample(b) for b in np.linspace(0, BUDGET, N_ARMS_ADV)] campaign.set_sub_campaign_values(i, sub_campaign_values) max_clicks, best_budgets = CampaignOptimizer.find_best_budgets(campaign) # # Compute regret # if CSV_CUM_REGRET: # mean_regret_data = np.zeros(shape=(n_bandit + 1, n_days)) # std_regret_data = np.zeros(shape=(n_bandit + 1, n_days)) # mean_regret_data[-1] = np.arange(n_days) + 1 # std_regret_data[-1] = np.arange(n_days) + 1 # # for bandit_idx in range(len(BANDIT_NAME)): # n_exp = len(total_reward_list[bandit_idx]) # # for curr_day in range(n_days): # daily_values = [] # for exp in range(n_exp): # daily_values.append(max_clicks - total_reward_list[bandit_idx][exp][0][curr_day]) # # mean_regret_data[bandit_idx][curr_day] = np.array(daily_values).mean() # std_regret_data[bandit_idx][curr_day] = np.array(daily_values).std() # # mean_df = pd.DataFrame(np.cumsum(mean_regret_data).transpose()) # std_df = pd.DataFrame(std_regret_data.transpose()) # # for bandit_idx, name in enumerate(BANDIT_NAME): # mean_df.rename(columns={bandit_idx: "mean_regret_{}".format(name)}, inplace=True) # # mean_df.rename(columns={n_bandit: "day"}, inplace=True) # for bandit_idx, name in enumerate(BANDIT_NAME): # std_df.rename(columns={bandit_idx: "std_regret_{}".format(name)}, inplace=True) # std_df.rename(columns={n_bandit: "day"}, inplace=True) # # total_df = mean_df.merge(std_df, left_on="day", right_on="day") # total_df.to_csv("{}daily_discrete_regret.csv".format(folder_path_with_date), index=False) if CSV_CUM_REGRET: mean_data = np.zeros(shape=(n_bandit + 1, n_days)) std_data = np.zeros(shape=(n_bandit + 1, n_days)) mean_data[-1] = np.arange(n_days) std_data[-1] = np.arange(n_days) for bandit_idx in range(n_bandit): n_exp = len(total_reward_list[bandit_idx]) values = [[] for _ in range(n_days)] for exp in range(n_exp): curr_exp_value = 0 for day in range(n_days): curr_exp_value += total_reward_list[bandit_idx][exp][0][day] values[day].append((day + 1) * max_clicks - curr_exp_value) for day in range(n_days): mean_data[bandit_idx][day] = np.array(values[day]).mean() std_data[bandit_idx][day] = np.array(values[day]).std() mean_df = pd.DataFrame(mean_data.transpose()) std_df = pd.DataFrame(std_data.transpose()) for bandit_idx, name in enumerate(BANDIT_NAME): mean_df.rename(columns={bandit_idx: "mean_regret_{}".format(name)}, inplace=True) mean_df.rename(columns={n_bandit: "day"}, inplace=True) for bandit_idx, name in enumerate(BANDIT_NAME): std_df.rename(columns={bandit_idx: "std_regret_{}".format(name)}, inplace=True) std_df.rename(columns={n_bandit: "day"}, inplace=True) total_df = mean_df.merge(std_df, left_on="day", right_on="day") total_df.to_csv("{}discrete_cum_regret.csv".format(folder_path_with_date), index=False)
StarcoderdataPython
3311101
<filename>datamessage.py<gh_stars>1-10 import json import telegram import sys def notify_ending(message): token = 'XXXX' chat_id = 'XXXX' bot = telegram.Bot(token=token) bot.sendMessage(chat_id=chat_id, text=message) f = open('data_file.json') data = json.load(f) length = len(data) for i in range(0,5): name = data.get('data')[i].get('name') user_input= sys.argv[1] if user_input == name: price = data.get('data')[i].get('quote').get('USD').get('price') percantage24 = data.get('data')[i].get('quote').get('USD').get('percent_change_24h') percantage1 = data.get('data')[i].get('quote').get('USD').get('percent_change_1h') message = str(str(name) + ' price: ' + str(price) + '\nLast hour: ' + str(percantage1) +'%'+'\nLast 24 hour: ' + str(percantage24) +'%') print(message) notify_ending(message) quit()
StarcoderdataPython
3584350
""" utils.py Contains helper functions. """ import math import os import numpy as np import torch import torch.nn.functional as F EPSILON_DOUBLE = torch.tensor(2.220446049250313e-16, dtype=torch.float64) EPSILON_SINGLE = torch.tensor(1.19209290E-07, dtype=torch.float32) SQRT_TWO_DOUBLE = torch.tensor(math.sqrt(2), dtype=torch.float32) SQRT_TWO_SINGLE = SQRT_TWO_DOUBLE.to(torch.float32) def str2bool(v): v = v.lower() if v in ('yes', 'true', 't', '1'): return True elif v in ('no', 'false', 'f', '0'): return False raise ValueError('Boolean argument needs to be true or false. ' 'Instead, it is %s.' % v) def get_basename_without_ext(paths): """Return array of base names.""" return np.array([os.path.splitext(os.path.basename(p))[0] for p in paths]) def create_dir_if_necessary(path, is_dir=False): """Create directory to path if necessary.""" parent_dir = get_parent_dir(path) if not is_dir else path if not os.path.exists(parent_dir): os.makedirs(parent_dir) def get_parent_dir(path): """Return parent directory of path.""" return os.path.abspath(os.path.join(path, os.pardir)) def write_imdb(split_dir, gt_file, out_file): """ Write an imdb file containing paths and labels. Args: split_dir: String, path to image directory for dataset split. gt_file: String, path to ground truth file with relative image names. out_file: String, path of output file. """ f = open(gt_file) rel_paths = [] labels = [] for line in f.readlines(): s = line.split() rel_paths.append(s[0]) labels.append(int(s[1])) abs_paths = [] for p in rel_paths: abs_paths.append(os.path.join(split_dir, p)) out_f = open(out_file, 'w') for i in range(len(abs_paths)): out_f.write('%s %d\n' % (abs_paths[i], labels[i])) out_f.close() def read_imdb(imdb_file): """Load (paths, labels) from imdb file.""" f = open(imdb_file) paths = [] labels = [] for line in f.readlines(): s = line.split() paths.append(s[0]) labels.append(int(s[1])) return (np.array(paths), np.array(labels)) def save_dummy_bbox_file(out_file = 'data/dummy_bb_file.txt'): """Save a dummy bounding box file.""" _, labels = read_imdb('data/val.txt') num_examples = len(labels) synsets = np.loadtxt('data/synsets.txt', dtype='str', delimiter='\t') labels_as_synsets = np.array([synsets[l] for l in labels])[:, None] assert(labels_as_synsets.shape[0] == num_examples) bbs = np.random.randint(50, 100, size=(num_examples, 2)) deltas = np.random.randint(1, 100, size=(num_examples, 2)) labels_and_bbs = np.hstack((labels_as_synsets, bbs[:, 0, None], bbs[:, 1, None], bbs[:, 0, None] + deltas[:, 0, None], bbs[:, 1, None] + deltas[:, 0, None])) np.savetxt(out_file, labels_and_bbs, fmt='%s %s %s %s %s') def imsmooth(x, sigma, stride=1, padding=0, padding_mode='constant', padding_value=0): r"""Apply a Gaussian filter to a batch of 2D images Args: x (Tensor): :math:`N\times C\times H\times W` image tensor. sigma (float): standard deviation of the Gaussian kernel. stride (int, optional): subsampling factor (default: 1). padding (int, optional): extra padding (default: 0). padding_mode (str, optional): `constant`, `reflect` or `replicate` (default: `constant`). padding_value (float, optional): constant value for the `constant` padding mode (default: 0). Returns: Tensor: :math:`N\times C\times H\times W` tensor with the smoothed images. """ assert sigma >= 0 W = math.ceil(4 * sigma) filt = torch.arange(-W, W+1, dtype=torch.float32, device=x.device) / \ (SQRT_TWO_SINGLE * sigma + EPSILON_SINGLE) filt = torch.exp(- filt*filt) filt /= torch.sum(filt) num_channels = x.shape[1] W = W + padding if padding_mode == 'constant' and padding_value == 0: P = W y = x else: # pad: (before, after) pairs starting from last dimension backward y = F.pad(x, (W, W, W, W), mode=padding_mode, value=padding_value) P = 0 padding = 0 y = F.conv2d(y, filt.reshape((1, 1, -1, 1)).expand(num_channels, -1, -1, -1), padding=(P, padding), stride=(stride, 1), groups=num_channels) y = F.conv2d(y, filt.reshape((1, 1, 1, -1)).expand(num_channels, -1, -1, -1), padding=(padding, P), stride=(1, stride), groups=num_channels) return y def normalize(arr): """Normalize array values to be between 0 and 1 Args: arr (numpy array): non-normalized array Return: normalized array """ if (arr == 0).all() or (arr == 1).all(): return arr min_value = np.min(arr) max_value = np.max(arr) norm_arr = (arr - min_value) / (max_value - min_value) return norm_arr
StarcoderdataPython
1872914
<gh_stars>0 N, K, Q = [int(x) for x in input().split()] seikai = [0] * N for _ in range(Q): a = int(input()) seikai[a-1] += 1 for i in range(N): if K - (Q - seikai[i]) > 0: print("Yes") else: print("No")
StarcoderdataPython
4847300
def build_array_from_tree(root): "Convert a tree into an array (flatten a tree)" current_stack = [] output = [] next_queue = Queue() current_stack.append(root) while len(current_stack) > 0 and \ len(next_queue) > 0: output.append([]) while len(current_stack) > 0: item = current_stack.pop() output[-1].append(item) for child in item.children(): next_queue.enqueue(child) while len(next_queue) > 0: current_stack.append(next_queue.dequeue())
StarcoderdataPython
11284926
''' Name: time_tracker.py Author: <NAME> Date: 28/05/2020 Version: 0.0 DESCRIPTION --------------- Simple time tracker script to track your time ''' import argparse import datetime import json import os import time from PySide2.QtWidgets import * import psutil import win32gui import win32process class TimeTracker: ui: QWidget def __init__(self): self.windows = {} self.windows_table = [] self.i = 0 self.ui = None today_date = datetime.datetime.today().strftime("%a_%d_%b_%Y") self.document_path = os.path.join(os.environ["USERPROFILE"], "Documents", "time_track", today_date) if not os.path.isdir(self.document_path): print("[+] Creating folder {}".format(self.document_path)) os.makedirs(self.document_path) self.data_out_json = "" def __print_seconds(self, seconds): minutes, secs = divmod(seconds, 60) hour, minutes = divmod(minutes, 60) return "%d:%02d:%02d" % (hour, minutes, secs) def start_tracking_ui(self, task_name="Default"): # let's check if a json file already exists self.i = 0 self.data_out_json = os.path.join(self.document_path, task_name + '.json') if os.path.isfile(self.data_out_json): print("[+] Found an existing {}".format(self.data_out_json)) print("[+] Loading previous time track data") # If the file exists we want to load the dictionary data instead of starting from scratch try: with open(self.data_out_json) as f: self.windows = json.load(f) except ValueError: print("[-] Problem reading {}. Storing json into {}_temp".format(self.data_out_json, task_name)) self.data_out_json = os.path.join(self.document_path, task_name + '_temp.json') else: print("[+] Creating a new time track data instance") while self.i <= 1: time.sleep(1) w = win32gui w.GetWindowText(w.GetForegroundWindow()) pid = win32process.GetWindowThreadProcessId(w.GetForegroundWindow()) try: process_name = psutil.Process(pid[-1]).name() except psutil.NoSuchProcess as e: process_name = "Unknown process:{}".format(pid[-1]) try: time_spent = self.windows[process_name] + 1 except KeyError as e: # no value in the dictionary time_spent = 0 self.windows[process_name] = time_spent total_time_seconds = 0 print("[+] For task {}".format(task_name)) for key, value in self.windows.items(): print("[+]\t\t {} : {}".format(key, self.__print_seconds(value))) total_time_seconds += value self.ui.lcdNumber.display(self.__print_seconds(total_time_seconds)) print("[+] Total time spent :{}".format(self.__print_seconds(total_time_seconds))) # every minute let's dump data, just to avoid to lose info if total_time_seconds % 60 == 0: self.__dump_data() def start_tracking(self, task_name="Default"): # let's check if a json file already exists self.data_out_json = os.path.join(self.document_path, task_name + '.json') if os.path.isfile(self.data_out_json): print("[+] Found an existing {}".format(self.data_out_json)) print("[+] Loading previous time track data") # If the file exists we want to load the dictionary data instead of starting from scratch try: with open(self.data_out_json) as f: self.windows = json.load(f) except ValueError: print("[-] Problem reading {}. Storing json into {}_temp".format(self.data_out_json, task_name)) self.data_out_json = os.path.join(self.document_path, task_name + '_temp.json') else: print("[+] Creating a new time track data instance") while self.i <= 1: time.sleep(1) w = win32gui w.GetWindowText(w.GetForegroundWindow()) pid = win32process.GetWindowThreadProcessId(w.GetForegroundWindow()) try: process_name = psutil.Process(pid[-1]).name() except psutil.NoSuchProcess as e: process_name = "Unknown process:{}".format(pid[-1]) try: time_spent = self.windows[process_name] + 1 except KeyError as e: # no value in the dictionary time_spent = 0 self.windows[process_name] = time_spent total_time_seconds = 0 print("[+] For task {}".format(task_name)) for key, value in self.windows.items(): print("[+]\t\t {} : {}".format(key, self.__print_seconds(value))) total_time_seconds += value print("[+] Total time spent :{}".format(self.__print_seconds(total_time_seconds))) # every minute let's dump data, just to avoid to lose info if total_time_seconds % 60 == 0: self.__dump_data() def __dump_data(self): print("[+] Saving data in {}".format(self.data_out_json)) with open(self.data_out_json, "w") as out_file: json.dump(self.windows, out_file, indent=1) def pause_tracking_ui(self): pass def stop_tracking_ui(self): self.i = 2 self.__dump_data() def stop_tracking(self): print("[-] Received keyboard interrupt") print("[-] Time tracker interrupted") self.i = 2 # should interrupt the tracking self.__dump_data() y = "y" n = "n" # Show the task available # Create a new task print("[+] Do you want to start track a new task? [y][n]") user_input = input() if user_input.lower() == "y": print("[+] Insert the name of the new task to track:") user_input = input() self.i = 0 self.windows = {} try: self.start_tracking(user_input) except KeyboardInterrupt: self.stop_tracking() else: print("[+] Do you want to continue an existing task? [y][n]") user_input = input() if user_input.lower() == "y": print("[-] Task available") # Create a dictionary of possible task to switch in available_tasks = {} for dirpath, dirnames, filenames in os.walk(self.document_path): count = 0 for json_file in filenames: if json_file.endswith(".json"): print("\t[{}] {}".format(count, json_file.replace(".json", ""))) available_tasks[count] = json_file.replace(".json", "") count += 1 print("[-] Select the number of the task you want to switch back") user_input = input() try: self.i = 0 self.windows = {} try: self.start_tracking(available_tasks[int(user_input)]) except KeyboardInterrupt: self.stop_tracking() except KeyError: print("[-] Error: couldnt find any task with the input:{}".format(user_input)) else: print("[+] Closing time tracker") exit() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Time tracker built by <NAME>") parser.add_argument('task_name', type=str) args = parser.parse_args() t_tracker = TimeTracker() try: t_tracker.start_tracking(args.task_name) except KeyboardInterrupt: t_tracker.stop_tracking()
StarcoderdataPython
11316266
<reponame>RileyWClarke/flarubin import numpy as np import pandas as pd from .baseSlicer import BaseSlicer from rubin_sim.maf.plots.moPlotters import MetricVsH, MetricVsOrbit from .orbits import Orbits __all__ = ['MoObjSlicer'] class MoObjSlicer(BaseSlicer): """ Slice moving object _observations_, per object and optionally clone/per H value. Iteration over the MoObjSlicer will go as: * iterate over each orbit; * if Hrange is not None, for each orbit, iterate over Hrange. Parameters ---------- Hrange : numpy.ndarray or None The H values to clone the orbital parameters over. If Hrange is None, will not clone orbits. """ def __init__(self, Hrange=None, verbose=True, badval=0): super(MoObjSlicer, self).__init__(verbose=verbose, badval=badval) self.Hrange = Hrange self.slicer_init = {'Hrange': Hrange, 'badval': badval} # Set default plotFuncs. self.plotFuncs = [MetricVsH(), MetricVsOrbit(xaxis='q', yaxis='e'), MetricVsOrbit(xaxis='q', yaxis='inc')] def setupSlicer(self, orbitFile, delim=None, skiprows=None, obsFile=None): """Set up the slicer and read orbitFile and obsFile from disk. Sets self.orbits (with orbit parameters), self.allObs, and self.obs self.orbitFile and self.obsFile Parameters ---------- orbitFile : str The file containing the orbit information. This is necessary, in order to be able to generate plots. obsFile : str, optional The file containing the observations of each object, optional. If not provided (default, None), then the slicer will not be able to 'slice', but can still plot. """ self.readOrbits(orbitFile, delim=delim, skiprows=skiprows) if obsFile is not None: self.readObs(obsFile) else: self.obsFile = None self.allObs = None self.obs = None # Add these filenames to the slicer init values, to preserve in output files. self.slicer_init['orbitFile'] = self.orbitFile self.slicer_init['obsFile'] = self.obsFile def readOrbits(self, orbitFile, delim=None, skiprows=None): # Use sims_movingObjects to read orbit files. orb = Orbits() orb.readOrbits(orbitFile, delim=delim, skiprows=skiprows) self.orbitFile = orbitFile self.orbits = orb.orbits # Then go on as previously. Need to refactor this into 'setupSlicer' style. self.nSso = len(self.orbits) self.slicePoints = {} self.slicePoints['orbits'] = self.orbits # And set the slicer shape/size. if self.Hrange is not None: self.shape = [self.nSso, len(self.Hrange)] self.slicePoints['H'] = self.Hrange else: self.shape = [self.nSso, 1] self.slicePoints['H'] = self.orbits['H'] # Set the rest of the slicePoint information once self.nslice = self.shape[0] * self.shape[1] def readObs(self, obsFile): """Read observations of the solar system objects (such as created by sims_movingObjects). Parameters ---------- obsFile: str The file containing the observation information. """ # For now, just read all the observations (should be able to chunk this though). self.allObs = pd.read_csv(obsFile, delim_whitespace=True, comment='#') self.obsFile = obsFile # We may have to rename the first column from '#objId' to 'objId'. if self.allObs.columns.values[0].startswith('#'): newcols = self.allObs.columns.values newcols[0] = newcols[0].replace('#', '') self.allObs.columns = newcols if 'velocity' not in self.allObs.columns.values: self.allObs['velocity'] = np.sqrt(self.allObs['dradt']**2 + self.allObs['ddecdt']**2) if 'visitExpTime' not in self.allObs.columns.values: self.allObs['visitExpTime'] = np.zeros(len(self.allObs['objId']), float) + 30.0 # If we created intermediate data products by pandas, we may have an inadvertent 'index' # column. Since this creates problems later, drop it here. if 'index' in self.allObs.columns.values: self.allObs.drop('index', axis=1, inplace=True) self.subsetObs() def subsetObs(self, pandasConstraint=None): """ Choose a subset of all the observations, such as those in a particular time period. """ if pandasConstraint is None: self.obs = self.allObs else: self.obs = self.allObs.query(pandasConstraint) def _sliceObs(self, idx): """Return the observations of a given ssoId. For now this works for any ssoId; in the future, this might only work as ssoId is progressively iterated through the series of ssoIds (so we can 'chunk' the reading). Parameters ---------- idx : integer The integer index of the particular SSO in the orbits dataframe. """ # Find the matching orbit. orb = self.orbits.iloc[idx] # Find the matching observations. if self.obs['objId'].dtype == 'object': obs = self.obs.query('objId == "%s"' %(orb['objId'])) else: obs = self.obs.query('objId == %d' %(orb['objId'])) # Return the values for H to consider for metric. if self.Hrange is not None: Hvals = self.Hrange else: Hvals = np.array([orb['H']], float) # Note that ssoObs / obs is a recarray not Dataframe! # But that the orbit IS a Dataframe. return {'obs': obs.to_records(), 'orbit': orb, 'Hvals': Hvals} def __iter__(self): """ Iterate through each of the ssoIds. """ self.idx = 0 return self def __next__(self): """ Returns result of self._getObs when iterating over moSlicer. """ if self.idx >= self.nSso: raise StopIteration idx = self.idx self.idx += 1 return self._sliceObs(idx) def __getitem__(self, idx): # This may not be guaranteed to work if/when we implement chunking of the obsfile. return self._sliceObs(idx) def __eq__(self, otherSlicer): """ Evaluate if two slicers are equal. """ result = False if isinstance(otherSlicer, MoObjSlicer): if otherSlicer.orbitFile == self.orbitFile: if otherSlicer.obsFile == self.obsFile: if np.array_equal(otherSlicer.slicePoints['H'], self.slicePoints['H']): result = True return result
StarcoderdataPython
5043371
from .loadxml import battleStart, battleWrite from .interpret import importModule, importFunction from .utilities import * from .errors import * from .instance import Instance
StarcoderdataPython
6419829
<reponame>rbarzic/ALIGN-public import json import pathlib import re from pprint import pformat from align.cell_fabric import transformation from Intel.Intel_P1222p2_PDK.IntelP1222p2Canvas import IntelP1222p2Canvas if __name__ == "__main__": with open("comparator.json", "rt") as fp: d = json.load(fp) skip_layers = set( ["boundary", "diearea", "cellarea", "ndiff", "pdiff", "nwell", "poly", "gcn"]) layer_tbl = { "diffcon": "Diffcon", "polycon": "Polycon", "nwell": "Nwell", "metal1": "M1", "metal2": "M2", "metal3": "M3", "via0": "V0", "via1": "V1", "via2": "V2"} p = re.compile( "^(.*)_gr$") def s( r): assert all( v%10 == 0 for v in r) return [ v//10 for v in r] terminals = [] for term in d['terminals']: ly = term['layer'] if ly in skip_layers: continue nm = term['netName'] if 'netName' in term else term['net_name'] if nm is not None and p.match(nm): continue term['layer'] = layer_tbl.get( ly, ly) term['rect'] = s(term['rect']) terminals.append( term) d['terminals'] = terminals pdkfile = pathlib.Path('Intel/Intel_P1222p2_PDK/layers.json') cnv = IntelP1222p2Canvas(pdkfile) cnv.bbox = transformation.Rect( *s(d['bbox'])) cnv.terminals = d['terminals'] cnv.gen_data(run_pex=False) if False: assert len(cnv.rd.different_widths) == 0, pformat(cnv.rd.different_widths) assert len(cnv.rd.shorts) == 0, pformat(cnv.rd.shorts) assert len(cnv.rd.opens) == 0, pformat(cnv.rd.opens) assert len(cnv.drc.errors) == 0, pformat(cnv.drc.errors)
StarcoderdataPython
9670361
''' Your task is to write a function maskify, which changes all but the last four characters into '#'. Examples maskify("4556364607935616") == "############5616" maskify( "64607935616") == "#######5616" maskify( "1") == "1" maskify( "") == "" # "What was the name of your first pet?" maskify("Skippy") == "##ippy" maskify("Nananananananananananananananana Batman!") == "####################################man!" ''' def maskify(cc): new_str = cc[:-4] if len(cc) == 0: return '' elif len(cc) < 4: return cc else: cc = ''.join(("#"*(len(cc)-4))) + cc[-4:] return cc
StarcoderdataPython
9712552
import datetime def size_format(size_b): if(size_b < 1024): return "%.2f"%(size_b) + 'B' elif(size_b < 1024 * 1024): return "%.2f"%(size_b / 1024) + 'KB' elif(size_b < 1024 * 1024 * 1024): return "%.2f"%(size_b / 1024 / 1024) + 'MB' elif(size_b > 1024 * 1024 * 1024 * 1024): return "%.2f"%(size_b / 1024 / 1024 / 1024) + 'GB' def seconds_to_string(seconds): minute = 60 hour = minute * 60 day = hour * 24 month = day * 30 result = "剩余时间: " t = [(month, "月"), (day, "天"), (hour, "小时"), (minute, "分钟")] for (s, c) in t: if (seconds >= s): result += str((seconds // s)) + c seconds %= s return result def time_delta(t): sp = t.split(' ') tl = [int(x) for x in sp[0].split('-') + sp[1].split(':')] delta = datetime.datetime(tl[0], tl[1], tl[2], tl[3], tl[4], 0, 0) - datetime.datetime.now() return seconds_to_string(delta.days * 24 * 60 * 60 + delta.seconds)
StarcoderdataPython
5063413
# Module that cast a decimal number to fraction notation # Input: # number: number to cast # return: # tuple[0]: is the error, None is returned when the process has no error # otherwise a string with message of error is returned # tuple[1]: is number in fraction notation from fractions import Fraction def decimalToFraction(number): if(isinstance(number,(int,float))): ans = Fraction(number).limit_denominator() return (None,str(ans)) else: return ('error','arg must be number') if __name__ == '__main__': print(decimalToFraction(3.45))
StarcoderdataPython
11359806
<filename>flask_qiniustorage.py # -*- coding: utf-8 -*- try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin import qiniu as QiniuClass class Qiniu(object): def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): self._access_key = app.config.get('QINIU_ACCESS_KEY', '') self._secret_key = app.config.get('QINIU_SECRET_KEY', '') self._bucket_name = app.config.get('QINIU_BUCKET_NAME', '') domain = app.config.get('QINIU_BUCKET_DOMAIN') if not domain: self._base_url = 'http://' + self._bucket_name + '.qiniudn.com' else: self._base_url = 'http://' + domain def save(self, data, filename=None): auth = QiniuClass.Auth(self._access_key, self._secret_key) token = auth.upload_token(self._bucket_name) return QiniuClass.put_data(token, filename, data) def delete(self, filename): auth = QiniuClass.Auth(self._access_key, self._secret_key) bucket = QiniuClass.BucketManager(auth) return bucket.delete(self._bucket_name, filename) def url(self, filename): return urljoin(self._base_url, filename) def private_url(self, filename): auth = QiniuClass.Auth(self._access_key, self._secret_key) return auth.private_download_url(urljoin(self._base_url, filename), expires=3600)
StarcoderdataPython
3404314
"""empty message Revision ID: 1c306b9d32 Revises: <PASSWORD> Create Date: 2015-09-15 12:14:05.356636 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('use_of_force_incidents', sa.Column('received_date', sa.DateTime(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('use_of_force_incidents', 'received_date') ### end Alembic commands ###
StarcoderdataPython
1923265
<filename>rsvqa/grad_cam.py import argparse from utils import seed_everything, load_data, LabelSmoothing,encode_text #,Model import wandb import pandas as pd import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler from torchvision import transforms from models.mmbert import Model, get_transformer_model from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image #from torchvision.models import resnet50 from transformers import BertTokenizer import cv2 import timm import os if __name__ == '__main__': parser = argparse.ArgumentParser(description="Pretrain on ROCO with MLM") parser.add_argument('--data_dir', type = str, required = False, default = "../ImageClef-2019-VQA-Med", help = "path for data") parser.add_argument('--model_dir', type = str, required = False, default = "../ImageClef-2019-VQA-Med/mmbert/MLM/vqa-sentence_transformers-allmpnet48-2.pt", help = "path to load weights") parser.add_argument('--method', type=str, default='gradcam', choices=["gradcam","scorecam","gradcam++","ablationcam","xgradcam","eigencam"], help='gradcam method') parser.add_argument('--cnn_encoder', type=str, default='tf_efficientnetv2_m', help='name of the cnn encoder') parser.add_argument('--use_relu', action = 'store_true', default = False, help = "use ReLu") parser.add_argument('--transformer_model', type=str, default='realformer',choices=['transformer', 'realformer', 'feedback-transformer'], help='name of the transformer model') parser.add_argument('--dataset', type=str, default='VQA-Med', help='roco or vqamed2019') parser.add_argument('--num_vis', type = int, default=5, help = "num of visual embeddings") parser.add_argument('--hidden_size', type=int, default=768, help='embedding size') parser.add_argument('--hidden_dropout_prob', type=float, default=0.3, help='dropout') parser.add_argument('--n_layers', type=int, default=4, help='num of heads in multihead attenion') parser.add_argument('--heads', type=int, default=8, help='num of bertlayers') parser.add_argument('--vocab_size', type=int, default=30522, help='vocabulary size') parser.add_argument('--task', type=str, default='MLM', choices=['MLM', 'distillation'], help='pretrain task for the model to be trained on') parser.add_argument('--seed', type = int, required = False, default = 42, help = "set seed for reproducibility") parser.add_argument('--img', type=str, default = '../dog_cat.jfif', help='path to img', required = False) parser.add_argument('--output', type=str, default = '../grad_cam', help='output img', required = False) parser.add_argument('--train_pct', type = float, required = False, default = 1.0, help = "fraction of train samples to select") parser.add_argument('--valid_pct', type = float, required = False, default = 1.0, help = "fraction of validation samples to select") parser.add_argument('--test_pct', type = float, required = False, default = 1.0, help = "fraction of test samples to select") parser.add_argument('--max_position_embeddings', type = int, required = False, default = 28, help = "max length of sequence") parser.add_argument('--vqa_img', type=str, default = 'synpic371.jpg', help="path to vqa img", required = False) parser.add_argument('--category', type=str, default = 'organ', choices=['organ','modality','plane','abnormality'], help="question category", required = False) parser.add_argument('--mode', type=str, default = 'Train', choices=['Train', 'Val', 'Test'], help="data split", required = False) parser.add_argument('--grad_cam', action='store_false', required = False, default = True, help='flag to save model input_tensor') args = parser.parse_args() methods = \ {"gradcam": GradCAM, "scorecam": ScoreCAM, "gradcam++": GradCAMPlusPlus, "ablationcam": AblationCAM, "xgradcam": XGradCAM, "eigencam": EigenCAM, } seed_everything(args.seed) train_df, val_df, test_df = load_data(args) df = pd.concat([train_df, val_df, test_df]).reset_index(drop=True) ans2idx = {ans:idx for idx,ans in enumerate(df['answer'].unique())} idx2ans = {idx:ans for ans,idx in ans2idx.items()} df['answer'] = df['answer'].map(ans2idx).astype(int) train_df = df[df['mode']=='train'].reset_index(drop=True) val_df = df[df['mode']=='val'].reset_index(drop=True) test_df = df[df['mode']=='test'].reset_index(drop=True) num_classes = len(ans2idx) args.num_classes = num_classes print('numclasses',num_classes) img_path = os.path.join(args.data_dir,args.mode,'images',args.vqa_img) #import IPython; IPython.embed(); import sys; sys.exit(0) info_df=df.loc[df['img_id'] == img_path] category_df=info_df.loc[info_df['category'] == args.category] question = category_df['question'].item() answer = category_df['answer'].item() # model = Model(args) # model.classifier[2] = nn.Linear(args.hidden_size, num_classes) # target_layers = model.transformer.mains[3].ff[3]#model.fc1#model.transformer.mains[-3]#model.transformer.trans.model.blocks[6][4]# #model = timm.create_model('tf_efficientnetv2_m', pretrained=True) #model.classifier = torch.nn.Sequential() #target_layers = model.blocks[6][4] model = Model(args) model.classifier[2] = nn.Linear(args.hidden_size, num_classes) model.load_state_dict(torch.load(args.model_dir)) effv2 = timm.create_model('tf_efficientnetv2_m', pretrained=True) #model.transformer.trans.model effv2.classifier = torch.nn.Sequential() print('Loading weights from', args.model_dir) effv2_dict = effv2.state_dict() pretrained_dict = model.transformer.trans.model.state_dict() # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in effv2_dict} # 2. overwrite entries in the existing state dict effv2_dict.update(pretrained_dict) # 3. load the new state dict effv2.load_state_dict(effv2_dict) target_layers = effv2.blocks[-1][-1] print( target_layers) def preprocess_image(img: np.ndarray, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> torch.Tensor: preprocessing = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) return preprocessing(img.copy()).unsqueeze(0) rgb_img = cv2.imread(img_path, 1)[:, :, ::-1] #dog_cat.jfif - synpic371.jpg' rgb_img = cv2.resize(rgb_img, (224, 224)) rgb_img = np.float32(rgb_img) / 255 img_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokens, segment_ids, input_mask= encode_text(question, tokenizer, args) tokens, segment_ids, input_mask = torch.tensor(tokens, dtype = torch.long).unsqueeze(dim=0), torch.tensor(segment_ids, dtype = torch.long).unsqueeze(dim=0), torch.tensor(input_mask, dtype = torch.long).unsqueeze(dim=0) #h = model.transformer.prepare_input(img_tensor, tokens, segment_ids, input_mask) #out = model(h) print('out.shape', model(img_tensor, tokens, segment_ids, input_mask)[0].shape) # Construct the CAM object once, and then re-use it on many images: print('Using ' + args.method) cam = methods[args.method](model=effv2, target_layer=target_layers, use_cuda=False) # If target_category is None, the highest scoring category # will be used for every image in the batch. # target_category can also be an integer, or a list of different integers # for every image in the batch. target_category = None#answer#None#281 #import IPython; IPython.embed(); import sys; sys.exit(0) # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing. grayscale_cam = cam(input_tensor=img_tensor, target_category=target_category) # In this example grayscale_cam has only one image in the batch: grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=False) print('Writing output file to ',args.output) cv2.imwrite(args.output + '_' + args.vqa_img + '_' + args.model_dir.split('/')[-1] + ".jpg", visualization)
StarcoderdataPython
3535210
import time import torch from torch.backends import cudnn from backbone import HybridNetsBackbone import cv2 import numpy as np from glob import glob from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, boolean_string from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box import os from torchvision import transforms import argparse parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu') parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone') parser.add_argument('--source', type=str, default='demo/image', help='The demo image folder') parser.add_argument('--output', type=str, default='demo_result', help='Output folder') parser.add_argument('-w', '--load_weights', type=str, default='weights/hybridnets.pth') parser.add_argument('--nms_thresh', type=restricted_float, default='0.25') parser.add_argument('--iou_thresh', type=restricted_float, default='0.3') parser.add_argument('--imshow', type=boolean_string, default=False, help="Show result onscreen (unusable on colab, jupyter...)") parser.add_argument('--imwrite', type=boolean_string, default=True, help="Write result to output folder") parser.add_argument('--show_det', type=boolean_string, default=False, help="Output detection result exclusively") parser.add_argument('--show_seg', type=boolean_string, default=False, help="Output segmentation result exclusively") parser.add_argument('--cuda', type=boolean_string, default=True) parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference") args = parser.parse_args() compound_coef = args.compound_coef source = args.source if source.endswith("/"): source = source[:-1] output = args.output if output.endswith("/"): output = output[:-1] weight = args.load_weights img_path = glob(f'{source}/*.jpg') + glob(f'{source}/*.png') # img_path = [img_path[0]] # demo with 1 image input_imgs = [] shapes = [] det_only_imgs = [] # replace this part with your project's anchor config anchor_ratios = [(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)] anchor_scales = [2 ** 0, 2 ** 0.70, 2 ** 1.32] threshold = args.nms_thresh iou_threshold = args.iou_thresh imshow = args.imshow imwrite = args.imwrite show_det = args.show_det show_seg = args.show_seg os.makedirs(output, exist_ok=True) use_cuda = args.cuda use_float16 = args.float16 cudnn.fastest = True cudnn.benchmark = True obj_list = ['car'] color_list = standard_to_bgr(STANDARD_COLORS) ori_imgs = [cv2.imread(i, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) for i in img_path] ori_imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in ori_imgs] # cv2.imwrite('ori.jpg', ori_imgs[0]) # cv2.imwrite('normalized.jpg', normalized_imgs[0]*255) resized_shape = 640 normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) for ori_img in ori_imgs: h0, w0 = ori_img.shape[:2] # orig hw r = resized_shape / max(h0, w0) # resize image to img_size input_img = cv2.resize(ori_img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA) h, w = input_img.shape[:2] (input_img, _, _), ratio, pad = letterbox((input_img, input_img.copy(), input_img.copy()), resized_shape, auto=True, scaleup=False) input_imgs.append(input_img) # cv2.imwrite('input.jpg', input_img * 255) shapes.append(((h0, w0), ((h / h0, w / w0), pad))) # for COCO mAP rescaling if use_cuda: x = torch.stack([transform(fi).cuda() for fi in input_imgs], 0) else: x = torch.stack([transform(fi) for fi in input_imgs], 0) x = x.to(torch.float32 if not use_float16 else torch.float16) # print(x.shape) model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(obj_list), ratios=anchor_ratios, scales=anchor_scales, seg_classes=2) try: model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')) except: model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')['model']) model.requires_grad_(False) model.eval() if use_cuda: model = model.cuda() if use_float16: model = model.half() with torch.no_grad(): features, regression, classification, anchors, seg = model(x) seg = seg[:, :, 12:372, :] da_seg_mask = torch.nn.functional.interpolate(seg, size=[720, 1280], mode='nearest') _, da_seg_mask = torch.max(da_seg_mask, 1) for i in range(da_seg_mask.size(0)): # print(i) da_seg_mask_ = da_seg_mask[i].squeeze().cpu().numpy().round() color_area = np.zeros((da_seg_mask_.shape[0], da_seg_mask_.shape[1], 3), dtype=np.uint8) color_area[da_seg_mask_ == 1] = [0, 255, 0] color_area[da_seg_mask_ == 2] = [0, 0, 255] color_seg = color_area[..., ::-1] # cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg) color_mask = np.mean(color_seg, 2) # prepare to show det on 2 different imgs # (with and without seg) -> (full and det_only) det_only_imgs.append(ori_imgs[i].copy()) seg_img = ori_imgs[i] seg_img[color_mask != 0] = seg_img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5 seg_img = seg_img.astype(np.uint8) if show_seg: cv2.imwrite(f'{output}/{i}_seg.jpg', cv2.cvtColor(seg_img, cv2.COLOR_RGB2BGR)) regressBoxes = BBoxTransform() clipBoxes = ClipBoxes() out = postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold) for i in range(len(ori_imgs)): out[i]['rois'] = scale_coords(ori_imgs[i][:2], out[i]['rois'], shapes[i][0], shapes[i][1]) for j in range(len(out[i]['rois'])): x1, y1, x2, y2 = out[i]['rois'][j].astype(int) obj = obj_list[out[i]['class_ids'][j]] score = float(out[i]['scores'][j]) plot_one_box(ori_imgs[i], [x1, y1, x2, y2], label=obj, score=score, color=color_list[get_index_label(obj, obj_list)]) if show_det: plot_one_box(det_only_imgs[i], [x1, y1, x2, y2], label=obj, score=score, color=color_list[get_index_label(obj, obj_list)]) if show_det: cv2.imwrite(f'{output}/{i}_det.jpg', cv2.cvtColor(det_only_imgs[i], cv2.COLOR_RGB2BGR)) if imshow: cv2.imshow('img', ori_imgs[i]) cv2.waitKey(0) if imwrite: cv2.imwrite(f'{output}/{i}.jpg', cv2.cvtColor(ori_imgs[i], cv2.COLOR_RGB2BGR)) # exit() print('running speed test...') with torch.no_grad(): print('test1: model inferring and postprocessing') print('inferring 1 image for 10 times...') x = x[0, ...] x.unsqueeze_(0) t1 = time.time() for _ in range(10): _, regression, classification, anchors, segmentation = model(x) out = postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold) t2 = time.time() tact_time = (t2 - t1) / 10 print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1') # uncomment this if you want a extreme fps test print('test2: model inferring only') print('inferring images for batch_size 32 for 10 times...') t1 = time.time() x = torch.cat([x] * 32, 0) for _ in range(10): _, regression, classification, anchors, segmentation = model(x) t2 = time.time() tact_time = (t2 - t1) / 10 print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32')
StarcoderdataPython
1703498
#!/router/bin/python from .trex_general_test import CTRexGeneral_Test, CTRexScenario from .trex_nbar_test import CTRexNbarBase from CPlatform import CStaticRouteConfig from .tests_exceptions import * #import sys import time from nose.tools import nottest # Testing client cfg ARP resolve. Actually, just need to check that TRex run finished with no errors. # If resolve will fail, TRex will exit with exit code != 0 class CTRexClientCfg_Test(CTRexNbarBase): """This class defines the IMIX testcase of the TRex traffic generator""" def setUp(self): if CTRexScenario.setup_name == 'kiwi02': self.skip("Can't run currently on kiwi02") super(CTRexClientCfg_Test, self).setUp() # launch super test class setUp process def test_client_cfg_nbar(self): if self.is_loopback: self.skip('No NBAR on loopback') if not CTRexScenario.router_cfg['no_dut_config']: self.router.configure_basic_interfaces() self.router.config_pbr(mode = "config") self.router.config_nbar_pd() mult = self.get_benchmark_param('multiplier') core = self.get_benchmark_param('cores') ret = self.trex.start_trex ( c = core, m = mult, nc = True, p = True, d = 100, f = 'avl/sfr_delay_10_1g.yaml', client_cfg = 'automation/regression/cfg/client_cfg.yaml', l = 1000) trex_res = self.trex.sample_until_finish() print("\nLATEST RESULT OBJECT:") print(trex_res) self.check_general_scenario_results(trex_res, check_latency = False) # no latency with client config self.match_classification() def test_client_cfg_vlan(self): if self.is_loopback: self.skip('Not relevant on loopback') if not CTRexScenario.router_cfg['no_dut_config']: self.router.configure_basic_interfaces(vlan = True) self.router.config_pbr(mode = "config", vlan = True) mult = self.get_benchmark_param('multiplier') core = self.get_benchmark_param('cores') ret = self.trex.start_trex ( c = core, m = mult, nc = True, p = True, d = 60, f = 'cap2/dns.yaml', limit_ports = 4, client_cfg = 'automation/regression/cfg/client_cfg_vlan.yaml') trex_res = self.trex.sample_until_finish() print("\nLATEST RESULT OBJECT:") print(trex_res) self.check_general_scenario_results(trex_res, check_latency = False) # no latency with client config def tearDown(self): CTRexNbarBase.tearDown(self) pass if __name__ == "__main__": pass
StarcoderdataPython
77444
#!/usr/bin/env python # Tested with both Python 2.7.6 and Python 3.4.3 # # This Python code collects the source code for testing acados # on microcontrollers, putting all the necessary C files in # one directory, and header files in the sub-directory include. # # The idea is that when compiling the testing code of acados for # embedded platforms, when "make" does not fully function like # on standard Linux platform, all the source code available in # one directory would allow the compiler to process the code # easier. # # To use for ESP32: # # Example usage: # Assume the source directory of acados is: ~/acados # The target folder to be created is: chen_nmpc_qpoases # This command should be used: # python test_nmpc_qpoases.py ~/acados chen_nmpc_qpoases # # Author: <NAME> # Date: 2017.04.03 import sys import os import glob from subprocess import call from os.path import join print('Running python script to grab chen_nmpc_qpoases...') print(sys.version) # get python version, for debugging if len(sys.argv)!= 3: raise SyntaxError('This script needs exactly 2 arguments: \n \ test_nmpc_qpoases.py <acados_top_dir> <new_target_dir>\n \ Example:\n \ test_nmpc_qpoases.py ~/acados chen_nmpc_qpoases') # 1. Bring all necessary files to one directory. top_dir = str(sys.argv[1]).rstrip('/') # no trailing / in top_dir target_dir = str(sys.argv[2]).rstrip('/') # no trailing / in target_dir # List of file to collect # Note: this hard-coded path doesnot work with Windows workingcodefiles = [\ 'examples/c/chen_nmpc_qpoases.c', \ 'examples/c/Chen_model/chen_model.c', \ 'acados/utils/print.c', \ 'acados/utils/timing.c', \ 'acados/ocp_qp/condensing.c', \ 'acados/ocp_qp/condensing_helper_functions.c', \ 'acados/ocp_qp/ocp_qp_condensing_qpoases.c', \ 'acados/sim/sim_erk_integrator.c', \ 'external/hpmpc/auxiliary/d_aux_extern_depend_lib4.c', \ 'external/blasfeo/auxiliary/i_aux_extern_depend_lib.c', \ 'external/qpOASES/src/Constraints.c', \ 'external/qpOASES/src/Bounds.c', \ 'external/qpOASES/src/Flipper.c', \ 'external/qpOASES/src/Indexlist.c', \ 'external/qpOASES/src/Matrices.c', \ 'external/qpOASES/src/MessageHandling.c', \ 'external/qpOASES/src/Options.c', \ 'external/qpOASES/src/QProblem.c', \ 'external/qpOASES/src/QProblemB.c', \ 'external/qpOASES/src/Utils.c' \ ] workingheaderfiles = [\ 'examples/c/Chen_model/chen_model.h', \ 'acados/ocp_qp/ocp_qp_common.h', \ 'acados/ocp_qp/condensing.h', \ 'acados/ocp_qp/ocp_qp_condensing_qpoases.h', \ 'acados/sim/sim_common.h', \ 'acados/sim/sim_erk_integrator.h', \ 'acados/sim/sim_collocation.h', \ 'acados/sim/sim_rk_common.h', \ 'acados/utils/print.h', \ 'acados/utils/types.h', \ 'acados/utils/timing.h', \ 'external/hpmpc/include/aux_d.h', \ 'external/hpmpc/include/block_size.h', \ 'external/hpmpc/include/kernel_d_lib4.h', \ 'external/blasfeo/include/blasfeo_i_aux.h', \ 'external/qpOASES/include/qpOASES_e/Bounds.h', \ 'external/qpOASES/include/qpOASES_e/Constants.h', \ 'external/qpOASES/include/qpOASES_e/ConstraintProduct.h', \ 'external/qpOASES/include/qpOASES_e/Constraints.h', \ 'external/qpOASES/include/qpOASES_e/Flipper.h', \ 'external/qpOASES/include/qpOASES_e/Indexlist.h', \ 'external/qpOASES/include/qpOASES_e/Matrices.h', \ 'external/qpOASES/include/qpOASES_e/MessageHandling.h', \ 'external/qpOASES/include/qpOASES_e/Options.h', \ 'external/qpOASES/include/qpOASES_e/QProblem.h', \ 'external/qpOASES/include/qpOASES_e/QProblemB.h', \ 'external/qpOASES/include/qpOASES_e/Utils.h' \ ] # Files that should be renamed to avoid conflicts oldfiles = ['external/qpOASES/include/qpOASES_e/Types.h'] newfiles = ['include/qpOASES_e_Types.h'] # Create directory structure and copy files if not os.path.exists(target_dir): os.system('mkdir '+target_dir) for filename in workingcodefiles: os.system('cp '+top_dir+'/'+filename+' '+target_dir) if not os.path.exists(target_dir+'/include'): os.system('mkdir '+target_dir+'/include') for filename in workingheaderfiles: os.system('cp '+top_dir+'/'+filename+' '+target_dir+'/include/') for kk in range(len(oldfiles)): os.system('cp '+top_dir+'/'+oldfiles[kk]+' '+target_dir+'/'+newfiles[kk]) print('Step 1: Necessary files copied.') # 2. Modify .h and .c files to adapt to the new code structure: # List of texts to be replaced: old_text = [\ 'examples/c/Chen_model/chen_model.h', \ 'acados/ocp_qp/condensing.h', \ 'acados/ocp_qp/condensing_helper_functions.c', \ 'acados/ocp_qp/ocp_qp_common.h', \ 'acados/ocp_qp/ocp_qp_condensing_qpoases.h', \ 'acados/ocp_qp/ocp_qp_hpmpc.h', \ 'acados/sim/sim_common.h', \ 'acados/sim/sim_erk_integrator.h', \ 'acados/sim/sim_collocation.h', \ 'acados/sim/sim_rk_common.h', \ 'acados/utils/print.h', \ 'acados/utils/timing.h', \ 'acados/utils/types.h', \ 'hpmpc/include/aux_d.h', \ '../include/block_size.h', \ '../include/kernel_d_lib4.h', \ 'blasfeo/include/blasfeo_common.h', \ 'blasfeo/include/blasfeo_i_aux.h', \ 'qpOASES_e/Bounds.h', \ 'qpOASES_e/Constants.h', \ 'qpOASES_e/Constraints.h', \ 'qpOASES_e/ConstraintProduct.h', \ 'qpOASES_e/Flipper.h', \ 'qpOASES_e/Indexlist.h', \ 'qpOASES_e/Matrices.h', \ 'qpOASES_e/MessageHandling.h', \ 'qpOASES_e/Options.h', \ 'qpOASES_e/QProblem.h', \ 'qpOASES_e/QProblemB.h', \ 'qpOASES_e/Types.h', \ 'qpOASES_e/Utils.h' \ ] # List of new texts to replace old ones, # in corresponding order to old_text: new_text = [\ 'chen_model.h', \ 'condensing.h', \ 'condensing_helper_functions.c', \ 'ocp_qp_common.h', \ 'ocp_qp_condensing_qpoases.h', \ 'ocp_qp_hpmpc.h', \ 'sim_common.h', \ 'sim_erk_integrator.h', \ 'sim_collocation.h', \ 'sim_rk_common.h', \ 'print.h', \ 'timing.h', \ 'types.h', \ 'aux_d.h', \ 'block_size.h', \ 'kernel_d_lib4.h', \ 'blasfeo_common.h', \ 'blasfeo_i_aux.h', \ 'Bounds.h', \ 'Constants.h', \ 'Constraints.h', \ 'ConstraintProduct.h', \ 'Flipper.h', \ 'Indexlist.h', \ 'Matrices.h', \ 'MessageHandling.h', \ 'Options.h', \ 'QProblem.h', \ 'QProblemB.h', \ 'qpOASES_e_Types.h', \ 'Utils.h' \ ] len_old_text = len(old_text) len_new_text = len(new_text) if len_old_text != len_new_text: raise ValueError('Number of old and new texts not match') files = glob.glob(target_dir+"/*.c") for file in files: objFile = open(file, "r") txtFile = objFile.read() objFile.close() for replacetext in range(len_old_text): txtFile = txtFile.replace(old_text[replacetext],new_text[replacetext]) objFile = open(file, "w") objFile.write(txtFile) objFile.close() files = glob.glob(target_dir+"/include/*.h") for file in files: objFile = open(file, "r") txtFile = objFile.read() objFile.close() for replacetext in range(len_old_text): txtFile = txtFile.replace(old_text[replacetext],new_text[replacetext]) objFile = open(file, "w") objFile.write(txtFile) objFile.close() print('Step 2: Path information in files modified to the new structure.') # 3. Add specific code to HPMPC and BLASFEO files: # List of files to be modified: files = ['include/block_size.h'] # List of lines to be added in the beginning of files, # in corresponding order with the list files: lines = ['#include "target.h"\n'] if len(files) != len(lines): raise ValueError('Number of files and added lines not match') for kk in range(len(files)): objFile = open(target_dir+'/'+files[kk], "r") txtFile = objFile.read() objFile.close() objFile = open(target_dir+'/'+files[kk], "w") objFile.write(lines[kk]) # write the line to the beginning objFile.write(txtFile) objFile.close() print('Step 3: Common header file included in specific files.') # 4. Copy Makefile and specific setting files os.system('cp '+top_dir+'/experimental/dang/esp32/script_test_nmpc_qpoases/Makefile '+target_dir) os.system('cp '+top_dir+'/experimental/dang/esp32/script_test_nmpc_qpoases/target.h '+target_dir+'/include/') print('Step 4: Makefile, and HPMPC target.h replaced.') # 5. Display further instructions print('Please do next steps in terminal:') print(' cd '+target_dir) print(' make') print('Then run the binary file in '+target_dir+'/bin') print('To remove binary objects: make clean\n')
StarcoderdataPython
12810706
count=1000 total=0 while count > 0: if count %3==0 or count %5==0: total=total+count count=count-1 print(total)
StarcoderdataPython
1649373
<gh_stars>0 import pymongo import os from pymongo import MongoClient from dotenv import load_dotenv CLUSTER = os.getenv('DB_CLUSTER') DATABASE = os.getenv('DB_NAME') COLLECTION = os.getenv('DB_COLLECTION') cluster = MongoClient(CLUSTER) db = cluster[DATABASE] collection = db[COLLECTION] def sort_by_points(): return collection.find().sort("points", pymongo.DESCENDING) def find_points(id): member = collection.find_one({'id':id}) return member['points'] def update_points(id, points): attempt = collection.find_one_and_update({'id': id}, {'$inc':{'points':points}}) if attempt == None: collection.insert_one({'id': id, 'points': points}) def get_top_users(range): return sort_by_points().limit(range)
StarcoderdataPython
4921159
# Practice XGBoost model for Pima Indians dataset import pandas as pd from numpy import loadtxt from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # load data dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",") # split data into X and y X = dataset[:,0:8] Y = dataset[:,8] # split data into train and test sets seed = 7 test_size = 0.33 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) # fit model no training data model = XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=1.005, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, nthread=-1, objective='binary:logistic', reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, silent=True, subsample=1) model.fit(X_train, y_train) print(model) # make predictions for test data y_pred = model.predict(X_test) predictions = [round(value) for value in y_pred] # evaluate predictions accuracy = accuracy_score(y_test, predictions) print("Accuracy: %.2f%%" % (accuracy * 100.0))
StarcoderdataPython
333157
<gh_stars>0 # SPDX-License-Identifier: MIT # Copyright (c) 2022 <NAME> <https://github.com/AndrielFR> import asyncio import time import feedparser from bs4 import BeautifulSoup from mews.monitor.sources import BaseRSS from mews.utils import http from mews.utils.database import exists_post class AnimeNew(BaseRSS): def __init__(self): self.uri = "https://www.animenew.com.br/" self.rss_uri = "https://animenew.com.br/feed/" self.new_posts: List[Dict] = [] async def work(self): response = await http.get(self.rss_uri) p = feedparser.parse(response.content) for entrie in p.entries[:10]: title = entrie.title author = entrie.author published_date = int(round(time.mktime(entrie.published_parsed))) post_link = entrie.link comments_link = entrie.comments post_response = await http.get(post_link) post_soup = BeautifulSoup(post_response.content, "html.parser") post_content = post_soup.find( "div", **{"class": "elementor-widget-theme-post-content"} ) contents = post_content.find_next("div").contents content = "".join(str(line) for line in contents[1:-2]) if not ( await exists_post( self.__class__.__name__.lower(), title, content, post_link ) ): self.new_posts.append( dict( source=self.__class__.__name__, title=title, author=author, published_date=published_date, content=content, post_link=post_link, comments_link=comments_link, ) ) await asyncio.sleep(600) await self.work()
StarcoderdataPython
4954175
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * class AboutClasses(Koan): class Dog: "Dogs need regular walkies. Never, ever let them drive." def test_instances_of_classes_can_be_created_adding_parentheses(self): # NOTE: The .__name__ attribute will convert the class # into a string value. fido = self.Dog() self.assertEqual('Dog', fido.__class__.__name__) def test_classes_have_docstrings(self): self.assertRegex(self.Dog.__doc__, "Dogs need regular walkies. Never, ever let them drive.") # ------------------------------------------------------------------ class Dog2: def __init__(self): self._name = 'Paul' def set_name(self, a_name): self._name = a_name def test_init_method_is_the_constructor(self): dog = self.Dog2() self.assertEqual('Paul', dog._name) def test_private_attributes_are_not_really_private(self): dog = self.Dog2() dog.set_name("Fido") self.assertEqual('Fido', dog._name) # The _ prefix in _name implies private ownership, but nothing is truly # private in Python. def test_you_can_also_access_the_value_out_using_getattr_and_dict(self): fido = self.Dog2() fido.set_name("Fido") self.assertEqual('Fido', getattr(fido, "_name")) # getattr(), setattr() and delattr() are a way of accessing attributes # by method rather than through assignment operators self.assertEqual('Fido', fido.__dict__["_name"]) # Yes, this works here, but don't rely on the __dict__ object! Some # class implementations use optimization which result in __dict__ not # showing everything. # ------------------------------------------------------------------ class Dog3: def __init__(self): self._name = None def set_name(self, a_name): self._name = a_name def get_name(self): return self._name name = property(get_name, set_name) def test_that_name_can_be_read_as_a_property(self): fido = self.Dog3() fido.set_name("Fido") # access as method self.assertEqual('Fido', fido.get_name()) # access as property self.assertEqual('Fido', fido.name) # ------------------------------------------------------------------ class Dog4: def __init__(self): self._name = None @property def name(self): return self._name @name.setter def name(self, a_name): self._name = a_name def test_creating_properties_with_decorators_is_slightly_easier(self): fido = self.Dog4() fido.name = "Fido" self.assertEqual("Fido", fido.name) # ------------------------------------------------------------------ class Dog5: def __init__(self, initial_name): self._name = initial_name @property def name(self): return self._name def test_init_provides_initial_values_for_instance_variables(self): fido = self.Dog5("Fido") self.assertEqual("Fido", fido.name) def test_args_must_match_init(self): with self.assertRaises(TypeError): self.Dog5() # THINK ABOUT IT: # Why is this so? def test_different_objects_have_different_instance_variables(self): fido = self.Dog5("Fido") rover = self.Dog5("Rover") self.assertEqual(False, rover.name == fido.name) # ------------------------------------------------------------------ class Dog6: def __init__(self, initial_name): self._name = initial_name def get_self(self): return self def __str__(self): # # Implement this! # return self._name def __repr__(self): return "<Dog named '" + self._name + "'>" def test_inside_a_method_self_refers_to_the_containing_object(self): fido = self.Dog6("Fido") self.assertEqual(fido, fido.get_self()) # Not a string! def test_str_provides_a_string_version_of_the_object(self): fido = self.Dog6("Fido") self.assertEqual("Fido", str(fido)) def test_str_is_used_explicitly_in_string_interpolation(self): fido = self.Dog6("Fido") self.assertEqual("My dog is Fido", "My dog is " + str(fido)) def test_repr_provides_a_more_complete_string_version(self): fido = self.Dog6("Fido") self.assertEqual("<Dog named 'Fido'>", repr(fido)) def test_all_objects_support_str_and_repr(self): seq = [1, 2, 3] self.assertEqual("[1, 2, 3]", str(seq)) self.assertEqual("[1, 2, 3]", repr(seq)) self.assertEqual("STRING", str("STRING")) self.assertEqual("'STRING'", repr("STRING"))
StarcoderdataPython
12803100
<reponame>uibcdf/MolSysMT<filename>molsysmt/protonation.py from molsysmt._private_tools.exceptions import * def has_hydrogens(molecular_system): from molsysmt.multitool import get output = False n_hydrogens = get(molecular_system, target='atom', selection='atom_type=="H"', n_atoms=True) if n_hydrogens>0: output = True return output def add_missing_hydrogens(molecular_system, pH=7.4, forcefield='AMBER99SB-ILDN', engine='OpenMM', verbose=False): """add_missing_hydrogens(item, pH=7.4, forcefield='AMBER99SB-ILDN', engine='OpenMM', verbose=False) The missing hydrogens of a molecular model are added. This method does not remove any hydrogen already present. Regarding the protonation states of the aminoacids the documentation corresponding to the chosen engine should be checked for further details. - OpenMM: The protonation state is determined according the frequency of the variant at the specified pH, and the participation of Cysteines in disulfide bonds or Histidines in hydrogen bonds. This engine needs the specification of a forcefield. See the `OpenMM User Manual <http://docs.openmm.org/7.0.0/userguide/application.html#adding-hydrogens>`_ or the `OpenMM Api Guide <http://docs.openmm.org/development/api-python/generated/simtk.openmm.app.modeller.Modeller.html#simtk.openmm.app.modeller.Modeller.addHydrogens>`_. - PDBFixer: The protonation state is determined according to the frequency of the variant at the specified pH. See the `PDBFixer Manual <http://htmlpreview.github.io/?https://raw.github.com/pandegroup/pdbfixer/master/Manual.html>`_. Parameters ---------- item: Molecular model in accepted form. Molecular model in any of the accepted forms by MolSysMT. pH: float, default: 7.4 The pH based on which to determine the aminoacids protonation states. forcefield: str, default: 'AMBER99SB-ILDN' Name of the forcefield to be used by OpenMM ([check the list of names accepted here]()) engine: str ('OpenMM' or 'PDBFixer'), default: 'OpenMM' Name of the engine used to add the missing hydrogens. The following options are available: - 'OpenMM': The method openmm.app.modeller.Modeller.addHydrogens is included in the workflow. See the `OpenMM User Manual <http://docs.openmm.org/7.0.0/userguide/application.html#adding-hydrogens>`_ or the `OpenMM Api Guide <http://docs.openmm.org/development/api-python/generated/simtk.openmm.app.modeller.Modeller.html#simtk.openmm.app.modeller.Modeller.addHydrogens>`_. - 'PDBFixer': The method pdbfixer.PDBFixer.addMissingHydrogens() is included in the workflow. See the `PDBFixer Manual <http://htmlpreview.github.io/?https://raw.github.com/pandegroup/pdbfixer/master/Manual.html>`_. verbose: bool, default: False The method prints out useful information if verbose=`True`. Returns ------- item : Molecular model in the same form as input `item`. A new molecular model with the missing hydrogens added is returned. The form will be the same as the input model. Examples -------- See Also -------- Notes ----- """ from molsysmt.multitool import convert, get_form from molsysmt._private_tools._digestion import digest_engine form = get_form(molecular_system) engine = digest_engine(engine) if engine=="OpenMM": tmp_item = convert(molecular_system, to_form="openmm.Modeller") log_residues_changed = tmp_item.addHydrogens(pH=pH) if verbose: print('Missing hydrogens added.') ii = 0 for residue in item.topology.residues(): if log_residues_changed[ii] is not None: print('{}-{} to {}-{}'.format(residue.name, residue.index, log_residues_changed[ii], residue.index)) ii+=1 elif engine=='PDBFixer': tmp_item = convert(molecular_system, to_form="pdbfixer.PDBFixer") tmp_item.addMissingHydrogens(pH=pH) if verbose: print('Missing hydrogens added (PDBFixer gives no details).') else: raise NotImplementedError tmp_item = convert(tmp_item, to_form=form) return tmp_item
StarcoderdataPython
11379742
def convert_distance(miles): km = miles * 1.6 result = "{} miles equals {:.1f} km".format(miles, km) return result print(convert_distance(13.1))
StarcoderdataPython
6672243
<filename>fashion-mnist/fashion-keras/src/neural_network.py """Neural network class.""" import tensorflow as tf class NeuralNetwork(tf.keras.Model): """Neural network that classifies Fashion MNIST-style images.""" def __init__(self): super().__init__() self.sequence = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(20, activation='relu'), tf.keras.layers.Dense(10) ]) def call(self, x: tf.Tensor) -> tf.Tensor: y_prime = self.sequence(x) return y_prime
StarcoderdataPython
1882550
<reponame>markhankins/podannotator __version__ = '0.1' #!/usr/local/bin/python3 from kubernetes import client, config from kubernetes.client.rest import ApiException import sys from prettytable import PrettyTable config.load_kube_config() def print_help(): print('I need the namespace(s) as an argument') if len(sys.argv) <= 1: print (f'bad arguments: {str(sys.argv[1:])}') print_help() exit(1) namespaces = sys.argv[1:] table = PrettyTable(['Namespace', 'Pod','Volume-Name','PVC']) v1 = client.CoreV1Api() print ('Pods with Persistant Volume Cliams to be annotated:', end = '') for n in namespaces: print ("") ret = v1.list_namespaced_pod(n,watch=False) for i in ret.items: for v in i.spec.volumes: if v.persistent_volume_claim: table.add_row([n,i.metadata.name,v.name,v.persistent_volume_claim.claim_name]) print (table) confirm = input('proceed?[Y/n]:') if confirm != 'Y': exit(0) for p in table: p.border=False p.header=False pod = p.get_string(fields=["Pod"]).strip() ns = p.get_string(fields=["Namespace"]).strip() pvc = p.get_string(fields=["PVC"]).strip() volume = p.get_string(fields=["Volume-Name"]).strip() body = {"metadata": {"annotations": {"backup.velero.io/backup-volumes": volume }}} print(f'Annotating {pod} ', end = '') try: v1.patch_namespaced_pod(pod,ns,body) print (' Done') except ApiException as e: print (" AAHH something went wrong!") exit(1) exit (0) # todo: if a pvc have more than 1 pod, then for p int table should handle this.
StarcoderdataPython
1751038
<reponame>brad90four/bradbot<filename>src/exts/trail_status.py<gh_stars>0 import feedparser from loguru import logger from nextcord import Embed from nextcord.ext import commands class TrailStatus(commands.Cog): "Send an embed about the bot's ping." def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name="trail_status", aliases=("trails", "trailstatus", "ts")) async def trail_status(self, ctx: commands.Context) -> None: """Get the current trail status.""" logger.debug(f"Command `{ctx.invoked_with}` used by {ctx.author}.") try: esnp_rss = feedparser.parse( "https://parks.hamiltontn.gov/RSSFeed.aspx?ModID=63&CID=Enterprise-South-Nature-Park-Bike-Trails-8" ) except Exception as e: logger.debug("Error occured while fetching ESNP RSS.") logger.exception(e) return updated_date = esnp_rss["entries"][0]["published"] status = esnp_rss["entries"][0]["title"] # logger.debug(f"{updated_date = }\n{status = }") embed = Embed( title="Trail Status for ESNP :man_mountain_biking:", description=f"Updated: {updated_date}\nStatus: {status}", ) await ctx.send(embed=embed) def setup(bot: commands.Bot) -> None: """Load the TrailStatus cog.""" bot.add_cog(TrailStatus(bot))
StarcoderdataPython
8144377
<reponame>Anancha/Programming-Techniques-using-Python from random import choice from time import time my_names = ['Suman','Mohan','Divya','Sugandh'] my_subjects = ['Chemistry','Biology','Maths'] def my_list(num_students): mylist = [] for loop in range(num_students): mystudents = { 'myid':loop, 'myname': choice(my_names), 'mysubject':choice(my_subjects) } mylist.append(mystudents) return mylist def my_generator(num_students): for loop in range(num_students): mystudents = { 'myid':loop, 'myname': choice(my_names), 'mysubject':choice(my_subjects) } yield mystudents myt1 = time() people = my_list(1000000) myt2 = time() print('Time taken by list', myt2 - myt1) myt1 = time() people = my_generator(1000000) myt2 = time() print('Time taken by generator function', myt2 - myt1)
StarcoderdataPython
1610068
from break_ import Break_ class Instruction: player_actions = iter([action.rstrip('\n') for action in open('C:\\Users\\<NAME>\\Documents\\Synacor Challenge\\auto_player.txt')]) def __init__(self, memory, registers): self.memory = memory self.registers = registers self.stack = [] self.memory_address = 0 self.input_string = '' self.input_start = 0 self.input_index = 0 def register_value(self, n): if n in range(32768): return(n) else: return(self.registers[n]) def halt_(self): raise Break_ def set_(self): self.registers[self.memory[self.memory_address + 1]] = self.register_value(self.memory[self.memory_address + 2]) self.memory_address += 3 def push_(self): self.stack.append(self.register_value(self.memory[self.memory_address + 1])) self.memory_address += 2 def pop_(self): self.registers[self.memory[self.memory_address + 1]] = self.stack.pop() self.memory_address += 2 def eq_(self): if self.register_value(self.memory[self.memory_address + 2]) == self.register_value(self.memory[self.memory_address + 3]): self.registers[self.memory[self.memory_address + 1]] = 1 else: self.registers[self.memory[self.memory_address + 1]] = 0 self.memory_address += 4 def gt_(self): if self.register_value(self.memory[self.memory_address + 2]) > self.register_value(self.memory[self.memory_address + 3]): self.registers[self.memory[self.memory_address + 1]] = 1 else: self.registers[self.memory[self.memory_address + 1]] = 0 self.memory_address += 4 def jmp_(self): self.memory_address = self.register_value(self.memory[self.memory_address + 1]) def jt_(self): if self.register_value(self.memory[self.memory_address + 1]) != 0: self.memory_address = self.register_value(self.memory[self.memory_address + 2]) else: self.memory_address += 3 def jf_(self): if self.register_value(self.memory[self.memory_address + 1]) == 0: self.memory_address = self.register_value(self.memory[self.memory_address + 2]) else: self.memory_address += 3 def add_(self): self.registers[self.memory[self.memory_address + 1]] = (self.register_value(self.memory[self.memory_address + 2]) + self.register_value(self.memory[self.memory_address + 3])) % 32768 self.memory_address += 4 def mult_(self): self.registers[self.memory[self.memory_address + 1]] = (self.register_value(self.memory[self.memory_address + 2])*self.register_value(self.memory[self.memory_address + 3])) % 32768 self.memory_address += 4 def mod_(self): self.registers[self.memory[self.memory_address + 1]] = self.register_value(self.memory[self.memory_address + 2]) % self.register_value(self.memory[self.memory_address + 3]) self.memory_address += 4 def and_(self): self.registers[self.memory[self.memory_address + 1]] = self.register_value(self.memory[self.memory_address + 2]) & self.register_value(self.memory[self.memory_address + 3]) self.memory_address += 4 def or_(self): self.registers[self.memory[self.memory_address + 1]] = self.register_value(self.memory[self.memory_address + 2]) | self.register_value(self.memory[self.memory_address + 3]) self.memory_address += 4 def not_(self): self.registers[self.memory[self.memory_address + 1]] = 32768 + ~self.register_value(self.memory[self.memory_address + 2]) self.memory_address += 3 def rmem_(self): self.registers[self.memory[self.memory_address + 1]] = self.memory[self.register_value(self.memory[self.memory_address + 2])] self.memory_address += 3 def wmem_(self): self.memory[self.register_value(self.memory[self.memory_address + 1])] = self.register_value(self.memory[self.memory_address + 2]) self.memory_address += 3 def call_(self): self.stack.append(self.memory_address + 2) self.memory_address = self.register_value(self.memory[self.memory_address + 1]) def ret_(self): if len(self.stack) > 0: self.memory_address = self.stack.pop() else: raise Break_ def out_(self): print(chr(self.register_value(self.memory[self.memory_address + 1])), end='') self.memory_address += 2 def in_(self): if self.input_start == 0: self.input_index = 0 self.input_string = next(self.player_actions, None) if self.input_string == 'fix teleporter': self.registers[32775] = 25734 if self.input_string == None: self.input_string = input() self.registers[self.memory[self.memory_address + 1]] = ord(self.input_string[self.input_index]) self.input_start = 1 else: self.input_index += 1 if self.input_index < len(self.input_string): self.registers[self.memory[self.memory_address + 1]] = ord(self.input_string[self.input_index]) else: self.registers[self.memory[self.memory_address + 1]] = ord('\n') self.input_start = 0 self.memory_address += 2 def noop_(self): self.memory_address += 1 operations = [halt_, set_, push_, pop_, eq_, gt_, jmp_, jt_, jf_, add_, mult_, mod_, and_, or_, not_, rmem_, wmem_, call_, ret_, out_, in_, noop_]
StarcoderdataPython
9798075
<filename>server/galaxyls/services/xml/scanner.py """ This code is based on the Eclipse/Lemminx XML language server implementation: https://github.com/eclipse/lemminx/tree/master/org.eclipse.lemminx/src/main/java/org/eclipse/lemminx/dom Only the minimum subset of the XML dialect used by Galaxy tool wrappers is supported. """ from typing import Optional from .constants import ( _EQS, _EXL, _FSL, _LAN, _QMA, _RAN, _UDS, CDATA_END_CHAR_SEQ, CDATA_START_CHAR_SEQ, COMMENT_END_CHAR_SEQ, COMMENT_START_CHAR_SEQ, PI_END_CHAR_SEQ, QUOTE_CHARS, ) from .types import ScannerState, TokenType from .utils import MultiLineStream ERROR_UNEXPECTED_WHITESPACE = "Unexpected whitespace. Tag name must directly follow the open angle bracket." class XmlScanner: """This class allows to sequentially scan a XML document to find and extract the exact positions of every token inside the document.""" def __init__(self, source: str, initial_offset: int = 0, initial_state: ScannerState = ScannerState.WithinContent) -> None: self.stream = MultiLineStream(source, initial_offset) self.state = initial_state self.token_offset = 0 self.token_type = TokenType.Unknown self.token_error: Optional[str] = None def scan(self) -> TokenType: """Scans the document to sequentially find the next token.""" ofsset = self.stream.pos() token = self._internal_scan() if token != TokenType.EOS and ofsset == self.stream.pos(): self.stream.advance(1) return self._finish_token(ofsset, TokenType.Unknown) return token def get_token_offset(self) -> int: """Gets the current token offset inside the document.""" return self.token_offset def get_token_end(self) -> int: """Gets the last position/offset of the token.""" return self.stream.pos() def get_token_text(self) -> str: """Gets the text of this token from its offset to the current position.""" return self.stream.get_source()[self.token_offset : self.stream.pos()] def get_token_text_from_offset(self, offset: int) -> str: """Gets the text of this token from the given offset to the current position.""" return self.stream.get_source()[offset : self.stream.pos()] def _finish_token(self, offset: int, type: TokenType, error_message: Optional[str] = None) -> TokenType: self.token_type = type self.token_offset = offset self.token_error = error_message return type # flake8: noqa: C901 def _internal_scan(self) -> TokenType: """Scans the document for the next token. This method is a bit too complex, but, since it is a Python translation from the Java Eclipse/Lemminx parser, it could be easier to maintain it this way. Returns: TokenType: The token found. """ offset = self.stream.pos() if self.stream.eos(): return self._finish_token(offset, TokenType.EOS) if self.state == ScannerState.WithinComment: if self.stream.advance_if_chars(COMMENT_END_CHAR_SEQ): return self._finish_token(offset, TokenType.EndCommentTag) self.stream.advance_until_chars(COMMENT_END_CHAR_SEQ) return self._finish_token(offset, TokenType.Comment) elif self.state == ScannerState.PrologOrPI: if self.stream.advance_if_chars(PI_END_CHAR_SEQ): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.PIEnd) self.stream.advance_until_chars_or_new_tag(PI_END_CHAR_SEQ) if self.stream.peek_char() == _LAN: self.state = ScannerState.WithinContent return self._internal_scan() elif self.state == ScannerState.WithinPI: if self.stream.skip_whitespace(): return self._finish_token(offset, TokenType.Whitespace) if self.stream.advance_if_chars(PI_END_CHAR_SEQ): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.PIEnd) if self.stream.advance_until_chars_or_new_tag(PI_END_CHAR_SEQ): if self.stream.peek_char() == _LAN: self.state = ScannerState.WithinContent if len(self.get_token_text_from_offset(offset)) == 0: return self._finish_token(offset, TokenType.PIEnd) return self._finish_token(offset, TokenType.PIContent) elif self.state == ScannerState.WithinContent: if self.stream.advance_if_char(_LAN): if not self.stream.eos() and self.stream.peek_char() == _EXL: if self.stream.advance_if_chars(CDATA_START_CHAR_SEQ): self.state = ScannerState.WithinCDATA return self._finish_token(offset, TokenType.CDATATagOpen) if self.stream.advance_if_chars(COMMENT_START_CHAR_SEQ): self.state = ScannerState.WithinComment return self._finish_token(offset, TokenType.StartCommentTag) elif not self.stream.eos() and self.stream.peek_char() == _QMA: self.state = ScannerState.PrologOrPI return self._finish_token(offset, TokenType.StartPrologOrPI) if self.stream.advance_if_char(_FSL): self.state = ScannerState.AfterOpeningEndTag return self._finish_token(offset, TokenType.EndTagOpen) self.state = ScannerState.AfterOpeningStartTag return self._finish_token(offset, TokenType.StartTagOpen) self.stream.advance_until_char(_LAN) return self._finish_token(offset, TokenType.Content) elif self.state == ScannerState.WithinCDATA: if self.stream.advance_if_chars(CDATA_END_CHAR_SEQ): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.CDATATagClose) self.stream.advance_until_chars(CDATA_END_CHAR_SEQ) return self._finish_token(offset, TokenType.CDATAContent) elif self.state == ScannerState.AfterOpeningEndTag: if self._has_next_element_name(): self.state = ScannerState.WithinEndTag return self._finish_token(offset, TokenType.EndTag) if self.stream.skip_whitespace(): return self._finish_token( offset, TokenType.Whitespace, ERROR_UNEXPECTED_WHITESPACE, ) self.state = ScannerState.WithinEndTag if self.stream.advance_until_char_or_new_tag(_RAN): if self.stream.peek_char() == _RAN: self.state = ScannerState.WithinContent return self._internal_scan() return self._finish_token(offset, TokenType.Unknown) elif self.state == ScannerState.WithinEndTag: if self.stream.skip_whitespace(): return self._finish_token(offset, TokenType.Whitespace) if self.stream.advance_if_char(_RAN): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.EndTagClose) if self.stream.advance_until_char(_LAN): self.state = ScannerState.WithinContent return self._internal_scan() return self._finish_token(offset, TokenType.Whitespace) elif self.state == ScannerState.AfterOpeningStartTag: if self._has_next_element_name(): self.state = ScannerState.WithinTag return self._finish_token(offset, TokenType.StartTag) if self.stream.skip_whitespace(): return self._finish_token( offset, TokenType.Whitespace, ERROR_UNEXPECTED_WHITESPACE, ) self.state = ScannerState.WithinTag if self.stream.advance_until_char_or_new_tag(_RAN): if self.stream.peek_char() == _LAN: self.state = ScannerState.WithinContent return self._internal_scan() return self._finish_token(offset, TokenType.Unknown) elif self.state == ScannerState.WithinTag: if self.stream.skip_whitespace(): return self._finish_token(offset, TokenType.Whitespace) if self.stream.advance_if_chars(PI_END_CHAR_SEQ): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.PIEnd) if self._has_next_attribute_name(): self.state = ScannerState.AfterAttributeName return self._finish_token(offset, TokenType.AttributeName) if self.stream.advance_if_char(_FSL): self.state = ScannerState.WithinTag if self.stream.advance_if_char(_RAN): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.StartTagSelfClose) return self._finish_token(offset, TokenType.Unknown) ch = self.stream.peek_char() if ch in QUOTE_CHARS: self.state = ScannerState.BeforeAttributeValue return self._internal_scan() if self.stream.advance_if_char(_RAN): self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.StartTagClose) if self.stream.advance_until_char(_LAN): self.state = ScannerState.WithinContent return self._internal_scan() return self._finish_token(offset, TokenType.Unknown) elif self.state == ScannerState.AfterAttributeName: if self.stream.skip_whitespace(): return self._finish_token(offset, TokenType.Whitespace) if self.stream.advance_if_char(_EQS): self.state = ScannerState.BeforeAttributeValue return self._finish_token(offset, TokenType.DelimiterAssign) self.state = ScannerState.WithinTag return self._internal_scan() elif self.state == ScannerState.BeforeAttributeValue: if self.stream.skip_whitespace(): return self._finish_token(offset, TokenType.Whitespace) if self._has_next_attribute_value(): self.state = ScannerState.WithinTag return self._finish_token(offset, TokenType.AttributeValue) self.state = ScannerState.WithinTag return self._internal_scan() self.stream.advance(1) self.state = ScannerState.WithinContent return self._finish_token(offset, TokenType.Unknown) def _has_next_element_name(self) -> bool: first = self.stream.peek_char() if not self._is_valid_start_name_character(chr(first)): return False self.stream.advance(1) self.stream.advance_while_char(self._is_valid_name_character) return True def _has_next_attribute_name(self) -> bool: return self.stream.advance_while_char(self._is_valid_name_character) > 0 def _has_next_attribute_value(self) -> bool: first = self.stream.peek_char() if first in QUOTE_CHARS: self.stream.advance(1) if self.stream.advance_until_char(first): self.stream.advance(1) return True return False def _is_valid_name_character(self, ch: str) -> bool: return ord(ch) == _UDS or ch.isalnum() def _is_valid_start_name_character(self, ch: str) -> bool: return ord(ch) == _UDS or ch.isalpha() # No numbers allowed as first character
StarcoderdataPython
3431596
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # BuildRPMDriver derived classes expose the following methods: # # build_package(). This method will perform the actual package build using # the driver-specific approach. from dlrn.config import setup_logging from dlrn.drivers.buildrpm import BuildRPMDriver import io import logging import multiprocessing import os import re import sh from time import localtime from time import strftime from time import time logger = logging.getLogger("dlrn-build-koji") class KojiBuildDriver(BuildRPMDriver): DRIVER_CONFIG = { 'kojibuild_driver': { 'koji_krb_principal': {'name': 'krb_principal'}, 'koji_krb_keytab': {'name': 'krb_keytab'}, 'koji_scratch_build': {'name': 'scratch_build', 'type': 'boolean', 'default': True}, 'koji_build_target': {'name': 'build_target'}, 'koji_arch': {'name': 'arch', 'default': 'x86_64'}, 'koji_use_rhpkg': {'name': 'use_rhpkg', 'type': 'boolean'}, 'koji_exe': {'default': 'koji'}, 'fetch_mock_config': {'type': 'boolean'}, 'mock_base_packages': {'default': ''}, 'mock_package_manager': {'default': ''}, 'koji_add_tags': {'name': 'additional_koji_tags', 'type': 'list', 'default': []}, } } def __init__(self, *args, **kwargs): super(KojiBuildDriver, self).__init__(*args, **kwargs) self.verbose_build = False self.exe_name = self.config_options.koji_exe # Check for empty additional_koji_tags value if self.config_options.koji_add_tags == ['']: self.config_options.koji_add_tags = [] setup_logging() # We are using this method to "tee" koji output to a log file and stdout def _process_koji_output(self, line): if self.verbose_build: logger.info(line[:-1]) self.koji_fp.write(line) def write_mock_config(self, filename): """Retrieve mock config from Koji instance :param filename: output filename to write mock config """ target = self.config_options.koji_build_target arch = self.config_options.koji_arch try: worker_id = multiprocessing.current_process()._identity[0] except IndexError: # Not in multiprocessing mode worker_id = 1 run_cmd = [self.exe_name] run_cmd.extend(['mock-config', '--arch', arch, '--target', target, '-o', filename]) # FIXME(hguemar): add proper exception management sh.env(run_cmd, _env={'PATH': '/usr/bin/'}) lines = [] with open(filename, 'r') as fp: for line in fp.readlines(): if (line.startswith("config_opts['chroot_setup_cmd']") and self.config_options.mock_base_packages != ''): lines.append("config_opts['chroot_setup_cmd'] = " "'install %s'\n" % self.config_options.mock_base_packages) elif line.startswith("config_opts['root']"): # Append worker id to mock buildroot name line = line[:-2] + "-" + str(worker_id) + "'\n" lines.append(line) else: lines.append(line) if self.config_options.mock_package_manager: lines.append("config_opts['package_manager'] = '%s'\n" % self.config_options.mock_package_manager) with open(filename, 'w') as fp: fp.write(''.join(lines)) def _build_with_rhpkg(self, package_name, output_dir, src_rpm, scratch, commit): """Use rhpkg as build backend :param package_name: package name to build :param output_dir: output directory :param src_rpm: source RPM to build :param scratch: define if build is scratch or not """ distgit_dir = os.path.join( self.config_options.datadir, package_name + "_distro") ds_source_git = os.path.join( self.config_options.datadir, package_name + "_downstream") build_exception = None # if we are using rhpkg, we need to create a kerberos ticket krb_principal = self.config_options.koji_krb_principal keytab_file = self.config_options.koji_krb_keytab with io.open("%s/kerberos.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: sh.kinit('-k', '-t', keytab_file, krb_principal) rhpkg = sh.rhpkg.bake(_cwd=distgit_dir, _tty_out=False, _timeout=3600, _err=self._process_koji_output, _out=self._process_koji_output, _env={'PATH': '/usr/bin/'}) if (self.config_options.pkginfo_driver == 'dlrn.drivers.downstream.DownstreamInfoDriver' and self.config_options.use_upstream_spec): # This is a special situation. We are copying the upstream # spec over, but then building the srpm and importing. In this # situation, rhpkg import will complain because there are # uncommited changes to the repo... and we will commit them # the srpm. So let's reset the git repo right before that. git = sh.git.bake(_cwd=distgit_dir, _tty_out=False, _timeout=3600, _err=self._process_koji_output, _out=self._process_koji_output, _env={'PATH': '/usr/bin/'}) git.checkout('--', '*') with io.open("%s/rhpkgimport.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: rhpkg('import', '--skip-diff', src_rpm) # Get build NVR m = re.search(r'([0-9a-zA-Z._+-]+)\.src\.rpm', src_rpm) if m and m.group(1): package_nvr = m.group(1) else: package_nvr = 'XXX-XXX' pkg_date = strftime("%Y-%m-%d-%H%M%S", localtime(time())) rhpkg('commit', '-p', '-m', 'DLRN build at %s\n\nSource SHA: %s\nDist SHA: %s\n' 'NVR: %s\n' % (pkg_date, commit.commit_hash, commit.distro_hash, package_nvr)) # After running rhpkg commit, we have a different commit hash, so # let's update it git = sh.git.bake(_cwd=distgit_dir, _tty_out=False, _timeout=3600) repoinfo = str(git.log("--pretty=format:%H %ct", "-1", ".")).\ strip().split(" ") if (self.config_options.pkginfo_driver == 'dlrn.drivers.downstream.DownstreamInfoDriver'): git = sh.git.bake(_cwd=ds_source_git, _tty_out=False, _timeout=3600) # In some cases, a patch rebasing script could update the # downstream source git, so we ensure we have the latest code git.pull() repoinfo_ds_git = str(git.log("--pretty=format:%H %ct", "-1", ".")).strip().split(" ") logger.info("Updated git: %s" % repoinfo) # When using rhpkg with a pkginfo driver other than downstreamdriver, # we want to overwrite the distro_hash instead of extended_hash. # Otherwise, The distgit update will trigger yet another build on # the next run, causing an endless loop if (self.config_options.pkginfo_driver != 'dlrn.drivers.downstream.DownstreamInfoDriver'): commit.distro_hash = repoinfo[0] commit.dt_distro = repoinfo[1] else: commit.extended_hash = '%s_%s' % (repoinfo[0], repoinfo_ds_git[0]) commit.dt_extended = repoinfo[1] # Since we are changing the extended_hash, we need to rename the # output directory to match the updated value datadir = os.path.realpath(self.config_options.datadir) new_output_dir = os.path.join(datadir, "repos", commit.getshardedcommitdir()) logger.info("Renaming %s to %s" % (output_dir, new_output_dir)) os.rename(output_dir, new_output_dir) output_dir = new_output_dir with io.open("%s/rhpkgbuild.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: try: rhpkg('build', '--skip-nvr-check', scratch=scratch) except Exception as e: build_exception = e return build_exception, "%s/rhpkgbuild.log" % output_dir def _build_with_exe(self, package_name, output_dir, src_rpm, scratch, commit): """Build using koji/brew executables (cbs being an aliases) :param package_name: package name to build :param output_dir: output directory :param src_rpm: source RPM to build :param scratch: define if build is scratch or not """ krb_principal = self.config_options.koji_krb_principal keytab_file = self.config_options.koji_krb_keytab scratch = self.config_options.koji_scratch_build target = self.config_options.koji_build_target # Build package using koji/brew run_cmd = [self.exe_name] if krb_principal: run_cmd.extend(['--principal', krb_principal, '--keytab', keytab_file]) run_cmd.extend(['build', '--wait', target, src_rpm]) build_exception = None with io.open("%s/kojibuild.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: try: sh.env(run_cmd, _err=self._process_koji_output, _out=self._process_koji_output, _cwd=output_dir, scratch=scratch, _env={'PATH': '/usr/bin/'}) except Exception as e: build_exception = e return build_exception, "%s/kojibuild.log" % output_dir def build_package(self, **kwargs): """Valid parameters: :param output_directory: directory where the SRPM is located, and the built packages will be. :param package_name: name of a package to build """ output_dir = kwargs.get('output_directory') package_name = kwargs.get('package_name') commit = kwargs.get('commit') self.verbose_build = kwargs.get('verbose') scratch = self.config_options.koji_scratch_build build_exception = None # Find src.rpm for rpm in os.listdir(output_dir): if rpm.endswith(".src.rpm"): src_rpm = os.path.realpath('%s/%s' % (output_dir, rpm)) try: if self.config_options.koji_use_rhpkg: build_method = self._build_with_rhpkg else: build_method = self._build_with_exe build_exception, logfile = build_method( package_name, output_dir, src_rpm, scratch, commit) if self.config_options.koji_use_rhpkg: # In this case, we need to re-calculate the output directory datadir = os.path.realpath(self.config_options.datadir) output_dir = os.path.join(datadir, "repos", commit.getshardedcommitdir()) # Find task id to download logs with open(logfile, 'r') as fp: log_content = fp.readlines() task_id = None for line in log_content: m = re.search(r'^Created task: (\d+)$', line) if m: logger.info("Created task id %s" % m.group(1)) task_id = m.group(1) break if not task_id: raise Exception('Failed to find task id for the koji build') # Also find package name if we need to add tags if len(self.config_options.koji_add_tags) > 0: # Get build name m = re.search(r'([0-9a-zA-Z._+-]+)\.src\.rpm', src_rpm) package_nvr = None if m: logger.info("Adding tags for %s" % m.group(1)) package_nvr = m.group(1) if not package_nvr: raise Exception('Failed to find package nvr when tagging') for tag in self.config_options.koji_add_tags: run_cmd = [] run_cmd.extend( [self.exe_name, 'tag-build', tag, package_nvr]) with io.open("%s/additional_tags.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: try: sh.env(run_cmd, _err=self._process_koji_output, _out=self._process_koji_output, _cwd=output_dir, _env={'PATH': '/usr/bin/'}) except Exception as e: raise e # Download build artifacts and logs run_cmd = [] run_cmd.extend( [self.exe_name, 'download-task', '--logs', task_id]) with io.open("%s/build_download.log" % output_dir, 'a', encoding='utf-8', errors='replace') as self.koji_fp: try: sh.env(run_cmd, _err=self._process_koji_output, _out=self._process_koji_output, _cwd=output_dir, _env={'PATH': '/usr/bin/'}) except Exception as e: raise e # All went fine, create the $OUTPUT_DIRECTORY/installed file open('%s/installed' % output_dir, 'a').close() finally: # Finally run restorecon try: sh.restorecon('-Rv', output_dir) except Exception as e: logger.info('restorecon did not run correctly, %s' % e) # We only want to raise the build exception at the very end, after # downloading all relevant artifacts if build_exception: raise build_exception
StarcoderdataPython
3314970
# coding: utf-8 import csv # I want to import the csv library. from pathlib import Path # I want the Path function from the pathlib library. """Part 1: Automate the Calculations. Automate the calculations for the loan portfolio summaries. First, let's start with some calculations on a list of prices for 5 loans. 1. Use the `len` function to calculate the total number of loans in the list. 2. Use the `sum` function to calculate the total of all loans in the list. 3. Using the sum of all loans and the total number of loans, calculate the average loan price. 4. Print all calculations with descriptive messages. """ loan_costs = [500, 600, 200, 1000, 450] # How many loans are in the list? # @TODO: Use the `len` function to calculate the total number of loans in the list. # Print the number of loans from the list def loan_count(loan_info): number_of_loans = len(loan_info) return number_of_loans def loan_count_print(loan_info_1): number_of_loans_1 = loan_count(loan_info_1) print(f"There is a total of {number_of_loans_1} loans.") loan_count_print(loan_costs) # What is the total of all loans? # @TODO: Use the `sum` function to calculate the total of all loans in the list. # Print the total value of the loans def loan_total(loan_data): total_of_loans = sum(loan_data) return total_of_loans def loan_total_print(loan_data_1): total_of_loans_1 = loan_total(loan_data_1) print(f"The loans sum to a total of ${total_of_loans_1: .2f}.") loan_total_print(loan_costs) # What is the average loan amount from the list? # @TODO: Using the sum of all loans and the total number of loans, calculate the average loan price. # Print the average loan amount def loan_average (loan_material): average_of_loans = loan_total(loan_material)/loan_count(loan_material) return average_of_loans def loan_average_print(loan_material_1): average_of_loans_1 = loan_average(loan_material_1) print(f"The average loan price is ${average_of_loans_1: .2f}.") loan_average_print(loan_costs) """Part 2: Analyze Loan Data. Analyze the loan to determine the investment evaluation. Using more detailed data on one of these loans, follow these steps to calculate a Present Value, or a "fair price" for what this loan would be worth. 1. Use get() on the dictionary of additional information to extract the **Future Value** and **Remaining Months** on the loan. a. Save these values as variables called `future_value` and `remaining_months`. b. Print each variable. @NOTE: **Future Value**: The amount of money the borrower has to pay back upon maturity of the loan (a.k.a. "Face Value") **Remaining Months**: The remaining maturity (in months) before the loan needs to be fully repaid. 2. Use the formula for Present Value to calculate a "fair value" of the loan. Use a minimum required return of 20% as the discount rate. 3. Write a conditional statement (an if-else statement) to decide if the present value represents the loan's fair value. a. If the present value of the loan is greater than or equal to the cost, then print a message that says the loan is worth at least the cost to buy it. b. Else, the present value of the loan is less than the loan cost, then print a message that says that the loan is too expensive and not worth the price. @NOTE: If Present Value represents the loan's fair value (given the required minimum return of 20%), does it make sense to buy the loan at its current cost? """ # Given the following loan data, you will need to calculate the present value for the loan loan = { "loan_price": 500, "remaining_months": 9, "repayment_interval": "bullet", "future_value": 1000, } # @TODO: Use get() on the dictionary of additional information to extract the Future Value and Remaining Months on the loan. # Print each variable. def future_value(loan_1): fv = loan_1.get("future_value") return fv def future_value_print(loan_2): fv_1 = future_value(loan_2) print(f"The future value of the loan is ${fv_1: .2f}.") future_value_print(loan) def remaining_months(loan_3): rm = loan_3.get("remaining_months") return rm def remaining_months_print(loan_4): rm_1 = remaining_months(loan_4) print(f"The months remaining on the loan is {rm_1} months.") remaining_months_print(loan) # @TODO: Use the formula for Present Value to calculate a "fair value" of the loan. # Use a minimum required return of 20% as the discount rate. # You'll want to use the **monthly** version of the present value formula. # HINT: Present Value = Future Value / (1 + Discount_Rate/12) ** remaining_months discount_rate = 0.20 def present_value(loan_5): pv = future_value(loan_5) / ((1 + discount_rate/12) ** remaining_months(loan_5)) return pv def present_value_print(loan_6): pv_1 = present_value(loan_6) print(f"The present value of the loan is ${pv_1: .2f} given a future value of ${future_value(loan_6): .2f}, a discount rate of {discount_rate * 100: .2f}%, and {remaining_months(loan_6)} months remaining.") present_value_print(loan) # If Present Value represents what the loan is really worth, does it make sense to buy the loan at its cost? # @TODO: Write a conditional statement (an if-else statement) to decide if the present value represents the loan's fair value. # If the present value of the loan is greater than or equal to the cost, then print a message that says the loan is worth at least the cost to buy it. # Else, the present value of the loan is less than the loan cost, then print a message that says that the loan is too expensive and not worth the price. def loan_cost(loan_7): lc = loan_7.get("loan_price") return lc def loan_cost_print(loan_8): lc_1 = loan_cost(loan_8) print(f"The cost of the loan is ${lc_1: .2f}.") loan_cost_print(loan) def buy_nobuy_loan(loan_9): if present_value(loan_9) >= loan_cost(loan_9): print(f"The loan is worth at least the cost to buy it.") #loan_cost_print(loan_9) #present_value_print(loan_9) else: print(f"The loan is too expensive and not worth the price.") #loan_cost_print(loan_9) #present_value_print(loan_9) buy_nobuy_loan(loan) """Part 3: Perform Financial Calculations. Perform financial calculations using functions. 1. Define a new function that will be used to calculate present value. a. This function should include parameters for `future_value`, `remaining_months`, and the `annual_discount_rate` b. The function should return the `present_value` for the loan. 2. Use the function to calculate the present value of the new loan given below. a. Use an `annual_discount_rate` of 0.2 for this new loan calculation. """ # Given the following loan data, you will need to calculate the present value for the loan new_loan = { "loan_price": 800, "remaining_months": 12, "repayment_interval": "bullet", "future_value": 1000, } # I already created the present_value and present_value_print functions. # I am creating the next function to satisfy the above specifications for the assignment. # @TODO: Define a new function that will be used to calculate present value. # This function should include parameters for `future_value`, `remaining_months`, and the `annual_discount_rate` # The function should return the `present_value` for the loan. def calculate_present_value(fv_2, rm_2, discount_rate_1): pv_2 = fv_2 / ((1 + discount_rate_1/12) ** rm_2) return pv_2 # I already created the present_value function. I am creating this function to satisfy the above specifications for the assignment. # present_value(new_loan) # accomplishes the same # print(f"${present_value(new_loan): .2f}") # prints the returned value with a dollar sign and two decimal places # @TODO: Use the function to calculate the present value of the new loan given below. # Use an `annual_discount_rate` of 0.2 for this new loan calculation. annual_discount_rate = 0.20 present_value_1 = calculate_present_value(new_loan["future_value"], new_loan["remaining_months"], annual_discount_rate) print(f"The present value of the loan is: ${present_value_1: .2f}") # I already created the present_value_print function. I am creating this function to satisfy the above specifications for the assignment. # present_value_print(new_loan) # performs a similar print statement with additional details """Part 4: Conditionally filter lists of loans. In this section, you will use a loop to iterate through a series of loans and select only the inexpensive loans. 1. Create a new, empty list called `inexpensive_loans`. 2. Use a for loop to select each loan from a list of loans. a. Inside the for loop, write an if-statement to determine if the loan_price is less than 500 b. If the loan_price is less than 500 then append that loan to the `inexpensive_loans` list. 3. Print the list of inexpensive_loans. """ loans = [ { "loan_price": 700, "remaining_months": 9, "repayment_interval": "monthly", "future_value": 1000, }, { "loan_price": 500, "remaining_months": 13, "repayment_interval": "bullet", "future_value": 1000, }, { "loan_price": 200, "remaining_months": 16, "repayment_interval": "bullet", "future_value": 1000, }, { "loan_price": 900, "remaining_months": 16, "repayment_interval": "bullet", "future_value": 1000, }, ] # @TODO: Create an empty list called `inexpensive_loans` inexpensive_loans = [] # @TODO: Loop through all the loans and append any that cost $500 or less to the `inexpensive_loans` list for loan in loans: loan_price = loan.get("loan_price") if loan_price <= 500: inexpensive_loans.append(loan) # @TODO: Print the `inexpensive_loans` list print(inexpensive_loans) """Part 5: Save the results. Output this list of inexpensive loans to a csv file 1. Use `with open` to open a new CSV file. a. Create a `csvwriter` using the `csv` library. b. Use the new csvwriter to write the header variable as the first row. c. Use a for loop to iterate through each loan in `inexpensive_loans`. i. Use the csvwriter to write the `loan.values()` to a row in the CSV file. Hint: Refer to the official documentation for the csv library. https://docs.python.org/3/library/csv.html#writer-objects """ # Set the output header header = ["loan_price", "remaining_months", "repayment_interval", "future_value"] # Set the output file path output_path = Path("inexpensive_loans.csv") # @TODO: Use the csv library and `csv.writer` to write the header row # and each row of `loan.values()` from the `inexpensive_loans` list. with open(output_path, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(header) # I am writing the header first. for loan in inexpensive_loans: csvwriter.writerow(loan.values()) # I am writing the inexpensive loans rows.
StarcoderdataPython
6522057
import numpy as np import pytest from pizza_cutter.slice_utils.locate import build_slice_locations from ..masks import ( in_unique_coadd_tile_region, get_slice_bounds, _mask_one_slice_for_gaia_stars, _mask_one_slice_for_missing_data, MASK_INTILE, MASK_GAIA_STAR, MASK_NOSLICE, _wrap_ra, make_mask, ) def test_wrap_ra(): dra = np.array([-350, -170, 0, 350, 350 + 360*10, -350 - 360*10]) ans = np.array([10, 360-170, 0, 350, 350, 10]) assert np.allclose(_wrap_ra(dra), ans) def test_wrap_dra_array_nan_inf(): dra = np.array([np.nan, np.inf, -350, -170, 0, 350, 350 + 360*10, -350 - 360*10]) ans = np.array([np.nan, np.inf, 10, 360-170, 0, 350, 350, 10]) msk = np.isfinite(dra) assert np.allclose(_wrap_ra(dra[msk]), ans[msk]) assert np.isnan(ans[0]) assert np.isinf(ans[1]) def test_in_unique_coadd_tile_region(): ra = np.array([ 210, 190, 210, 200, 220, 210, 210, np.nan, np.inf, 210, 210, 210 + 360*4, 210 - 360*4, ]) dec = np.array([ 0, 0, 20, 0, 0, -10, 10, 0, 0, np.nan, np.inf, 0, 0, ]) truth = np.array([ True, False, False, False, True, False, True, False, False, False, False, True, True, ], dtype=bool) res = in_unique_coadd_tile_region( ra=ra, dec=dec, crossra0='N', udecmin=-10, udecmax=10, uramin=200, uramax=220, ) assert np.array_equal(res, truth) def test_in_unique_coadd_tile_region_crossra0(): ra = np.array([ 0, 30, 0, 340, 20, 0, 0, np.nan, np.inf, 0, 0, 360*4, -360*4, ]) dec = np.array([ 0, 0, 20, 0, 0, -10, 10, 0, 0, np.nan, np.inf, 0, 0, ]) truth = np.array([ True, False, False, False, True, False, True, False, False, False, False, True, True, ], dtype=bool) res = in_unique_coadd_tile_region( ra=ra, dec=dec, crossra0='Y', udecmin=-10, udecmax=10, uramin=360-20, uramax=20, ) assert np.array_equal(res, truth) @pytest.mark.parametrize('col,row,truth', [ (200, 200, {"min_row": 50, "max_row": 150, "min_col": 50, "max_col": 150}), (0, 200, {"min_row": 50, "max_row": 150, "min_col": 0, "max_col": 150}), (200, 0, {"min_row": 0, "max_row": 150, "min_col": 50, "max_col": 150}), (0, 0, {"min_row": 0, "max_row": 150, "min_col": 0, "max_col": 150}), (800, 200, {"min_row": 50, "max_row": 150, "min_col": 50, "max_col": 200}), (200, 800, {"min_row": 50, "max_row": 200, "min_col": 50, "max_col": 150}), (800, 800, {"min_row": 50, "max_row": 200, "min_col": 50, "max_col": 200}), (0, 800, {"min_row": 50, "max_row": 200, "min_col": 0, "max_col": 150}), (800, 0, {"min_row": 0, "max_row": 150, "min_col": 50, "max_col": 200}), ]) def test_get_slice_bounds(col, row, truth): res = get_slice_bounds( orig_start_col=col, orig_start_row=row, central_size=100, buffer_size=50, coadd_dims=(1000, 1000), ) assert res == truth def test_mask_one_gaia_stars(show=False): buffer_size = 5 central_size = 10 coadd_dims = (100, 100) gaia_stars = np.array( [(20, 10, 5)], dtype=[('x', 'f4'), ('y', 'f4'), ('radius_pixels', 'f4')], ) msk_img = np.zeros(coadd_dims, dtype=np.int32) _mask_one_slice_for_gaia_stars( buffer_size=buffer_size, central_size=central_size, gaia_stars=gaia_stars, symmetrize=False, coadd_dims=coadd_dims, msk_img=msk_img, scol=15, srow=0, ) assert np.any((msk_img & MASK_GAIA_STAR) != 0) assert np.all((msk_img[10, 20:24] & MASK_GAIA_STAR) != 0) assert np.all((msk_img[10, 16:20] & MASK_GAIA_STAR) == 0) assert np.all((msk_img[14, 23:26] & MASK_GAIA_STAR) == 0) if show: import matplotlib.pyplot as plt plt.figure() plt.imshow(msk_img) import pdb pdb.set_trace() msk_img = np.zeros(coadd_dims, dtype=np.int32) _mask_one_slice_for_gaia_stars( buffer_size=buffer_size, central_size=central_size, gaia_stars=gaia_stars, symmetrize=True, coadd_dims=coadd_dims, msk_img=msk_img, scol=15, srow=0, ) if show: import matplotlib.pyplot as plt plt.figure() plt.imshow(msk_img) import pdb pdb.set_trace() assert np.any((msk_img & MASK_GAIA_STAR) != 0) assert np.all((msk_img[10, 20:24] & MASK_GAIA_STAR) != 0) assert np.all((msk_img[10, 16:20] & MASK_GAIA_STAR) == 0) assert np.all((msk_img[14, 20:26] & MASK_GAIA_STAR) != 0) def test_mask_one_slice(): buffer_size = 5 central_size = 10 coadd_dims = (100, 100) flags = 2**9 msk_img = np.zeros(coadd_dims, dtype=np.int32) _mask_one_slice_for_missing_data( buffer_size=buffer_size, central_size=central_size, coadd_dims=coadd_dims, msk_img=msk_img, scol=15, srow=0, flags=flags, ) for f in [MASK_NOSLICE, flags]: assert np.all((msk_img[0:15, 20:30] & f) != 0) assert np.all((msk_img[15:, 30:] & f) == 0) _mask_one_slice_for_missing_data( buffer_size=buffer_size, central_size=central_size, coadd_dims=coadd_dims, msk_img=msk_img, scol=15, srow=15, flags=flags, ) for f in [MASK_NOSLICE, flags]: assert np.all((msk_img[20:30, 20:30] & f) != 0) assert np.all((msk_img[30:, 30:] & f) == 0) @pytest.mark.parametrize("msk_exp_rad", [0, 99]) def test_make_mask(coadd_image_data, msk_exp_rad): preconfig = { "gaia_star_masks": {"symmetrize": False, "mask_expand_rad": msk_exp_rad}, } missing_slice_inds = [100, 768] missing_slice_flags = [2**9, 2**11] central_size = 100 buffer_size = 50 wcs = coadd_image_data["eu_wcs"] position_offset = coadd_image_data["position_offset"] coadd_dims = (10000, 10000) info = coadd_image_data gaia_stars = np.array( [(275, 275, 100-msk_exp_rad)], dtype=[("x", "f8"), ("y", "f8"), ("radius_pixels", "f8")], ) _, _, srow, scol = build_slice_locations( central_size=central_size, buffer_size=buffer_size, image_width=coadd_dims[0], ) obj_data = np.zeros( srow.shape[0], dtype=[('orig_start_row', 'i4', (2,)), ('orig_start_col', 'i4', (2,))] ) obj_data["orig_start_row"][:, 0] = srow obj_data["orig_start_col"][:, 0] = scol msk_img, hs_msk = make_mask( preconfig=preconfig, missing_slice_inds=missing_slice_inds, missing_slice_flags=missing_slice_flags, obj_data=obj_data, central_size=central_size, buffer_size=buffer_size, wcs=wcs, position_offset=position_offset, coadd_dims=coadd_dims, info=info, gaia_stars=gaia_stars, healpix_nside=131072, ) if False: import matplotlib.pyplot as plt fig, axs = plt.subplots() axs.imshow(msk_img[:500, :500]) import pdb pdb.set_trace() hs_vals, hs_ra, hs_dec = hs_msk.valid_pixels_pos(return_pixels=True) hs_vals = hs_msk[hs_vals] # basic tests # we have some bits set assert np.any((msk_img & MASK_INTILE) != 0) assert np.any((msk_img & MASK_NOSLICE) != 0) assert np.any((msk_img & MASK_GAIA_STAR) != 0) assert np.any((hs_vals & MASK_INTILE) != 0) assert np.any((hs_vals & MASK_NOSLICE) != 0) assert np.any((hs_vals & MASK_GAIA_STAR) != 0) assert np.any((msk_img & 2**9) != 0) assert np.any((msk_img & 2**11) != 0) # edges are all zero assert np.all(msk_img[:, 0] == 0) assert np.all(msk_img[:, -1] == 0) assert np.all(msk_img[0, :] == 0) assert np.all(msk_img[-1, :] == 0) for x, y in [ (0, np.arange(coadd_dims[0])), (coadd_dims[1]-1, np.arange(coadd_dims[0])), (np.arange(coadd_dims[1]), 0), (np.arange(coadd_dims[1]), coadd_dims[0]-1), ]: ra, dec = wcs.image2sky(x+position_offset, y+position_offset) _vals = hs_msk.get_values_pos(ra, dec) assert np.all(_vals == 0) # most of the coadd is fine assert np.mean((msk_img & MASK_INTILE) != 0) > 0.80 assert np.mean((hs_vals & MASK_INTILE) != 0) > 0.80 # slice ind at 1, 1 is fully masked except for edges assert np.all((msk_img[220:250, 220:250] & MASK_NOSLICE) != 0) assert np.all((msk_img[220:250, 220:250] & 2**9) != 0) assert np.all((msk_img[220:250, 220:250] & 2**11) == 0) x, y = np.meshgrid(np.arange(220, 250), np.arange(220, 250)) x = x.ravel() y = y.ravel() ra, dec = wcs.image2sky(x+position_offset, y+position_offset) _vals = hs_msk.get_values_pos(ra, dec) assert np.all((_vals & MASK_NOSLICE) != 0) assert np.all((_vals & 2**9) != 0) assert np.all((_vals & 2**11) == 0) # slice ind at 6, 75 is fully masked except for edges assert np.all((msk_img[750:850, 7550:7650] & MASK_NOSLICE) != 0) assert np.all((msk_img[750:850, 7550:7650] & 2**9) == 0) assert np.all((msk_img[750:850, 7550:7650] & 2**11) != 0) x, y = np.meshgrid(np.arange(7550, 7650), np.arange(750, 850)) x = x.ravel() y = y.ravel() ra, dec = wcs.image2sky(x+position_offset, y+position_offset) _vals = hs_msk.get_values_pos(ra, dec) assert np.all((_vals & MASK_NOSLICE) != 0) assert np.all((_vals & 2**9) == 0) assert np.all((_vals & 2**11) != 0) # there is a star so let's check that assert np.all((msk_img[260:290, 260:290] & MASK_GAIA_STAR) != 0) x, y = np.meshgrid(np.arange(260, 290), np.arange(260, 290)) x = x.ravel() y = y.ravel() ra, dec = wcs.image2sky(x+position_offset, y+position_offset) _vals = hs_msk.get_values_pos(ra, dec) assert np.all((_vals & MASK_GAIA_STAR) != 0) # make sure the buffer is ok assert np.all(msk_img[0:20, 0:20] == 0) x, y = np.meshgrid(np.arange(20), np.arange(20)) x = x.ravel() y = y.ravel() ra, dec = wcs.image2sky(x+position_offset, y+position_offset) _vals = hs_msk.get_values_pos(ra, dec) assert np.all(_vals == 0)
StarcoderdataPython
8076789
"""Module constituting the commandscript pylint rated 10.0/10 """ MENU_DICTIONARY = {} HELP_DICTIONARY = {} COMMANDSCRIPT = [] HEADERS = ['COMMANDS', 'DEFAULTKEYS', 'NAVIGATION', 'DISPLAY', 'SEARCHING', 'ORGANIZING NOTES', 'DEFAULTS', 'INPUT/OUTPUT', 'ADVANCED', 'HYPERLINKS', 'DEFAULT', 'ADVANCED DISPLAY ONE', 'ADVANCED DISPLAY TWO', 'KNOWLEDGE BASE & SYSTEM'] PERIOD = '.' BLANK = ' ' EMPTYCHAR = '' def make_command_dict (text): """ Creates the HELP DICTIOARY from the text of COMMMANDS Splits text into lines. Skips over line if equal to '||' Splits line into phrases divided by '|' First phrase = COMMAND Second phrase = PARAMETER Third phrase = DESCRIPTION/INSTRUCTION """ started = True command_text = '' parameter_text = '' instruction_text = '' for line in text.split('\n'): if line != '||': phrases = line.split('|')+['','',''] command,parameters,instruction = phrases[0].strip(),phrases[1].strip(),phrases[2].strip() if command: if not started: for com_temp in command_text.split(','): HELP_DICTIONARY[com_temp.strip()] = (parameter_text.replace('\n\n','\n'), instruction_text.replace('\n\n','\n')) command_text = command parameter_text = parameters + ' ' instruction_text = instruction + ' ' started = False else: parameter_text += parameters + ' ' instruction_text += instruction + ' ' for com_temp in command_text.split(','): if com_temp.strip() not in HELP_DICTIONARY: HELP_DICTIONARY[com_temp.strip()] = (parameter_text,instruction_text) COMMANDS = """ || COMMAND|PARAMETERS|FUNCTION || |BASIC NOTE ENTRY| || // divides multiple commands | | {{int}}| |for feeding back search results [?] | |for feeding back marked indexes [/] | |for last entered or displayed note || | #yr-mo-dy |To enter dates in ranges, use POUND ent, enter, + |key(s);text.. {$ to suppress show}.. |enter a new note |/= suppress default keys | |Indexes, entered as keys, serve as hyperlinks |SEQUENCE@INTEGER |For entering a sequence key |SEQUENCE@#1770-03-20 |SEQUENCE@_INDEX ent, enter, + |index |enter a note at index enternext, ++| |Enter a 'next' note 1.1>1.2 enterchild, +++| |Enter a 'child' note 1>1.1 enterback, -| |Enter a note at.. previous level 1.1.1>1.2 conent | |Enter a series of notes conchild | |Enter a series of children connext | |Enter a series of nextnotes ;; |To quit connext and conchild modes delete,del,d|index or indexrange |delete note(s) /|To quit entering mode and continue | |cycling through notes | |MODIFYING NOTES| editnote|indexrange.. /$ annotate |edit note(s) keys and text editnotekeys|indexrange |edit note(s) keys editnotetext|indexrange |edit note(s) text revise,rev|indexrange;index to merge;break mark|revise a note.. | /$ in back /&.. front and back /*BREAK /?Newu undo|undo |undo last action redo|redo |redo last action tutorial| /$ to reload & Restart tutorial starttutorial |To resume tutorial """ DEFAULTKEYS = """ |MARKING NOTES| marked | |show all marked keys [ | |mark current key ] | |unmark current key addmarks |indexranges |mark notes in range deletemarks |indexranges|unmark notes in range clearmarks | |unmark all notes |DEFAULT KEYS| addkeys,ak|key,key...;keymacroname /$ to save macro |add new default keys addkey|key |add one key to default keys newkeys|keymacro.. /$ keep old|change to new keys from keymacro changekeys|keys;keymacroname /$ to save macro |changes to new default keys deletekey,dk| |delete last default key deletedefaultkeys| |delete default keys clearkeys| |clear all default keys grabkeys|indexrange.. /$ no all caps.. /& no first caps | suspendkey|keys |Suspend queried sequence key unsuspendkey|keys |Unsuspend queried sequence key clearsuspended| |Clear all sequence keys """ NAVIGATION = """ skip|index |skip to index hop|int |jump ahead first| |go to the first index last| |go to the last index [.*int]| |hops ahead by int [,*int]| |hops back by int >| |direction forward <| |direction back '| |move to the next/previousnotes "| |move to the child/parent notes =| |return to ordinary mode || ||""" DISPLAY = """ || 123[return] |displays the next note |displays note with INDEX 123 * ||Shows notes related to the current note all, $ |levels to show.. /$ suppress quick mode |show all notes |/&no children /* no brackets | | /? suppress short show | | /= showdates %indexrange | show, s |indexrange;levels to show | | /&no children |show some notes | /* no brackets | | /? suppress short show | | /= show dates | inc | |incremental show indexes, ind, i | |show indexes keys, key, k |/$ histogram.. |show keys |/& all caps.. | =>COMMAND:?? |/* upperkeys.. | to feed back results |/? lowerkeys | tags, tag, t | |show tags text |index range;# of words1;# of words2;gets important words in the text |/$ for intersection of words |/& by decreasing frequency in notebase |/$ by increasing frequency in note itself keysfortags | |show keys for tags defaultkeys, dfk | |show default keys showdel | |show soft-deleted notes keystags | |show tags and their keys ||""" SEARCHING = """| | search, ? |/$search phrase /&indexrange /*daterange |keysearch.. |use a straight slash for OR.. |.. =>COMMAND:?.. |use an amperstand for AND.. |to feed results into |parentheses are allowed.. |another command |ALL CAPS for case insensitive.. | |<keyword>.. | |#tag.. | |##metatag.. /$ show.. /&dates.. | |/? show indexes | |* wildcard | | this$is$a$phrase | $thi$wild$ase$ for a Wildcard phrase |<SEQUENCE@FROM> | to search for sequences |<SEQUENCE@TO> | ADD # and _ as appropriate |<SEQUENCE@FROM/SEQUENCE@TO> |{NOTEBOOK1,NOTEBOOK2} |To search over another notebook sort |refed indexes;searchphrase |sorts refer search results fetch |fetches indexes reverse |refer indexes |reverse search result globalsearch |searchphrase;notebooks |To search over other notebooks |/$ don't query terms,??? |return foundterms textsearch, ?? |search phrase %indexrange |textsearch constdates, |indexrange;f(irst) n(ewest) a(all).. |make date chart |/$ ym.. /& ymd.. /* show indexes.. | |/? to query which dates | constitutedates | | activedet, | |show active determinants actdet | | showdatedict |/$year.. /&month.. /*day.. /&hour.. |display date chart ahowdatedictpurge |/$ ym .& ymd /* add hour | |/? ask for purge parameter | |determinant;purge parameter | |SPEC.TERM1-TERM2-TERM3... | |SPECS = a ALLCAPS | | u UPPER | | l LOWER | cleardatedict |/$year.. /&month.. /*day.. /&hour.. |clear date chart changedet |determinant |change determinant showdet | |show determinants setpurgekeys |/$ allcaps.. /& upper.. /& lower.. |set keys to purge when showing date |[~][aulns]VERTLINE term1,term2,etc. | | | Each term can be a searchable term (e.g. *ism) | | OR #ALLCAPS#,#CAPS#,#LOWER#,#NUMSEQ#, | | #ALLSEQ#, #NONPS#, #PROJ#, | | #INDSEQ#, #STRSEQ#, #DATSEQ# setsuppresskeys | | SETS keywords that are suppressed clearpurgekeys, clearsuppresskeys | |clear purge keys addsuppresskeys, deletesuppresskeys | showpurgekeys, showsuppresskeys | |show purge keys cleartempsuppresskeys | | searchlog | |show the search log clearlog, | |clear the search log clearsearchlog | | ||""" ORGANIZING = """|| mergemany, mm |indexrange;indexrange;C-E.. |Combine many formatted notes within a single note | /$ Conflate.. | /& Embed conflate |indexrange;e - b - m;destinationindex;BREAKMARK |conflate many notes into a single note | e(mptychar) | | b(reak) | | n(ew note) | /$ emptychar /& break /* new /? BREAKMARK | move |indexrange;indexrange;S or M or C;Yes/no.. |move to notes from.. sourcerange to destinationrange |S=Subordinate /$..|Preserves hierarchical.. structure when subordinating |M=Make Compact /&..|Collapses hierarchical.. structure |Children /*|Each note is a child of the last copy |See Above |copy from source.. to destination copyto |indexrange|copy notes into buffer copyfrom |integer.. /$ to copy all |copy notes from.. buffer into notebook ndel|undel |undelete soft-deleted notes permdel | {$ to suppress query} |perminately delete soft-deleted notes clear | {$ to suppress query} |soft-delete all notes addfield |fieldname;indexrange |define a new field |/$ for a prerange | deletefield |fieldname;range |delete a field compress | |remove gaps between notes |ADVANCED FORMATTING | split |index;columns;width;breaking mark |splits a note into columns sidenote |indexrange;total width.. /$ add counters |side-by-side notes || ||""" SETTING = """|| |FLIPBOOK| flipout, f | |automatically channel search results into flipbook showflip, | |show flip book showflipbook | | flipbook|indexrange or fields or index |define the flipbook --- |DISPLAY| shortshow | |display notes in short format resize, size, sz |integer |set the default size for notes showtags | |show tags attached to keys when displaying notes setlongmax |integer |set the maximum number of notes | |that can be displayed long-form curtail | |eliminate EOL at beginning and end of note header |integer |blank lines at top of note footer |integer |blank lines at foot of note leftmargin | | orderkeys | |arrange keys by increasing frequency rectify | |equalize the width of columns cpara |keys to purge;(a)allcap (c)aps (l)ower |cluster settings (exclude ALL CAPS;capitalized word;lower case) |/$ all caps /& caps /* lower case | |LIMITLIST| limitlist |indexrange or F or R |define an automatic limiting range; |F for flipbook; R to reset| showlimitlist| |show limitlist resetlimitlist, resetl| |reset limit list |NOTE ENTRY| quickenter | |enable quick-entry mode autobackup | |suspend automatic backup of notes changeuser |username |changes username saved in metadata boxconfigs | |show configurations in boxed notes spelling | |turn on or off spelling correction enterhelp | |turn on or off note entry helpscript formathelp | |turn on or off formatting helpscript keysbefore||ask for keys before entering note keyafter||ask for keys after entering note carryoverkeys||carry over keys for child and nextnotes nameinterpret||Expand keywords with PERIOD to multiple name forms || e.g. Martin.Heidegger = <NAME>,<NAME>,Heidegger carryall||carry over keys from all parents returnquit| |Exit note entry mode after pressing successive returns setreturnquit| |Set number of returns for returnquit usealphabets| |Apply transcription for foreign languages overrideextract| |Overrides the automatic | |extraction of subordinate notes ||""" INPUT = """|| loadtext, lt |filename.. \= suppress default keys |load and parse a NOTESCRIPTle embedded note formout |indexrange;filename;include indexes;include metadata |save NOTESCRIPT |/$ include indexes /& onclude metadata loadbyparagraph |/$ don't apply keywords.. /& apply definitions |load text, divide by paragraph, and apply keywords |/* suppress queries| splitload |string |Load text, divide by splitterm, and apply keywords |$ don't apply keywords.. /& apply definitions..| |/* suppress queries| ||""" ADVANCED = """|| cluster |int.. /$ turn clusters into iterators |organize notes into clusters. Parameter indicates how many killclusters | |destroy cluster iterators descendents |iterate over clusters of note descendents | |keywords, according to increasing.. frequency, will be used ;(semicolon)|switch to next cluster-iterator| | |the notes that are cycled through eliminateblanks| |eliminate blank keys eliminatekeys|keys |globally removes keys correctkeys|indexrange.. /$ keys+tags |corrects keys refresh| |reconstitute word.. concordance used for searching reconstitutesequences| |reconstitute sequences reform|range|applying reformating to range of notes! saveconfigurations| |save configurations loadconfigurations| |load configurations dumpprojects | |save a backup textfile of projects loadprojects | |load a backup textfile of projects clearprojects | |clear existing projects truthtable |string |generates a truth table for a logical expression calculate | |enter the calculator mode || """ HYPERLINKS = """ |HYPERLINKS| link |indexrange |links together notes chain |indexrange |enchains notes loop |indexrange |loops notes unlink |indexrange |removes hyperlinks iteratemode | |toggles between iteratemode and hypermovemode hyperone | |hypermovemode one -- ||randomly jumps between notes with common keys hypertwo | |hypermovemode two -- ||randomly jumps between hyperlinked notes hyperthree| |hypermovemode three -- ||allows you to navigate between hyperlinked notes startlinking| |Start automatically linking notes startlooping| |Start automatically looping notes endlooping,endlinking| |End looping or linking notes showsequences| |show sequences showsequence|sequencename |show a single sequence |/$ correct sequence invert | |Gives opposite of indexes """ DEFAULTS = """|| changecodes| |change abbreviations. Use to define special codes (TO) changemacros| |change macros. Implemented with _ before macro changekeymacros| |change key macros. Implemented wiht $ before macro changecommandmacros| |change commandmacros changekeydefinitions| |change definitions | |Used to automatically assign keys with loadbyparagraph changeknowledge| |change knowledgebase changeequivalences| |change equivalences yieldequivalences| |suspects or unsuspends automatic yielding | |of equivalences during searches equivmultiply | |Converts OR to AND for second |iteration of equivalence substitutions converttextphrase | |Adds DOLLAR to spaces |of substituted multi-word text search phrase changegeneralknowledge| |change general knowledge || defaultcodes| |load codes embedded with kw CODES defaultmacros| |load macros embedded with kw MACROS defaultkeymacros| |load keymacros embedded with kw KEYMACROS defaultcommandmacros| |load commandmacros embedded with kw COMMANDMACROS defaultkeydefinitions| |load keydefinitions embedded with kw KEYDEFINITIONS defaultknowledge| |load knowledge embedded with kw KNOWLEDGE || recordcodes| |record codes into a note recordmacros | |record macros into a note recordkeymacros| |record keymacros into a note. recordcommandmacros| |record commandmacros into a note recordkeydefinitions| |record keydefinitions into a note. recordknowledge | | || clearcodes | |reset abbreviation object clearmacros| |reset macros clearkeymacros| |reset keymacros cleardefinitions | |reset definition object clearcommandmacros | |reset commandmacro object clearkeydefinitions | |reset keydefinition object clearknowledge | |reset knowledgebase || showspelling |language.. /$ en.. /& gr.. /* fr.. /? es |show words added to spelling dictionary spelldictionary| |call up spelling dictionary console defaultspelling|language.. /$ en.. /& gr.. /* fr.. /? es |load added words from note alphabets| |Call up alphabet console | |NOT RECOMMENDED for large ranges""" ADVANCEDDISPLAYONE = """|| multi|streamname;width;savename.. |display notes packed into columns, channeled to a stream, |/$ smallsize /* vary.. /? pause.. /= save | | |with option to vary | |width according to legnth of text smallsize | |set small size for multidisplay streams| |shows active display streams showstream|stream /? pause |display an active display stream deletestream|streamname {$ to suppress query} |delete a display stream updatetags||updates the tags histogram|indexrange;truncatespec=[p][i][d][n][t][a] /$ for keys /& for tags |generate a histogram of words |* to create a new dictionary showuser | |show the user negativeresults,| |include negative results with searches negresults,nr | | fields | |show defined fields showmeta |index|show metadata depth |integer |set the number of children to display deeper | |go one level deeper shallower | |go one level shallower allchildren | |show all children childrentoo | |include children when showing notes shortshow, ss || show notes in an abridged form fulltop | |show all descendents of top-level notes randomon | |turn on random mode randomoff | |turn off random mode indentmultiplier ||Adjust the indentation for displaying ||chilren || usesequence | |uses sequences for keeping track of indexes itshow | |show all indexes rather than greatest and | |smallest when resetting the iterator |FLASHCARDS| noflash | |don't show flashcards as flashcards flashmode | |flip through flashcards setsides | | set the number of sides for flashcards setflipat | | set the side at which the side flips flexflip| | automatically adjust to | |number of sides of flashcards flashforward, ff | |advanced to the next side flashback, fb | | go back to the previous side flashreset, fr | | reset to the first side flastto, ft | | advance to given side """ ADVANCEDDISPLAYTWO = """ sortbydate | |display notes sorted by date showimages | | enable display of embedded images showtext | | enable display of embedded text seqintext | | include sequences in the main text fromtext | | extract keywords and sequences from text convertbyline | | extract keywords and sequences by line nodiagnostics | | disable diagnostic tracking updateuser | | update user over a range of notes updatesize | | update size over a range of notes run | | interpret | | diagnosticnote | | dictionaryload || seqformone | |define seqformone for seqintext seqformtwo | |definte seqformtwo for seqintext mainsequences | |define mainsequence for seqintext convertdefinition | |define parsing information for fromtext newconvertmode | |add a new convert mode switchconvertmode | |switch to a new convert mode showallconvertmodes | |show all convert modes createworkpad |padname |create a new work pad addtopad |range,padname |add notes to pad ||add notes to pad, and display padshow |range,padname |create pad if needed emptypadstack |padname| clears notes from pad renewpad | |clears an existing pad switchpad | padname |switch the current pad currentpad | |desplay the current pad allpads | |show all the pads sheet|range,display stream,width,save stream, Xmax*Ymax |display as sheet | /$ query size /* vary rsheet, resumesheet | resumes existing sheet closesheetshelf |close the sheet shelf tosheetshelf|frompad,topad|add a pad to the shelf for storage selectsheet |resume a pad in the sheetshelf indexer|/$ suspend query /& tags /* full name |Calls index generator || ||""" KNOWLEDGE = """ |SPECIES-GENUS KNOWLEDGE| learn|string(species);string(genus)|teach the notebook an ontological fact forgetstring(species);string(genus)| |unteach the notebook an ontological fact allknowledge| |show what the notebook knows |GENERAL KNOWLEDGE| dumpknowledge,dumpgeneralknowledge | showknowledge | loadknowledge,loadgeneralknowledge|filename |load knowledge from textfile cleargeneralknowledge| reconstitutegeneralknowledge | general,generalknowledge,gk|query|interprety a knowledge query (*)KNOWLEDGE PHRASE(*) |ALTERNATE FORM OF ABOVE switchgeneralknowledge| || |PROJECT MANAGEMENT| newproject|projectname |Start a new project saveproject|projectname |Save a project loadproject,resumeproject |Resume a saved project showprojects||Show all available projects currentproject||Show information about current project flipproject| |Iterate over indexes of current project |SYSTEM| || menu (single space)| |calls up small menu bigmenu (double space)| |Calls up big menu help| | showsettings| |Show settings switch|notebase |switches to a new notebase without quiting quit| {$ to suppress query} |save and quit test| execute test script """ COMMANDSCRIPT.append(COMMANDS.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(DEFAULTKEYS.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(NAVIGATION.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(DISPLAY.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(SEARCHING.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(ORGANIZING.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(SETTING.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(INPUT.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(ADVANCED.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(HYPERLINKS.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(DEFAULTS.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(ADVANCEDDISPLAYONE.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(ADVANCEDDISPLAYTWO.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMANDSCRIPT.append(KNOWLEDGE.replace(PERIOD+PERIOD,EMPTYCHAR)) COMMAND_TEXT = COMMANDS+DEFAULTKEYS+NAVIGATION+DISPLAY+SEARCHING\ +ORGANIZING+SETTING+INPUT+ADVANCED+HYPERLINKS\ +DEFAULTS+ADVANCEDDISPLAYONE+ADVANCEDDISPLAYTWO+KNOWLEDGE make_command_dict(COMMAND_TEXT.replace('\t', '')) MENU_DICTIONARY[0] = (HEADERS[0], COMMANDS.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[1] = (HEADERS[1], DEFAULTKEYS.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[2] = (HEADERS[2], NAVIGATION.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[3] = (HEADERS[3], DISPLAY.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[4] = (HEADERS[4], SEARCHING.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[5] = (HEADERS[5], ORGANIZING.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[6] = (HEADERS[6], SETTING.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[7] = (HEADERS[7], INPUT.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[8] = (HEADERS[8], ADVANCED.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[9] = (HEADERS[9], HYPERLINKS.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[10] = (HEADERS[10], DEFAULTS.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[11] = (HEADERS[11], ADVANCEDDISPLAYONE.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[12] = (HEADERS[12], ADVANCEDDISPLAYTWO.replace(PERIOD+PERIOD,EMPTYCHAR)) MENU_DICTIONARY[13] = (HEADERS[13], KNOWLEDGE.replace(PERIOD+PERIOD,EMPTYCHAR)) ##del COMMAND_DICTIONARY['COMMAND'] ## ##for key in HELP_DICTIONARY: ## print(key+' ///' +str(HELP_DICTIONARY[key]))
StarcoderdataPython
3550049
import pandas as pd import numpy as np from sklearn import datasets from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # method to plot confusion matrices def plot_confusion_matrix(cm, names, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar(fraction=0.05) tick_marks = np.arange(len(names)) plt.xticks(tick_marks, names, rotation=45) plt.yticks(tick_marks, names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # load the dataset from sklearn iris = datasets.load_iris() # put the iris dataset into a DataFrame df = pd.DataFrame(data=np.c_[iris['data'],iris['target']], columns=np.append(iris['feature_names'], ['target'])) # shuffle the data df = df.reindex(np.random.permutation(df.index)) # print(df.head()) result = [] for x in df.columns: if x != 'target': result.append(x) # Define X and y X = df[result].values y = df['target'].values variety = iris.target_names # Split the data into training and testing X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) # print(df.columns) # plot a 3 x 2 figure comparing the feature against each other plt.figure() plt.subplot(321) plt.scatter(df['sepal length (cm)'], df['sepal width (cm)'], c=y, s=50) plt.subplot(322) plt.scatter(df['sepal length (cm)'], df['petal length (cm)'], c=y, s=50) plt.subplot(323) plt.scatter(df['sepal length (cm)'], df['petal width (cm)'], c=y, s=50) plt.subplot(324) plt.scatter(df['sepal width (cm)'], df['petal length (cm)'], c=y, s=50) plt.subplot(325) plt.scatter(df['sepal width (cm)'], df['petal width (cm)'], c=y, s=50) plt.subplot(326) plt.scatter(df['petal length (cm)'], df['petal width (cm)'], c=y, s=50) # build a multiclass SVM 'ovo' for one-versus-one, and # fit the data multi_svm = SVC(gamma='scale', decision_function_shape='ovo') multi_svm.fit(X_train,y_train) # print(X.shape[1]) y_pred = multi_svm.predict(X_test) # print(y_pred) # print(y_test) # put the results into a DataFrame and print side-by-side output = pd.DataFrame(data=np.c_[y_test,y_pred]) print(output) # calculate accuracy score and print print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) # find the confusion matrix, normalise and print cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) # confusion matrix as a figure plt.figure() plot_confusion_matrix(cm_normalized, variety, title='Normalized confusion matrix') plt.show()
StarcoderdataPython
1667067
<filename>dataStoreExceptions.py # data store custom exceptions and error response classes class dataStoreException(Exception): # base class for other custom exceptions pass class FileNotFound(dataStoreException): def __init__(self, message="File does not exist. Requires valid file path."): self.message = message super().__init__(self.message) class FileNotAccessible(dataStoreException): def __init__(self, message="File can not be accessed. Requires file accessiblity to read or write."): self.message = message super().__init__(self.message) class IOErrorOccurred(dataStoreException): def __init__(self, message="Caught IO Exception. File can not be accessed."): self.message = message super().__init__(self.message) class InvalidKey(dataStoreException): def __init__(self, message="Key must be a string."): self.message = message super().__init__(self.message) class KeyLengthExceeded(dataStoreException): def __init__(self, message="Requires valid Key not exceeding the maximum size of 32 characters."): self.message = message super().__init__(self.message) class DuplicateKey(dataStoreException): def __init__(self, key, message=" already exists. Create is invoked for an existing key."): self.key = key self.message = message super().__init__(self.message) def __str__(self): return f'{self.key} {self.message}' class InvalidJSONobject(dataStoreException): def __init__(self, message="Requires value as a valid JSON object."): self.message = message super().__init__(self.message) class ValueSizeExceeded(dataStoreException): def __init__(self, message="Requires valid JSON object not exceeding the maximum size of 16KB."): self.message = message super().__init__(self.message) class FileSizeExceeded(dataStoreException): def __init__(self, message="Reached Maximum file size. New data can not be stored."): self.message = message super().__init__(self.message) class timeToLiveValueError(dataStoreException): def __init__(self, message="Invalid argument. Requires numerical value defining the number of seconds."): self.message = message super().__init__(self.message) class EmptyFile(dataStoreException): def __init__(self, message="File does not have any json object."): self.message = message super().__init__(self.message) class KeyNotExist(dataStoreException): def __init__(self, key, message=" does not exist. Requires Valid Key."): self.message = message self.key = key super().__init__(self.message) def __str__(self): return f'{self.key} {self.message}' class KeyExpired(dataStoreException): def __init__(self, key, message="Key exceeded Time-To-Live. Can not be accessed for read or delete operation."): self.message = message super().__init__(self.message) class InvalidJSONfile(dataStoreException): def __init__(self, message="Requires valid JSON file containing JSON object in standard format."): self.message = message super().__init__(self.message)
StarcoderdataPython
8111442
<gh_stars>0 ''' TMC, XTI, tsproj parsing utilities ''' import collections import logging import os import pathlib import re import types import lxml import lxml.etree from .code import (get_pou_call_blocks, program_name_from_declaration, variables_from_declaration, determine_block_type) # Registry of all TwincatItem-based classes TWINCAT_TYPES = {} USE_NAME_AS_PATH = object() logger = logging.getLogger(__name__) SLN_PROJECT_RE = re.compile( r"^Project.*?=\s*\"(.*?)\",\s*\"(.*?)\"\s*,\s*(.*?)\"\s*$", re.MULTILINE ) def parse(fn, *, parent=None): ''' Parse a given tsproj, xti, or tmc file. Returns ------- item : TwincatItem ''' fn = case_insensitive_path(fn) with open(fn, 'rb') as f: tree = lxml.etree.parse(f) root = tree.getroot() return TwincatItem.parse(root, filename=fn, parent=parent) def projects_from_solution(fn, *, exclude=None): ''' Find project filenames from a solution. Parameters ---------- fn : str, pathlib.Path Solution filename exclude : list or None Exclude certain extensions. Defaults to excluding .tcmproj ''' with open(fn, 'rt') as f: solution_text = f.read() if exclude is None: exclude = ('.tcmproj', ) projects = [ pathlib.PureWindowsPath(match[1]) for match in SLN_PROJECT_RE.findall(solution_text) ] solution_path = pathlib.Path(fn).parent return [(solution_path / pathlib.Path(project)).absolute() for project in projects if project.suffix not in exclude ] def element_to_class_name(element, *, parent=None): ''' Determine the Python class name for an element Parameters ---------- element : lxml.etree.Element Returns ------- class_name : str base_class : class ''' tag = strip_namespace(element.tag) extension = os.path.splitext(element.base)[-1].lower() if tag == 'Project': if isinstance(parent, TcSmProject): return 'TopLevelProject', TwincatItem if 'File' in element.attrib: # File to be loaded will contain PrjFilePath return 'Plc', TwincatItem if 'PrjFilePath' in element.attrib: return 'Plc', TwincatItem if isinstance(parent, (Plc, TcSmItem)): return 'PlcProject', TwincatItem return 'Project', TwincatItem if tag == 'Plc': return 'TopLevelPlc', TwincatItem if tag == 'Symbol': base_type, = element.xpath('BaseType') return f'{tag}_' + base_type.text, Symbol if extension == '.tmc': return tag, _TmcItem return tag, TwincatItem def _determine_path(base_path, name, class_hint): ''' Determine the path to load child XTI items from, given a base path and the class load path hint. Parameters ---------- base_path : pathlib.Path The path from which to start, e.g., the child_load_path of the parent object name : str The name of the parent object, to be used when USE_NAME_AS_PATH is specified class_hint : pathlib.Path or USE_NAME_AS_PATH A hint path as to where to load child objects from ''' if not class_hint: return base_path path = base_path / (name if class_hint is USE_NAME_AS_PATH else class_hint) if path.exists() and path.is_dir(): return path return base_path # the fallback class TwincatItem: _load_path_hint = '' def __init__(self, element, *, parent=None, name=None, filename=None): ''' Represents a single TwinCAT project XML Element, for either tsproj, xti, tmc, etc. Parameters ---------- element : lxml.etree.Element parent : TwincatItem, optional name : str, optional filename : pathlib.Path, optional ''' self.child_load_path = _determine_path( filename.parent, name, self._load_path_hint) self.attributes = dict(element.attrib) self._children = [] self.children = None # populated later self.comments = [] self.element = element self.filename = filename self.name = name self.parent = parent self.tag = element.tag self.text = element.text.strip() if element.text else None self._add_children(element) self.post_init() def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) TWINCAT_TYPES[cls.__name__] = cls def post_init(self): 'Hook for subclasses; called after __init__' ... @property def root(self): 'The top-level TwincatItem (likely TcSmProject)' parent = self while parent.parent is not None: parent = parent.parent return parent @property def path(self): 'Path of classes required to get to this instance' hier = [self] parent = self.parent while parent: hier.append(parent) parent = parent.parent return '/'.join(item.__class__.__name__ for item in reversed(hier)) def find_ancestor(self, cls): ''' Find an ancestor of this instance Parameters ---------- cls : TwincatItem ''' parent = self.parent while parent and not isinstance(parent, cls): parent = parent.parent return parent def get_relative_path(self, path): ''' Get an absolute path relative to this item Returns ------- path : pathlib.Path ''' root = pathlib.Path(self.filename).parent rel_path = pathlib.PureWindowsPath(path) return (root / rel_path).resolve() def find(self, cls, *, recurse=True): ''' Find any descendents that are instances of cls Parameters ---------- cls : TwincatItem ''' for child in self._children: if isinstance(child, cls): yield child if not recurse: continue yield from child.find(cls, recurse=recurse) def _add_children(self, element): 'A hook for adding all children' for child_element in element.iterchildren(): if isinstance(child_element, lxml.etree._Comment): self.comments.append(child_element.text) continue self._add_child(child_element) by_tag = separate_by_classname(self._children) self.children = types.SimpleNamespace(**by_tag) for key, value in by_tag.items(): if not hasattr(self, key): setattr(self, key, value) def _add_child(self, element): child = self.parse(element, parent=self, filename=self.filename) if child is None: return self._children.append(child) if not hasattr(child, '_squash_children'): return for grandchild in list(child._children): if any(isinstance(grandchild, squashed_type) for squashed_type in child._squash_children): self._children.append(grandchild) grandchild.container = child grandchild.parent = self child._children.remove(grandchild) @staticmethod def parse(element, parent=None, filename=None): ''' Parse an XML element and return a TwincatItem Parameters ---------- element : lxml.etree.Element parent : TwincatItem, optional The parent to assign to the new element filename : str, optional The filename the element originates from Returns ------- item : TwincatItem ''' classname, base = element_to_class_name(element, parent=parent) try: cls = TWINCAT_TYPES[classname] except KeyError: # Dynamically create and register new TwincatItem-based types! cls = type(classname, (base, ), {}) if 'File' in element.attrib: # This is defined directly in the file. Instantiate it as-is: filename = element.attrib['File'] return cls.from_file(filename, parent=parent) # Two ways for names to come in: # 1. a child has a tag of 'Name', with its text being our name names = [child.text for child in element.iterchildren() if child.tag == 'Name' and child.text] name = names[0] if names else None # 2. the child has an attribute key 'Name' try: name = element.attrib['Name'].strip() except KeyError: ... # A special identifier __FILENAME__ means to replace the name if name == '__FILENAME__': name = filename.stem return cls(element, parent=parent, filename=filename, name=name) def _repr_info(self): '__repr__ information' return { 'name': self.name, 'attributes': self.attributes, 'children': self._children, 'text': self.text, } def __repr__(self): info = ' '.join(f'{key}={value!r}' for key, value in self._repr_info().items() if value) return f'<{self.__class__.__name__} {info}>' @classmethod def from_file(cls, filename, parent): base_path = _determine_path( base_path=parent.child_load_path, name=parent.name, class_hint=cls._load_path_hint ) return parse(base_path / filename, parent=parent) class _TwincatProjectSubItem(TwincatItem): '[XTI/TMC/...] A base class for items that appear in virtual PLC projects' @property def plc(self): 'The nested project (virtual PLC project) associated with the item' return self.find_ancestor(Plc) class TcModuleClass(_TwincatProjectSubItem): '[TMC] The top-level TMC file' DataTypes: list def get_data_type(self, type_name): data_types = self.DataTypes[0].types try: return data_types[type_name] except KeyError: return BuiltinDataType(type_name) class OwnerA(TwincatItem): '[XTI] For a Link between VarA and VarB, this is the parent of VarA' class OwnerB(TwincatItem): '[XTI] For a Link between VarA and VarB, this is the parent of VarB' class Link(TwincatItem): '[XTI] Links between NC/PLC/IO' def post_init(self): self.a = (self.find_ancestor(OwnerA).name, self.attributes.get('VarA')) self.b = (self.find_ancestor(OwnerB).name, self.attributes.get('VarB')) self.link = [self.a, self.b] def __repr__(self): return f'<Link a={self.a} b={self.b}>' class TopLevelProject(TwincatItem): '[tsproj] Containing Io, System, Motion, TopLevelPlc, etc.' @property def ams_id(self): ''' The AMS ID of the configured target ''' return self.attributes.get('TargetNetId', '') @property def target_ip(self): ''' A guess of the target IP, based on the AMS ID ''' ams_id = self.ams_id if ams_id.endswith('.1.1'): return ams_id[:-4] return ams_id # :( class PlcProject(TwincatItem): ... class TcSmProject(TwincatItem): '[tsproj] A top-level TwinCAT tsproj' def post_init(self): self.top_level_plc, = list(self.find(TopLevelPlc, recurse=False)) @property def plcs(self): 'The virtual PLC projects contained in this TcSmProject' yield from self.top_level_plc.projects.values() @property def plcs_by_name(self): 'The virtual PLC projects in a dictionary keyed by name' return {plc.name: plc for plc in self.plcs} @property def plcs_by_link_name(self): 'The virtual PLC projects in a dictionary keyed by link name' return {plc.link_name: plc for plc in self.plcs} class TcSmItem(TwincatItem): ''' [XTI] Top-level container for XTI files Visual Studio-level configuration changes the project layout significantly, with individual XTI files being created for axes, PLCs, etc. instead of updating the original tsproj file. The additional, optional, level of indirection here can make walking the tree frustrating. So, we squash these TcSmItems - skipping over them in the hierarchy - and pushing its children into its parent. The original container `TcSmItem` is accessible in those items through the `.container` attribute. ''' _squash_children = [TwincatItem] class TopLevelPlc(TwincatItem): '[XTI] Top-level PLC, contains one or more projects' PlcProjectContainer: list def post_init(self): # TODO: this appears to cover all bases, but perhaps it could be # refactored out if hasattr(self, 'Plc'): projects = self.Plc elif hasattr(self, 'TcSmItem'): projects = self.TcSmItem[0].PlcProject else: raise RuntimeError('Unable to find project?') self.projects = { project.name: project for project in projects } self.projects_by_link_name = { project.link_name: project for project in projects } # Fix to squash hack: squashed Mappings belong to the individual # projects, not this TopLevelPlc for mapping in getattr(self, 'Mappings', []): for project in projects: if project.filename == mapping.filename: self._children.remove(mapping) project.Mappings = [mapping] project._children.append(mapping) continue class Plc(TwincatItem): '[tsproj] A project which contains Plc, Io, Mappings, etc.' _load_path_hint = pathlib.Path('_Config') / 'PLC' def post_init(self): self.link_name = (self.Instance[0].name if hasattr(self, 'Instance') else self.name) self.namespaces = {} self.project_path = self.get_relative_path( self.attributes['PrjFilePath']) self.tmc_path = self.get_relative_path( self.attributes['TmcFilePath']) self.project = (parse(self.project_path, parent=self) if self.project_path.exists() else None) self.tmc = (parse(self.tmc_path, parent=self) if self.tmc_path.exists() else None) self.source_filenames = [ self.project.get_relative_path(compile.attributes['Include']) for compile in self.find(Compile) if 'Include' in compile.attributes ] self.source = { str(fn.relative_to(self.project.filename.parent)): parse(fn, parent=self) for fn in self.source_filenames } def get_source_items(attr): for plc_obj in self.source.values(): try: source_obj = getattr(plc_obj, attr, [None])[0] except IndexError: continue if source_obj and source_obj.name: yield (source_obj.name, source_obj) self.pou_by_name = dict(sorted(get_source_items('POU'))) self.gvl_by_name = dict(sorted(get_source_items('GVL'))) self.dut_by_name = dict(sorted(get_source_items('DUT'))) self.namespaces.update(self.pou_by_name) self.namespaces.update(self.gvl_by_name) self.namespaces.update(self.dut_by_name) @property def links(self): return [link for mapping in self.Mappings for link in mapping.find(Link, recurse=False) ] @property def port(self): ''' The ADS port for the project ''' return self.attributes.get('AmsPort', '') @property def ams_id(self): ''' The AMS ID of the configured target ''' return self.find_ancestor(TopLevelProject).ams_id return self.attributes.get('TargetNetId', '') @property def target_ip(self): ''' A guess of the target IP, based on the AMS ID ''' return self.find_ancestor(TopLevelProject).target_ip def find(self, cls, *, recurse=True): yield from super().find(cls, recurse=recurse) if self.project is not None: yield from self.project.find(cls, recurse=recurse) for _, ns in self.namespaces.items(): if isinstance(ns, cls): yield ns if self.tmc is not None: yield from self.tmc.find(cls, recurse=recurse) def get_source_code(self): 'Get the full source code, DUTs, GVLs, and then POUs' source_items = ( list(self.dut_by_name.items()) + list(self.gvl_by_name.items()) + list(self.pou_by_name.items()) ) return '\n'.join( item.get_source_code() for item in source_items if hasattr(item, 'get_source_code') ) class Compile(TwincatItem): ''' [XTI] A code entry in a nested/virtual PLC project File to load is marked with 'Include' May be TcTTO, TcPOU, TcDUT, GVL, etc. ''' class _TmcItem(_TwincatProjectSubItem): '[TMC] Any item found in a TMC file' @property def tmc(self): 'The TcModuleClass (TMC) associated with the item' return self.find_ancestor(TcModuleClass) class DataTypes(_TmcItem): '[TMC] Container of DataType' def post_init(self): self.types = { dtype.qualified_type: dtype for dtype in self.find(DataType) } self.types['Tc2_System.T_MaxString'] = T_MaxString() class Type(_TmcItem): '[TMC] DataTypes/DataType/SubItem/Type' @property def qualified_type(self): 'The base type, including the namespace' namespace = self.attributes.get("Namespace", None) return f'{namespace}.{self.text}' if namespace else self.text class EnumInfo(_TmcItem): '[TMC] Enum values, strings, and associated comments' Text: list Enum: list Comment: list @property def enum_text(self): return self.Text[0].text @property def enum_value(self): try: return self.Enum[0].text except AttributeError: ... logger.warning( 'Encountered a known issue with the TwinCAT-generated TMC file: ' '%s is missing an Enum value in section %s; this may cause ' 'database generation errors.', self.parent.name, self.path ) return '' @property def enum_comment(self): return self.Comment[0].text if hasattr(self, 'Comment') else '' class ArrayInfo(_TmcItem): '[TMC] Array information for a DataType or Symbol' LBound: list UBound: list Elements: list def post_init(self): lbound = (int(self.LBound[0].text) if hasattr(self, 'LBound') else 0) elements = (int(self.Elements[0].text) if hasattr(self, 'Elements') else 1) ubound = (int(self.UBound[0].text) if hasattr(self, 'UBound') else lbound + elements - 1) self.bounds = (lbound, ubound) self.elements = elements class ExtendsType(_TmcItem): '[TMC] A marker of inheritance / extension, found on DataType' @property def qualified_type(self): if 'Namespace' in self.attributes: return f'{self.attributes["Namespace"]}.{self.text}' return self.text class DataType(_TmcItem): '[TMC] A DataType with SubItems, likely representing a structure' Name: list EnumInfo: list SubItem: list @property def qualified_type(self): name_attrs = self.Name[0].attributes if 'Namespace' in name_attrs: return f'{name_attrs["Namespace"]}.{self.name}' return self.name @property def is_complex_type(self): return True def walk(self, condition=None): if self.is_enum: # Ensure something is yielded for this type - it doesn't # appear possible to have SubItems or use ExtendsType # in this case. yield [] return extends_types = [ self.tmc.get_data_type(ext_type.qualified_type) for ext_type in getattr(self, 'ExtendsType', []) ] for extend_type in extends_types: yield from extend_type.walk(condition=condition) if hasattr(self, 'SubItem'): for subitem in self.SubItem: for item in subitem.walk(condition=condition): yield [subitem] + item @property def enum_dict(self): return {int(item.enum_value): item.enum_text for item in getattr(self, 'EnumInfo', [])} @property def is_enum(self): return len(getattr(self, 'EnumInfo', [])) > 0 @property def is_array(self): return len(getattr(self, 'ArrayInfo', [])) > 0 @property def is_string(self): return False @property def array_info(self): try: return self.ArrayInfo[0] except (AttributeError, IndexError): return None @property def length(self): array_info = self.array_info return array_info.elements if array_info else 1 class SubItem(_TmcItem): '[TMC] One element of a DataType' Type: list @property def data_type(self): return self.tmc.get_data_type(self.qualified_type_name) @property def array_info(self): try: return self.ArrayInfo[0] except (AttributeError, IndexError): return None @property def type(self): 'The base type' return self.Type[0].text @property def qualified_type_name(self): 'The base type, including the namespace' type_ = self.Type[0] namespace = type_.attributes.get("Namespace", None) return f'{namespace}.{type_.text}' if namespace else type_.text def walk(self, condition=None): if condition is None or condition(self): yield from self.data_type.walk(condition=condition) class Module(_TmcItem): ''' [TMC] A Module Contains generated symbols, data areas, and miscellaneous properties. ''' @property def ads_port(self): 'The ADS port assigned to the Virtual PLC' try: return self._ads_port except AttributeError: app_prop, = [prop for prop in self.find(Property) if prop.name == 'ApplicationName'] port_text = app_prop.value self._ads_port = int(port_text.split('Port_')[1]) return self._ads_port class Property(_TmcItem): ''' [TMC] A property containing a key/value pair Examples of TMC properties:: ApplicationName (used for the ADS port) ChangeDate GeneratedCodeSize GlobalDataSize ''' Value: list @property def key(self): 'The property key name' return self.name @property def value(self): 'The property value text' return self.Value[0].text if hasattr(self, 'Value') else self.text def __repr__(self): return f'<Property {self.key}={self.value!r}>' class BuiltinDataType: '[TMC] A built-in data type such as STRING, INT, REAL, etc.' def __init__(self, typename, *, length=1): if '(' in typename: typename, length = typename.split('(') length = int(length.rstrip(')')) self.name = typename self.length = length @property def is_complex_type(self): return False @property def enum_dict(self): return {int(item.enum_value): item.enum_text for item in getattr(self, 'EnumInfo', [])} @property def is_enum(self): return len(getattr(self, 'EnumInfo', [])) > 0 @property def is_string(self): return self.name == 'STRING' @property def is_array(self): # TODO: you can have an array of STRING(80), for example # the length would be reported as 80 here, and the DataType would have # ArrayInfo return self.length > 1 and not self.is_string def walk(self, condition=None): yield [] class T_MaxString(BuiltinDataType): def __init__(self): super().__init__(typename='STRING', length=255) class Symbol(_TmcItem): ''' [TMC] A basic Symbol type This is dynamically subclassed into new classes for ease of implementation and searching. For example, a function block defined as `FB_MotionStage` will become `Symbol_FB_MotionStage`. ''' BitOffs: list BitSize: list BaseType: list @property def type_name(self): 'The base type' return self.BaseType[0].text @property def qualified_type_name(self): 'The base type, including the namespace' type_ = self.BaseType[0] namespace = type_.attributes.get("Namespace", None) return f'{namespace}.{type_.text}' if namespace else type_.text @property def data_type(self): return self.tmc.get_data_type(self.qualified_type_name) @property def module(self): 'The TMC Module containing the Symbol' return self.find_ancestor(Module) @property def info(self): return dict(name=self.name, bit_size=self.BitSize[0].text, type=self.type_name, qualified_type_name=self.qualified_type_name, bit_offs=self.BitOffs[0].text, module=self.module.name, is_pointer=self.is_pointer, array_bounds=self.array_bounds, summary_type_name=self.summary_type_name, ) def walk(self, condition=None): if condition is None or condition(self): for item in self.data_type.walk(condition=condition): yield [self] + item @property def array_info(self): try: return self.ArrayInfo[0] except (AttributeError, IndexError): return None @property def array_bounds(self): try: return self.array_info.bounds except (AttributeError, IndexError): return None def get_links(self, *, strict=False): sym_name = '^' + self.name.lower() dotted_name = sym_name + '.' plc = self.plc plc_name = plc.link_name for link in plc.links: if any(owner == plc_name and (var.lower().endswith(sym_name) or not strict and dotted_name in var.lower()) for owner, var in link.link): yield link @property def is_pointer(self): type_ = self.BaseType[0] pointer_info = type_.attributes.get("PointerTo", None) return bool(pointer_info) @property def summary_type_name(self): summary = self.qualified_type_name if self.is_pointer: summary = 'POINTER TO ' + summary array_bounds = self.array_bounds if array_bounds: summary = 'ARRAY[{}..{}] OF '.format(*array_bounds) + summary return summary class Symbol_DUT_MotionStage(Symbol): '[TMC] A customized Symbol, representing only DUT_MotionStage' def _repr_info(self): '__repr__ information' repr_info = super()._repr_info() # Add on the NC axis name try: repr_info['nc_axis'] = self.nc_axis.name except Exception as ex: repr_info['nc_axis'] = repr(ex) return repr_info @property def program_name(self): '`Main` of `Main.M1`' return self.name.split('.')[0] @property def motor_name(self): '`M1` of `Main.M1`' return self.name.split('.')[1] @property def nc_to_plc_link(self): ''' The Link for NcToPlc That is, how the NC axis is connected to the DUT_MotionStage ''' expected = '^' + self.name.lower() + '.axis.nctoplc' links = [link for link in self.plc.find(Link, recurse=False) if expected in link.a[1].lower() ] if not links: raise RuntimeError(f'No NC link to DUT_MotionStage found for ' f'{self.name!r}') link, = links return link @property def nc_axis(self): 'The NC `Axis` associated with the DUT_MotionStage' link = self.nc_to_plc_link parent_name = link.parent.name.split('^') if parent_name[0] == 'TINC': parent_name = parent_name[1:] task_name, axis_section, axis_name = parent_name nc, = list(nc for nc in self.root.find(NC, recurse=False) if nc.SafTask[0].name == task_name) nc_axis = nc.axis_by_name[axis_name] # link nc_axis and FB_MotionStage? return nc_axis class GVL(_TwincatProjectSubItem): '[TcGVL] A Global Variable List' @property def declaration(self): 'The declaration code; i.e., the top portion in visual studio' return self.Declaration[0].text def get_source_code(self, *, close_block=True): 'The full source code - declaration only in the case of a GVL' return self.declaration class ST(_TwincatProjectSubItem): '[TcDUT/TcPOU] Structured text' class Implementation(_TwincatProjectSubItem): '[TcDUT/TcPOU] Code implementation' class Declaration(_TwincatProjectSubItem): '[TcDUT/TcPOU/TcGVL] Code declaration' class DUT(_TwincatProjectSubItem): '[TcDUT] Data unit type (DUT)' @property def declaration(self): 'The declaration code; i.e., the top portion in visual studio' return self.Declaration[0].text def get_source_code(self, *, close_block=True): 'The full source code - declaration only in the case of a DUT' return self.declaration class Action(_TwincatProjectSubItem): '[TcPOU] Code declaration for actions' @property def source_code(self): return f'''\ ACTION {self.name}: {self.implementation or ''} END_ACTION''' @property def implementation(self): 'The implementation code; i.e., the bottom portion in visual studio' impl = self.Implementation[0] if hasattr(impl, 'ST'): # NOTE: only ST for now return impl.ST[0].text class POU(_TwincatProjectSubItem): '[XTI] A Program Organization Unit' # TODO: may fail when mixed with ladder logic? Declaration: list Implementation: list def get_fully_qualified_name(self, name): if '.' in name: first, rest = name.split('.', 1) if (first == self.name or first in self.project.namespaces): return name return f'{self.name}.{name}' @property def declaration(self): 'The declaration code; i.e., the top portion in visual studio' return self.Declaration[0].text @property def implementation(self): 'The implementation code; i.e., the bottom portion in visual studio' impl = self.Implementation[0] if hasattr(impl, 'ST'): return impl.ST[0].text @property def actions(self): 'The action implementations (zero or more)' return list(getattr(self, 'Action', [])) def get_source_code(self, *, close_block=True): 'The full source code - declaration, implementation, and actions' source_code = [self.declaration or '', self.implementation or '', ] if close_block: source_code.append('') closing = { 'function_block': 'END_FUNCTION_BLOCK', 'program': 'END_PROGRAM', 'function': 'END_FUNCTION', 'action': 'END_ACTION', } source_code.append( closing.get(determine_block_type(self.declaration), '# pytmc: unknown block type') ) # TODO: actions defined outside of the block? for action in self.actions: source_code.append(action.source_code) return '\n'.join(source_code) @property def call_blocks(self): 'A dictionary of all implementation call blocks' return get_pou_call_blocks(self.declaration, self.implementation) @property def program_name(self): 'The program name, determined from the declaration' return program_name_from_declaration(self.declaration) @property def variables(self): 'A dictionary of variables defined in the POU' return variables_from_declaration(self.declaration) class AxisPara(TwincatItem): ''' [XTI] Axis Parameters Has information on units, acceleration, deadband, etc. ''' class NC(TwincatItem): '[tsproj or XTI] Top-level NC' _load_path_hint = pathlib.Path('_Config') / 'NC' def post_init(self): # Axes can be stored directly in the tsproj: self.axes = getattr(self, 'Axis', []) self.axis_by_id = { int(axis.attributes['Id']): axis for axis in self.axes } self.axis_by_name = { axis.name: axis for axis in self.axes } class Axis(TwincatItem): '[XTI] A single NC axis' _load_path_hint = pathlib.Path('Axes') @property def axis_number(self): return int(self.attributes['Id']) @property def units(self): try: for axis_para in getattr(self, 'AxisPara', []): for general in getattr(axis_para, 'General', []): if 'UnitName' in general.attributes: return general.attributes['UnitName'] except Exception: logger.exception('Unable to determine EGU for Axis %s', self) # 'mm' is the default in twincat if unspecified. defaults are not saved # in the xti files: return 'mm' def summarize(self): yield from self.attributes.items() for param in self.find(AxisPara, recurse=False): yield from param.attributes.items() for child in param._children: for key, value in child.attributes.items(): yield f'{child.tag}:{key}', value for encoder in getattr(self, 'Encoder', []): for key, value in encoder.summarize(): yield f'Enc:{key}', value class EncPara(TwincatItem): ''' [XTI] Encoder parameters Includes such parameters as ScaleFactorNumerator, ScaleFactorDenominator, and so on. ''' class Encoder(TwincatItem): ''' [XTI] Encoder Contains EncPara, Vars, Mappings, etc. ''' def summarize(self): yield 'EncType', self.attributes['EncType'] for param in self.find(EncPara, recurse=False): yield from param.attributes.items() for child in param._children: for key, value in child.attributes.items(): yield f'{child.tag}:{key}', value class Device(TwincatItem): '[XTI] Top-level IO device container' _load_path_hint = pathlib.Path('_Config') / 'IO' def __init__(self, element, *, parent=None, name=None, filename=None): super().__init__(element, parent=parent, name=name, filename=filename) class Box(TwincatItem): '[XTI] A box / module' _load_path_hint = USE_NAME_AS_PATH class RemoteConnections(TwincatItem): '[StaticRoutes] Routes contained in the TwinCat configuration' def post_init(self): def to_dict(child): return { item.tag: item.text for item in child._children } def keyed_on(key): return { getattr(child, key)[0].text: to_dict(child) for child in self._children if hasattr(child, key) } self.by_name = keyed_on('Name') self.by_address = keyed_on('Address') self.by_ams_id = keyed_on('NetId') class _ArrayItemProxy: ''' A TwincatItem proxy that represents a single element of an array value. Adjusts 'name' such that access from EPICS will refer to the correct index. Parameters ---------- item : TwincatItem The item to mirror index : int The array index to use ''' def __init__(self, item, index): self.__dict__.update( name=f'{item.name}[{index}]', item=item, _index=index, ) def __getattr__(self, attr): return getattr(self.__dict__['item'], attr) def __setattr__(self, attr, value): return setattr(self.__dict__['item'], attr, value) def case_insensitive_path(path): ''' Match a path in a case-insensitive manner, returning the actual filename as it exists on the host machine Required on Linux to find files in a case-insensitive way. Not required on OSX/Windows, but platform checks are not done here. Parameters ---------- path : pathlib.Path or str The case-insensitive path Returns ------- path : pathlib.Path or str The case-corrected path Raises ------ FileNotFoundError When the file can't be found ''' path = pathlib.Path(path) if path.exists(): return path.resolve() new_path = pathlib.Path(path.parts[0]) for part in path.parts[1:]: if not (new_path / part).exists(): all_files = {fn.lower(): fn for fn in os.listdir(new_path)} try: part = all_files[part.lower()] except KeyError: raise FileNotFoundError( f'{path} does not exist ({part!r} not in {new_path!r})' ) from None new_path = new_path / part return new_path.resolve() def separate_by_classname(children): ''' Take in a list of `TwincatItem`, categorize each by their class name (based on XML tag), and return a dictionary keyed on that. For example:: <a> <a> <b> <b> Would become:: {'a': [<a>, <a>], 'b': [<b>, <b>] } Parameters ---------- children : list list of TwincatItem Returns ------- dict Categorized children ''' d = collections.defaultdict(list) for child in children: d[child.__class__.__name__].append(child) return d def strip_namespace(tag): 'Strip off {{namespace}} from: {{namespace}}tag' return lxml.etree.QName(tag).localname
StarcoderdataPython
1784733
from collections import OrderedDict TARGETS = OrderedDict([('2.7', (2, 7)), ('3.0', (3, 0)), ('3.1', (3, 1)), ('3.2', (3, 2)), ('3.3', (3, 3)), ('3.4', (3, 4)), ('3.5', (3, 5)), ('3.6', (3, 6))]) SYNTAX_ERROR_OFFSET = 5 TARGET_ALL = (9999, 9999)
StarcoderdataPython
1978077
<reponame>euroledger/aries-cloudagent-python<gh_stars>1-10 """Basic message admin routes.""" from aiohttp import web from aiohttp_apispec import docs, request_schema from marshmallow import fields, Schema from ...connections.models.connection_record import ConnectionRecord from ...storage.error import StorageNotFoundError from .messages.basicmessage import BasicMessage class SendMessageSchema(Schema): """Request schema for sending a message.""" content = fields.Str(description="Message content", example="Hello") @docs(tags=["basicmessage"], summary="Send a basic message to a connection") @request_schema(SendMessageSchema()) async def connections_send_message(request: web.BaseRequest): """ Request handler for sending a basic message to a connection. Args: request: aiohttp request object """ context = request.app["request_context"] connection_id = request.match_info["id"] outbound_handler = request.app["outbound_message_router"] params = await request.json() try: connection = await ConnectionRecord.retrieve_by_id(context, connection_id) except StorageNotFoundError: raise web.HTTPNotFound() if connection.is_ready: msg = BasicMessage(content=params["content"]) await outbound_handler(msg, connection_id=connection_id) return web.json_response({}) async def register(app: web.Application): """Register routes.""" app.add_routes( [web.post("/connections/{id}/send-message", connections_send_message)] )
StarcoderdataPython
1691676
import json import pytest from verity_sdk.utils import unpack_forward_message from verity_sdk.utils.Context import Context from verity_sdk.protocols.Protocol import Protocol from ..test_utils import get_test_config, cleanup @pytest.mark.asyncio async def test_get_message(): message = {'hello': 'world'} context = await Context.create_with_config(await get_test_config()) packed_message = await Protocol('test-family', '0.1').get_message_bytes(context, message) unpacked_message = json.dumps(await unpack_forward_message(context, packed_message)) assert json.dumps(message) == unpacked_message await cleanup(context)
StarcoderdataPython
390807
import os from datetime import datetime, timedelta from django.test import TestCase from django.test.client import Client from django.contrib.auth.models import User from django.conf import settings from django.core.exceptions import ValidationError from django.core.urlresolvers import reverse from django.db import connection from app import tests from error.models import Error def create_error(): return Error(timestamp=datetime.now(), timestamp_date=datetime.today()) class StatsTests(TestCase): # test the view for writing errors def setUp(self): settings.ANONYMOUS_ACCESS = True Error.objects.all().delete() def testCount(self): for x in range(0, 10): create_error().save() for x in range(0, 5): err = create_error() err.priority = 4 err.save() url = reverse('stats-view', args=['priority']) res = self.client.get(url) assert 'data.setValue(0, 1, 10);' in res.content assert 'data.setValue(0, 2, 5);' in res.content
StarcoderdataPython
1749688
<filename>tests/components/fronius/test_sensor.py """Tests for the Fronius sensor platform.""" from homeassistant.components.fronius.coordinator import ( FroniusInverterUpdateCoordinator, FroniusMeterUpdateCoordinator, FroniusPowerFlowUpdateCoordinator, ) from homeassistant.components.sensor import DOMAIN as SENSOR_DOMAIN from homeassistant.const import STATE_UNKNOWN from homeassistant.util import dt from . import enable_all_entities, mock_responses, setup_fronius_integration from tests.common import async_fire_time_changed async def test_symo_inverter(hass, aioclient_mock): """Test Fronius Symo inverter entities.""" def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state.state == str(expected_state) # Init at night mock_responses(aioclient_mock, night=True) config_entry = await setup_fronius_integration(hass) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 23 await enable_all_entities( hass, config_entry.entry_id, FroniusInverterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 55 assert_state("sensor.current_dc_fronius_inverter_1_http_fronius", 0) assert_state("sensor.energy_day_fronius_inverter_1_http_fronius", 10828) assert_state("sensor.energy_total_fronius_inverter_1_http_fronius", 44186900) assert_state("sensor.energy_year_fronius_inverter_1_http_fronius", 25507686) assert_state("sensor.voltage_dc_fronius_inverter_1_http_fronius", 16) # Second test at daytime when inverter is producing mock_responses(aioclient_mock, night=False) async_fire_time_changed( hass, dt.utcnow() + FroniusInverterUpdateCoordinator.default_interval ) await hass.async_block_till_done() assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 57 await enable_all_entities( hass, config_entry.entry_id, FroniusInverterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 59 # 4 additional AC entities assert_state("sensor.current_dc_fronius_inverter_1_http_fronius", 2.19) assert_state("sensor.energy_day_fronius_inverter_1_http_fronius", 1113) assert_state("sensor.energy_total_fronius_inverter_1_http_fronius", 44188000) assert_state("sensor.energy_year_fronius_inverter_1_http_fronius", 25508798) assert_state("sensor.voltage_dc_fronius_inverter_1_http_fronius", 518) assert_state("sensor.current_ac_fronius_inverter_1_http_fronius", 5.19) assert_state("sensor.frequency_ac_fronius_inverter_1_http_fronius", 49.94) assert_state("sensor.power_ac_fronius_inverter_1_http_fronius", 1190) assert_state("sensor.voltage_ac_fronius_inverter_1_http_fronius", 227.90) # Third test at nighttime - additional AC entities aren't changed mock_responses(aioclient_mock, night=True) async_fire_time_changed( hass, dt.utcnow() + FroniusInverterUpdateCoordinator.default_interval ) await hass.async_block_till_done() assert_state("sensor.current_ac_fronius_inverter_1_http_fronius", 5.19) assert_state("sensor.frequency_ac_fronius_inverter_1_http_fronius", 49.94) assert_state("sensor.power_ac_fronius_inverter_1_http_fronius", 1190) assert_state("sensor.voltage_ac_fronius_inverter_1_http_fronius", 227.90) async def test_symo_logger(hass, aioclient_mock): """Test Fronius Symo logger entities.""" def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state assert state.state == str(expected_state) mock_responses(aioclient_mock) await setup_fronius_integration(hass) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 25 # ignored constant entities: # hardware_platform, hardware_version, product_type # software_version, time_zone, time_zone_location # time_stamp, unique_identifier, utc_offset # # states are rounded to 4 decimals assert_state( "sensor.cash_factor_fronius_logger_info_0_http_fronius", 0.078, ) assert_state( "sensor.co2_factor_fronius_logger_info_0_http_fronius", 0.53, ) assert_state( "sensor.delivery_factor_fronius_logger_info_0_http_fronius", 0.15, ) async def test_symo_meter(hass, aioclient_mock): """Test Fronius Symo meter entities.""" def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state assert state.state == str(expected_state) mock_responses(aioclient_mock) config_entry = await setup_fronius_integration(hass) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 25 await enable_all_entities( hass, config_entry.entry_id, FroniusMeterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 59 # ignored entities: # manufacturer, model, serial, enable, timestamp, visible, meter_location # # states are rounded to 4 decimals assert_state("sensor.current_ac_phase_1_fronius_meter_0_http_fronius", 7.755) assert_state("sensor.current_ac_phase_2_fronius_meter_0_http_fronius", 6.68) assert_state("sensor.current_ac_phase_3_fronius_meter_0_http_fronius", 10.102) assert_state( "sensor.energy_reactive_ac_consumed_fronius_meter_0_http_fronius", 59960790 ) assert_state( "sensor.energy_reactive_ac_produced_fronius_meter_0_http_fronius", 723160 ) assert_state("sensor.energy_real_ac_minus_fronius_meter_0_http_fronius", 35623065) assert_state("sensor.energy_real_ac_plus_fronius_meter_0_http_fronius", 15303334) assert_state("sensor.energy_real_consumed_fronius_meter_0_http_fronius", 15303334) assert_state("sensor.energy_real_produced_fronius_meter_0_http_fronius", 35623065) assert_state("sensor.frequency_phase_average_fronius_meter_0_http_fronius", 50) assert_state("sensor.power_apparent_phase_1_fronius_meter_0_http_fronius", 1772.793) assert_state("sensor.power_apparent_phase_2_fronius_meter_0_http_fronius", 1527.048) assert_state("sensor.power_apparent_phase_3_fronius_meter_0_http_fronius", 2333.562) assert_state("sensor.power_apparent_fronius_meter_0_http_fronius", 5592.57) assert_state("sensor.power_factor_phase_1_fronius_meter_0_http_fronius", -0.99) assert_state("sensor.power_factor_phase_2_fronius_meter_0_http_fronius", -0.99) assert_state("sensor.power_factor_phase_3_fronius_meter_0_http_fronius", 0.99) assert_state("sensor.power_factor_fronius_meter_0_http_fronius", 1) assert_state("sensor.power_reactive_phase_1_fronius_meter_0_http_fronius", 51.48) assert_state("sensor.power_reactive_phase_2_fronius_meter_0_http_fronius", 115.63) assert_state("sensor.power_reactive_phase_3_fronius_meter_0_http_fronius", -164.24) assert_state("sensor.power_reactive_fronius_meter_0_http_fronius", 2.87) assert_state("sensor.power_real_phase_1_fronius_meter_0_http_fronius", 1765.55) assert_state("sensor.power_real_phase_2_fronius_meter_0_http_fronius", 1515.8) assert_state("sensor.power_real_phase_3_fronius_meter_0_http_fronius", 2311.22) assert_state("sensor.power_real_fronius_meter_0_http_fronius", 5592.57) assert_state("sensor.voltage_ac_phase_1_fronius_meter_0_http_fronius", 228.6) assert_state("sensor.voltage_ac_phase_2_fronius_meter_0_http_fronius", 228.6) assert_state("sensor.voltage_ac_phase_3_fronius_meter_0_http_fronius", 231) assert_state( "sensor.voltage_ac_phase_to_phase_12_fronius_meter_0_http_fronius", 395.9 ) assert_state( "sensor.voltage_ac_phase_to_phase_23_fronius_meter_0_http_fronius", 398 ) assert_state( "sensor.voltage_ac_phase_to_phase_31_fronius_meter_0_http_fronius", 398 ) async def test_symo_power_flow(hass, aioclient_mock): """Test Fronius Symo power flow entities.""" async_fire_time_changed(hass, dt.utcnow()) def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state.state == str(expected_state) # First test at night mock_responses(aioclient_mock, night=True) config_entry = await setup_fronius_integration(hass) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 23 await enable_all_entities( hass, config_entry.entry_id, FroniusInverterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 55 # ignored: location, mode, timestamp # # states are rounded to 4 decimals assert_state( "sensor.energy_day_fronius_power_flow_0_http_fronius", 10828, ) assert_state( "sensor.energy_total_fronius_power_flow_0_http_fronius", 44186900, ) assert_state( "sensor.energy_year_fronius_power_flow_0_http_fronius", 25507686, ) assert_state( "sensor.power_battery_fronius_power_flow_0_http_fronius", STATE_UNKNOWN, ) assert_state( "sensor.power_grid_fronius_power_flow_0_http_fronius", 975.31, ) assert_state( "sensor.power_load_fronius_power_flow_0_http_fronius", -975.31, ) assert_state( "sensor.power_photovoltaics_fronius_power_flow_0_http_fronius", STATE_UNKNOWN, ) assert_state( "sensor.relative_autonomy_fronius_power_flow_0_http_fronius", 0, ) assert_state( "sensor.relative_self_consumption_fronius_power_flow_0_http_fronius", STATE_UNKNOWN, ) # Second test at daytime when inverter is producing mock_responses(aioclient_mock, night=False) async_fire_time_changed( hass, dt.utcnow() + FroniusPowerFlowUpdateCoordinator.default_interval ) await hass.async_block_till_done() # still 55 because power_flow update interval is shorter than others assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 55 assert_state( "sensor.energy_day_fronius_power_flow_0_http_fronius", 1101.7001, ) assert_state( "sensor.energy_total_fronius_power_flow_0_http_fronius", 44188000, ) assert_state( "sensor.energy_year_fronius_power_flow_0_http_fronius", 25508788, ) assert_state( "sensor.power_battery_fronius_power_flow_0_http_fronius", STATE_UNKNOWN, ) assert_state( "sensor.power_grid_fronius_power_flow_0_http_fronius", 1703.74, ) assert_state( "sensor.power_load_fronius_power_flow_0_http_fronius", -2814.74, ) assert_state( "sensor.power_photovoltaics_fronius_power_flow_0_http_fronius", 1111, ) assert_state( "sensor.relative_autonomy_fronius_power_flow_0_http_fronius", 39.4708, ) assert_state( "sensor.relative_self_consumption_fronius_power_flow_0_http_fronius", 100, ) async def test_gen24(hass, aioclient_mock): """Test Fronius Gen24 inverter entities.""" def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state assert state.state == str(expected_state) mock_responses(aioclient_mock, fixture_set="gen24") config_entry = await setup_fronius_integration(hass, is_logger=False) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 25 await enable_all_entities( hass, config_entry.entry_id, FroniusMeterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 57 # inverter 1 assert_state("sensor.energy_year_fronius_inverter_1_http_fronius", STATE_UNKNOWN) assert_state("sensor.current_ac_fronius_inverter_1_http_fronius", 0.1589) assert_state("sensor.current_dc_2_fronius_inverter_1_http_fronius", 0.0754) assert_state("sensor.status_code_fronius_inverter_1_http_fronius", 7) assert_state("sensor.energy_day_fronius_inverter_1_http_fronius", STATE_UNKNOWN) assert_state("sensor.current_dc_fronius_inverter_1_http_fronius", 0.0783) assert_state("sensor.voltage_dc_2_fronius_inverter_1_http_fronius", 403.4312) assert_state("sensor.power_ac_fronius_inverter_1_http_fronius", 37.3204) assert_state("sensor.error_code_fronius_inverter_1_http_fronius", 0) assert_state("sensor.voltage_dc_fronius_inverter_1_http_fronius", 411.3811) assert_state("sensor.energy_total_fronius_inverter_1_http_fronius", 1530193.42) assert_state("sensor.inverter_state_fronius_inverter_1_http_fronius", "Running") assert_state("sensor.voltage_ac_fronius_inverter_1_http_fronius", 234.9168) assert_state("sensor.frequency_ac_fronius_inverter_1_http_fronius", 49.9917) # meter assert_state("sensor.energy_real_produced_fronius_meter_0_http_fronius", 3863340.0) assert_state("sensor.energy_real_consumed_fronius_meter_0_http_fronius", 2013105.0) assert_state("sensor.power_real_fronius_meter_0_http_fronius", 653.1) assert_state("sensor.frequency_phase_average_fronius_meter_0_http_fronius", 49.9) assert_state("sensor.meter_location_fronius_meter_0_http_fronius", 0.0) assert_state("sensor.power_factor_fronius_meter_0_http_fronius", 0.828) assert_state( "sensor.energy_reactive_ac_consumed_fronius_meter_0_http_fronius", 88221.0 ) assert_state("sensor.energy_real_ac_minus_fronius_meter_0_http_fronius", 3863340.0) assert_state("sensor.current_ac_phase_2_fronius_meter_0_http_fronius", 2.33) assert_state("sensor.voltage_ac_phase_1_fronius_meter_0_http_fronius", 235.9) assert_state( "sensor.voltage_ac_phase_to_phase_12_fronius_meter_0_http_fronius", 408.7 ) assert_state("sensor.power_real_phase_2_fronius_meter_0_http_fronius", 294.9) assert_state("sensor.energy_real_ac_plus_fronius_meter_0_http_fronius", 2013105.0) assert_state("sensor.voltage_ac_phase_2_fronius_meter_0_http_fronius", 236.1) assert_state( "sensor.energy_reactive_ac_produced_fronius_meter_0_http_fronius", 1989125.0 ) assert_state("sensor.voltage_ac_phase_3_fronius_meter_0_http_fronius", 236.9) assert_state("sensor.power_factor_phase_1_fronius_meter_0_http_fronius", 0.441) assert_state( "sensor.voltage_ac_phase_to_phase_23_fronius_meter_0_http_fronius", 409.6 ) assert_state("sensor.current_ac_phase_3_fronius_meter_0_http_fronius", 1.825) assert_state("sensor.power_factor_phase_3_fronius_meter_0_http_fronius", 0.832) assert_state("sensor.power_apparent_phase_1_fronius_meter_0_http_fronius", 243.3) assert_state( "sensor.voltage_ac_phase_to_phase_31_fronius_meter_0_http_fronius", 409.4 ) assert_state("sensor.power_apparent_phase_2_fronius_meter_0_http_fronius", 323.4) assert_state("sensor.power_apparent_phase_3_fronius_meter_0_http_fronius", 301.2) assert_state("sensor.power_real_phase_1_fronius_meter_0_http_fronius", 106.8) assert_state("sensor.power_factor_phase_2_fronius_meter_0_http_fronius", 0.934) assert_state("sensor.power_real_phase_3_fronius_meter_0_http_fronius", 251.3) assert_state("sensor.power_reactive_phase_1_fronius_meter_0_http_fronius", -218.6) assert_state("sensor.power_reactive_phase_2_fronius_meter_0_http_fronius", -132.8) assert_state("sensor.power_reactive_phase_3_fronius_meter_0_http_fronius", -166.0) assert_state("sensor.power_apparent_fronius_meter_0_http_fronius", 868.0) assert_state("sensor.power_reactive_fronius_meter_0_http_fronius", -517.4) assert_state("sensor.current_ac_phase_1_fronius_meter_0_http_fronius", 1.145) # power_flow assert_state("sensor.power_grid_fronius_power_flow_0_http_fronius", 658.4) assert_state( "sensor.relative_self_consumption_fronius_power_flow_0_http_fronius", 100.0 ) assert_state( "sensor.power_photovoltaics_fronius_power_flow_0_http_fronius", 62.9481 ) assert_state("sensor.power_load_fronius_power_flow_0_http_fronius", -695.6827) assert_state("sensor.meter_mode_fronius_power_flow_0_http_fronius", "meter") assert_state("sensor.relative_autonomy_fronius_power_flow_0_http_fronius", 5.3592) assert_state( "sensor.power_battery_fronius_power_flow_0_http_fronius", STATE_UNKNOWN ) assert_state("sensor.energy_year_fronius_power_flow_0_http_fronius", STATE_UNKNOWN) assert_state("sensor.energy_day_fronius_power_flow_0_http_fronius", STATE_UNKNOWN) assert_state("sensor.energy_total_fronius_power_flow_0_http_fronius", 1530193.42) async def test_gen24_storage(hass, aioclient_mock): """Test Fronius Gen24 inverter with BYD battery and Ohmpilot entities.""" def assert_state(entity_id, expected_state): state = hass.states.get(entity_id) assert state assert state.state == str(expected_state) mock_responses(aioclient_mock, fixture_set="gen24_storage") config_entry = await setup_fronius_integration(hass, is_logger=False) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 31 await enable_all_entities( hass, config_entry.entry_id, FroniusMeterUpdateCoordinator.default_interval ) assert len(hass.states.async_all(domain_filter=SENSOR_DOMAIN)) == 63 # inverter 1 assert_state("sensor.current_dc_fronius_inverter_1_http_fronius", 0.3952) assert_state("sensor.voltage_dc_2_fronius_inverter_1_http_fronius", 318.8103) assert_state("sensor.current_dc_2_fronius_inverter_1_http_fronius", 0.3564) assert_state("sensor.energy_year_fronius_inverter_1_http_fronius", STATE_UNKNOWN) assert_state("sensor.current_ac_fronius_inverter_1_http_fronius", 1.1087) assert_state("sensor.power_ac_fronius_inverter_1_http_fronius", 250.9093) assert_state("sensor.energy_day_fronius_inverter_1_http_fronius", STATE_UNKNOWN) assert_state("sensor.error_code_fronius_inverter_1_http_fronius", 0) assert_state("sensor.status_code_fronius_inverter_1_http_fronius", 7) assert_state("sensor.energy_total_fronius_inverter_1_http_fronius", 7512794.0117) assert_state("sensor.inverter_state_fronius_inverter_1_http_fronius", "Running") assert_state("sensor.voltage_dc_fronius_inverter_1_http_fronius", 419.1009) assert_state("sensor.voltage_ac_fronius_inverter_1_http_fronius", 227.354) assert_state("sensor.frequency_ac_fronius_inverter_1_http_fronius", 49.9816) # meter assert_state("sensor.energy_real_produced_fronius_meter_0_http_fronius", 1705128.0) assert_state("sensor.power_real_fronius_meter_0_http_fronius", 487.7) assert_state("sensor.power_factor_fronius_meter_0_http_fronius", 0.698) assert_state("sensor.energy_real_consumed_fronius_meter_0_http_fronius", 1247204.0) assert_state("sensor.frequency_phase_average_fronius_meter_0_http_fronius", 49.9) assert_state("sensor.meter_location_fronius_meter_0_http_fronius", 0.0) assert_state("sensor.power_reactive_fronius_meter_0_http_fronius", -501.5) assert_state( "sensor.energy_reactive_ac_produced_fronius_meter_0_http_fronius", 3266105.0 ) assert_state("sensor.power_real_phase_3_fronius_meter_0_http_fronius", 19.6) assert_state("sensor.current_ac_phase_3_fronius_meter_0_http_fronius", 0.645) assert_state("sensor.energy_real_ac_minus_fronius_meter_0_http_fronius", 1705128.0) assert_state("sensor.power_apparent_phase_2_fronius_meter_0_http_fronius", 383.9) assert_state("sensor.current_ac_phase_1_fronius_meter_0_http_fronius", 1.701) assert_state("sensor.current_ac_phase_2_fronius_meter_0_http_fronius", 1.832) assert_state("sensor.power_apparent_phase_1_fronius_meter_0_http_fronius", 319.5) assert_state("sensor.voltage_ac_phase_1_fronius_meter_0_http_fronius", 229.4) assert_state("sensor.power_real_phase_2_fronius_meter_0_http_fronius", 150.0) assert_state( "sensor.voltage_ac_phase_to_phase_31_fronius_meter_0_http_fronius", 394.3 ) assert_state("sensor.voltage_ac_phase_2_fronius_meter_0_http_fronius", 225.6) assert_state( "sensor.energy_reactive_ac_consumed_fronius_meter_0_http_fronius", 5482.0 ) assert_state("sensor.energy_real_ac_plus_fronius_meter_0_http_fronius", 1247204.0) assert_state("sensor.power_factor_phase_1_fronius_meter_0_http_fronius", 0.995) assert_state("sensor.power_factor_phase_3_fronius_meter_0_http_fronius", 0.163) assert_state("sensor.power_factor_phase_2_fronius_meter_0_http_fronius", 0.389) assert_state("sensor.power_reactive_phase_1_fronius_meter_0_http_fronius", -31.3) assert_state("sensor.power_reactive_phase_3_fronius_meter_0_http_fronius", -116.7) assert_state( "sensor.voltage_ac_phase_to_phase_12_fronius_meter_0_http_fronius", 396.0 ) assert_state( "sensor.voltage_ac_phase_to_phase_23_fronius_meter_0_http_fronius", 393.0 ) assert_state("sensor.power_reactive_phase_2_fronius_meter_0_http_fronius", -353.4) assert_state("sensor.power_real_phase_1_fronius_meter_0_http_fronius", 317.9) assert_state("sensor.voltage_ac_phase_3_fronius_meter_0_http_fronius", 228.3) assert_state("sensor.power_apparent_fronius_meter_0_http_fronius", 821.9) assert_state("sensor.power_apparent_phase_3_fronius_meter_0_http_fronius", 118.4) # power_flow assert_state("sensor.power_grid_fronius_power_flow_0_http_fronius", 2274.9) assert_state("sensor.power_battery_fronius_power_flow_0_http_fronius", 0.1591) assert_state("sensor.power_load_fronius_power_flow_0_http_fronius", -2459.3092) assert_state( "sensor.relative_self_consumption_fronius_power_flow_0_http_fronius", 100.0 ) assert_state( "sensor.power_photovoltaics_fronius_power_flow_0_http_fronius", 216.4328 ) assert_state("sensor.relative_autonomy_fronius_power_flow_0_http_fronius", 7.4984) assert_state("sensor.meter_mode_fronius_power_flow_0_http_fronius", "bidirectional") assert_state("sensor.energy_year_fronius_power_flow_0_http_fronius", STATE_UNKNOWN) assert_state("sensor.energy_day_fronius_power_flow_0_http_fronius", STATE_UNKNOWN) assert_state("sensor.energy_total_fronius_power_flow_0_http_fronius", 7512664.4042) # storage assert_state("sensor.current_dc_fronius_storage_0_http_fronius", 0.0) assert_state("sensor.state_of_charge_fronius_storage_0_http_fronius", 4.6) assert_state("sensor.capacity_maximum_fronius_storage_0_http_fronius", 16588) assert_state("sensor.temperature_cell_fronius_storage_0_http_fronius", 21.5) assert_state("sensor.capacity_designed_fronius_storage_0_http_fronius", 16588) assert_state("sensor.voltage_dc_fronius_storage_0_http_fronius", 0.0)
StarcoderdataPython
92870
from odoo import _, api, fields, models class Quotations(models.Model): _inherit = "sale.order" note_on_customer = fields.Text("Note on Customer", help="Add Notes on Customers!")
StarcoderdataPython
8118091
<gh_stars>0 #!/usr/bin/env python # ---------------------------------------------------------------------- # Copyright (C) 2014 Numenta # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------- """ Test shellshock and other related bash bugs """ import agamotto import unittest2 as unittest class TestForBashSecurityBugs(unittest.TestCase): def testForBashCVE_2014_6271(self): """Is bash immune to CVE-2014-6271? """ test6271 = ("(env x='() { :;}; echo vulnerable' " "bash -c \"echo this is a test\") 2>&1") self.assertFalse(agamotto.process.stdoutContains(test6271, 'vulnerable'), 'Bash is vulnerable to CVE-2014-6271') def testForBashCVE_2014_6277(self): """Is bash immune to CVE-2014-6277? """ test6277 = "foo='() { echo still vulnerable; }' bash -c foo 2>&1" self.assertFalse(agamotto.process.stdoutContains(test6277, 'still vulnerable'), 'Bash is vulnerable to CVE-2014-6277') def testForBashCVE_2014_6278(self): """Is bash immune to CVE-2014-6278? """ test6278 = ("shellshocker='() { echo You are vulnerable; }' " "bash -c shellshocker") self.assertFalse(agamotto.process.stdoutContains(test6278, 'vulnerable'), 'Bash is vulnerable to CVE-2014-6278') def testForBashCVE_2014_7169(self): """Is bash immune to CVE-2014-7169? """ testFor7169 = ("env X='() { (a)=>\' bash -c \"echo echo vuln\";" " [[ \"$(cat echo)\" == \"vuln\" ]] && " "echo \"still vulnerable :(\" 2>&1") self.assertFalse(agamotto.process.stdoutContains(testFor7169, 'still vulnerable'), 'Bash is vulnerable to CVE-2014-7169') def testForBashCVE_2014_7186_a(self): """Is bash immune to CVE-2014-7186 using test from shellshocker.net?""" test7186shellshocker = ("bash -c 'true <<EOF <<EOF <<EOF <<EOF <<EOF " "<<EOF <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF <<EOF' ||" " echo 'CVE-2014-7186 vulnerable, redir_stack'") self.assertFalse(agamotto.process.stdoutContains(test7186shellshocker, 'vulnerable'), 'Vulnerable to CVE-2014-7186, redir_stack') def testForBashCVE_2014_7186_c(self): """Is bash immune to CVE-2014-7186 using <EMAIL>'s test?""" # Try Eric Blake's test too blake7186Test = ("""bash -c "export f=1 g='() {'; f() { echo 2;}; export -f f; bash -c 'echo \$f \$g; f; env | grep ^f='" """) safe=("1 () {\n2\nf=1\n") self.assertTrue(agamotto.process.stdoutContains(blake7186Test, safe), "Fails Eric Blake's CVE-2014-7186 test") def testForBashCVE_2014_7187a(self): """Is bash immune to CVE-2014-7187 using test from shellshocker.net?""" test7187 = ("""(for x in {1..200} ; do echo "for x$x in ; do :"; done; for x in {1..200} ; do echo done ; done) | bash || echo "CVE-2014-7187 vulnerable, word_lineno" """) self.assertFalse(agamotto.process.stdoutContains(test7187, 'vulnerable'), 'CVE-2014-7187 vulnerable, word_lineno') if __name__ == '__main__': unittest.main()
StarcoderdataPython
124887
<filename>explorecourses/classes.py """ This module contains classes representing various academic elements for use in storing and manipulating information from Explore Courses. Includes: - School - Department - Course - Section - Schedule - Instructor - LearningObjective - Attribute - Tag """ from typing import Tuple from xml.etree.ElementTree import Element class Department(object): """ This class represents a department within a school. Attributes: name (str): The department name. code (str): The department code used for searching courses by department. """ def __init__(self, elem: Element): """ Constructs a new Department from an XML element. Args: elem (Element): The department's XML element. """ self.name = elem.get("longname") self.code = elem.get("name") def __str__(self): """ Returns a string representation of the Department that includes both department name and code. """ return f"{self.name} ({self.code})" class School(object): """ This class represents a school within the university. Attributes: name (str): The name of the school. departments (Tuple[Department]): A list of departments within the school. """ def __init__(self, elem: Element): """ Constructs a new School from an XML element. Args: elem (Element): The school's XML element. """ self.name = elem.get("name") depts = elem.findall("department") self.departments = tuple(Department(dept) for dept in depts) def get_department(self, idf: str) -> Department: """ Gets a department within the school identified by name or code. Args: idf (str): An identifier of the department; either the name or code. Returns: Department: The department matched by the given identifier if a match was found, None otherwise. """ idf = idf.lower() find_code = lambda dept, code: dept.code.lower() == code find_name = lambda dept, name: dept.name.lower() == name find_dept = lambda dept, idf: find_name(dept, idf) or find_code(dept, idf) idx = [idx for idx, dept in enumerate(self.departments) if find_dept(dept, idf)] return self.departments[idx[0]] if idx else None def __str__(self): """ Returns a string representation of the School that is the School's name. """ return self.name class Instructor(object): """ This class represents an instructor for a section. Attributes: name (str): The instructor's name in "LastName, FirstInitial." form. first_name (str): The instructor's first name. middle_name (str): The instructor's middle name. last_name (str): The instructor's last name. sunet_id (str): The instructor's SUNet ID (as in <EMAIL>). is_primary_instructor (bool): True if the instructor is the primary instructor for the course, False otherwise. """ def __init__(self, elem: Element): """ Constructs a new Instructor from an XML element. Args: elem (Element): The instructor's XML element. """ self.name = elem.findtext("name") self.first_name = elem.findtext("firstName") self.middle_name = elem.findtext("middleName") self.last_name = elem.findtext("lastName") self.sunet_id = elem.findtext("sunet") self.is_primary_instructor = elem.findtext("role") == "PI" def __str__(self): """ Returns a string representation of the Instructor that includes the instructor's first and last name and SUNet ID. """ return f"{self.first_name} {self.last_name} ({self.sunet_id})" class Attribute(object): """ This class represents an attribute of a course. Attributes: name (str): The name of the attribute. value (str): The abbreviation value of the attribute. description (str): A description of the value of the attribute. catalog_print (bool): True if the attribute has the catalog print flag, False otherwise. schedule_print (bool): True if the attribute has the schedule print flag, False otherwise. """ def __init__(self, elem: Element): """ Constructs a new Attribute from an XML element. Args: elem (Element): The attribute's XML element. """ self.name = elem.findtext("name") self.value = elem.findtext("value") self.description = elem.findtext("description") self.catalog_print = elem.findtext("catalogPrint") == "true" self.schedule_print = elem.findtext("schedulePrint") == "true" def __str__(self): """ Returns a string representation of the Attribute that includes the attribute's name and value. """ return f"{self.name}::{self.value}" class Schedule(object): """ This class represents the schedule of a section, including instructors. Attributes: start_date (str): The start date of the section's schedule. end_date (str): The end date of the section's schedule. start_time (str): The start time of each section. end_time (str): The end time of each section. location (str): The location of each section. days (Tuple[str]): The days of the week that the section meets. instructors (Tuple[Instructor]): The section's instructors. """ def __init__(self, elem: Element): """ Constructs a new Schedule from an XML element. Args: elem (Element): The schedule's XML element. """ self.start_date = elem.findtext("startDate") self.end_date = elem.findtext("endDate") self.start_time = elem.findtext("startTime") self.end_time = elem.findtext("endTime") self.location = elem.findtext("location") self.days = tuple(elem.findtext("days").split()) self.instructors = tuple(Instructor(instr) for instr in elem.find("instructors")) def __str__(self): """ Returns a string representation of the Schedule that includes the days of the week the section meets and it's time and location. """ return (f"{', '.join(self.days)}, {self.start_time} - {self.end_time} " f"at {self.location}") class Section(object): """ This class represents a section of a course. Attributes: class_id (int): The unique ID of the section. term (str): The year and quarter during which the section is offered. units (str): The number of units the section is offered for section_num (str): The section number which distinguishes between different sections of the same type. component (str): The type of section (e.g., LEC) curr_class_size (int): The current number of students enrolled in the section. max_class_size (int): The maximum number of students allowed in the section. curr_waitlist_size (int): The current number of students on the waitlist to enroll in the section. max_waitlist_size (int): The maximum number of students allowed on the waitlist for the section. notes (str): Any notes about the section. schedules (Tuple[Schedule]): The different schedules of the section. attributes (Tuple[Attribute]): The section's attributes. """ def __init__(self, elem: Element): """ Constructs a new Section from an XML element. Args: elem (Element): The section's XML element. """ self.class_id = int(elem.findtext("classId")) self.term = elem.findtext("term") self.units = elem.findtext("units") self.section_num = elem.findtext("sectionNumber") self.component = elem.findtext("component") self.max_class_size = int(elem.findtext("maxClassSize")) self.curr_class_size = int(elem.findtext("currentClassSize")) self.curr_waitlist_size = int(elem.findtext("currentWaitlistSize")) self.max_waitlist_size = int(elem.findtext("maxWaitlistSize")) self.notes = elem.findtext("notes") self.schedules = tuple(Schedule(sched) for sched in elem.find("schedules")) self.attributes = tuple(Attribute(attr) for attr in elem.find("attributes")) def __str__(self): """ Returns a string representation of the Section that includes the section's component and number, and section's ID. """ return f"{self.component} {self.section_num} (id: {self.class_id})" class Tag(object): """ This class represents a tag for a course. Attributes: organization (str): The organization within the school responsible for the tag. name (str): The name of the tag. """ def __init__(self, elem: Element): """ Constructs a new Tag from an XML element. Args: elem (Element): The tag's XML element. """ self.organization = elem.findtext("organization") self.name = elem.findtext("name") def __str__(self): """ Returns a string representation of the Tag that includes the tag's organization and name. """ return f"{self.organization}::{self.name}" class LearningObjective(object): """ This class represents a learning objective for a course. Attributes: code (str): The GER that the learning objective is for. description (str): A description of the learning objective. """ def __init__(self, elem: Element): """ Constructs a new LearningObjective from an XML element. Args: elem (Element): The learning objective's XML element. """ self.code = elem.findtext(".//requirementCode") self.description = elem.findtext(".//description") def __str__(self): """ Returns a string representation of the LearningObjective that includes the learning objective's code and description. """ return f"Learning Objective ({self.code}: {self.description})" class Course(object): """ This class represents a course listed at the university. Attributes: year (str): The Academic year that the course is offered. subject (str): The academic subject of the course (e.g., 'MATH'). code (str): The code listing of the course (e.g., '51'). title (str): The full title of the course. description (str): A description of the course. gers (Tuple[str]): The General Education Requirements satisfied by the course. repeatable (bool): True if the course is repeatable for credit, False otherwise. grading_basis (str): The grading basis options for the course. units_min (int): The minimum number of units the course can be taken for. units_max (int): The maximum number of units the course can be taken for. objectives (Tuple[LearningObjective]): The learning objectives of the course. final_exam (bool): True if the course has a final exam, False otherwise. sections (Tuple[Section]): The sections associated with the course. tags (Tuple[Tag]): The tags associated with the course. attributes (Tuple[Attributes]): The attributes associated with the course. course_id (int): The unique ID of the course. active (bool): True if the course is currently being taught, False otherwise. offer_num (str): The offer number of the course. academic_group (str): The academic group that the course is a part of. academic_org (str): The academic organization that the course is a part of. academic_career (str): The academic career associated with the course. max_units_repeat (int): The number of units that the course can be repeated for. max_times_repeat (int): The number of times that the course can be repeated. """ def __init__(self, elem: Element): """ Constructs a new Course from an XML element. Args: elem (Element): The course's XML element. """ self.year = elem.findtext("year") self.subject = elem.findtext("subject") self.code = elem.findtext("code") self.title = elem.findtext("title") self.description = elem.findtext("description") self.gers = tuple(elem.findtext("gers").split(", ")) self.repeatable = (True if elem.findtext("repeatable") == "true" else False) self.grading_basis = elem.findtext("grading") self.units_min = int(elem.findtext("unitsMin")) self.units_max = int(elem.findtext("unitsMax")) self.objectives = tuple(LearningObjective(obj) for obj in elem.find("learningObjectives")) self.final_exam = ( True if elem.findtext(".//finalExamFlag") == "Y" else False if elem.findtext(".//finalExamFlag") == "N" else None ) self.sections = tuple(Section(section) for section in elem.find("sections")) self.tags = tuple(Tag(tag) for tag in elem.find("tags")) self.attributes = tuple(Attribute(attr) for attr in elem.find("attributes")) self.course_id = int(elem.findtext(".//courseId")) self.active = (True if elem.findtext(".//effectiveStatus") == "A" else False if elem.findtext(".//effectiveStatus") == "I" else None) self.offer_num = elem.findtext(".//offerNumber") self.academic_group = elem.findtext(".//academicGroup") self.academic_org = elem.findtext(".//academicOrganization") self.academic_career = elem.findtext(".//academicCareer") self.max_units_repeat = int(elem.findtext(".//maxUnitsRepeat")) self.max_times_repeat = int(elem.findtext(".//maxTimesRepeat")) def __str__(self): """ Returns a string representation of the Course that includes the course's subject, code, and full title. """ return f"{self.subject}{self.code} {self.title}" def __eq__(self, other): """ Overloads the equality (==) operator for the Course class. A Course can only be compared to another Course. Course equality is determined by course ID. Args: other: The right operand of the equality operator. Returns: bool: True if the object being compared is equal to the Course, False otherwise. """ if type(other) != Course: return False return self.course_id == other.course_id def __lt__(self, other): """ Overloads the less than (<) operator for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the less than operator. Returns: bool: True if the object being compared is less than the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'<' not supported between instances of " f"'{type(self)}' and '{type(other)}'") if self.subject != other.subject: return self.subject < other.subject if self.code != other.code: return self.code < other.code if self.year != other.year: return self.year < other.year return False def __gt__(self, other): """ Overloads the greater than (>) operator for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the greater than operator. Returns: bool: True if the object being compared is greater than the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'>' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return not self.__lt__(other) and not self.__eq__(other) def __le__(self, other): """ Overloads the less than or equal to operator (<=) for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the less than or equal to operator. Returns: bool: True if the object being compared is less than or equal to the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'<=' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return self.__lt__(other) or self.__eq__(other) def __ge__(self, other): """ Overloads the greater than or equal to operator (>=) for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the greater than or equal to operator. Returns: bool: True if the object being compared is greater than or equal to the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'>=' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return self.__gt__(other) or self.__eq__(other)
StarcoderdataPython
1952533
""" Test batch gradient computation of conv2d layer. The example is taken from Chellapilla: High Performance Convolutional Neural Networks for Document Processing (2007). """ from random import choice, randint import pytest from torch import Tensor, allclose, randn from torch.nn import Conv2d import backpack.extensions as new_ext from backpack import backpack, extend def ExtConv2d(*args, **kwargs): return extend(Conv2d(*args, **kwargs)) TEST_ATOL = 1e-4 ### # Problem settings ### def make_conv_params( in_channels, out_channels, kernel_size, stride, padding, dilation, bias, kernel ): return { "in_channels": in_channels, "out_channels": out_channels, "kernel_size": kernel_size, "stride": stride, "padding": padding, "dilation": dilation, "bias": bias, "kernel": kernel, } def make_conv_layer(LayerClass, conv_params): layer = LayerClass( in_channels=conv_params["in_channels"], out_channels=conv_params["out_channels"], kernel_size=conv_params["kernel_size"], stride=conv_params["stride"], padding=conv_params["padding"], dilation=conv_params["dilation"], bias=conv_params["bias"], ) layer.weight.data = conv_params["kernel"] return layer kernel11 = [[1, 1], [2, 2]] kernel12 = [[1, 1], [1, 1]] kernel13 = [[0, 1], [1, 0]] kernel21 = [[1, 0], [0, 1]] kernel22 = [[2, 1], [2, 1]] kernel23 = [[1, 2], [2, 0]] kernel = Tensor( [[kernel11, kernel12, kernel13], [kernel21, kernel22, kernel23]] ).float() CONV_PARAMS = make_conv_params( in_channels=3, out_channels=2, kernel_size=(2, 2), stride=(1, 1), padding=(0, 0), dilation=(1, 1), bias=False, kernel=kernel, ) # input (1 sample) in_feature1 = [[1, 2, 0], [1, 1, 3], [0, 2, 2]] in_feature2 = [[0, 2, 1], [0, 3, 2], [1, 1, 0]] in_feature3 = [[1, 2, 1], [0, 1, 3], [3, 3, 2]] in1 = Tensor([[in_feature1, in_feature2, in_feature3]]).float() result1 = [[14, 20], [15, 24]] result2 = [[12, 24], [17, 26]] out1 = Tensor([[result1, result2]]).float() conv2d = make_conv_layer(Conv2d, CONV_PARAMS) g_conv2d = make_conv_layer(ExtConv2d, CONV_PARAMS) inputs = [in1] results = [out1] def loss_function(tensor): """Test loss function. Sum over squared entries.""" return ((tensor.contiguous().view(-1)) ** 2).sum() def test_forward(): """Compare forward Handles only single instance batch. """ for input, result in zip(inputs, results): out_conv2d = conv2d(input) assert allclose(out_conv2d, result) out_g_conv2d = g_conv2d(input) assert allclose(out_g_conv2d, result) def random_convolutions_and_inputs( in_channels=None, out_channels=None, kernel_size=None, stride=None, padding=None, dilation=None, bias=None, batch_size=None, in_size=None, ): """Return same torch/exts 2d conv modules and random inputs. Arguments can be fixed by handing them over. """ def __replace_if_none(var, by): return by if var is None else var in_channels = __replace_if_none(in_channels, randint(1, 3)) out_channels = __replace_if_none(out_channels, randint(1, 3)) kernel_size = __replace_if_none(kernel_size, (randint(1, 3), randint(1, 3))) stride = __replace_if_none(stride, (randint(1, 3), randint(1, 3))) padding = __replace_if_none(padding, (randint(0, 2), randint(0, 2))) dilation = __replace_if_none(dilation, (randint(1, 3), randint(1, 3))) bias = __replace_if_none(bias, choice([True, False])) batch_size = __replace_if_none(batch_size, randint(1, 3)) in_size = __replace_if_none(in_size, (randint(8, 12), randint(8, 12))) kernel_shape = (out_channels, in_channels) + kernel_size kernel = randn(kernel_shape) in_shape = (batch_size, in_channels) + in_size input = randn(in_shape) conv_params = make_conv_params( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, kernel=kernel, ) conv2d = make_conv_layer(Conv2d, conv_params) g_conv2d = make_conv_layer(ExtConv2d, conv_params) if bias is True: bias_vals = randn(out_channels) conv2d.bias.data = bias_vals g_conv2d.bias.data = bias_vals assert allclose(conv2d.bias, g_conv2d.bias) assert allclose(conv2d.weight, g_conv2d.weight) return conv2d, g_conv2d, input def compare_grads(conv2d, g_conv2d, input): """Feed input through nn and exts conv2d, compare bias/weight grad.""" loss = loss_function(conv2d(input)) loss.backward() loss_g = loss_function(g_conv2d(input)) with backpack(new_ext.BatchGrad()): loss_g.backward() assert allclose(g_conv2d.bias.grad, conv2d.bias.grad, atol=TEST_ATOL) assert allclose(g_conv2d.weight.grad, conv2d.weight.grad, atol=TEST_ATOL) assert allclose(g_conv2d.bias.grad_batch.sum(0), conv2d.bias.grad, atol=TEST_ATOL) assert allclose( g_conv2d.weight.grad_batch.sum(0), conv2d.weight.grad, atol=TEST_ATOL ) @pytest.mark.skip("Test does not consistently fail or pass") def test_random_grad(random_runs=10): """Compare bias gradients for a single sample.""" for _ in range(random_runs): conv2d, g_conv2d, input = random_convolutions_and_inputs( bias=True, batch_size=1 ) compare_grads(conv2d, g_conv2d, input) @pytest.mark.skip("Test does not consistently fail or pass") def test_random_grad_batch(random_runs=10): """Check bias gradients for a batch.""" for _ in range(random_runs): conv2d, g_conv2d, input = random_convolutions_and_inputs(bias=True) compare_grads(conv2d, g_conv2d, input)
StarcoderdataPython
6505396
<reponame>1byte2bytes/cpython """cmtest - List all components in the system""" import Cm import Res import sys def getstr255(r): """Get string from str255 resource""" if not r.data: return '' len = ord(r.data[0]) return r.data[1:1+len] def getinfo(c): """Return (type, subtype, creator, fl1, fl2, name, description) for component""" h1 = Res.Resource('') h2 = Res.Resource('') h3 = Res.Resource('') type, subtype, creator, fl1, fl2 = c.GetComponentInfo(h1, h2, h3) name = getstr255(h1) description = getstr255(h2) return type, subtype, creator, fl1, fl2, name, description def getallcomponents(): """Return list with info for all components, sorted""" any = ('\0\0\0\0', '\0\0\0\0', '\0\0\0\0', 0, 0) c = None rv = [] while 1: try: c = Cm.FindNextComponent(c, any) except Cm.Error: break rv.append(getinfo(c)) rv.sort() return rv def main(): """Print info for all components""" info = getallcomponents() for type, subtype, creator, f1, f2, name, description in info: print '%4.4s %4.4s %4.4s %s 0x%x 0x%x'%(type, subtype, creator, name, f1, f2) print ' ', description sys.exit(1) main()
StarcoderdataPython
337100
<gh_stars>1-10 #!/usr/bin/env python3 # Copyright (c) <NAME> # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import ArgumentParser import re import sys def main(args): f = '{}.{}'.format(args.corpus, args.l1) e = '{}.{}'.format(args.corpus, args.l2) fo = '{}.{}'.format(args.clean_corpus, args.l1) eo = '{}.{}'.format(args.clean_corpus, args.l2) pattern = re.compile('^\s*$') cnt = 0 lines = 0 with \ open(f, 'r', encoding='utf-8') as fp, \ open(e, 'r', encoding='utf-8') as ep, \ open(fo, 'w', encoding='utf-8') as fop, \ open(eo, 'w', encoding='utf-8') as eop: for fl, el in zip(fp, ep): lines += 1 if pattern.fullmatch(fl) is not None or pattern.fullmatch(el) is not None: continue fop.write(fl) eop.write(el) cnt += 1 print('input sentences: {}, output sentences: {}'.format(lines, cnt), file=sys.stderr) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('corpus') parser.add_argument('l1') parser.add_argument('l2') parser.add_argument('clean_corpus') args = parser.parse_args() main(args)
StarcoderdataPython
11239622
import json import mtprof import numpy as np import circuits as cir import ngspice import optimizers as opt def test_folded_corners_sim(): process = ["SS", "FF", "SNFP", "FNSP"] voltage_tempt = ["VDD_MAX_TEMP_MAX", "VDD_MAX_TEMP_MIN", "VDD_MIN_TEMP_MAX", "VDD_MIN_TEMP_MIN"] corner_set = set(["TT"] + [ p+"_"+vt for p in process for vt in voltage_tempt]) with open("./circuit_examples/ptm130_folded_cascode/sizing_example.json", 'r') as file: sizing = json.load(file) parameters = [ k for k,v in sizing.items() ] values = [ v for k,v in sizing.items() ] folder = "./circuit_examples/ptm130_folded_cascode/" meas = ngspice.simulate(cwd = folder, netlist=["tb_ac.cir"], param = parameters, val = np.array([values])) errors = [] # replace assertions by conditions if not len(meas) == 1: errors.append("Failed output size, found {} expected 1".format(len(meas))) else: if not len(meas[0]) == 17: errors.append("Failed number of coners , found {} expected 17".format(len(meas[0]))) if meas[0].keys() != corner_set : errors.append("Failed to find all corners , found {} expected one of {}".format(sorted(meas.keys()), sorted(corner_set))) # assert no error message has been registered, else print messages assert not errors, "errors occured:\n{}".format("\n".join(errors)) def itest_folded_corners_opt(): seed = 42 np.random.seed(seed) nsga2 = opt.NSGA2() for pop, pop_obj, pop_cstr, pop_data, evals, front_no in nsga2.minimize( cir.Circuit("./circuit_examples/ptm130_folded_cascode/"), pop_size=32, evaluations=32*10, mutation=0.3): print(evals) print(pop_obj[pop_cstr.argmax()] , pop_cstr[pop_cstr.argmax()]) print(pop_data[pop_cstr.argmax()][1]['TT']) if __name__ == '__main__': itest_folded_corners_opt()
StarcoderdataPython
12838917
<reponame>vluk/baymaxBot<gh_stars>0 import discord from discord.ext import commands import random import asyncio cards = ["villager", "werewolf", "minion", "mason", "seer", "robber", "troublemaker", "drunk", "insomniac", "tanner", "hunter"] aesthetics = { "werewolf" : { "color" : 0x25d0ff, "thumbnail" : "https://cdn.discordapp.com/attachments/323535193073778689/716453639782137876/unknown.png" } } class Game: def __init__(self, host, join_message): self.state = "preparing" self.players = [1, 2, 3] self.host = host self.join_message = join_message self.initial_roles = [] self.current_roles = [] self.votes = {} def fetch_player(self, arg): try: for player in self.players: if not isinstance(player, int): if player.id == int(arg): return self.players.index(player) except ValueError: pass arg = str(arg) for player in self.players: if not isinstance(player, int): if player.name.lower() == arg.lower(): return self.players.index(player) for player in self.players: if not isinstance(player, int): if player.nick != None and player.nick.lower() == arg.lower(): return self.players.index(player) return -1 def get_refreshed_embed(self): embed = self.join_message.embeds[0] embed.clear_fields() players = ", ".join(self.get_player_list()) if len(self.players) > 3 else "None" embed.add_field(name="Players:", value = players) roles = ", ".join([cards[i] for i in self.initial_roles]) if len(self.initial_roles) > 0 else "None" embed.add_field(name="Roles:", value = roles) return embed def get_player_list(self): return [i.display_name for i in self.players if not isinstance(i, int)] def get_debrief(self): return [(self.players[i].display_name, cards[self.current_roles[i]]) for i in range(len(self.current_roles)) if not isinstance(self.players[i], int)] def simulate(self, instructions): for i in instructions: for j in i: swap = self.current_roles[j[0]] self.current_roles[j[0]] = self.current_roles[j[1]] self.current_roles[j[1]] = swap class Werewolf(commands.Cog): def __init__(self, bot): self.bot = bot self.games = {} async def do_villager(): pass async def do_werewolf(self, user, game): werewolves = [] for i in range(len(game.players)): if not isinstance(game.players[i], int) and game.initial_roles[i] == 1: werewolves.append(game.players[i]) if len(werewolves) == 1: embed = discord.Embed( title = "You are a werewolf!", description = " ".join([ "You are a werewolf, the very embodiment of evil itself.", "As a werewolf, your goal is to stay alive by deceiving the other players.", "If all of the werewolves manage to stay alive, then their team wins.", "Since it looks like you're the only werewolf, you get to look at a card from the center.", "Click on one of the reactions on this message to reveal a card." ]), color = aesthetics["werewolf"]["color"] ) embed.set_thumbnail(url=aesthetics["werewolf"]["thumbnail"]) embed.add_field( name="Werewolves", value = "Just you!" ) message = await user.send(embed=embed) key = {"1️⃣" : 1, "2️⃣" : 2, "3️⃣" : 3} for i in key: await message.add_reaction(i) def check(r, u): return u.id == user.id and r.message.id == message.id and str(r.emoji) in key reaction, user = await self.bot.wait_for("reaction_add", check=check) selection = key[str(reaction.emoji)] revealed = cards[game.initial_roles[game.players.index(selection)]].capitalize() embed.add_field( name="Revealed Card", value=revealed, ) await message.edit(embed=embed) elif len(werewolves) > 1: embed = discord.Embed( title = "You are a werewolf!", description = " ".join([ "As a werewolf, your goal is to stay alive by deceiving the other players.", "If all of the werewolves manage to stay alive, then their team wins." ]), color = aesthetics["werewolf"]["color"] ) embed.set_thumbnail(url=aesthetics["werewolf"]["thumbnail"]) embed.add_field( name="Werewolves:", value = ", ".join([werewolf.display_name for werewolf in werewolves]) ) await user.send(embed=embed) return [] async def do_minion(self, user, game): werewolves = [] for i in range(len(game.players)): if not isinstance(game.players[i], int) and game.initial_roles[i] == 1: werewolves.append(game.players[i]) if len(werewolves) == 0: embed = discord.Embed( title = "You are a minion!", description = " ".join([ "You are a dastardly minion, only barely tolerated by the werewolves.", "Try to draw the fire of the other players, or divert suspicion towards one of the villagers.", "If all of the werewolves manage to stay alive, then you win.", ]) ) embed.add_field( name="Werewolves:", value = "None" ) await user.send(embed=embed) else: embed = discord.Embed( title = "You are a minion!", description = " ".join([ "You are a minion, dashing but with a heart of coal.", "Try to draw the fire of the other players, or divert suspicion towards one of the villagers.", "If all of the werewolves manage to stay alive, then you win.", ]) ) embed.add_field( name="Werewolves:", value = ", ".join([werewolf.display_name for werewolf in werewolves]) ) await user.send(embed=embed) return [] async def do_mason(self, user, game): masons = [] for i in range(len(game.players)): if not isinstance(game.players[i], int) and game.initial_roles[i] == 3: masons.append(game.players[i]) embed = discord.Embed( title = "You are a mason!", description = " ".join([ "Your sublime bond with your partner is unbreakable.", "Leverage your maybe-platonic love to narrow down the suspects.", "If you manage to kill a werewolf, then you win.", ]) ) embed.add_field( name="Masons", value = ", ".join([mason.display_name for mason in masons]) ) message = await user.send(embed=embed) return [] async def do_seer(self, user, game): embed = discord.Embed( title = "You are a seer!", description = " ".join([ "You are one with the very fabric of reality itself.", "Use your eldritch knowledge to gain insights into the game.", "If you manage to kill a werewolf, then you win.", "You can either look at either another player's card or two cards in the center. " "React with either 🇵 or 🇨 to choose." ]) ) message = await user.send(embed=embed) key = {"🇵" : "player", "🇨" : "center"} for i in key: await message.add_reaction(i) def check(r, u): return u.id == user.id and r.message.id == message.id and str(r.emoji) in key reaction, user = await self.bot.wait_for("reaction_add", check=check) selection = key[str(reaction.emoji)] if selection == "player": await user.send("Choose which player, using either their full username or nickname.") def user_check(m): if m.author.id != self.bot.user.id: if m.channel.id == user.dm_channel.id: if game.fetch_player(m.content) != -1: self.bot.loop.create_task(m.add_reaction("✅")) return True else: self.bot.loop.create_task(m.add_reaction("❌")) return False player = game.fetch_player((await self.bot.wait_for("message", check=user_check)).content) await user.send(cards[game.initial_roles[player]]) elif selection == "center": await user.send("Choose which two using two numbers (1, 2, 3) seperated with a space.") def card_check(m): if m.channel.id != user.dm_channel.id: return False split = m.content.split() if len(split) != 2: self.bot.loop.create_task(m.add_reaction("❌")) return False try: valid = int(split[0]) in [1, 2, 3] and int(split[1]) in [1, 2, 3] and split[0] != split[1] if valid: self.bot.loop.create_task(m.add_reaction("✅")) return True self.bot.loop.create_task(m.add_reaction("❌")) return False except ValueError: self.bot.loop.create_task(m.add_reaction("❌")) return False centers = [int(i) for i in (await self.bot.wait_for("message", check=card_check)).content.split()] await user.send(cards[game.initial_roles[game.players.index(centers[0])]]) await user.send(cards[game.initial_roles[game.players.index(centers[1])]]) await user.send("You're good to go!") return [] async def do_robber(self, user, game): embed = discord.Embed( title = "You are a robber!", description = " ".join([ "Your morals are flexible, and so is your identity.", "Choose another player to swap your card with.", "Whoever ends up with your card will be on the villager team.", "(Send a message containing their full username or nickname.)" ]) ) message = await user.send(embed=embed) initial = game.fetch_player(user.id) def check(m): if m.channel.id == user.dm_channel.id: if (game.fetch_player(m.content) != -1 and game.fetch_player(m.content) != initial): self.bot.loop.create_task(m.add_reaction("✅")) return True else: self.bot.loop.create_task(m.add_reaction("❌")) return False target = game.fetch_player((await self.bot.wait_for("message", check=check)).content) await user.send("you are now the " + cards[game.initial_roles[target]]) await user.send("You're good to go!") return [(initial, target)] async def do_troublemaker(self, user, game): await user.send("choose two players to swap (seperate messages)") initial = game.fetch_player(user.id) first = None def check(m): if m.channel.id == user.dm_channel.id: if (game.fetch_player(m.content) != -1 and game.fetch_player(m.content) != first and game.fetch_player(m.content) != initial): self.bot.loop.create_task(m.add_reaction("✅")) return True else: self.bot.loop.create_task(m.add_reaction("❌")) return False first_message = await self.bot.wait_for("message", check=check) first = game.fetch_player(first_message.content) second_message = await self.bot.wait_for("message", check=check) second = game.fetch_player(second_message.content) await user.send("You're good to go!") return [(first, second)] async def do_drunk(self, user, game): embed = discord.Embed( title = "You are a drunk!", description = " ".join([ "You like the happy juice a biiiit more than is probably healthy.", "Choose a card in the center to swap with." ]) ) message = await user.send(embed=embed) key = {"1️⃣" : 1, "2️⃣" : 2, "3️⃣" : 3} for i in key: await message.add_reaction(i) def check(r, u): return u.id == user.id and r.message.id == message.id and str(r.emoji) in key reaction, user = await self.bot.wait_for("reaction_add", check=check) selection = key[str(reaction.emoji)] current = game.fetch_player(user.id) middle = game.players.index(key[str(reaction.emoji)]) await user.send("You're good to go!") return [(current, middle)] async def do_insomniac(self, user, game): current = game.fetch_player(user.id) await user.send(cards[game.current_roles[current]]) @commands.group(aliases=["ww"], invoke_without_command=True) async def werewolf(self, ctx): host = ctx.message.author embed = discord.Embed( title = "Werewolf", description = " ".join([ "A classic social deduction game where two sides face off against each other: the **Villagers** and **Werewolves**.", "Uncover who the werewolves are, or use deception to stay hidden until the end.", "But be careful: if you kill the Tanner, then both teams lose.", "\n\n**Instructions:**\n", "**React to this message with 🐺** to join the game, " "then **add cards** using `%ww add` followed by a list of the roles you want to add, seperated by spaces.", "For example, you might do something like this to add multiple roles:", "`%ww add werewolf minion seer tanner troublemaker mason mason`.", "Additionally, you can get the order of the roles using %ww roleOrder." ]), color = 0x7289da ) embed.set_footer(text=f"{host.display_name} is the host", icon_url=host.avatar_url) embed.add_field(name="Players", value="None") embed.add_field(name="Roles", value="None") if not ctx.channel.id in self.games: message = await ctx.send(embed=embed) await message.add_reaction("🐺") self.games[ctx.channel.id] = Game(ctx.message.author, message) else: await ctx.send("There's already a game running here!") @werewolf.command() async def join(self, ctx): game = None if not ctx.channel.id in self.games: self.games[ctx.channel.id] = Game() game = self.games[ctx.channel.id] if game.state == "preparing": if game.fetch_player(ctx.message.author.id) == -1: game.players.append(ctx.message.author) await ctx.send("yeah sure") else: await ctx.send("already in the game") else: await ctx.send("nah you cant join in the middle of a round") @werewolf.command(aliases=["addcard"]) async def add(self, ctx, *, names): if not ctx.channel.id in self.games: await ctx.send("theres no game here dummy") return game = self.games[ctx.channel.id] if game.host.id != ctx.message.author.id: await ctx.send("Only the host can add roles.") return if all([name.lower() in cards for name in names.split()]) and game.state == "preparing": for name in names.split(): game.initial_roles.append(cards.index(name.lower())) await game.join_message.edit(embed=game.get_refreshed_embed()) @werewolf.command() async def set(self, ctx, *, names): if not ctx.channel.id in self.games: await ctx.send("theres no game here dummy") return game = self.games[ctx.channel.id] if game.host.id != ctx.message.author.id: await ctx.send("Only the host can add roles.") return game.initial_roles = [] if all([name.lower() in cards for name in names.split()]) and game.state == "preparing": for name in names.split(): game.initial_roles.append(cards.index(name.lower())) await game.join_message.edit(embed=game.get_refreshed_embed()) @werewolf.command(aliase=["removecard"]) async def remove(self, ctx, name): if not ctx.channel.id in self.games: await ctx.send("theres no game here dummy") return game = self.games[ctx.channel.id] if game.host.id != ctx.message.author.id: await ctx.send("Only the host can add roles.") game = self.games[ctx.channel.id] if game.state == "preparing" and cards.index(name.lower()) in game.initial_roles: game.initial_roles.remove(cards.index(name.lower())) await game.join_message.edit(embed=game.get_refreshed_embed()) @werewolf.command() async def vote(self, ctx, *, accused : str): if not ctx.channel.id in self.games: await ctx.send("theres no game here dummy") return game = self.games[ctx.channel.id] if game.state != "voting": await ctx.send("cant vote yet") return author = ctx.message.author if game.fetch_player(author.id) != -1: if game.fetch_player(accused) != -1: game.votes[author.id] = game.players[game.fetch_player(accused)].id if len(game.votes) == len(game.players) - 3: tally = {} for i in game.votes: if not game.votes[i] in tally: tally[game.votes[i]] = 0 tally[game.votes[i]] += 1 top = sorted([(tally[i], i) for i in tally]) if len(top) > 1 and top[-1][0] == top[-2][0]: await ctx.send("no decisive winner") else: killed_id = top[-1][1] index = game.fetch_player(killed_id) killed = game.players[index] await ctx.send("killing " + killed.mention) if cards[game.current_roles[index]] == "hunter": def user_check(m): if m.channel.id == ctx.message.channel.id: if game.fetch_player(m.content) != -1: self.bot.loop.create_task(m.add_reaction("✅")) return True else: self.bot.loop.create_task(m.add_reaction("❌")) return False player = game.fetch_player((await self.bot.wait_for("message", check=user_check)).content) await ctx.send(killed.display_name + " was " + cards[game.current_roles[index]]) paired_roles = [" was ".join(i) for i in game.get_debrief()] await ctx.send(", ".join(paired_roles)) del self.games[ctx.channel.id] else: await ctx.send("vote registered") else: await ctx.send("cant find") else: await ctx.send("you're not playing") @werewolf.command() async def roleOrder(self, ctx): await ctx.send(", ".join(cards)) @werewolf.command() async def start(self, ctx): if not ctx.channel.id in self.games: await ctx.send("theres no game here dummy") return game = self.games[ctx.channel.id] if game.host.id != ctx.message.author.id: await ctx.send("Only the host can start the game.") return if len(game.players) > len(game.initial_roles): await ctx.send("You need more roles to play!") return if len(game.players) < len(game.initial_roles): await ctx.send("You need less roles to play!") return game.state = "running" game.initial_roles = sorted(game.initial_roles) random.shuffle(game.players) game.current_roles = [i for i in game.initial_roles] await ctx.send("game starting") for i in range(len(game.players)): if not isinstance(game.players[i], int): await game.players[i].send("you're the " + cards[game.initial_roles[i]]) tasks = [] for i in range(len(game.initial_roles)): if not isinstance(game.players[i], int): if game.initial_roles[i] == 1: tasks.append(self.do_werewolf(game.players[i], game)) if game.initial_roles[i] == 2: tasks.append(self.do_minion(game.players[i], game)) if game.initial_roles[i] == 3: tasks.append(self.do_mason(game.players[i], game)) if game.initial_roles[i] == 4: tasks.append(self.do_seer(game.players[i], game)) if game.initial_roles[i] == 5: tasks.append(self.do_robber(game.players[i], game)) if game.initial_roles[i] == 6: tasks.append(self.do_troublemaker(game.players[i], game)) if game.initial_roles[i] == 7: tasks.append(self.do_drunk(game.players[i], game)) instructions = await asyncio.gather(*tasks) game.simulate(instructions) for i in range(len(game.players)): if not isinstance(game.players[i], int): if game.initial_roles[i] == 8: await self.do_insomniac(game.players[i], game) await ctx.send("the night's now over, do ur stuff then do %ww vote") game.state = "voting" @commands.Cog.listener() async def on_reaction_add(self, reaction, user): if user.id == self.bot.user.id: return message = reaction.message if message.channel.id in self.games and self.games[message.channel.id].state == "preparing": game = self.games[message.channel.id] if game.join_message.id == message.id: if game.fetch_player(user.id) == -1: game.players.append(user) await message.edit(embed=game.get_refreshed_embed()) @commands.Cog.listener() async def on_reaction_remove(self, reaction, user): message = reaction.message if message.channel.id in self.games and self.games[message.channel.id].state == "preparing": game = self.games[message.channel.id] if game.join_message.id == message.id: if game.fetch_player(user.id) != -1: for player in range(len(game.players)): if not isinstance(game.players[player], int) and game.players[player].id == user.id: del game.players[player] await message.edit(embed=game.get_refreshed_embed()) @werewolf.command() async def cancel(self, ctx): if ctx.message.channel.id in self.games: game = self.games[ctx.channel.id] if game.host.id == ctx.message.author.id: del self.games[ctx.channel.id] await ctx.send("game cancelled") def setup(bot): bot.add_cog(Dictionary(bot))
StarcoderdataPython
11226556
from simpleai.search import ( SearchProblem, breadth_first, depth_first, uniform_cost, greedy, astar ) from simpleai.search.viewers import WebViewer, BaseViewer, ConsoleViewer from itertools import combinations GRID = [(r,c) for r in range(7) for c in range(6)] ROADS = [] RACKS = [(0,0),(1,0),(2,0),(4,0),(5,0),(6,0),(0,2),(1,2),(2,2),(4,2),(5,2),(6,2),(0,4),(1,4),(2,4),(4,4),(5,4),(6,4)] IO = [(3,5)] for cell in GRID: if cell not in RACKS: ROADS.append(cell) MOVEMENTS = [ (0,1), (1,0), (0,-1), (-1,0) ] INITIAL_STATE = ((3,5), (), (('C1', (0, 1)), ('C2', (1, 1)), ('C3', (2, 5)), ('C4', (5,3)), ('C5', (0,3)))) # pos robot, list of loaded boxes, list of pending boxes class AmagonProblem(SearchProblem): def is_goal(self, state): _, loaded_boxes, pending_boxes = state return len(loaded_boxes) + len(pending_boxes) == 0 def actions(self, state): possible_actions = [] deposit_coordinates = [] bot_pos, loaded_boxes, pending_boxes = state bot_row, bot_col = bot_pos if len(loaded_boxes) > 0: for loaded_box in loaded_boxes: deposit_coordinates = [] deposit_coordinates.append(loaded_box[1]) if bot_pos == (3,5) and len(loaded_boxes) < 2 and len(pending_boxes) > 0: # If bot is in I/O, has space to load at least 1 and there is at least 1 box to load boxes_to_load = [] if len(loaded_boxes) == 1: # If there is space for only one boxes_to_load.append(pending_boxes[0]) else: #len(loaded_boxes) == 2 # If there is space for two if len(pending_boxes) == 1: # If there is one to load boxes_to_load.append(pending_boxes[0]) else: # If there are two or more to load boxes_to_load.append(pending_boxes[0]) boxes_to_load.append(pending_boxes[1]) possible_actions.append(('Load', boxes_to_load)) elif bot_pos in deposit_coordinates: possible_actions.append(('Unload', bot_pos)) else: for move in MOVEMENTS: move_row, move_col = move new_row = bot_row + move_row new_col = bot_col + move_col new_pos = tuple((new_row, new_col)) if (0 <= new_row <= 6) and (0 <= new_col <= 5): possible_actions.append(('Move', new_pos)) return possible_actions def result(self, state, action): action_type, data = action bot_pos, loaded_boxes, pending_boxes = state state = list(state) if action_type == 'Move': bot_pos = list(bot_pos) bot_pos = data bot_pos = tuple(bot_pos) state[0] = bot_pos elif action_type == 'Unload': loaded_boxes = list(loaded_boxes) for loaded_box in loaded_boxes: if loaded_box[1] == bot_pos: loaded_boxes.remove(loaded_box) loaded_boxes = tuple(loaded_boxes) state[1] = loaded_boxes else: loaded_boxes = list(loaded_boxes) pending_boxes = list(pending_boxes) if len(data) == 1: #Just one box to load pending_boxes.remove(data[0]) loaded_boxes.append(data[0]) else: for box in data: pending_boxes.remove(box) loaded_boxes.append(box) loaded_boxes = tuple(loaded_boxes) pending_boxes = tuple(pending_boxes) state[1] = loaded_boxes state[2] = pending_boxes state = tuple(state) return state def cost(self, state, action, state2): return 1 def heuristic(self, state): # Without heuristic # {'max_fringe_size': 39, 'visited_nodes': 635, 'iterations': 635} # return super().heuristic(state) # {'max_fringe_size': 42, 'visited_nodes': 578, 'iterations': 578} return len(state[1]) + len(state[2]) METHODS = ( breadth_first, depth_first, uniform_cost, greedy, astar ) for search_algorithm in METHODS: print() print('=' * 50) print("Running:", search_algorithm) visor = BaseViewer() problem = AmagonProblem(INITIAL_STATE) result = search_algorithm(problem, graph_search = True, viewer = visor) #result = astar(problem, graph_search = True, viewer = visor) print ('Final State:', result.state) print('=' * 50) print(' - Statistics:') print(' - Amount of actions until goal:', len(result.path())) print(' - Raw data:', visor.stats) ''' for action, state in result.path(): print(" - Action:", action) print(" - Resulting State:", state) '''
StarcoderdataPython
11300199
import serial import numpy as np from time import sleep import sys import json class EIS(): adc_np_type_map = {1:np.int16,2:np.uint16,3:np.uint16} def __init__(self, COM, BAUD = 115200, timeout = .1): self.serial = serial.Serial(COM, BAUD, timeout = .1) def get_and_print_responses(self, print_response = False): ''' Retrieve messages written by the teensy to the serial connection under the assumption that the output is utf-8 encoded. If this assumption is violated the resulting exception is printed and an empty string is returned. ''' response = 'No response' ret = '' while response != '': response = self.serial.readline() try: response = response.decode('utf-8') ret += response except Exception as e: print(f'Exception: {e} \nResponse: {response}') ret = '' if print_response: print(response) return ret def get_data(self, stimulus_parameters, adc_type): ''' This function can be used to get all the measured data for a single subtype. Parameters: stimulus_parameters: contains metadata on the stimulus. adc_type: 1. V1 2. V2 3. DAC stimulus Output: data: a numpy array of the correct type (see adc_np_type_map) containing the full measurement sequence for a single type. ''' start_pos = 0 dtype = self.adc_np_type_map[adc_type] length = stimulus_parameters['length'] # Allocate memory to store the result data = np.zeros((length,), dtype=dtype) while True: data_slice = self.get_data_slice(adc_type, start_pos) if data_slice['end']<=data_slice['start']: # This signals that we try to read beyond the end of the avaialble data break data[data_slice['start']:data_slice['end']]=np.array(data_slice['data'],dtype=dtype) start_pos = data_slice['end'] return data def get_data_slice(self, adc_type, start_pos): ''' This function can be used to get a slice of the measured data. Parameters: adc_type: 1. V1 2. V2 3. DAC stimulus start_pos: sample at which to start the data request. Output: dataslice: A dictionary containing three key-value pairs: 'start', 'end' and 'data'. The value of 'start' is the value of the parameter start_pos, the value of 'end' is the index of the first sample that is not returned (to be used as start_pos in the next call), the value of the 'data' property contains the measured data as a list. ''' commandstring = f'D{adc_type:2}_{start_pos}\n' self.serial.write(commandstring.encode('utf8')) json_data = self.get_and_print_responses( print_response = False) data_slice = json.loads(json_data) return data_slice def get_stimulus_parameters(self): ''' This function can be used to get all the stimulus parameters. Output: stimulus_parameters: dictionary with metadata on the stimulus, available keys: 'stimulus_parameters_valid': 0 (False) or 1 (True) indicates whether data in buffers are from measurement for these stimulus settings 'length': length of the stimulus and the measured data 'digital_amplitude': Amplitude of DAC input 'f_stimulus': stimulus frequency DAC 'f_sampling': sampling frequency DAC and ADC 'stimulus_duration': stimulus duraction in seconds 'ADC_averaging_number': averaging over samples in ADC ''' jsonStimulusParameters = None stimulus_parameters = None try: # Get the metadata self.serial.write("D00\n".encode('utf8')) jsonStimulusParameters = self.get_and_print_responses() stimulus_parameters = json.loads(jsonStimulusParameters) except Exception as e: print("jsonStimulusParameters: ", jsonStimulusParameters) print("stimulus_parameters: ",stimulus_parameters) raise(e) if not stimulus_parameters['stimulus_parameters_valid']: raise RuntimeError(f"Stimulus parameters where changed after the last measurement: {stimulus_parameters}") return stimulus_parameters def set_stimulus_parameters(self, f_stimulus, DC_offset = 2048, A_stimulus = 0.6, f_sampling = 10000, print_response = False): ''' Method to set the stimulus parameters used in a single measurement. Parameters: f_stimulus: frequency in Hz of the stimulus used DC_offset = 2048: output range of teensy is positive, so we need to offset a sinusoid by a fixed value to keep it in range. A_stimulus = 0.6: amplitude specified as part of the maximum allowed offset f_sampling = 10000: sampling frequency in samples per second print_response = False: if True responses retrieved from teensy are printed''' # "A" Change the output amplitude used for the measurement self.serial.write(f"A{A_stimulus}\n".encode('utf8')) response = self.get_and_print_responses() if print_response: print(response) # "G<samplefreq>\n" Acquire data at <samplefreq> self.serial.write(f"G{f_sampling}\n".encode('utf8')) response = self.get_and_print_responses() if print_response: print(response) # "Y<DC_Offset>\n" set average value stimulus (has to be between positive) self.serial.write(f"Y{DC_offset}\n".encode('utf8')) response = self.get_and_print_responses() if print_response: print(response) # Set the stimulus frequency measurement_string = f"F{f_stimulus}\n" self.serial.write(measurement_string.encode('utf8')) response = self.get_and_print_responses() if print_response: print(response) def measure_spectrum(self, f_range, DC_offset = 2048, A_stimulus = 0.6, f_sampling = 10000, Rs= 1000, process_measurement=None ): ''' This function can be called to measure a complete impedance spectrum. Parameters: f_range: list or numpy array with frequencies at which to probeb the system DC_offset = 2048: output range of teensy is positive, so we need to offset a sinusoid by a fixed value to keep it in range. A_stimulus = 0.6: amplitude specified as part of the maximum allowed offset f_sampling = 10000: sampling frequency in samples per second Rs= 1000: value of the shunt resistor, see wiring folder for proposed circuits process_measurement=estimate_impedance: function to calculate impedance based on the frequency response Output: spectrum: a list containing for each frequency in f_range the output of estimate_impedance.''' if process_measurement is None: process_measurement = self.estimate_impedance spectrum = [None]*len(f_range) for f_index, f in enumerate(f_range): print(f"\n--------------------------------------------") self.set_stimulus_parameters(f, DC_offset = DC_offset, A_stimulus = A_stimulus, f_sampling = f_sampling, print_response = True) print(f"Measure at frequency {f}") # Execute Measurement self.serial.write("M\n".encode('utf8')) sleep(0.1) response = self.get_and_print_responses() while True: sleep(0.1) # Get the metadata self.serial.write("D00\n".encode('utf8')) jsonStimulusParameters = self.get_and_print_responses() try: stimulus_parameters = json.loads(jsonStimulusParameters) except Exception as e: print('JSON STRING:', jsonStimulusParameters) raise e print('.',end='') # Check if measurement is finished if stimulus_parameters['stimulus_parameters_valid']: break V1 = self.get_data(stimulus_parameters, 1) V2 = self.get_data(stimulus_parameters, 2) DAC = self.get_data(stimulus_parameters, 3) spectrum[f_index] = process_measurement(Rs, f, f_sampling, V1, V2, DAC) # sleep(0.1) print(stimulus_parameters) print(f"\n--------------------------------------------") return spectrum @staticmethod def estimate_impedance(Rs, f_stim, f_samp, V1, V2, DAC): ''' Estimate the frequency response at the stimulus frequency. Parameters: Rs: shunt resistance f_stim: stimulus frequency f_samp: sampling frequency V1: measured V1 data V2: measured V2 data DAC: signal provided to DAC Output: Z: impedance at frequency f_stim V1_1, V1_2, V1_0: fit parameters for equation 6 from referenced paper V2_1, V2_2, V2_0: fit parameters for equation 7 from referenced paper 'Electrochemical Impedance Spectroscopy System Based on a Teensy Board', <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021 Here we implement equations 6, 7 and 8 of this paper. Still needs a resistor and stimulus amplitude correction.''' if not len(V1) == len(V2) or not len(V1) == len(DAC): raise ValueError(f'Incompatible input lengths: len V1: {len(V1)}, len V2: {len(V2)}, len Dac: {len(DAC)}') tstamps = np.arange(0, len(DAC), 1)/f_samp sine = np.sin(2*np.pi*f_stim*tstamps) cosine = np.cos(2*np.pi*f_stim*tstamps) A = np.vstack([cosine, sine, np.ones(len(DAC))]).T V1_1, V1_2, V1_0 = np.linalg.lstsq(A, V1, rcond=None)[0] # Fit according equation 6 V2_1, V2_2, V2_0 = np.linalg.lstsq(A, V2, rcond=None)[0] # Fit according equation 7 Z = (V2_2 + 1j* V2_1)/(V1_2 + 1j* V1_1)*Rs/2 # Apply equation 8, factor is difference between differential and direct on teensy return { 'Z': Z, 'Rs':Rs, 'f_stim': f_stim, 'f_samp': f_samp, 'V1_1': V1_1, 'V1_2': V1_2, 'V1_0': V1_0, 'V2_1': V2_1, 'V2_2': V2_2, 'V2_0': V2_0 }
StarcoderdataPython
1756484
<reponame>pauliyobo/mapJSON import json import os class MapObj: def __init__(self, minx=0, maxx=0, miny=0, maxy=0, minz=0, maxz=0, type=None, value=None): self.minx = minx self.maxx = maxx self.miny = miny self.maxy = maxy self.minz = minz self.maxz = maxz self.type = type self.value = value def covers(self, x, y, z): if ( self.minx <= x and self.maxx >= x and self.miny <= y and self.maxy >= y and self.minz <= z and self.maxz >= z ): return True return False class tile(MapObj): """The tile class.""" def __init__(self, minx=0, maxx=0, miny=0, maxy=0, minz=0, maxz=0, tiletype=""): super(tile, self).__init__(minx, maxx, miny, maxy, minz, maxz, "tile") self.tiletype = tiletype class zone(MapObj): def __init__(self, minx, maxx, miny, maxy, minz, maxz, name=""): super(zone, self).__init__(minx, maxx, miny, maxy, minz, maxz, "zone") self.name = name class Map: def __init__(self, maxx=0, maxy=0, maxz=0, name=""): self.set_borders((maxx, maxy, maxz)) self.set_name(name) self.tiles = [] self.zones = [] def add_tile(self, minx=0, maxx=0, miny=0, maxy=0, minz=0, maxz=0, type="tile"): self.tiles.append(tile(minx, maxx, miny, maxy, minz, maxz, type)) def add_zone(self, minx=0, maxx=0, miny=0, maxy=0, minz=0, maxz=0, name="zone"): self.zones.append(zone(minx, maxx, miny, maxy, minz, maxz, name)) def set_name(self, name): self.name = name def set_borders(self, coords): x, y, z = coords self.maxx, self.maxy, self.maxz = x, y, z def get_tile(self, x=0, y=0, z=0): try: t = self.get_tile_obj(x, y, z) if t: return t.type else: return "" except Exception as e: pass def get_tile_obj(self, x=0, y=0, z=0): filter = [i for i in self.tiles if i.covers(x, y, z)] try: if filter[-1]: return filter[-1] except Exception as e: pass def get_zone(self, x=0, y=0, z=0): try: z = self.get_zone_obj(x, y, z) if z: return z.name else: return "" except Exception as e: pass def get_zone_obj(self, x=0, y=0, z=0): filter = [i for i in self.zones if i.covers(x, y, z)] try: if filter[-1]: return filter[-1] except Exception as e: pass def delete_tile_at(self, x=0, y=0, z=0): try: t = self.get_tile_obj(x, y, z) if t: self.tiles.remove(t) except Exception as e: pass def delete_zone_at(self, x=0, y=0, z=0): try: z = self.get_zone_obj(x, y, z) if z: self.zones.remove(z) except Exception as e: pass def dump(self, in_file=False, file=""): try: self.tiles = [i.__dict__ for i in self.tiles] self.zones = [i.__dict__ for i in self.zones] data2 = { "name": self.name, "borders": [self.maxx, self.maxy, self.maxz], "objects": self.tiles + self.zones, } if in_file == True and file != "": with open(file, "w") as f: f.write(json.dumps(data2, indent=1)) else: return json.dumps(data2, indent=1) except Exception as e: pass def load(self, target=""): try: if target and os.path.isfile(target): with open(target, "r") as f: data = json.loads(f.read()) else: data = json.loads(data) self.name = data["name"] self.maxx, self.maxy, self.maxz = data["borders"] self.tiles = [ tile( t["minx"], t["maxx"], t["miny"], t["maxy"], t["minz"], t["maxz"], t["tiletype"], ) for t in data["objects"] if t["type"] == "tile" ] self.zones = [ zone( t["minx"], t["maxx"], t["miny"], t["maxy"], t["minz"], t["maxz"], t["name"], ) for t in data["objects"] if t["type"] == "zone" ] except Exception as e: print(e.args) def __repr__(self): return "Map(maxx=%d, maxy=%d, maxz=%d, name=%s)" % ( self.maxx, self.maxy, self.maxz, repr(self.name), ) def __getitem__(self, item): if isinstance(item, int): return self.get_tile(item) elif isinstance(item, tuple): return self.get_tile(*item) raise TypeError("Must send tuple or int, not %r" % item)
StarcoderdataPython
6666900
# Author: <NAME> # email: <EMAIL> from PIL import Image import numpy as np import init_paths from image_processing import hwc2chw from xinshuo_visualization import visualize_image def test_hwc2chw(): print('test same channel image, should be the same') image_path = '../lena.jpg' img = np.array(Image.open(image_path).convert('RGB')) visualize_image(img[:, :, 0], vis=True) img_shape = img.shape chw_img = hwc2chw(img) visualize_image(chw_img[0, :, :], vis=True) print(chw_img.shape) print(img_shape) assert chw_img.shape[0] == img_shape[2] and chw_img.shape[1] == img_shape[0] and chw_img.shape[2] == img_shape[1] print('test different channel image, should not be the same') image_path = '../lena.jpg' img = np.array(Image.open(image_path).convert('RGB')) visualize_image(img[:, :, 0], vis=True) img_shape = img.shape chw_img = hwc2chw(img) visualize_image(chw_img[1, :, :], vis=True) print(chw_img.shape) print(img_shape) assert chw_img.shape[0] == img_shape[2] and chw_img.shape[1] == img_shape[0] and chw_img.shape[2] == img_shape[1] print('\n\nDONE! SUCCESSFUL!!\n') if __name__ == '__main__': test_hwc2chw()
StarcoderdataPython
6476017
<filename>building_clean_tweets.py import pandas as pd from clean_text import get_clean import os import json path = 'Data/Tweets/' users = os.listdir(path) cnt = 1 x = pd.DataFrame(columns=['users', 'locations', 'tweets']) x.to_csv('Data/twitter_data.csv', index=False) for user in users: print(cnt, " => ", user) files = os.listdir(path + user + '/') tweet = '' location = set() for file in files: with open(path + user + '/' + file, 'r', encoding='utf-8') as f: data = json.load(f) try: tweet += ' ' + get_clean(data['text']) except Exception as e: print(e) tweet += ' ' try: location.add(data['user']['location']) except Exception as e: print(e) df = pd.DataFrame([[user, list(location), tweet]]) df.to_csv('Data/twitter_data.csv', mode='a', header=False, index=False) cnt += 1 print('Done...')
StarcoderdataPython
6493728
<gh_stars>0 from setuptools import setup, find_packages from pip.req import parse_requirements import sys, os def run_setup(): here = os.path.abspath(os.path.dirname(__file__)) README = open(os.path.join(here, 'Readme.md')).read() version = '0.1' install_reqs = parse_requirements(os.path.join(here, 'requirements.txt'), session=False) reqs = [str(ir.req) for ir in install_reqs] setup(name='sql_kernel', version=version, description="SQL Kernel for Jupyter", long_description=README, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Topic :: Database', 'Topic :: Database :: Front-Ends', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 2', ], keywords='database jupyter sqlalchemy ipython dbms', author='<NAME>', author_email='<EMAIL>', url='bitbucket.org/alyr/sql_kernel', license='MIT', packages=find_packages('src'), package_dir = {'': 'src'}, include_package_data=True, zip_safe=False, install_requires=reqs, ) def register_kernel(): from jupyter_client.kernelspec import install_kernel_spec from IPython.utils.tempdir import TemporaryDirectory import json import os import sys kernel_json = { "argv":[sys.executable,"-m","sql_kernel", "-f", "{connection_file}"], "display_name":"SQL Kernel", "language":"sql", "codemirror_mode":"sql" } def install_my_kernel_spec(user=True): with TemporaryDirectory() as td: os.chmod(td, 0o755) # Starts off as 700, not user readable with open(os.path.join(td, 'kernel.json'), 'w') as f: json.dump(kernel_json, f, sort_keys=True) install_kernel_spec(td, 'sql_kernel', user=user, replace=True) def _is_root(): try: return os.geteuid() == 0 except AttributeError: return False # assume not an admin on non-Unix platforms argv = sys.argv user = '--user' in argv or not _is_root() install_my_kernel_spec(user=user) run_setup() register_kernel()
StarcoderdataPython
3523329
# -*- coding: utf-8 -*- from ._common import * class YinYueTai(Extractor): name = '音悦台 (YinYueTai)' def prepare(self): info = MediaInfo(self.name) info.extra.referer = 'https://www.yinyuetai.com/' if not self.vid: self.vid = match1(self.url,'\Wid=(\d+)') data = get_response('https://data.yinyuetai.com/video/getVideoInfo', params={'id': self.vid}).json() assert not data['delFlag'], 'MTV has been deleted!' info.title = data['videoName'] info.artist = data['artistName'] url = data['videoUrl'] info.streams['current'] = { 'container': url_info(url)[1], 'video_profile': 'current', 'src' : [url] } return info site = YinYueTai()
StarcoderdataPython
8179859
import os from tqdm import tqdm import pandas as pd import numpy as np if __name__ == "__main__": df = pd.read_csv('./IMDB Dataset.csv').values train_df = df[:int(len(df) * 0.9)] val_df = df[int(len(df) * 0.9):] with open('imdb-train.txt', 'w') as f: for i in tqdm(range(len(train_df))): f.write(f'{train_df[i][0]}\n\n') with open('imdb-val.txt', 'w') as f: for i in tqdm(range(len(val_df))): f.write(f'{val_df[i][0]}\n\n') # kaggle datasets download lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
StarcoderdataPython
1746251
from pydc import DDC def main(): ddc = DDC("example_ddc_hmm.pl", 500) prob_s0 = ddc.query( "current(weather(brussels))~=sunny") ddc.step(observations="observation(activity(tintin))~=clean") prob_s1 = ddc.query("(current(temperature(brussels))~=X, X>20)") # prob_s1 = ddc.query("(current(weather(brussels))~=sunny)") print(prob_s0) print(prob_s1) if __name__ == "__main__": main()
StarcoderdataPython
3482100
<gh_stars>1-10 """ For organizing the post-data. It's basically a django project with some modifications. So you can uses it to save your texts and then use the gateway to post it on different social networks. """
StarcoderdataPython
12843783
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Update : 2020-09-05 09:46:01 # @Author : <NAME> (<EMAIL>) """Sequence taggers.""" from old_fashioned_nlp.tagging.token import CharTfidfTagger __all__ = ['CharTfidfTagger']
StarcoderdataPython
4956697
#!/usr/bin/python # coding=utf-8 import sys, time #Allows for controlling system functions (interrupt) and sleep times. import os import RPi.GPIO as GPIO #Tells python to use GPIO libraries from lifxlan import LifxLAN, Light #Make sure 'pip install lifxlan' was run to enable lifx controls from signal import pause #Not sure if this is needed after testing, but I'm 15 beers in and don't feel like playing with it. from datetime import datetime #Allows for time delays. There's probably a better way to do this but I don't know how to do it. #Instantiate lifxlan lifxlan = LifxLAN() #Setup for master light for power state polling lightmac1="YOU_LIGHT_MAC_ADDRESS_GOES_HERE (AA:AA:AA, etc.)" lightIP1="YOUR_LIGHT_IP_ADDRESS_GOES_HERE" #Setup GPIO pins as BCM (Broadcom). Physical pin for PIR sensor input is 16. GPIO.setmode(GPIO.BCM) GPIO.setup(23,GPIO.IN,GPIO.PUD_DOWN) #Set the master light variables required for polling. Called as 'doorlight'. doorlight = Light(lightmac1,lightIP1) #Set the group of lights to control. Other option is to send to all lights, but this affects everyroom on the network. officelights=lifxlan.get_devices_by_group("Office") #This entire thing was hacked together. Ideally I would like it to not check for power so often as to minimize network traffic to the lights. I'm still thinking how to do this. Something maybe like 'Check for motion, if no motion then loop. If motion then turn lights on.' #But then how would the lights get turned off when there's no motion? #Also, I'm not sure if the 'now' and 'dt_string' variables are needed every time before a print. I have a feeling that if they're not then it would read once globally and that would be the value. A possible option is to look into turning the date/time variables into a function and calling that everytime? def Main(): while True: i = GPIO.input(23) if i==0: #When output from motion sensor is LOW now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "No Motion Detected. Pin reads", i while True: try: powerstatus=Light.get_power(doorlight) except: now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "Couldn't get powerstatus while no motion is detected. Return is", powerstatus continue break now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "Before no motion power check", powerstatus if powerstatus != 0: #Check if lights are currently turned on now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "After power check inside no motion", powerstatus officelights.set_power(0) #Turn lights off time.sleep(10) elif i==1: #When output from motion sensor is HIGH now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "Motion Detected. Pin reads", i while True: try: powerstatus=Light.get_power(doorlight) except: now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "Couldn't get powerstatus while motion is detected. Return is", powerstatus continue break now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "Motion detected powerstatus", powerstatus if powerstatus == 0: #Check if lights are currently turned off now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "After power check inside motion detected", powerstatus officelights.set_power(65535) #Turn lights on full time.sleep(600) #If this is installed as a service then I'm not entirely sure this is necessary. However, I need to look into any cleanup requirements (GPIO.cleanup) when failure occurs while running as a service. if __name__ == '__main__': try: Main() except KeyboardInterrupt: now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M:%S") print dt_string, "CTRL+C entered. Running cleanup!" try: GPIO.cleanup() sys.exit(0) except SystemExit: os._exit(0)
StarcoderdataPython
3486361
import asyncio import sys import pytest from HABApp.rule import Rule from ..rule_runner import SimpleRuleRunner class ProcRule(Rule): def __init__(self): super().__init__() self.ret = None def set_ret(self, value): self.ret = value @pytest.fixture(scope="function") def rule(): runner = SimpleRuleRunner() runner.set_up() rule = ProcRule() yield rule runner.tear_down() @pytest.mark.asyncio async def test_run_func(rule): rule.execute_subprocess( rule.set_ret, sys.executable, '-c', 'import datetime; print("OK", end="")', capture_output=True ) await asyncio.sleep(0.5) assert rule.ret.returncode == 0 assert rule.ret.stdout == 'OK' assert rule.ret.stderr == '' @pytest.mark.asyncio async def test_run_func_no_cap(rule): rule.execute_subprocess( rule.set_ret, sys.executable, '-c', 'import datetime; print("OK", end="")', capture_output=False ) await asyncio.sleep(0.5) assert rule.ret.returncode == 0 assert rule.ret.stdout is None assert rule.ret.stderr is None @pytest.mark.asyncio async def test_invalid_program(rule): rule.execute_subprocess(rule.set_ret, 'ProgramThatDoesNotExist', capture_output=True) await asyncio.sleep(0.5) assert rule.ret.returncode == -1 assert rule.ret.stdout is None assert isinstance(rule.ret.stderr, str)
StarcoderdataPython
3341301
<reponame>thermokarst-forks/library from django.apps import AppConfig class PluginsConfig(AppConfig): name = 'library.plugins' def ready(self): # register the decorated signals from . import signals # noqa: F401
StarcoderdataPython
6632865
<reponame>ryoma-jp/009_Benchmark<filename>benchmark_tensorflow.py #! -*- coding: utf-8 -*- """ [tensorflow] python benchmark_tensorflow.py --help python benchmark_tensorflow.py --param_csv benchmark.csv """ #--------------------------------- # モジュールのインポート #--------------------------------- import os import sys import time import tqdm import argparse from argparse import RawTextHelpFormatter import numpy as np import pandas as pd from common import GetParams, DataLoader import cv2 import tensorflow as tf #--------------------------------- # 定数定義 #--------------------------------- #--------------------------------- # 関数 #--------------------------------- """ 関数名: ArgParser 説明:引数を解析して値を取得する """ def ArgParser(): parser = argparse.ArgumentParser(description='TensorFlowによるベンチマークスコアの計測', formatter_class=RawTextHelpFormatter) # --- 引数を追加 --- parser.add_argument('--param_csv', dest='param_csv', type=str, required=True, help='ベンチマーク条件を記載したパラメータファイル\n' '[Format] type, model_dir, data_dir\n' ' type: classification, ...[T.B.D]\n' ' model_dir: 学習済みモデルが格納されたディレクトリ\n' ' model_name: モデルファイル群のファイル名\n' ' data_dir: テストデータが格納されたディレクトリを指定') args = parser.parse_args() return args #--------------------------------- # メイン処理 #--------------------------------- if __name__ == '__main__': # --- 引数処理 --- args = ArgParser() # --- パラメータ取得 --- type, model_dir, model_name, data_dir = GetParams(args.param_csv) f_log = open('log.csv', 'w') f_log.write('iter,elapsed_time[sec],inference_time[sec/100iter]\n') for _type, _model_dir, _model_name, _data_dir in zip(type, model_dir, model_name, data_dir): # --- DataLoader生成 --- data_loader = DataLoader(_data_dir) print(data_loader.GetData()) data = data_loader.GetData() # --- モデルロード --- gd = tf.compat.v1.GraphDef.FromString(open(os.path.join(_model_dir, _model_name+'_frozen.pb'), 'rb').read()) inp, predictions = tf.compat.v1.import_graph_def(gd, return_elements = ['input:0', 'MobilenetV2/Predictions/Reshape_1:0']) # --- 推論 --- img = None prediction_header = ['prediction', 'label_id', 'filename'] start_time = time.time() for cnt, (label_id, filename) in enumerate(zip(data['label_id'], data['filename'])): if (img is None): img = np.array([cv2.imread(os.path.join(_data_dir, label_id, filename))]) / 128 - 1 else: try: img = np.vstack((img, np.array([cv2.imread(os.path.join(_data_dir, label_id, filename)) / 128 - 1]))) except: print(_data_dir) print(label_id) print(filename) quit() if ((cnt+1) % 10 == 0): print(str(time.time()-start_time) + ' : ' + str(cnt+1) + ' of ' + str(len(data))) with tf.compat.v1.Session(graph=inp.graph): pre_inference = time.time() prediction_val = predictions.eval(feed_dict={inp: img}) after_inference = time.time() if ((cnt+1) == 10): pd.DataFrame(np.vstack((prediction_val.argmax(axis=1), data['label_id'].values[cnt+1-10:cnt+1], data['filename'].values[cnt+1-10:cnt+1])).T).to_csv('predictions.csv', \ header=prediction_header, index=False) else: pd.DataFrame(np.vstack((prediction_val.argmax(axis=1), data['label_id'].values[cnt+1-10:cnt+1], data['filename'].values[cnt+1-10:cnt+1])).T).to_csv('predictions.csv', \ mode='a', \ header=False, index=False) img = None f_log.write(str(cnt+1)+','+str(time.time()-start_time)+','+str(after_inference-pre_inference)+'\n') if ((cnt+1) % 10 > 0): with tf.compat.v1.Session(graph=inp.graph): pre_inference = time.time() prediction_val = predictions.eval(feed_dict={inp: img}) after_inference = time.time() pd.DataFrame(np.vstack((prediction_val.argmax(axis=1), data['label_id'].values[cnt+1-((cnt+1)%10):], data['filename'].values[cnt+1-((cnt+1)%10):])).T).to_csv('predictions.csv', \ mode='a', \ header=False, index=False) img = None f_log.write(str(cnt+1)+','+str(time.time()-start_time)+','+str(after_inference-pre_inference)+'\n') f_log.close()
StarcoderdataPython
5098646
<filename>dag_bakery/callbacks/slack_callback.py from datetime import datetime from typing import Callable, Optional, List from airflow.hooks.base_hook import BaseHook from airflow.models import TaskInstance from airflow.operators.slack_operator import SlackAPIPostOperator from dag_bakery.callbacks.context_callback import ContextCallback def task_fail_slack_msg(_: dict) -> List[dict]: attachments = [ { "mrkdwn_in": ["text"], "color": "#ED553B", "author_name": "{{ task_instance.dag_id }}", "author_link": "{{ task_instance.log_url }}", "author_icon": "https://airflow.apache.org/docs/stable/_images/pin_large.png", "fields": [ { "title": "Task ID", "value": "{{ task_instance.task_id }}", "short": False, }, { "title": "Exception", "value": "{{ exception }}", "short": False, }, ], "footer": "{{ env_var('ENV', 'local') }} | <{{ task_instance.log_url }}|Check Logs>", "footer_icon": "https://image.flaticon.com/icons/png/512/391/391116.png", "ts": datetime.now().timestamp(), }, ] return attachments class SlackAlertCallback(ContextCallback): def __init__( self, slack_conn_id: str = "SLACK", message_gen: Callable = task_fail_slack_msg, channel: Optional[str] = None ): self.slack_conn_id = slack_conn_id self.message_gen = message_gen self.channel = channel def callback(self, context: dict): attachments = self.message_gen(context) slack_conn = BaseHook.get_connection(self.slack_conn_id) slack_channel = self.channel or slack_conn.login slack_alert_operator = SlackAPIPostOperator( slack_conn_id=self.slack_conn_id, task_id="slack_alert", channel=slack_channel, text=None, attachments=attachments, username="Airflow {{ env_var('ENV', 'local') }}", ) task_instance: TaskInstance = context["task_instance"] template_env = task_instance.task.get_template_env() slack_alert_operator.render_template_fields( context=context, jinja_env=template_env, ) return slack_alert_operator.execute(context=context)
StarcoderdataPython
6686942
class ListSecrets(): pass
StarcoderdataPython
3386440
# -*- coding: utf-8 -*- # # # oeis/generators/__init__.py # # # MIT License # # Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ Interface to the OEIS. """ # -------------- Standard Library -------------- # import itertools # ---------------- oeis Library ---------------- # __all__ = ("g27", "i27", "g40", "i40") def g27(): """A000027: The Natural Numbers.""" yield from itertools.count(1) def i27(index): """A000027: The Natural Numbers.""" return index def g40(): """A000040: The Prime Numbers.""" yield 0 def i40(index): """A000040: The Prime Numbers.""" return 0
StarcoderdataPython
5188999
<reponame>cdunn6754/cdunnSite from django.db import models from django.utils import timezone from django.urls.base import reverse # Create your models here. class ContentTopic(models.Model): name = models.CharField(max_length = 100) description = models.CharField(max_length = 500) def __str__(self): return "ContentTopic: {}".format(self.name) class ContentPost(models.Model): title = models.CharField(max_length = 250) description = models.CharField(max_length = 500) heading_image = models.ImageField(upload_to="heading_images") template_file = models.FileField(upload_to="template_files") creation_date = models.DateField(default=timezone.now) date_modified = models.DateField(auto_now=True) contentTopics = models.ManyToManyField(ContentTopic) slug = models.SlugField(max_length=200, unique=True) def get_absolute_url(self): return reverse('content:post_detail', kwargs={'slug': self.slug}) def __str__(self): return "ContentPost: {}".format(self.title)
StarcoderdataPython
9681612
# These classes represent the query expressions from section 2.6 of the paper # Dichotomy of Probabilistic Inference for Unions of Conjunctive Queries # by <NAME> 2012 from collections import defaultdict import itertools import nltk from symbolic_slimshot import algorithm class Graph(object): def __init__(self, adjacencyList={}): self.adjacencyList = adjacencyList def connectedComponents(self): vertices = self.adjacencyList.keys() explored = set() components = [] for v in vertices: if v not in explored: explored.add(v) component = set([v]) neighbors = set(self.adjacencyList[v]) [component.add(n) for n in self.adjacencyList[v]] while neighbors: next = neighbors.pop() if next not in explored: explored.add(next) [neighbors.add(n) for n in self.adjacencyList[next]] [component.add(n) for n in self.adjacencyList[next]] components.append(component) return components # Connected conjunctive query class Component(object): def __init__(self, relations=[]): self.relations = relations def copy(self): return Component([r.copy() for r in self.getRelations()]) def copyWithDeterminism(self, relsToMakeDeterministic): newRelations = [] for r in self.relations: newRel = r.copy() relName = r.getName() if relName in relsToMakeDeterministic: newRel.deterministic = True newRel.sampled = True newRelations.append(newRel) return Component(newRelations) def getRelations(self): return self.relations def getProbabilisticRelations(self): return list(filter(lambda x: not x.isDeterministic(), self.relations)) def getDeterministicRelations(self): return list(filter(lambda x: x.isDeterministic(), self.relations)) def getProbabilisticRelationSymbols(self): return list( map( lambda x: x.getName(), list(filter(lambda x: not x.isDeterministic(), self.relations)), ) ) def getRelationSymbols(self): return [rel.getName() for rel in self.getRelations()] def hasNegatedRelations(self): return any([rel.isNegated() for rel in self.getRelations()]) def getVariables(self): return set([x for rel in self.relations for x in rel.getVariables()]) # Returns a dictionary: {Var : { RelName : set([varPos1, [varPos2, ...]]) # }} def hasVariables(self): return len(self.getVariables()) > 0 def getVarPositions(self): varsToPositions = {} for rel in self.relations: if rel.hasVariables(): varPos = rel.getVariablePositions() for var in varPos: if var in varsToPositions: varsToPositions[var][rel] = varPos[var] else: varsToPositions[var] = {rel: varPos[var]} return varsToPositions def containedIn(self, com2): # TODO(ericgribkoff) Implement minimization for queries with # negation c1Vars = self.getVariables() c2Vars = com2.getVariables() byVarMaps = [] for var in c2Vars: byVarMaps.append([pair for pair in itertools.product([var], c1Vars)]) mappings = [h for h in itertools.product(*byVarMaps)] for mapping in mappings: h = dict((x, y) for x, y in list(mapping)) if self.isHomomorphism(com2.applyH(h)): return True return False def applyH(self, h): mappedRels = [] for rel in self.relations: newRel = rel.copy() newRel.applyH(h) mappedRels.append(newRel) return Component(mappedRels) def isHomomorphism(self, com2): relDict = {} for rel in self.getRelations(): relStr = "%s:%s" % ( rel.getNameWithEqualityConstraints(), ",".join(rel.getVariablesForHomomorphism()), ) relDict[relStr] = True for rel in com2.getRelations(): relStr = "%s:%s" % ( rel.getNameWithEqualityConstraints(), ",".join(rel.getVariablesForHomomorphism()), ) if relStr not in relDict: return False return True def minimize(self): for x in algorithm.powerset(self.getRelations()): if len(x) and not len(x) == len(self.getRelations()): c = Component(list(x)) if c.containedIn(self) and self.containedIn(c): return c return self.copy() def usesSeparator(self, subId): return any(r.usesSeparator(subId) for r in self.getRelations()) def getUsedSeparators(self): seps = set() for r in self.getRelations(): seps.update(r.getUsedSeparators()) return seps def applySeparator(self, separator, replacement): for rel in self.relations: rel.applySeparator(separator, replacement) def hasRelation(self, rel): return rel.getName() in [r.getName() for r in self.relations] def isSuperset(self, c): return all([c.hasRelation(rel) for rel in self.relations]) def getAdjacencyList(self): varsToRels = defaultdict(set) adjList = defaultdict(set) for rel in self.relations: if rel.hasVariables(): [varsToRels[var].add(rel) for var in rel.getVariables()] else: # add any relations without vars as singleton components adjList[rel].add(rel) for var in varsToRels.keys(): [ adjList[rel1].add(rel2) for rel1 in varsToRels[var] for rel2 in varsToRels[var] ] return adjList def quantifiersProver9(self, formula): quantifiedFormula = [] for v in self.getVariables(): quantifiedFormula.append("exists %s.(" % v.getVar()) quantifiedFormula.append(formula) quantifiedFormula.append(")" * len(self.getVariables())) return "".join(quantifiedFormula) def toProver9(self): return self.quantifiersProver9( " and ".join(["(%s)" % x.toProver9() for x in self.relations]) ) def prettyPrint(self): return "%s" % ", ".join([x.__repr__() for x in self.relations]) def prettyPrintCNF(self): return "%s" % " v ".join([x.__repr__() for x in self.relations]) def __repr__(self): return "(%s)" % ", ".join([x.__repr__() for x in self.relations]) # Conjunction of components class ConjunctiveQuery(object): def __init__(self, components=[]): self.components = components def copy(self): return ConjunctiveQuery([c.copy() for c in self.components]) def copyWithDeterminism(self, relsToMakeDeterministic): return ConjunctiveQuery( [c.copyWithDeterminism(relsToMakeDeterministic) for c in self.components] ) def getComponents(self): return self.components def getComponent(self, index): return self.components[index] def getRelations(self): return [rel for c in self.components for rel in c.getRelations()] def getRelationSymbols(self): return [rel.getName() for rel in self.getRelations()] def getVariables(self): vars = set() for rel in self.getRelations(): vars.update(set(rel.getVariables())) return vars def hasVariables(self): return len(self.getVariables()) > 0 def usesSeparator(self, subId): return any(c.usesSeparator(subId) for c in self.components) def getUsedSeparators(self): seps = set() for c in self.components: seps.update(c.getUsedSeparators()) return seps def applySeparator(self, separator, replacement): componentsWithVars = [c for c in self.components if c.hasVariables()] for i in range(len(componentsWithVars)): componentsWithVars[i].applySeparator(separator[i], replacement) def getSeparator(self): componentsWithVars = [c for c in self.components if c.hasVariables()] varPositions = [c.getVarPositions() for c in componentsWithVars] componentVars = [c.keys() for c in varPositions] # used to fix an ordering for potentialSep in itertools.product(*componentVars): potentialMap = {} validMap = True for ind, var in enumerate(potentialSep): relationsWithThisVarInThisComponent = set(varPositions[ind][var].keys()) probabilisticRelationsInThisComponent = set( componentsWithVars[ind].getProbabilisticRelations() ) if len( probabilisticRelationsInThisComponent.difference( relationsWithThisVarInThisComponent ) ): validMap = False break deterministicRelationsInThisComponent = set( self.components[ind].getDeterministicRelations() ) for detR in deterministicRelationsInThisComponent.difference( relationsWithThisVarInThisComponent ): if detR.getName() in potentialMap: del potentialMap[detR.getName()] # look at all relations in the component with this variable for rel in varPositions[ind][var]: if rel.getName() not in potentialMap: # haven't seen this relation before, add it to potential separator # mapping potentialMap[rel.getName()] = varPositions[ind][var][rel] # we have seen this relation before, see if the potential separator # positions intersect with those seen before elif ( len( potentialMap[rel.getName()].intersection( varPositions[ind][var][rel] ) ) == 0 ): if not rel.isDeterministic(): validMap = False break elif rel.getName() in potentialMap: del potentialMap[rel.getName()] else: potentialMap[rel.getName()] = potentialMap[ rel.getName() ].intersection(varPositions[ind][var][rel]) if not validMap: break if validMap: return potentialSep def minimize(self): minCom = [c.minimize() for c in self.getComponents()] redundant = [False] * len(minCom) for i in range(len(minCom)): for j in range(len(minCom)): if i == j or redundant[i]: continue else: if minCom[i].containedIn(minCom[j]): redundant[j] = True finalCom = [] for i in range(len(minCom)): if not redundant[i]: finalCom.append(minCom[i]) return ConjunctiveQuery(finalCom) def containedIn(self, con2): for com in con2.getComponents(): if not any([c.containedIn(com) for c in self.getComponents()]): return False return True def toProver9(self): return " and ".join(["(%s)" % x.toProver9() for x in self.components]) def prettyPrint(self): return "(%s)" % " ^ ".join([x.prettyPrint() for x in self.components]) def prettyPrintCNF(self): return "(%s)" % " v ".join([x.prettyPrintCNF() for x in self.components]) def __repr__(self): return "c(%s)" % " ^ ".join([x.__repr__() for x in self.components]) # Disjunction of components class DisjunctiveQuery(object): def __init__(self, components=[]): self.components = components def copy(self): return DisjunctiveQuery([c.copy() for c in self.components]) def getComponents(self): return self.components def getRelations(self): return [rel for c in self.components for rel in c.getRelations()] def getRelationSymbols(self): return [rel.getName() for rel in self.getRelations()] def hasVariables(self): return any([len(c.getVariables()) > 0 for c in self.components]) def containedIn(self, dis2): for com in self.getComponents(): # forall i, does there exist a j s.t. c_i => c_j if not any([com.containedIn(c) for c in dis2.getComponents()]): return False return True def minimize(self): minCom = [c.minimize() for c in self.getComponents()] redundant = [False] * len(minCom) for i in range(len(minCom)): for j in range(len(minCom)): if i == j or redundant[j]: continue else: if minCom[i].containedIn(minCom[j]): redundant[i] = True finalCom = [] for i in range(len(minCom)): if not redundant[i]: finalCom.append(minCom[i]) return DisjunctiveQuery(finalCom) def usesSeparator(self, subId): return any(c.usesSeparator(subId) for c in self.components) def getUsedSeparators(self): seps = set() for c in self.components: seps.update(c.getUsedSeparators()) return seps def applySeparator(self, separator, replacement): componentsWithVars = [c for c in self.components if c.hasVariables()] for i in range(len(componentsWithVars)): componentsWithVars[i].applySeparator(separator[i], replacement) # TODO this function and getAdjacencyList should be using # getNameWithEqualityConstraints() def getSeparator(self): componentsWithVars = [c for c in self.components if c.hasVariables()] varPositions = [c.getVarPositions() for c in componentsWithVars] componentVars = [c.keys() for c in varPositions] # used to fix an ordering for potentialSep in itertools.product(*componentVars): potentialMap = {} validMap = True for ind, var in enumerate(potentialSep): relationsWithThisVarInThisComponent = set(varPositions[ind][var].keys()) probabilisticRelationsInThisComponent = set( componentsWithVars[ind].getProbabilisticRelations() ) if len( probabilisticRelationsInThisComponent.difference( relationsWithThisVarInThisComponent ) ): validMap = False break deterministicRelationsInThisComponent = set( self.components[ind].getDeterministicRelations() ) for detR in deterministicRelationsInThisComponent.difference( relationsWithThisVarInThisComponent ): if detR.getName() in potentialMap: del potentialMap[detR.getName()] # look at all relations in the component with this variable for rel in varPositions[ind][var]: if rel.getName() not in potentialMap: # haven't seen this relation before, add it to potential separator # mapping potentialMap[rel.getName()] = varPositions[ind][var][rel] # we have seen this relation before, see if the potential separator # positions intersect with those seen before elif ( len( potentialMap[rel.getName()].intersection( varPositions[ind][var][rel] ) ) == 0 ): if not rel.isDeterministic(): validMap = False break elif rel.getName() in potentialMap: del potentialMap[rel.getName()] else: potentialMap[rel.getName()] = potentialMap[ rel.getName() ].intersection(varPositions[ind][var][rel]) if not validMap: break if validMap: return potentialSep # TODO(ericgribkoff) using getNameWithEqualityConstraints() for adjacencyList computation is not # sufficient, as components are independent iff their equality constraints don't overlap # although, depending on how "complete" the shattering is, and if only one set of constants # were introduced with equality, this might be sufficient def getAdjacencyList(self): relsToComponents = defaultdict(set) adjList = defaultdict(set) for c in self.components: if all(r.isDeterministic() for r in c.getRelations()): pass else: [ relsToComponents[rel.getRelationNameForAdjacency()].add(c) for rel in c.getRelations() if not rel.isDeterministic() ] for rel in relsToComponents.keys(): [ adjList[c1].add(c2) for c1 in relsToComponents[rel] for c2 in relsToComponents[rel] ] # TODO(ericgribkoff) Fix this hack for c in self.components: if c not in adjList: adjList[c].add(c) return adjList def toProver9(self): return " or ".join(["(%s)" % x.toProver9() for x in self.components]) def prettyPrint(self): return "(%s)" % " v ".join([x.prettyPrint() for x in self.components]) def prettyPrintCNF(self): return "(%s)" % " ^ ".join([x.prettyPrintCNF() for x in self.components]) def __repr__(self): return "d(\n%s)" % " v \n".join([x.__repr__() for x in self.components]) # Disjunction of conjuctive queries class DNF(object): def __init__(self, conjuncts=[]): self.conjuncts = conjuncts def copy(self): return DNF([c.copy() for c in self.conjuncts]) def copyWithDeterminism(self, relsToMakeDeterministic): return DNF( [c.copyWithDeterminism(relsToMakeDeterministic) for c in self.conjuncts] ) def containedIn(self, dnf2): for con in self.getConjuncts(): if not any([c.containedIn(con) for c in dnf2.getConjuncts()]): return False return True def getUsedSeparators(self): seps = set() for c in self.conjuncts: seps.update(c.getUsedSeparators()) return seps def applySeparator(self, separator, replacement): for c in self.conjuncts: c.applySeparator(separator, replacement) def getConjuncts(self): return self.conjuncts def getRelations(self): rels = set() for d in self.conjuncts: rels.update(set(d.getRelations())) return rels def getRelationSymbols(self): rels = set() for d in self.conjuncts: rels.update(set(d.getRelationSymbols())) return rels def minimize(self): minCom = [c.minimize() for c in self.getConjuncts()] redundant = [False] * len(minCom) for i in range(len(minCom)): for j in range(len(minCom)): if i == j or redundant[j]: continue else: if minCom[i].containedIn(minCom[j]): redundant[i] = True finalCom = [] for i in range(len(minCom)): if not redundant[i]: finalCom.append(minCom[i]) return DNF(finalCom) def getAdjacencyList(self): relsToConjuncts = defaultdict(set) adjList = defaultdict(set) for d in self.conjuncts: # don't include deterministic relations without vars if all(r.isDeterministic() for r in d.getRelations()): pass else: [ relsToConjuncts[rel.getRelationNameForAdjacency()].add(d) for rel in d.getRelations() ] for rel in relsToConjuncts.keys(): [ adjList[d1].add(d2) for d1 in relsToConjuncts[rel] for d2 in relsToConjuncts[rel] ] # TODO(ericgribkoff) Fix this hack for d in self.conjuncts: if d not in adjList: adjList[d].add(d) return adjList def toCNF(self): conjI = 0 comI = 0 stack = [(conjI, comI)] disjuncts = [] # Applying distributivity while True: if len(stack) < len(self.conjuncts): stack.append((conjI + 1, 0)) conjI = conjI + 1 else: disjuncts.append( DisjunctiveQuery( [self.conjuncts[i].getComponent(j) for (i, j) in stack] ) ) (lastConj, lastCom) = stack.pop() if lastCom + 1 < len(self.conjuncts[lastConj].getComponents()): stack.append((lastConj, lastCom + 1)) else: while stack: (lastConj, lastCom) = stack.pop() conjI = conjI - 1 if lastCom + 1 < len(self.conjuncts[lastConj].getComponents()): stack.append((lastConj, lastCom + 1)) break if not stack: break return CNF(disjuncts) def prettyPrint(self): return "(%s)" % " v ".join([x.prettyPrint() for x in self.conjuncts]) def prettyPrintCNF(self): return "(%s)" % " ^ ".join([x.prettyPrintCNF() for x in self.conjuncts]) def __repr__(self): return "dnf(\n%s\n)" % "\n v ".join([x.__repr__() for x in self.conjuncts]) # Conjunction of disjunctive queries class CNF(object): def __init__(self, disjuncts=[]): self.disjuncts = [d.minimize() for d in disjuncts] def copy(self): return CNF([d.copy() for d in self.disjuncts]) def getDisjuncts(self): return self.disjuncts def getRelations(self): rels = set() for d in self.disjuncts: rels.update(set(d.getRelations())) return rels def getRelationSymbols(self): rels = set() for d in self.disjuncts: rels.update(set(d.getRelationSymbols())) return rels def minimize(self): minCom = [c.minimize() for c in self.getDisjuncts()] redundant = [False] * len(minCom) for i in range(len(minCom)): for j in range(len(minCom)): if i == j or redundant[i]: continue else: if minCom[i].containedIn(minCom[j]): redundant[j] = True lexpr = nltk.Expression.fromstring finalCom = [] for i in range(len(minCom)): if not redundant[i]: p9Component = lexpr(minCom[i].toProver9()) prover = nltk.Prover9Command(p9Component) if not prover.prove(): # component is not always true finalCom.append(minCom[i]) return CNF(finalCom) def containedIn(self, cnf2): for con in cnf2.getDisjuncts(): if not any([c.containedIn(con) for c in self.getDisjuncts()]): return False return True def usesSeparator(self, subId): return any(d.usesSeparator(subId) for d in self.disjuncts) def getUsedSeparators(self): seps = set() for d in self.disjuncts: seps.update(d.getUsedSeparators()) return seps def getAdjacencyList(self): relsToDisjuncts = defaultdict(set) adjList = defaultdict(set) for d in self.disjuncts: # don't include deterministic relations without vars if all(r.isDeterministic() for r in d.getRelations()): pass else: [ relsToDisjuncts[rel.getRelationNameForAdjacency()].add(d) for rel in d.getRelations() ] for rel in relsToDisjuncts.keys(): [ adjList[d1].add(d2) for d1 in relsToDisjuncts[rel] for d2 in relsToDisjuncts[rel] ] # TODO(ericgribkoff) Fix this hack for d in self.disjuncts: if d not in adjList: adjList[d].add(d) return adjList def toProver9(self): return " and ".join(["(%s)" % x.toProver9() for x in self.disjuncts]) def prettyPrint(self): return "(%s)" % " ^ ".join([x.prettyPrint() for x in self.disjuncts]) def prettyPrintCNF(self): return "(%s)" % " v ".join([x.prettyPrintCNF() for x in self.disjuncts]) def __repr__(self): return "cnf(\n%s\n)" % " ^ \n".join([x.__repr__() for x in self.disjuncts]) def decomposeComponent(orig): connectedComponents = Graph(orig.getAdjacencyList()).connectedComponents() if len(connectedComponents) == 1: return [orig] else: return [Component(list(c)) for c in connectedComponents] def computeSymbolComponentsDNF(dnf): connectedComponents = Graph(dnf.getAdjacencyList()).connectedComponents() return connectedComponents def computeSymbolComponentsCNF(cnf): connectedComponents = Graph(cnf.getAdjacencyList()).connectedComponents() return connectedComponents def computeSymbolComponentsDisjunct(d): connectedComponents = Graph(d.getAdjacencyList()).connectedComponents() return connectedComponents
StarcoderdataPython
4980082
<reponame>Muflhi01/zorya<filename>gcp/gae.py<gh_stars>100-1000 """Interactions with compute engine.""" import logging import backoff from googleapiclient import discovery from googleapiclient.errors import HttpError from util import utils CREDENTIALS = None class Gae(object): """App Engine actions.""" def __init__(self, project): self.app = discovery.build( 'appengine', 'v1', credentials=CREDENTIALS, cache_discovery=False ) self.project = project def change_status(self, to_status, service_id, version_id): """ Stop/start version based on tags Args: to_status: 0 stop 1 start service_id: The App Engine service id version_id: The App Engine version id Returns: """ try: if int(to_status) == 1: logging.info( "Starting App Engine service: %s version: %s on project: %s", service_id, version_id, self.project ) self.start_version(service_id, version_id) else: logging.info( "Stopping App Engine service: %s version: %s on project: %s", service_id, version_id, self.project ) self.stop_version(service_id, version_id) except HttpError as http_error: logging.error(http_error) return "Error", 500 return "ok", 200 @backoff.on_exception(backoff.expo, HttpError, max_tries=8, giveup=utils.fatal_code) def stop_version(self, service_id, version_id): """ Stop an instance. Args: service_id: The App Engine service id version_id: The App Engine version id Returns: """ # TODO add requestId return ( self.app.apps().services().versions().patch(servicesId=service_id, appsId=self.project, versionsId=version_id, updateMask='servingStatus', body={"servingStatus": "STOPPED"}).execute() ) @backoff.on_exception(backoff.expo, HttpError, max_tries=8, giveup=utils.fatal_code) def start_version(self, service_id, version_id): """ Start an instance. Args: service_id: The App Engine service id version_id: The App Engine version id Returns: """ # TODO add requestId return ( self.app.apps().services().versions().patch(servicesId=service_id, appsId=self.project, versionsId=version_id, updateMask='servingStatus', body={"servingStatus": "SERVING"}).execute() )
StarcoderdataPython
1670084
# -*- coding: utf-8 -*- u""" Test of cymel.utils.operation """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import unittest import maya.cmds as cmds from cymel.utils.operation import ( docmd, undoChunk, undoTransaction, nonUndoable, PreserveSelection, ) #------------------------------------------------------------------------------ class TestOperation(unittest.TestCase): u""" Test of cymel.utils.operation """ def assertSuccessful(self, proc, *args, **kwargs): try: return proc(*args, **kwargs) except Exception as e: self.fail('%s() raised %r' % (proc.__name__, e)) def test_docmd(self): r = [0, False] def do(): r[0] += 1 def undo(): r[0] -= 1 r[1] = False def redo(): r[0] += 1 r[1] = True self.assertSuccessful(docmd, do, undo) self.assertEqual(r[0], 1) cmds.undo() self.assertEqual(r[0], 0) cmds.redo() self.assertEqual(r[0], 1) cmds.undo() self.assertEqual(r[0], 0) self.assertSuccessful(docmd, do, undo, redo) self.assertEqual(r[0], 1) cmds.undo() self.assertEqual(r[0], 0) cmds.redo() self.assertEqual(r[0], 1) self.assertTrue(r[1]) cmds.undo() self.assertEqual(r[0], 0) self.assertFalse(r[1]) def test_UndoChunk(self): cmds.file(f=True, new=True) cmds.createNode('transform') with undoChunk: cmds.createNode('transform') cmds.createNode('transform') cmds.undo() self.assertEqual(cmds.ls('transform*'), ['transform1']) def test_UndoTransaction(self): num = len(cmds.ls(type='transform')) try: with undoTransaction(): for i in range(5): cmds.createNode('transform') raise RuntimeError() except: pass self.assertEqual(num, len(cmds.ls(type='transform'))) def test_NonUndoable(self): num = len(cmds.ls(type='transform')) with undoChunk: cmds.createNode('transform') with nonUndoable: cmds.createNode('transform') cmds.createNode('transform') cmds.createNode('transform') self.assertEqual(num + 4, len(cmds.ls(type='transform'))) cmds.undo() self.assertEqual(num + 2, len(cmds.ls(type='transform'))) def test_PreserveSelection(self): cmds.select('persp') with PreserveSelection(): cmds.select('side') with PreserveSelection(): cmds.select('top') self.assertEqual(cmds.ls(sl=True), ['side']) self.assertEqual(cmds.ls(sl=True), ['persp']) with PreserveSelection(True): cmds.select('side') with PreserveSelection(True): cmds.select('top') self.assertEqual(cmds.ls(sl=True), ['side']) self.assertEqual(cmds.ls(sl=True), ['persp']) #------------------------------------------------------------------------------ def suite(): return unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) def run(**kwargs): unittest.TextTestRunner(**kwargs).run(suite()) if __name__ == '__main__': run(verbosity=2)
StarcoderdataPython
1607595
"""isort:skip_file""" from docs_snippets.concepts.partitions_schedules_sensors.partitioned_job import ( do_stuff_partitioned, ) # start def test_do_stuff_partitioned(): assert do_stuff_partitioned.execute_in_process(partition_key="2020-01-01").success # end
StarcoderdataPython
6557513
#!/usr/bin/env python3 # 必要なライブラリをインポート import rospy from std_msgs.msg import Float64 import pyaudio import audioop import numpy as np import math class OtoNode(): def __init__(self): # パブリッシャーを定義 self.sound_pub = rospy.Publisher("/sound", Float64, queue_size=1) # データ保存用の変数 self.sound_val = None self.decibel = 0 # チャンク:音源から1回読み込むときのデータサイズ self.chunk = 512 # サンプリングレート sampling_rate = 44100 self.p = pyaudio.PyAudio() self.p.stream = self.p.open(format=self.p.get_format_from_width(2), channels=1, rate=sampling_rate, frames_per_buffer=self.chunk, input=True, output=False) self.stream = self.p.stream def get_sound_val(self): """ 音センサ(マイク)からの音を処理する関数 """ # 音声データを取得 # CHANKの長さ分のデータを読み込む(データの中身は、音センサから取得した音の強さを表すデジタルの数値) input = self.stream.read(self.chunk, exception_on_overflow=False) # 音センサの値をint16のNumpy形式に変換 self.sound_val = np.frombuffer(input, dtype='int16') # デシベルに変換 rms = audioop.rms(self.sound_val[0], 2) self.decibel = 20 * math.log10(rms) if rms > 0 else 0 # 変換したデシベルの値をパブリッシュする print("音センサの値[db]: {}".format(self.decibel)) self.sound_pub.publish(self.decibel) def stop(self): self.stream.stop_stream() self.stream.close() self.p.terminate() if __name__ == '__main__': # ノードを宣言 rospy.init_node("mic") # クラスのインスタンスを作成 oto = OtoNode() # ループ処理開始 while not rospy.is_shutdown(): # 処理を実行 oto.get_sound_val() oto.stop()
StarcoderdataPython
8053346
# !/usr/bin/env python # -*- coding: utf-8 -*- """Dataverse data-types data model.""" from __future__ import absolute_import from pyDataverse.utils import dict_to_json from pyDataverse.utils import read_file_json from pyDataverse.utils import write_file_json """ Data-structure to work with data and metadata of Dataverses, Datasets and Datafiles - coming from different sources. """ class Dataverse(object): """Base class for Dataverse data model.""" """Attributes required for Dataverse metadata json.""" __attr_required_metadata = [ 'alias', 'name', 'dataverseContacts' ] """Attributes valid for Dataverse metadata json.""" __attr_valid_metadata = [ 'alias', 'name', 'affiliation', 'description', 'dataverseContacts', 'dataverseType' ] """Attributes valid for Dataverse class.""" __attr_valid_class = [ # 'datasets', # 'dataverses', 'pid' ] + __attr_valid_metadata def __init__(self): """Init a Dataverse() class. Examples ------- Create a Dataverse:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() """ """Misc""" self.datasets = [] self.dataverses = [] self.pid = None """Metadata""" self.name = None self.alias = None self.dataverseContacts = [] self.affiliation = None self.description = None self.dataverseType = None def __str__(self): """Return name of Dataverse() class for users.""" return 'pyDataverse Dataverse() model class.' def set(self, data): """Set class attributes with a flat dict. Parameters ---------- data : dict Flat dict with data. Key's must be name the same as the class attribute, the data should be mapped to. Examples ------- Set Dataverse attributes via flat dict:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> data = { >>> 'dataverseContacts': [{'contactEmail': '<EMAIL>'}], >>> 'name': 'Test pyDataverse', >>> 'alias': 'test-pyDataverse' >>> } >>> dv.set(data) >>> dv.name 'Test pyDataverse' """ for key, val in data.items(): if key in self.__attr_valid_class: self.__setattr__(key, val) else: # TODO: Raise Exception print('Key {0} not valid.'.format(key)) def import_metadata(self, filename, format='dv_up'): """Import Dataverse metadata from file. This simply parses in data with valid attribute naming as keys. Data must not be complete, and also attributes required for the metadata json export can be missing. Parameters ---------- filename : string Filename with full path. format : string Data format of input. Available formats are: `dv_up` for Dataverse Api upload compatible format. Examples ------- Import metadata coming from json file:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> dv.import_metadata('tests/data/dataverse_min.json') >>> dv.name 'Test pyDataverse' """ data = {} if format == 'dv_up': metadata = read_file_json(filename) # get first level metadata and parse it automatically for attr in self.__attr_valid_metadata: if attr in metadata: data[attr] = metadata[attr] self.set(data) elif format == 'dv_down': metadata = read_file_json(filename) self.set(data) else: # TODO: Exception print('Data-format not right.') def is_valid(self): """Check if set attributes are valid for Dataverse api metadata creation. The attributes required are listed in `__attr_required_metadata`. Returns ------- bool True, if creation of metadata json is possible. False, if not. Examples ------- Check if metadata is valid for Dataverse api upload:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> data = { >>> 'dataverseContacts': [{'contactEmail': '<EMAIL>'}], >>> 'name': '<NAME>', >>> 'alias': 'test-pyDataverse' >>> } >>> dv.set(data) >>> dv.is_valid True >>> dv.name = None >>> dv.is_valid False """ is_valid = True for attr in self.__attr_required_metadata: if not self.__getattribute__(attr): is_valid = False print('attribute \'{0}\' missing.'.format(attr)) return is_valid def dict(self, format='dv_up'): """Create dicts in different data formats. `dv_up`: Checks if data is valid for the different dict formats. Parameters ---------- format : string Data format for dict creation. Available formats are: `dv_up` with all metadata for Dataverse api upload, and `all` with all attributes set. Returns ------- dict Data as dict. Examples ------- Get dict of Dataverse metadata:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> data = { >>> 'dataverseContacts': [{'contactEmail': '<EMAIL>'}], >>> 'name': 'Test pyDataverse', >>> 'alias': 'test-pyDataverse' >>> } >>> dv.set(data) >>> data = dv.dict() >>> data['name'] 'Test pyDataverse' Todo ------- Validate standards. """ data = {} if format == 'dv_up': if self.is_valid(): for attr in self.__attr_valid_metadata: if self.__getattribute__(attr) is not None: data[attr] = self.__getattribute__(attr) # TODO: prüfen, ob required attributes gesetzt sind = Exception return data else: print('dict can not be created. Data is not valid for format') return None elif format == 'all': for attr in self.__attr_valid_class: if self.__getattribute__(attr) is not None: data[attr] = self.__getattribute__(attr) return data else: # TODO: Exception print('Format not right for dict.') return None def json(self, format='dv_up'): r"""Create json from attributes. Parameters ---------- format : string Data format of input. Available formats are: `dv_up` for Dataverse Api upload compatible format and `all` with all attributes named in `__attr_valid_class`. Returns ------- string json-formatted string of Dataverse metadata for api upload. Examples ------- Get dict of Dataverse metadata:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> data = { >>> 'dataverseContacts': [{'contactEmail': '<EMAIL>'}], >>> 'name': 'Test pyDataverse', >>> 'alias': 'test-pyDataverse' >>> } >>> dv.set(data) >>> data = dv.json() >>> data '{\n "name": "Test pyDataverse",\n "dataverseContacts": [\n {\n "contactEmail": "<EMAIL>"\n }\n ],\n "alias": "test-pyDataverse"\n}' Todo ------- Validate standards. """ if format == 'dv_up': data = self.dict('dv_up') if data: return dict_to_json(data) else: return None elif format == 'all': data = self.dict('all') if data: return dict_to_json(data) else: return None else: # TODO Exception print('data format not valid.') def export_metadata(self, filename, format='dv_up'): """Export Dataverse metadata to Dataverse api upload json. Parameters ---------- filename : string Filename with full path. format : string Data format for export. Available format is: `dv_up` with all metadata for Dataverse api upload. Examples ------- Export Dataverse metadata:: >>> from pyDataverse.models import Dataverse >>> dv = Dataverse() >>> data = { >>> 'dataverseContacts': [{'contactEmail': '<EMAIL>'}], >>> 'name': 'Test pyDataverse', >>> 'alias': 'test-pyDataverse' >>> } >>> dv.set(data) >>> dv.export_metadata('tests/data/dataverse_export.json') """ if format == 'dv_up': return write_file_json(filename, self.dict()) else: # TODO: Exception print('Data-format not right.') class Dataset(object): """Base class for the Dataset data model.""" """Attributes required for Dataset metadata json.""" __attr_required_metadata = [ 'title', 'author', 'datasetContact', 'dsDescription', 'subject' ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\']. """ __attr_valid_metadata_datasetVersion = [ 'license', 'termsOfUse', 'termsOfAccess' ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'citation\']. """ __attr_valid_metadata_citation_dicts = [ 'title', 'subtitle', 'alternativeTitle', 'alternativeURL', 'subject', 'notesText', 'productionDate', 'productionPlace', 'distributionDate', 'depositor', 'dateOfDeposit', 'kindOfData', 'seriesName', 'seriesInformation', 'relatedMaterial', 'relatedDatasets', 'otherReferences', 'dataSources', 'originOfSources', 'characteristicOfSources', 'accessToSources', 'kindOfData' ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'citation\'][\'fields\']. """ __attr_valid_metadata_citation_arrays = { 'otherId': ['otherIdAgency', 'otherIdValue'], 'author': ['authorName', 'authorAffiliation', 'authorIdentifierScheme', 'authorIdentifier'], 'datasetContact': ['datasetContactName', 'datasetContactAffiliation', 'datasetContactEmail'], 'dsDescription': ['dsDescriptionValue', 'dsDescriptionDate'], 'keyword': ['keywordValue', 'keywordVocabulary', 'keywordVocabularyURI'], 'producer': ['producerName', 'producerAffiliation', 'producerAbbreviation', 'producerURL', 'producerLogoURL'], 'contributor': ['contributorType', 'contributorName'], 'grantNumber': ['grantNumberAgency', 'grantNumberValue'], 'topicClassification': ['topicClassValue', 'topicClassVocab'], 'publication': ['publicationCitation', 'publicationIDType', 'publicationIDNumber', 'publicationURL'], 'distributor': ['distributorName', 'distributorAffiliation', 'distributorAbbreviation', 'distributorURL', 'distributorLogoURL'], 'timePeriodCovered': ['timePeriodCoveredStart', 'timePeriodCoveredEnd'], 'dateOfCollection': ['dateOfCollectionStart', 'dateOfCollectionEnd'], 'software': ['softwareName', 'softwareVersion'] } """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'geospatial\']. """ __attr_valid_metadata_geospatial_dicts = [ 'geographicUnit' ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'geospatial\'][\'fields\']. """ __attr_valid_metadata_geospatial_arrays = { 'geographicCoverage': ['country', 'state', 'city', 'otherGeographicCoverage'], 'geographicBoundingBox': ['westLongitude', 'eastLongitude', 'northLongitude', 'southLongitude'] } """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'socialscience\']. """ __attr_valid_metadata_socialscience_dicts = [ 'unitOfAnalysis', 'universe', 'timeMethod', 'dataCollector', 'collectorTraining', 'frequencyOfDataCollection', 'samplingProcedure', 'deviationsFromSampleDesign', 'collectionMode', 'researchInstrument', 'dataCollectionSituation', 'actionsToMinimizeLoss', 'controlOperations', 'weighting', 'cleaningOperations', 'datasetLevelErrorNotes', 'responseRate', 'samplingErrorEstimates', 'otherDataAppraisal', ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'journal\']. """ __attr_valid_metadata_journal_dicts = [ 'journalArticleType' ] """ Dataset metadata attributes of Dataverse api upload inside [\'datasetVersion\'][\'metadataBlocks\'][\'journal\'][\'fields\']. """ __attr_valid_metadata_journal_arrays = { 'journalVolumeIssue': ['journalVolume', 'journalIssue', 'journalPubDate'] } """Attributes valid for Dataset class.""" __attr_valid_class = [ 'datafiles' ] + __attr_valid_metadata_datasetVersion \ + __attr_valid_metadata_citation_dicts \ + list(__attr_valid_metadata_citation_arrays.keys()) \ + __attr_valid_metadata_geospatial_dicts \ + list(__attr_valid_metadata_geospatial_arrays.keys()) \ + __attr_valid_metadata_socialscience_dicts \ + __attr_valid_metadata_journal_dicts \ + list(__attr_valid_metadata_journal_arrays.keys()) \ def __init__(self): """Init a Dataset() class. Examples ------- Create a Dataverse:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() """ """Misc""" self.datafiles = [] """Metadata: dataset""" self.license = None self.termsOfUse = None self.termsOfAccess = None """Metadata: citation""" self.citation_displayName = None self.title = None self.subtitle = None self.alternativeTitle = None self.alternativeURL = None self.otherId = [] self.author = [] self.datasetContact = [] self.dsDescription = [] self.subject = [] self.keyword = [] self.topicClassification = [] self.publication = [] self.notesText = None self.producer = [] self.productionDate = None self.productionPlace = None self.contributor = [] self.grantNumber = [] self.distributor = [] self.distributionDate = None self.depositor = None self.dateOfDeposit = None self.timePeriodCovered = [] self.dateOfCollection = [] self.kindOfData = [] self.seriesName = None self.seriesInformation = None self.software = [] self.relatedMaterial = [] self.relatedDatasets = [] self.otherReferences = [] self.dataSources = [] self.originOfSources = None self.characteristicOfSources = None self.accessToSources = None """Metadata: geospatial""" self.geospatial_displayName = None self.geographicCoverage = [] self.geographicUnit = None self.geographicBoundingBox = [] """Metadata: socialscience""" self.socialscience_displayName = None self.unitOfAnalysis = [] self.universe = [] self.timeMethod = None self.dataCollector = None self.collectorTraining = None self.frequencyOfDataCollection = None self.samplingProcedure = None self.targetSampleActualSize = None self.targetSampleSizeFormula = None self.socialScienceNotesType = None self.socialScienceNotesSubject = None self.socialScienceNotesText = None self.deviationsFromSampleDesign = None self.collectionMode = None self.researchInstrument = None self.dataCollectionSituation = None self.actionsToMinimizeLoss = None self.controlOperations = None self.weighting = None self.cleaningOperations = None self.datasetLevelErrorNotes = None self.responseRate = None self.samplingErrorEstimates = None self.otherDataAppraisal = None """Metadata: journal""" self.journal_displayName = None self.journalVolumeIssue = [] self.journalArticleType = None def __str__(self): """Return name of Dataset() class for users.""" return 'pyDataverse Dataset() model class.' def set(self, data): """Set class attributes with a flat dict as input. Parameters ---------- data : dict Flat dict with data. Key's must be name the same as the class attribute, the data should be mapped to. Examples ------- Set Dataverse attributes via flat dict:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> data = { >>> 'title': 'pyDataverse study 2019', >>> 'dsDescription': 'New study about pyDataverse usage in 2019' >>> } >>> ds.set(data) >>> ds.title 'pyDataverse study 2019' """ for key, val in data.items(): if key in self.__attr_valid_class or key == 'citation_displayName' or key == 'geospatial_displayName' or key == 'socialscience_displayName' or key == 'journal_displayName' or key == 'targetSampleActualSize' or key == 'targetSampleSizeFormula' or key == 'socialScienceNotesType' or key == 'socialScienceNotesText' or key == 'socialScienceNotesSubject': self.__setattr__(key, val) else: # TODO: Raise Exception print('Key {0} not valid.'.format(key)) def import_metadata(self, filename, format='dv_up'): """Import Dataset metadata from file. Parameters ---------- filename : string Filename with full path. format : string Data format of input. Available formats are: `dv_up` for Dataverse api upload compatible format. Examples ------- Set Dataverse attributes via flat dict:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> ds.import_metadata('tests/data/dataset_full.json') >>> ds.title 'Replication Data for: Title' """ data = {} if format == 'dv_up': metadata = read_file_json(filename) """dataset""" # get first level metadata and parse it automatically for key, val in metadata['datasetVersion'].items(): if key in self.__attr_valid_metadata_datasetVersion: data[key] = val # get nested metadata and parse it manually if 'dataverseContacts' in metadata: data['contactEmail'] = [] for contact in metadata['dataverseContacts']: for key, val in contact.items(): if key == 'contactEmail': data['contactEmail'].append(val) """citation""" if 'citation' in metadata['datasetVersion']['metadataBlocks']: citation = metadata['datasetVersion']['metadataBlocks']['citation'] if 'displayName' in citation: data['citation_displayName'] = citation['displayName'] for field in citation['fields']: if field['typeName'] in self.__attr_valid_metadata_citation_dicts: data[field['typeName']] = field['value'] if field['typeName'] in self.__attr_valid_metadata_citation_arrays: data[field['typeName']] = self.__parse_dicts( field['value'], self.__attr_valid_metadata_citation_arrays[field['typeName']]) if field['typeName'] == 'series': if 'seriesName' in field['value']: data['seriesName'] = field['value']['seriesName']['value'] if 'seriesInformation' in field['value']: data['seriesInformation'] = field['value']['seriesInformation']['value'] else: # TODO: Exception print('citation not in json') """geospatial""" if 'geospatial' in metadata['datasetVersion']['metadataBlocks']: geospatial = metadata['datasetVersion']['metadataBlocks']['geospatial'] if 'displayName' in geospatial: self.__setattr__('geospatial_displayName', geospatial['displayName']) for field in geospatial['fields']: if field['typeName'] in self.__attr_valid_metadata_geospatial_dicts: data[field['typeName']] = field['value'] if field['typeName'] in self.__attr_valid_metadata_geospatial_arrays: data[field['typeName']] = self.__parse_dicts( field['value'], self.__attr_valid_metadata_geospatial_arrays[field['typeName']]) else: # TODO: Exception print('geospatial not in json') """socialscience""" if 'socialscience' in metadata['datasetVersion']['metadataBlocks']: socialscience = metadata['datasetVersion']['metadataBlocks']['socialscience'] if 'displayName' in socialscience: self.__setattr__('socialscience_displayName', socialscience['displayName']) for field in socialscience['fields']: if field['typeName'] in self.__attr_valid_metadata_socialscience_dicts: data[field['typeName']] = field['value'] if field['typeName'] == 'targetSampleSize': if 'targetSampleActualSize' in field['value']: data['targetSampleActualSize'] = field['value']['targetSampleActualSize']['value'] if 'targetSampleSizeFormula' in field['value']: data['targetSampleSizeFormula'] = field['value']['targetSampleSizeFormula']['value'] if field['typeName'] == 'socialScienceNotes': if 'socialScienceNotesType' in field['value']: data['socialScienceNotesType'] = field['value']['socialScienceNotesType']['value'] if 'socialScienceNotesSubject' in field['value']: data['socialScienceNotesSubject'] = field['value']['socialScienceNotesSubject']['value'] if 'socialScienceNotesText' in field['value']: data['socialScienceNotesText'] = field['value']['socialScienceNotesText']['value'] else: # TODO: Exception print('socialscience not in json') """journal""" if 'journal' in metadata['datasetVersion']['metadataBlocks']: journal = metadata['datasetVersion']['metadataBlocks']['journal'] if 'displayName' in journal: self.__setattr__('journal_displayName', journal['displayName']) for field in journal['fields']: if field['typeName'] in self.__attr_valid_metadata_journal_dicts: data[field['typeName']] = field['value'] if field['typeName'] in self.__attr_valid_metadata_journal_arrays: data[field['typeName']] = self.__parse_dicts( field['value'], self.__attr_valid_metadata_journal_arrays[field['typeName']]) else: # TODO: Exception print('journal not in json') self.set(data) elif format == 'dv_down': metadata = read_file_json(filename) self.set(data) else: # TODO: Exception print('Data-format not right') def __parse_dicts(self, data, attr_list): """Parse out Dataverse api metadata dicts. Parameters ---------- data : list List of Dataverse api metadata fields. attr_list : list List of attributes to be parsed. Returns ------- list List of dicts with parsed out key-value pairs. """ data_tmp = [] for d in data: tmp_dict = {} for key, val in d.items(): if key in attr_list: tmp_dict[key] = val['value'] else: print('Key \'{0}\' not in attribute list'.format(key)) data_tmp.append(tmp_dict) return data_tmp def is_valid(self): """Check if attributes available are valid for Dataverse api metadata creation. The attributes required are listed in `__attr_required_metadata`. Returns ------- bool True, if creation of metadata json is possible. False, if not. Examples ------- Check if metadata is valid for Dataverse api upload:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> data = { >>> 'title': 'pyDataverse study 2019', >>> 'dsDescription': 'New study about pyDataverse usage in 2019' >>> } >>> ds.set(data) >>> ds.is_valid() False >>> ds.author = [{'authorName': 'LastAuthor1, FirstAuthor1'}] >>> ds.datasetContact = [{'datasetContactName': 'LastContact1, FirstContact1'}] >>> ds.subject = ['Engineering'] >>> ds.is_valid() True Todo ------- Test out required fields or ask Harvard. """ is_valid = True # check if all required attributes are set for attr in self.__attr_required_metadata: if not self.__getattribute__(attr): is_valid = False print('Metadata not valid: attribute \'{0}\' missing.'.format(attr)) # check if attribute sets are complete where necessary tp_cov = self.__getattribute__('timePeriodCovered') if tp_cov: for tp in tp_cov: if 'timePeriodCoveredStart' in tp or 'timePeriodCoveredEnd' in tp: if not ('timePeriodCoveredStart' in tp and 'timePeriodCoveredEnd' in tp): is_valid = False d_coll = self.__getattribute__('dateOfCollection') if d_coll: for d in d_coll: if 'dateOfCollectionStart' in d or 'dateOfCollectionEnd' in d: if not ('dateOfCollectionStart' in d and 'dateOfCollectionEnd' in d): is_valid = False authors = self.__getattribute__('author') if authors: for a in authors: if 'authorAffiliation' in a or 'authorIdentifierScheme' in a or 'authorIdentifier' in a: if 'authorName' not in a: is_valid = False ds_contac = self.__getattribute__('datasetContact') if ds_contac: for c in ds_contac: if 'datasetContactAffiliation' in c or 'datasetContactEmail' in c: if 'datasetContactName' not in c: is_valid = False producer = self.__getattribute__('producer') if producer: for p in producer: if 'producerAffiliation' in p or 'producerAbbreviation' in p or 'producerURL' in p or 'producerLogoURL' in p: if not p['producerName']: is_valid = False contributor = self.__getattribute__('contributor') if contributor: for c in contributor: if 'contributorType' in c: if 'contributorName' not in c: is_valid = False distributor = self.__getattribute__('distributor') if distributor: for d in distributor: if 'distributorAffiliation' in d or 'distributorAbbreviation' in d or 'distributorURL' in d or 'distributorLogoURL' in d: if 'distributorName' not in d: is_valid = False bbox = self.__getattribute__('geographicBoundingBox') if bbox: for b in bbox: if b: if not ('westLongitude' in b and 'eastLongitude' in b and 'northLongitude' in b and 'southLongitude' in b): is_valid = False return is_valid def dict(self, format='dv_up'): """Create dicts in different data formats. Parameters ---------- format : string Data format for dict creation. Available formats are: `dv_up` with all metadata for Dataverse api upload, and `all` with all attributes set. Returns ------- dict Data as dict. Examples ------- Get dict of Dataverse metadata:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> data = { >>> 'title': 'pyDataverse study 2019', >>> 'dsDescription': 'New study about pyDataverse usage in 2019' >>> } >>> ds.set(data) >>> data = dv.dict() >>> data['title'] 'pyDataverse study 2019' Todo ------- Validate standard """ if format == 'dv_up': if self.is_valid(): data = {} data['datasetVersion'] = {} data['datasetVersion']['metadataBlocks'] = {} citation = {} citation['fields'] = [] geospatial = {} geospatial['fields'] = [] socialscience = {} socialscience['fields'] = [] journal = {} journal['fields'] = [] """dataset""" # Generate first level attributes for attr in self.__attr_valid_metadata_datasetVersion: if self.__getattribute__(attr) is not None: data['datasetVersion'][attr] = self.__getattribute__(attr) """citation""" if self.citation_displayName: citation['displayName'] = self.citation_displayName # Generate first level attributes for attr in self.__attr_valid_metadata_citation_dicts: if self.__getattribute__(attr) is not None: citation['fields'].append({ 'typeName': attr, 'value': self.__getattribute__(attr) }) # Generate fields attributes for key, val in self.__attr_valid_metadata_citation_arrays.items(): if self.__getattribute__(key) is not None: citation['fields'].append({ 'typeName': key, 'value': self.__generate_dicts(key, val) }) # Generate series attributes if self.__getattribute__('seriesName') is not None or self.__getattribute__('seriesInformation') is not None: tmp_dict = {} tmp_dict['value'] = {} if self.__getattribute__('seriesName') is not None: tmp_dict['value']['seriesName'] = {} tmp_dict['value']['seriesName']['typeName'] = 'seriesName' tmp_dict['value']['seriesName']['value'] = self.__getattribute__('seriesName') if self.__getattribute__('seriesInformation') is not None: tmp_dict['value']['seriesInformation'] = {} tmp_dict['value']['seriesInformation']['typeName'] = 'seriesInformation' tmp_dict['value']['seriesInformation']['value'] = self.__getattribute__('seriesInformation') citation['fields'].append({ 'typeName': 'series', 'value': tmp_dict }) """geospatial""" # Generate first level attributes for attr in self.__attr_valid_metadata_geospatial_dicts: if self.__getattribute__(attr) is not None: geospatial['fields'].append({ 'typeName': attr, 'value': self.__getattribute__(attr) }) # Generate fields attributes for key, val in self.__attr_valid_metadata_geospatial_arrays.items(): # check if attribute exists if self.__getattribute__(key) is not None: geospatial['fields'].append({ 'typeName': key, 'value': self.__generate_dicts(key, val) }) """socialscience""" # Generate first level attributes for attr in self.__attr_valid_metadata_socialscience_dicts: if self.__getattribute__(attr) is not None: socialscience['fields'].append({ 'typeName': attr, 'value': self.__getattribute__(attr) }) # Generate targetSampleSize attributes if self.__getattribute__('targetSampleActualSize') is not None or self.__getattribute__('targetSampleSizeFormula') is not None: tmp_dict = {} tmp_dict['value'] = {} if 'targetSampleActualSize' in self.__getattribute__('targetSampleSize'): if self.__getattribute__('targetSampleActualSize') is not None: tmp_dict['value']['targetSampleActualSize'] = {} tmp_dict['value']['targetSampleActualSize']['typeName'] = 'targetSampleActualSize' tmp_dict['value']['targetSampleActualSize']['value'] = self.__getattribute__('targetSampleActualSize') if 'targetSampleSizeFormula' in self.__getattribute__('targetSampleSize'): if self.__getattribute__('targetSampleSizeFormula') is not None: tmp_dict['value']['targetSampleSizeFormula'] = {} tmp_dict['value']['targetSampleSizeFormula']['typeName'] = 'targetSampleSizeFormula' tmp_dict['value']['targetSampleSizeFormula']['value'] = self.__getattribute__('targetSampleSizeFormula') socialscience['fields'].append({ 'typeName': 'targetSampleSize', 'value': tmp_dict }) # Generate socialScienceNotes attributes if self.__getattribute__('socialScienceNotesType') is not None or self.__getattribute__('socialScienceNotesSubject') is not None or self.__getattribute__('socialScienceNotesText') is not None: tmp_dict = {} tmp_dict['value'] = {} if self.__getattribute__('socialScienceNotesType') is not None: tmp_dict['value']['socialScienceNotesType'] = {} tmp_dict['value']['socialScienceNotesType']['typeName'] = 'socialScienceNotesType' tmp_dict['value']['socialScienceNotesType']['value'] = self.__getattribute__('socialScienceNotesType') if self.__getattribute__('socialScienceNotesSubject') is not None: tmp_dict['value']['socialScienceNotesSubject'] = {} tmp_dict['value']['socialScienceNotesSubject']['typeName'] = 'socialScienceNotesSubject' tmp_dict['value']['socialScienceNotesSubject']['value'] = self.__getattribute__('socialScienceNotesSubject') if self.__getattribute__('socialScienceNotesText') is not None: tmp_dict['value']['socialScienceNotesText'] = {} tmp_dict['value']['socialScienceNotesText']['typeName'] = 'socialScienceNotesText' tmp_dict['value']['socialScienceNotesText']['value'] = self.__getattribute__('socialScienceNotesText') socialscience['fields'].append({ 'typeName': 'socialScienceNotes', 'value': tmp_dict }) """journal""" # Generate first level attributes for attr in self.__attr_valid_metadata_journal_dicts: if self.__getattribute__(attr) is not None: journal['fields'].append({ 'typeName': attr, 'value': self.__getattribute__(attr) }) # Generate fields attributes for key, val in self.__attr_valid_metadata_journal_arrays.items(): if self.__getattribute__(key) is not None: journal['fields'].append({ 'typeName': key, 'value': self.__generate_dicts(key, val) }) # TODO: prüfen, ob required attributes gesetzt sind. wenn nicht = Exception! data['datasetVersion']['metadataBlocks']['citation'] = citation data['datasetVersion']['metadataBlocks']['socialscience'] = socialscience data['datasetVersion']['metadataBlocks']['geospatial'] = geospatial data['datasetVersion']['metadataBlocks']['journal'] = journal return data else: print('dict can not be created. Data is not valid for format') return None elif format == 'all': for attr in self.__attr_valid_class: if self.__getattribute__(attr) is not None: data[attr] = self.__getattribute__(attr) return data else: print('dict can not be created. Format is not valid') return None def __generate_dicts(self, key, val): """Generate dicts for array attributes of Dataverse api metadata upload. Parameters ---------- key : string Name of attribute val : string Value of attribute. Returns ------- list List of filled dicts of metadata for Dataverse api upload. """ # check if attribute exists tmp_list = [] if self.__getattribute__(key): # loop over list of attribute dicts() for d in self.__getattribute__(key): tmp_dict = {} # iterate over key-value pairs for k, v in d.items(): # check if key is in attribute list if k in val: tmp_dict[k] = {} tmp_dict[k]['typeName'] = k tmp_dict[k]['value'] = v tmp_list.append(tmp_dict) return tmp_list def json(self, format='dv_up'): """Create Dataset json from attributes. Parameters ---------- format : string Data format of input. Available formats are: `dv_up` for Dataverse Api upload compatible format and `all` with all attributes named in `__attr_valid_class`. Returns ------- string json-formatted string of Dataverse metadata for api upload. Examples ------- Get json of Dataverse api upload:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> data = { >>> 'title': 'pyDataverse study 2019', >>> 'dsDescription': 'New study about pyDataverse usage in 2019' >>> 'author': [{'authorName': 'LastAuthor1, FirstAuthor1'}], >>> 'datasetContact': [{'datasetContactName': 'LastContact1, FirstContact1'}], >>> 'subject': ['Engineering'], >>> } >>> ds.set(data) >>> data = ds.json() Todo ------- TODO: Validate standard TODO: Link to default json file """ if format == 'dv_up': return dict_to_json(self.dict()) elif format == 'all': return dict_to_json(self.dict('all')) else: # TODO Exception print('data format not valid.') def export_metadata(self, filename, format='dv_up'): """Export Dataset metadata to Dataverse api upload json. Parameters ---------- filename : string Filename with full path. format : string Data format for export. Available format is: `dv_up` with all metadata for Dataverse api upload. Examples ------- Export metadata to json file:: >>> from pyDataverse.models import Dataset >>> ds = Dataset() >>> data = { >>> 'title': 'pyDataverse study 2019', >>> 'dsDescription': 'New study about pyDataverse usage in 2019' >>> 'author': [{'authorName': 'LastAuthor1, FirstAuthor1'}], >>> 'datasetContact': [{'datasetContactName': 'LastContact1, FirstContact1'}], >>> 'subject': ['Engineering'], >>> } >>> ds.export_metadata('tests/data/export_dataset.json') """ if format == 'dv_up': return write_file_json(filename, self.dict()) else: # TODO: Exception print('Data-format not right.') class Datafile(object): """Base class for the Datafile model. Parameters ---------- filename : string Filename with full path. pid : type Description of parameter `pid` (the default is None). Attributes ---------- description : string Description of datafile restrict : bool Unknown __attr_required_metadata : list List with required metadata. __attr_valid_metadata : list List with valid metadata for Dataverse api upload. __attr_valid_class : list List of all attributes. pid filename """ """Attributes required for Datafile metadata json.""" __attr_required_metadata = [ 'filename', 'pid' ] """Attributes on first level of Datafile metadata json.""" __attr_valid_metadata = [ 'description', 'pid', 'restrict' ] """Attributes on first level of Datafile metadata json.""" __attr_valid_class = [ 'filename' ] + __attr_valid_metadata def __init__(self, filename=None, pid=None): """Init a Datafile() class. Parameters ---------- filename : string Filename with full path. pid : string Persistend identifier, e.g. DOI. Examples ------- Create a Datafile:: >>> from pyDataverse.models import Datafile >>> df = Datafile() >>> df <pyDataverse.models.Datafile at 0x7f4dfc0466a0> """ """Misc""" self.pid = pid self.filename = filename """Metadata""" self.description = None self.restrict = None def __str__(self): """Return name of Datafile() class for users.""" return 'pyDataverse Datafile() model class.' def set(self, data): """Set class attributes with a flat dict. Parameters ---------- data : dict Flat dict with data. Key's must be name the same as the class attribute, the data should be mapped to. Examples ------- Set Datafile attributes via flat dict:: >>> from pyDataverse.models import Datafile >>> df = Datafile() >>> data = { >>> 'pid': 'doi:10.11587/EVMUHP', >>> 'description': 'Test file', >>> 'filename': 'tests/data/datafile.txt' >>> } >>> df.set(data) >>> df.pid 'doi:10.11587/EVMUHP', """ for key, val in data.items(): if key in self.__attr_valid_class: self.__setattr__(key, val) else: # TODO: Raise Exception print('Key {0} not valid.'.format(key)) def is_valid(self): """Check if set attributes are valid for Dataverse api metadata creation. Returns ------- bool True, if creation of metadata json is possible. False, if not. Examples ------- Check if metadata is valid for Dataverse api upload:: >>> from pyDataverse.models import Datafile >>> df = Datafile() >>> data = { >>> 'pid': 'doi:10.11587/EVMUHP', >>> 'description': 'Test file', >>> 'filename': 'tests/data/datafile.txt' >>> } >>> df.set(data) >>> df.is_valid True >>> df.filename = None >>> df.is_valid False """ is_valid = True for attr in self.__attr_required_metadata: if self.__getattribute__(attr) is None: is_valid = False print('attribute \'{0}\' missing.'.format(attr)) return is_valid def dict(self, format='dv_up'): """Create dict in different data formats. Parameters ---------- format : string Data format for dict creation. Available formats are: `dv_up` with all metadata for Dataverse api upload, and `all` with all attributes set. Returns ------- dict Data as dict. Examples ------- Check if metadata is valid for Dataverse api upload:: >>> from pyDataverse.models import Datafile >>> df = Datafile() >>> data = { >>> 'pid': 'doi:10.11587/EVMUHP', >>> 'description': 'Test file', >>> 'filename': 'tests/data/datafile.txt' >>> } >>> df.set(data) >>> data = df.dict() >>> data['description'] 'Test file' Todo ------- Validate standards. """ data = {} if format == 'dv_up': if self.is_valid(): for attr in self.__attr_valid_metadata: if self.__getattribute__(attr) is not None: data[attr] = self.__getattribute__(attr) return data else: print('dict can not be created. Data is not valid') return None elif format == 'all': for attr in self.__attr_valid_class: if self.__getattribute__(attr) is not None: data[attr] = self.__getattribute__(attr) return data else: # TODO: Exception print('Format not right for dict.') return None def json(self, format='dv_up'): r"""Create json from attributes. Parameters ---------- format : string Data format of input. Available formats are: `dv_up` for Dataverse Api upload compatible format and `all` with all attributes named in `__attr_valid_class`. Returns ------- string json-formatted string of Dataverse metadata for api upload. Examples ------- Get dict of Dataverse metadata:: >>> from pyDataverse.models import Datafile >>> df = Datafile() >>> data = { >>> 'pid': 'doi:10.11587/EVMUHP', >>> 'description': 'Test file', >>> 'filename': 'tests/data/datafile.txt' >>> } >>> df.set(data) >>> df.dict() {'description': 'Test file', 'directoryLabel': None, 'restrict': None} Todo ------- Validate standards. Link to default json file """ if format == 'dv_up': data = self.dict('dv_up') if data: return dict_to_json(data) else: print('Dict can not be created') return None elif format == 'all': data = self.dict('all') if data: return dict_to_json(data) else: print('Dict can not be created') return None else: # TODO Exception print('data format not valid.') return None
StarcoderdataPython
11365409
C = raw_input() C = C.upper() vowels = ['A','E','I','O','U'] if C in vowels: print("Vowel") else: print("Consonant")
StarcoderdataPython
6490016
from random import random # ---------------------- Observable -------------------------- class IObservable: def __init__(self): self.__observers = [] def attach(self, observer): self.__observers.append(observer) def detach(self, observer): self.__observers = [obs for obs in self.__observers if obs is not observer] def notify(self): for obs in self.__observers: obs.update() # --- Concrete Observables --- class TempObservable(IObservable): temp = 0 def test_run(self): for _ in range(3): self.temp = random() + 25 self.notify() def get_temp(self): return self.temp class HumidObservable(IObservable): humid = 0 def test_run(self): for _ in range(4): self.humid = random() + 74 self.notify() def get_humid(self): return self.humid
StarcoderdataPython
5198256
<reponame>yakky/microservice-talk<filename>book_search/models/response.py from typing import List from pydantic import BaseModel class Author(BaseModel): name: str class Tag(BaseModel): title: str slug: str class Book(BaseModel): book_id: int title: str isbn13: str authors: List[Author] tags: List[Tag] original_publication_year: int class BookList(BaseModel): results: List[Book] count: int
StarcoderdataPython
8129558
<reponame>fga-gpp-mds/2018.1-Cris-Down<filename>drdown/forum/views/view_post.py from ..models.model_post import Post from ..models.model_category import Category from .view_base import BaseViewTemplate from django.views.generic import ListView from django.views.generic import CreateView from django.views.generic import DeleteView from django.views.generic import UpdateView from django.urls import reverse_lazy from django.utils import timezone from drdown.forum.form.forum_forms import PostForm class PostListView(BaseViewTemplate, ListView): model = Post paginate_by = 20 def get_context_data(self, **kwargs): context = super(PostListView, self).get_context_data(**kwargs) pk = self.kwargs.get('pk') context['post_category'] = Category.objects.get(pk=pk) return context def get_queryset(self): pk = self.kwargs.get('pk') queryset = Post.objects.filter( category=Category.objects.get(pk=pk) ).order_by('-created_at') return queryset class PostCreateView(BaseViewTemplate, CreateView): model = Post form_class = PostForm template_name = 'forum/form_post.html' def get_success_url(self, **kwargs): success_create_url = reverse_lazy( viewname='forum:list_posts', kwargs={ 'slug': self.kwargs.get('slug'), 'pk': self.kwargs.get('pk'), } ) return success_create_url def get_context_data(self, **kwargs): context = super(PostCreateView, self).get_context_data(**kwargs) pk = self.kwargs.get('pk') context['post_category'] = Category.objects.get(pk=pk) return context def form_valid(self, form): # Get category that post belongs to form.instance.category = Category.objects.get(pk=self.kwargs.get('pk')) form.instance.created_by = self.request.user form.save() return super(PostCreateView, self).form_valid(form) class PostDeleteView (BaseViewTemplate, DeleteView): model = Post def get_success_url(self, **kwargs): success_delete_url = reverse_lazy( viewname='forum:list_posts', kwargs={ 'pk': self.kwargs.get('pk'), 'slug': self.kwargs.get('slug'), } ) return success_delete_url def get_object(self): post = Post.objects.get( pk=self.kwargs.get('post_pk') ) return post class PostUpdateView(BaseViewTemplate, UpdateView): model = Post form_class = PostForm template_name = 'forum/form_post.html' def get_success_url(self, **kwargs): success_update_url = reverse_lazy( viewname='forum:list_commentary', kwargs={ 'pk': self.kwargs.get('pk'), 'post_pk': self.kwargs.get('post_pk'), 'slug': self.kwargs.get('slug'), } ) return success_update_url def get_context_data(self, **kwargs): context = super(PostUpdateView, self).get_context_data(**kwargs) pk = self.kwargs.get('pk') context['post_category'] = Category.objects.get(pk=pk) return context def get_object(self): post = Post.objects.get( pk=self.kwargs.get('post_pk') ) return post def form_valid(self, form): # Get updated_at datetime form.instance.updated_at = timezone.now() form.save() return super(PostUpdateView, self).form_valid(form)
StarcoderdataPython
5078157
import os import pathlib from dotenv import load_dotenv load_dotenv() # env vars PREFIX = os.getenv("PREFIX") or "!" TOKEN = os.getenv("TOKEN") # paths EXTENSIONS = pathlib.Path("bot/exts/")
StarcoderdataPython
6669328
<reponame>LihaoR/tensorflow-rl<gh_stars>100-1000 # -*- encoding: utf-8 -*- import time import cPickle import numpy as np import utils.logger import tensorflow as tf from skimage.transform import resize from collections import deque from utils import checkpoint_utils from actor_learner import ONE_LIFE_GAMES from utils.decorators import Experimental from utils.fast_cts import CTSDensityModel from utils.replay_memory import ReplayMemory from policy_based_actor_learner import A3CLearner, A3CLSTMLearner from value_based_actor_learner import ValueBasedLearner logger = utils.logger.getLogger('intrinsic_motivation_actor_learner') class PixelCNNDensityModel(object): pass class PerPixelDensityModel(object): """ Calculates image probability according to per-pixel counts: P(X) = ∏ p(x_ij) Mostly here for debugging purposes as CTSDensityModel is much more expressive """ def __init__(self, height=42, width=42, num_bins=8, beta=0.05): self.counts = np.zeros((width, height, num_bins)) self.height = height self.width = width self.beta = beta self.num_bins = num_bins def update(self, obs): obs = resize(obs, (self.height, self.width), preserve_range=True) obs = np.floor((obs*self.num_bins)).astype(np.int32) log_prob, log_recoding_prob = self._update(obs) return self.exploration_bonus(log_prob, log_recoding_prob) def _update(self, obs): log_prob = 0.0 log_recoding_prob = 0.0 for i in range(self.height): for j in range(self.height): self.counts[i, j, obs[i, j]] += 1 bin_count = self.counts[i, j, obs[i, j]] pixel_mass = self.counts[i, j].sum() log_prob += np.log(bin_count / pixel_mass) log_recoding_prob += np.log((bin_count + 1) / (pixel_mass + 1)) return log_prob, log_recoding_prob def exploration_bonus(self, log_prob, log_recoding_prob): recoding_prob = np.exp(log_recoding_prob) prob_ratio = np.exp(log_recoding_prob - log_prob) pseudocount = (1 - recoding_prob) / np.maximum(prob_ratio - 1, 1e-10) return self.beta / np.sqrt(pseudocount + .01) def get_state(self): return self.num_bins, self.height, self.width, self.beta, self.counts def set_state(self, state): self.num_bins, self.height, self.width, self.beta, self.counts = state class DensityModelMixin(object): """ Mixin to provide initialization and synchronization methods for density models """ def _init_density_model(self, args): self.density_model_update_steps = 20*args.q_target_update_steps self.density_model_update_flags = args.density_model_update_flags model_args = { 'height': args.cts_rescale_dim, 'width': args.cts_rescale_dim, 'num_bins': args.cts_bins, 'beta': args.cts_beta } if args.density_model == 'cts': self.density_model = CTSDensityModel(**model_args) else: self.density_model = PerPixelDensityModel(**model_args) def write_density_model(self): logger.info('T{} Writing Pickled Density Model to File...'.format(self.actor_id)) raw_data = cPickle.dumps(self.density_model.get_state(), protocol=2) with self.barrier.counter.lock, open('/tmp/density_model.pkl', 'wb') as f: f.write(raw_data) for i in xrange(len(self.density_model_update_flags.updated)): self.density_model_update_flags.updated[i] = 1 def read_density_model(self): logger.info('T{} Synchronizing Density Model...'.format(self.actor_id)) with self.barrier.counter.lock, open('/tmp/density_model.pkl', 'rb') as f: raw_data = f.read() self.density_model.set_state(cPickle.loads(raw_data)) class A3CDensityModelMixin(DensityModelMixin): """ Mixin to share _train method between A3C and A3C-LSTM models """ def _train(self): """ Main actor learner loop for advantage actor critic learning. """ logger.debug("Actor {} resuming at Step {}".format(self.actor_id, self.global_step.value())) bonuses = deque(maxlen=100) while (self.global_step.value() < self.max_global_steps): # Sync local learning net with shared mem s = self.emulator.get_initial_state() self.reset_hidden_state() self.local_episode += 1 episode_over = False total_episode_reward = 0.0 episode_start_step = self.local_step while not episode_over: self.sync_net_with_shared_memory(self.local_network, self.learning_vars) self.save_vars() rewards = list() states = list() actions = list() values = list() local_step_start = self.local_step self.set_local_lstm_state() while self.local_step - local_step_start < self.max_local_steps and not episode_over: # Choose next action and execute it a, readout_v_t, readout_pi_t = self.choose_next_action(s) new_s, reward, episode_over = self.emulator.next(a) total_episode_reward += reward # Update density model current_frame = new_s[...,-1] bonus = self.density_model.update(current_frame) bonuses.append(bonus) if self.is_master() and (self.local_step % 400 == 0): bonus_array = np.array(bonuses) logger.debug('π_a={:.4f} / V={:.4f} / Mean Bonus={:.4f} / Max Bonus={:.4f}'.format( readout_pi_t[a.argmax()], readout_v_t, bonus_array.mean(), bonus_array.max())) # Rescale or clip immediate reward reward = self.rescale_reward(self.rescale_reward(reward) + bonus) rewards.append(reward) states.append(s) actions.append(a) values.append(readout_v_t) s = new_s self.local_step += 1 global_step, _ = self.global_step.increment() if global_step % self.density_model_update_steps == 0: self.write_density_model() if self.density_model_update_flags.updated[self.actor_id] == 1: self.read_density_model() self.density_model_update_flags.updated[self.actor_id] = 0 next_val = self.bootstrap_value(new_s, episode_over) advantages = self.compute_gae(rewards, values, next_val) targets = self.compute_targets(rewards, next_val) # Compute gradients on the local policy/V network and apply them to shared memory entropy = self.apply_update(states, actions, targets, advantages) elapsed_time = time.time() - self.start_time steps_per_sec = self.global_step.value() / elapsed_time perf = "{:.0f}".format(steps_per_sec) logger.info("T{} / EPISODE {} / STEP {}k / REWARD {} / {} STEPS/s".format( self.actor_id, self.local_episode, self.global_step.value()/1000, total_episode_reward, perf)) self.log_summary(total_episode_reward, np.array(values).mean(), entropy) @Experimental class PseudoCountA3CLearner(A3CLearner, A3CDensityModelMixin): """ Attempt at replicating the A3C+ model from the paper 'Unifying Count-Based Exploration and Intrinsic Motivation' (https://arxiv.org/abs/1606.01868) """ def __init__(self, args): super(PseudoCountA3CLearner, self).__init__(args) self._init_density_model(args) def train(self): self._train() @Experimental class PseudoCountA3CLSTMLearner(A3CLSTMLearner, A3CDensityModelMixin): def __init__(self, args): super(PseudoCountA3CLSTMLearner, self).__init__(args) self._init_density_model(args) def train(self): self._train() class PseudoCountQLearner(ValueBasedLearner, DensityModelMixin): """ Based on DQN+CTS model from the paper 'Unifying Count-Based Exploration and Intrinsic Motivation' (https://arxiv.org/abs/1606.01868) Presently the implementation differs from the paper in that the novelty bonuses are computed online rather than by computing the prediction gains after the model has been updated with all frames from the episode. Async training with different final epsilon values tends to produce better results than just using a single actor-learner. """ def __init__(self, args): self.args = args super(PseudoCountQLearner, self).__init__(args) self.cts_eta = args.cts_eta self.cts_beta = args.cts_beta self.batch_size = args.batch_update_size self.replay_memory = ReplayMemory( args.replay_size, self.local_network.get_input_shape(), self.num_actions) self._init_density_model(args) self._double_dqn_op() def generate_final_epsilon(self): if self.num_actor_learners == 1: return self.args.final_epsilon else: return super(PseudoCountQLearner, self).generate_final_epsilon() def _get_summary_vars(self): q_vars = super(PseudoCountQLearner, self)._get_summary_vars() bonus_q05 = tf.Variable(0., name='novelty_bonus_q05') s1 = tf.summary.scalar('Novelty_Bonus_q05_{}'.format(self.actor_id), bonus_q05) bonus_q50 = tf.Variable(0., name='novelty_bonus_q50') s2 = tf.summary.scalar('Novelty_Bonus_q50_{}'.format(self.actor_id), bonus_q50) bonus_q95 = tf.Variable(0., name='novelty_bonus_q95') s3 = tf.summary.scalar('Novelty_Bonus_q95_{}'.format(self.actor_id), bonus_q95) augmented_reward = tf.Variable(0., name='augmented_episode_reward') s4 = tf.summary.scalar('Augmented_Episode_Reward_{}'.format(self.actor_id), augmented_reward) return q_vars + [bonus_q05, bonus_q50, bonus_q95, augmented_reward] #TODO: refactor to make this cleaner def prepare_state(self, state, total_episode_reward, steps_at_last_reward, ep_t, episode_ave_max_q, episode_over, bonuses, total_augmented_reward): # Start a new game on reaching terminal state if episode_over: T = self.global_step.value() * self.max_local_steps t = self.local_step e_prog = float(t)/self.epsilon_annealing_steps episode_ave_max_q = episode_ave_max_q/float(ep_t) s1 = "Q_MAX {0:.4f}".format(episode_ave_max_q) s2 = "EPS {0:.4f}".format(self.epsilon) self.scores.insert(0, total_episode_reward) if len(self.scores) > 100: self.scores.pop() logger.info('T{0} / STEP {1} / REWARD {2} / {3} / {4}'.format( self.actor_id, T, total_episode_reward, s1, s2)) logger.info('ID: {0} -- RUNNING AVG: {1:.0f} ± {2:.0f} -- BEST: {3:.0f}'.format( self.actor_id, np.array(self.scores).mean(), 2*np.array(self.scores).std(), max(self.scores), )) self.log_summary( total_episode_reward, episode_ave_max_q, self.epsilon, np.percentile(bonuses, 5), np.percentile(bonuses, 50), np.percentile(bonuses, 95), total_augmented_reward, ) state = self.emulator.get_initial_state() ep_t = 0 total_episode_reward = 0 episode_ave_max_q = 0 episode_over = False return ( state, total_episode_reward, steps_at_last_reward, ep_t, episode_ave_max_q, episode_over ) def _double_dqn_op(self): q_local_action = tf.cast(tf.argmax( self.local_network.output_layer, axis=1), tf.int32) q_target_max = utils.ops.slice_2d( self.target_network.output_layer, tf.range(0, self.batch_size), q_local_action, ) self.one_step_reward = tf.placeholder(tf.float32, self.batch_size, name='one_step_reward') self.is_terminal = tf.placeholder(tf.bool, self.batch_size, name='is_terminal') self.y_target = self.one_step_reward + self.cts_eta*self.gamma*q_target_max \ * (1 - tf.cast(self.is_terminal, tf.float32)) self.double_dqn_loss = self.local_network._value_function_loss( self.local_network.q_selected_action - tf.stop_gradient(self.y_target)) self.double_dqn_grads = tf.gradients(self.double_dqn_loss, self.local_network.params) # def batch_update(self): # if len(self.replay_memory) < self.replay_memory.maxlen//10: # return # s_i, a_i, r_i, s_f, is_terminal = self.replay_memory.sample_batch(self.batch_size) # feed_dict={ # self.one_step_reward: r_i, # self.target_network.input_ph: s_f, # self.local_network.input_ph: np.vstack([s_i, s_f]), # self.local_network.selected_action_ph: np.vstack([a_i, a_i]), # self.is_terminal: is_terminal # } # grads = self.session.run(self.double_dqn_grads, feed_dict=feed_dict) # self.apply_gradients_to_shared_memory_vars(grads) def batch_update(self): if len(self.replay_memory) < self.replay_memory.maxlen//10: return s_i, a_i, r_i, s_f, is_terminal = self.replay_memory.sample_batch(self.batch_size) feed_dict={ self.local_network.input_ph: s_f, self.target_network.input_ph: s_f, self.is_terminal: is_terminal, self.one_step_reward: r_i, } y_target = self.session.run(self.y_target, feed_dict=feed_dict) feed_dict={ self.local_network.input_ph: s_i, self.local_network.target_ph: y_target, self.local_network.selected_action_ph: a_i } grads = self.session.run(self.local_network.get_gradients, feed_dict=feed_dict) self.apply_gradients_to_shared_memory_vars(grads) def train(self): """ Main actor learner loop for n-step Q learning. """ logger.debug("Actor {} resuming at Step {}, {}".format(self.actor_id, self.global_step.value(), time.ctime())) s = self.emulator.get_initial_state() s_batch = list() a_batch = list() y_batch = list() bonuses = deque(maxlen=1000) episode_over = False t0 = time.time() global_steps_at_last_record = self.global_step.value() while (self.global_step.value() < self.max_global_steps): # # Sync local learning net with shared mem # self.sync_net_with_shared_memory(self.local_network, self.learning_vars) # self.save_vars() rewards = list() states = list() actions = list() max_q_values = list() local_step_start = self.local_step total_episode_reward = 0 total_augmented_reward = 0 episode_ave_max_q = 0 ep_t = 0 while not episode_over: # Sync local learning net with shared mem self.sync_net_with_shared_memory(self.local_network, self.learning_vars) self.save_vars() # Choose next action and execute it a, q_values = self.choose_next_action(s) new_s, reward, episode_over = self.emulator.next(a) total_episode_reward += reward max_q = np.max(q_values) current_frame = new_s[...,-1] bonus = self.density_model.update(current_frame) bonuses.append(bonus) # Rescale or clip immediate reward reward = self.rescale_reward(self.rescale_reward(reward) + bonus) total_augmented_reward += reward ep_t += 1 rewards.append(reward) states.append(s) actions.append(a) max_q_values.append(max_q) s = new_s self.local_step += 1 episode_ave_max_q += max_q global_step, _ = self.global_step.increment() if global_step % self.q_target_update_steps == 0: self.update_target() if global_step % self.density_model_update_steps == 0: self.write_density_model() # Sync local tensorflow target network params with shared target network params if self.target_update_flags.updated[self.actor_id] == 1: self.sync_net_with_shared_memory(self.target_network, self.target_vars) self.target_update_flags.updated[self.actor_id] = 0 if self.density_model_update_flags.updated[self.actor_id] == 1: self.read_density_model() self.density_model_update_flags.updated[self.actor_id] = 0 if self.local_step % self.q_update_interval == 0: self.batch_update() if self.is_master() and (self.local_step % 500 == 0): bonus_array = np.array(bonuses) steps = global_step - global_steps_at_last_record global_steps_at_last_record = global_step logger.debug('Mean Bonus={:.4f} / Max Bonus={:.4f} / STEPS/s={}'.format( bonus_array.mean(), bonus_array.max(), steps/float(time.time()-t0))) t0 = time.time() else: #compute monte carlo return mc_returns = np.zeros((len(rewards),), dtype=np.float32) running_total = 0.0 for i, r in enumerate(reversed(rewards)): running_total = r + self.gamma*running_total mc_returns[len(rewards)-i-1] = running_total mixed_returns = self.cts_eta*np.asarray(rewards) + (1-self.cts_eta)*mc_returns #update replay memory states.append(new_s) episode_length = len(rewards) for i in range(episode_length): self.replay_memory.append( states[i], actions[i], mixed_returns[i], i+1 == episode_length) s, total_episode_reward, _, ep_t, episode_ave_max_q, episode_over = \ self.prepare_state(s, total_episode_reward, self.local_step, ep_t, episode_ave_max_q, episode_over, bonuses, total_augmented_reward)
StarcoderdataPython
3276679
import re from django.contrib.postgres.aggregates import StringAgg from django.forms import CheckboxSelectMultiple from django.urls import reverse_lazy from additional_codes import models from common.filters import ActiveStateMixin from common.filters import LazyMultipleChoiceFilter from common.filters import StartYearMixin from common.filters import TamatoFilter from common.filters import TamatoFilterBackend from common.filters import TamatoFilterMixin from common.filters import type_choices COMBINED_ADDITIONAL_CODE_AND_TYPE_ID = re.compile( r"(?P<type__sid>[A-Z0-9])(?P<code>[A-Z0-9]{3})", ) class AdditionalCodeFilterMixin(TamatoFilterMixin): """ Filter mixin to allow custom filtering on type__sid, sid, code and description. Also provides a regex to split combined type__sid and code. e.g. "8001" -> "8", "001" """ search_fields = ( StringAgg("type__sid", delimiter=" "), "code", "sid", StringAgg("descriptions__description", delimiter=" "), ) # XXX order is significant search_regex = COMBINED_ADDITIONAL_CODE_AND_TYPE_ID class AdditionalCodeFilterBackend(TamatoFilterBackend, AdditionalCodeFilterMixin): pass class AdditionalCodeFilter( TamatoFilter, AdditionalCodeFilterMixin, StartYearMixin, ActiveStateMixin, ): """ FilterSet for Additional Codes. Provides multiple choice widgets for Type SIDs, the start year of the additional code as well as filters for the code and SID """ additional_code_type = LazyMultipleChoiceFilter( choices=type_choices(models.AdditionalCodeType.objects.latest_approved()), widget=CheckboxSelectMultiple, field_name="type__sid", label="Additional Code Type", help_text="Select all that apply", required=False, ) clear_url = reverse_lazy("additional_code-ui-list") class Meta: model = models.AdditionalCode # Defines the order shown in the form. fields = ["search", "additional_code_type", "start_year", "active_state"]
StarcoderdataPython
237083
<gh_stars>1-10 import random class RandomList(list): def get_random_element(self): """ Returns and removes a random element from the list """ element_to_remove = random.choice(self) self.remove(element_to_remove) return element_to_remove ll = RandomList([1, 2, 3, 4, 5, 6, 7]) print(ll) print(ll.get_random_element()) print(ll)
StarcoderdataPython
6607767
#!/usr/bin/env python3 import sys from testrunner import run def testfunc(child): child.sendline("ifconfig") child.expect(r"Iface\s+(\d+)\s+HWaddr:") if __name__ == "__main__": sys.exit(run(testfunc, timeout=1, echo=False))
StarcoderdataPython
8106648
<reponame>ashimgiyanani/ProjectTemplate_python<filename>src/s_MetMast_Gill_plots.py # -*- coding: utf-8 -*- """ Created on Wed Sep 16 15:11:00 2020 @author: papalk """ import sys import datetime as dt import matplotlib.pyplot as plt import matplotlib.pylab as pylab from matplotlib.dates import DateFormatter from matplotlib.ticker import StrMethodFormatter import pandas as pd import numpy as np import xarray as xr from mpl_toolkits.mplot3d import Axes3D plt.style.use('seaborn-whitegrid') SMALL_SIZE = 17 MEDIUM_SIZE = 22 BIGGER_SIZE = 22 plt.rc('font', size=SMALL_SIZE,weight = 'bold') # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=BIGGER_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rc('figure', figsize = (8, 8)) def addtimedecimal(l): for i,x in enumerate(l): if '.' not in x: l[i] = x+'.00' else: l[i] = x return(l) #%% Import data gill # Set path path = r'Z:\Projekte\109797-TestfeldBHV\30_Technical_execution_Confidential\TP3\AP2_Aufbau_Infrastruktur\Infrastruktur_Windmessung\02_Equipment\01_Wartung Messmast GE-NET_DWG_20190226\Maintenance\MetMast Upgrade\Data\ASCII' # Select device device = 'gill' # Select start and end date dt_start ='2021-01-29 00:00:00' # Select start date in the form yyyy-mm-dd_HH-MM-SS dt_end = dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S') + dt.timedelta(days=10)# Select end date in the form yyyy-mm-dd_HH-MM-SS dt_end = dt_end.strftime('%Y-%m-%d %H:%M:%S') #import sys # insert at 1, 0 is the script path (or '' in REPL) #sys.path.insert(0, r'C:\Users\papalk\Desktop\04_Python\Testfeld') # import data from f_import_gill_thies_data import f_import_gill_thies_data df = f_import_gill_thies_data(path,device,dt_start,dt_end) #Correct time lag df.index = [date+dt.timedelta(seconds=0) for date in df.index] # Logger time unit: UTC+0 after 14/01/2021 11:00, if before seconds=-7200 #%% # Resample files gill dfr = df.resample('1H').mean() # Resample in hourly averages mean(skipna = True) dfs = df.resample('1H').count()/72000*100 # Resample and count in hourly averages df10 = df.resample('600S').mean() # Resample in 10 min averages mean(skipna = True) df10s = df.resample('600S').count()/12000*100 # Resample and count in 10min averages #%% Calculate Vhor & Dir #55m Vhor55 = np.sqrt(df.gill_55_u**2+df.gill_55_v**2).resample('600S').mean() Vhor55_std = np.sqrt(df.gill_55_u**2+df.gill_55_v**2).resample('600S').std() Dir55 = np.mod(90-np.mod(np.arctan2(df.gill_55_v,df.gill_55_u)*180/np.pi,360).resample('600S').mean()+30.5,360) Dir55_std = np.mod(90-np.mod(np.arctan2(df.gill_55_v,df.gill_55_u)*180/np.pi,360).resample('600S').std()+30.5,360) #110m Vhor110 = np.sqrt(df.gill_115_u**2+df.gill_115_v**2).resample('600S').mean() Vhor110_std = np.sqrt(df.gill_115_u**2+df.gill_115_v**2).resample('600S').std() Dir110 = np.mod(90-np.mod(np.arctan2(df.gill_115_v,df.gill_115_u)*180/np.pi,360).resample('600S').mean()+30.6,360) Dir110_std = np.mod(90-np.mod(np.arctan2(df.gill_115_v,df.gill_115_u)*180/np.pi,360).resample('600S').std()+30.6,360) #%% Plots # # raw gill # for i in [1,3,4,5,7,8,11,12,13,15,16]: # # date-ws_free_avg # fig = plt.figure(figsize = (20, 8)) # ax = fig.add_subplot(111) # # ax.plot(df.ix[df['LOS index']==LOS,i],'.',label = 'Valid data'); # ax.plot(df.TIMESTAMP[(df.gill_55_SpeedOfSound >100)&(df.gill_115_SpeedOfSound>100)],df.ix[(df.gill_55_SpeedOfSound >100)&(df.gill_115_SpeedOfSound>100),i],'.'); # ax.set_xlabel('time ',labelpad=40,weight= 'bold') # ax.set_ylabel(df.columns[i],labelpad=40,weight= 'bold') # date_form = DateFormatter("%H:%M:%S") # ax.xaxis.set_major_formatter(date_form) # legend = ax.legend(frameon = 1) # frame = legend.get_frame() # frame.set_color('white') # plt.savefig(r'Z:\Projekte\109797-TestfeldBHV\30_Technical_execution_Confidential\TP3\AP2_Aufbau_Infrastruktur\Infrastruktur_Windmessung\02_Equipment\01_Wartung Messmast GE-NET_DWG_20190226\MetMast Upgrade\Data\plots\TS' + path[-20:-4]+'_'+df.columns[i]+'.png',bbox_inches='tight') # # Hourly status # for i in np.arange(len(dfr.columns)): # # date-ws_free_avg # fig = plt.figure(figsize = (20, 8)) # ax = fig.add_subplot(111) # ax.plot(dfr.index[(dfr.gill_55_SpeedOfSound >100)&(dfr.gill_115_SpeedOfSound>100)],dfr.ix[(dfr.gill_55_SpeedOfSound >100)&(dfr.gill_115_SpeedOfSound>100),i],'.'); # ax.set_xlabel('time ',labelpad=40,weight= 'bold') # ax.set_ylabel(dfr.columns[i],labelpad=40,weight= 'bold') # date_form = DateFormatter("%H:%M:%S") # ax.xaxis.set_major_formatter(date_form) # legend = ax.legend(frameon = 1) # frame = legend.get_frame() # frame.set_color('white') # plt.savefig(r'Z:\Projekte\109797-TestfeldBHV\30_Technical_execution_Confidential\TP3\AP2_Aufbau_Infrastruktur\Infrastruktur_Windmessung\02_Equipment\01_Wartung Messmast GE-NET_DWG_20190226\MetMast Upgrade\Data\plots\TS_1H_2020-09-06_'+df.columns[i]+'.png',bbox_inches='tight') #%% QM plots fig,ax = plt.subplots(5,1, figsize = (10, 15),sharex=True) ax[0].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_115_u'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[0].set_xlabel('date',labelpad=40,weight= 'bold') ax[0].set_ylabel("u [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[0].xaxis.set_major_formatter(date_form) ax[0].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[0].set_ylim([-25,25]) ax[1].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_115_v'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[1].set_xlabel('date',labelpad=40,weight= 'bold') ax[1].set_ylabel("v [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[1].xaxis.set_major_formatter(date_form) ax[1].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[1].set_ylim([-25,25]) ax[2].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_115_w'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[2].set_xlabel('date',labelpad=40,weight= 'bold') ax[2].set_ylabel("w [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[2].xaxis.set_major_formatter(date_form) ax[2].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[2].set_ylim([-5,5]) ax[3].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_115_SonicTempC'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[3].set_xlabel('date',labelpad=40,weight= 'bold') ax[3].set_ylabel("Temp [$^o$C]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[3].xaxis.set_major_formatter(date_form) ax[3].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[3].set_ylim([-10,30]) ax[4].plot(df10s.index[(df10s.index>dt_start)&(df10s.index<dt_end)],df10s['RECORD'][(df10s.index>dt_start)&(df10s.index<dt_end)].values,'.',color = 'limegreen'); ax[4].plot(df10s.index[(df10s.index>dt_start)&(df10s.index<dt_end)&(df10s['RECORD']<100)],df10s['RECORD'][(df10s.index>dt_start)&(df10s.index<dt_end)&(df10s['RECORD']<100)].values,'.',color = 'red'); ax[4].set_xlabel('date',labelpad=40,weight= 'bold') ax[4].set_ylabel("Availability [%]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[4].xaxis.set_major_formatter(date_form) ax[4].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[4].set_ylim([0,100]) plt.savefig(r'Z:\Projekte\109797-TestfeldBHV\30_Technical_execution_Confidential\TP3\AP2_Aufbau_Infrastruktur\Infrastruktur_Windmessung\02_Equipment\01_Wartung Messmast GE-NET_DWG_20190226\Maintenance\MetMast Upgrade\Data\\'+dt_start[0:10]+'_'+dt_end[0:10]+'_115_gill.png', bbox_inches='tight',dpi = 100) # QM plots fig,ax = plt.subplots(5,1, figsize = (10, 15),sharex=True) ax[0].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_55_u'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[0].set_xlabel('date',labelpad=40,weight= 'bold') ax[0].set_ylabel("u [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[0].xaxis.set_major_formatter(date_form) ax[0].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[0].set_ylim([-25,25]) ax[1].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_55_v'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[1].set_xlabel('date',labelpad=40,weight= 'bold') ax[1].set_ylabel("v [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[1].xaxis.set_major_formatter(date_form) ax[1].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[1].set_ylim([-25,25]) ax[2].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_55_w'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[2].set_xlabel('date',labelpad=40,weight= 'bold') ax[2].set_ylabel("w [m/s]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[2].xaxis.set_major_formatter(date_form) ax[2].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[2].set_ylim([-5,5]) ax[3].plot(df10.index[(df10.index>dt_start)&(df10.index<dt_end)],df10['gill_55_SonicTempC'][(df10.index>dt_start)&(df10.index<dt_end)].values,'.'); ax[3].set_xlabel('date',labelpad=40,weight= 'bold') ax[3].set_ylabel("Temp [$^o$C]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[3].xaxis.set_major_formatter(date_form) ax[3].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[3].set_ylim([-10,30]) ax[4].plot(df10s.index[(df10s.index>dt_start)&(df10s.index<dt_end)],df10s['RECORD'][(df10s.index>dt_start)&(df10s.index<dt_end)].values,'.',color = 'limegreen'); ax[4].plot(df10s.index[(df10s.index>dt_start)&(df10s.index<dt_end)&(df10s['RECORD']<100)],df10s['RECORD'][(df10s.index>dt_start)&(df10s.index<dt_end)&(df10s['RECORD']<100)].values,'.',color = 'red'); ax[4].set_xlabel('date',labelpad=40,weight= 'bold') ax[4].set_ylabel("Availability [%]",labelpad=40,weight= 'bold') date_form = DateFormatter("%d/%m") ax[4].xaxis.set_major_formatter(date_form) ax[4].set_xlim([ dt.datetime.strptime(dt_start, '%Y-%m-%d %H:%M:%S'), dt.datetime.strptime(dt_end, '%Y-%m-%d %H:%M:%S')]) ax[4].set_ylim([0,100]) plt.savefig(r'Z:\Projekte\109797-TestfeldBHV\30_Technical_execution_Confidential\TP3\AP2_Aufbau_Infrastruktur\Infrastruktur_Windmessung\02_Equipment\01_Wartung Messmast GE-NET_DWG_20190226\Maintenance\MetMast Upgrade\Data\\'+dt_start[0:10]+'_'+dt_end[0:10]+'_55_gill.png', bbox_inches='tight',dpi = 100) #%% Compare MM # from class_mm import C_MMprocess # start = C_MMprocess(r'E:\113166_Testfeld\01_Instruments\03_MetMast\OneDAS_2021-01-04T00-00_600_s_063b14a8.zip','600S') # data_mm = start.loadzip() # # plot Vhor # fig = plt.figure(figsize = (20, 8)) # plt.plot(Vhor110,label = 'USA3D Gill 110m') # plt.plot(Vhor55,label = 'USA3D Gill 55m') # plt.plot(Vhor,label = 'USA3D Thies 25m') # plt.plot(data_mm.M0000_V1,label = 'Cup Thies 115m') # plt.plot(data_mm.M0030_V4,label = 'Cup Thies 55m') # plt.plot(data_mm.M0040_V5,label = 'Cup Thies 25m') # plt.ylim(0,20) # plt.xlabel('date',labelpad=10,weight= 'bold') # plt.ylabel('$V_{hor}$ [m/s]',labelpad=10,weight= 'bold') # plt.legend() # # plot Dir # fig = plt.figure(figsize = (20, 8)) # plt.plot(Dir110,label = 'USA3D Gill 110m') # plt.plot(Dir55,label = 'USA3D Gill 55m') # plt.plot(Dir,label = 'USA3D Thies 25m') # plt.plot(data_mm.M0070_D1,label = 'Vane Thies 110m') # plt.plot(data_mm.M0100_D4,label = 'Vane Thies 23.5m') # plt.ylim(0,360) # plt.xlabel('date',labelpad=10,weight= 'bold') # plt.ylabel('$V_{hor}$ [m/s]',labelpad=10,weight= 'bold') # plt.legend() # # # date-ws_free_avg # # fig = plt.figure(figsize = (20, 8)) # # ax = fig.add_subplot(111) # # ax.plot(df10.index[(df10.gill_55_SpeedOfSound >100)&(df10.gill_115_SpeedOfSound>100)],df10.ix[(df10.gill_55_SpeedOfSound >100)&(df10.gill_115_SpeedOfSound>100),1],'.',label = 'Gill110'); # # ax.plot(data_mm.index,data_mm.M0000_V1, '.',label = 'Cup115'); # # ax.set_xlabel('time ',labelpad=40,weight= 'bold') # # ax.set_ylabel(["m/s"],labelpad=40,weight= 'bold') # # date_form = DateFormatter("%H:%M:%S") # # ax.xaxis.set_major_formatter(date_form) # # legend = ax.legend(frameon = 1) # # frame = legend.get_frame() # # frame.set_color('white')
StarcoderdataPython
6536988
<filename>misc/explore.py import json import os import subprocess import pathlib import numpy as np import pandas as pd import matplotlib.pyplot as plt import itertools simulator_path = "/home/jm1417/Simulator/cmake-build-release/bin/simulator" config_path = "/home/jm1417/Simulator/examples/multiplex/config.json" program_path = "/home/jm1417/Simulator/examples/scamp5/motion.txt" output_path = str(pathlib.Path(__file__).parent.absolute()) original_config = None results = [] def read_json(file): with open(file, 'r') as f: data = json.load(f) return data def read_config_file(): data = read_json(config_path) global original_config original_config = data return data def write_config_file(config): with open(config_path, 'w') as f: json.dump(config, f, indent=4) def execute(config): write_config_file(config) process = subprocess.Popen([simulator_path, config_path, program_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() def mutate(config): row_strides = [8, 16, 64, 256] col_strides = [8, 16, 64, 256] rows = [64, 128, 256] cols = [64, 128, 256] clock_rates = [10000000] array_rows = [256, 350, 500] array_cols = [8, 16, 32] possibilities = list(itertools.product(row_strides,col_strides,rows, cols, clock_rates, array_rows, array_cols)) print("Combinations:", len(possibilities)) count = 0 for row_stride, col_stride, rows, cols, clock_rate, array_row, array_col in possibilities: if (row_stride > rows or col_stride > cols): continue config['SCAMP5M']['rows'] = rows config['SCAMP5M']['cols'] = cols config['SCAMP5M']['row_stride'] = row_stride config['SCAMP5M']['col_stride'] = col_stride config['SCAMP5M']['config']['clock_rate'] = clock_rate config['SCAMP5M']['components'][1]['array_rows'] = array_row config['SCAMP5M']['components'][1]['array_cols'] = array_col config['output_filename'] = str(count) print("Executing with row_stride=", row_stride, "col_stride=", col_stride, "rows=", rows, "cols=", cols, "clock=", clock_rate) execute(config) try: res = read_json(output_path + "/" + str(count) + ".json") results.append((res["Cycle count"], res["Architecture total power"])) except: print("Could not add") count+=1 # execute the simulator with a new config def run(): config = read_config_file() mutate(config) write_config_file(original_config) for r in results: print(r) def is_outlier(points, thresh=6): """ Returns a boolean array with True if points are outliers and False otherwise. Parameters: ----------- points : An numobservations by numdimensions array of observations thresh : The modified z-score to use as a threshold. Observations with a modified z-score (based on the median absolute deviation) greater than this value will be classified as outliers. Returns: -------- mask : A numobservations-length boolean array. References: ---------- <NAME> and <NAME> (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, <NAME>, Ph.D., Editor. """ if len(points.shape) == 1: points = points[:,None] median = np.median(points, axis=0) diff = np.sum((points - median)**2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh ''' Method to take two equally-sized lists and return just the elements which lie on the Pareto frontier, sorted into order. Default behaviour is to find the maximum for both X and Y, but the option is available to specify maxX = False or maxY = False to find the minimum for either or both of the parameters. ''' def pareto_frontier(Xs, Ys, maxX = True, maxY = True): # Sort the list in either ascending or descending order of X myList = sorted([[Xs[i], Ys[i]] for i in range(len(Xs))], reverse=maxX) # Start the Pareto frontier with the first value in the sorted list p_front = [myList[0]] # Loop through the sorted list for pair in myList[1:]: if maxY: if pair[1] >= p_front[-1][1]: # Look for higher values of Y… p_front.append(pair) # … and add them to the Pareto frontier else: if pair[1] <= p_front[-1][1]: # Look for lower values of Y… p_front.append(pair) # … and add them to the Pareto frontier # Turn resulting pairs back into a list of Xs and Ys p_frontX = [pair[0] for pair in p_front] p_frontY = [pair[1] for pair in p_front] return p_frontX, p_frontY def plot_results(): res = np.array(results) cycles = res[:, 0] powers = res[:, 1] pareto_front = pareto_frontier(powers, cycles, False, False) plt.scatter(powers, cycles) plt.plot(pareto_front[0], pareto_front[1], color='r') plt.xlim(0, 0.5) plt.ylim(0, 0.4e7) plt.xlabel('Total Power (W)') plt.ylabel('Total Cycles') plt.savefig("pareto.png") plt.show() run() plot_results()
StarcoderdataPython
5065592
<gh_stars>0 import unittest from pygraph.prim import min_span_tree import pygraph class TestPrimMST(unittest.TestCase): def test_fixed(self): g = pygraph.Graph() # --- vertices g.AddVertex('a') g.AddVertex('b') g.AddVertex('c') g.AddVertex('d') g.AddVertex('e') g.AddVertex('f') g.AddVertex('g') # --- edges g.AddEdge('a', 'b', 1) g.AddEdge('a', 'c', 8) g.AddEdge('a', 'e', 2) g.AddEdge('b', 'd', 6) g.AddEdge('c', 'd', 4) g.AddEdge('c', 'e', 3) g.AddEdge('d', 'f', 5) g.AddEdge('e', 'f', 9) g.AddEdge('e', 'g', 7) expected_g = pygraph.Graph() # --- vertices expected_g.AddVertex('a') expected_g.AddVertex('b') expected_g.AddVertex('c') expected_g.AddVertex('d') expected_g.AddVertex('e') expected_g.AddVertex('f') expected_g.AddVertex('g') # --- edges expected_g.AddEdge('a', 'b', 1) expected_g.AddEdge('a', 'e', 2) expected_g.AddEdge('c', 'e', 3) expected_g.AddEdge('c', 'd', 4) expected_g.AddEdge('d', 'f', 5) expected_g.AddEdge('e', 'g', 7) mst_prim = min_span_tree(g) mst_kruskal = pygraph.min_span_tree(g) #print(mst) self.assertEqual(expected_g, mst_prim) self.assertEqual(mst_kruskal, mst_prim) return def test_fixed_2(self): g = pygraph.Graph() # --- vertices g.AddVertex('a') g.AddVertex('b') g.AddVertex('c') g.AddVertex('d') g.AddVertex('e') g.AddVertex('f') g.AddVertex('g') # --- edges g.AddEdge('a', 'b', 12) g.AddEdge('a', 'c', 8) g.AddEdge('a', 'd', 13) g.AddEdge('b', 'c', 21) g.AddEdge('b', 'e', 32) g.AddEdge('b', 'f', 7) g.AddEdge('c', 'f', 2) g.AddEdge('d', 'g', 9) g_expected = pygraph.Graph() # --- vertices g_expected.AddVertex('a') g_expected.AddVertex('b') g_expected.AddVertex('c') g_expected.AddVertex('d') g_expected.AddVertex('e') g_expected.AddVertex('f') g_expected.AddVertex('g') # --- edges g_expected.AddEdge('a', 'c', 8) g_expected.AddEdge('a', 'd', 13) g_expected.AddEdge('b', 'e', 32) g_expected.AddEdge('b', 'f', 7) g_expected.AddEdge('c', 'f', 2) g_expected.AddEdge('d', 'g', 9) mst_prim = min_span_tree(g) mst_kruskal = pygraph.min_span_tree(g) self.assertEqual(mst_prim, g_expected) self.assertEqual(mst_prim, mst_kruskal) return def test_auto_gen(self): g = pygraph.gen_graph(4096) mst_kruskal = pygraph.min_span_tree(g) mst_prim = min_span_tree(g) self.assertEqual(len(g.vertices), len(mst_kruskal.vertices)) self.assertEqual(len(mst_kruskal.vertices) - 1, len(mst_kruskal.edges)) self.assertEqual(len(g.vertices), len(mst_prim.vertices)) self.assertEqual(len(mst_prim.vertices) - 1, len(mst_prim.edges)) prim_sum = 0 for v in mst_prim.vertices.values(): for e in v.edges.values(): prim_sum += e.weight pass kruskal_sum = 0 for v in mst_kruskal.vertices.values(): for e in v.edges.values(): kruskal_sum += e.weight pass # The graph might be slighly different with edges have the same weight, # but the sum of weight must be the same. self.assertEqual(kruskal_sum, prim_sum) return pass
StarcoderdataPython
178275
"""Definitions for the base Cranelift language."""
StarcoderdataPython
6479257
"""Module used to build consistent UI for Colorium's tools using maya.cmds.""" import maya.cmds as cmds import colorium.data_binding as data_binding class CUI(object): """Base class for a Colorium UI.""" @property def name(self): """The name of the UI.""" return self._name @name.setter def name(self, value): self._name = value @property def controller(self): """The controller associated with the UI.""" return self._controller @controller.setter def controller(self, value): self._controller = value @property def main_window(self): """The name of the UI's main window.""" return self._main_window @main_window.setter def main_window(self, value): self._main_window = value @property def main_frame(self): """The name of the UI's main frame.""" return self._main_frame @main_frame.setter def main_frame(self, value): self._main_frame = value @property def main_layout(self): """The name of the UI's main layout.""" return self._main_layout @main_layout.setter def main_layout(self, value): self._main_layout = value def __init__(self, name, controller): self._controls = [] self._name = name self._controller = None self._main_window = '' self._main_frame = '' self._main_layout = '' if not self._controller or self._controller != controller: self._controller = controller self._controller.ui = self self.display_ui(self._controller.display_ui_callback) def display_ui(self, callback): """ Displays the tool's UI. """ self.build_main_window() self.build_main_layout() self.build_ui() for control in self._controls: control.build_ui() callback() def build_ui(self): """ Builds the tool's UI. """ pass def add_control(self, control): """Adds a control to the UI's controls.""" if control not in self._controls: self._controls.append(control) def remove_control(self, control): """Removes a control from the UI's controls.""" if control in self._controls: self._controls.remove(control) def get_control_by_name(self, name): """Returns a control from the UI's controls by it's name.""" for control in self._controls: if control.name == name: return control def build_main_window(self): """Builds the main window.""" self._main_window = self.build_window("win_main", self._name) def build_window(self, name="untitled", title="untitled"): """Helper function that builds a window using maya.cmds.""" window_exists = cmds.window(name, q=True, ex=True) if window_exists: cmds.deleteUI(name, window=True) window = cmds.window(name, t=title, rtf=True, tlb=True) cmds.showWindow(window) return window def build_main_layout(self): """Builds the main layout.""" self._main_frame = cmds.frameLayout("frm_main", p=self._main_window, lv=False, mh=5, mw=5) self._main_layout = cmds.columnLayout("lay_main", p=self._main_frame, adj=True) class CController(object): """Base class for a Colorium UI Controller.""" @property def ui(self): """The UI associated with the controller.""" return self._ui @ui.setter def ui(self, value): self._ui = value def __init__(self): self._ui = None def display_ui_callback(self): """Called at the end of the method Display of the associated UI instance. Used for post-display operations.""" pass class CToggleable(): """\"Interface\" used to define toggleable controls.""" def toggle(self, value): """Method used to enable/disable the control.""" pass class CUIElement(object): """Base class for a Colorium UI Element.""" @property def name(self): """The name of the CUIElement.""" return self._name @name.setter def name(self, value): self._name = value @property def title(self): """The title of the CUIElement.""" return self._title @title.setter def title(self, value): self._title = value @property def parent(self): """The name of the CUIElement's parent.""" return self._parent @parent.setter def parent(self, value): self._parent = value def __init__(self, name, title, parent): self._name = name self._title = title self._parent = parent class CLayout(CUIElement): """Base class for a Colorium UI Layout.""" def __init__(self, name, title, parent, childrens=None): super(CLayout, self).__init__(name, title, parent) self._childrens = childrens if childrens else [] def add_children(self, children): """Add a given children to the CLayout's childrens.""" if children not in self._childrens: self._childrens.append(children) def remove_children(self, children): """Remove a given children from the CLayout's childrens.""" if children in self._childrens: self._childrens.remove(children) class CControl(CUIElement, data_binding.CBindable): """Base class for a Colorium UI Control.""" def __init__(self, name, title, parent): super(CControl, self).__init__(name, title, parent) data_binding.CBindable.__init__(self) def build_ui(self): """Method used to build the control's UI.""" pass class CInlineLayout(CLayout): """Class representing an Inline Layout. It's childrens are placed side by side, aligned on the left or on the right.""" def __init__(self, name, title, parent, childrens=None, align="left"): super(CInlineLayout, self).__init__(name, title, parent) self._childrens = childrens if childrens else [] self._align = align def build_ui(self): """Method used to build the control's UI.""" align_offset = 0 align_adjustement_column = len(self._childrens) + 1 if self._align == "right": align_offset = 1 align_adjustement_column = 1 column_attachments = [] for children in range(1 + align_offset, len(self._childrens) + 1 + align_offset): if children == 1 + align_offset: column_attachments.append((children, "right", 2.5)) elif children == len(self._childrens) + align_offset: column_attachments.append((children, "left", 2.5)) else: column_attachments.append((children, "both", 2.5)) layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=len(self._childrens) + 1, cat=column_attachments, adj=align_adjustement_column) if self._align == "right": cmds.separator("sep_{}".format(self._name), vis=False) if self._childrens: for children in self._childrens: children.parent = layout children.build_ui() if self._align == "left": cmds.separator("sep_{}".format(self._name), vis=False) class CTextInput(CControl, CToggleable): """Class that represents a Text Input. Used to write text.""" @property def text(self): """The text written in the Text Input.""" return self.__text @text.setter def text(self, value): self.__text = value cmds.textField("txt_{}".format(self._name), e=True, tx=value) self.notify_property_changed("text", value) print('\'text\' property of CTextInput set to \'{}\'').format(value) @property def enabled(self): """The state of the Text Input.""" return self.__enabled @enabled.setter def enabled(self, value): self.__enabled = value cmds.checkBox("chk_{}".format(self._name), e=True, v=value) cmds.control("txt_{}".format(self._name), e=True, en=value) self.notify_property_changed("enabled", value) print('\'enabled\' property of CTextInput set to \'{}\'').format(value) def __init__(self, name, title, parent, enabled=True, changed_command=None, toggle_command=None, toggleable=False, default_value=""): super(CTextInput, self).__init__(name, title, parent) self.__text = default_value self.__enabled = enabled self.__toggleable = toggleable self.__changed_command = changed_command if changed_command else lambda value: NotImplemented self.__toggle_command = toggle_command if toggle_command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=3, cat=[(2, "right", 5)], cw=[(1, 25), (2, 100)], adj=3) if self.__toggleable: cmds.checkBox("chk_{}".format(self._name), p=layout, l="", v=self.__enabled, cc=self.toggle) else: cmds.separator("sep_{}".format(self._name), vis=False) cmds.text("lbl_{}".format(self._name), p=layout, l=self._title, al="right") cmds.textField("txt_{}".format(self._name), p=layout, tx=self.__text, en=self.__enabled, cc=self.text_changed) def text_changed(self, value): """Method called when the Text Input's text changed.""" self.__changed_command(value) self.text = value def toggle(self, value): """Method called when the Text Input's state changed.""" self.__toggle_command(value) self.enabled = value cmds.control("txt_{}".format(self._name), e=True, en=value) class CIntInput(CControl, CToggleable): """Class that represents a Int Input. Used to write numbers.""" @property def value(self): """The number written in the Int Input.""" return self.__value @value.setter def value(self, value): self.__value = value cmds.intSliderGrp("int_{}".format(self._name), e=True, v=value) self.notify_property_changed("value", value) print('\'value\' property of CIntInput set to \'{}\'').format(value) @property def enabled(self): """The state of the Int Input.""" return self.__enabled @enabled.setter def enabled(self, value): self.__enabled = value cmds.checkBox("chk_{}".format(self._name), e=True, v=value) cmds.control("int_{}".format(self._name), e=True, en=value) self.notify_property_changed("enabled", value) print('\'enabled\' property of CIntInput set to \'{}\'').format(value) def __init__(self, name, title, parent, enabled=True, min_value=1, max_value=10, changed_command=None, toggle_command=None, toggleable=False, default_value=1): super(CIntInput, self).__init__(name, title, parent) self.__value = default_value self.__enabled = enabled self.__toggleable = toggleable self.__min = min_value self.__max = max_value self.__changed_command = changed_command if changed_command else lambda value: NotImplemented self.__toggle_command = toggle_command if toggle_command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=3, cat=[(2, "right", 5)], cw=[(1, 25), (2, 100)], adj=3) if self.__toggleable: cmds.checkBox("chk_{}".format(self._name), p=layout, l="", v=self.__enabled, cc=self.toggle) else: cmds.separator("sep_{}".format(self._name), vis=False) cmds.text("lbl_{}".format(self._name), p=layout, l=self._title, al="right") cmds.intSliderGrp("int_{}".format(self._name), p=layout, v=self.__value, f=True, min=self.__min, max=self.__max, en=self.__enabled, cc=self.value_changed) def value_changed(self, value): """Method called when the Int Input's value changed.""" self.__changed_command(value) self.value = value def toggle(self, value): """Method called when the Int Input's state changed.""" self.__toggle_command(value) self.enabled = value cmds.control("int_{}".format(self._name), e=True, en=value) class CComboInput(CControl, CToggleable): """Class that represents a Combo Input. Used to choose a value from a list of values.""" @property def value(self): """The chosen value of the Combo Input.""" return self.__value @value.setter def value(self, value): self.__value = value cmds.optionMenu("cmb_{}".format(self._name), e=True, v=value) self.notify_property_changed("value", value) print('\'value\' property of CComboInput set to \'{}\'').format(value) @property def enabled(self): """The state of the Combo Input.""" return self.__enabled @enabled.setter def enabled(self, value): self.__enabled = value cmds.checkBox("chk_{}".format(self._name), e=True, v=value) cmds.control("cmb_{}".format(self._name), e=True, en=value) self.notify_property_changed("enabled", value) print('\'enabled\' property of CComboInput set to \'{}\'').format(value) def __init__(self, name, title, parent, enabled=True, items=None, changed_command=None, toggle_command=None, toggleable=False, default_value=""): super(CComboInput, self).__init__(name, title, parent) self.__value = default_value self.__enabled = enabled self.__toggleable = toggleable self.__items = items if items else [] self.__changed_command = changed_command if changed_command else lambda value: NotImplemented self.__toggle_command = toggle_command if toggle_command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=3, cat=[(2, "right", 5)], cw=[(1, 25), (2, 100)], adj=3) if self.__toggleable: cmds.checkBox("chk_{}".format(self._name), p=layout, l="", v=self.__enabled, cc=self.toggle) else: cmds.separator("sep_{}".format(self._name), vis=False) cmds.text("lbl_{}".format(self._name), p=layout, l=self._title, al="right") cmds.optionMenu("cmb_{}".format(self._name), p=layout, en=self.__enabled, cc=self.value_changed) for item in self.__items: cmds.menuItem("itm_{}_{}".format(self._name, item), l=item) if self.__value in self.__items: cmds.optionMenu("cmb_{}".format(self._name), e=True, v=self.__value) def value_changed(self, value): """Method called when the Combo Input's value changed.""" self.__changed_command(value) self.value = value def toggle(self, value): """Method called when the Combo Input's state changed.""" self.__toggle_command(value) self.enabled = value cmds.control("cmb_{}".format(self._name), e=True, en=value) class CFilePathInput(CControl, CToggleable): """Class that represents a File Path Input. Used to write a file path and open it in the explorer.""" @property def text(self): """The file path written in the File Path Input.""" return self.__text @text.setter def text(self, value): self.__text = value cmds.textField("txt_{}".format(self._name), e=True, tx=value) self.notify_property_changed("text", value) print('\'text\' property of CFilePathInput set to \'{}\'').format(value) @property def enabled(self): """The state of the File Path Input.""" return self.__enabled @enabled.setter def enabled(self, value): self.__enabled = value cmds.checkBox("chk_{}".format(self._name), e=True, v=value) cmds.control("txt_{}".format(self._name), e=True, en=value) self.notify_property_changed("enabled", value) print('\'enabled\' property of CFilePathInput set to \'{}\'').format(value) def __init__(self, name, title, parent, enabled=True, changed_command=None, open_command=None, toggle_command=None, toggleable=False, default_value=""): super(CFilePathInput, self).__init__(name, title, parent) self.__text = default_value self.__enabled = enabled self.__toggleable = toggleable self.__changed_command = changed_command if changed_command else lambda value: NotImplemented self.__open_command = open_command if open_command else lambda value: NotImplemented self.__toggle_command = toggle_command if toggle_command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=4, cat=[(2, "right", 5), (4, "left", 5)], cw=[(1, 25), (2, 100), (4, 100)], adj=3) if self.__toggleable: cmds.checkBox("chk_{}".format(self._name), p=layout, l="", v=self.__enabled, cc=self.toggle) else: cmds.separator("sep_{}".format(self._name), vis=False) cmds.text("lbl_{}".format(self._name), p=layout, l=self._title, al="right") cmds.textField("txt_{}".format(self._name), p=layout, tx=self.__text, en=self.__enabled, cc=self.text_changed) cmds.button("btn_open_{}".format(self._name), p=layout, l="Open", w=60, c=self.__open_command) def text_changed(self, value): """Method called when the File Path Input's value changed.""" self.__changed_command(value) self.text = value def toggle(self, value): """Method called when the File Path Input's state changed.""" self.__toggle_command(value) self.enabled = value cmds.control("txt_{}".format(self._name), e=True, en=value) class CButtonControl(CControl): """Class that represents a Button Control. Used to execute a command.""" def __init__(self, name, title, parent, command=None): super(CButtonControl, self).__init__(name, title, parent) self._command = command if command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" cmds.button("btn_{}".format(self._name), l=self._title, p=self._parent, w=60, c=self._command) class CCheckControl(CControl): """Class that represents a Check Controle. Used to be turned on or off.""" @property def value(self): """The value of the Check Control.""" return self.__value @value.setter def value(self, value): self.__value = value cmds.checkBox("chk_{}".format(self._name), e=True, v=value) self.notify_property_changed("value", value) print('\'value\' property of CCheckControl set to \'{}\'').format(value) def __init__(self, name, title, parent, changed_command=None, default_value=False): super(CCheckControl, self).__init__(name, title, parent) self.__value = default_value self.__changed_command = changed_command if changed_command else lambda value: NotImplemented def build_ui(self): """Method used to build the control's UI.""" layout = cmds.rowLayout("lay_{}".format(self._name), p=self._parent, nc=3, cat=[(2, "right", 5)], cw=[(1, 25), (2, 100)], adj=3) cmds.separator("sep_{}".format(self._name), vis=False) cmds.text("lbl_{}".format(self._name), p=layout, l=self._title, al="right") cmds.checkBox("chk_{}".format(self._name), p=layout, l="", v=self.__value, cc=self.value_changed) def value_changed(self, value): """Method called when the Check Control's value changed.""" self.__changed_command(value) self.value = value
StarcoderdataPython
1726135
#!/usr/bin/env python import boto3 import datetime import dateutil.parser as dp import sys import argparse ec2 = boto3.resource('ec2') def image_deregister(imageid): try: image = ec2.Image(imageid) image_date = image.creation_date except: print "ImageId not found, or you do not have permission to deregister that ImageId" exit() try: block_list = image.block_device_mappings response = image.deregister() print "Image: " + image.image_id + " Deleted" for items in block_list: if items.has_key('Ebs'): snapshot = ec2.Snapshot(items['Ebs']['SnapshotId']) response = snapshot.delete() print "SnapshotID: " + items['Ebs']['SnapshotId'] + " Deleted" except: print "no EBS snapshots associated with imageid %s" % imageid print "Deregistered ImageID: %s" % imageid exit() def main(): parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", help="Filename containing the ImageIds", default="NONE") parser.add_argument("-t", "--time", default=1, help="Number of Days to keep, Images in Filename older than this will be deleted, default is to keep 1 day.", type=int) parser.add_argument("-i", "--imageid", help="Imageid, or list of ImageIds to delete", default="NONE") args = parser.parse_args() if (args.imageid == "NONE" and args.file == "NONE"): print "Filename or ImageId required, please see usage / help -h" exit() elif (args.imageid != "NONE"): image_deregister(args.imageid) exit() #need to do some time adjustment to get this in seconds since epoc #isoformat is needed because AWS uses iso formated datetimes today = datetime.datetime.now().isoformat() #Parse the datetime to get it to seconds since epoch. seconds_to_keep = args.time * 86400 today_parsed = dp.parse(today) today_seconds = today_parsed.strftime('%s') try: backup_log = open(args.file,"rw") except: print "Error: Unable to open file " + args.file exit() for line in backup_log.readlines(): if "ImageId" in line: tag, imageidraw = line.split(':') imageid = imageidraw[2:-2] image = ec2.Image(imageid) # I don't cleanup my backup_log files (mainly so I have historical reference) # Because of that I just skip the ImageId if it doesn't exist. try: image_date_parsed = dp.parse(image.creation_date) except: continue #skip if it doesn't exist. image_seconds = image_date_parsed.strftime('%s') if (int(today_seconds) - seconds_to_keep) > int(image_seconds): image_deregister(imageid) backup_log.close() if __name__ == "__main__": main()
StarcoderdataPython
283537
<gh_stars>1-10 #!/usr/bin/env python3 import warnings warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) from http.server import BaseHTTPRequestHandler, HTTPServer import socketserver import sys import dill sys.path.append('../') from SimulationEnviroment.SimulatorEnviroment import StreamingEnviroment import os import json import random os.environ['CUDA_VISIBLE_DEVICES']='' import argparse import numpy as np import itertools import datetime import logging ################## ROBUST MPC ################### S_INFO = 5 # bit_rate, buffer_size, rebuffering_time, bandwidth_measurement, chunk_til_video_end S_LEN = 8 # take how many frames in the past MPC_FUTURE_CHUNK_COUNT = 5 VIDEO_BIT_RATE = [300,750,1200,1850,2850,4300] # Kbps BITRATE_REWARD = [1, 2, 3, 12, 15, 20] BITRATE_REWARD_MAP = {0: 0, 300: 1, 750: 2, 1200: 3, 1850: 12, 2850: 15, 4300: 20} M_IN_K = 1000.0 BUFFER_NORM_FACTOR = 10.0 CHUNK_TIL_VIDEO_END_CAP = 48.0 TOTAL_VIDEO_CHUNKS = 48 DEFAULT_QUALITY = 0 # default video quality without agent REBUF_PENALTY = 4.3 # 1 sec rebuffering -> this number of Mbps SMOOTH_PENALTY = 1 TRAIN_SEQ_LEN = 100 # take as a train batch MODEL_SAVE_INTERVAL = 100 RANDOM_SEED = 42 RAND_RANGE = 1000 SUMMARY_DIR = './results' LOG_FILE = './results/log' MILLISECONDS_IN_SEC = 1000 MAX_LOOKAHEAD = 3 MAX_LOOKBACK = 10 MAX_SWITCHES = 2 TREE_FOLDER = './src/video_server/trees/' VIDEO_CSV_PATH = '../Data/Video_Info/Pensieve_Info/PenieveVideo_video_info' TRACE_DUMMY = os.path.join(TREE_FOLDER, 'dummy_trace') # in format of time_stamp bit_rate buffer_size rebuffer_time video_chunk_size download_time reward NN_MODEL = None CHUNK_COMBO_OPTIONS = [] # past errors in bandwidth past_errors = [] past_bandwidth_ests = [] class OnlineStreaming(StreamingEnviroment): def __init__(self, video_information_csv_path, max_lookback: int, max_lookahead: int, max_switch_allowed: int): logger.info("Initializing supeclass") super().__init__(TRACE_DUMMY, video_information_csv_path, None, max_lookback, max_lookahead, max_switch_allowed, 60*MILLISECONDS_IN_SEC) """ Padding and stuff """ self.timestamp_arr = [0] * self.max_lookback self.data_used_relative = [0] * self.max_lookback self.quality_arr = [0] * self.max_lookback self.downloadtime_arr = [0] * self.max_lookback self.sleep_time_arr = [0] * self.max_lookback self.buffer_size_arr = [0] * self.max_lookback self.rebuffer_time_arr = [0] * self.max_lookback self.video_chunk_remain_arr_relative = [0] * self.max_lookback self.video_chunk_size_arr = [0] * self.max_lookback self.rate_played_relative_arr = [0] * self.max_lookback self.segment_length_arr = [0] * self.max_lookback self.encoded_mbitrate_arr = [0] * self.max_lookback self.single_mbitrate_arr = [0] * self.max_lookback self.vmaf_arr = [0] * self.max_lookback def copy(self): return OnlineStreaming( self.video_information_csv_path, self.max_lookback, self.max_lookahead, self.max_switch_allowed) def set_state(self, state): self.video_chunk_counter = state['video_chunk_counter'] self.mahimahi_ptr = state['mahimahi_ptr'] self.buffer_size_ms = state['buffer_size_ms'] self.last_mahimahi_time = state['last_mahimahi_time'] self.last_quality = state['last_quality'] self.timestamp_s = state['timestamp_s'] self.data_used_bytes = state['data_used_bytes_relative'] self.timestamp_arr = self.timestamp_arr[:state['timestamp_s_arr_ptr']] self.data_used_relative = self.data_used_relative[:state['data_used_bytes_arr_ptr']] self.quality_arr = self.quality_arr[:state['quality_arr_ptr']] self.downloadtime_arr = self.downloadtime_arr[:state['downloadtime_arr_ptr']] self.sleep_time_arr = self.sleep_time_arr[:state['sleep_time_arr_ptr']] self.buffer_size_arr = self.buffer_size_arr[:state['buffer_size_arr_ptr']] self.rebuffer_time_arr = self.rebuffer_time_arr[:state['rebuffer_time_arr_ptr']] self.video_chunk_remain_arr_relative = self.video_chunk_remain_arr_relative[:state['video_chunk_ptr']] self.video_chunk_size_arr = self.video_chunk_size_arr[:state['video_chunk_size_ptr']] self.rate_played_relative_arr = self.rate_played_relative_arr[:state['rate_played_relative_ptr']] self.segment_length_arr = self.segment_length_arr[:state['segment_length_ptr']] self.encoded_mbitrate_arr = self.encoded_mbitrate_arr[:state['encoded_mbitrate_ptr']] self.single_mbitrate_arr = self.single_mbitrate_arr[:state['single_mbitrate_ptr']] self.vmaf_arr = self.vmaf_arr[:state['vmaf_ptr']] assert len(self.logging_file) >= state['logging_file_ptr'], 'We somehow lost logging data on the way' self.logging_file = self.logging_file[:state['logging_file_ptr']] def save_state(self): return {'mahimahi_ptr': self.mahimahi_ptr, 'buffer_size_ms': self.buffer_size_ms, 'last_mahimahi_time': self.last_mahimahi_time, 'last_quality': self.last_quality, 'video_chunk_counter': self.video_chunk_counter, 'timestamp_s': self.timestamp_s, 'data_used_bytes_relative': self.data_used_bytes, 'video_chunk_size_ptr': len(self.video_chunk_size_arr), 'timestamp_s_arr_ptr': len(self.timestamp_arr), 'data_used_bytes_arr_ptr': len(self.data_used_relative), 'quality_arr_ptr': len(self.quality_arr), 'downloadtime_arr_ptr': len(self.downloadtime_arr), 'sleep_time_arr_ptr': len(self.sleep_time_arr), 'buffer_size_arr_ptr': len(self.buffer_size_arr), 'rebuffer_time_arr_ptr': len(self.rebuffer_time_arr), 'video_chunk_ptr': len(self.video_chunk_remain_arr_relative), 'logging_file_ptr': len(self.logging_file), 'rate_played_relative_ptr': len(self.rate_played_relative_arr), 'segment_length_ptr': len(self.segment_length_arr), 'encoded_mbitrate_ptr': len(self.encoded_mbitrate_arr), 'single_mbitrate_ptr': len(self.single_mbitrate_arr), 'vmaf_ptr': len(self.vmaf_arr)} def get_video_chunk(self, quality, download_time_ms, rebuffer_time_ms, buffer_size_ms, timestamp_s, activate_logging=True): assert quality >= 0 video_chunk_size = self.byte_size_match.iloc[self.video_chunk_counter, quality] relative_encoded_bitrate = self.get_encoded_bitrate(quality) / self.get_encoded_bitrate(-1) segment_length_ms = self.video_information_csv.iloc[ self.video_chunk_counter].seg_len_s * 1000. encoded_mbitrate = self.get_encoded_bitrate(quality) * 1e-6 current_mbitrate = self.bitrate_match.iloc[self.video_chunk_counter, quality] * 1e-6 vmaf = self.vmaf_match.iloc[self.video_chunk_counter, quality] # add in the new chunk self.buffer_size_ms = buffer_size_ms # buffer size is in ms # sleep if buffer gets too large -> in a real environment it never get bigger than the actual one sleep_time_ms = 0 # the "last buffer size" return to the controller # Note: in old version of dash the lowest buffer is 0. # In the new version the buffer always have at least # one chunk of video self.video_chunk_counter += 1 video_chunk_remain = self.n_video_chunk - self.video_chunk_counter end_of_video = False if self.video_chunk_counter >= self.n_video_chunk: end_of_video = True self.data_used_bytes += video_chunk_size self.timestamp_s = timestamp_s self.timestamp_arr.append(self.timestamp_s) self.data_used_relative.append(self.data_used_bytes / self.max_data_used) self.quality_arr.append(quality) self.downloadtime_arr.append(download_time_ms / MILLISECONDS_IN_SEC) self.sleep_time_arr.append(sleep_time_ms / MILLISECONDS_IN_SEC) self.buffer_size_arr.append(self.buffer_size_ms / MILLISECONDS_IN_SEC) self.rebuffer_time_arr.append(rebuffer_time_ms / MILLISECONDS_IN_SEC) self.video_chunk_size_arr.append(video_chunk_size) self.video_chunk_remain_arr_relative.append(video_chunk_remain / float(self.n_video_chunk)) self.rate_played_relative_arr.append(relative_encoded_bitrate) self.segment_length_arr.append(segment_length_ms / 1000.) self.encoded_mbitrate_arr.append(encoded_mbitrate) self.single_mbitrate_arr.append(current_mbitrate) self.vmaf_arr.append(vmaf) observation = self.generate_observation_dictionary() self.last_quality = quality return observation, end_of_video def generate_observation_dictionary(self): quality = self.quality_arr[-1] observation = [] observation.append(self.timestamp_arr[-self.max_lookback:]) observation.append(self.data_used_relative[-self.max_lookback:]) observation.append(self.quality_arr[-self.max_lookback:]) observation.append(self.downloadtime_arr[-self.max_lookback:]) observation.append(self.sleep_time_arr[-self.max_lookback:]) observation.append(self.buffer_size_arr[-self.max_lookback:]) observation.append(self.rebuffer_time_arr[-self.max_lookback:]) observation.append(self.video_chunk_size_arr[-self.max_lookback:]) observation.append(self.video_chunk_remain_arr_relative[-self.max_lookback:]) observation.append(self.rate_played_relative_arr[-self.max_lookback:]) observation.append(self.segment_length_arr[-self.max_lookback:]) observation.append(self.encoded_mbitrate_arr[-self.max_lookback:]) observation.append(self.single_mbitrate_arr[-self.max_lookback:]) observation.append(self.vmaf_arr[-self.max_lookback:]) for switch in np.arange(quality - self.max_switch_allowed, quality + self.max_switch_allowed + 1): switch = np.clip(switch, a_min=0, a_max=self.max_quality_level) switch = int(switch) future_chunk_size_arr = [] for lookahead in range(0, self.max_lookahead): if self.video_chunk_counter + lookahead < self.n_video_chunk: future_chunk_size = self.byte_size_match.iloc[self.video_chunk_counter + lookahead, switch] else: future_chunk_size = 0 future_chunk_size_arr.append(future_chunk_size) observation.append(future_chunk_size_arr) for switch in np.arange(quality - self.max_switch_allowed, quality + self.max_switch_allowed + 1): switch = np.clip(switch, a_min=0, a_max=self.max_quality_level) switch = int(switch) future_chunk_size_arr = [] for lookahead in range(0, self.max_lookahead): if self.video_chunk_counter + lookahead < self.n_video_chunk: future_chunk_size = self.bitrate_match.iloc[self.video_chunk_counter + lookahead, switch] else: future_chunk_size = 0 future_chunk_size_arr.append(future_chunk_size) observation.append(future_chunk_size_arr) for switch in np.arange(quality - self.max_switch_allowed, quality + self.max_switch_allowed + 1): switch = np.clip(switch, a_min=0, a_max=self.max_quality_level) switch = int(switch) future_chunk_size_arr = [] for lookahead in range(0, self.max_lookahead): if self.video_chunk_counter + lookahead < self.n_video_chunk: future_chunk_size = self.vmaf_match.iloc[self.video_chunk_counter + lookahead, switch] else: future_chunk_size = 0 future_chunk_size_arr.append(future_chunk_size) observation.append(future_chunk_size_arr) observation.append(self) observation = {obs_key: obs_value for obs_key, obs_value in zip(self.get_obs_names(), observation)} return observation def get_past_dims(self): return len([v for v in self.get_obs_names() if 'future' not in v]) - 1 def get_future_dims(self): return len([v for v in self.get_obs_names() if 'future' in v]) def get_obs_names(self): column_switches = ['future_chunk_size_byte_switch_%d' % switch for switch in np.arange( -self.max_switch_allowed, self.max_switch_allowed + 1)] column_switches += ['future_chunk_bitrate_switch_%d' % switch for switch in np.arange( -self.max_switch_allowed, self.max_switch_allowed + 1)] column_switches += ['future_chunk_vmaf_switch_%d' % switch for switch in np.arange( -self.max_switch_allowed, self.max_switch_allowed + 1)] return ['timestamp_s', 'data_used_bytes_relative', 'current_level', 'download_time_s', 'sleep_time_s', 'buffer_size_s', 'rebuffer_time_s', 'video_chunk_size_byte', 'relative_chunk_remain', 'relative_rate_played', 'segment_length_s', 'encoded_mbitrate', 'single_mbitrate', 'vmaf'] + column_switches + [ 'streaming_environment'] def reset(self): self.video_chunk_counter = 0 self.buffer_size_ms = 0 self.mahimahi_ptr = 1 self.last_quality = 0 self.logging_file = [] self.timestamp_s = 0 self.data_used_bytes = 0 """ Padding and stuff """ self.timestamp_arr = [0] * self.max_lookback self.data_used_relative = [0] * self.max_lookback self.quality_arr = [0] * self.max_lookback self.downloadtime_arr = [0] * self.max_lookback self.sleep_time_arr = [0] * self.max_lookback self.buffer_size_arr = [0] * self.max_lookback self.rebuffer_time_arr = [0] * self.max_lookback self.video_chunk_remain_arr_relative = [0] * self.max_lookback self.video_chunk_size_arr = [0] * self.max_lookback self.rate_played_relative_arr = [0] * self.max_lookback self.segment_length_arr = [0] * self.max_lookback self.encoded_mbitrate_arr = [0] * self.max_lookback self.single_mbitrate_arr = [0] * self.max_lookback self.vmaf_arr = [0] * self.max_lookback def make_request_handler(input_dict): class Request_Handler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): self.input_dict = input_dict self.log_file = input_dict['log_file'] #self.saver = input_dict['saver'] self.s_batch = input_dict['s_batch'] #self.a_batch = input_dict['a_batch'] #self.r_batch = input_dict['r_batch'] BaseHTTPRequestHandler.__init__(self, *args, **kwargs) def do_POST(self): content_length = int(self.headers['Content-Length']) post_data = json.loads(self.rfile.read(content_length)) if len(post_data) == 1: # message comes from the controller that suggests the optimal bitrate self.send_response(200) send_data = '' self.send_header('Content-Type', 'text/plain') self.send_header('Content-Length', len(send_data)) self.send_header('Access-Control-Allow-Origin', "*") self.end_headers() self.wfile.write(send_data.encode('utf-8')) return if ( 'pastThroughput' in post_data ): # @Hongzi: this is just the summary of throughput/quality at the end of the load # so we don't want to use this information to send back a new quality print("Summary: {} ".format(post_data)) else: if not 'streaming_env' in input_dict.keys(): logger.info("Creating streaming enviroment") input_dict['streaming_env'] = OnlineStreaming(VIDEO_CSV_PATH, MAX_LOOKBACK, MAX_LOOKAHEAD, MAX_SWITCHES) if not 'classifier' in input_dict.keys(): with open(TREE_FILENAME, 'rb') as fin: logger.info("Loading classifier") clas = dill.load(fin) logger.info("Creating ABR Policy Classifier") input_dict['classifier'] = clas if not 'time_start' in input_dict.keys() : input_dict['time_start'] = datetime.datetime.now() streaming_env = input_dict['streaming_env'] classifier = input_dict['classifier'] time_start = input_dict['time_start'] rebuffer_time = float(post_data['RebufferTime'] -self.input_dict['last_total_rebuf']) reward = VIDEO_BIT_RATE[post_data['lastquality']] / M_IN_K \ - REBUF_PENALTY * rebuffer_time / M_IN_K \ - SMOOTH_PENALTY * np.abs(VIDEO_BIT_RATE[post_data['lastquality']] - self.input_dict['last_bit_rate']) / M_IN_K self.input_dict['last_bit_rate'] = VIDEO_BIT_RATE[post_data['lastquality']] self.input_dict['last_total_rebuf'] = post_data['RebufferTime'] # compute bandwidth measurement video_chunk_fetch_time = post_data['lastChunkFinishTime'] - post_data['lastChunkStartTime'] video_chunk_size = post_data['lastChunkSize'] # compute number of video chunks left video_chunk_remain = TOTAL_VIDEO_CHUNKS - self.input_dict['video_chunk_coount'] self.input_dict['video_chunk_coount'] += 1 time = datetime.datetime.now() time_str = datetime.time(time.hour, time.minute, time.second, time.microsecond) # log wall_time, bit_rate, buffer_size, rebuffer_time, video_chunk_size, download_time, reward self.log_file.write(str(time_str) + '\t' + str(VIDEO_BIT_RATE[post_data['lastquality']]) + '\t' + str(post_data['buffer']) + '\t' + str(rebuffer_time / M_IN_K) + '\t' + str(video_chunk_size) + '\t' + str(video_chunk_fetch_time) + '\t' + str(reward) + '\n') self.log_file.flush() time_relative = (time - time_start).total_seconds() logger.info("Retrieving Observation Dictionary") logger.info("Input parameters: last quality (INDEX) {},\n\ video_chunk_fetch_time (MS) {},\n\ rebuffer_time {} (MS),\n\ buffer (MS) {},\n\ time elapsed since playback started (S) {}".format( post_data['lastquality'], video_chunk_fetch_time, rebuffer_time, post_data['buffer']*MILLISECONDS_IN_SEC, time_relative) ) observation_dictionary, end_of_video = streaming_env.get_video_chunk(post_data['lastquality'], video_chunk_fetch_time, rebuffer_time, post_data['buffer']*MILLISECONDS_IN_SEC, time_relative) import pprint obs_dict_string = pprint.pformat(observation_dictionary) logger.debug(obs_dict_string) send_data = str(classifier.next_quality(observation_dictionary, reward)) logger.info("Selected quality {}".format(send_data)) end_of_video = False if ( post_data['lastRequest'] == TOTAL_VIDEO_CHUNKS ): send_data = "" # send_data = "REFRESH" we don't want the video to restart end_of_video = True self.input_dict['last_total_rebuf'] = 0 self.input_dict['last_bit_rate'] = DEFAULT_QUALITY self.input_dict['video_chunk_coount'] = 0 self.log_file.write('\n') # so that in the log we know where video ends print("done_successful") # signal player finished a video sys.stdout.flush() self.send_response(200) self.send_header('Content-Type', 'text/plain') self.send_header('Content-Length', len(send_data)) self.send_header('Access-Control-Allow-Origin', "*") self.end_headers() self.wfile.write(send_data.encode('utf-8')) def do_GET(self): self.send_response(200) #self.send_header('Cache-Control', 'Cache-Control: no-cache, no-store, must-revalidate max-age=0') self.send_header('Cache-Control', 'max-age=3000') self.send_header('Content-Length', 20) self.end_headers() self.wfile.write("console.log('here');") def log_message(self, format, *args): return return Request_Handler def run(server_class=HTTPServer, port=8333, log_file_path=LOG_FILE): np.random.seed(RANDOM_SEED) if not os.path.exists(SUMMARY_DIR): os.makedirs(SUMMARY_DIR) # make chunk combination options for combo in itertools.product([0,1,2,3,4,5], repeat=5): CHUNK_COMBO_OPTIONS.append(combo) with open(log_file_path, 'w') as log_file: s_batch = [np.zeros((S_INFO, S_LEN))] last_bit_rate = DEFAULT_QUALITY last_total_rebuf = 0 # need this storage, because observation only contains total rebuffering time # we compute the difference to get video_chunk_count = 0 input_dict = {'log_file': log_file, 'last_bit_rate': last_bit_rate, 'last_total_rebuf': last_total_rebuf, 'video_chunk_coount': video_chunk_count, 's_batch': s_batch} # interface to abr_rl server handler_class = make_request_handler(input_dict=input_dict) #serve on random port while True: try: server_address = ('localhost', port) httpd = server_class(server_address, handler_class) except socketserver.socket.error: port = random.randint(2000,65535) else: break print('Listening on port ' + str(port)) sys.stdout.flush() httpd.serve_forever() def main(): if len(sys.argv) > 6: parser = argparse.ArgumentParser() parser.add_argument('port', help='port of the server', type=int) parser.add_argument('abr', help='abr under test', type=str) parser.add_argument('trace_file', help='traces file folder', type=str) parser.add_argument('timeout', help='timeout', type=int) parser.add_argument("result_dir", help='results directory', type=str) parser.add_argument('stream_id', help='stream id', type=int) parser.add_argument("--debug", action="store_true", help='If selected, logging also to debug level') parser.add_argument("--display", action="store_true", help='If selected, logging also to stderr') global args args = parser.parse_args() global TREE_FILENAME TREE_FILENAME = os.path.join(TREE_FOLDER, args.abr, 'classifier') form = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logfile = os.path.join(args.result_dir, "log/{}_abr_server_{}.log".format(args.abr,args.stream_id)) llevel = logging.INFO if args.debug: llevel = logging.DEBUG global logger logger = logging.getLogger("{} ABR SERVER {}".format(args.abr, args.stream_id)) logger.setLevel(llevel) fo = logging.FileHandler(logfile, mode = 'a') formatter = logging.Formatter(form) fo.setLevel(llevel) fo.setFormatter(formatter) logger.addHandler(fo) if args.display: so = logging.StreamHandler(sys.stderr) so.setLevel(llevel) so.setFormatter(formatter) logger.addHandler(so) log_file_p = os.path.join(args.result_dir, 'result') if not os.path.exists(log_file_p): os.makedirs(log_file_p, 0o777) log_file_abr_server = os.path.join(log_file_p, '{}_rewards_{}.log'.format(args.abr,args.stream_id)) logger.info('Running with arguments passed {}'.format(args.trace_file)) run(port=args.port, log_file_path=log_file_abr_server) logger.info('Listening on port ' + str(args.port)) else: run() if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Keyboard interrupted.") try: sys.exit(0) except SystemExit: os._exit(0)
StarcoderdataPython