id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
4978864
"""Platform Models.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema from .SearchKeywordResult import SearchKeywordResult class CreateSearchKeyword(BaseSchema): # Catalog swagger.json app_id = fields.Str(required=False) result = fields.Nested(SearchKeywordResult, required=False) is_active = fields.Boolean(required=False) _custom_json = fields.Dict(required=False) words = fields.List(fields.Str(required=False), required=False)
StarcoderdataPython
9714295
<filename>lab3/lab3.py import argparse import logging import os import random import sys import time import json #from typing_extensions import Required import numpy as np import copy import torch import torchvision from torchvision import transforms from torch.utils.data import SubsetRandomSampler import wandb from dataloader import femnist_dataloaders # from fedml_api.model.cv.resnet import resnet56 from fedml_api.standalone.fedavg.fedavg_api import FedAvgAPI from fedml_api.standalone.fedavg.my_model_trainer_classification import MyModelTrainer from model import Net_femnist def add_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ # Training settings parser.add_argument('--wandb_name', type=str, required=True, help='Name of log file') parser.add_argument('--dataset', type=str, default='cifar10', metavar='N', help='dataset used for training') parser.add_argument('--data_dir', type=str, default='./cifar10', help='data directory') parser.add_argument('--batch_size', type=int, default=128, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--client_optimizer', type=str, default='adam', help='SGD with momentum; adam') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--wd', help='weight decay parameter;', type=float, default=0.001) parser.add_argument('--epochs', type=int, default=5, metavar='EP', help='how many epochs will be trained locally') parser.add_argument('--client_num_in_total', type=int, default=10, metavar='NN', help='number of workers in a distributed cluster') parser.add_argument('--client_num_per_round', type=int, default=10, metavar='NN', help='number of workers') parser.add_argument('--comm_round', type=int, default=10, help='how many round of communications we shoud use') parser.add_argument('--frequency_of_the_test', type=int, default=5, help='the frequency of the algorithms') parser.add_argument('--gpu', type=int, default=0, help='gpu') parser.add_argument('--ci', type=int, default=0, help='CI') parser.add_argument('--seed', type=int, default=0, help='seed') return parser if __name__ == "__main__": logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.DEBUG) parser = add_args(argparse.ArgumentParser(description='FedAvg-standalone')) # parser.add_argument("-f") args = parser.parse_args() logger.info(args) device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu") logger.info(device) wandb.init( project="fedml", name=args.wandb_name, config=args ) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True dataset = femnist_dataloaders(root="./femnist",clients=args.client_num_in_total, batch_size=args.batch_size) model = Net_femnist() dummy_opt = torch.optim.SGD(copy.deepcopy(model).parameters(), lr=args.lr) dummy_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=dummy_opt, step_size = args.comm_round/5, gamma = 0.5) model_trainer = MyModelTrainer(model) fedavgAPI = FedAvgAPI(dataset, device, args, model_trainer, threading=3, scheduler=dummy_scheduler) #fedavgAPI = FedAvgAPI(dataset, device, args, model_trainer, scheduler=dummy_scheduler) fedavgAPI.train()
StarcoderdataPython
1809325
import sys import matplotlib.pyplot as plt def fetch_results(fresults): results = fresults.readline().split(' ') results.pop() return [int(elem) for elem in results] if __name__ == '__main__': # Name and results of timing functions names = [] values = [] # Fetch the results with open(sys.argv[1]) as f: for line in f: results = line.split(' ') # Get sorter name names.append(results.pop(0)) # Remove EOL character results.pop() # Plot the results intresults = [int(elem) for elem in results] xaxis = list(range(len(intresults))) val, = plt.plot(xaxis, intresults) values.append(val) # Add a legend plt.legend(values, names, loc='upper left') plt.xlabel('Number of elements to sort') plt.ylabel('Execution time (ms)') plt.show()
StarcoderdataPython
6669631
<reponame>cjshearer/project-athena<filename>src/scripts/cody_scripts/train_ensemble_model.py # based on ../zhymir_scripts/train_model.py import os import keras import numpy as np from utils.file import dump_to_json import matplotlib.pyplot as plt def train_model(data, labels, model_p, save, filename, save_history, h_filename): model_history = model_p.fit(data, labels, batch_size=10) if save: model_p.save(filename) if save_history: dump_to_json(model_history.history, h_filename) if __name__ == '__main__': train_data = np.load('../zhymir_scripts/train_test/train_data.npy') train_labels = [] with np.load('../zhymir_scripts/train_test/train_labels.npz') as data: train_labels = data['arr_0'] model_root = '../../../Task2/models' history_root = '../../../Task2/data' filepath = os.path.join(model_root, 'cody_model.h5') history_filename = os.path.join(history_root, 'cody_model_history') batch_size = 10 num_classifiers = 16 model = keras.models.Sequential([ keras.layers.Dense(units=100, input_shape=(num_classifiers, 10), activation='relu', name='D1'), keras.layers.Flatten(), keras.layers.Dense(10, name='output_layer', activation='softmax') ]) metrics = ['accuracy'] model.compile('adam', 'categorical_crossentropy', metrics=metrics) history = model.fit(train_data, train_labels, epochs=20, batch_size=batch_size, validation_split=0.1, verbose=0) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() model.save(filepath) dump_to_json(history.history, history_filename)
StarcoderdataPython
5167536
from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.shortcuts import render, redirect from django.utils.datastructures import MultiValueDictKeyError from store.models import Ticket @login_required def create_ticket_view(request): # Get actual user actual_user = User.objects.filter(username__iexact=request.user.username)[0] # if this is a POST request we need to process the form data if request.method == "POST": ticket_title = request.POST.get("ticket_title", None) ticket_description = request.POST.get("ticket_description", None) # Check if a file has been sent try: ticket_picture = request.FILES["ticket_picture"] except MultiValueDictKeyError: ticket_picture = None if ticket_title is not None and ticket_description is not None: # Redirect to a success page. new_ticket = Ticket( user=actual_user, title=ticket_title, description=ticket_description, image=ticket_picture, ) new_ticket.save() context = {"ticket": new_ticket} return render(request, "success_ticket.html", context) return render(request, "create_ticket.html") @login_required def tickets_view(request): """ Create a review from a ticket :param request: webpage request :return: the ticket store """ every_ticket = list(Ticket.objects.all()) context = {"tickets": every_ticket} return render(request, "tickets.html", context) @login_required def delete_ticket(request): """ Delete a ticket :param request: ticket.id the ticket id :return: """ # Get actual user actual_user = User.objects.filter(username__iexact=request.user.username)[0] ticket_id = request.GET.get("ticket_id", None) ticket_to_delete = Ticket.objects.filter(id=ticket_id).first() # Check if the actual user is the ticket's owner, only the ticket's owner # can delete it. if actual_user == ticket_to_delete.user: ticket_to_delete.delete() return redirect("/")
StarcoderdataPython
1628382
<reponame>cjgreencorner/Python-Scripts #!/usr/bin/env python ########################################## # Age Calculator # ########################################## __author__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Finished" import datetime def birthyear(year, age): # Calculate birthyear return year - age def fifty(year, age): # To calculate the year when the person becomes 50 return year - age + 50 def main(): currentDateTime = datetime.datetime.now() date = currentDateTime.date() year = int(date.strftime("%Y")) age = int(input("Age: ")) # Ask for the person's age print("You were born in: ", birthyear(year, age)) print("You are 50 in ", fifty(year, age)) if __name__ == '__main__': main()
StarcoderdataPython
4890297
# coding=utf-8 import re from enum import Enum import shutil import numpy as np from colorama import Fore import torch import os #from Putil.base import logger as plog #logger = plog.PutilLogConfig('util').logger() #logger.setLevel(plog.DEBUG) from Putil.demo.deep_learning.base import horovod import Putil.base.save_fold_base as psfb ##@brief 代表着本次运行是在什么模式下 # @note 这与Stage不同,Stage在一次运行中可能会有不同的阶段Stage, # 比如TrainEvaluate表示在RunStage.Train中的Evaluate阶段 class RunStage(Enum): Train=0 Evaluate=1 Test=2 def find_repeatable_environ(base_name): temp = set([k if re.search(base_name, k) is not None else None for k in os.environ.keys()]) temp.remove(None) return temp def get_relatived_environ(base_name): return {property_type.replace(base_name, ''): os.environ[property_type] for property_type in find_repeatable_environ(base_name)} def complete_environ(source_dict, target_dict, default_content): # 完善target_dict中缺少而source_dict中存在的类型 [None if property_type in target_dict.keys() else target_dict.update({property_type: default_content}) \ for property_type, name in source_dict.items()] pass def empty_tensor_factory(framework, **kwargs): def generate_empty_tensor_factory_func(): if framework == 'torch': # tensor operation def torch_generate_empty_tensor(): return torch.Tensor([]) return torch_generate_empty_tensor else: raise NotImplementedError('empty_tensor_factory in framework: {} is Not Implemented'.format(args.framework)) pass return generate_empty_tensor_factory_func def string_to_torch_tensor(_str, code='utf-16'): return torch.from_numpy(np.frombuffer(_str.encode(code), dtype=get_np_dtype_from_code(code))) def get_np_dtype_from_code(code): return np.int16 if code == 'utf-16' else np.int8 if code == 'utf-8' else None def get_code_from_np_dtype(np_dtype): return ('utf-16', np.uint16) if np_dtype == np.int16 else ('utf-8', np.uint8) if np_dtype == np.int8 else None def torch_tensor_to_string(tensor, code='utf-16'): n = tensor.numpy() return n.astype(get_code_from_np_dtype(n.dtype)[1]).tobytes().decode(get_code_from_np_dtype(n.dtype)[0]) def make_sure_the_save_dir(name, run_stage, save_dir, weight_path, weight_epoch, debug, framework): hvd = horovod.horovod(framework) if run_stage == RunStage.Train: if weight_path == '' or weight_epoch is None and hvd.rank() == 0: bsf = psfb.BaseSaveFold( use_date=True if not debug else False, \ use_git=True if not debug else False, \ should_be_new=True if not debug else False, \ base_name='{}{}'.format(name if name is not '' else 'Unnamed', '-debug' if debug else '')) bsf.mkdir(save_dir) save_dir = bsf.FullPath code = 'utf-16' save_dir_tensor = string_to_torch_tensor(save_dir, code) save_dir_tensor = hvd.broadcast_object(save_dir_tensor, 0, 'save_dir') save_dir = torch_tensor_to_string(save_dir_tensor, code) elif hvd.rank() == 0 and weight_path is not None and weight_epoch is not None: save_dir = os.path.dirname(weight_path) code = 'utf-16' save_dir_tensor = string_to_torch_tensor(save_dir, code) save_dir_tensor = hvd.broadcast_object(save_dir_tensor, 0, 'save_dir') save_dir = torch_tensor_to_string(save_dir_tensor, code) elif hvd.rank() != 0: code = 'utf-16' save_dir_tensor = string_to_torch_tensor(save_dir, code) save_dir_tensor = hvd.broadcast_object(save_dir_tensor, 0, 'save_dir') save_dir = torch_tensor_to_string(save_dir_tensor, code) else: raise RuntimeError('this should not happend') print(Fore.GREEN + 'rank {} final get save dir: {}'.format(hvd.rank(), save_dir) + Fore.RESET) return save_dir pass def generate_train_time_dir_name(train_time): return 'train_time-{}'.format(train_time) def subdir_base_on_train_time(root_dir, train_time, prefix): ''' @brief 依据根目录与对应的train_time生成子目录名称 ''' return os.path.join(root_dir, '{}{}'.format('' if prefix == '' else '{}-'.format(prefix), generate_train_time_dir_name(train_time))) def train_time_matched(train_time, subdir): res = re.search(generate_train_time_dir_name(train_time), subdir) return res is not None, res #def get_train_time_from_subdir(subdir): # return def _tensorboard_event_and_the_train_time(file_name): _split_by_point = file_name.split('.') is_event = _split_by_point[0] == 'events' and _split_by_point[1] == 'out' and _split_by_point[2] == 'tfevents' train_time = int(file_name.split('-')[-1]) if is_event else None return is_event, train_time def _get_trained_result(path, train_time): ''' @brief 依据提供的train_time与根目录获取相关与train_time次训练的结果内容,提供给clean_train_result等进行处理 ''' files = [] dirs = [] # #dirs.append(os.path.join(path, subdir_base_on_train_time(path, train_time))) # _contents = os.listdir(path) for _content in _contents: matched, res = train_time_matched(train_time, _content) dirs.append(os.path.join(path, _content)) if matched else None pass return dirs, files def clean_train_result(path, train_time): dirs, files = _get_trained_result(path, train_time) #sync = hvd.broadcast_object(torch.BoolTensor([True]), 0, 'sync_before_checking_remove_file') _remove = input(Fore.RED + 'remove the files: {} dir: {} (y/n):'.format(files, dirs)) [os.remove(_file) for _file in files] if _remove in ['y', 'Y'] else None [shutil.rmtree(_dir) for _dir in dirs] if _remove in ['Y', 'y'] else None pass def fix_one_env_param(param): if isinstance(param, bool): return param elif isinstance(param, str): if param in ['False', 'false']: return False elif param in ['True', 'ture']: return True elif param in ['None', 'none']: return None elif param in ['Train', 'train', 'Evaluate', 'evaluate', 'Test', 'test']: if param in ['Train', 'train']: return RunStage.Train elif param in ['Evaluate', 'evaluate']: return RunStage.Evaluate else: return RunStage.Test pass elif param in ['Torch', 'torch']: return 'torch' elif param in ['tf', 'tensorflow']: return 'tf' else: return param pass elif isinstance(param, None.__class__): return param else: raise NotImplementedError('fix param with type {} is not implemented'.format(param.__class__.__name__)) pass def fix_env_param(param): check_multi_param = param.split('.') if len(check_multi_param) != 1: temp_params = [] for param in check_multi_param: temp_params.append(fix_one_env_param(param)) pass return temp_params else: return fix_one_env_param(param) pass def print_env_param(param, env_name): print(Fore.GREEN + 'param: {}:{} | type: {}'.format(env_name, param, param.__class__.__name__) + Fore.RESET) def make_sure_the_train_time(run_stage, save_dir, framework): hvd = horovod.horovod(framework) if run_stage == RunStage.Train: #if hvd.rank() == 0 and args.weight_epoch is None and args.weight_epoch is None: # print(Fore.GREEN + 'get the untrained train time is 0' + Fore.RESET) # args.train_time = 0 # train_time_tensor = torch.IntTensor([args.train_time]) # train_time_tensor = hvd.broadcast_object(train_time_tensor, 0, 'train_time') #elif hvd.rank() == 0 and (args.weight_path != '') and (args.weight_epoch is not None): if hvd.rank() == 0:# and (args.weight_path != '') and (args.weight_epoch is not None): item_list = os.listdir(save_dir) max_time = 0 for _item in item_list: if os.path.isdir(os.path.join(save_dir, _item)): name_part = _item.split('-') if name_part[-2] == 'train_time': max_time = max(max_time, int(name_part[-1])) train_time = max_time + 1 print(Fore.GREEN + 'get the trained train time is {}'.format(train_time) + Fore.RESET) train_time_tensor = torch.IntTensor([train_time]) train_time_tensor = hvd.broadcast_object(train_time_tensor, 0, 'train_time') train_time = train_time elif hvd.rank() != 0: print(Fore.GREEN + 'wait for the root rank share the train_time' + Fore.RESET) train_time_tensor = torch.IntTensor([-1]) train_time_tensor = hvd.broadcast_object(train_time_tensor, 0, 'train_time') train_time = train_time_tensor.item() else: raise RuntimeError('this should not happend') pass print(Fore.GREEN + 'rank {} final get train time: {}'.format(hvd.rank(), train_time) + Fore.RESET) return train_time pass pass
StarcoderdataPython
4957989
import setuptools def readme(): with open('README.md') as f: README = f.read() return README setuptools.setup( name="playment", version="1.0.5", description="A Python package to interact with Playment's APIs.", long_description=readme(), long_description_content_type="text/markdown", url="https://github.com/crowdflux/playment-sdk-python.git", author="Playment", author_email="<EMAIL>", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=setuptools.find_packages(), include_package_data=True, keywords=["playment"], )
StarcoderdataPython
5129191
from django.urls import path # 导入需要配置路径路由的文件 from . import views urlpatterns = [ # 函数视图路由语法 # path('网络地址枕着表达式',函数视图名) # 用户注册的地址是http://127.0.0.1/users/register/ # path('users/register/',views.register) # 这一个是类视图,但是方法里面,只能用函数视图,所以用as_view() path('users/register/',views.RegisterView.as_view()) ]
StarcoderdataPython
310793
<filename>api/test/test_cli/test_nivo_record_helper/test_misc.py<gh_stars>1-10 import os from csv import DictReader from datetime import date from uuid import uuid4, UUID import pytest import responses from requests import HTTPError from sqlalchemy.engine import Engine from sqlalchemy.exc import IntegrityError from nivo_api.cli import get_last_nivo_date, check_nivo_doesnt_exist, download_nivo from nivo_api.cli.nivo_record_helper import ( ArchiveNivoCss, NivoCsv, create_new_unknown_nivo_sensor_station, NivoDate, ) from nivo_api.core.db.connection import connection_scope from nivo_api.core.db.models.sql.nivo import SensorStationTable, NivoRecordTable from nivo_api.settings import Config from test.pytest_fixtures import database CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) class TestGetLastNivoDate: @responses.activate def test_wrong_date(self): """ it should raise in case of wrongly formated date format. """ responses.add( responses.GET, Config.METEO_FRANCE_LAST_NIVO_JS_URL, body="jour=20190;" ) with pytest.raises(ValueError) as e: get_last_nivo_date() @responses.activate def test_wrong_file(self): """ it should raise if the regex doesn't match """ responses.add( responses.GET, Config.METEO_FRANCE_LAST_NIVO_JS_URL, body="THIS WILL NOT MATCH", ) with pytest.raises(AttributeError) as e: get_last_nivo_date() assert str(e.value) == "'NoneType' object has no attribute 'group'" @responses.activate def test_file_fetch_error(self): responses.add(responses.GET, Config.METEO_FRANCE_LAST_NIVO_JS_URL, status=302) with pytest.raises(AssertionError) as e: get_last_nivo_date() assert str(e.value) == "Impossible to fetch last nivo data from meteofrance url" @responses.activate def test_date_ok(self): responses.add( responses.GET, Config.METEO_FRANCE_LAST_NIVO_JS_URL, body="jour=20190101;" ) res = get_last_nivo_date() assert NivoDate(False, date(2019, 1, 1)) == res class TestCheckNivoDoesntExist: def test_check_nivo_doesnt_exist(self, database): with connection_scope(database.engine) as con: r = check_nivo_doesnt_exist(con, date(2019, 1, 1)) assert r is True def _inject_test_data(self, engine: Engine): with connection_scope(engine) as con: nss_id = uuid4() con.execute( SensorStationTable.insert().values( { "nss_id": nss_id, "nss_name": "test", "nss_meteofrance_id": 1, "the_geom": "SRID=4326;POINT(1 1 1)", } ) ) con.execute( NivoRecordTable.insert().values( {"nr_date": date(2019, 1, 1), "nr_nivo_sensor": nss_id} ) ) def test_check_nivo_exist(self, database): self._inject_test_data(database.engine) with connection_scope(database.engine) as con: r = check_nivo_doesnt_exist(con, date(2019, 1, 1)) assert r is False class TestDownloadNivo: @responses.activate def test_archive_download(self, database): url = f"{Config.METEO_FRANCE_NIVO_BASE_URL}/Archive/nivo.201701.csv.gz" with open(os.path.join(CURRENT_DIR, "test_data/nivo.201701.csv.gz"), "rb") as f: responses.add( responses.GET, url, body=f.read(), content_type="application/x-gzip" ) with connection_scope(database.engine) as con: r = download_nivo( NivoDate(is_archive=True, nivo_date=date(2017, 1, 1)), con ) assert isinstance(r, ArchiveNivoCss) assert r.nivo_date == date(2017, 1, 1) @responses.activate def test_recent_nivo_download(self, database): url = f"{Config.METEO_FRANCE_NIVO_BASE_URL}/nivo.20190812.csv" with open(os.path.join(CURRENT_DIR, "test_data/nivo.20190812.csv")) as f: responses.add(responses.GET, url, body=f.read(), content_type="text/plain") with connection_scope(database.engine) as con: r = download_nivo( NivoDate(is_archive=False, nivo_date=date(2019, 8, 12)), con ) assert isinstance(r, NivoCsv) assert r.nivo_date == date(2019, 8, 12) @responses.activate def test_download_fail(self, database): url = f"{Config.METEO_FRANCE_NIVO_BASE_URL}/nivo.20190812.csv" responses.add(responses.GET, url, status=503) with connection_scope(database.engine) as con: with pytest.raises(HTTPError): download_nivo( NivoDate(is_archive=False, nivo_date=date(2019, 8, 12)), con ) class TestImportNivo: # if this function fail we don't care. It just normalize and find the pk of the station. def test_import_nivo(self, database): with open(os.path.join(CURRENT_DIR, "test_data/nivo.20190812.csv")) as f: with connection_scope(database.engine) as con: nivo_csv = DictReader(f, delimiter=";") n = NivoCsv( NivoDate(is_archive=False, nivo_date=date(2019, 8, 12)), con ) n.nivo_csv = nivo_csv class TestCreateNewUnknownNivoSensorStation: def test_create_new_unknown_nivo_sensor_station(self, database): with connection_scope(database.engine) as con: r = create_new_unknown_nivo_sensor_station(10, con) assert isinstance(r.nss_id, UUID) def test_create_new_sensor_station_fail(self, database): """ It should fail when two unknown station have the same name. non-idempotency is assumed (tech debt FTW) """ with connection_scope(database.engine) as con: with pytest.raises(IntegrityError): r = create_new_unknown_nivo_sensor_station(10, con) assert isinstance(r.nss_id, UUID) create_new_unknown_nivo_sensor_station(10, con)
StarcoderdataPython
9722721
from django.db import models import datetime from Accounts.models import Examinee, Examiner # Create your models here. # from AnswerManagement.models import ExamineeCustomAnswer class Exam(models.Model): examiner = models.ForeignKey(Examiner, on_delete=models.SET_NULL, null=True, default=1) exam_code = models.IntegerField(unique=True) exam_title = models.CharField(max_length=200) exam_marks = models.IntegerField(null=False, default=100) exam_date_time = models.DateTimeField() exam_duration = models.IntegerField(null=False, default=60) exam_question = models.FileField(upload_to='exam/questions', null=False, blank=False, default='exam/questions/sample.pdf') def getParticipant(self): participant = len(AttemptedExam.objects.filter(exam_id=self.id)) return participant def getSubmission(self): from AnswerManagement.models import ExamineeAnswer submissions = len(ExamineeAnswer.objects.filter(exam_id=self.id)) return submissions def isStarted(self): timezone = self.exam_date_time.tzinfo now = datetime.datetime.now(timezone) + datetime.timedelta(hours=6) if self.exam_date_time <= now: return True return False def isRunning(self): timezone = self.exam_date_time.tzinfo mins = self.exam_duration mins_added = datetime.timedelta(minutes=mins) datetime_start = self.exam_date_time future_date_and_time = datetime_start + mins_added now = datetime.datetime.now(timezone) + datetime.timedelta(hours=6) if now < future_date_and_time and not now < datetime_start: # print("Running") return True return False def isUpcoming(self): timezone = self.exam_date_time.tzinfo mins = self.exam_duration mins_added = datetime.timedelta(minutes=mins) datetime_start = self.exam_date_time future_date_and_time = datetime_start + mins_added now = datetime.datetime.now(timezone) + datetime.timedelta(hours=6) if now < datetime_start: # print("Running") return True return False def __str__(self): return self.exam_title class AttemptedExam(models.Model): exam = models.ForeignKey(Exam, on_delete=models.CASCADE, null=True) examinee = models.ForeignKey(Examinee, on_delete=models.CASCADE) submit = models.BooleanField(default=False, null=False, blank=False) def hasReturnAttachment(self): from ResultManagement.models import Result attachment = Result.objects.filter(examinee=self.examinee, exam=self.exam) # print("Function:", attachment[0]) if attachment: attachment = attachment[0].attachment if attachment: return True, else: return False @property def ReturnAttachment(self): from ResultManagement.models import Result attachment = Result.objects.filter(examinee=self.examinee, exam=self.exam) attachment_url = attachment[0].attachment.url if self.hasReturnAttachment(): # print("URL", attachment) return attachment_url def __str__(self): return str("Exam: " + self.exam.exam_title + ",Examinee: " + self.examinee.user.username) class Question(models.Model): marks = models.IntegerField(null=False, default=100) time_limit = models.IntegerField(null=False, default=60) exam = models.ForeignKey(Exam, on_delete=models.CASCADE) def __str__(self): return str(self.id) + " " + self.exam.exam_title class MCQQuestion(models.Model): question_text = models.CharField(max_length=200) option1 = models.CharField(max_length=200) option2 = models.CharField(max_length=200) option3 = models.CharField(max_length=200) option4 = models.CharField(max_length=200) ques_marks = models.IntegerField(blank=False, null=False, default=1) question = models.ForeignKey(Question, on_delete=models.CASCADE) def __str__(self): return str(self.id) + "." + str(self.question_text + "(" + self.question.exam.exam_title + ")") class CustomQuestion(models.Model): question_text = models.CharField(max_length=200) ques_marks = models.IntegerField(blank=False, null=False, default=1) question = models.ForeignKey(Question, on_delete=models.CASCADE) def __str__(self): return str(self.id) + "." + str(self.question_text + "(" + self.question.exam.exam_title + ")")
StarcoderdataPython
9685095
#!/usr/bin/python3 # Python3 script to produce torrent files from existing files and folders # This script currently only works for archive.org releases. # It calls 3 helper scripts. # Import everything we will need import os import shutil import logging from internetarchive import get_item import rcc_hardlinks import rcc_cleanup # import rcc_torrent
StarcoderdataPython
1762067
<filename>runtime/build.py #!/usr/bin/env python import sys try: from RuntimeBuilder import * from Sim import * except ImportError, e: print "Couldn't find project-utils modules." sys.exit(1) MAXFILES = ['PacketPusher.max'] sources = ['packetpusher.c'] target = 'packetpusher' includes = [] b = MaxRuntimeBuilder(maxfiles=MAXFILES) s = MaxCompilerSim(dfeModel="ISCA") e = Executor(logPrefix="[%s] " % (target)) def build(): compile() link() def compile(): b.slicCompile() b.compile(sources) def link(): b.link(sources, target) def clean(): b.clean() def start_sim(): s.start(netConfig=[{ 'NAME' : 'QSFP_BOT_10G_PORT1', 'TAP': '172.17.2.1', 'NETMASK' : '255.255.255.224' }]) def stop_sim(): s.stop() def restart_sim(): s.start() def run_sim(pcap): build() start_sim() e.execCommand([ "./" + target, pcap]) e.wait() # stop_sim() def maxdebug(): s.maxdebug(MAXFILES) if __name__ == '__main__': fabricate.main()
StarcoderdataPython
3204331
import timeboard as tb import datetime import pytest import pandas as pd class TestVersion(object): def test_version(self): version = tb.read_from('VERSION.txt') assert version == tb.__version__ class TestTBConstructor(object): def test_tb_constructor_trivial(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[1]) assert clnd._timeline.labels.eq([1]*12).all() assert clnd.start_time == datetime.datetime(2017, 1, 1, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 1, 12, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 1, 13, 0, 0, 0) assert clnd.base_unit_freq == 'D' def test_tb_constructor_empty_layout(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[], ) assert clnd._timeline.labels.isnull().all() assert clnd.start_time == datetime.datetime(2017, 1, 1, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 1, 12, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 1, 13, 0, 0, 0) assert clnd.base_unit_freq == 'D' def test_tb_constructor_empty_layout_with_default_label(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[], default_label=100) assert clnd._timeline.labels.eq([100]*12).all() assert clnd.start_time == datetime.datetime(2017, 1, 1, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 1, 12, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 1, 13, 0, 0, 0) assert clnd.base_unit_freq == 'D' def test_tb_constructor_trivial_with_amendments(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[1], amendments={'11 Jan 2017': 2, '12 Jan 2017': 3}) assert clnd._timeline.labels.eq([1]*10 + [2,3]).all() assert clnd.start_time == datetime.datetime(2017, 1, 1, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 1, 12, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 1, 13, 0, 0, 0) assert clnd.base_unit_freq == 'D' def test_tb_constructor_amendments_outside(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[1], amendments={'31 Dec 2016': 2, '12 Jan 2017': 3}) assert clnd._timeline.labels.eq([1]*11 + [3]).all() assert clnd.start_time == datetime.datetime(2017, 1, 1, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 1, 12, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 1, 13, 0, 0, 0) assert clnd.base_unit_freq == 'D' def test_tb_constructor_bad_layout(self): with pytest.raises(TypeError): tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=1) def test_tb_constructor_duplicate_amendments(self): with pytest.raises(KeyError): tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[1], amendments={'02 Jan 2017 12:00': 2, '02 Jan 2017 15:15': 3}) def test_tb_constructor_bad_amendments(self): with pytest.raises(TypeError): tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[1], amendments=[0]) def test_tb_constructor_trivial_selector(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2]) sdl = clnd.default_schedule selector = clnd.default_selector assert selector(clnd._timeline[1]) assert [selector(x) for x in clnd._timeline.labels] == [False, True] * 6 assert (sdl.on_duty_index == [1, 3, 5, 7, 9, 11]).all() assert (sdl.off_duty_index == [0, 2, 4, 6, 8, 10]).all() def test_tb_constructor_trivial_custom_selector(self): def custom_selector(x): return x>1 clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2], default_selector=custom_selector) sdl = clnd.default_schedule selector = clnd.default_selector assert not selector(clnd._timeline[1]) assert [selector(x) for x in clnd._timeline.labels] == [False, False, False, True] * 3 assert (sdl.on_duty_index == [3, 7, 11]).all() assert (sdl.off_duty_index == [0, 1, 2, 4, 5, 6, 8, 9, 10]).all() class TestTBConstructorWithOrgs(object): def test_tb_constructor_week5x8(self): week5x8 = tb.Organizer(marker='W', structure=[[1, 1, 1, 1, 1, 0, 0]]) amendments = pd.Series(index=pd.date_range(start='01 Jan 2017', end='10 Jan 2017', freq='D'), data=0).to_dict() clnd = tb.Timeboard(base_unit_freq='D', start='28 Dec 2016', end='02 Apr 2017', layout=week5x8, amendments=amendments) assert clnd.start_time == datetime.datetime(2016, 12, 28, 0, 0, 0) assert clnd.end_time > datetime.datetime(2017, 4, 2, 23, 59, 59) assert clnd.end_time < datetime.datetime(2017, 4, 3, 0, 0, 0) assert clnd.base_unit_freq == 'D' assert clnd('28 Dec 2016').is_on_duty() assert clnd('30 Dec 2016').is_on_duty() assert clnd('31 Dec 2016').is_off_duty() assert clnd('01 Jan 2017').is_off_duty() assert clnd('10 Jan 2017').is_off_duty() assert clnd('11 Jan 2017').is_on_duty() assert clnd('27 Mar 2017').is_on_duty() assert clnd('31 Mar 2017').is_on_duty() assert clnd('01 Apr 2017').is_off_duty() assert clnd('02 Apr 2017').is_off_duty() class TestTimeboardSchedules(object): def test_tb_add_schedule(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', #layout=[0, 1, 0, 0, 2, 0]) layout=['O', 'A', 'O', 'O', 'B', 'O']) assert len(clnd.schedules) == 1 assert 'on_duty' in clnd.schedules clnd.add_schedule(name='sdl1', selector=lambda x: x == 'B') clnd.add_schedule(name='sdl2', selector=lambda x: x == 'C') assert len(clnd.schedules) == 3 assert 'sdl1' in clnd.schedules sdl1 = clnd.schedules['sdl1'] assert sdl1.name == 'sdl1' assert not sdl1.is_on_duty(1) assert sdl1.is_on_duty(4) assert 'sdl2' in clnd.schedules sdl2 = clnd.schedules['sdl2'] assert sdl2.name == 'sdl2' assert not sdl2.is_on_duty(1) assert not sdl2.is_on_duty(4) assert clnd.default_schedule.name == 'on_duty' assert clnd.default_schedule.is_on_duty(1) assert clnd.default_schedule.is_on_duty(4) def test_tb_drop_schedule(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0]) clnd.add_schedule(name='sdl', selector=lambda x: x > 1) assert len(clnd.schedules) == 2 sdl = clnd.schedules['sdl'] clnd.drop_schedule(sdl) assert len(clnd.schedules) == 1 with pytest.raises(KeyError): clnd.schedules['sdl'] # object itself continues to exists while referenced assert not sdl.is_on_duty(1) def test_tb_schedule_names(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0]) clnd.add_schedule(name=1, selector=lambda x: x > 1) assert len(clnd.schedules) == 2 assert clnd.schedules['1'].name == '1' with pytest.raises(KeyError): clnd.add_schedule(name='1', selector=lambda x: x > 2) def test_tb_bad_schedule(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0]) with pytest.raises((ValueError, AttributeError)): clnd.add_schedule(name='sdl', selector='selector') with pytest.raises(TypeError): clnd.add_schedule(name='sdl', selector=lambda x,y: x+y) class TestTimeboardWorktime(object): def test_tb_default_worktime_source(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0]) assert clnd.worktime_source == 'duration' def test_tb_set_worktime_source(self): clnd = tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0], worktime_source='labels') assert clnd.worktime_source == 'labels' def test_tb_bad_worktime_source(self): with pytest.raises(ValueError): tb.Timeboard(base_unit_freq='D', start='31 Dec 2016', end='12 Jan 2017', layout=[0, 1, 0, 0, 2, 0], worktime_source='bad_source') #TODO: test timeboards with multiplied freqs class TestTimeboardToDataFrame(object): def test_timeboard_to_dataframe(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2]) clnd.add_schedule('my_schedule', lambda x: True) df = clnd.to_dataframe() assert len(df) == 12 # we are not hardcoding the list of columns here; # however, there must be at least 5 columns: two showing the start # and the end times of workshifts, one for the labels, # and two for the schedules assert len(list(df.columns)) >=5 assert 'my_schedule' in list(df.columns) def test_timeboard_to_dataframe_selected_ws(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2]) df = clnd.to_dataframe(1, 5) assert len(df) == 5 def test_timeboard_to_dataframe_reversed_ws(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2]) # This is ok. This way an empty df for a void interval is created. df = clnd.to_dataframe(5, 1) assert df.empty def test_timeboard_to_dataframe_bad_locations(self): clnd = tb.Timeboard(base_unit_freq='D', start='01 Jan 2017', end='12 Jan 2017', layout=[0, 1, 0, 2]) with pytest.raises(AssertionError): clnd.to_dataframe(1, 12) with pytest.raises(AssertionError): clnd.to_dataframe(12, 1) with pytest.raises(AssertionError): clnd.to_dataframe(-1, 5) with pytest.raises(AssertionError): clnd.to_dataframe(5, -1)
StarcoderdataPython
1726913
import re import time from ceryle.util import StopWatch def test_stopwatch(): sw = StopWatch() sw.start() str0 = sw.str_last_lap() time.sleep(0.5) total1, lap1 = sw.elapse() str1 = sw.str_last_lap() time.sleep(0.3) total2, lap2 = sw.elapse() str2 = sw.str_last_lap() assert 0.5 <= total1 and total1 < 0.8 assert 0.5 <= lap1 and lap1 < 0.6 assert 0.8 <= total2 and total2 < 1.0 assert 0.3 <= lap2 and lap2 < 0.4 print(str0, str1, str2) assert re.match(r'^00:00.000 \(00:00\.000\)$', str0) is not None assert re.match(r'^00:00\.5[\d]{2} \(00:00\.5[\d]{2}\)$', str1) is not None assert re.match(r'^00:00\.3[\d]{2} \(00:00\.8[\d]{2}\)$', str2) is not None
StarcoderdataPython
62574
<filename>ch1/2.py import random secret = random.randint(1, 99) guess = 0 tries = 0 print("嘿,我是海盗王,我有个秘密") print("秘密是1到99间的一个数,给你6次机会猜哦") while guess != secret and tries <6: guess = int(input("输入你猜的数:")) if guess < secret: print("太小了,笨蛋") elif guess > secret: print("太大了,呆子") tries = tries +1 if guess == secret: print("你真厉害,猜对了!") else: print("你没机会了,下次好运!") print("我的秘密是:", secret)
StarcoderdataPython
160971
from collections.abc import Collection from inspect import getmembers from itertools import starmap from typing import Any from graphql import print_schema from sqlalchemy import Column, Integer, String from sqlalchemy.ext.declarative import as_declarative from apischema import Undefined, deserialize, serialize from apischema.graphql import graphql_schema from apischema.json_schema import deserialization_schema from apischema.objects import ObjectField, set_object_fields def column_field(name: str, column: Column) -> ObjectField: required = False default: Any = ... if column.default is not None: default = column.default elif column.server_default is not None: default = Undefined elif column.nullable: default = None else: required = True col_type = column.type.python_type if column.nullable: col_type = col_type | None return ObjectField(column.name or name, col_type, required, default=default) # Very basic SQLAlchemy support @as_declarative() class Base: def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) columns = getmembers(cls, lambda m: isinstance(m, Column)) if not columns: return set_object_fields(cls, starmap(column_field, columns)) class Foo(Base): __tablename__ = "foo" bar = Column(Integer, primary_key=True) baz = Column(String) foo = deserialize(Foo, {"bar": 0}) assert isinstance(foo, Foo) assert foo.bar == 0 assert serialize(Foo, foo) == {"bar": 0, "baz": None} assert deserialization_schema(Foo) == { "$schema": "http://json-schema.org/draft/2020-12/schema#", "type": "object", "properties": { "bar": {"type": "integer"}, "baz": {"type": ["string", "null"], "default": None}, }, "required": ["bar"], "additionalProperties": False, } def foos() -> Collection[Foo] | None: ... schema = graphql_schema(query=[foos]) schema_str = """\ type Query { foos: [Foo!] } type Foo { bar: Int! baz: String }""" assert print_schema(schema) == schema_str
StarcoderdataPython
4818302
name = 'adeline'
StarcoderdataPython
5011883
<filename>compare_variant_file_to_reference.py # # Copyright (c) 2018 <NAME> # This code is licensed under MIT license (see LICENSE for details). # import argparse from Bio import SeqIO import sys import vcf if __name__ == "__main__": # Parse the command line arguments. parser = argparse.ArgumentParser(description = "Check the REF column of a variant file.") parser.add_argument('--vcf', type = argparse.FileType('r'), help = "Variant file") parser.add_argument('--reference', type = argparse.FileType('r'), help = "Reference FASTA") parser.add_argument('--chr', type = str, required = False, default = None, help = "Filter by chromosome") args = parser.parse_args() # Take the first sequence. fasta_record = next(SeqIO.parse(args.reference, format = "fasta")) print("Using sequence with ID '%s' as the reference." % fasta_record.id, file = sys.stderr) reference_seq = fasta_record.seq vcf_reader = vcf.Reader(args.vcf) for row in vcf_reader: if not (args.chr is None or row.CHROM == args.chr): continue pos = row.POS actual = str(row.REF).upper() expected = str(reference_seq[pos - 1 : pos - 1 + len(actual)]).upper() if actual != expected: print("Mismatch at VCF position %d: expected '%s', got '%s'" % (pos, expected, actual), file = sys.stderr)
StarcoderdataPython
270072
from django.contrib import admin from .models import * admin.site.register(Doctor) admin.site.register(Patient) admin.site.register(Pharmacist) admin.site.register(Pathologist) admin.site.register(Appointment) admin.site.register(Medecine) # ---------------------------------------------------- # pharmacy registrations admin.site.register(specificproducts) admin.site.register(allproducts) # admin.site.register(Pharmacist) admin.site.register(Order) admin.site.register(Cart) admin.site.register(WalkinOrder) admin.site.register(WalkinCart) # pharmacy Registration over # ---------------------------------------------------- #---------------------------------------------------- #pathology registrations admin.site.register(labtest) admin.site.register(BookTest) admin.site.register(Tests) admin.site.register(AnonyTests) admin.site.register(AddTests) #pathology Registration over #----------------------------------------------------
StarcoderdataPython
8178495
<gh_stars>1-10 ami_filters = { 'id': 'image-id', 'name': 'name', 'architecture': 'architecture', 'platform': 'platform', 'owner': 'owner-id', 'public': 'is-public', 'state': 'state', } ami_distributions = { 'ubuntu': 'ubuntu/images/hvm-ssd/ubuntu-*-*{version}*-amd64-server-*', 'windows': 'Windows_Server-*{version}*-English-*-Base-20*.*.*', 'amazon': 'amzn-ami-hvm-20*.*.*-x86_64-*', } distrib_amis = { 'ubuntu': 'ami-f90a4880', 'windows': 'ami-b5530b5e', 'redhat': 'ami-c86c3f23', } def _extract_amis(self, filters=[], regions=[], return_first=False): filters.append({'Name': 'state', 'Values': ['available', 'pending']}) # Just supported x64 OS filters.append({'Name': 'architecture', 'Values': ['x86_64']}) filters.append({'Name': 'hypervisor', 'Values': ['xen']}) filters.append({'Name': 'virtualization-type', 'Values': ['hvm']}) filters.append({'Name': 'image-type', 'Values': ['machine']}) filters.append({'Name': 'root-device-type', 'Values': ['ebs']}) curRegion = self.region regions = self.parse_regions(regions) results = list() for region in regions: self.change_region(region['RegionName']) amis = self.client.describe_images(Filters=filters)['Images'] amis = self.inject_client_vars(amis) if return_first and amis: self.change_region(curRegion) return amis[0] results.extend(amis) self.change_region(curRegion) return results def get_amis_by_distribution(self, distrib, version='*', latest=False, regions=[]): ''' Get one or more Images filtering by distribution Args: distrib (str): Distribution of the image (i.e.: ubuntu) version (str): Version of the system latest (bool): True if only returns the newest item. Return: Image (lst): List with the images requested. ''' self.validate_filters(distrib, self.ami_distributions.keys()) filters = [ {'Name': 'name', 'Values': [self.ami_distributions[distrib].format(version=version)]}, {'Name': 'is-public', 'Values': ['true']} ] results = self._extract_amis(filters=filters, regions=regions) results = sorted(results, key=lambda k: k['Name']) if latest and results: return [results[-1]] return results def get_ami_by(self, filters, regions=[]): ''' Get an ami for one or more regions that matches with filter Args: filter_key (str): Name of the filter filter_value (str): Value of the filter regions (lst): Regions where to look for this element Return: Image (dict): Image requested ''' return self.get_amis_by(filters=filters, regions=regions, return_first=True) def get_amis_by(self, filters, regions=[], return_first=False): ''' Get list of amis for one or more regions that matches with filter Args: filter_key (str): Name of the filter filter_value (str): Value of the filter regions (lst): Regions where to look for this element return_first (bool): True if return first result Return: Images (lst): List of requested images ''' formatted_filters = self.validate_filters(filters, self.ami_filters) return self._extract_amis(filters=formatted_filters, regions=regions, return_first=return_first) def get_amis(self, regions=[]): ''' Get all images Args: regions (lst): Regions where to look for this element Returns: Images (lst): List of all images ''' return self._extract_amis(regions=regions)
StarcoderdataPython
8079769
<filename>services/consuming_services_apis/consuming_services_apis/views.py from pyramid.view import view_config @view_config(route_name='home', renderer='templates/index.pt') def my_view(_): return {}
StarcoderdataPython
6674364
a = 1; b = 2 # a note about b
StarcoderdataPython
1984709
<filename>auto_label.py import sys import argparse from yolo_autolabel import YOLO, detect_video from PIL import Image import os import glob from xml.dom.minidom import Document import numpy as np def make_xml(boxes, classes, imagesize, name, class_name): doc = Document() # 创建DOM文档对象 DOCUMENT = doc.createElement('annotation') # 创建根元素 doc.appendChild(DOCUMENT) #folder folder = doc.createElement('folder') DOCUMENT.appendChild(folder) folder_txt = doc.createTextNode('0') folder.appendChild(folder_txt) filename = doc.createElement('filename') DOCUMENT.appendChild(filename) filename_txt = doc.createTextNode(name+'.jpg') filename.appendChild(filename_txt) path = doc.createElement('path') DOCUMENT.appendChild(path) path_txt = doc.createTextNode(name + '.jpg') path.appendChild(path_txt) #source source = doc.createElement('source') DOCUMENT.appendChild(source) database = doc.createElement('database') source.appendChild(database) database_txt = doc.createTextNode('Unknown') database.appendChild(database_txt) #size size = doc.createElement('size') DOCUMENT.appendChild(size) width = doc.createElement('width') size.appendChild(width) width_txt = doc.createTextNode(str(imagesize[0])) width.appendChild(width_txt) heigth = doc.createElement('height') size.appendChild(heigth) heigth_txt = doc.createTextNode(str(imagesize[1])) heigth.appendChild(heigth_txt) depth = doc.createElement('depth') size.appendChild(depth) depth_txt = doc.createTextNode('3') depth.appendChild(depth_txt) #segmented segmented = doc.createElement('segmented') DOCUMENT.appendChild(segmented) segmented_txt = doc.createTextNode('0') segmented.appendChild(segmented_txt) for i, c in reversed(list(enumerate(classes))): object = doc.createElement('object') DOCUMENT.appendChild(object) #name classname = doc.createElement('name') object.appendChild(classname) classname_txt = doc.createTextNode(class_name[c]) classname.appendChild(classname_txt) #pose pose = doc.createElement('pose') object.appendChild(pose) pose_txt = doc.createTextNode('Unspecified') pose.appendChild(pose_txt) # truncated truncated = doc.createElement('truncated') object.appendChild(truncated) truncated_txt = doc.createTextNode('0') truncated.appendChild(truncated_txt) # difficult difficult = doc.createElement('difficult') object.appendChild(difficult) difficult_txt = doc.createTextNode('0') difficult.appendChild(difficult_txt) bndbox = doc.createElement('bndbox') object.appendChild(bndbox) box = boxes[i] top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(imagesize[1], np.floor(bottom + 0.5).astype('int32')) right = min(imagesize[0], np.floor(right + 0.5).astype('int32')) xmin = doc.createElement('xmin') bndbox.appendChild(xmin) xmin_txt = doc.createTextNode(str(left)) xmin.appendChild(xmin_txt) ymin = doc.createElement('ymin') bndbox.appendChild(ymin) ymin_txt = doc.createTextNode(str(top)) ymin.appendChild(ymin_txt) xmax = doc.createElement('xmax') bndbox.appendChild(xmax) xmax_txt = doc.createTextNode(str(right)) xmax.appendChild(xmax_txt) ymax = doc.createElement('ymax') bndbox.appendChild(ymax) ymax_txt = doc.createTextNode(str(bottom)) ymax.appendChild(ymax_txt) return doc def detect_img_write_xml(yolo): path = "/home/lzb/remotedata/yolov3/VOCdevkit/VOC2007/SegmentationObject/*.jpg" outdir = "/home/lzb/remotedata/yolov3/VOCdevkit/VOC2007/SegmentationClass" for jpgfile in glob.glob(path): name = jpgfile.split('/')[-1].split('.')[0] img = Image.open(jpgfile) boxes, classes, imagesize, class_name = yolo.detect_image(img) doc = make_xml(boxes, classes, imagesize, name, class_name) with open(outdir+'/'+name+'.xml', 'w') as f: doc.writexml(f,indent = '\t',newl = '\n', addindent = '\t',encoding='utf-8') yolo.close_session() FLAGS = None if __name__ == '__main__': # class YOLO defines the default value, so suppress any default here parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) ''' Command line options ''' parser.add_argument( '--model', type=str, help='path to model weight file, default ' + YOLO.get_defaults("model_path") ) parser.add_argument( '--anchors', type=str, help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path") ) parser.add_argument( '--classes', type=str, help='path to class definitions, default ' + YOLO.get_defaults("classes_path") ) parser.add_argument( '--gpu_num', type=int, help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num")) ) parser.add_argument( '--image', default=False, action="store_true", help='Image detection mode, will ignore all positional arguments' ) ''' Command line positional arguments -- for video detection mode ''' parser.add_argument( "--input", nargs='?', type=str,required=False,default='./path2your_video', help = "Video input path" ) parser.add_argument( "--output", nargs='?', type=str, default="", help = "[Optional] Video output path" ) FLAGS = parser.parse_args() if FLAGS.image: """ Image detection mode, disregard any remaining command line arguments """ print("Image detection mode") if "input" in FLAGS: print(" Ignoring remaining command line arguments: " + FLAGS.input + "," + FLAGS.output) detect_img_write_xml(YOLO(**vars(FLAGS))) print('Start write info to xml...') elif "input" in FLAGS: detect_video(YOLO(**vars(FLAGS)), FLAGS.input, FLAGS.output) else: print("Must specify at least video_input_path. See usage with --help.")
StarcoderdataPython
7567
from pydantic import BaseModel from tracardi.domain.entity import Entity from tracardi.domain.scheduler_config import SchedulerConfig from tracardi.domain.resource import ResourceCredentials from tracardi.service.storage.driver import storage from tracardi.service.plugin.runner import ActionRunner from tracardi.service.plugin.domain.register import Plugin, Spec, MetaData, Form, FormGroup, FormField, FormComponent from tracardi.service.plugin.domain.result import Result class Configuration(BaseModel): source: Entity event_type: str properties: str = "{}" postpone: str def validate(config: dict) -> Configuration: return Configuration(**config) class SchedulerPlugin(ActionRunner): @staticmethod async def build(**kwargs) -> 'SchedulerPlugin': config = validate(kwargs) resource = await storage.driver.resource.load(config.source.id) plugin = SchedulerPlugin(config, resource.credentials) return plugin def __init__(self, config: Configuration, credentials: ResourceCredentials): self.config = config self.credentials = credentials.get_credentials( self, output=SchedulerConfig) # type: SchedulerConfig async def run(self, payload): run_in_background = True if not run_in_background: return Result(port="response", value=None) else: return Result(port="response", value=None) def register() -> Plugin: return Plugin( start=False, spec=Spec( module='tracardi.process_engine.action.v1.pro.scheduler.plugin', className='SchedulerPlugin', inputs=["payload"], outputs=['response', 'error'], version='0.6.2', license="MIT", author="<NAME>", init= { "source": { "id": "" }, "event_type": "", "properties": "{}", "postpone": "+1m" } ), metadata=MetaData( name='Schedule event', desc='This plugin schedules events', icon='calendar', group=["Time"], tags=["Pro", "Scheduler"], pro=True, ) )
StarcoderdataPython
313450
<reponame>yeyeto2788/foldercompare """Test the foldercompare.py module.""" import filecmp import os import shutil import unittest import foldercompare class TestRecursiveDircmpReport(unittest.TestCase): """Test the _recursive_dircmp function.""" def setUp(self): """Create two folders for testing.""" self.folder1 = os.path.join('tests', 'results1') self.folder2 = os.path.join('tests', 'results2') os.mkdir(self.folder1) os.mkdir(self.folder2) @unittest.skip('Fails half the time -- enough to avoid same_files feature') def test_dircmp_diff_files_accuracy(self): """Different files are identified as such using filecmp.dircmp()""" file1 = os.path.join(self.folder1, 'hello_world.txt') with open(file1, 'w') as file: file.write('foo') file2 = os.path.join(self.folder2, 'hello_world.txt') with open(file2, 'w') as file: file.write('bar') comparison = filecmp.dircmp(self.folder1, self.folder2) self.assertTrue(comparison.diff_files == ['hello_world.txt']) self.assertTrue(comparison.same_files == []) def test_file_in_both(self): """Classifies two identical files as the same.""" file1 = os.path.join(self.folder1, 'hello_world.txt') with open(file1, 'w') as file: file.write('hello world') file2 = os.path.join(self.folder2, 'hello_world.txt') with open(file2, 'w') as file: file.write('hello world') report = foldercompare._recursive_dircmp(self.folder1, self.folder2) expected = {'both': ['./hello_world.txt'], 'right': [], 'left': []} self.assertEqual(report, expected) def test_file_only_in_left(self): """Classifies file only in one directory.""" file1 = os.path.join(self.folder1, 'hello_world.txt') with open(file1, 'w') as file: file.write('hello world') report = foldercompare._recursive_dircmp(self.folder1, self.folder2) expected = {'left': ['./hello_world.txt'], 'right': [], 'both': []} self.assertEqual(report, expected) def test_subdirectory_only_in_left(self): """Classifies subdirectory with file only in left folder.""" subdir1 = os.path.join(self.folder1, 'subdir') os.mkdir(subdir1) file1 = os.path.join(subdir1, 'hello_world.txt') with open(file1, 'w') as file: file.write('hello world') report = foldercompare._recursive_dircmp(self.folder1, self.folder2) expected = {'left': ['./subdir'], 'right': [], 'both': []} self.assertEqual(report, expected) def test_subdir_file_only_in_left(self): """Classifies file only in one subdirectory.""" subdir1 = os.path.join(self.folder1, 'subdir') os.mkdir(subdir1) subdir2 = os.path.join(self.folder2, 'subdir') os.mkdir(subdir2) file1 = os.path.join(subdir1, 'hello_world.txt') with open(file1, 'w') as file: file.write('hello world') report = foldercompare._recursive_dircmp(self.folder1, self.folder2) expected = {'left': ['./subdir/hello_world.txt'], 'right': [], 'both': []} self.assertEqual(report, expected) def tearDown(self): """Delete test folders after each run.""" shutil.rmtree(self.folder1) shutil.rmtree(self.folder2) class TestCompareRegression(unittest.TestCase): """Test the compare function with known inputs and expected outputs.""" def setUp(self): """Set test input data and expected control outputs.""" self.folder1 = os.path.join('.', 'tests', 'control_data_1', 'Data Folder') self.folder2 = os.path.join('.', 'tests', 'control_data_2', 'Data Folder') self.resultfile = os.path.join('tests', 'results') self.controlresults = os.path.join('tests', 'control_results') def test_create_txt(self): """Can create a single TXT file, identical to the control.""" foldercompare.compare(self.folder1, self.folder2, self.resultfile, output_txt=True) result = filecmp.cmp(self.resultfile + '.txt', self.controlresults + '.txt', shallow=False) self.assertTrue(result) def test_create_csv(self): """Can create a single CSV file, identical to the control.""" foldercompare.compare(self.folder1, self.folder2, self.resultfile, output_csv=True) result = filecmp.cmp(self.resultfile + '.csv', self.controlresults + '.csv', shallow=False) self.assertTrue(result) def test_create_both(self): """Can create both files at once, identical to the control.""" foldercompare.compare(self.folder1, self.folder2, self.resultfile, output_txt=True, output_csv=True) result = filecmp.cmp(self.resultfile + '.txt', self.controlresults + '.txt', shallow=False) self.assertTrue(result) result = filecmp.cmp(self.resultfile + '.csv', self.controlresults + '.csv', shallow=False) self.assertTrue(result) def tearDown(self): """Delete test files after each run.""" try: os.remove(self.resultfile + '.txt') except FileNotFoundError: pass try: os.remove(self.resultfile + '.csv') except FileNotFoundError: pass if __name__ == '__main__': unittest.main()
StarcoderdataPython
9750186
<filename>QuickDraw.py import random import math print("") print("'WELCOME TO QUICKDRAW'") print("") Hand = [] DiscardPile = [] CardsDeck = [ "Ace of Spades", "Ace of Hearts", "Ace of Clubs", "Ace of Diamonds", "Deuce of Spades", "Deuce of Hearts", "Deuce of Clubs", "Deuce of Diamonds", "Three of Spades", "Three of Hearts", "Three of Clubs", "Three of Diamonds", "Four of Spades", "Four of Hearts", "Four of Clubs", "Four of Diamonds", "Five of Spades", "Five of Hearts", "Five of Clubs", "Five of Diamonds", "Six of Spades", "Six of Hearts", "Six of Clubs", "Six of Diamonds", "Seven of Spades", "Seven of Hearts", "Seven of Clubs", "Seven of Diamonds", "Eight of Spades", "Eight of Hearts", "Eight of Clubs", "Eight of Diamonds", "Nine of Spades", "Nine of Hearts", "Nine of Clubs", "Nine of Diamonds", "Ten of Spades", "Ten of Hearts", "Ten of Clubs", "Ten of Diamonds", "Jack of Spades", "Jack of Hearts", "Jack of Clubs", "Jack of Diamonds", "Queen of Spades", "Queen of Hearts", "Queen of Clubs", "Queen of Diamonds", "King of Spades", "King of Hearts", "King of Clubs", "King of Diamond", ] print("Cards and Their Points") print("") print("Ace = 1 Point. Deuce = 2 Points. Numbered Cards = Points By Number. Jack = 11 Points. Queen = 12 Points. King = 13 Points.") print("") print("How to Win:") print("") print("Two Ways To Win!! 1st Winner is Declared by Traditional Poker Rules. 2nd Winner is Declared by Most Points Held. Winners split the earnings.") print("") print("How to Play:") print("") print("Begin with 5 Cards. You may pay a chip for a new deal, twice. You may pay a chip for up to 6 New Cards, drawn one at a time, taking turns. Each turn you may pay any number of chips for an equal number of cards from which you choose only one. The last round is the 'Draw' round. Bet chips to make your opponent fold. Fold to protect yourself from losing chips. ") print("") Shuffled = CardsDeck print("Please shuffle the deck...") #user input #insert delay print("") print("'Thank you!'") #print("'Referee Check!'") # for testing #Referee = print(Shuffled) # for testing print("") print("Let's Deal, Shall We?") #user input #insert delay print("") TriesLeft = 3 def Shuffle(): random.shuffle(Shuffled) Shuffle() def Deal(): NewList = Shuffled global TriesLeft TriesLeft = TriesLeft global Hand Hand = Hand global DiscardPile DiscardPile= DiscardPile Hand.append(NewList[0]) Hand.append(NewList[1]) Hand.append(NewList[2]) Hand.append(NewList[3]) Hand.append(NewList[4]) NewList.pop(0) NewList.pop(0) NewList.pop(0) NewList.pop(0) NewList.pop(0) Shuffle() #print(len(Hand)) print("") print(Hand) global Like Like = False print(f"Tries Left = {TriesLeft -1}") TriesLeft -=1 if TriesLeft >=1: print("Do You Like This Hand?") #user input print("Look at your Hand") Deal() if TriesLeft >= 0: Like = True print("") def Reconstitute(): DiscardPile.append(Hand[0:5]) Hand.pop(0) Hand.pop(0) Hand.pop(0) Hand.pop(0) Hand.pop(0) if TriesLeft >=0: Reconstitute() Deal() #print(len(Hand)) print("Deal Again") Reconstitute() Deal() elif TriesLeft < 0: print("") DiscardPile.append(Hand[0:5]) Hand.pop(0) Hand.pop(0) Hand.pop(0) Hand.pop(0) Hand.pop(0) print("Deal Again") print(Hand) else: print("This is Your Hand") print("") print("Choose your way to win. Points or Poker.") print("") print("Draw!!!") print("") Thumb = Hand[0] Pointer = Hand[1] Middle = Hand[2] Ring = Hand[3] Pinky = Hand[4] YourFive = [Thumb, Pointer, Middle, Ring, Pinky] DuplicateCheck = set(YourFive) print("Testing Card Positions") print(YourFive) print("") print("Reference: Script Line 118") print("") #insert user input ThumbDiscard DiscardThumb = Hand.pop(0) if DiscardThumb: Shuffled.pop(0), Hand.insert(0, Shuffled[0]) print("'Testing Thumb Discard'") print(Hand) print("") #insert user input PointerDiscard DiscardPointer = Hand.pop(1) if DiscardPointer: Shuffled.pop(0), Hand.insert(1, Shuffled[0]) print("'Testing for Duplicates in Pointer'") print(Hand) #insert user input MiddleDiscard DiscardMiddle = Hand.pop(2) if DiscardMiddle: Shuffled.pop(0), Hand.insert(2, Shuffled[0]) #insert user input RingDiscard DiscardRing = Hand.pop(3) if DiscardRing: Shuffled.pop(0), Hand.insert(3, Shuffled[0]) #insert user input PinkyDiscard DiscardPinky = Hand.pop(4) if DiscardPinky: Shuffled.pop(0), Hand.insert(4, Shuffled[0]) print("") print("Testing The Rest") print(Hand) print("") print("Testing Remaining Deck") print(Shuffled) print("") print("Testing Discard Pile") print(DiscardPile)
StarcoderdataPython
351815
<gh_stars>0 # Draw a square import turtle as t for i in range(4): t.forward(100) t.left(90)
StarcoderdataPython
1938122
<filename>tests/test_marmiton.py from recipe_scrapers.marmiton import Marmiton from tests import ScraperTest class TestMarmitonScraper(ScraperTest): scraper_class = Marmiton def test_host(self): self.assertEqual("marmiton.org", self.harvester_class.host()) def test_canonical_url(self): self.assertEqual( "https://www.marmiton.org/recettes/recette_ratatouille_23223.aspx", self.harvester_class.canonical_url(), ) def test_title(self): self.assertEqual(self.harvester_class.title(), "Ratatouille") def test_total_time(self): self.assertEqual(80, self.harvester_class.total_time()) def test_yields(self): self.assertEqual("4 personnes", self.harvester_class.yields()) def test_ingredients(self): self.assertCountEqual( [ "350 g d'aubergine", "350 g de courgette", "350 g de poivron de couleur rouge et vert", "350 g d'oignon", "500 g de tomate bien mûres", "3 gousses d'ail", "6 cuillères à soupe d'huile d'olive", "1 brin de thym", "1 feuille de laurier", "poivre", "sel", ], self.harvester_class.ingredients(), ) def test_instructions(self): return self.assertEqual( "Coupez les tomates pelées en quartiers,\n" "les aubergines et les courgettes en rondelles.\n" "Emincez les poivrons en lamelles\n" "et l'oignon en rouelles.\n" "Chauffez 2 cuillères à soupe d'huile dans une poêle\n" "et faites-y fondre les oignons et les poivrons.\n" "Lorsqu'ils sont tendres, ajoutez les tomates, l'ail haché, le thym et le laurier.\n" "Salez, poivrez et laissez mijoter doucement à couvert durant 45 minutes.\n" "Pendant ce temps, préparez les aubergines et les courgettes. " "Faites les cuire séparemment ou non dans l'huile d'olive pendant 15 minutes.\n" "Vérifiez la cuisson des légumes pour qu'ils ne soient plus fermes. " "Ajoutez les alors au mélange de tomates et prolongez la cuisson sur tout petit feu pendant 10 min.\n" "Salez et poivrez si besoin.", self.harvester_class.instructions(), ) def test_ratings(self): self.assertEqual(4.8, self.harvester_class.ratings())
StarcoderdataPython
3310559
from app.tests.v1 import utils test_utils = utils.Utils() def test_user_register(client): ''' Test user registration ''' response = client.post('api/v1/auth/user/register', json=test_utils.USER) json_data = response.get_json() assert response.status_code == 201 assert json_data['status'] == 201 assert isinstance(json_data['data'], list) assert json_data['data'][0]['message'] == 'User registered successfully' def test_user_register_without_email(client): ''' Test user registration without email ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': '', 'phone_number': test_utils.USER['phone_number'], 'is_admin': False, 'is_politician': test_utils.USER['is_politician'], 'password': test_utils.USER['password'], } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Please provide your email' def test_user_register_existing_email(client): ''' Test user registration with existing email ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': test_utils.USER['email'], 'phone_number': test_utils.USER['phone_number'], 'is_admin': False, 'is_politician': test_utils.USER['is_politician'], 'password': test_utils.USER['password'], } client.post('api/v1/auth/user/register', json=test_utils.USER) response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 409 assert json_data['status'] == 409 assert isinstance(json_data['error'], str) assert json_data['error'] == 'User already exists' def test_user_register_taken_othername(client): ''' Test user registration with taken othername ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': '<EMAIL>', 'phone_number': test_utils.USER['phone_number'], 'is_admin': False, 'is_politician': test_utils.USER['is_politician'], 'password': <PASSWORD>['password'], } client.post('api/v1/auth/user/register', json=test_utils.USER) response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 409 assert json_data['status'] == 409 assert isinstance(json_data['error'], str) assert json_data['error'] == 'The othername you chose is taken' def test_user_register_invalid_email(client): ''' Test user registration with invalid email ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': 'emailaddress', 'phone_number': test_utils.USER['phone_number'], 'is_admin': False, 'is_politician': test_utils.USER['is_politician'], 'password': <PASSWORD>['password'], } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'email is invalid' def test_user_register_invalid_number(client): ''' Test user registration with invalid number ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': test_utils.USER['email'], # phone number should be 12 digits 'phone_number': '234435', 'is_admin': False, 'is_politician': test_utils.USER['is_politician'], 'password': test_utils.USER['password'], } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'phone_number is invalid' def test_user_register_invalid_boolean_is_admin(client): ''' Test user registration with invalid type of is_admin ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': test_utils.USER['email'], 'phone_number': test_utils.USER['phone_number'], 'is_admin': 'False', 'is_politician': test_utils.USER['is_politician'], 'password': <PASSWORD>['password'], } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'is_admin needs to be boolean' def test_user_register_invalid_boolean_is_politician(client): ''' Test user registration with invalid type of is_politician ''' data = { 'firstname': test_utils.USER['firstname'], 'lastname': test_utils.USER['lastname'], 'othername': test_utils.USER['othername'], 'email': test_utils.USER['email'], 'phone_number': test_utils.USER['phone_number'], 'is_admin': test_utils.USER['is_admin'], 'is_politician': 'False', 'password': test_utils.USER['password'], } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'is_politician needs to be boolean' def test_user_register_with_empty_payload(client): ''' Test user registration with empty payload ''' data = { } response = client.post('api/v1/auth/user/register', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) def test_user_register_with_no_payload(client): ''' Test user registration with no payload ''' response = client.post('api/v1/auth/user/register') json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) def test_admin_register(client): ''' Test admin registration ''' response = client.post('api/v1/auth/user/register', json=test_utils.ADMIN) json_data = response.get_json() assert response.status_code == 201 assert json_data['status'] == 201 assert isinstance(json_data['data'], list) assert json_data['data'][0]['message'] == 'User registered successfully' def test_politician_register(client): ''' Test politician registration ''' response = client.post('api/v1/auth/user/register', json=test_utils.POLITICIAN) json_data = response.get_json() assert response.status_code == 201 assert json_data['status'] == 201 assert isinstance(json_data['data'], list) assert json_data['data'][0]['message'] == 'User registered successfully' def test_user_login(client): ''' Test user login ''' test_utils.register_user(client, 'user') data = { 'email': test_utils.USER['email'], 'password': test_utils.USER['password'] } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 200 assert json_data['status'] == 200 assert isinstance(json_data['data'], list) assert json_data['data'][0]['message'] == 'Successfull log in' assert json_data['data'][0]['auth_token'] is not None def test_user_login_invalid_credentials(client): ''' Test user login with invalid credentials ''' test_utils.register_user(client, 'user') data = { 'email': test_utils.USER['email'], 'password': '<PASSWORD>' } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 401 assert json_data['status'] == 401 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Invalid credentials' def test_user_login_with_empty_data(client): ''' Test user login with empty data ''' test_utils.register_user(client, 'user') data = { } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Provide email and password as json.' def test_user_login_without_data(client): ''' Test user login without payload ''' test_utils.register_user(client, 'user') response = client.post('api/v1/auth/user/login') json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Provide email and password as json.' def test_user_login_without_email(client): ''' Test user login without email ''' test_utils.register_user(client, 'user') data = { 'email': '', 'password': test_utils.USER['password'] } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Please provide your email' def test_user_login_without_password(client): ''' Test user login without password ''' test_utils.register_user(client, 'user') data = { 'email': test_utils.USER['email'], 'password': '' } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'Please provide your password' def test_user_login_with_invalid_email(client): ''' Test user login with invalid email ''' test_utils.register_user(client, 'user') data = { 'email': ' erw ', 'password': test_utils.USER['password'] } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'email is invalid' def test_user_login_with_invalid_password(client): ''' Test user login with invalid password ''' test_utils.register_user(client, 'user') data = { 'email': test_utils.USER['email'], 'password': ' ' } response = client.post('api/v1/auth/user/login', json=data) json_data = response.get_json() assert response.status_code == 400 assert json_data['status'] == 400 assert isinstance(json_data['error'], str) assert json_data['error'] == 'password is invalid'
StarcoderdataPython
3420218
import pandas as pd # 相对路径 df = pd.read_excel("result_data.xlsx") print(df) print(df.info()) # 显示所有行 # pd.set_option('display.max_rows', None) print(df.isnull()) print(df.dropna()) print(df.dropna(how="any")) print(df.fillna(0)) print(df.fillna({'read_num': 10})) print(df) print(df.drop_duplicates()) print(df.drop_duplicates(subset='read_num')) print(df.drop_duplicates(subset='plantform', keep='last')) print(df.dtypes) print(df['read_num'].dtypes) print(df['fans_num'].astype('float64')) df1 = pd.read_excel("demo.xlsx") print(df1) df1.columns = ['编号', '序号', '姓名', '消费金额'] print(df1) print(df1.set_index('编号'))
StarcoderdataPython
8146742
<filename>services/core-api/app/api/mines/reports/resources/mine_report_category.py import uuid from flask_restplus import Resource, reqparse, fields, inputs from app.extensions import api, db from app.api.utils.resources_mixins import UserMixin from app.api.utils.access_decorators import requires_any_of, VIEW_ALL, MINESPACE_PROPONENT from app.api.mines.reports.models.mine_report_category import MineReportCategory from app.api.utils.custom_reqparser import CustomReqparser from app.api.mines.response_models import MINE_REPORT_DEFINITION_CATEGORIES class MineReportCategoryListResource(Resource, UserMixin): @api.marshal_with(MINE_REPORT_DEFINITION_CATEGORIES, envelope='records', code=200, as_list=True) @api.doc(description='returns the report categories for possible reports.') @requires_any_of([VIEW_ALL, MINESPACE_PROPONENT]) def get(self): return MineReportCategory.get_all()
StarcoderdataPython
3233244
# -*- coding: utf-8 -*- import os import xlsxwriter def write_stats(filename, data, **kwargs): """ Write statistics to an Excel file. This function writes to an Excel file FILENAME the statistics provided in each of the dictionaries contained in DATA. The first 2 arguments must be the inputs as described below followed by keyword arguments in the format of OPTION = VALUE. Each statistic will be labeled according to the name under which it is stored in the DATA data structure, e.g. data.bias will be labeled as "bias". INPUTS: filename : name for statistics Excel file data : a dictionary containing the statistics data['stat'] : statistics, e.g. data.bias for Bias. OUTPUTS: None. LIST OF OPTIONS: A title description for each dictionary (TITLE) can be optionally provided as well as an overwrite option if the file name currently exists. title = title : title descriptor data set, e.g. 'Expt. 01.0' overwrite = boolean : true/false flag to overwrite Excel file Author: <NAME> Symplectic, LLC www.thesymplectic.com <EMAIL> Created on Dec 10, 2016 """ option = get_write_stats_options(**kwargs) # Check for existence of file if os.path.isfile(filename): if option["overwrite"]: os.remove(filename) else: ValueError("File already exists: " + filename) # Write title information to file workbook = xlsxwriter.Workbook(filename) worksheet = workbook.add_worksheet() # Write descriptive title if len(option["title"]) > 0: worksheet.write(1, 0, option["title"]) else: worksheet.write(1, 0, "Skill Metrics") # Determine number of elements in the dictionary lists and write # appropriate header worksheet.write(3, 0, "Skill Metric") ncell = len(list(data.items())[0]) - 1 for i in range(ncell): worksheet.write(3, i + 1, "Case " + str(i + 1)) # Write data of all the fields row = 4 col = 0 for key, value in data.items(): worksheet.write(row, col, key) for i, v in enumerate([value]): worksheet.write(row, col + 1 + i, v) row += 1 workbook.close() def get_write_stats_options(**kwargs): """ Get optional arguments for write_stats function. Retrieves the keywords supplied to the WRITE_STATS function (**KWARGS), and returns the values in a OPTION dicitonary. Default values are assigned to selected optional arguments. The function will terminate with an error if an unrecognized optional argument is supplied. INPUTS: **kwargs : keyword argument list OUTPUTS: option : data structure containing option values. option['title'] : title descriptor for data set. option['overwrite'] : boolean to overwrite Excel file. LIST OF OPTIONS: A title description for each dataset TITLE can be optionally provided as well as an overwrite option if the file name currently exists. title = title : title descriptor for each data set in data, e.g. 'Expt. 01.0' overwrite = boolean : true/false flag to overwrite Excel file Author: <NAME> Acorn Science & Innovation <EMAIL> Created on Dec 10, 2016 @author: rochfordp """ from . import check_on_off nargin = len(kwargs) # Set default parameters option = {} option["title"] = "" option["overwrite"] = False if nargin == 0: # No options requested, so return with only defaults return option # Load custom options, storing values in option data structure # Check for valid keys and values in dictionary for optname, optvalue in kwargs.items(): optname = optname.lower() if optname not in option: raise ValueError("Unrecognized option: " + optname) # Replace option value with that from arguments option[optname] = optvalue # Check values for specific options if optname == "overwrite": option["overwrite"] = check_on_off(option["overwrite"]) return option
StarcoderdataPython
12845869
<filename>bot.py import urllib from pyrogram import Client, filters from pyrogram.types import (InlineKeyboardButton, InlineKeyboardMarkup, InlineQueryResultArticle, InputTextMessageContent) from config import Config bot = Client( 'shareurl-generator', bot_token = Config.BOT_TOKEN, api_id = Config.API_ID, api_hash = Config.API_HASH ) @bot.on_message(filters.command(['start'])) def start(client, message): rep = f"**Hi {message.from_user.username}**\n\n**Am a bot to convert __text into Shareable telegram link__.**\nWorks on both **in pm and in Inline😊**\n\nClick __/help__ if needed.." message.reply_text( text=rep, quote=False, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('SOURCE', url='https://github.com/ashkar2001/shareurlbotv1')],[InlineKeyboardButton("Search Here", switch_inline_query_current_chat=""),InlineKeyboardButton("Go Inline", switch_inline_query="")], [InlineKeyboardButton('Share Me', url='https://t.me/share/url?url=%2A%2AHello%20Plox%20%F0%9F%91%8B%2A%2A%0A%0A__I%20just%20found%20a%20Bot%20to%20convert__%20%2A%2AText%20as%20a%20Shareable%20Text%20Link%2A%2A%20__format%20%F0%9F%A4%A9.%20Hope%20it%20would%20be%20very%20helpful%20for%20u%20too...%F0%9F%A4%97%F0%9F%A4%97__%0A%0A%2A%2ABot%20Link%3A%20%40ShareUrlBot%20%F0%9F%A5%B0%2A%2A')]])) @bot.on_message(filters.command(['help'])) def help(client, message): message.reply_text("**Nothing Complicated..🤓**\n\n**For PM:**\n__Send your desired text to this bot to get your link.__\n\n**For Inline Method:**\n__Type__ `@ShareUrlBot your text`\n__in any chats keyboard and hit the inline result.__", reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('SOURCE', url='https://github.com/ashkar2001/shareurlbotv1')]])) @bot.on_message(filters.command(['about'])) def about(client, message): message.reply_text(f"""**• Bot Info •** **My Name** :- `Share Url Generator` **Creator** :- @B_woy **Language** :- `Python3` **Library** :- `Pyrogram 1.2.8` **Server** :- `Heroku.com` **Build Status** :- `V 0.2` **• User Info •** **Name** :- `{message.from_user.first_name} {message.from_user.last_name}` **ID** :- `{message.from_user.id}` **Username** :- @{message.from_user.username} **DC ID** :- `{message.from_user.dc_id}`""", reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('SOURCE', url = 'https://github.com/ashkar2001/shareurlbotv1')]])) @bot.on_message(filters.text) def shareurl(client, message): query = message.text url = urllib.parse.quote(query) rpl = f"https://t.me/share/url?url={url}" rslt = f"""**Click to CopY ⬇️⬇️** \n\n```{rpl}```""" message.reply_text(text=rslt, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('Click to Try on This Link ⬆️⬆️', url=f'{rpl}')]])) @bot.on_inline_query() def inline(client, message): query = message.query.lower() if query == "": result= [InlineQueryResultArticle(title = "Help !!", reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton("Search Here", switch_inline_query_current_chat=""),InlineKeyboardButton("Go Inline", switch_inline_query="")]]), description ="How t0 usE meH !!", thumb_url="https://telegra.ph/file/99d8f16a777c2ee2781c1.jpg", input_message_content = InputTextMessageContent(message_text ="**Nothing Complicated..**🤓\n\nType `@ShareUrlBot your text` \nin any chats keyboard and hit the inline result.\n\nNote: __U can also use Me in PM!__")) ] message.answer(result) return else: url = urllib.parse.quote(query) rpl = f"https://t.me/share/url?url={url}" rslt = f"""**Click to CopY⬇️⬇️** \n\n```{rpl}```""" result = [InlineQueryResultArticle(title = f'{query}', description =f'{rpl}', reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton('Click to Try on This linK ⬆️⬆️', url=f'{rpl}')], [InlineKeyboardButton("Search Again", switch_inline_query_current_chat=""),InlineKeyboardButton("Go Inline", switch_inline_query="")]]), input_message_content = InputTextMessageContent(message_text = rslt)) ] message.answer(result) bot.run()
StarcoderdataPython
259193
<filename>lib/gobbet/wordlist.py from collections import Counter, defaultdict def pairwise(a): return zip(a, a[1::]) class Wordlist(Counter): def bigrams(self): bigrams = defaultdict(set) for word in self.keys(): for a,b in pairwise(word): bigrams[a+b].add(word) return bigrams def filter_popularity(self, threshold=3): return Wordlist({x: count for x, count in self.items() if count >= threshold}) def filter_length(self, threshold=3): return Wordlist({x: count for x, count in self.items() if len(x) >= threshold}) def filter_unicodes(self, codepoint_ranges): def _included_letter(l): return any(ord(l) in r for r in codepoint_ranges) def _included(word): return all(_included_letter(l) for l in word) return Wordlist({x: count for x, count in self.items() if _included(x)})
StarcoderdataPython
6500326
<gh_stars>0 # Copyright (c) 2021 IBM Corp. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handle direct i/o reading and writing controls as markdown.""" import copy import logging import pathlib import re from typing import Any, Dict, List, Optional, Tuple, Union import frontmatter import trestle.oscal.catalog as cat import trestle.oscal.ssp as ossp from trestle.core import const from trestle.core import generators as gens from trestle.core.err import TrestleError from trestle.core.markdown.markdown_api import MarkdownAPI from trestle.core.markdown.md_writer import MDWriter from trestle.core.utils import spaces_and_caps_to_snake from trestle.oscal import common from trestle.oscal import profile as prof logger = logging.getLogger(__name__) class ControlIOWriter(): """Class write controls as markdown.""" def __init__(self): """Initialize the class.""" self._md_file: Optional[MDWriter] = None # Start of section to write controls to markdown @staticmethod def _wrap_label(label: str): l_side = '\[' r_side = '\]' wrapped = '' if label == '' else f'{l_side}{label}{r_side}' return wrapped @staticmethod def _get_label(part: common.Part) -> str: # get the label from the props of a part if part.props is not None: for prop in part.props: if prop.name == 'label': return prop.value.strip() return '' def _get_part(self, part: common.Part, item_type: str, skip_id: Optional[str]) -> List[Union[str, List[str]]]: """ Find parts with the specified item type, within the given part. For a part in a control find the parts in it that match the item_type Return list of string formatted labels and associated descriptive prose """ items = [] if part.name in ['statement', item_type]: # the options here are to force the label to be the part.id or the part.label # the label may be of the form (a) while the part.id is ac-1_smt.a.1.a # here we choose the latter and extract the final element label = part.id.split('.')[-1] wrapped_label = self._wrap_label(label) pad = '' if wrapped_label == '' or not part.prose else ' ' prose = '' if part.prose is None else part.prose # top level prose has already been written out, if present # use presence of . in id to tell if this is top level prose if part.id != skip_id: items.append(f'{wrapped_label}{pad}{prose}') if part.parts: sub_list = [] for prt in part.parts: sub_list.extend(self._get_part(prt, item_type, skip_id)) sub_list.append('') items.append(sub_list) return items def _add_part_and_its_items(self, control: cat.Control, name: str, item_type: str) -> None: """For a given control add its one statement and its items to the md file after replacing params.""" items = [] if control.parts: for part in control.parts: if part.name == name: # If the part has prose write it as a raw line and not list element skip_id = part.id if part.prose: # need to avoid split lines in statement items self._md_file.new_line(part.prose.replace('\n', ' ')) items.append(self._get_part(part, item_type, skip_id)) # unwrap the list if it is many levels deep while not isinstance(items, str) and len(items) == 1: items = items[0] self._md_file.new_paragraph() self._md_file.new_list(items) def _add_yaml_header(self, yaml_header: Optional[Dict]) -> None: if yaml_header: self._md_file.add_yaml_header(yaml_header) @staticmethod def _gap_join(a_str: str, b_str: str) -> str: a_clean = a_str.strip() b_clean = b_str.strip() if not b_clean: return a_clean gap = '\n' if a_clean else '' return a_clean + gap + b_clean def _add_control_statement(self, control: cat.Control, group_title: str) -> None: """Add the control statement and items to the md file.""" self._md_file.new_paragraph() title = f'{control.id} - \[{group_title}\] {control.title}' self._md_file.new_header(level=1, title=title) self._md_file.new_header(level=2, title='Control Statement') self._md_file.set_indent_level(-1) self._add_part_and_its_items(control, 'statement', 'item') self._md_file.set_indent_level(-1) def _add_control_objective(self, control: cat.Control) -> None: if control.parts: for part in control.parts: if part.name == 'objective': self._md_file.new_paragraph() self._md_file.new_header(level=2, title='Control Objective') self._md_file.set_indent_level(-1) self._add_part_and_its_items(control, 'objective', 'objective') self._md_file.set_indent_level(-1) return @staticmethod def _get_control_section_part(part: common.Part, section: str) -> str: """Get the prose for a named section in the control.""" prose = '' if part.name == section and part.prose is not None: prose = ControlIOWriter._gap_join(prose, part.prose) if part.parts: for sub_part in part.parts: prose = ControlIOWriter._gap_join(prose, ControlIOWriter._get_control_section_part(sub_part, section)) return prose @staticmethod def _get_control_section(control: cat.Control, section: str) -> str: prose = '' if control.parts: for part in control.parts: prose = ControlIOWriter._gap_join(prose, ControlIOWriter._get_control_section_part(part, section)) return prose @staticmethod def _find_section_info(part: common.Part, section_list: List[str]): """Find section not in list.""" if part.prose and part.name not in section_list: return part.id, part.name if part.parts: for part in part.parts: id_, name = ControlIOWriter._find_section_info(part, section_list) if id_: return id_, name return '', '' @staticmethod def _find_section(control: cat.Control, section_list: List[str]) -> Tuple[str, str]: """Find next section not in list.""" if control.parts: for part in control.parts: id_, name = ControlIOWriter._find_section_info(part, section_list) if id_: return id_, name return '', '' @staticmethod def _get_section(control: cat.Control, section_list: List[str]) -> Tuple[str, str, str]: """Get sections that are not in the list.""" id_, name = ControlIOWriter._find_section(control, section_list) if id_: return id_, name, ControlIOWriter._get_control_section(control, name) return '', '', '' def _add_sections(self, control: cat.Control) -> None: """Add the extra control sections after the main ones.""" skip_section_list = ['statement', 'item', 'objective'] while True: name, id_, prose = self._get_section(control, skip_section_list) if not name: return if prose: skip_section_list.append(id_) if self._sections and id_ in self._sections: id_ = self._sections[id_] self._md_file.new_header(level=2, title=f'Control {id_}') self._md_file.new_line(prose) self._md_file.new_paragraph() def _insert_existing_text(self, part_label: str, existing_text: Dict[str, List[str]]) -> None: """Insert text captured in the previous markdown and reinsert to avoid overwrite.""" if part_label in existing_text: self._md_file.new_paragraph() for line in existing_text[part_label]: self._md_file.new_line(line) def _add_response(self, control: cat.Control, existing_text: Dict[str, List[str]]) -> None: """Add the response request text for all parts to the markdown along with the header.""" self._md_file.new_hr() self._md_file.new_paragraph() self._md_file.new_header(level=2, title=f'{const.SSP_MD_IMPLEMENTATION_QUESTION}') # if the control has no parts written out then enter implementation in the top level entry # but if it does have parts written out, leave top level blank and provide details in the parts # Note that parts corresponding to sections don't get written out here so a check is needed did_write_part = False if control.parts: for part in control.parts: if part.parts: if part.name == 'statement': for prt in part.parts: if prt.name != 'item': continue if not did_write_part: self._md_file.new_line(const.SSP_MD_LEAVE_BLANK_TEXT) # insert extra line to make mdformat happy self._md_file._add_line_raw('') did_write_part = True self._md_file.new_hr() part_label = self._get_label(prt) # if no label guess the label from the sub-part id if not part_label: part_label = prt.id.split('.')[-1] self._md_file.new_header(level=2, title=f'Implementation {part_label}') # don't write out the prompt for text if there is some already there if part_label not in existing_text: self._md_file.new_line(f'{const.SSP_ADD_IMPLEMENTATION_FOR_ITEM_TEXT} {prt.id}') self._insert_existing_text(part_label, existing_text) self._md_file.new_paragraph() if not did_write_part: self._md_file.new_line(f'{const.SSP_ADD_IMPLEMENTATION_FOR_CONTROL_TEXT} {control.id}') self._md_file.new_hr() @staticmethod def _get_adds(control_id: str, profile: prof.Profile) -> List[Tuple[str, str]]: adds = [] if profile and profile.modify and profile.modify.alters: for alter in profile.modify.alters: if alter.control_id == control_id and alter.adds: for add in alter.adds: if add.parts: for part in add.parts: if part.prose: adds.append((part.name, part.prose)) return adds def _add_additional_content(self, control: cat.Control, profile: prof.Profile) -> None: adds = ControlIOWriter._get_adds(control.id, profile) has_content = len(adds) > 0 self._md_file.new_header(level=1, title='Editable Content') self._md_file.new_line('<!-- Make additions and edits below -->') self._md_file.new_line( '<!-- The above represents the contents of the control as received by the profile, prior to additions. -->' # noqa E501 ) self._md_file.new_line( '<!-- If the profile makes additions to the control, they will appear below. -->' # noqa E501 ) self._md_file.new_line( '<!-- The above may not be edited but you may edit the content below, and/or introduce new additions to be made by the profile. -->' # noqa E501 ) self._md_file.new_line( '<!-- The content here will then replace what is in the profile for this control, after running profile-assemble. -->' # noqa E501 ) if has_content: self._md_file.new_line( '<!-- The added parts in the profile for this control are below. You may edit them and/or add new ones. -->' # noqa E501 ) else: self._md_file.new_line( '<!-- The current profile has no added parts for this control, but you may add new ones here. -->' ) self._md_file.new_line('<!-- Each addition must have a heading of the form ## Control my_addition_name -->') self._md_file.new_line( '<!-- See https://ibm.github.io/compliance-trestle/tutorials/ssp_profile_catalog_authoring/ssp_profile_catalog_authoring for guidance. -->' # noqa E501 ) # next is to make mdformat happy self._md_file._add_line_raw('') for add in adds: name, prose = add self._md_file.new_header(level=2, title=f'Control {name}') self._md_file.new_paraline(prose) @staticmethod def get_part_prose(control: cat.Control, part_name: str) -> str: """Get the prose for a named part.""" prose = '' if control.parts: for part in control.parts: prose += ControlIOWriter._get_control_section_part(part, part_name) return prose.strip() @staticmethod def merge_dicts_deep(dest: Dict[Any, Any], src: Dict[Any, Any]) -> None: """ Merge dict src into dest in a deep manner and handle lists. All contents of dest are retained and new values from src do not change dest. But any new items in src are added to dest. This changes dest in place. """ for key in src.keys(): if key in dest: if isinstance(dest[key], dict) and isinstance(src[key], dict): ControlIOWriter.merge_dicts_deep(dest[key], src[key]) elif isinstance(dest[key], list): # grow dest list for the key by adding new items from src if isinstance(src[key], list): try: # Simple types (e.g. lists of strings) will get merged neatly missing = set(src[key]) - set(dest[key]) dest[key].extend(missing) except TypeError: # This is a complex type - use simplistic safe behaviour logger.debug('Ignoring complex types within lists when merging dictionaries.') else: if src[key] not in dest[key]: dest[key].append(src[key]) elif isinstance(src[key], list): dest[key] = [dest[key]] dest[key].extend(src[key]) # if the item is in both, leave dest as-is and ignore the src value else: # if the item was not already in dest, add it from src dest[key] = src[key] def write_control( self, dest_path: pathlib.Path, control: cat.Control, group_title: str, yaml_header: Optional[Dict], sections: Optional[Dict[str, str]], additional_content: bool, prompt_responses: bool, profile: Optional[prof.Profile], header_dont_merge: bool ) -> None: """ Write out the control in markdown format into the specified directory. Args: dest_path: Path to the directory where the control will be written control: The control to write as markdown group_title: Title of the group containing the control yaml_header: Optional dict to be written as markdown yaml header sections: Optional string lookup dict mapping section abbrev. to pretty version for display additional_content: Should the additional content be printed corresponding to profile adds prompt_responses: Should the markdown include prompts for implementation detail responses profile: Profile containing the adds making up additional content Returns: None Notes: The filename is constructed from the control's id, so only the markdown directory is required. If a yaml header is present in the file it is merged with the optional provided header. The header in the file takes precedence over the provided one. """ control_file = dest_path / (control.id + '.md') existing_text, header = ControlIOReader.read_all_implementation_prose_and_header(control_file) self._md_file = MDWriter(control_file) self._sections = sections # Need to merge any existing header info with the new one. Either could be empty. if header_dont_merge and not header == {}: merged_header = {} else: merged_header = copy.deepcopy(yaml_header) if yaml_header else {} if header: ControlIOWriter.merge_dicts_deep(merged_header, header) self._add_yaml_header(merged_header) self._add_control_statement(control, group_title) self._add_control_objective(control) self._add_sections(control) if prompt_responses: self._add_response(control, existing_text) if additional_content: self._add_additional_content(control, profile) self._md_file.write_out() # Start of section to read controls from markdown class ControlIOReader(): """Class to read controls from markdown.""" @staticmethod def _strip_to_make_ncname(label: str) -> str: """Strip chars to conform with NCNAME regex.""" orig_label = label # make sure first char is allowed while label and label[0] not in const.NCNAME_UTF8_FIRST_CHAR_OPTIONS: label = label[1:] new_label = label[:1] # now check remaining chars if len(label) > 1: for ii in range(1, len(label)): if label[ii] in const.NCNAME_UTF8_OTHER_CHAR_OPTIONS: new_label += label[ii] # do final check to confirm it is NCNAME match = re.search(const.NCNAME_REGEX, new_label) if not match: raise TrestleError(f'Unable to convert label {orig_label} to NCNAME format.') return new_label @staticmethod def _trim_prose_lines(lines: List[str]) -> List[str]: """ Trim empty lines at start and end of list of lines in prose. Also need to exclude the line requesting implementation prose """ ii = 0 n_lines = len(lines) while ii < n_lines and (lines[ii].strip(' \r\n') == '' or lines[ii].find(const.SSP_ADD_IMPLEMENTATION_PREFIX) >= 0): ii += 1 jj = n_lines - 1 while jj >= 0 and lines[jj].strip(' \r\n') == '': jj -= 1 if jj < ii: return '' return lines[ii:(jj + 1)] @staticmethod def _read_label_prose(ii: int, lines: List[str]) -> Tuple[int, str, List[str]]: r""" Return the found label and its corresponding list of prose lines. ii should point to start of file or directly at a new Part or control This looks for two types of reference lines: _______\n## Control label _______\n# label If a section is meant to be left blank it goes ahead and reads the comment text """ nlines = len(lines) prose_lines: List[str] = [] item_label = '' tld_prose_lines = [] if ii == 0: # read the entire control to validate contents ii, _ = ControlIOReader._read_control_statement(0, lines, 'dummy_id') ii, _ = ControlIOReader._read_sections(ii, lines, 'xx', []) # go back to beginning and seek the implementation question ii = 0 while ii < nlines and not lines[ii].strip().endswith(const.SSP_MD_IMPLEMENTATION_QUESTION): ii += 1 # skip over the question ii += 1 while -1 < ii < nlines: # start of new part if lines[ii].startswith('## Implementation'): split = lines[ii].strip().split() if len(split) < 3: raise TrestleError('Implementation line must include label') item_label = split[-1] ii += 1 if ii < nlines and lines[ii] and ControlIOReader._indent(lines[ii]) <= 0: msg = f'Implementation line for control appears broken by newline: {lines[ii]}' raise TrestleError(msg) # collect until next hrule while ii < nlines: if lines[ii].startswith(const.SSP_MD_HRULE_LINE) or lines[ii].startswith('## Implementation'): return ii, item_label, ControlIOReader._trim_prose_lines(prose_lines) prose_lines.append(lines[ii].strip()) ii += 1 elif lines[ii].startswith('# ') or lines[ii].startswith('## '): raise TrestleError(f'Improper heading level in control statement: {lines[ii]}') else: tld_prose = lines[ii].strip() if tld_prose and not tld_prose.startswith(const.SSP_ADD_IMPLEMENTATION_PREFIX): tld_prose_lines.append(tld_prose) ii += 1 # if we did not find normal labelled prose regard any found prose as top_level_description if not item_label and tld_prose_lines: return nlines, 'top_level_description', tld_prose_lines return -1, item_label, prose_lines @staticmethod def _load_control_lines(control_file: pathlib.Path) -> List[str]: lines: List[str] = [] try: content = control_file.open('r', encoding=const.FILE_ENCODING).read() except UnicodeDecodeError as e: logger.error('utf-8 decoding failed.') logger.error(f'See: {const.WEBSITE_ROOT}/errors/#utf-8-encoding-only') logger.debug(f'Underlying exception {e}') raise TrestleError('Unable to load file due to utf-8 encoding issues.') try: fm = frontmatter.loads(content) except Exception as e: logger.error(f'Error parsing yaml header from file {control_file}') logger.error('This is most likely due to an incorrect yaml structure.') logger.debug(f'Underlying error: {str(e)}') raise TrestleError(f'Failure parsing yaml header on file {control_file}') raw_lines = fm.content.split('\n') # Any fully blank lines will be retained but as empty strings lines = [line.strip('\r\n').rstrip() for line in raw_lines] clean_lines = [] # need to keep indentation and empty lines for line in lines: if line.startswith('<!--') or line.startswith('__________________'): continue clean_lines.append(line) return clean_lines @staticmethod def _read_id_group_id_title(line: str) -> Tuple[int, str, str]: """Process the line and find the control id, group id and control title.""" if line.count('-') < 2: raise TrestleError(f'Markdown control title format error: {line}') control_id = line.split()[1] first_dash = line.find('-') title_line = line[first_dash + 1:] group_start = title_line.find('\[') group_end = title_line.find('\]') if group_start < 0 or group_end < 0 or group_start > group_end: raise TrestleError(f'unable to read group and title for control {control_id}') group_id = title_line[group_start + 2:group_end].strip() control_title = title_line[group_end + 2:].strip() return control_id, group_id, control_title @staticmethod def _indent(line: str) -> int: """Measure indent of non-empty line.""" if not line: raise TrestleError('Empty line queried for indent.') if line[0] not in [' ', '-']: return -1 for ii in range(len(line)): if line[ii] == '-': return ii # if line is indented it must start with - if line[ii] != ' ': break raise TrestleError(f'List elements must start with -: {line}') @staticmethod def _get_next_line(ii: int, lines: List[str]) -> Tuple[int, str]: while ii < len(lines): line = lines[ii] if line: return ii, line ii += 1 return -1, '' @staticmethod def _get_next_indent(ii: int, lines: List[str]) -> Tuple[int, int, str]: """Seek to next content line. ii remains at line read.""" while 0 <= ii < len(lines): line = lines[ii] if line: if line[0] == '#': return ii, -1, line indent = ControlIOReader._indent(line) if indent >= 0: # extract text after - start = indent + 1 while start < len(line) and line[start] != ' ': start += 1 if start >= len(line): raise TrestleError(f'Invalid line {line}') return ii, indent, line[start:] return ii, indent, line ii += 1 return ii, -1, '' @staticmethod def _read_part_id_prose(line: str) -> Tuple[str, str]: """Extract the part id letter or number and prose from line.""" start = line.find('\\[') end = line.find('\\]') prose = line.strip() if start < 0 else line[end + 2:].strip() id_ = '' if start < 0 or end < 0 else line[start + 2:end] return id_, prose @staticmethod def _read_parts(indent: int, ii: int, lines: List[str], parent_id: str, parts: List[common.Part]) -> Tuple[int, List[common.Part]]: """If indentation level goes up or down, create new list or close current one.""" while True: ii, new_indent, line = ControlIOReader._get_next_indent(ii, lines) if new_indent < 0: # we are done reading control statement return ii, parts if new_indent == indent: # create new item part and add to current list of parts id_text, prose = ControlIOReader._read_part_id_prose(line) id_ = ControlIOReader._strip_to_make_ncname(parent_id + '.' + id_text) name = 'objective' if id_.find('_obj') > 0 else 'item' part = common.Part(name=name, id=id_, prose=prose) parts.append(part) ii += 1 elif new_indent > indent: # add new list of parts to last part and continue if len(parts) == 0: raise TrestleError(f'Improper indentation structure: {line}') ii, new_parts = ControlIOReader._read_parts(new_indent, ii, lines, parts[-1].id, []) if new_parts: parts[-1].parts = new_parts else: # return list of sub-parts return ii, parts @staticmethod def _read_control_statement(ii: int, lines: List[str], control_id: str) -> Tuple[int, common.Part]: """Search for the Control statement and read until next ## Control.""" while 0 <= ii < len(lines) and not lines[ii].startswith('## Control '): ii += 1 if ii >= len(lines): raise TrestleError(f'Control statement not found for control {control_id}') ii += 1 ii, line = ControlIOReader._get_next_line(ii, lines) if ii < 0: # This means no statement and control withdrawn (this happens in NIST catalog) return ii, None if line and line[0] == ' ' and line.lstrip()[0] != '-': # prose that appears indented but has no - : treat it as the normal statement prose line = line.lstrip() indent = -1 ii += 1 else: ii, indent, line = ControlIOReader._get_next_indent(ii, lines) statement_part = common.Part(name='statement', id=f'{control_id}_smt') # first line is either statement prose or start of statement parts if indent < 0: statement_part.prose = line ii += 1 # we have absorbed possible statement prose. # now just read parts recursively # if there was no statement prose, this will re-read the line just read # as the start of the statement's parts ii, parts = ControlIOReader._read_parts(0, ii, lines, statement_part.id, []) statement_part.parts = parts if parts else None return ii, statement_part @staticmethod def _read_control_objective(ii: int, lines: List[str], control_id: str) -> Tuple[int, Optional[common.Part]]: ii_orig = ii while 0 <= ii < len(lines) and not lines[ii].startswith('## Control Objective'): ii += 1 if ii >= len(lines): return ii_orig, None ii += 1 ii, line = ControlIOReader._get_next_line(ii, lines) if ii < 0: raise TrestleError(f'Unable to parse objective from control markdown {control_id}') if line and line[0] == ' ' and line.lstrip()[0] != '-': # prose that appears indented but has no - : treat it as the normal objective prose line = line.lstrip() indent = -1 ii += 1 else: ii, indent, line = ControlIOReader._get_next_indent(ii, lines) objective_part = common.Part(name='objective', id=f'{control_id}_obj') # first line is either objective prose or start of objective parts if indent < 0: objective_part.prose = line ii += 1 # we have absorbed possible objective prose. # now just read parts recursively # if there was no objective prose, this will re-read the line just read # as the start of the objective's parts ii, parts = ControlIOReader._read_parts(0, ii, lines, objective_part.id, []) objective_part.parts = parts if parts else None return ii, objective_part @staticmethod def _read_sections(ii: int, lines: List[str], control_id: str, control_parts: List[common.Part]) -> Tuple[int, List[common.Part]]: """Read all sections following the section separated by ## Control.""" new_parts = [] prefix = '## Control ' while 0 <= ii < len(lines): line = lines[ii] if line.startswith('## What is the solution') or line.startswith('# Editable Content'): ii += 1 continue if not line: ii += 1 continue if line and not line.startswith(prefix): # the control has no sections to read, so exit the loop break label = line[len(prefix):].lstrip() prose = '' ii += 1 while 0 <= ii < len(lines) and not lines[ii].startswith(prefix) and not lines[ii].startswith( '# Editable Content'): prose = '\n'.join([prose, lines[ii]]) ii += 1 if prose: id_ = ControlIOReader._strip_to_make_ncname(control_id + '_smt.' + label) label = ControlIOReader._strip_to_make_ncname(label) new_parts.append(common.Part(id=id_, name=label, prose=prose.strip('\n'))) if new_parts: if control_parts: control_parts.extend(new_parts) else: control_parts = new_parts if not control_parts: control_parts = None return ii, control_parts @staticmethod def read_all_implementation_prose_and_header( control_file: pathlib.Path ) -> Tuple[Dict[str, List[str]], Dict[str, List[str]]]: """ Find all labels and associated prose in this control. Args: control_file: path to the control markdown file Returns: Dictionary of part labels and corresponding prose read from the markdown file. """ if not control_file.exists(): return {}, {} md_api = MarkdownAPI() header, _ = md_api.processor.process_markdown(control_file) lines = ControlIOReader._load_control_lines(control_file) ii = 0 # keep moving down through the file picking up labels and prose responses: Dict[str, List[str]] = {} while True: ii, part_label, prose_lines = ControlIOReader._read_label_prose(ii, lines) while prose_lines and not prose_lines[0].strip(' \r\n'): del prose_lines[0] while prose_lines and not prose_lines[-1].strip(' \r\n'): del prose_lines[-1] if part_label and prose_lines: responses[part_label] = prose_lines if ii < 0: break return responses, header @staticmethod def read_implementations(control_file: pathlib.Path, component: ossp.SystemComponent) -> List[ossp.ImplementedRequirement]: """Get implementation requirements associated with given control and link to the one component we created.""" control_id = control_file.stem imp_reqs: List[ossp.ImplementedRequirement] = [] responses, _ = ControlIOReader.read_all_implementation_prose_and_header(control_file) for response in responses.items(): label = response[0] prose_lines = response[1] # create a new by-component to hold this statement by_comp: ossp.ByComponent = gens.generate_sample_model(ossp.ByComponent) # link it to the one dummy component uuid by_comp.component_uuid = component.uuid # add the response prose to the description by_comp.description = '\n'.join(prose_lines) # create a statement to hold the by-component and assign the statement id statement: ossp.Statement = gens.generate_sample_model(ossp.Statement) statement.statement_id = ControlIOReader._strip_to_make_ncname(f'{control_id}_smt.{label}') statement.by_components = [by_comp] # create a new implemented requirement linked to the control id to hold the statement imp_req: ossp.ImplementedRequirement = gens.generate_sample_model(ossp.ImplementedRequirement) imp_req.control_id = control_id imp_req.statements = [statement] imp_reqs.append(imp_req) return imp_reqs @staticmethod def _read_added_part(ii: int, lines: List[str], control_id: str) -> Tuple[int, Optional[common.Part]]: """Read a single part indicated by ## Control foo.""" while 0 <= ii < len(lines): # look for ## Control foo - then read prose line = lines[ii] prefix = '## Control ' if line: if not line.startswith(prefix): raise TrestleError(f'Unexpected line in Editable Content for control {control_id}: {line}') part_name_raw = line[len(prefix):] part_name = spaces_and_caps_to_snake(part_name_raw) prose_lines = [] ii += 1 have_content = False while 0 <= ii < len(lines): line = lines[ii] if not line.startswith(prefix): if line: have_content = True prose_lines.append(line) ii += 1 continue break if have_content: prose = '\n'.join(prose_lines) id_ = f'{control_id}_{part_name}' part = common.Part(id=id_, name=part_name, prose=prose) return ii, part ii += 1 return -1, None @staticmethod def read_new_alters(control_path: pathlib.Path) -> List[prof.Alter]: """Get parts for the markdown control corresponding to Editable Content - if any.""" control_id = control_path.stem new_alters: List[prof.Alter] = [] lines = ControlIOReader._load_control_lines(control_path) ii = 0 while 0 <= ii < len(lines): line = lines[ii] if line.startswith('# Editable Content'): ii += 1 while 0 <= ii < len(lines): ii, part = ControlIOReader._read_added_part(ii, lines, control_id) if ii < 0: break alter = prof.Alter( control_id=control_id, adds=[prof.Add(parts=[part], position='after', by_id=f'{control_id}_smt')] ) new_alters.append(alter) else: ii += 1 return new_alters @staticmethod def read_control(control_path: pathlib.Path) -> cat.Control: """Read the control markdown file.""" control = gens.generate_sample_model(cat.Control) md_api = MarkdownAPI() _, control_tree = md_api.processor.process_markdown(control_path) control_titles = list(control_tree.get_all_headers_for_level(1)) if len(control_titles) == 0: raise TrestleError(f'Control markdown: {control_path} contains no control title.') control.id, _, control.title = ControlIOReader._read_id_group_id_title(control_titles[0]) control_headers = list(control_tree.get_all_headers_for_level(2)) if len(control_headers) == 0: raise TrestleError(f'Control markdown: {control_path} contains no control statements.') control_statement = control_tree.get_node_for_key(control_headers[0]) rc, statement_part = ControlIOReader._read_control_statement( 0, control_statement.content.raw_text.split('\n'), control.id ) if rc < 0: return control control.parts = [statement_part] if statement_part else None control_objective = control_tree.get_node_for_key('## Control Objective') if control_objective is not None: _, objective_part = ControlIOReader._read_control_objective( 0, control_objective.content.raw_text.split('\n'), control.id ) if objective_part: if control.parts: control.parts.append(objective_part) else: control.parts = [objective_part] for header_key in control_tree.get_all_headers_for_key('## Control', False): if header_key not in {control_headers[0], '## Control Objective', control_titles[0]}: section_node = control_tree.get_node_for_key(header_key) _, control.parts = ControlIOReader._read_sections( 0, section_node.content.raw_text.split('\n'), control.id, control.parts ) return control
StarcoderdataPython
23486
# encoding: utf-8 ''' @author: <NAME> @contact: <EMAIL> @software: basenef @file: doc_generator.py @date: 4/13/2019 @desc: ''' import os import sys import time from getpass import getuser import matplotlib import numpy as np import json from srfnef import Image, MlemFull matplotlib.use('Agg') author = getuser() def title_block_gen(): timestamp = time.time() datetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(timestamp))) title_block = f''' # NEF AutoDoc {datetime} - Author: {author} - Generation time: {datetime} - Operation system: {sys.platform} - OS language: {os.environ['LANG']} - Duration: 0.0 sec - Total errors: 0 - Total warning: 0 - Description: ''' return title_block def _text_gen_as_table(dct: dict = {}): out_text = ['|key|values|\n|:---|:---|\n'] for key, val in dct.items(): if key == 'data': out_text.append(f"| {key} | Ignored |\n") elif not isinstance(val, dict): if isinstance(val, str) and len(val) > 30: out_text.append(f"| {key} | Ignored |\n") else: out_text.append(f"| {key} | {val} |\n") else: out_text.append(f"| {key} | {'Ignored'} |\n") return out_text def json_block_gen(dct: dict = {}): if isinstance(dct, str): dct = json.loads(dct) dct['image_config']['size'] = np.round(dct['image_config']['size'], decimals = 3).tolist() if dct['emap'] is not None: dct['emap']['size'] = np.round(dct['emap']['size'], decimals = 3).tolist() json_str = json.dumps(dct, indent = 4) out_text = "## RECON JSON\n" out_text += "```javascript\n" out_text += json_str + '\n' out_text += "```\n" return out_text def image_block_gen(img: Image, path: str): print('Generating text blocks...') from matplotlib import pyplot as plt vmax = np.percentile(img.data, 99.99) midind = [int(img.shape[i] / 2) for i in range(3)] plt.figure(figsize = (30, 10)) plt.subplot(231) plt.imshow(img.data[midind[0], :, :], vmax = vmax) plt.subplot(232) plt.imshow(img.data[:, midind[1], :].transpose(), vmax = vmax) plt.subplot(233) plt.imshow(img.data[:, :, midind[2]].transpose(), vmax = vmax) plt.subplot(234) plt.plot(img.data[midind[0], midind[1], :]) plt.subplot(235) plt.plot(img.data[midind[0], :, midind[2]]) plt.subplot(236) plt.plot(img.data[:, midind[1], midind[2]]) timestamp = time.time() datetime_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(int(timestamp))) plt.savefig(path + f'/out_img{datetime_str}.png') out_text = f'![123]({path}/out_img{datetime_str}.png)\n' return out_text def statistic_block_gen(dct: dict = {}): out_text = [] key_set = set() for name, sub_dct in dct.items(): for key, val in sub_dct.items(): if isinstance(val, str) and len(val) < 30: key_set.add(key) col_names = ['|name ', '|:---'] for key in key_set: col_names[0] += '|' + key + '' else: col_names[0] += '|\n' for _ in key_set: col_names[1] += '|:---' else: col_names[1] += '|\n' out_text += col_names for name, sub_dct in dct.items(): row = '| ' + name + ' ' for key in key_set: if key in sub_dct: row += '|' + str(sub_dct[key]) + '' else: row += '|-' else: row += '|\n' out_text += [row] return out_text def metric_block_gen(mask: np.ndarray, img: Image): from srfnef import image_metric as metric dct = {} # contrast hot dct.update( contrast_hot = {str(ind_): float(val_) for ind_, val_ in metric.contrast_hot(mask, img)}) dct.update( contrast_cold = {str(ind_): float(val_) for ind_, val_ in metric.contrast_cold(mask, img)}) dct.update(contrast_noise_ratio1 = metric.cnr1(mask, img)) dct.update(contrast_noise_ratio2 = metric.cnr2(mask, img)) dct.update(contrast_recovery_coefficiency1 = metric.crc1(mask, img)) dct.update(contrast_recovery_coefficiency2 = metric.crc2(mask, img)) dct.update(standard_error = metric.standard_error(mask, img)) dct.update(normalized_standard_error = metric.nsd(mask, img)) dct.update(standard_deviation = metric.sd(mask, img)) dct.update(background_visibility = metric.bg_visibility(mask, img)) dct.update(noise1 = metric.noise1(mask, img)) dct.update(noise2 = metric.noise2(mask, img)) dct.update(signal_noise_ratio1 = metric.snr1(mask, img)) dct.update(signal_noise_ratio2 = metric.snr2(mask, img)) dct.update(positive_deviation = metric.pos_dev(mask, img)) for ind, val in dct.items(): if not isinstance(val, dict): dct[ind] = float(val) json_str = json.dumps(dct, indent = 4) out_text = "## IMAGE METRIC JSON\n" out_text += "```javascript\n" out_text += json_str + '\n' out_text += "```\n" return out_text def doc_gen(mlem_obj: MlemFull, img: Image, path: str, filename: str = None, mask: np.ndarray = None): timestamp = time.time() datetime_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(int(timestamp))) if filename is None: filename = 'doc_gen-' + datetime_str + '.md' out_text = title_block_gen() out_text += image_block_gen(img, path) out_text += json_block_gen(mlem_obj.asdict(recurse = True)) if mask is not None: if isinstance(mask, str): mask = np.load(mask) out_text += metric_block_gen(mask, img) # out_text += statistic_block_gen(dct) with open(filename, 'w') as fout: fout.writelines(out_text) # print('Converting MD to PDF...') # import pypandoc # print(filename) # pypandoc.convert_file(filename, 'pdf', outputfile = filename + '.pdf') return filename
StarcoderdataPython
11222629
<reponame>CDL-Project-Euler/Solutions # We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; # for example, the 5-digit number, 15234, is 1 through 5 pandigital. # The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital. # Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital. # HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum. #At most 1 number can be 4 digits, so only look at up to 9876 def are_pandigital(number_list: list, digits = "123456789"): #Checks through numbers in list to see if they are pandigital total_length = 0 length_digits = len(digits) for number in number_list: total_length += len(str(number)) for digit in str(number): if digit in digits: digits = digits.replace(digit, "") else: return False if total_length != length_digits: return False return True def problem_32(): product_list = [] for a in range(9876): for b in range (a + 1, 9876): product = a*b if are_pandigital([a,b,product]): print(a,b,product) if not product in product_list: product_list.append(product) return(sum(product_list)) if __name__ == "__main__": print(problem_32())
StarcoderdataPython
8040542
# -*- coding: utf-8 -*- # Standard library imports # Third party imports # Local application / specific library imports
StarcoderdataPython
3364035
<reponame>Unviray/pun<filename>pun/__init__.py """ pun === Pun mini task to build, deploy or anything you like in your project. """ __author__ = 'Unviray' __email__ = '<EMAIL>' __version__ = '0.1.0' from .walker import cd from .core import task, run, fixture, env __all__ = ('cd', 'env', 'task', 'run', 'fixture')
StarcoderdataPython
6503429
<filename>coder_directory_api/__init__.py """ Coders Directory Api ~~~~~~~~~~~~~~~~~~~~ A flask powered rest api for managing and displaying coder data. :copyright: (c) 2017 by <NAME>. :license: MIT, see LICENSE for details. """ __version__ = '1.0.0'
StarcoderdataPython
327810
# -*- coding: utf-8 -*- """Implementation of Linear Programming IRL methods by Ng and Russell, 2000 Copyright 2018 <NAME> """ import warnings import numpy as np from cvxopt import matrix, solvers from pprint import pprint from copy import copy from irl_methods.utils import rollout def linear_programming( sorted_transition_tensor, discount_factor, *, l1_regularisation_weight=0, r_max=1.0, verbose=False ): """Linear Programming IRL by NG and Russell, 2000 Given a transition matrix T[s, a, s'] encoding a stationary deterministic policy and a discount factor, finds a reward vector R(s) for which the policy is optimal. This method implements the `Linear Programming IRL algorithm by Ng and Russell <http://ai.stanford.edu/~ang/papers/icml00-irl.pdf>. See <https://www.inf.ed.ac.uk/teaching/courses/rl/slides17/8_IRL.pdf> for an accessible overview. TODO: Adjust L1 norm constraint generation to allow negative rewards in the final vector. Args: sorted_transition_tensor (numpy array): A sorted transition matrix T[s, a, s'] encoding a stationary deterministic policy. The structure must be such that the 0th action T[:, 0, :] corresponds to the expert policy, and T[:, i, :], i != 0 corresponds to the ith non-expert action at each state. discount_factor (float): The expert's discount factor. Must be in the range [0, 1). l1_regularisation_weight (float): L1 norm regularization weight for the LP optimisation objective function r_max (float): Maximum reward value verbose (bool): Print progress information Returns: (numpy array): The reward vector for which the given policy is optimal, and (dict): A result object from the LP optimiser """ # Measure size of state and action sets n = sorted_transition_tensor.shape[0] k = sorted_transition_tensor.shape[1] if verbose: print("Vanilla Linear Programming IRL") print( "num_states={:d}, num_actions={:d}, discount_factor={:.3f}, " "l1_regularisation_weight={:.3f}, r_max={:.3f}".format( n, k, discount_factor, l1_regularisation_weight, r_max ) ) # Compute the discounted transition matrix inverse term _T_disc_inv = np.linalg.inv( np.identity(n) - discount_factor * sorted_transition_tensor[:, 0, :] ) # Formulate the linear programming problem constraints # NB: The general form for adding a constraint looks like this # c, A_ub, b_ub = f(c, A_ub, b_ub) if verbose: print("Composing LP problem...") # Prepare LP constraint matrices c = np.zeros(shape=[1, n], dtype=float) A_ub = np.zeros(shape=[0, n], dtype=float) b_ub = np.zeros(shape=[0, 1]) def add_optimal_policy_constraints(c, A_ub, b_ub): """ Add constraints to ensure the expert policy is optimal This will add (k-1) * n extra constraints """ for i in range(k - 1): constraint_rows = -1 * \ ( sorted_transition_tensor[:, 0, :] - \ sorted_transition_tensor[:, i, :] )\ @ _T_disc_inv A_ub = np.vstack((A_ub, constraint_rows)) b_ub = np.vstack( (b_ub, np.zeros(shape=[constraint_rows.shape[0], 1])) ) return c, A_ub, b_ub def add_costly_single_step_constraints(c, A_ub, b_ub): """ Augment the optimisation objective to add the costly-single-step degeneracy heuristic This will add n extra optimisation variables and (k-1) * n extra constraints NB: Assumes the true optimisation variables are first in the objective function """ # Expand the c vector add new terms for the min{} operator c = np.hstack((c, -1 * np.ones(shape=[1, n]))) css_offset = c.shape[1] - n A_ub = np.hstack((A_ub, np.zeros(shape=[A_ub.shape[0], n]))) # Add min{} operator constraints for i in range(k - 1): # Generate the costly single step constraint terms constraint_rows = -1 * (sorted_transition_tensor[:, 0, :] - sorted_transition_tensor[:, i, :]) @ _T_disc_inv # constraint_rows is nxn - we need to add the min{} terms though min_operator_entries = np.identity(n) # And we have to make sure we put the min{} operator entries in # the correct place in the A_ub matrix num_padding_cols = css_offset - n padding_entries = np.zeros(shape=[constraint_rows.shape[0], num_padding_cols]) constraint_rows = np.hstack((constraint_rows, padding_entries, min_operator_entries)) # Finally, add the new constraints A_ub = np.vstack((A_ub, constraint_rows)) b_ub = np.vstack((b_ub, np.zeros(shape=[constraint_rows.shape[0], 1]))) return c, A_ub, b_ub def add_l1norm_constraints(c, A_ub, b_ub, l1): """ Augment the optimisation objective to add an l1 norm regularisation term z += l1 * ||R||_1 This will add n extra optimisation variables and 2n extra constraints NB: Assumes the true optimisation variables are first in the objective function """ # We add an extra variable for each each true optimisation variable c = np.hstack((c, l1 * np.ones(shape=[1, n]))) l1_offset = c.shape[1] - n # Don't forget to resize the A_ub matrix to match A_ub = np.hstack((A_ub, np.zeros(shape=[A_ub.shape[0], n]))) # Now we add 2 new constraints for each true optimisation variable to # enforce the absolute value terms in the l1 norm for i in range(n): # An absolute value |x1| can be enforced via constraints # -x1 <= 0 (i.e., x1 must be positive or 0) # x1 + -xe1 <= 0 # Where xe1 is the replacement for |x1| in the objective # # TODO ajs 04/Apr/2018 This enforces that R must be positive or 0, # but I was under the impression that it was also possible to # enforce an abs operator without this requirement - e.g. see # http://lpsolve.sourceforge.net/5.1/absolute.htm constraint_row_1 = [0] * A_ub.shape[1] constraint_row_1[i] = -1 A_ub = np.vstack((A_ub, constraint_row_1)) b_ub = np.vstack((b_ub, [[0]])) constraint_row_2 = [0] * A_ub.shape[1] constraint_row_2[i] = 1 constraint_row_2[l1_offset + i] = -1 A_ub = np.vstack((A_ub, constraint_row_2)) b_ub = np.vstack((b_ub, [[0]])) return c, A_ub, b_ub def add_rmax_constraints(c, A_ub, b_ub, Rmax): """ Add constraints for a maximum R value r_max This will add n extra constraints """ for i in range(n): constraint_row = [0] * A_ub.shape[1] constraint_row[i] = 1 A_ub = np.vstack((A_ub, constraint_row)) b_ub = np.vstack((b_ub, Rmax)) return c, A_ub, b_ub # Compose LP optimisation problem c, A_ub, b_ub = add_optimal_policy_constraints(c, A_ub, b_ub) c, A_ub, b_ub = add_costly_single_step_constraints(c, A_ub, b_ub) c, A_ub, b_ub = add_rmax_constraints(c, A_ub, b_ub, r_max) c, A_ub, b_ub = add_l1norm_constraints(c, A_ub, b_ub, l1_regularisation_weight) if verbose: print("Number of optimisation variables: {}".format(c.shape[1])) print("Number of constraints: {}".format(A_ub.shape[0])) # Solve for a solution if verbose: print("Solving LP problem...") # NB: cvxopt.solvers.lp expects a 1d c vector solvers.options['show_progress'] = verbose res = solvers.lp(matrix(c[0, :]), matrix(A_ub), matrix(b_ub)) if verbose: pprint(res) def normalize(vals): """ Helper function to normalize a vector to the range (0, 1) """ min_val = np.min(vals) max_val = np.max(vals) return (vals - min_val) / (max_val - min_val) # Extract the true optimisation variables and re-scale rewards = r_max * normalize(res['x'][0:n]).T return rewards, res def add_alpha_size_constraints(c, a_ub, b_ub, num_basis_functions): """Add constraints for maximum reward coefficient values of 1 This will add 2*d extra constraints, where d is the number of basis functions. NB: Assumes the true optimisation variables are first in the c vector. Args: c (numpy array): Objective function weights a_ub (numpy array): Upper bound constraint coefficient matrix b_ub (numpy array): Upper bound constraint RHS vector Returns (numpy array): Objective function weights (numpy array): Upper bound constraint coefficient matrix (numpy array): Upper bound constraint RHS vector """ for i in range(num_basis_functions): constraint_row = [0] * a_ub.shape[1] constraint_row[i] = 1 a_ub = np.vstack((a_ub, constraint_row)) b_ub = np.vstack((b_ub, 1)) constraint_row = [0] * a_ub.shape[1] constraint_row[i] = -1 a_ub = np.vstack((a_ub, constraint_row)) b_ub = np.vstack((b_ub, 1)) return c, a_ub, b_ub def large_linear_programming( state_sample, num_actions, ordered_transition_function, basis_value_fn, *, penalty_coefficient=2.0, num_transition_samples=100, verbose=False ): """Linear Programming IRL for large state spaces by Ng and Russell, 2000 Given a sampling transition function T(s, a_i) -> s' encoding a stationary deterministic policy and a set of basis functions phi(s) over the state space, finds a weight vector alpha for which the given policy is optimal with respect to R(s) = alpha · phi(s). See https://thinkingwires.com/posts/2018-02-13-irl-tutorial-1.html for a good overview of this method. Args: state_sample (list): A list of states that will be used to approximate the reward function over the full state space num_actions (int): The number of actions ordered_transition_function (function): A sampling transition function T(s, a_i) -> s' encoding a stationary deterministic policy. The structure of T must be that the 0th action T(:, 0) corresponds to a sample from the expert policy, and T(:, i), i!=0 corresponds to a sample from the ith non-expert action at each state, for some arbitrary but consistent ordering of actions. basis_value_fn (function): A function bv(s) -> list taking a state and returning a vector where each entry i is an estimate of the value of that state, if ith basis function was the reward function. penalty_coefficient (float): Penalty function coefficient. Ng and Russell find 2 is robust. Must be >= 1. num_transition_samples (int): Number of transition samples to use when computing expectations. For deterministic MDPs, this can be left as 1. verbose (bool): Print progress information Returns: (numpy array) A weight vector for the reward function basis functions that makes the given policy optimal (dict): A result object from the LP optimiser """ # Enforce valid penalty function coefficient assert penalty_coefficient >= 1, \ "Penalty function coefficient must be >= 1, was {}".format( penalty_coefficient ) # Measure number of sampled states num_states = len(state_sample) # Measure number of basis functions num_basis_functions = len(basis_value_fn(state_sample[0])) if verbose: print("Large Linear Programming IRL") print( "num_states={}, num_actions={}, num_basis_functions={}, " "penalty_coefficient={:.3f}, num_transition_samples={}".format( num_states, num_actions, num_basis_functions, penalty_coefficient, num_transition_samples ) ) # Formulate the linear programming problem constraints # NB: The general form for adding a constraint looks like this # c, A_ub, b_ub = f(c, a_ub, b_ub) if verbose: print("Composing LP problem...") def add_costly_single_step_constraints(c, a_ub, b_ub): """Implement Linear Programming IRL method for large state spaces This will add m new objective parameters and 2*(k-1)*m new constraints, where k is the number of actions and m is the number of sampled states NB: Assumes the true optimisation variables are first in the c vector. Args: c (numpy array): Objective function weights a_ub (numpy array): Upper bound constraint coefficient matrix b_ub (numpy array): Upper bound constraint RHS vector Returns (numpy array): Objective function weights (numpy array): Upper bound constraint coefficient matrix (numpy array): Upper bound constraint RHS vector """ # Extend the objective function adding one dummy parameter per # sampled state # NB: cvxopt minimises, so we have a -1 here, not a 1 c = np.hstack((c, -1 * np.ones(shape=(1, num_states)))) a_ub = np.hstack((a_ub, np.zeros(shape=(a_ub.shape[0], num_states)))) # Loop over states for si, state in enumerate(state_sample): # Show progress if verbose: percent = int(si / num_states * 100) if percent % 5 == 0: print("{:d}%".format(percent)) # Compute the value-expectations for the possible actions a_ve = np.zeros((num_basis_functions, num_actions)) for i in range(num_transition_samples): for a in range(num_actions): a_ve[:, a] += basis_value_fn( ordered_transition_function(state, a) ) a_ve /= num_transition_samples # Find the difference w.r.t the expert (0th action) a_ve_diff = np.subtract(np.array([a_ve[:, 0]]).T, a_ve[:, 1:]) # Prepare the RHS block of the a_ub matrix tmp = np.zeros((1, num_states)) tmp[0, si] = -1 tmp = np.vstack((tmp for _ in range(num_actions-1))) # Append to first half of penalty constraints to a_ub, b_ub a_ub = np.vstack(( a_ub, np.hstack((a_ve_diff.T, tmp)) )) b_ub = np.vstack(( b_ub, np.vstack((0 for _ in range(num_actions-1))) )) # Append to second half of penalty constraints to a_ub, b_ub a_ub = np.vstack(( a_ub, np.hstack((penalty_coefficient * a_ve_diff.T, tmp)) )) b_ub = np.vstack(( b_ub, np.vstack((0 for _ in range(num_actions-1))) )) # TODO ajs 12/Jun/2018 Remove redundant constraints # *twitch* if verbose: print("100%") return c, a_ub, b_ub # Prepare LP constraint matrices c = np.zeros(shape=(1, num_basis_functions), dtype=float) a_ub = np.zeros(shape=(0, num_basis_functions), dtype=float) b_ub = np.zeros(shape=(0, 1)) # Compose LP optimisation problem c, a_ub, b_ub = add_costly_single_step_constraints(c, a_ub, b_ub) c, a_ub, b_ub = add_alpha_size_constraints(c, a_ub, b_ub) if verbose: print("Number of optimisation variables: {}".format(c.shape[1])) print("Number of constraints: {}".format(a_ub.shape[0])) print("Solving LP problem...") # NB: cvxopt.solvers.lp expects a 1d c vector solvers.options['show_progress'] = verbose res = solvers.lp(matrix(c[0, :]), matrix(a_ub), matrix(b_ub)) if verbose: pprint(res) # Extract the true optimisation variables alpha_vector = np.array(res['x'][0:num_basis_functions].T) return alpha_vector, res def trajectory_linear_programming( mdp, trajectories, basis_functions, discount_factor, solver, *, penalty_coefficient=2.0, num_iterations=float("inf"), tolerance=1e-6, verbose=True ): """Trajectory-based Linear Programming IRL by Ng and Russell, 2000 Args: mdp (gym.Env): MDP to run IRL over. Used for rollint out trajectories. trajectories (list): List of state trajectories from the expert basis_functions (list): List of basis functions b(s) -> float discount_factor (float): Expert's discount factor solver (function): A function that solves an mdp to find an optimal policy. Should take a gym.Env object and a reward function, and return a policy function pi(s) -> a mapping states to actions penalty_coefficient (float): Penalty function coefficient. Ng and Russell find 2 is robust. Must be >= 1. num_iterations (int): Number of iterations to loop for tolerance (float): Convergence tolerance for the reward coefficients verbose (bool): Print status information Returns: (numpy array): Vector of basis function coefficients such that the expert's demonstrations are optimal. """ # Enforce valid penalty function coefficient assert penalty_coefficient >= 1, \ "Penalty function coefficient must be >= 1, was {}".format( penalty_coefficient ) # Convenience variable for the number of basis functions d = len(basis_functions) # Slice out the initial state set starting_state_set = [t[0] for t in trajectories] # Measure maximum trajectory length max_trajectory_length = max([len(t) for t in trajectories]) if verbose: print("Trajectory-based Linear Programming IRL") print( "num_trajectories={}, max_trajectory_length={}, " "num_basis_functions={}, " "penalty_coefficient={:.3f}, num_iterations={}".format( len(trajectories), max_trajectory_length, d, penalty_coefficient, num_iterations ) ) def generate_state_trajectories( mdp, start_state_set, policy, max_trajectory_length ): """Generate a list of state-only trajectories Args: mdp (gym.Env): The MDP to roll-out trajectories in start_state_set (list): List of starting states to use policy (function): Policy to follow for rollouts max_trajectory_length: Maximum trajectory length to allow Returns: (list): A list of state trajectories, (each a list of states) """ trajectories = [] for s0 in start_state_set: trajectory = rollout( mdp, s0, policy, max_length=max_trajectory_length ) # Slice out just the state trajectory and append it trajectories.append([sar[0] for sar in trajectory]) return trajectories def discounted_feature_expectations( trajectories, basis_functions, discount_factor ): """Compute discounted feature expectations under the basis function set Args: trajectories (list): List of state trajectories basis_functions (list): List of basis functions b(s) -> float discount_factor: Expert's discount factor Returns: (numpy array): A numpy array of shape (1, d) where d is the number of basis functions. The ith column indicates the average discounted feature expectation for feature i given the set of trajectories. """ feature_expectations = np.zeros((1, len(basis_functions))) # Average over all trajectories for trajectory in trajectories: # Compute one row per basis function for i, basis_function in enumerate(basis_functions): discount_vector = np.array( [discount_factor ** j for j in range(len(trajectory))] ) feature_values = np.array( [basis_function(s) for s in trajectory]) feature_expectations[0, i] += discount_vector @ feature_values # Normalize expectations feature_expectations /= len(trajectories) return feature_expectations # Compute expert discounted feature expectations v_hat_pi_star = discounted_feature_expectations( trajectories, basis_functions, discount_factor ) # Keep a list of discounted policy feature expectations policy_set = [] policy_discounted_feature_expectations = np.empty( shape=(0, v_hat_pi_star.shape[1]) ) def add_optimal_expert_constraints(c, a_ub, b_ub): """Add constraints and augment the objective to make the expert optimal This will add k extra optimisation variables, and 2k extra constraints, where k is the number of policies in the policy set. NB: Assumes the true optimisation variables are first in the c vector. Args: c (numpy array): Objective function weights a_ub (numpy array): Upper bound constraint coefficient matrix b_ub (numpy array): Upper bound constraint RHS vector Returns (numpy array): Objective function weights (numpy array): Upper bound constraint coefficient matrix (numpy array): Upper bound constraint RHS vector """ # Measure the current number of policies in the policy set k = policy_discounted_feature_expectations.shape[0] # Add optimisation variables for all policies c = np.hstack((c, np.ones((1, k)))) a_ub = np.hstack((a_ub, np.zeros((a_ub.shape[0], k)))) diff = v_hat_pi_star - policy_discounted_feature_expectations tmp = -1 * np.identity(policy_discounted_feature_expectations.shape[0]) # Add Constraints for both sides of the penalty function a_ub = np.vstack(( a_ub, np.hstack((diff, tmp)), np.hstack((penalty_coefficient * diff, tmp)) )) b_ub = np.vstack(( b_ub, np.zeros((k, 1)), np.zeros((k, 1)) )) return c, a_ub, b_ub # Iterate the requested number of times alpha_vector = None i = 0 while True: i += 1 if verbose: print("TLP: Iteration={}, alpha_vector={}".format(i, alpha_vector)) if alpha_vector is None: # First iteration - pick an initial, random policy policy_set.append( lambda s: mdp.action_space.sample() ) else: # Make a copy of the MPD mdp_copy = copy(mdp) mdp_copy.reset() # Compose a new reward function new_reward_fn = lambda s: ( alpha_vector @ np.array([bfn(s) for bfn in basis_functions]) )[0] def _step(self, action): """Overload an MDP's reward function Args: action (object): an action provided by the environment Returns: observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (boolean): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning) """ # Call original function s, r, d, i = self._step() # Replace reward r = new_reward_fn(s) return s, r, d, i # Overload the MDP to use a new reward function mdp_copy._step = mdp_copy.step mdp_copy.step = _step # Call the provided solver to find a policy that maximises V under # the new reward function policy_set.append(solver(mdp, new_reward_fn)) # Estimate the value of the newest policy policy_discounted_feature_expectations = np.vstack(( policy_discounted_feature_expectations, discounted_feature_expectations( generate_state_trajectories( mdp, starting_state_set, policy_set[-1], max_trajectory_length ), basis_functions, discount_factor ) )) if verbose: print("Composing LP problem...") # Form the LP problem c = np.zeros((1, d), dtype=float) a_ub = np.zeros((0, c.shape[1]), dtype=float) b_ub = np.zeros((a_ub.shape[0], 1), dtype=float) c, a_ub, b_ub = add_optimal_expert_constraints(c, a_ub, b_ub) c, a_ub, b_ub = add_alpha_size_constraints(c, a_ub, b_ub, d) if verbose: print("Number of optimisation variables: {}".format(c.shape[1])) print("Number of constraints: {}".format(a_ub.shape[0])) print("Solving LP problem...") # NB: cvxopt.solvers.lp expects a 1d c vector solvers.options['show_progress'] = verbose res = solvers.lp(matrix(c[0, :]), matrix(a_ub), matrix(b_ub)) if verbose: pprint(res) # Extract the true optimisation variables new_alpha_vector = np.array(res['x'][0:d].T) delta = [float("inf")] if alpha_vector is not None: delta = alpha_vector - new_alpha_vector alpha_vector = new_alpha_vector if i > num_iterations or np.linalg.norm(delta) <= tolerance: break return alpha_vector def demo(): """ Demonstrate these methods on some gridworld problems """ # region === Get some imports import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from irl_methods.utils import gaussian from irl_methods.mdp.gridworld import ( GridWorldDiscEnv, GridWorldCtsEnv, FEATUREMAP_IDENTITY, EDGEMODE_WRAP, EDGEMODE_CLAMP, EDGEMODE_STRINGS, ACTION_STRINGS ) #endregion # region === GridWorld construction # ################################################################# # Size of the gridworld size = 8 # Wind probability for the discrete gridworld wind_prob = 0.3 # Edge mode for the gridworlds edge_mode = EDGEMODE_CLAMP #edge_mode = EDGEMODE_WRAP # Per-step reward per_step_reward = 0 # Goal reward goal_reward = 1 # Goal state #goal_state = np.random.randint(0, size, 2) goal_state = np.array((size-1, size-1)) # Discount factor #discount_factor = np.random.uniform(0.1, 0.9) discount_factor = 0.9 print("Discrete GridWorld, " "size={:d}, wind_prob={:d}%, edge_mode={}".format( size, int(wind_prob*100), EDGEMODE_STRINGS[edge_mode] ) ) num_states = size * size gw_disc = GridWorldDiscEnv( size=size, wind=wind_prob, goal_states=[goal_state], per_step_reward=per_step_reward, goal_reward=goal_reward, edge_mode=edge_mode ) disc_optimal_policy = gw_disc.get_optimal_policy() ordered_transition_tensor = gw_disc.get_ordered_transition_tensor( disc_optimal_policy ) #endregion # # # region === Vanilla LP IRL # ################################################################## # print("") # # # L1 regularisation weight # # l1 = 0 # l1 = np.random.uniform(0, 1) # # # === # # # Run LP IRL # lp_reward, _ = linear_programming( # ordered_transition_tensor, # discount_factor, # l1_regularisation_weight=l1, # r_max=(per_step_reward + goal_reward), # verbose=True # ) # # print("Recovered reward vector:") # print("{}".format(lp_reward)) # # fig = plt.figure() # plt.suptitle('Vanilla Linear Programming IRL') # plt.set_cmap("viridis") # # # Plot ground truth reward # ax = plt.subplot(1, 3, 1) # gw_disc.plot_reward(ax, gw_disc.ground_truth_reward) # plt.title("Ground truth reward") # plt.colorbar( # cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) # ) # # # Plot provided policy # ax = plt.subplot(1, 3, 2) # gw_disc.plot_policy(ax, disc_optimal_policy) # plt.title("Provided policy") # # # Plot recovered reward # ax = plt.subplot(1, 3, 3) # gw_disc.plot_reward(ax, lp_reward) # plt.title("IRL result") # plt.colorbar( # cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) # ) # # plt.tight_layout() # plt.show() # # # endregion # # # region === LLP IRL # ################################################################## # # # Number of transition samples to use when estimating values in LLP # # If the wind is 0, this can be 1 # num_transition_samples = 100 # # # Penalty coefficient to use in LLP/TLP # # Min value is 1, Ng and Russell suggest 2 # penalty_coefficient = 10 # # # === # # # Feature function # feature_fn = lambda s: gw_disc.get_state_features( # s=s, # feature_map=FEATUREMAP_IDENTITY # ) # # # Convert basis functions to value functions # print("Computing value estimates...") # basis_value_functions = [] # for bfi in range(num_states): # # # Progress update # print("{:d}%".format(int(bfi/num_states*100))) # # basis_value_functions.append( # gw_disc.estimate_value( # disc_optimal_policy, # discount_factor, # reward=lambda s: feature_fn(s)[bfi] # ) # ) # # A vector function that computes the value vector given a state # basis_value_fn = lambda s: [bvf[s] for bvf in basis_value_functions] # print("") # # state_sample = list(range(num_states)) # num_actions = len(gw_disc._A) # ordered_transition_function = lambda s, a: np.random.choice( # state_sample, # p=ordered_transition_tensor[s, a] # ) # # alpha_vector, _ = large_linear_programming( # state_sample, # num_actions, # ordered_transition_function, # basis_value_fn, # penalty_coefficient=penalty_coefficient, # num_transition_samples=num_transition_samples, # verbose=True # ) # # print("Recovered alpha vector:") # print("{}".format(alpha_vector)) # # # Compose reward function lambda # llp_reward_fn = lambda s: (alpha_vector @ basis_value_fn(s))[0] # llp_reward_vector = [llp_reward_fn(s) for s in range(num_states)] # # # Plot results # fig = plt.figure() # plt.suptitle('Large Linear Programming IRL') # plt.set_cmap("viridis") # # # Plot ground truth reward # ax = plt.subplot(1, 3, 1) # gw_disc.plot_reward(ax, gw_disc.ground_truth_reward) # plt.title("Ground truth reward") # plt.colorbar( # cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) # ) # # # Plot provided policy # ax = plt.subplot(1, 3, 2) # gw_disc.plot_policy(ax, disc_optimal_policy) # plt.title("Provided policy") # # # Plot recovered reward # ax = plt.subplot(1, 3, 3) # gw_disc.plot_reward(ax, llp_reward_vector) # plt.title("IRL result") # plt.colorbar( # cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) # ) # # plt.tight_layout() # plt.show() # # # endregion # region === TLP IRL ################################################################## # Maximum trajectory length to use for TLP max_trajectory_length = 3 * size # Number of iterations to run the TLP solver for num_iterations = 20 # Number demonstration trajectories to provide to the TLP algorithm num_trajectories = 5000 # Roll out some trajectories to use for TLP trajectories = [] for i in range(num_trajectories): trajectory = rollout( gw_disc, gw_disc.observation_space.sample(), disc_optimal_policy, max_length=max_trajectory_length ) # Slice out just the state trajectory and append it trajectories.append([sar[0] for sar in trajectory]) # A vector of basis functions basis_functions = [ lambda s: gw_disc.get_state_features(s=s)[0], lambda s: gw_disc.get_state_features(s=s)[1] ] def solver(mdp, reward): """Solves a GridWorldDiscEnv MDP using policy iteration to find a policy Args: mdp (GridWorldDiscEnv): MDP with a valid reward function to solve reward (function): Reward function r(s) -> float Returns: (function): Policy pi(s) -> a that acts optimally with respect to the given MDP's reward function """ # Convergence tolerance for the value function tol = 1e-6 # Max number of PI iterations max_num_iterations = 5 # Start with random policy and zero value vector pi = lambda s: mdp.action_space.sample() v = np.zeros(len(mdp._S)) print("Running PI") i = 0 while True: i += 1 print("PI step {}".format(i)) # Update value v_new = mdp.estimate_value( pi, discount_factor, reward=reward, max_iterations=1000 ) delta = v_new - v v = v_new print("PI: Value delta is: {}".format(np.linalg.norm(delta))) # Get new greedy policy pi = mdp.greedy_policy(v_new) if np.linalg.norm(delta) < tol or i >= max_num_iterations: break print("PI: Found new policy") return pi alpha_vector = trajectory_linear_programming( gw_disc, trajectories, basis_functions, discount_factor, solver, verbose=True ) print("Got final alpha vector: {}".format(alpha_vector)) tlp_reward_fn = lambda s: (alpha_vector @ [bf(s) for bf in basis_functions])[0] tlp_reward_vector = [tlp_reward_fn(s) for s in range(num_states)] # Plot results fig = plt.figure() plt.suptitle('Trajectory-based Linear Programming IRL') plt.set_cmap("viridis") # Plot ground truth reward ax = plt.subplot(1, 3, 1) gw_disc.plot_reward(ax, gw_disc.ground_truth_reward) plt.title("Ground truth reward") plt.colorbar( cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) ) # Plot provided policy #ax = plt.subplot(1, 3, 2) #gw_disc.plot_policy(ax, disc_optimal_policy) plt.title("Provided trajectories") # Plot recovered reward ax = plt.subplot(1, 3, 3) gw_disc.plot_reward(ax, tlp_reward_vector) plt.title("IRL result") plt.colorbar( cax=make_axes_locatable(ax).append_axes("right", size="5%", pad=0.05) ) plt.tight_layout() plt.show() # endregion return if __name__ == "__main__": demo()
StarcoderdataPython
6551289
<reponame>azaddeveloper/api-snippets # Download the Python helper library from twilio.com/docs/python/install from twilio.rest import TwilioTaskRouterClient # Your Account Sid and Auth Token from twilio.com/user/account account_sid = "<KEY>" auth_token = "<PASSWORD>" workspace_sid = "WSXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" workflow_sid = "WWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" client = TwilioTaskRouterClient(account_sid, auth_token) task = client.tasks(workspace_sid).create( workflow_sid=workflow_sid, attributes='{"type":"support"}' ) print(task.attributes)
StarcoderdataPython
8158546
<reponame>rababerladuseladim/dudes<gh_stars>1-10 import numpy as np from collections import Counter, defaultdict from dudes.Ranks import Ranks from dudes.Util import * class Ident: columns = ['Iter','TaxID','ParentTaxID','RankID','CumulativeMatches','MatchScoreSum','Abundance','CumulativeAbundance'] def __init__(self,mat=None,pv=None): self.cols = {c:i for i,c in enumerate(Ident.columns)} self.ident = [] self.pvals = dict() if not mat is None: self.ident = np.array(mat,ndmin=2) if not pv is None: self.pvals = pv def __iter__(self): for v in self.ident: yield {c:v[i] for i,c in enumerate(Ident.columns)} def getIter(self): return self.ident[-1,0] def getSize(self): return len(self.ident) def getCol(self,col): return self.ident[:,self.cols[col]] def getSubSet(self,ind): return Ident(self.ident[ind]) def add(self,id): if id.getSize(): if len(self.ident): self.ident = np.vstack((self.ident,id.ident)) # Add a Ident object else: self.ident = np.array(id.ident,ndmin=2) #First entry self.pvals.update(id.pvals) # Update p-val dict def remove(self,id): for r in id: # Reassign the parent node to the children self.ident[np.logical_and(self.ident[:,0]==r['Iter'],self.ident[:,2]==r['TaxID']),2] = r['ParentTaxID'] # Remove entry self.ident = self.ident[~np.logical_and(self.ident[:,0]==r['Iter'],self.ident[:,1]==r['TaxID'])] # Remove pval if (r['Iter'],r['TaxID']) in self.pvals: del self.pvals[(r['Iter'],r['TaxID'])] def setMatchScoreSum(self,iter,taxid,mssum): idx = np.logical_and(self.getCol('Iter')==iter,self.getCol('TaxID')==taxid) self.ident[idx,5] = mssum def setAbundance(self,iter,taxid,ab): idx = np.logical_and(self.getCol('Iter')==iter,self.getCol('TaxID')==taxid) self.ident[idx,6] = ab def setCumulativeAbundance(self,iter,taxid,ab): idx = np.logical_and(self.getCol('Iter')==iter,self.getCol('TaxID')==taxid) self.ident[idx,7] = ab def getLeafs(self,taxid_start,iter=None): leaf_ident = Ident() if iter!=None: sub_ident = self.ident[self.ident[:,0]==iter] else: sub_ident = self.ident stack = list(sub_ident[sub_ident[:,2]==taxid_start]) while stack: node = stack.pop() children = list(sub_ident[sub_ident[:,2]==node[1]]) if children: stack.extend(children) else: leaf_ident.add(Ident(sub_ident[sub_ident[:,1]==node[1]])) return leaf_ident def printTree(self,taxid_start,total_matches_filter,total_abundance_norm,names): tree = [] if np.sum(self.ident)!=0: for it in range(self.getIter()+1): tree.append(str(it)) sub_ident = self.ident[self.ident[:,0]==it] stack = list(sub_ident[sub_ident[:,2]==taxid_start]) while stack: node = stack.pop() tree.append("-%s %d %s %s- %d (%d) M:%d(%.6f) MSS:%d A:%.6f CA:%.6f %s %s" % ((node[3])*'-',node[3],getNameRank(node[3]),(len(Ranks.ranks)-node[3]-len(getNameRank(node[3]))+9)*'-', node[1],(node[2]),node[4],node[4]/total_matches_filter,node[5],node[6]/float(total_abundance_norm),node[7]/float(total_abundance_norm),Counter(self.pvals[(node[0],node[1])]),names.getName(node[1]))) children = list(sub_ident[sub_ident[:,2]==node[1]]) stack.extend(children) return tree
StarcoderdataPython
82018
<filename>angr/engines/vex/statements/dirty.py from . import SimIRStmt from .. import dirty from .... import sim_options as o from ....errors import UnsupportedDirtyError import logging l = logging.getLogger(name=__name__) class SimIRStmt_Dirty(SimIRStmt): __slots__ = [] # Example: # t1 = DIRTY 1:I1 ::: ppcg_dirtyhelper_MFTB{0x7fad2549ef00}() def _execute(self): exprs = self._translate_exprs(self.stmt.args) if hasattr(dirty, self.stmt.cee.name): s_args = [ex.expr for ex in exprs] if o.ACTION_DEPS in self.state.options: if len(exprs) == 0: reg_deps = frozenset() tmp_deps = frozenset() else: reg_deps = frozenset.union(*[e.reg_deps() for e in exprs]) tmp_deps = frozenset.union(*[e.tmp_deps() for e in exprs]) else: reg_deps = None tmp_deps = None func = getattr(dirty, self.stmt.cee.name) retval, retval_constraints = func(self.state, *s_args) self._add_constraints(*retval_constraints) if self.stmt.tmp not in (0xffffffff, -1): self.state.scratch.store_tmp(self.stmt.tmp, retval, reg_deps, tmp_deps) else: l.error("Unsupported dirty helper %s", self.stmt.cee.name) raise UnsupportedDirtyError("Unsupported dirty helper %s" % self.stmt.cee.name)
StarcoderdataPython
1749357
import unittest from testfixtures import LogCapture from flexp.flow import Chain from flexp.flow import inspector from .utils import Add, DummyModule class TestChain(unittest.TestCase): def test_chain_inspect(self): data = {"input": 20} with LogCapture() as l: c = Chain([ inspector.inspect(Add(10), stream=True)]) c.process(data) c.close() l.check( ('flexp.flow.flow', 'DEBUG', 'Add.process()'), ('flexp.flow.inspector', 'INFO', 'Data flow structure'), ('flexp.flow.inspector', 'INFO', "{'input': 20, 'output': 30}"), ('flexp.flow.inspector', 'INFO', 'End of data flow structure'), ('flexp.flow.flow', 'INFO', 'Add average execution time 0.00 sec') ) def test_chain_inspect_deep(self): data = {"input": {i: i for i in range(11)}} with LogCapture() as l: c = Chain([ inspector.inspect(DummyModule(), stream=True)]) c.process(data) c.close() l.check( ('flexp.flow.flow', 'DEBUG', 'DummyModule.process()'), ('flexp.flow.inspector', 'INFO', 'Data flow structure'), ('flexp.flow.inspector', 'INFO', "{\'input\': {\"<class \'int\'>#11 times (0)\": 0}}"), ('flexp.flow.inspector', 'INFO', 'End of data flow structure'), ('flexp.flow.flow', 'INFO', 'DummyModule average execution time 0.00 sec') )
StarcoderdataPython
295321
<reponame>shreya-n-kumari/python<filename>class_import.py from class_car import ElectricCar Tesla = ElectricCar('tesla','model s',2016) print(Tesla.get_name()) print(Tesla.describe_battery())
StarcoderdataPython
3413274
<gh_stars>0 """The WaveBlocks Project Various small utility functions. @author: <NAME> @copyright: Copyright (C) 2011 <NAME> @license: Modified BSD License """ from numpy.lib.arraysetops import in1d #TODO: Consider merging this into the TimeManager def common_timesteps(timegridA, timegridB): r""" Find the indices (wrt to A and B) of the timesteps common to both timegrids. """ IA = in1d(timegridA, timegridB) IB = in1d(timegridB, timegridA) return (IA, IB)
StarcoderdataPython
8126047
<reponame>agustinhenze/mibs.snmplabs.com # # PySNMP MIB module HH3C-FC-TC-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HH3C-FC-TC-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:13:56 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, SingleValueConstraint, ValueSizeConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "SingleValueConstraint", "ValueSizeConstraint", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Bits, NotificationType, ModuleIdentity, Counter64, IpAddress, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn, Unsigned32, Integer32, ObjectIdentity, TimeTicks, MibIdentifier, iso, Gauge32 = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "NotificationType", "ModuleIdentity", "Counter64", "IpAddress", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Unsigned32", "Integer32", "ObjectIdentity", "TimeTicks", "MibIdentifier", "iso", "Gauge32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") class Hh3cFcAddressType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("wwn", 1), ("fcid", 2)) class Hh3cFcAddress(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ConstraintsUnion(ValueSizeConstraint(3, 3), ValueSizeConstraint(8, 8), ) class Hh3cFcAddressId(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(3, 3) fixedLength = 3 class Hh3cFcAddressIdOrZero(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(3, 3), ) class Hh3cFcNameId(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(8, 8) fixedLength = 8 class Hh3cFcNameIdOrZero(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(8, 8), ValueSizeConstraint(16, 16), ) class Hh3cFcClassOfServices(TextualConvention, Bits): status = 'current' namedValues = NamedValues(("classF", 0), ("class1", 1), ("class2", 2), ("class3", 3), ("class4", 4), ("class5", 5), ("class6", 6)) class Hh3cFcBbCredit(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 32767) class Hh3cFcRxMTU(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(128, 2112) class Hh3cFcVsanIndex(TextualConvention, Unsigned32): status = 'current' displayHint = 'd' subtypeSpec = Unsigned32.subtypeSpec + ValueRangeConstraint(1, 4095) class Hh3cFcStartOper(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("enable", 1), ("disable", 2)) class Hh3cFcDomainId(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 239) class Hh3cFcDomainIdOrZero(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 239) class Hh3cFcDomainPriority(TextualConvention, Unsigned32): status = 'current' displayHint = 'd' subtypeSpec = Unsigned32.subtypeSpec + ValueRangeConstraint(1, 254) class Hh3cFcDmState(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) namedValues = NamedValues(("disabledWithNoDomain", 1), ("disabledWithDomainCfg", 2), ("stableWithNoEports", 3), ("stableWithDomainCfg", 4), ("stableWithNoDomain", 5), ("principalSwitchInSelect", 6), ("domainIdRequesting", 7), ("buildFabricPhase", 8), ("reconfigureFabricPhase", 9), ("unknown", 10)) class Hh3cFcDomainIdList(TextualConvention, OctetString): status = 'current' subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 32) mibBuilder.exportSymbols("HH3C-FC-TC-MIB", Hh3cFcStartOper=Hh3cFcStartOper, Hh3cFcAddressIdOrZero=Hh3cFcAddressIdOrZero, Hh3cFcBbCredit=Hh3cFcBbCredit, Hh3cFcDomainPriority=Hh3cFcDomainPriority, Hh3cFcNameId=Hh3cFcNameId, Hh3cFcDmState=Hh3cFcDmState, Hh3cFcNameIdOrZero=Hh3cFcNameIdOrZero, Hh3cFcVsanIndex=Hh3cFcVsanIndex, Hh3cFcDomainIdOrZero=Hh3cFcDomainIdOrZero, Hh3cFcRxMTU=Hh3cFcRxMTU, Hh3cFcClassOfServices=Hh3cFcClassOfServices, Hh3cFcAddressId=Hh3cFcAddressId, Hh3cFcDomainId=Hh3cFcDomainId, Hh3cFcDomainIdList=Hh3cFcDomainIdList, Hh3cFcAddress=Hh3cFcAddress, Hh3cFcAddressType=Hh3cFcAddressType)
StarcoderdataPython
1670417
<gh_stars>0 from django.shortcuts import render from django.contrib.auth import get_user_model from rest_framework import generics from rest_framework import permissions from . import serializers CustomUser = get_user_model() class UserRetrieveUpdateDestroyAPIView(generics.RetrieveUpdateDestroyAPIView): queryset = CustomUser.objects.all() serializer_class = serializers.CustomUserRetrieveSerializer permission_classes = (permissions.IsAuthenticated,) def get_object(self): return self.request.user
StarcoderdataPython
245038
<filename>historic_hebrew_dates/annotated_corpus.py #!/usr/bin/env python3 import re import os import csv import pandas as pd from bidi.algorithm import get_display from .grammars.annotation_grammar import get_patterns from .pattern_factory import create_parsers parsers = create_parsers('hebrew') def DateTypeParser(): return parsers['date_types'] def NumeralParser(): return parsers['numerals'] pd.set_option('display.max_colwidth', -1) class AnnotatedCorpus: def __init__(self): self.tags = pd.read_csv(os.path.join( os.path.dirname(__file__), 'tags.csv')) self.raw_df = pd.read_excel(os.path.join( os.getcwd(), 'data/Inscription DB for Time Project.xlsx'), header=0) self.cleaned = self.clean_transcriptions(self.raw_df) self.infixed = self.infix_transcriptions(self.cleaned) self.parsed = self.parse_transcriptions(self.infixed) def clean_transcriptions(self, dataframe): cleaned_df = dataframe.copy(deep=True) cleaned_df['Transcription'] = dataframe['Transcription'] \ .str.replace('\n', ' ') \ .str.replace('[', '') \ .str.replace(']', '') \ .str.replace('(\?)', ' ') \ .str.replace(' ', ' ') \ .str.replace('…', '...') return cleaned_df def infix_transcriptions(self, dataframe): """ Rewrite transcriptions of the form {text}(tag) to {text(tag)}""" pattern = r'(})(\(.+?\))' infixed_df = dataframe.copy(deep=True) infixed_df['Transcription'].replace( to_replace=pattern, value=r'\2\1', regex=True, inplace=True) return infixed_df def parse_transcriptions(self, dataframe): dataframe = self.parse_column(dataframe, 'Transcription') dataframe = self.parse_column(dataframe, 'T_date') dataframe = self.parse_column(dataframe, 'T_age') dataframe = self.parse_column(dataframe, 'T_date_type') return dataframe def parse_column(self, dataframe, column_name): tag_pattern = r'(^.+)\((.+)\)$' c_name = 'T' if column_name == 'Transcription' else column_name for i, row in enumerate(dataframe[column_name]): try: parsed_level = parse_level_parentheses(row) if parsed_level: for annotation in parsed_level: match = re.match(tag_pattern, annotation) if match: text, tag = match.groups() full_tag = '_'.join( [c_name, self.translate_tag(tag)]) if full_tag not in dataframe.columns: dataframe[full_tag] = None dataframe.loc[i, full_tag] = text if full_tag + '_raw' not in dataframe.columns: dataframe[full_tag+'_raw'] = None dataframe.loc[i, full_tag+'_raw'] = strip_annotations( text) except: pass return dataframe def translate_tag(self, input_tag): return self.tags[self.tags.tag == input_tag]['translation'].values[0] def translate_tag_hebrew(self, english): return self.tags[self.tags.translation == english]['tag'].values[0] def write_test_standards(self): # age (all) age_df = pd.concat( [ self.parsed['T_age_raw'], self.parsed['Age at Death'] .str.replace('\n', ' ') ], axis=1).dropna() age_df.to_csv('data/age_all.csv', header=[ 'text', 'age at death'], index=False) # age (only clear numbers) age_df = age_df[pd.to_numeric( age_df['Age at Death'], errors='coerce').notnull()] age_df.to_csv('data/age_clear.csv', header=[ 'text', 'age at death'], index=False) # date (all) date_df = self.parsed[['T_date_raw', 'Date', 'Year', 'Type']] date_df = date_df.replace('\n', ' ', regex=True).dropna() date_df.to_csv('data/date_all.csv', header=[ 'text', 'date', 'year', 'type'], index=False) # date (clear) date_df = date_df[ (pd.to_numeric(date_df['Date'], errors='coerce').notnull()) & (pd.to_numeric(date_df['Year'], errors='coerce').notnull()) ] date_df.to_csv('data/date_clear.csv', header=[ 'text', 'date', 'year', 'type'], index=False) def aggr_row_patterns(self, aggr_patterns, patterns, row): for context, tag, tag_type, pattern in patterns: translated_tag = self.translate_tag(tag) if not translated_tag: print(f'Unknown tag: {tag}') elif pattern: if translated_tag in ['age', 'date']: subtags = list(map(lambda match: match.groups()[ 0], re.finditer(r'\{(\w+)(:\w+|)\}', pattern))) if len(subtags) != len(set(subtags)): print(f"Duplicate tags in {pattern}") print(row) else: value = '[' + \ ', '.join( map(lambda tag: f'{tag}: \'{tag}\'', subtags)) + ']' aggr_patterns[translated_tag][pattern] = value elif translated_tag == 'year': value = row['Year'] if context == 'date' else row['Age at Death'] if re.match(r'^\d+$', str(value)): aggr_patterns['number'][pattern] = value else: if pattern not in aggr_patterns['number']: # mark that it exists aggr_patterns['number'][pattern] = None elif translated_tag == 'type': if not re.match(r'[\{\}]', pattern): # type patterns with some dependency aren't supported value = row['Type'] if not ';' in value: aggr_patterns['type'][pattern] = value elif translated_tag == 'month': aggr_patterns[translated_tag][pattern] = row['Month'] else: raise Exception( f'Unknown tag: {translated_tag} in {pattern}') def aggr_patterns(self): date_df = pd.concat( [ self.cleaned['Transcription'], self.cleaned['Age at Death'], self.parsed['Year'], self.parsed['Month'], self.parsed['Day'], self.parsed['Type'] ], axis=1) aggr_patterns = {} for index, tag in self.tags.iterrows(): aggr_patterns[tag['translation']] = {} for index, row in date_df.iterrows(): transcription = row['Transcription'] if transcription != None: try: patterns = get_patterns(transcription, { self.translate_tag_hebrew('day'): self.translate_tag_hebrew('number'), self.translate_tag_hebrew('year'): self.translate_tag_hebrew('number') }) except Exception as error: print(f'Error parsing: {transcription}') print(error) else: self.aggr_row_patterns(aggr_patterns, patterns, row) return aggr_patterns def write_patterns(self): aggr_patterns = self.aggr_patterns() # # Dates max_number, known_date_patterns = self.load_known_patterns( 'hebrew_dates.csv') new_date_patterns = [] for date_pattern, value in aggr_patterns['date'].items(): if not date_pattern in known_date_patterns: new_date_patterns += [(max_number + 1, date_pattern, value)] # # Months max_number, known_month_patterns = self.load_known_patterns( 'hebrew_months.csv') new_month_patterns = [] for month_pattern, value in aggr_patterns['month'].items(): if not month_pattern in known_month_patterns: new_month_patterns += [(max_number + 1, month_pattern, value)] # # Numbers numeral_parser = NumeralParser() new_number_patterns = [] for number_pattern, value in aggr_patterns['number'].items(): if not numeral_parser.parse(number_pattern.replace('\\w*', '')): new_number_patterns += [('?', number_pattern, value)] # # Date type date_type_parser = DateTypeParser() new_date_type_patterns = [] for date_type_pattern, value in aggr_patterns['type'].items(): if not date_type_parser.parse(date_type_pattern.replace('\\w*', '')): if value != 'From the destruction of the Temple': raise Exception(f"Unknown date type {value}") new_date_type_patterns += [('Destruction temple', date_type_pattern, 'קדש')] self.append_patterns('hebrew_date_types.csv', new_date_type_patterns) self.append_patterns('hebrew_dates.csv', new_date_patterns) self.append_patterns('hebrew_months.csv', new_month_patterns) self.append_patterns('hebrew_numerals.csv', new_number_patterns) return { 'new_dates': new_date_patterns, 'new_date_types': new_date_type_patterns, 'new_numbers': new_number_patterns, 'new_month_patterns': new_month_patterns } def load_known_patterns(self, filename): patterns = set() max_type = 0 with open(os.path.join(os.path.dirname(__file__), 'patterns', filename), encoding='utf8') as f: reader = csv.reader(f, delimiter=',', quotechar='"') next(reader) # skip header for row in reader: if re.match(r'^\d+$', row[0]): row_type = int(row[0]) if row_type > max_type: max_type = row_type patterns.add(row[1]) return max_type, patterns def append_patterns(self, filename, patterns): def escape_cell(value): str_value = str(value) if ',' in str_value: return f'"{str_value}"' else: return str_value with open(os.path.join(os.path.dirname(__file__), 'patterns', filename), mode='a', encoding='utf8') as f: f.write('\n'.join(map(lambda row: ','.join( map(lambda cell: escape_cell(cell), row)), patterns))) def parse_level_parentheses(string, open='{', close='}'): """ Parse a single level of matching brackets """ stack = [] parsed = [] for i, c in enumerate(string): if c == open: stack.append(i) elif c == '}' and stack: start = stack.pop() if len(stack) == 0: parsed.append((string[start + 1: i])) return parsed def strip_annotations(string): string = string.replace('{', '') string = string.replace('}', '') string = re.sub(r'\(.+?\)', '', string) return string
StarcoderdataPython
8043799
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2010 <NAME>, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest import logging from nova.auth.users import UserManager from nova.auth import rbac from nova import exception from nova import flags from nova import test FLAGS = flags.FLAGS class Context(object): pass class AccessTestCase(test.BaseTestCase): def setUp(self): super(AccessTestCase, self).setUp() FLAGS.fake_libvirt = True FLAGS.fake_storage = True um = UserManager.instance() # Make test users try: self.testadmin = um.create_user('testadmin') except Exception, err: logging.error(str(err)) try: self.testpmsys = um.create_user('testpmsys') except: pass try: self.testnet = um.create_user('testnet') except: pass try: self.testsys = um.create_user('testsys') except: pass # Assign some rules try: um.add_role('testadmin', 'cloudadmin') except: pass try: um.add_role('testpmsys', 'sysadmin') except: pass try: um.add_role('testnet', 'netadmin') except: pass try: um.add_role('testsys', 'sysadmin') except: pass # Make a test project try: self.project = um.create_project('testproj', 'testpmsys', 'a test project', ['testpmsys', 'testnet', 'testsys']) except: pass try: self.project.add_role(self.testnet, 'netadmin') except: pass try: self.project.add_role(self.testsys, 'sysadmin') except: pass self.context = Context() self.context.project = self.project #user is set in each test def tearDown(self): um = UserManager.instance() # Delete the test project um.delete_project('testproj') # Delete the test user um.delete_user('testadmin') um.delete_user('testpmsys') um.delete_user('testnet') um.delete_user('testsys') super(AccessTestCase, self).tearDown() def test_001_allow_all(self): self.context.user = self.testadmin self.assertTrue(self._allow_all(self.context)) self.context.user = self.testpmsys self.assertTrue(self._allow_all(self.context)) self.context.user = self.testnet self.assertTrue(self._allow_all(self.context)) self.context.user = self.testsys self.assertTrue(self._allow_all(self.context)) def test_002_allow_none(self): self.context.user = self.testadmin self.assertTrue(self._allow_none(self.context)) self.context.user = self.testpmsys self.assertRaises(exception.NotAuthorized, self._allow_none, self.context) self.context.user = self.testnet self.assertRaises(exception.NotAuthorized, self._allow_none, self.context) self.context.user = self.testsys self.assertRaises(exception.NotAuthorized, self._allow_none, self.context) def test_003_allow_project_manager(self): self.context.user = self.testadmin self.assertTrue(self._allow_project_manager(self.context)) self.context.user = self.testpmsys self.assertTrue(self._allow_project_manager(self.context)) self.context.user = self.testnet self.assertRaises(exception.NotAuthorized, self._allow_project_manager, self.context) self.context.user = self.testsys self.assertRaises(exception.NotAuthorized, self._allow_project_manager, self.context) def test_004_allow_sys_and_net(self): self.context.user = self.testadmin self.assertTrue(self._allow_sys_and_net(self.context)) self.context.user = self.testpmsys # doesn't have the per project sysadmin self.assertRaises(exception.NotAuthorized, self._allow_sys_and_net, self.context) self.context.user = self.testnet self.assertTrue(self._allow_sys_and_net(self.context)) self.context.user = self.testsys self.assertTrue(self._allow_sys_and_net(self.context)) def test_005_allow_sys_no_pm(self): self.context.user = self.testadmin self.assertTrue(self._allow_sys_no_pm(self.context)) self.context.user = self.testpmsys self.assertRaises(exception.NotAuthorized, self._allow_sys_no_pm, self.context) self.context.user = self.testnet self.assertRaises(exception.NotAuthorized, self._allow_sys_no_pm, self.context) self.context.user = self.testsys self.assertTrue(self._allow_sys_no_pm(self.context)) @rbac.allow('all') def _allow_all(self, context): return True @rbac.allow('none') def _allow_none(self, context): return True @rbac.allow('projectmanager') def _allow_project_manager(self, context): return True @rbac.allow('sysadmin', 'netadmin') def _allow_sys_and_net(self, context): return True @rbac.allow('sysadmin') @rbac.deny('projectmanager') def _allow_sys_no_pm(self, context): return True if __name__ == "__main__": # TODO: Implement use_fake as an option unittest.main()
StarcoderdataPython
4851069
<filename>tests/test_integration.py import sys import unittest import time from flask import Flask # remove mocks and import flask_mqtt try: sys.modules.pop('paho.mqtt.client') sys.modules.pop('flask_mqtt') except KeyError: pass from flask_mqtt import Mqtt, MQTT_ERR_SUCCESS def wait(seconds=2): time.sleep(seconds) class FlaskMQTTTestCase(unittest.TestCase): def setUp(self): self.app = Flask(__name__) def test_simple_connect(self): self.mqtt = Mqtt(self.app) self.mqtt._disconnect() def test_connect_with_username(self): self.app.config['MQTT_USERNAME'] = 'user' self.app.config['MQTT_PASSWORD'] = '<PASSWORD>' self.mqtt = Mqtt(self.app) self.mqtt._disconnect() def test_subscribe(self): self.mqtt = Mqtt(self.app) self.subscribe_handled = False self.unsubscribe_handled = False @self.mqtt.on_subscribe() def handle_subscribe(client, userdata, mid_, granted_qos): self.subscribe_handled = True @self.mqtt.on_unsubscribe() def handle_unsubscribe(client, userdata, mid_): self.unsubscribe_handled = True ret, mid = self.mqtt.subscribe('home/test') self.assertEqual(ret, MQTT_ERR_SUCCESS) wait() ret, mid = self.mqtt.unsubscribe('home/test') self.assertEqual(ret, MQTT_ERR_SUCCESS) wait() self.assertTrue(self.subscribe_handled) self.assertTrue(self.unsubscribe_handled) def test_qos(self): self.mqtt = Mqtt(self.app) # subscribe to a topic with qos = 1 self.mqtt.subscribe('test', 1) self.assertEqual(1, len(self.mqtt.topics)) self.assertEqual(('test', 1), self.mqtt.topics['test']) # subscribe to same topic, overwrite qos self.mqtt.subscribe('test', 2) self.assertEqual(1, len(self.mqtt.topics)) self.assertEqual(('test', 2), self.mqtt.topics['test']) # unsubscribe self.mqtt.unsubscribe('test') self.assertEqual(0, len(self.mqtt.topics)) def test_topic_count(self): self.mqtt = Mqtt(self.app) ret, mid = self.mqtt.subscribe('test') self.assertEqual(1, len(self.mqtt.topics)) ret, mid = self.mqtt.subscribe('test') self.assertEqual(1, len(self.mqtt.topics)) self.mqtt.unsubscribe('test') self.assertEqual(0, len(self.mqtt.topics)) self.mqtt.unsubscribe('test') self.assertEqual(0, len(self.mqtt.topics)) ret, mid = self.mqtt.subscribe('test1') ret, mid = self.mqtt.subscribe('test2') self.assertEqual(2, len(self.mqtt.topics)) self.mqtt.unsubscribe_all() self.assertEqual(0, len(self.mqtt.topics)) self.mqtt._disconnect() def test_publish(self): self.mqtt = Mqtt(self.app) self.handled_message = False self.handled_topic = False self.handled_publish = False @self.mqtt.on_message() def handle_message(client, userdata, message): self.handled_message = True @self.mqtt.on_publish() def handle_publish(client, userdata, mid): self.handled_publish = True self.mqtt.subscribe('home/test') wait() self.mqtt.publish('home/test', 'hello world') wait() self.assertTrue(self.handled_message) # self.assertTrue(self.handled_topic) self.assertTrue(self.handled_publish) def test_on_topic(self): self.mqtt = Mqtt(self.app) self.handled_message = False self.handled_topic = False @self.mqtt.on_message() def handle_message(client, userdata, message): self.handled_message = True @self.mqtt.on_topic('home/test') def handle_on_topic(*args, **kwargs): self.handled_topic = True @self.mqtt.on_connect() def handle_connect(*args, **kwargs): self.mqtt.subscribe('home/test') wait() self.mqtt.publish('home/test', 'hello world') wait() self.assertFalse(self.handled_message) self.assertTrue(self.handled_topic) def test_logging(self): self.mqtt = Mqtt(self.app) @self.mqtt.on_log() def handle_logging(client, userdata, level, buf): self.assertIsNotNone(client) self.assertIsNotNone(level) self.assertIsNotNone(buf) self.mqtt.publish('test', 'hello world') def test_disconnect(self): self.mqtt = Mqtt() self.connected = False @self.mqtt.on_connect() def handle_connect(*args, **kwargs): self.connected = True @self.mqtt.on_disconnect() def handle_disconnect(*args, **kwargs): self.connected = False self.assertFalse(self.connected) self.mqtt.init_app(self.app) wait() self.assertTrue(self.connected) self.mqtt._disconnect() wait() self.assertFalse(self.connected) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4964789
<reponame>oleglpts/easy_daemon from setuptools import setup setup( name='easy_daemon', version='0.0.3', packages=['easy_daemon'], requires=[], url='https://github.com/oleglpts/easy_daemon', license='MIT', platforms='any', author='<NAME>', author_email='<EMAIL>', description='Easy daemon base class', long_description='Very simple base daemon class. Just override method \'run\'. See examples', classifiers=[ 'Operating System :: POSIX', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5' ] )
StarcoderdataPython
125194
<reponame>karthiksekaran/skip-tracking-selenium import requests import re import json import time import logging import pandas from collections import OrderedDict from bs4 import BeautifulSoup def get_bs(session, url): """Makes a GET requests using the given Session object and returns a BeautifulSoup object. """ r = None while True: r = session.get(url) if r.ok: break return BeautifulSoup(r.text, 'lxml') def make_login(session, base_url, credentials): """Returns a Session object logged in with credentials. """ login_form_url = '/login/device-based/regular/login/?refsrc=https%3A' \ '%2F%2Fmobile.facebook.com%2Flogin%2Fdevice-based%2Fedit-user%2F&lwv=100' params = {'email': credentials['email'], 'pass': credentials['<PASSWORD>']} while True: time.sleep(3) logged_request = session.post(base_url + login_form_url, data=params) if logged_request.ok: logging.info('[*] Logged in.') break def crawl_profile(session, base_url, profile_url, post_limit): """Goes to profile URL, crawls it and extracts posts URLs. """ profile_bs = get_bs(session, profile_url) n_scraped_posts = 0 scraped_posts = list() posts_id = None while n_scraped_posts < post_limit: try: posts_id = 'recent' posts = profile_bs.find('div', id=posts_id).div.div.contents except Exception: posts_id = 'structured_composer_async_container' posts = profile_bs.find('div', id=posts_id).div.div.contents posts_urls = [a['href'] for a in profile_bs.find_all('a', text='Full Story')] for post_url in posts_urls: # print(post_url) try: post_data = scrape_post(session, base_url, post_url) scraped_posts.append(post_data) except Exception as e: logging.info('Error: {}'.format(e)) n_scraped_posts += 1 if posts_completed(scraped_posts, post_limit): break show_more_posts_url = None if not posts_completed(scraped_posts, post_limit): show_more_posts_url = profile_bs.find('div', id=posts_id).next_sibling.a['href'] profile_bs = get_bs(session, base_url + show_more_posts_url) time.sleep(3) else: break return scraped_posts def posts_completed(scraped_posts, limit): """Returns true if the amount of posts scraped from profile has reached its limit. """ if len(scraped_posts) == limit: return True else: return False def scrape_post(session, base_url, post_url): """Goes to post URL and extracts post data. """ post_data = OrderedDict() post_bs = get_bs(session, base_url + post_url) time.sleep(5) # Here we populate the OrderedDict object post_data['url'] = post_url try: post_text_element = post_bs.find('div', id='u_0_0').div string_groups = [p.strings for p in post_text_element.find_all('p')] strings = [repr(string) for group in string_groups for string in group] post_data['text'] = strings except Exception: post_data['text'] = [] try: post_data['media_url'] = post_bs.find('div', id='u_0_0').find('a')['href'] except Exception: post_data['media_url'] = '' try: post_data['comments'] = extract_comments(session, base_url, post_bs, post_url) except Exception: post_data['comments'] = [] return dict(post_data) def extract_comments(session, base_url, post_bs, post_url): """Extracts all coments from post """ comments = list() show_more_url = post_bs.find('a', href=re.compile('/story\.php\?story'))['href'] first_comment_page = True logging.info('Scraping comments from {}'.format(post_url)) while True: logging.info('[!] Scraping comments.') time.sleep(3) if first_comment_page: first_comment_page = False else: post_bs = get_bs(session, base_url + show_more_url) time.sleep(3) try: comments_elements = post_bs.find('div', id=re.compile('composer')).next_sibling \ .find_all('div', id=re.compile('^\d+')) except Exception: pass if len(comments_elements) != 0: logging.info('[!] There are comments.') else: break for comment in comments_elements: comment_data = OrderedDict() comment_data['text'] = list() try: comment_strings = comment.find('h3').next_sibling.strings for string in comment_strings: comment_data['text'].append(string) except Exception: pass try: media = comment.find('h3').next_sibling.next_sibling.children if media is not None: for element in media: comment_data['media_url'] = element['src'] else: comment_data['media_url'] = '' except Exception: pass comment_data['profile_name'] = comment.find('h3').a.string comment_data['profile_url'] = comment.find('h3').a['href'].split('?')[0] comments.append(dict(comment_data)) show_more_url = post_bs.find('a', href=re.compile('/story\.php\?story')) if 'View more' in show_more_url.text: logging.info('[!] More comments.') show_more_url = show_more_url['href'] else: break return comments def json_to_obj(filename): """Extracts dta from JSON file and saves it on Python object """ obj = None with open(filename) as json_file: obj = json.loads(json_file.read()) return obj def save_data(data): """Converts data to JSON. """ with open('profile_posts_data.json', 'w') as json_file: json.dump(data, json_file, indent=4) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) base_url = 'https://mobile.facebook.com' session = requests.session() # Extracts credentials for the login and all of the profiles URL to scrape credentials = json_to_obj('credentials.json') profiles_urls = json_to_obj('profiles_urls.json') make_login(session, base_url, credentials) posts_data = None for profile_url in profiles_urls: posts_data = crawl_profile(session, base_url, profile_url, 25) logging.info('[!] Scraping finished. Total: {}'.format(len(posts_data))) logging.info('[!] Saving.') save_data(posts_data)
StarcoderdataPython
1827187
<gh_stars>1-10 from torch.utils.data import Dataset import torch class SentDataset(Dataset): def __init__(self, data, label, tokenizer, context_length) -> None: self.tokenizer = tokenizer self.data = data self.label = label self.inputs = [] for i, example in enumerate(self.data): tok_result = self.tokenizer( example[0], # A sequence example[1], # B sequence max_length=context_length, padding="max_length", truncation=True, return_tensors="pt" ) tok_result['input_ids'] = torch.squeeze(tok_result['input_ids']) tok_result['attention_mask'] = torch.squeeze(tok_result['attention_mask']) tok_result['labels'] = self.label[i] self.inputs.append(tok_result) def __len__(self) -> int: return len(self.inputs) def __getitem__(self, index: int): return self.inputs[index]
StarcoderdataPython
1732211
<reponame>uncommoncode/robopen import numpy as np # TODO(emmett): # * Dynamic programming TSP # * Explore algorithm that picks between reversed line order or forward line order # * Remove pen tap (down/up/down) or (up/down/up) class PenPath: def __init__(self, start_pt, end_pt): self.start_pt = start_pt self.end_pt = end_pt class PointSearch: def __init__(self, draw_paths): self.draw_paths = draw_paths self.start_points = np.array([path.start_pt for path in self.draw_paths]) self.end_points = np.array([path.end_pt for path in self.draw_paths]) self.se_cost_matrix = np.zeros((len(draw_paths), len(draw_paths))) self.ss_cost_matrix = np.zeros_like(self.se_cost_matrix) self.es_cost_matrix = np.zeros_like(self.se_cost_matrix) self.ee_cost_matrix = np.zeros_like(self.se_cost_matrix) def build_cost_matrix(self): max_value = 1e9 # Start-End for i in range(len(self.draw_paths)): source_pt = self.draw_paths[i].start_pt self.se_cost_matrix[i, :] = self.compute_distance(self.end_points, source_pt) self.se_cost_matrix[i, i] = max_value # Start-Start for i in range(len(self.draw_paths)): source_pt = self.draw_paths[i].start_pt self.ss_cost_matrix[i, :] = self.compute_distance(self.start_points, source_pt) self.ss_cost_matrix[i, i] = max_value # End-Start for i in range(len(self.draw_paths)): source_pt = self.draw_paths[i].end_pt self.es_cost_matrix[i, :] = self.compute_distance(self.start_points, source_pt) self.es_cost_matrix[i, i] = max_value # End-End for i in range(len(self.draw_paths)): source_pt = self.draw_paths[i].end_pt self.ee_cost_matrix[i, :] = self.compute_distance(self.end_points, source_pt) self.ee_cost_matrix[i, i] = max_value @staticmethod def compute_distance(points, point): d = np.sqrt(np.sum((points - point)**2)) return d def find_order(self): # Start to start (reverse first) # Start to end (reverse first and second) # end to start (normal) # end to end (reverse second) visited = np.zeros(len(self.draw_paths), dtype=np.int) max_value = 1e9 search_matrix = np.array([ self.se_cost_matrix, self.ss_cost_matrix, self.es_cost_matrix, self.ee_cost_matrix, ]) current_node = 0 order = [] reverse = [] total_cost = 0 current_reverse = False while (visited == 0).any(): order.append(current_node) reverse.append(current_reverse) visited[current_node] = 1 if not (visited == 0).any(): break prior_node = current_node prior_reverse = current_reverse ordering_index = None while True: # if reverse path beats normal path, then go the reverse route # return reversal code with order search_offset = 0 if not prior_reverse: search_offset = 2 search_indices = [] search_values = [] # NOTE(emmett): hardcoded from ordering of searches search_reverse = [False, True] for i in range(2): index = search_matrix[prior_node, :, search_offset + i].argmin() search_indices.append(()) search_values.append(( index, search_offset + i, search_reverse[i], search_matrix[prior_node, index, search_offset + i], )) # Search from lowest to highest cost. If something found abort this loop. Otherwise keep going. # NOTE(emmett): this is not optimal, because it could be the next item *not* reversed could be closer # than the current closest reversed item. # Ugh, maybe should just go ahead and make this a DP found_visited = False for (index, offset, reverse, value) in sorted(search_values, key=lambda t: t[3]): current_node = index ordering_index = offset current_reverse = reverse if not visited[current_node]: found_visited = True break if found_visited: break # No one else can go to current node total_cost += search_matrix[prior_node, current_node, ordering_index] search_matrix[:, current_node, :] = max_value return order, reverse def greedy_tsp(draw_paths): # TODO(emmett): refactor to allow reversal # TODO(emmett): coarsen to allow ~O(n^3) floyd-whatever shortest path traversal cost_matrix = np.zeros((len(draw_paths), len(draw_paths))) # O(n^2) for i in range(len(draw_paths)): xN, yN = draw_paths[i].end_pt for j in range(len(draw_paths)): if i == j: continue draw_path = draw_paths[j] x0, y0 = draw_path.start_pt dx = x0 - xN dy = y0 - yN distance = np.sqrt(dx * dx + dy * dy) cost_matrix[i, j] = distance min_i = 0 min_distance = cost_matrix.max() for i in range(len(draw_paths)): x0, y0 = draw_paths[i].start_pt distance_to_origin = np.sqrt(x0 ** 2 + y0 ** 2) if distance_to_origin <= min_distance: min_i = i min_distance = distance_to_origin visited = np.zeros(cost_matrix.shape[0], dtype=np.int) # pylint: disable=E1136 max_value = 1e9 search_matrix = cost_matrix + np.eye(cost_matrix.shape[0]) * max_value # pylint: disable=E1136 current_node = min_i order = [] total_cost = 0 while (visited == 0).any(): order.append(current_node) visited[current_node] = 1 if not (visited == 0).any(): break prior_node = current_node while True: # TODO(emmett): have reversal_search_matrix # if reverse path beats normal path, then go the reverse route # return reversal code with order current_node = search_matrix[prior_node, :].argmin() if visited[current_node] == 0: break search_matrix[prior_node, current_node] = max_value # No one else can go to current node total_cost += search_matrix[prior_node, current_node] search_matrix[:, current_node] = max_value return order def remove_repeated_ops(gcode_ops): output_ops = [] last_op = None for op in gcode_ops: if op == last_op: continue last_op = op output_ops.append(op) return output_ops
StarcoderdataPython
6527489
<gh_stars>1-10 import copy from operator import itemgetter import numpy as np import torch def batch_generator(dataset, batch_size, shuffle=True, mask=False): """ Generates a batch iterator for a dataset. """ data = dataset['data'] data_original = dataset['original'] data_size = len(data) num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 if shuffle: perm = np.random.permutation(data_size) data = itemgetter(*perm)(data) data_original = itemgetter(*perm)(data_original) for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) batched_data = copy.deepcopy(list(data[start_index:end_index])) batched_original = copy.deepcopy(list(data_original[start_index:end_index])) max_len_batch = len(max(batched_data, key=len)) for j in range(len(batched_data)): batched_data[j].extend([0] * (max_len_batch - len(batched_data[j]))) yield torch.from_numpy(np.array(batched_data)).long(), batched_original def batch_test_generator(dataset, batch_size): """ Generates a batch iterator for a dataset. """ data = dataset['data'] data_size = len(data) num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) batched_data = copy.deepcopy(list(data[start_index:end_index])) max_len_batch = len(max(batched_data, key=len)) for j in range(len(batched_data)): batched_data[j].extend([0] * (max_len_batch - len(batched_data[j]))) yield torch.from_numpy(np.array(batched_data)).long() def load_aspects(aspect_seeds, word2id, w_emb_array): aspects_ids = [] seed_weights = [] with open(aspect_seeds, 'r') as fseed: for line in fseed: seeds = [] weights = [] for tok in line.split(): word, weight = tok.split(':') if word in word2id: seeds.append(word2id[word]) weights.append(float(weight)) else: seeds.append(0) weights.append(0.0) aspects_ids.append(seeds) seed_weights.append(weights) seed_w = np.array(seed_weights) seed_w = seed_w / np.linalg.norm(seed_w, ord=1, axis=1, keepdims=True) # 9 * 30 seed_w = np.expand_dims(seed_w, axis=2) clouds = [] for seeds in aspects_ids: clouds.append(w_emb_array[seeds]) a_emb = np.array(clouds) # 9,30,200 a_emb = (a_emb * seed_w).sum(axis=1).astype(np.float32) # 9, 200 return a_emb
StarcoderdataPython
1840347
<gh_stars>1-10 """AyudaEnPython: https://www.facebook.com/groups/ayudapython """ from time import sleep # pip install prototools from prototools import Menu, ProtoDB, textbox, progressbar from prototools.colorize import * data = ProtoDB("songs") ALBUM = data.get_data() def play(song): print() textbox( yellow(f"{song['title']} - {song['artist']}"), light=False, bcolor="magenta", width=56, ml=1, ) for _ in progressbar( range(int(song['duration'])*10), width=51, units=False, per=False, spinvar_color=red, fg=green, bg=cyan, ): sleep(0.1) def main(): menu = Menu( green("Jukebox"), yellow("Simple CLI Jukebox"), yellow("Playlist"), yellow("Selecciona una opción"), exit_option_text=magenta("Finalizar"), exit_option_color=magenta, arrow_keys=True, ) for song in ALBUM: menu.add_option( "{} {}".format( green(f"({song['duration']:.2f})"), cyan(f"{song['title']} {song['artist']}")), play, [song], ) menu.settings( dimension=(60, 20), style="double", color=magenta, options_color=yellow, separators=True, paddings=(1, 1, 0, 0), items_paddings=(1, 1, 1, 1), subtitle_align="center", ) menu.run() if __name__ == "__main__": main()
StarcoderdataPython
244236
<filename>metrics.py """ In this module we store functions to measuer the performance of our model. """ import numpy as np from numpy.core.numeric import argwhere from sklearn.metrics import mean_absolute_error, make_scorer, f1_score, precision_score def get_metric_name_mapping(): return {_mae(): mean_absolute_error, _cm(): custom_error, _f1_score(): f1_score , _precision_score(): precision_score} def custom_error( y_true, y_pred, *, overflow_cost: float = 0.7, underflow_cost: float = 0.3, aggregate : bool = True ): """A custom metric that is related to the business, the lower the better.""" diff = y_true - y_pred # negative if predicted value is greater than true value sample_weight = np.ones_like(diff) mask_underflow = diff > 0 sample_weight[mask_underflow] = underflow_cost mask_overflow = diff <= 0 sample_weight[mask_overflow] = overflow_cost if aggregate: return mean_absolute_error(y_true, y_pred, sample_weight=sample_weight) return np.abs(diff * sample_weight) def get_metric_function(name: str, **params): mapping = get_metric_name_mapping() def fn(y, y_pred): return mapping[name](y, y_pred, **params) return fn def get_scoring_function(name: str, **params): mapping = { _mae(): make_scorer(mean_absolute_error, greater_is_better=False, **params), _f1_score(): make_scorer(f1_score, greater_is_better=True, **params), _precision_score(): make_scorer(precision_score, greater_is_better=True, **params) } return mapping[name] def _mae(): return "mean absolute error" def _cm(): return "custom prediction error" def _f1_score(): return "f1 score" def _precision_score(): return "precision score"
StarcoderdataPython
3314175
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @Author: <NAME> @Time:05/26/2021 15:39 PM @Email: <EMAIL> """ import os import math import numpy as np import random from config.config import Config class Reader(object): def __init__(self): self.config = Config() self.root = self.config.root self.training_data_path = self.config.training_data_path self.validation_data_path = self.config.validation_data_path self.test_data_path = self.config.test_data_path self.batch_size = self.config.batch_size self.radius = 5 self.data_size_list = {'Suqian':[201, 76, 2], 'Changning':[151, 60, 2], 'Weifang':[151, 95, 2]} self.data_range_V = {'Suqian':[1, 5, 0.02], 'Changning':[1, 4, 0.02], 'Weifang':[1, 4, 0.02]} self.data_range_T = {'Suqian':[0.5, 8, 0.1], 'Changning':[0.1, 6, 0.1], 'Weifang':[0.6, 10, 0.1]} self.uniform_data_size = [201, 76] def get_all_filename(self, file_path): filename_list = [] for file in os.listdir(file_path): filename = os.path.splitext(file)[0] filename_list.append(filename) #filename_list = np.array(filename_list) #filename_list.sort() return filename_list def get_batch_data(self, data_area, start_point, seed, file_list): np.random.seed(seed) np.random.shuffle(file_list) train_batch_file = file_list[start_point:start_point + self.batch_size] # print('Train File: \n') # print(train_batch_file) batch_data = [] batch_label = [] data_size = self.data_size_list[data_area] VRange = self.data_range_V[data_area] TRange = self.data_range_T[data_area] row = data_size[0] col = data_size[1] for each_train_file in train_batch_file: each_data1 = np.loadtxt(self.training_data_path + '/' + data_area + '/group_image/' + each_train_file + '.dat') each_label1 = np.loadtxt(self.training_data_path + '/' + data_area + '/group_velocity/' + each_train_file + '.dat') each_data1 = each_data1[:, :col] each_label1 = each_label1[:col, 1] if len(each_label1) < col: zero = np.zeros(col - len(each_label1)) each_label1 = np.concatenate((each_label1, zero), axis=0) else: each_label1 = each_label1[:col] len_each_data1 = len(each_data1) if row > len_each_data1: zero = np.zeros((row - len_each_data1, col)) each_data1 = np.concatenate((zero, each_data1), axis=0) else: each_data1 = each_data1[len_each_data1-row:] num = 0 matrix1 = np.zeros((row, col)) r = self.radius for i in each_label1: if i != 0: y_index = int((i - VRange[0])/VRange[2]) for j in range(len(matrix1)): matrix1[j, num] = np.exp(-((y_index-j)**2)/(2*r**2)) num += 1 each_data2 = np.loadtxt(self.training_data_path + '/' + data_area + '/phase_image/' + each_train_file + '.dat') each_label2 = np.loadtxt(self.training_data_path + '/' + data_area + '/phase_velocity/' + each_train_file + '.dat') each_data2 = each_data2[:, :col] each_label2 = each_label2[:col, 1] if len(each_label2) < col: zero = np.zeros(col - len(each_label2)) each_label2 = np.concatenate((each_label2, zero), axis=0) else: each_label2 = each_label2[:col] len_each_data2 = len(each_data2) if row > len_each_data2: zero = np.zeros((row - len_each_data2, col)) each_data2 = np.concatenate((zero, each_data2), axis=0) else: each_data2 = each_data2[len_each_data2-row:] num = 0 matrix2 = np.zeros((row, col)) r = self.radius for i in each_label2: if i != 0: y_index = int((i - VRange[0])/VRange[2]) for j in range(len(matrix2)): matrix2[j, num] = np.exp(-((y_index-j)**2)/(2*r**2)) num += 1 each_data = [] each_data.append(each_data1) each_data.append(each_data2) each_label = [] each_label.append(matrix1) each_label.append(matrix2) each_data = np.array(each_data) each_label = np.array(each_label) each_data = each_data[:, :self.uniform_data_size[0], :self.uniform_data_size[1]] each_label = each_label[:, :self.uniform_data_size[0], :self.uniform_data_size[1]] if data_area == 'Weifang' or data_area == 'Changning': uniformData = np.zeros((2, self.uniform_data_size[0], self.uniform_data_size[1])) uniformLabel = np.zeros((2, self.uniform_data_size[0], self.uniform_data_size[1])) uniformData[:, :each_data.shape[1], :each_data.shape[2]] = each_data uniformLabel[:, :each_label.shape[1], :each_label.shape[2]] = each_label each_data = uniformData each_label = uniformLabel else: pass batch_data.append(each_data) batch_label.append(each_label) batch_data = np.array(batch_data) batch_data = batch_data.transpose((0, 2, 3, 1)) batch_label = np.array(batch_label) batch_label = batch_label.transpose((0, 2, 3, 1)) return batch_data, batch_label def get_validation_data(self, data_area, file_list): # random.seed(0) file_list = random.sample(file_list, self.config.batch_size) validation_data = [] validation_label = [] data_size = self.data_size_list[data_area] VRange = self.data_range_V[data_area] TRange = self.data_range_T[data_area] row = data_size[0] col = data_size[1] for each_valid_file in file_list: each_data1 = np.loadtxt(self.validation_data_path + '/' + data_area + '/group_image/' + each_valid_file + '.dat') each_label1 = np.loadtxt(self.validation_data_path + '/' + data_area + '/group_velocity/' + each_valid_file + '.dat') each_data1 = each_data1[:, :col] each_label1 = each_label1[:col, 1] if len(each_label1) < col: zero = np.zeros(col - len(each_label1)) each_label1 = np.concatenate((each_label1, zero), axis=0) else: each_label1 = each_label1[:col] len_each_data1 = len(each_data1) if row > len_each_data1: zero = np.zeros((row - len_each_data1, col)) each_data1 = np.concatenate((zero, each_data1), axis=0) else: each_data1 = each_data1[len_each_data1-row:] num = 0 matrix1 = np.zeros((row,col)) r = self.radius for i in each_label1: if i != 0: y_index = int((i - VRange[0])/VRange[2]) for j in range(len(matrix1)): matrix1[j, num] = np.exp(-((y_index-j)**2)/(2*r**2)) num = num + 1 each_data2 = np.loadtxt(self.validation_data_path + '/' + data_area + '/phase_image/' + each_valid_file + '.dat') each_label2 = np.loadtxt(self.validation_data_path + '/' + data_area + '/phase_velocity/' + each_valid_file + '.dat') each_data2 = each_data2[:, :col] each_label2 = each_label2[:col, 1] if len(each_label2) < col: zero = np.zeros(col - len(each_label2)) each_label2 = np.concatenate((each_label2, zero), axis=0) else: each_label2 = each_label2[:col] len_each_data2 = len(each_data2) if row > len_each_data2: zero = np.zeros((row - len_each_data2, col)) each_data2 = np.concatenate((zero, each_data2), axis=0) else: each_data2 = each_data2[len_each_data2-row:] num = 0 matrix2 = np.zeros((row,col)) r = self.radius for i in each_label2: if i != 0: y_index = int((i - VRange[0])/VRange[2]) for j in range(len(matrix2)): matrix2[j, num] = np.exp(-((y_index-j)**2)/(2*r**2)) num += 1 each_data = [] each_data.append(each_data1) each_data.append(each_data2) each_label = [] each_label.append(matrix1) each_label.append(matrix2) each_data = np.array(each_data) each_label = np.array(each_label) each_data = each_data[:, :self.uniform_data_size[0], :self.uniform_data_size[1]] each_label = each_label[:, :self.uniform_data_size[0], :self.uniform_data_size[1]] if data_area == 'Weifang' or data_area == 'Changning': uniformData = np.zeros((2, self.uniform_data_size[0], self.uniform_data_size[1])) uniformLabel = np.zeros((2, self.uniform_data_size[0], self.uniform_data_size[1])) uniformData[:, :each_data.shape[1], :each_data.shape[2]] = each_data uniformLabel[:, :each_label.shape[1], :each_label.shape[2]] = each_label each_data = uniformData each_label = uniformLabel else: pass validation_data.append(each_data) validation_label.append(each_label) validation_data = np.array(validation_data) validation_data = validation_data.transpose((0,2,3,1)) validation_label = np.array(validation_label) validation_label = validation_label.transpose((0,2,3,1)) return validation_data, validation_label, file_list def get_test_file(self): filename_list = [] for file in os.listdir(self.config.test_data_path + '/' + 'group_image'): filename = os.path.splitext(file)[0] filename_list.append(filename) filename_list = np.array(filename_list) filename_list.sort() return filename_list def get_disp_matrix(self, file_path, size): ''' Read a dispersion matrix(image). Attributes: file_path: File path. size ([int, int]): Expected matrix size. Zero padding or cutting if the matrix in the file is not consist with you want. Raises: Exception: Wrong input size. Returns: A numpy array with the size of 'size'. ''' input_matrix = np.loadtxt(file_path) input_matrix = input_matrix[:size[0], :size[1]] input_size = input_matrix.shape if input_size[0] <= size[0]: st = size[0] - input_size[0] matrix = np.zeros(size) if input_size[1] >= size[1]: matrix[int(st):, :] = input_matrix[:, :size[1]] else: matrix[int(st):, :input_size[1]] = input_matrix else: raise Exception('Wrong input size!') return matrix def get_label_matrix(self, file_path, size): ''' Read a dispersion curve and generate a label prob matrix. Attributes: file_path: File path. size ([int, int]): Expected matrix size. ssss Returns: A numpy array with the size of 'size'. ''' try: disp_curve = np.loadtxt(file_path) disp_curve = disp_curve[:size[1], 1] except: disp_curve = np.zeros(size[1]) matrix = np.zeros(size) for i in range(len(disp_curve)): vel = disp_curve[i] if vel != 0: y_index = int((vel - self.config.range_V[0])/self.config.dV) for j in range(size[0]): matrix[j, i] = np.exp(-((y_index - j)**2)/(2*self.radius**2)) return matrix
StarcoderdataPython
4884677
<reponame>earth-emoji/infotechia from django.shortcuts import render, redirect from .forms import ThreadForm from .models import Topic, Thread # Create your views here. def topic_list(request): template_name = "topics/list.html" topics = Topic.objects.all() search_term = '' if 'q' in request.GET: search_term = request.GET['q'] topics = topics.filter(name__icontains=search_term) context = { 'topics': topics, 'search_term': search_term, } return render(request, template_name, context) def thread_list(request, slug): topic = Topic.objects.get(slug=slug) template_name = "threads/list.html" threads = Thread.objects.filter(topic=topic) search_term = '' if 'q' in request.GET: search_term = request.GET['q'] threads = threads.filter(body__icontains=search_term) context = { 'topic': topic, 'threads': threads, 'search_term': search_term, } return render(request, template_name, context) def thread_create(request, slug): template_name = 'threads/thread_form.html' topic = Topic.objects.get(slug=slug) if request.method == 'POST': form = ThreadForm(request.POST or None) if form.is_valid(): c = form.save(commit=False) c.topic = topic c.creator = request.user c.save() return redirect("topics:threads", topic.slug) else: form = ThreadForm() return render(request, template_name, {'form': form})
StarcoderdataPython
5086445
<reponame>mghendi/Portfolio<gh_stars>0 from django.http import HttpResponse from django.shortcuts import render def home_page(request): home_title = "Hi !" context = {"title": home_title} #doc = "<h1>{title}</h1>".format(title=title) #django_rendered_doc = "<h1>{{title}}</h1>".format(title=title) return render(request, "home.html", context) def work(request): context = {"title": "Things I've Learnt"} return render(request, "work.html", context) def blog(request): context = {"title": "Tips, Tricks & Tutorials"} return render(request, "blog.html", context) def resume(request): context = {"title": "Resume"} return render(request, "resume.html", context)
StarcoderdataPython
4937081
import logging import os import time from concurrent import futures from multiprocessing import cpu_count from google.cloud import storage from tools.local_utils import get_settings logging.basicConfig(level=logging.INFO) log = logging.getLogger() def get_elapsed_seconds(start_time): return round(time.time() - start_time, 2) def get_upload_variables(): settings = get_settings() bucket_name = settings['blog_config']['google_cloud_bucket_name'] source_root = settings['config']['wp_uploads_path'] blob_name_prefix = settings['blog_config']['blob_name_prefix'] max_files_to_upload = int(settings['config']['max_files_to_upload']) log.info(f'Copying {max_files_to_upload} files from: {source_root} to blob name prefixed with `{blob_name_prefix}`') storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) return blob_name_prefix, bucket, max_files_to_upload, source_root def upload_file_to_bucket(source_root, subdir, file, bucket, blob_name_prefix, log_upload_file_message_prefix=''): # TODO: test with Windows paths (C:, D: etc.) partial_blob_name = f'{subdir}/{file}'.replace(source_root, '') # 2020/01/foo-bar.jpg blob_name = f'{blob_name_prefix}{partial_blob_name}' # media/2020/01/foo-bar.jpg log.info(f'{log_upload_file_message_prefix}Uploading file {partial_blob_name}') file_path = os.path.join(subdir, file) blob = bucket.blob(blob_name) blob.upload_from_filename(file_path) return blob.public_url, True def upload_files_to_bucket(): blob_name_prefix, bucket, max_files_to_upload, source_root = get_upload_variables() start_time = time.time() files_count = 0 for subdir, dirs, files in os.walk(os.path.join(source_root)): log.info(f'Processing directory: {subdir}') for file in files: if files_count == max_files_to_upload: elapsed_time = get_elapsed_seconds(start_time) log.info(f'Uploaded {max_files_to_upload} files in {elapsed_time} seconds') return files_count += 1 blob_url = upload_file_to_bucket(source_root, subdir, file, bucket, blob_name_prefix, f'{files_count}: ') log.info(f'File uploaded: {blob_url}') elapsed_time = get_elapsed_seconds(start_time) log.info(f'Uploaded a total of {files_count} files in {elapsed_time} seconds') def upload_files_to_bucket_in_parallel(): # Inspired by https://github.com/googleapis/python-storage/issues/36 blob_name_prefix, bucket, max_files_to_upload, source_root = get_upload_variables() pool = futures.ThreadPoolExecutor(max_workers=cpu_count()) uploads = [] start_time = time.time() files_count = 0 for subdir, dirs, files in os.walk(os.path.join(source_root)): log.info(f'Processing directory: {subdir}') for file in files: files_count += 1 if files_count > max_files_to_upload: break upload = pool.submit(upload_file_to_bucket, source_root, subdir, file, bucket, blob_name_prefix) uploads.append(upload) future_count = 0 successes = [] for f in futures.as_completed(uploads): future_count += 1 blob_url, success = f.result() successes.append(success) if success: log.info(f'File uploaded: {blob_url}') else: log.error(f'Error uploading: {blob_url}') if files_count != future_count: log.error('Some upload jobs did not complete!') if not all(successes): log.error('Some upload jobs completed but were not successful!') elapsed_time = get_elapsed_seconds(start_time) log.info(f'Uploaded a total of {files_count} files in {elapsed_time} seconds') if __name__ == '__main__': # upload_files_to_bucket() upload_files_to_bucket_in_parallel()
StarcoderdataPython
3232894
<filename>api/app/routers/users.py from fastapi import APIRouter, Depends, Path, Response from fastapi_pagination import Page from .. import deps from ..schemas import Note, User, UserIn, UserInDb from ..services import AuthService, NoteService, UserService router = APIRouter(prefix="/users", tags=["users"]) @router.get( "", dependencies=[Depends(deps.get_current_superuser)], response_model=Page[User] ) async def get_users(user_service: UserService = Depends(deps.get_user_service)): return await user_service.get_users() @router.post( "", status_code=201, response_model=User, responses={ 400: {"description": "User Already Registered"}, }, ) async def create_user( user_in: UserIn, user_service: UserService = Depends(deps.get_user_service) ): return await user_service.create(user_in) @router.get( "/me", response_model=User, responses={ 404: {"description": "User not found"}, }, ) async def get_current_user(current_user: UserInDb = Depends(deps.get_current_user)): return current_user @router.put( "/me", status_code=204, responses={ 400: {"description": "User Already Registered"}, 404: {"description": "User Not Found"}, }, ) async def update_current_user( *, current_user: UserInDb = Depends(deps.get_current_user), user_in: UserIn, user_service: UserService = Depends(deps.get_user_service), ): await user_service.create_or_update(current_user.id, user_in) @router.delete( "/me", status_code=204, responses={ 404: {"description": "User Not Found"}, }, ) async def remove_current_user( current_user: UserInDb = Depends(deps.get_current_user), user_service: UserService = Depends(deps.get_user_service), ): await user_service.remove(current_user.id) @router.get( "/me/notes", response_model=Page[Note], responses={ 404: {"description": "User Not Found"}, }, ) async def get_current_user_notes( current_user: UserInDb = Depends(deps.get_current_user), note_service: NoteService = Depends(deps.get_note_service), ): return await note_service.get_user_notes(current_user.id) @router.get( "/{user_id}", response_model=User, responses={ 404: {"description": "User Not Found"}, }, ) async def get_user( current_user: UserInDb = Depends(deps.get_current_user), user_id: int = Path(..., ge=1), user_service: UserService = Depends(deps.get_user_service), ): AuthService.owner_or_superuser_required(current_user, user_id) return await user_service.get_user(user_id) @router.put( "/{user_id}", status_code=204, responses={ 201: {}, 404: {"description": "User Not Found"}, }, ) async def update_user( *, response: Response, current_user: UserInDb = Depends(deps.get_current_user), user_id: int = Path(..., ge=1), user_in: UserIn, user_service: UserService = Depends(deps.get_user_service), ): AuthService.owner_or_superuser_required(current_user, user_id) user = await user_service.create_or_update(user_id, user_in) if user: response.status_code = 201 return user @router.delete( "/{user_id}", status_code=204, responses={ 404: {"description": "User Not Found"}, }, ) async def remove_user( current_user: UserInDb = Depends(deps.get_current_user), user_id: int = Path(..., ge=1), user_service: UserService = Depends(deps.get_user_service), ): AuthService.owner_or_superuser_required(current_user, user_id) await user_service.remove(user_id) @router.get( "/{user_id}/notes", response_model=Page[Note], responses={ 404: {"description": "User Not Found"}, }, ) async def get_user_notes( current_user: UserInDb = Depends(deps.get_current_user), user_id: int = Path(..., ge=1), note_service: NoteService = Depends(deps.get_note_service), ): AuthService.owner_or_superuser_required(current_user, user_id) return await note_service.get_user_notes(user_id)
StarcoderdataPython
9704035
<gh_stars>0 import logging from pulsar.apps.http import HttpClient from ..utils import get_auth from .repo import GitRepo class GithubApi: def __init__(self, auth=None, http=None): if not http: http = HttpClient(headers=[('Content-Type', 'application/json')]) self.auth = auth or get_auth() self.http = http self.logger = logging.getLogger('agile.github') @property def api_url(self): return 'https://api.github.com' def repo(self, repo_path): return GitRepo(self, repo_path)
StarcoderdataPython
9625350
<reponame>HendrikPN/scigym VERSION = '0.0.3'
StarcoderdataPython
224088
<gh_stars>1-10 import gzip import itertools import os import shutil import tempfile import zipfile from io import BytesIO from struct import unpack_from from subprocess import run import djclick as click import requests from django.core.files.base import ContentFile from PIL import Image, ImageDraw, ImageFilter from boundlexx.api.tasks import purge_static_cache from boundlexx.boundless.models import ( Beacon, BeaconPlotColumn, BeaconScan, Color, World, ) from boundlexx.boundless.utils import SPHERE_GAP, crop_world, html_name from boundlexx.utils import make_thumbnail BASE_DIR = "/tmp/maps" GLOW_SOLID = 5 GLOW_WIDTH = 20 BLEND_START = 1 BLEND_END = 0 TRANS_START = 255 TRANS_END = 128 BLUR = 10 def _draw_world_image( # pylint: disable=too-many-locals atlas_image_file, world_id, atmo_color ): sphere_image_file = os.path.join(BASE_DIR, f"{world_id}_sphere.png") run( ["/usr/local/bin/convert-atlas", atlas_image_file, sphere_image_file], check=True, capture_output=True, ) img = crop_world(Image.open(sphere_image_file)) size, _ = img.size trans_diff = TRANS_START - TRANS_END blur_diff = BLEND_START - BLEND_END for offset in range(GLOW_WIDTH): offset = max(0, offset - GLOW_SOLID) trans = TRANS_START - int(offset / GLOW_WIDTH * trans_diff) blend = BLEND_START - offset / GLOW_WIDTH * blur_diff ellipse_coors = ( SPHERE_GAP + offset, SPHERE_GAP + offset, size - SPHERE_GAP - offset, size - SPHERE_GAP - offset, ) # add atmo color atmo = img.copy() drawa = ImageDraw.Draw(atmo) drawa.ellipse( ellipse_coors, outline=(*atmo_color, trans), width=2, ) img = Image.blend(img, atmo, blend) outer_width = 2 outer_ellipse = ( SPHERE_GAP - outer_width, SPHERE_GAP - outer_width, size - SPHERE_GAP + outer_width, size - SPHERE_GAP + outer_width, ) drawa = ImageDraw.Draw(img) drawa.ellipse( outer_ellipse, outline=(0, 0, 0, 255), width=outer_width, ) mask = Image.new("L", img.size, 0) draw = ImageDraw.Draw(mask) draw.ellipse( outer_ellipse, outline=255, width=outer_width * 2, ) blurred = img.filter(ImageFilter.GaussianBlur(BLUR)) img.paste(blurred, mask=mask) with BytesIO() as output: img.save(output, format="PNG") content = output.getvalue() image = ContentFile(content) image.name = f"{world_id}.png" return image def _process_image(world, root, name): atlas_image_file = os.path.join(root, name) with open(atlas_image_file, "rb") as image_file: atlas_image = ContentFile(image_file.read()) atlas_image.name = f"{world.id}.png" image = _draw_world_image(atlas_image_file, world.id, world.atmosphere_color_tuple) if world.atlas_image is not None and world.atlas_image.name: world.atlas_image.delete() if world.image is not None and world.image.name: world.image.delete() if world.image_small is not None and world.image_small.name: world.image_small.delete() world.atlas_image = atlas_image world.image = image world.image_small = make_thumbnail(image) world.save() def _process_beacons(world, root, name): # pylint: disable=too-many-locals Beacon.objects.filter(world=world).delete() with gzip.open(os.path.join(root, name)) as beacons_file: buffer = beacons_file.read() if len(buffer) == 0: return # adapted from https://docs.playboundless.com/modding/http-beacons.html offset = 0 num_beacons, world_size = unpack_from("<HH", buffer, offset) offset += 4 colors = Color.objects.all() beacons = [] for _ in range(num_beacons): skipped = unpack_from("<H", buffer, offset)[0] offset += 2 if skipped != 0: num_beacons -= skipped break campfire, pos_x, pos_y, pos_z, mayor_name_len = unpack_from( "<BhhhB", buffer, offset ) offset += 8 mayor_name = unpack_from(f"<{mayor_name_len}s", buffer, offset)[0] mayor_name = mayor_name.decode("utf-8") offset += mayor_name_len beacon = Beacon.objects.create( world=world, location_x=pos_x, location_y=pos_y, location_z=-pos_z, is_campfire=bool(campfire), ) if campfire != 0: BeaconScan.objects.create(beacon=beacon, mayor_name=mayor_name) else: prestige, compactness, num_plots, num_plot_columns, name_len = unpack_from( "<QbIIB", buffer, offset ) offset += 18 name = unpack_from(f"<{name_len}s", buffer, offset)[0] name = name.decode("utf-8") offset += name_len BeaconScan.objects.create( beacon=beacon, mayor_name=mayor_name, name=name, text_name=html_name(name, strip=True, colors=colors), html_name=html_name(name, colors=colors), prestige=prestige, compactness=compactness, num_plots=num_plots, num_columns=num_plot_columns, ) beacons.append(beacon) for z, x in itertools.product(range(world_size), repeat=2): beacon_index, plot_count = unpack_from("<HB", buffer, offset) offset += 3 if beacon_index != 0: BeaconPlotColumn.objects.create( beacon=beacons[beacon_index - 1], plot_x=x, plot_z=z, count=plot_count ) @click.command() @click.argument("dropbox_url", nargs=1) def command(dropbox_url): click.echo("Downloading zip...") response = requests.get(dropbox_url) response.raise_for_status() click.echo("Writing zip...") atlas_zip_file = tempfile.NamedTemporaryFile( # pylint: disable=consider-using-with delete=False ) atlas_zip_file.write(response.content) atlas_zip_file.close() os.makedirs(BASE_DIR) with zipfile.ZipFile(atlas_zip_file.name, "r") as zip_file: zip_file.extractall(BASE_DIR) click.echo("Processing data...") for root, _, files in os.walk(BASE_DIR): with click.progressbar(files, show_percent=True, show_pos=True) as pbar: for name in pbar: pbar.label = name pbar.render_progress() world_id = int(name.split("_")[1]) world = World.objects.filter(id=world_id).first() if world is None: continue if name.endswith(".png"): _process_image(world, root, name) elif name.endswith(".beacons.gz"): _process_beacons(world, root, name) click.echo("Cleaning up...") os.remove(atlas_zip_file.name) shutil.rmtree(BASE_DIR) click.echo("Purging CDN cache...") purge_static_cache(["worlds", "atlas"])
StarcoderdataPython
9753475
<gh_stars>10-100 from setuptools import setup from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='django-wallet', packages=['wallets'], version='0.3', license='MIT', description='Apple Wallet integration for a django project', long_description=long_description, long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', url='https://github.com/Silver3310/django-wallets', download_url='https://github.com/Silver3310/django-wallets/archive/v_02.tar.gz', keywords=['django', 'wallet', 'apple', 'pass'], install_requires=[ 'celery', ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
StarcoderdataPython
6582726
<filename>test/files/column_arguments2.py from sqlalchemy import Column from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import String Column("name", Integer, index=True) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "str" # noqa E501 Column(None, name="name") Column(Integer, name="name", index=True) Column("name", ForeignKey("a.id")) Column(ForeignKey("a.id"), type_=None, index=True) Column(ForeignKey("a.id"), name="name", type_=Integer()) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "str", "None" # noqa E501 Column("name", None) Column("name", index=True) Column(ForeignKey("a.id"), name="name", index=True) Column(type_=None, index=True) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "ForeignKey" # noqa E501 Column(None, ForeignKey("a.id")) Column("name") Column(name="name", type_=None, index=True) Column(ForeignKey("a.id"), name="name", type_=None) Column(Integer) Column(ForeignKey("a.id"), type_=Integer()) Column("name", Integer, ForeignKey("a.id"), index=True) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "str", "None", "ForeignKey", "bool # noqa E501 Column("name", None, ForeignKey("a.id"), index=True) Column(ForeignKey("a.id"), index=True) Column("name", Integer) Column(Integer, name="name") Column(Integer, ForeignKey("a.id"), name="name", index=True) Column(ForeignKey("a.id"), type_=None) Column(ForeignKey("a.id"), name="name") Column(name="name", index=True) Column(type_=None) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "bool" # noqa E501 Column(None, index=True) Column(name="name", type_=None) Column(type_=Integer(), index=True) Column("name", Integer, ForeignKey("a.id")) Column(name="name", type_=Integer(), index=True) Column(Integer, ForeignKey("a.id"), index=True) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "str", "None", "ForeignKey" # noqa E501 Column("name", None, ForeignKey("a.id")) Column(index=True) Column("name", type_=None, index=True) Column("name", ForeignKey("a.id"), type_=Integer(), index=True) Column(ForeignKey("a.id")) Column(Integer, ForeignKey("a.id")) Column(Integer, ForeignKey("a.id"), name="name") Column("name", ForeignKey("a.id"), index=True) Column("name", type_=Integer(), index=True) Column(ForeignKey("a.id"), name="name", type_=Integer(), index=True) Column(name="name") # EXPECTED_MYPY: No overload variant of "Column" matches argument types "str", "None", "bool" # noqa E501 Column("name", None, index=True) Column("name", ForeignKey("a.id"), type_=None, index=True) Column("name", type_=Integer()) # EXPECTED_MYPY: No overload variant of "Column" matches argument type "None" Column(None) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "ForeignKey", "bool" # noqa E501 Column(None, ForeignKey("a.id"), index=True) Column("name", ForeignKey("a.id"), type_=None) Column(type_=Integer()) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "ForeignKey", "str", "bool" # noqa E501 Column(None, ForeignKey("a.id"), name="name", index=True) Column(Integer, index=True) Column(ForeignKey("a.id"), name="name", type_=None, index=True) Column(ForeignKey("a.id"), type_=Integer(), index=True) Column(name="name", type_=Integer()) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "str", "bool" # noqa E501 Column(None, name="name", index=True) Column() # EXPECTED_MYPY: No overload variant of "Column" matches argument types "None", "ForeignKey", "str" # noqa E501 Column(None, ForeignKey("a.id"), name="name") Column("name", type_=None) Column("name", ForeignKey("a.id"), type_=Integer()) # We are no longer able to detect there, as the kwargs must stay in place. # EXPECTED_MYPY: No overload variant of "Column" matches argument types "Type[Integer]", "ForeignKey", "Type[String]" # noqa E501 Column(Integer, ForeignKey("a.id"), type_=String) # EXPECTED_MYPY: No overload variant of "Column" matches argument types "str", "ForeignKey", "str" # noqa E501 Column("name", ForeignKey("a.id"), name="String")
StarcoderdataPython
5166103
<gh_stars>0 """ Random field classes """ import numpy as np import pyrft as pr class Field: """ Field class Parameters ---------- field: a numpy.ndarray of shape (Dim) or (Dim, fibersize) Here Dim is the size of the field and fibersize is an index for the fields, typically fibersize is the number of subjects. mask: Bool, a boolean numpty array giving the spatial mask the size of which must be compatible with the field Returns ------- An object of class field Examples -------- # 1D field = np.random.randn(100, 30) mask = np.ones((100, 1), dtype=bool) exField = pr.Field(field, mask) print(exField) # 2D field = np.random.randn(100, 100, 30) mask = np.ones((100, 100), dtype=bool) exField = pr.Field(field, mask) print(exField) # 2D no subjects field = np.random.randn(100, 100) mask = np.ones((100, 100), dtype=bool) exField = pr.Field(field, mask) print(exField) ----------------------------------------------------------------------------- """ def __init__(self, field, mask): self.field = field self.fieldsize = field.shape masksize = mask.shape # Check that the mask is a boolean array if mask.dtype != np.bool: raise Exception("The mask must be a boolean array") # Assign the dimension self.D = len(masksize) # Cover the 1D case where the mask is a vector! # (Allows for row and column vectors) if (self.D == 2) and (masksize[0] == 1 or masksize[1] == 1): self.D = 1 # Force the mask to be a row vector if masksize[1] == 1: mask = mask.transpose() self.masksize = tuple(np.sort(masksize)) else: # In D > 1 just assign the mask size self.masksize = masksize # Obtain the fibersize if self.masksize == self.fieldsize: # If the size of the mask is the size of the data then there is just # one field so the fibersize is set to 1 self.fibersize = 1 else: self.fibersize = self.field.shape[self.D:] if len(self.fibersize) == 1: self.fibersize = self.field.shape[self.D:][0] elif self.masksize == (1, 1): self.fibersize = self.field.shape[self.D + 1:][0] # Ensure that the size of the mask matches the size of the field if self.D > 1 and field.shape[0: self.D] != self.masksize: raise Exception("The size of the spatial field must match the mask") elif self.D == 1 and field.shape[0: self.D][0] != self.masksize[1]: # If the size of the mask doesn't match the field then return an error raise Exception("The size of the spatial field must match the mask") # If it passes the above tests assign the mask to the array self.mask = mask def __str__(self): # Initialize string output str_output = '' # Get a list of the attributes attributes = vars(self).keys() # Add each attribute (and its properties to the output) for atr in attributes: if atr in ['D', 'fibersize']: str_output += atr + ': ' + str(getattr(self, atr)) + '\n' elif atr in ['_Field__mask']: pass elif atr in ['_Field__fieldsize']: str_output += 'fieldsize' + ': ' + str(getattr(self, atr)) + '\n' elif atr in ['_Field__masksize']: str_output += 'masksize' + ': ' + str(getattr(self, atr)) + '\n' elif atr in ['_Field__field']: str_output += 'field' + ': ' + str(getattr(self, atr).shape) + '\n' else: str_output += atr + ': ' + str(getattr(self, atr).shape) + '\n' # Return the string (minus the last \n) return str_output[:-1] #Getting and setting field def _get_field(self): return self.__field def _set_field(self, value): if hasattr(self, 'mask'): if self.D > 1: if value.shape[0:self.D] != self.masksize: raise ValueError("The size of the field must be compatible with the mask") else: if value.shape[0:self.D][0] != self.masksize[1]: raise ValueError("The size of the field must be compatible with the mask") self.__field = value self.fieldsize = value.shape #Getting and setting mask def _get_mask(self): return self.__mask def _set_mask(self, value): if (self.D > 1) and value.shape != self.masksize: raise ValueError("The size of the mask must be compatible with the field") elif (self.D == 1) and tuple(np.sort(value.shape)) != self.masksize: raise ValueError("The size of the mask must be compatible with the field") if value.dtype != np.bool: raise Exception("The mask must be a boolean array") self.__mask = value self.masksize = value.shape #Getting and setting fieldsize def _get_fieldsize(self): return self.__fieldsize def _set_fieldsize(self, value): if value != self.field.shape: raise Exception("The field size cannot be changed directly") self.__fieldsize = value #Getting and setting masksize def _get_masksize(self): return self.__masksize def _set_masksize(self, value): if hasattr(self, 'mask'): if value != self.mask.shape: raise Exception("The field size cannot be changed directly") self.__masksize = value # Set properties field = property(_get_field, _set_field) mask = property(_get_mask, _set_mask) fieldsize = property(_get_fieldsize, _set_fieldsize) masksize = property(_get_masksize, _set_masksize) def make_field(array, fibersize=1): """ conv2field converts a numpy array to am object of class field Parameters ---------- array: numpy.ndarray of shape (Dim, fibersize), Here Dim is the spatial size and fibersize is the index dimension fibersize: int, specifies the size of the fiber, typically this is 1 i.e. when the last dimension of array corresponds to the fibersize Returns ------- F: object of class field Examples -------- data = np.random.randn(100, 30) F = pr.make_field(data) """ fieldsize = array.shape D = len(fieldsize) - fibersize if D == 1: masksize = (fieldsize[0], 1) else: masksize = fieldsize[0:D] mask = np.ones(masksize, dtype = bool) f = pr.Field(array, mask) return f
StarcoderdataPython
6533772
"""Common constants.""" INDENT = ' ' ADDED = '+' REMOVED = '-' NESTED = 'nested' CHANGED = 'changed' UNCHANGED = ' ' SIMPLE = 'simple' COMPLEX = 'complex value'
StarcoderdataPython
8117145
# coding=utf-8 from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from pants.task.task import Task from pants.util.memo import memoized_property from structured.subsystems.r_distribution import RDistribution class RTask(Task): @classmethod def subsystem_dependencies(cls): return super(RTask, cls).subsystem_dependencies() + ( RDistribution.Factory.scoped(cls), ) @memoized_property def r_distribution(self): return RDistribution.Factory.scoped_instance(self).create()
StarcoderdataPython
121094
"""empty message Revision ID: 137ed4905569 Revises: <PASSWORD> Create Date: 2016-09-26 17:22:28.928084 """ # revision identifiers, used by Alembic. revision = '<PASSWORD>' down_revision = '<PASSWORD>' import sqlalchemy as sa from alembic import op def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('test', sa.Column('timeout', sa.Integer())) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('test', 'timeout') ### end Alembic commands ###
StarcoderdataPython
3573518
<filename>horizon/openstack_dashboard/dashboards/settings/logger/panel.py __author__ = 'gaga' from django.utils.translation import ugettext_lazy as _ import horizon from openstack_dashboard.dashboards.settings import dashboard class Logger(horizon.Panel): name = _("Action Log") slug = 'logger' dashboard.Settings.register(Logger)
StarcoderdataPython
11336562
import os import py import numpy as np import openpnm as op from openpnm.models.misc import from_neighbor_pores class SalomeTest: def setup_class(self): np.random.seed(10) self.net = op.network.Cubic(shape=[2, 2, 2]) self.net["pore.diameter"] = 0.5 + np.random.rand(self.net.Np) * 0.5 Dt = from_neighbor_pores(target=self.net, prop="pore.diameter") * 0.5 self.net["throat.diameter"] = Dt self.net["throat.length"] = 1.0 def teardown_class(self): os.remove(f"{self.net.name}.py") os.remove("salome_custom.py") def test_export_data_salome(self): op.io.to_salome(network=self.net) assert os.path.isfile(f"{self.net.name}.py") op.io.to_salome(network=self.net, filename="salome_custom") assert os.path.isfile("salome_custom.py") if __name__ == '__main__': # All the tests in this file can be run with 'playing' this file t = SalomeTest() self = t # For interacting with the tests at the command line t.setup_class() for item in t.__dir__(): if item.startswith('test'): print(f'Running test: {item}') try: t.__getattribute__(item)() except TypeError: t.__getattribute__(item)(tmpdir=py.path.local()) t.teardown_class()
StarcoderdataPython
9665692
print("Escriba las calificaciones de los 3 parciales:") c1, c2, c3 = map(float, input().split()) ef=float(input("Escriba la calificacion del examen final: " ))* 0.30 tf=float(input("Digite la calificacion del trabajo final: "))* 0.15 promedio=(c1+c2+c3)/3*0.55 cf=promedio+ef+tf print("La calificacion final de la clase es de: ",cf)
StarcoderdataPython
5092698
<gh_stars>0 import pkgutil import unittest from django.test import TestCase from django.test.runner import DiscoverRunner from OnToology import settings from OnToology.models import * from mongoengine import connection, connect import pyclbr def suite(): return unittest.TestLoader().discover("OnToology.tests", pattern="test*.py") class NoSQLTestRunner(DiscoverRunner): def setup_databases(self): settings.test_conf['local'] = True settings.test_conf['fork'] = True settings.test_conf['clone'] = True settings.test_conf['push'] = True settings.test_conf['pull'] = True self.clearing_db_connection() new_db_name = "test_OnToology" connect(new_db_name) def teardown_databases(self, *args): db_name = connection._connection_settings['default']['name'] connection.get_connection().drop_database(db_name) connection.disconnect() @classmethod def clearing_db_connection(cls): """ Only used by me :return: """ # disconnect the connection with the db connection.disconnect() # remove the connection details connection._dbs = {} connection._connections = {} connection._connection_settings = {} # getting call classes defined in models.py models = pyclbr.readmodule("OnToology.models").keys() for class_model in models: # delete the collection to prevent automatically connecting with the old db (the live one) del globals()[class_model]._collection class NoSQLTestCase(TestCase): def _fixture_setup(self): pass def _fixture_teardown(self): pass
StarcoderdataPython
8125994
<reponame>rspitler/infra-buddy<filename>src/main/python/infra_buddy/deploy/s3_deploy.py import os import tempfile from infra_buddy.aws import s3 as s3util from infra_buddy.aws.cloudformation import CloudFormationBuddy from infra_buddy.aws.s3 import S3Buddy from infra_buddy.deploy.deploy import Deploy from infra_buddy.utility import print_utility class S3Deploy(Deploy): def __init__(self, artifact_id, location, ctx): super(S3Deploy, self).__init__(ctx) self.location = location self.artifact_id = artifact_id self.cloud_formation_buddy = CloudFormationBuddy(self.deploy_ctx) if self.deploy_ctx.s3_deploy_bucket: self.destination_bucket = self.deploy_ctx.s3_deploy_bucket else: self.destination_bucket = \ self.cloud_formation_buddy.get_export_value( param=self.deploy_ctx.s3_deploy_bucket_export) if not self.destination_bucket: print_utility.error("Could not find s3 deploy bucket") def _internal_deploy(self, dry_run): mkdtemp = tempfile.mkdtemp() if not self.artifact_id.endswith(".zip" ): self.artifact_id = "{}.zip".format(self.artifact_id) artifact_download = "s3://{location}/{artifact_id}".format(location=self.location,artifact_id=self.artifact_id) s3util.download_zip_from_s3_url(artifact_download,destination=mkdtemp) to_upload = self.get_filepaths(mkdtemp) if dry_run: print_utility.banner_warn("Dry Run: Uploading files to - {}".format( self.destination_bucket), str(to_upload)) else: split = self.destination_bucket.split("/") if len(split)>1: path = "/".join(split[1:]) else: path = '' s3 = S3Buddy(self.deploy_ctx, path, split[0]) print_utility.progress("S3 Deploy: Uploading files to - {}".format( self.destination_bucket)) for s3_key, path in to_upload.items(): print_utility.info("{} - {}".format( self.destination_bucket, s3_key)) s3.upload(key_name=s3_key, file=path) def get_filepaths(self, local_directory): rel_paths = {} for root, dirs, files in os.walk(local_directory): for filename in files: # construct the full local path local_path = os.path.join(root, filename) # construct the full Dropbox path relative_path = os.path.relpath(local_path, local_directory) # s3_path = os.path.join(destination, relative_path) rel_paths[relative_path] = local_path return rel_paths def __str__(self): return "{} - {}:{}".format(self.__class__.__name__,self.location,self.artifact_id)
StarcoderdataPython
6432024
<filename>RaspberryPI/Script.py # **********************************Defintions: **************************************** #Device Code Device = "aaaa" # URLS: # Address of Sever, Local or domain Address = 'http://SimpleStorage.local/ # Set Color R=Red G=Green B=Blue Recommend using bright Colors # Finder Strip R ="255" G = "100" B = "255" # Indicator Strip R2 ="255" G2 = "100" B2 = "255" # NeoPixel Data For Product Strip LED_COUNT = 16 # Number of LED pixels. LED_PIN = 16 # GPIO pin connected to the pixels (must support PWM!). LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA = 5 # DMA channel to use for generating signal (try 5) LED_INVERT = False # True to invert the signal (when using NPN transistor level shift) # Neopixel Data for the Indicator Strip LED_COUNT2 = 16 # Number of LED pixels. LED_PIN2 = 18 # GPIO pin connected to the pixels (must support PWM!). LED_FREQ_HZ2 = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA2 = 5 # DMA channel to use for generating signal (try 5) LED_INVERT2 = False # True to invert the signal (when using NPN transistor level shift) Color = ","+R +","+G+","+B Color2 = ","+R2 +","+G2+","+B2 # If the large Tray is enabled Largetray = True Large1 = True Large2 = True Large3 = True Large4 = True Large5 = True Large6 = True Large7 = True Large8 = True Large9 = True # Large Trays Put Specified values Make Sure They are unique Largetr1 = 101 Largetr2 = 102 Largetr3 = 103 Largetr4 = 104 Largetr5 = 105 Largetr6 = 106 Largetr7 = 107 Largetr8 = 108 Largetr9 = 109 #Large Trays LED value Code Custom Code ( Color value + Pixel number starts at Zero + Can have infinet pixels LargetrLED1 = "23" + Color LargetrLED2= "23" + Color LargetrLED3= "23" + Color LargetrLED4= "23" + Color LargetrLED5= "23" + Color LargetrLED6= "23" + Color LargetrLED7="23" + Color LargetrLED8= "23" + Color LargetrLED9 "23" + Color #************************************************************************************** url = Address + 'newfile.txt' power = Address + "power.txt" import serial import time import requests from bs4 import BeautifulSoup import time from neopixel import * print print ind = Adafruit_NeoPixel(LED_COUNT2, LED_PIN2, LED_FREQ_HZ2, LED_DMA2, LED_INVERT2) def Indicator: int count = 0 while count >= LED_COUNT2 ind.setPixelColor(Count, R2,B2,G2) ind.Show() Word = "ON" strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT) strip.begin() ind.beign() #Creates Loop print "Starting" while True: print("Connecting") powerresponse = requests.get(power) powerparsed = BeautifulSoup(powerresponse.content, "html.parser") print powerparsed pow = powerparsed word = pow value = str(pow) print("Connected Sucessfuly") if int(value) >= 1000: # Gets Web Data response = requests.get(url) print("Requested Item:") soup = BeautifulSoup(response.content, "html.parser") soup_string = str(soup) ID = soup_string[:4] print(soup) if ID == Device: if Largetray == True: print("Large Trays Enabled") if Number == Largetr1: if Large1 == True: senddata(LargetrLED2) Number = " " elif Number == Largetr2: if Large2 == True: senddata(LargetrLED2) Number = " " elif Number == Largetr3: if Large3 == True: senddata(LargetrLED3) Number = " " elif Number == Largetr4: if Large4 == True: senddata(LargetrLED4) Number = " " elif Number == Largetr5: if Large5 == True: senddata(LargetrLED5) Number = " " elif Number == Largetr6: if Large6 == True: senddata(LargetrLED6) Number = " " elif Number == Largetr7: if Large6 == True: senddata(LargetrLED7) Number = " " elif Number == Largetr8: if Large6 == True: senddata(LargetrLED8) Number = " " elif Number == Largetr9: if Large6 == True: senddata(LargetrLED9) Number = " " else: Number2 == Number -1 print("Sending Data") senddata(Number2 + Color) time.sleep(2) else: print("Large Tree Not Enabled Treating Normally") LED = int(soup_string) LED2 = LED -1 senddata(Color + "P" + LED2) else: print("Not This Device") time.sleep(2) else: print("Device is still OFF") time.sleep(2) def senddata(data): print("Sending Data:") print(data) strip.setPixelColor(data) indicator()
StarcoderdataPython
1790781
<reponame>Xz-Alan/RS_Classification import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.optim.lr_scheduler import StepLR import numpy as np import sar_data as sd import test_sar_data as tsd import os import math import time import argparse import scipy as sp import scipy.stats import scipy.io from PIL import Image import random from network import CNNEncoder, RelationNetwork from sklearn.metrics import confusion_matrix import rgb os.environ["CUDA_VISIBLE_DEVICES"] = "3" parser = argparse.ArgumentParser(description="hsi few-shot classification") parser.add_argument("--num_epoch", type=int, default=1) parser.add_argument("--train_n_way", type=int, default=7) parser.add_argument("--train_n_shot", type=int, default=5) parser.add_argument("--train_n_query", type=int, default=15) parser.add_argument("--test_n_way", type=int, default=7) parser.add_argument("--test_n_shot", type=int, default=5) parser.add_argument("--test_n_query", type=int, default=1) parser.add_argument("--test_epoch", type=int, default=100) parser.add_argument("--lr", type=float, default=0.001) parser.add_argument("--data_folder", type=str, default='./data/') parser.add_argument("--data_name", type=str, default='rs_data') # flevoland parser.add_argument("--sar_size1", type=int, default=5, help="flip the picture to 5x5 size") parser.add_argument("--sar_size2", type=int, default=11, help="flip the picture to 11x11 size") parser.add_argument("--sar_size3", type=int, default=17, help="flip the picture to 13x13 size") parser.add_argument("--trainset_ratio", type=float, default=0.7) parser.add_argument("--out_dim", type=int, default=32, help="cnn_net_out_dim") parser.add_argument("--hidden_size", type=int, default=10, help="relation_net_hidden_size") parser.add_argument("--loss_model", type=int, default=3, help="0: ce_loss;1: mse_loss;2: focal_loss;3: MSE_IIRL_loss") parser.add_argument("--test_num", type=int, default=0) parser.add_argument("--test_switch",type=bool, default=False) parser.add_argument("--paint_switch",type=bool,default=False) args = parser.parse_args() def weights_init(m): """ initial model. """ classname = m.__class__.__name__ if classname.find('Conv') != -1: n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif classname.find('BatchNorm') != -1: m.weight.data.fill_(1) m.bias.data.zero_() elif classname.find('Linear') != -1: n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data = torch.ones(m.bias.data.size()) def one_hot(args, indices): """ Returns a one-hot tensor. This is a PyTorch equivalent of Tensorflow's tf.one_hot. """ encoded_indicate = torch.zeros(args.train_n_way*args.train_n_query, args.train_n_way).cuda() index = indices.long().view(-1,1) encoded_indicate = encoded_indicate.scatter_(1,index,1) return encoded_indicate def kappa(confusion_matrix): """kappa系数 :param: confusion_matrix--混淆矩阵 :return: Kappa系数 """ pe_rows = np.sum(confusion_matrix, axis=0) pe_cols = np.sum(confusion_matrix, axis=1) sum_total = sum(pe_cols) pe = np.dot(pe_rows, pe_cols) / float(sum_total ** 2) po = np.trace(confusion_matrix) / float(sum_total) return (po - pe) / (1 - pe) def main(): rgb_colors = rgb.ncolors(args.train_n_way) print(rgb_colors) start_time = time.time() # rgb_colors = np.array([[248, 49, 49], [200, 248, 9], [42, 248, 124], [36, 123, 254], [204, 4, 254]]) if args.paint_switch: print("painting img_gt") _, gts = sd.mat_data(args) wait gts -= 1 img_h = gts.shape[0]-16 img_v = gts.shape[1]-16 img_gt = Image.new("RGB", (img_h, img_v), "white") for h in range(img_h): for v in range(img_v): for i in range(args.test_n_way): if gts[h+8,v+8] == i: img_gt.putpixel([h, v], (rgb_colors[i][0], rgb_colors[i][1], rgb_colors[i][2])) break img_gt.save("./img_result/"+ str(args.data_name) + "_img_gt.jpg") if args.test_switch: # 184170 load que_labels = scipy.io.loadmat("./labels_save/que_%s_%d_loss_%d_shot_%d_img_out.mat"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num))['que_labels'].squeeze(0).astype(int) pre_labels = scipy.io.loadmat("./labels_save/pre_%s_%d_loss_%d_shot_%d_img_out.mat"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num))['pre_labels'].squeeze(0) # perpare class_correct = np.zeros(args.test_n_way).astype(int) class_num = np.zeros(args.test_n_way).astype(int) class_acc = np.zeros(args.test_n_way).astype(float) for i in range(len(que_labels)): if pre_labels[i]==que_labels[i]: class_correct[que_labels[i]] += 1 class_num[que_labels[i]] += 1 # kappa confusion_m = confusion_matrix(que_labels, pre_labels) kappa_score = kappa(confusion_m) print("Kappa: %.2f %%" %(kappa_score*100)) # aa for i in range(args.test_n_way): class_acc[i] = class_correct[i] / class_num[i] print("class_%d_acc: %.2f %%" %(i, class_acc[i]*100)) aa = np.mean(class_acc) print("AA: %.2f %%" %(aa*100)) # oa total_labels = np.sum(class_num) total_correct = np.sum(class_correct) oa = total_correct/1.0 / total_labels/1.0 print("OA: %.2f %%" %(oa*100)) return print("test finished!") print("loading sar_dataset") if os.path.exists('./data/' + args.data_name + '/stacks_1.npy') == False: print("making dataset") os.makedirs(("./data/"+args.data_name+"/"), exist_ok= True) tsd.sar_datesets(args) test_stacks_1 = torch.Tensor(np.load('./data/' + args.data_name + '/stacks_1.npy')) # (182656,27,5,5) test_stacks_2 = torch.Tensor(np.load('./data/' + args.data_name + '/stacks_2.npy')) test_stacks_3 = torch.Tensor(np.load('./data/' + args.data_name + '/stacks_3.npy')) test_gts = torch.Tensor(np.load('./data/' + args.data_name + '/gts.npy')) test_gts -= 1 load_time = time.time() print("%sset load successfully, and spend time: %.2f"%(args.data_name, load_time-start_time)) print("init network") cnn_sup = CNNEncoder(test_stacks_1.size(1), args.out_dim) cnn_que = CNNEncoder(test_stacks_1.size(1), args.out_dim) relation_net = RelationNetwork(2*args.out_dim, args.hidden_size) # 初始化模型 cnn_sup.apply(weights_init) cnn_que.apply(weights_init) relation_net.apply(weights_init) cnn_sup.cuda() cnn_que.cuda() relation_net.cuda() # scheduler # Adam 对网络参数进行优化,学习率10000次循环后降为原来的0.5倍 cnn_sup_optim = torch.optim.Adam(cnn_sup.parameters(), lr=args.lr) cnn_sup_scheduler = StepLR(cnn_sup_optim, step_size=20000, gamma=0.5) cnn_que_optim = torch.optim.Adam(cnn_que.parameters(), lr=args.lr) cnn_que_scheduler = StepLR(cnn_que_optim, step_size=20000, gamma=0.5) relation_net_optim = torch.optim.Adam(relation_net.parameters(), lr=args.lr) relation_net_scheduler = StepLR(relation_net_optim, step_size=20000, gamma=0.1) test_result = open("./test_result/%s_%d_loss_%d_shot_%d_log.txt"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num), 'w') cnn_sup_folder = "./model/" + str(args.data_name) + "/cnn_sup/" cnn_que_folder = "./model/" + str(args.data_name) + "/cnn_que/" relation_net_folder = "./model/" + str(args.data_name) + "/relation_net/" os.makedirs(cnn_sup_folder, exist_ok=True) os.makedirs(cnn_que_folder, exist_ok=True) os.makedirs(relation_net_folder, exist_ok=True) if os.path.exists(cnn_sup_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num)): cnn_sup.load_state_dict(torch.load(cnn_sup_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num))) print("load cnn_sup successfully") if os.path.exists(cnn_que_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num)): cnn_que.load_state_dict(torch.load(cnn_que_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num))) print("load cnn_que successfully") if os.path.exists(relation_net_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num)): relation_net.load_state_dict(torch.load(relation_net_folder + "%s_%d_loss_%d_shot_%d.pth"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num))) print("load relation_net successfully") ''' cnn_sup.eval() cnn_que.eval() relation_net.eval() ''' for epoch in range(args.num_epoch): print("start testing") #------------------------------prepare------------------------------ test_time = time.time() total_correct = 0 class_correct = np.zeros(args.test_n_way).astype(int) class_acc = np.zeros(args.test_n_way).astype(float) pre_labels = [] que_labels = [] gts_class = np.arange(args.test_n_way) h_img = 750 -16 v_img = 1024 -16 img_out = Image.new("RGB", (h_img, v_img), "white") #------------------------------test------------------------------ test_sup_stacks_1, test_sup_stacks_2, test_sup_stacks_3, test_sup_gts, class_num = tsd.sar_dataloader(args, gts_class, test_gts, test_stacks_1, test_stacks_2, test_stacks_3, split='test',form='support', shuffle=False) class_num_max = np.max(class_num) print("class_num_max: ", class_num_max) index_i = np.zeros(args.test_n_way).astype(int) index_j = np.zeros(args.test_n_way).astype(int) for i in range(class_num_max): #------------------------------------------------------------------------- stack_index = np.arange(0, test_gts.size(0)) # 生成stack的索引 # print("stack_index: ", len(stack_index)) index = np.zeros(1, dtype=int) # 生成一个零数组,方便for循环 for i in gts_class: stack_index_i = stack_index[test_gts == i] if index_j[i] >= len(stack_index_i): index_j[i] = 0 # print(i, ":", len(stack_index_i)) stack_index_i = [stack_index_i[index_j[i]]] index = np.concatenate((index, stack_index_i), axis=0) index_j[i] += 1 index = np.delete(index, 0 , 0) # 不打乱顺序 test_que_stacks_1 = [] test_que_stacks_2 = [] test_que_stacks_3 = [] test_que_gts = [] for item in list(index): # 每一行需要增加一维,拼接时保证维度正确 test_que_stacks_1.append(test_stacks_1[item].unsqueeze(0)) test_que_stacks_2.append(test_stacks_2[item].unsqueeze(0)) test_que_stacks_3.append(test_stacks_3[item].unsqueeze(0)) test_que_gts.append(test_gts[item].unsqueeze(0)) test_que_stacks_1 = torch.cat(test_que_stacks_1, dim=0) # (25,27,5,5) test_que_stacks_2 = torch.cat(test_que_stacks_2, dim=0) # (25,27,11,11) test_que_stacks_3 = torch.cat(test_que_stacks_3, dim=0) # (25,27,17,17) test_que_gts = torch.cat(test_que_gts, dim=0) #------------------------------------------------------------------------- test_sup_stacks_1 = test_sup_stacks_1.cuda() test_sup_stacks_2 = test_sup_stacks_2.cuda() test_sup_stacks_3 = test_sup_stacks_3.cuda() test_sup_gts = test_sup_gts.cuda() test_que_stacks_1 = test_que_stacks_1.cuda() test_que_stacks_2 = test_que_stacks_2.cuda() test_que_stacks_3 = test_que_stacks_3.cuda() test_que_gts = test_que_gts.cuda() mult_sup_feature = cnn_sup(test_sup_stacks_1, test_sup_stacks_2, test_sup_stacks_3) mult_que_feature = cnn_que(test_que_stacks_1, test_que_stacks_2, test_que_stacks_3) mult_relation_pairs = [] for i in range(3): # 支持集按类取平均 sup_feature = mult_sup_feature[i] que_feature = mult_que_feature[i] sup_feature = sup_feature.view(args.test_n_way, args.test_n_shot, -1, sup_feature.shape[2], sup_feature.shape[3]) sup_feature = torch.mean(sup_feature,1).squeeze(1) # relations sup_feature_ext = sup_feature.unsqueeze(0).repeat(args.test_n_way*args.test_n_query, 1, 1, 1, 1) que_feature_ext = torch.transpose(que_feature.unsqueeze(0).repeat(args.test_n_way,1,1, 1, 1),0,1) relation_pairs = torch.cat((sup_feature_ext, que_feature_ext), 2).view(-1, 2*args.out_dim, sup_feature.shape[2], sup_feature.shape[3]) mult_relation_pairs.append(relation_pairs) relations = relation_net(mult_relation_pairs[0], mult_relation_pairs[1], mult_relation_pairs[2]).view(-1, args.test_n_way) # calculate relations _, predict_gts = torch.max(relations.data, 1) for j in range(args.test_n_way): h_j = index[j] // v_img v_j = index[j] % v_img img_out.putpixel([h_j, v_j], (rgb_colors[predict_gts[j]][0], rgb_colors[predict_gts[j]][1], rgb_colors[predict_gts[j]][2])) if index_i[j] > class_num[j]: continue if predict_gts[j]== test_que_gts[j]: class_correct[j] += 1 pre_labels.append(predict_gts[j].item()) que_labels.append(test_que_gts[j].item()) index_i[j] +=1 # painting img_out.save("./img_result/" + "%s_%d_loss_%d_shot_%d_img_out.jpg"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num)) # labels save que_save = "./labels_save/que_%s_%d_loss_%d_shot_%d_img_out.mat"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num) pre_save = "./labels_save/pre_%s_%d_loss_%d_shot_%d_img_out.mat"%(args.data_name, args.loss_model, args.train_n_shot, args.test_num) scipy.io.savemat(que_save, mdict={"que_labels": que_labels}) scipy.io.savemat(pre_save, mdict={"pre_labels": pre_labels}) # kappa confusion_m = confusion_matrix(que_labels, pre_labels) kappa_score = kappa(confusion_m) print("Kappa: %.2f %%" %(kappa_score*100)) test_result.write("Kappa: %.2f %%\n" %(kappa_score*100)) test_result.flush() # aa for i in range(args.test_n_way): class_acc[i] = class_correct[i] / class_num[i] # print(i, "_class_correct: ", class_correct[i]) # print(i, "_class_num: ", class_num[i]) print("class_%d_acc: %.2f %%" %(i, class_acc[i]*100)) test_result.write("class_%d_acc: %.2f %%\n" %(i, class_acc[i]*100)) test_result.flush() aa = np.mean(class_acc) print("AA: %.2f %%" %(aa*100)) test_result.write("AA: %.2f %%\n" %(aa*100)) test_result.flush() # oa total_labels = np.sum(class_num) total_correct = np.sum(class_correct) # print("total_labels: ", total_labels) # print("total_correct: ", total_correct) oa = total_correct / total_labels print("OA: %.2f %%" %(oa*100)) test_result.write("OA: %.2f %%\n" %(oa*100)) test_result.flush() end_time = time.time() print("test finished, and spend time: ", end_time - test_time) if __name__ == "__main__": main()
StarcoderdataPython
39458
<reponame>sqilz/LIMS-Backend import io import json from django.core.exceptions import ObjectDoesNotExist from pint import UnitRegistry import django_filters from rest_framework import viewsets from rest_framework.response import Response from rest_framework.decorators import detail_route, list_route from rest_framework import serializers from rest_framework.parsers import FormParser, MultiPartParser from rest_framework.filters import (OrderingFilter, SearchFilter, DjangoFilterBackend) from lims.permissions.permissions import (IsInAdminGroupOrRO, ViewPermissionsMixin, ExtendedObjectPermissions, ExtendedObjectPermissionsFilter) from lims.shared.mixins import StatsViewMixin, AuditTrailViewMixin from lims.filetemplate.models import FileTemplate from lims.projects.models import Product from .models import Set, Item, ItemTransfer, ItemType, Location, AmountMeasure from .serializers import (AmountMeasureSerializer, ItemTypeSerializer, LocationSerializer, ItemSerializer, DetailedItemSerializer, SetSerializer, ItemTransferSerializer) from .providers import InventoryItemPluginProvider # Define as module level due to issues with file locking # when calling a function requiring it multiple times ureg = UnitRegistry() class LeveledMixin(AuditTrailViewMixin): """ Provide a display value for a heirarchy of elements """ def _to_leveled(self, obj): level = getattr(obj, obj._mptt_meta.level_attr) if level == 0: display_value = obj.name else: display_value = '{} {}'.format('--' * level, obj.name) return { 'display_value': display_value, 'value': obj.name, 'root': obj.get_root().name } class MeasureViewSet(AuditTrailViewMixin, viewsets.ModelViewSet): queryset = AmountMeasure.objects.all() serializer_class = AmountMeasureSerializer permission_classes = (IsInAdminGroupOrRO,) search_fields = ('symbol', 'name',) class ItemTypeViewSet(viewsets.ModelViewSet, LeveledMixin): queryset = ItemType.objects.all() serializer_class = ItemTypeSerializer permission_classes = (IsInAdminGroupOrRO,) search_fields = ('name', 'parent__name',) def destroy(self, request, *args, **kwargs): instance = self.get_object() if instance.has_children(): return Response({'message': 'Cannot delete ItemType with children'}, status=400) self.perform_destroy(instance) return Response(status=204) class LocationViewSet(viewsets.ModelViewSet, LeveledMixin): queryset = Location.objects.all() serializer_class = LocationSerializer permission_classes = (IsInAdminGroupOrRO,) search_fields = ('name', 'parent__name') def filter_queryset(self, queryset): queryset = super(LocationViewSet, self).filter_queryset(queryset) # Set ordering explicitly as django-filter borks the defaults return queryset.order_by('tree_id', 'lft') def destroy(self, request, *args, **kwargs): instance = self.get_object() if instance.has_children(): return Response({'message': 'Cannot delete Location with children'}, status=400) self.perform_destroy(instance) return Response(status=204) class InventoryFilterSet(django_filters.FilterSet): """ Filter for inventory items """ class Meta: model = Item fields = { 'id': ['exact'], 'name': ['exact', 'icontains'], 'added_by__username': ['exact'], 'identifier': ['exact'], 'barcode': ['exact'], 'description': ['icontains'], 'item_type__name': ['exact'], 'location__name': ['exact'], 'in_inventory': ['exact'], 'amount_measure__symbol': ['exact'], 'amount_available': ['exact', 'lt', 'lte', 'gt', 'gte'], 'concentration_measure__symbol': ['exact'], 'concentration': ['exact', 'lt', 'lte', 'gt', 'gte'], 'added_on': ['exact', 'lt', 'lte', 'gt', 'gte'], 'last_updated_on': ['exact', 'lt', 'lte', 'gt', 'gte'], 'properties__name': ['exact', 'icontains'], 'properties__value': ['exact', 'icontains'], } class InventoryViewSet(LeveledMixin, StatsViewMixin, ViewPermissionsMixin, viewsets.ModelViewSet): queryset = Item.objects.all() serializer_class = ItemSerializer permission_classes = (ExtendedObjectPermissions,) filter_backends = (SearchFilter, DjangoFilterBackend, OrderingFilter, ExtendedObjectPermissionsFilter,) search_fields = ('name', 'identifier', 'item_type__name', 'location__name', 'location__parent__name') filter_class = InventoryFilterSet def get_serializer_class(self): if self.action == 'list': return self.serializer_class return DetailedItemSerializer def get_object(self): instance = super().get_object() plugins = [p(instance) for p in InventoryItemPluginProvider.plugins] for p in plugins: p.view() return instance def perform_create(self, serializer): serializer, permissions = self.clean_serializer_of_permissions(serializer) instance = serializer.save(added_by=self.request.user) self.assign_permissions(instance, permissions) plugins = [p(instance) for p in InventoryItemPluginProvider.plugins] for p in plugins: p.create() def perform_update(self, serializer): instance = serializer.save() plugins = [p(instance) for p in InventoryItemPluginProvider.plugins] for p in plugins: p.update() @list_route(methods=['POST'], parser_classes=(FormParser, MultiPartParser,)) def importitems(self, request): """ Import items from a CSV file Expects: file_template: The ID of the file template to use to parse the file items_file: The CSV file to parse permissions: Standard permissions format ({"name": "rw"}) to give to all items """ file_template_id = request.data.get('filetemplate', None) uploaded_file = request.data.get('items_file', None) permissions = request.data.get('permissions', '{}') response_data = {} if uploaded_file and file_template_id: try: filetemplate = FileTemplate.objects.get(id=file_template_id) except FileTemplate.DoesNotExist: return Response({'message': 'File template does not exist'}, status=404) encoding = 'utf-8' if request.encoding is None else request.encoding f = io.TextIOWrapper(uploaded_file.file, encoding=encoding) items_to_import = filetemplate.read(f, as_list=True) saved = [] rejected = [] if items_to_import: for item_data in items_to_import: item_data['assign_groups'] = json.loads(permissions) if 'properties' not in item_data: item_data['properties'] = [] ''' I'm not actually sure what this was supposed to do! Properties are already list so this shouldn't be required. else: item_data['properties'] = ast.literal_eval(item_data['properties']) ''' item = DetailedItemSerializer(data=item_data) if item.is_valid(): saved.append(item_data) item, parsed_permissions = self.clean_serializer_of_permissions(item) item.validated_data['added_by'] = request.user instance = item.save() self.assign_permissions(instance, parsed_permissions) if 'product' in item_data: try: prod = item_data['product'] product = Product.objects.get(product_identifier=prod) except: pass else: product.linked_inventory.add(instance) else: item_data['errors'] = item.errors rejected.append(item_data) else: return Response({'message': 'File is format is incorrect'}, status=400) response_data = { 'saved': saved, 'rejected': rejected } return Response(response_data) @list_route(methods=['POST']) def export_items(self, request): # The ID of the file template file_template_id = request.data.get('filetemplate', None) # The ID's of items to get selected = request.data.get('selected', None) if file_template_id: if selected: ids = selected.strip(',').split(',') items = Item.objects.filter(pk__in=ids) else: # The query used to get the results # Query params in URL used NOT in .data items = self.filter_queryset(self.get_queryset()) serializer = DetailedItemSerializer(items, many=True) try: file_template = FileTemplate.objects.get(pk=file_template_id) except: return Response({'message': 'File template does not exist'}, status=404) with io.StringIO() as output_file: output_file = file_template.write(output_file, serializer.data) output_file.seek(0) return Response(output_file.read(), content_type='text/csv') return Response({'Please supply a file template and data to export'}, status=400) @detail_route(methods=['POST']) def transfer(self, request, pk=None): """ Either create or complete an item transfer. """ tfr_id = request.query_params.get('id', None) complete_transfer = request.query_params.get('complete', False) transfer_details = request.data if tfr_id and complete_transfer: try: tfr = ItemTransfer.objects.get(pk=tfr_id) except ObjectDoesNotExist: return Response({'message': 'No item transfer exists with that ID'}, status=404) tfr.transfer_complete = True tfr.save() return Response({'message': 'Transfer {} complete'.format(tfr_id)}) elif transfer_details: item = self.get_object() raw_amount = float(transfer_details.get('amount', 0)) raw_measure = transfer_details.get('measure', item.amount_measure.symbol) addition = transfer_details.get('is_addition', False) # Booleanise them is_complete = False is_addition = False if addition: is_addition = True is_complete = True if transfer_details.get('transfer_complete', False): is_complete = True try: measure = AmountMeasure.objects.get(symbol=raw_measure) except AmountMeasure.DoesNotExist: raise serializers.ValidationError({'message': 'Measure {} does not exist'.format(raw_measure) }) tfr = ItemTransfer( item=item, amount_taken=raw_amount, amount_measure=measure, barcode=transfer_details.get('barcode', ''), coordinates=transfer_details.get('coordinates', ''), transfer_complete=is_complete, is_addition=is_addition ) transfer_status = tfr.check_transfer() if transfer_status[0] is True: tfr.save() tfr.do_transfer(ureg) else: return Response( {'message': 'Inventory item {} ({}) is short of amount by {}'.format( item.identifier, item.name, transfer_status[1])}, status=400) return Response({'message': 'Transfer {} created'.format(tfr.id)}) return Response({'message': 'You must provide a transfer ID'}, status=400) @detail_route(methods=['POST']) def cancel_transfer(self, request, pk=None): """ Cancel an active transfer, adding the amount back """ tfr_id = request.query_params.get('id', None) if tfr_id: try: tfr = ItemTransfer.objects.get(pk=tfr_id, transfer_complete=False) except ObjectDoesNotExist: return Response({'message': 'No item transfer exists with that ID'}, status=404) tfr.is_addition = True tfr.do_transfer(ureg) tfr.delete() return Response({'message': 'Transfer cancelled'}) return Response({'message': 'You must provide a transfer ID'}, status=400) class SetViewSet(AuditTrailViewMixin, viewsets.ModelViewSet, ViewPermissionsMixin): queryset = Set.objects.all() serializer_class = SetSerializer permission_classes = (ExtendedObjectPermissions,) search_fields = ('name',) filter_fields = ('is_partset',) filter_backends = (SearchFilter, DjangoFilterBackend, OrderingFilter, ExtendedObjectPermissionsFilter,) def perform_create(self, serializer): serializer, permissions = self.clean_serializer_of_permissions(serializer) instance = serializer.save() self.assign_permissions(instance, permissions) @detail_route() def items(self, request, pk=None): limit_to = request.query_params.get('limit_to', None) item = self.get_object() if limit_to: queryset = [o for o in item.items.all() if o.item_type.name == limit_to] else: queryset = item.items.all() serializer = ItemSerializer(queryset, many=True) return Response(serializer.data) @detail_route(methods=['POST']) def add(self, request, pk=None): item_id = request.query_params.get('id', None) inventoryset = self.get_object() if item_id: try: item = Item.objects.get(pk=item_id) except Item.DoesNotExist: raise serializers.ValidationError({'message': 'Item {} does not exist'.format(item_id)}) item.sets.add(inventoryset) return Response(status=201) return Response( {'message': 'The id of the item to add to the inventory is required'}, status=400) @detail_route(methods=['DELETE']) def remove(self, request, pk=None): item_id = request.query_params.get('id', None) inventoryset = self.get_object() if item_id: try: item = inventoryset.items.get(pk=item_id) except Item.DoesNotExist: raise serializers.ValidationError({'message': 'Item {} does not exist'.format(item_id)}) inventoryset.items.remove(item) return Response(status=204) return Response( {'message': 'The id of the item to add to the inventory is required'}, status=400) class ItemTransferViewSet(AuditTrailViewMixin, viewsets.ReadOnlyModelViewSet, ViewPermissionsMixin): queryset = ItemTransfer.objects.all() serializer_class = ItemTransferSerializer search_fields = ('item__name', 'item__identifier', 'barcode',) filter_fields = ('transfer_complete', 'barcode',) filter_backends = (SearchFilter, DjangoFilterBackend, OrderingFilter,) def get_queryset(self): return ItemTransfer.objects.filter(transfer_complete=False) @list_route(methods=['GET']) def grouped(self, request): """ Group transfers under the same barcode e.g. as if they where in plates. Limit allows to set how many barcodes are fetched. """ limit = int(request.query_params.get('limit', 10)) qs = (ItemTransfer.objects.filter(transfer_complete=False) .distinct('barcode') .order_by('barcode', '-date_created')[:limit]) barcodes = [i.barcode for i in qs] transfers = (ItemTransfer.objects.filter(transfer_complete=False, barcode__in=barcodes) .order_by('barcode', 'coordinates')) serializer = ItemTransferSerializer(transfers, many=True) groups = {} for t in serializer.data: if t['barcode'] not in groups: groups[t['barcode']] = [] groups[t['barcode']].append(t) return Response(groups)
StarcoderdataPython
3309672
<filename>pointnet2/emd.py<gh_stars>10-100 import torch import emd_cuda import torch.nn as nn class EarthMoverDistanceFunction(torch.autograd.Function): @staticmethod def forward(ctx, xyz1, xyz2, return_match=False): xyz1 = xyz1.contiguous() xyz2 = xyz2.contiguous() assert xyz1.is_cuda and xyz2.is_cuda, "Only support cuda currently." match = emd_cuda.approxmatch_forward(xyz1, xyz2) cost = emd_cuda.matchcost_forward(xyz1, xyz2, match) n = xyz1.shape[1] m = xyz2.shape[1] cost = cost / max(n,m) ctx.save_for_backward(xyz1, xyz2, match) if return_match: return cost, match else: return cost @staticmethod def backward(ctx, grad_cost): xyz1, xyz2, match = ctx.saved_tensors grad_cost = grad_cost.contiguous() grad_xyz1, grad_xyz2 = emd_cuda.matchcost_backward(grad_cost, xyz1, xyz2, match) return grad_xyz1, grad_xyz2, None def earth_mover_distance(xyz1, xyz2, transpose=False, return_match=False): """Earth Mover Distance (Approx) Args: xyz1 (torch.Tensor): (b, n, 3) xyz2 (torch.Tensor): (b, m, 3) transpose (bool): whether to transpose inputs as it might be BCN format. Extensions only support BNC format. Returns: cost (torch.Tensor): (b) """ if xyz1.dim() == 2: xyz1 = xyz1.unsqueeze(0) if xyz2.dim() == 2: xyz2 = xyz2.unsqueeze(0) if transpose: xyz1 = xyz1.transpose(1, 2) xyz2 = xyz2.transpose(1, 2) if return_match: cost, match = EarthMoverDistanceFunction.apply(xyz1, xyz2, True) return cost, match else: cost = EarthMoverDistanceFunction.apply(xyz1, xyz2, False) return cost class EMD_distance(nn.Module): def forward(self, xyz1, xyz2, transpose=False, return_match=False): if xyz1.dim() == 2: xyz1 = xyz1.unsqueeze(0) if xyz2.dim() == 2: xyz2 = xyz2.unsqueeze(0) if transpose: xyz1 = xyz1.transpose(1, 2) xyz2 = xyz2.transpose(1, 2) if return_match: cost, match = EarthMoverDistanceFunction.apply(xyz1, xyz2, True) return cost, match else: cost = EarthMoverDistanceFunction.apply(xyz1, xyz2, False) return cost if __name__ == '__main__': import pdb # from pytorch3d.loss.chamfer import chamfer_distance import os os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' n = 2048 m = 2048 return_match = False x = torch.rand(128, n, 3).cuda() # (B,n,3) y = torch.rand(128, m, 3).cuda() # (B,m,3) d1 = earth_mover_distance(x,y, transpose=False, return_match=return_match) emd_module = EMD_distance() emd_module = nn.DataParallel(emd_module) d2 = emd_module(x,y, transpose=False, return_match=return_match) # c_d1,_ = chamfer_distance(x,y, batch_reduction=None) # c_d1 = c_d1/2 # # in the completion 3d repo, they set groud truth point cloud as y, and the generated point cloud as x # # m1 is of shape (B,m,n) and # # if m>n, m1.sum(dim=1) = ones(B,n) # # if m<n, m1.sum(dim=2) = ones(B,m) # # if m=n, m1.sum(dim=1) = m1.sum(dim=2) = ones(B,n) # # assume x has less points than y # # then for every point in x, we assign weights to every point to y, they sum to 1. # # The closer a point in y is to x, the larger its weight is # x_perm = torch.randperm(n) # x_new = x[:,x_perm,:] # y_perm = torch.randperm(m) # y_new = y[:,y_perm,:] # d1_new, m1_new = earth_mover_distance(x_new,y_new, transpose=False, return_match=return_match) # # permutation of the order of points in x or y doesn't change the distance much # d2, m2 = earth_mover_distance(y,x, transpose=False, return_match=return_match) # # change the order of x and y alter the distance largely # d3, m3 = earth_mover_distance(x,x, transpose=False, return_match=return_match) # # ds is indeed close to 0 pdb.set_trace()
StarcoderdataPython
3455881
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for user.py.""" import mock from google.appengine.ext import ndb from upvote.gae import settings from upvote.gae.datastore import test_utils from upvote.gae.datastore.models import user as user_models from upvote.gae.lib.testing import basetest from upvote.gae.utils import user_utils from upvote.shared import constants _TEST_EMAIL = user_utils.UsernameToEmail('testemail') # Done for the sake of brevity. USER = constants.USER_ROLE.USER TRUSTED_USER = constants.USER_ROLE.TRUSTED_USER ADMINISTRATOR = constants.USER_ROLE.ADMINISTRATOR class UserTest(basetest.UpvoteTestCase): """Test User model.""" def setUp(self): super(UserTest, self).setUp() self.PatchEnv(settings.ProdEnv, ENABLE_BIGQUERY_STREAMING=True) def testGetOrInsertAsync_ExistingUser(self): user = user_models.User(id=_TEST_EMAIL) user.put() self.assertEntityCount(user_models.User, 1) future = user_models.User.GetOrInsertAsync(email_addr=_TEST_EMAIL) user = future.get_result() self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertNoBigQueryInsertions() def testGetOrInsertAsync_NewUser(self): self.assertEntityCount(user_models.User, 0) future = user_models.User.GetOrInsertAsync(email_addr=_TEST_EMAIL) user = future.get_result() self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertSetEqual(constants.PERMISSIONS.SET_USER, user.permissions) self.assertEqual(_TEST_EMAIL, user.email) self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testGetOrInsert_ExistingUser_EmailAddr(self): user = user_models.User(id=_TEST_EMAIL) user.put() self.assertEntityCount(user_models.User, 1) user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertNoBigQueryInsertions() def testGetOrInsert_ExistingUser_AppEngineUser(self): user = user_models.User(id=_TEST_EMAIL) user.put() self.assertEntityCount(user_models.User, 1) appengine_user = test_utils.CreateAppEngineUser(email=_TEST_EMAIL) user = user_models.User.GetOrInsert(appengine_user=appengine_user) self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertNoBigQueryInsertions() def testGetOrInsert_ExistingUser_NoOverwrite(self): user = user_models.User(id=_TEST_EMAIL) user.put() self.assertEntityCount(user_models.User, 1) old_recorded_dt = user.recorded_dt user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) new_recorded_dt = user.recorded_dt self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertEqual(old_recorded_dt, new_recorded_dt) self.assertNoBigQueryInsertions() def testGetOrInsert_NewUser_EmailAddr(self): self.assertEntityCount(user_models.User, 0) user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertSetEqual(constants.PERMISSIONS.SET_USER, user.permissions) self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testGetOrInsert_NewUser_EmailAddr_Lowercase(self): user = user_models.User.GetOrInsert(email_addr='<EMAIL>') self.assertIsNotNone(user) self.assertEqual('<EMAIL>', user.email) self.assertEqual('upper', user.nickname) self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testGetOrInsert_NewUser_AppEngineUser(self): self.assertEntityCount(user_models.User, 0) appengine_user = test_utils.CreateAppEngineUser(email=_TEST_EMAIL) user = user_models.User.GetOrInsert(appengine_user=appengine_user) self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertSetEqual(constants.PERMISSIONS.SET_USER, user.permissions) self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testGetOrInsert_NewUser_ProperlyInitialized(self): self.assertEntityCount(user_models.User, 0) user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) self.assertIsNotNone(user) self.assertEntityCount(user_models.User, 1) self.assertEqual(_TEST_EMAIL, user.email) self.assertIsNotNone(user.recorded_dt) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.USER], user.vote_weight) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertIsNone(user.last_vote_dt) self.assertGreaterEqual(user.rollout_group, 0) self.assertSetEqual(constants.PERMISSIONS.SET_USER, user.permissions) self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testGetOrInsert_UnknownUserError(self): self.Patch(user_models.users, 'get_current_user', return_value=None) with self.assertRaises(user_models.UnknownUserError): user_models.User.GetOrInsert() @mock.patch.object(user_models.mail_utils, 'Send') def testSetRoles_RemoveAll(self, mock_send): with self.LoggedInUser() as user: self.assertListEqual([constants.USER_ROLE.USER], user.roles) email_addr = user.email with self.assertRaises(user_models.NoRolesError): user_models.User.SetRoles(email_addr, []) user = user_models.User.GetOrInsert(email_addr=email_addr) self.assertListEqual([constants.USER_ROLE.USER], user.roles) mock_send.assert_not_called() self.assertNoBigQueryInsertions() @mock.patch.object(user_models.mail_utils, 'Send') def testSetRoles_InvalidUserRole(self, mock_send): with self.LoggedInUser() as user: with self.assertRaises(user_models.InvalidUserRoleError): user_models.User.SetRoles(user.email, ['INVALID_ROLE']) mock_send.assert_not_called() @mock.patch.object(user_models.mail_utils, 'Send') def testSetRoles_NoChanges(self, mock_send): with self.LoggedInUser() as user: self.assertListEqual([constants.USER_ROLE.USER], user.roles) old_vote_weight = user.vote_weight user_models.User.SetRoles(user.email, [constants.USER_ROLE.USER]) user = user_models.User.GetOrInsert(email_addr=user.email) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertEqual(user.vote_weight, old_vote_weight) mock_send.assert_not_called() self.assertNoBigQueryInsertions() @mock.patch.object(user_models.mail_utils, 'Send') def testSetRoles_AddRole(self, mock_send): with self.LoggedInUser() as user: self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.USER], user.vote_weight) new_roles = [constants.USER_ROLE.SUPERUSER, constants.USER_ROLE.USER] user_models.User.SetRoles(user.email, new_roles) user = user_models.User.GetOrInsert(email_addr=user.email) self.assertListEqual(new_roles, user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.SUPERUSER], user.vote_weight) mock_send.assert_called_once() self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) @mock.patch.object(user_models.mail_utils, 'Send') def testSetRoles_RemoveRole(self, mock_send): old_roles = [constants.USER_ROLE.SUPERUSER, constants.USER_ROLE.USER] user = test_utils.CreateUser(email=_TEST_EMAIL, roles=old_roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.SUPERUSER], user.vote_weight) mock_send.reset_mock() new_roles = [constants.USER_ROLE.USER] user_models.User.SetRoles(_TEST_EMAIL, new_roles) user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) self.assertListEqual(new_roles, user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.USER], user.vote_weight) mock_send.assert_called_once() self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) @mock.patch.object(user_models.mail_utils, 'Send') def testUpdateRoles_AddRole(self, mock_send): with self.LoggedInUser() as user: self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.USER], user.vote_weight) user_models.User.UpdateRoles( user.email, add=[constants.USER_ROLE.SUPERUSER]) user = user_models.User.GetOrInsert(email_addr=user.email) self.assertListEqual( [constants.USER_ROLE.SUPERUSER, constants.USER_ROLE.USER], user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.SUPERUSER], user.vote_weight) mock_send.assert_called_once() self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) @mock.patch.object(user_models.mail_utils, 'Send') def testUpdateRoles_RemoveRole(self, mock_send): old_roles = [constants.USER_ROLE.SUPERUSER, constants.USER_ROLE.USER] user = test_utils.CreateUser(email=_TEST_EMAIL, roles=old_roles) with self.LoggedInUser(user=user): self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.SUPERUSER], user.vote_weight) mock_send.reset_mock() user_models.User.UpdateRoles( _TEST_EMAIL, remove=[constants.USER_ROLE.SUPERUSER]) user = user_models.User.GetOrInsert(email_addr=_TEST_EMAIL) self.assertListEqual([constants.USER_ROLE.USER], user.roles) self.assertEqual( settings.VOTING_WEIGHTS[constants.USER_ROLE.USER], user.vote_weight) mock_send.assert_called_once() self.assertBigQueryInsertion(constants.BIGQUERY_TABLE.USER) def testHighestRole_Default(self): user = test_utils.CreateUser() self.assertEqual(constants.USER_ROLE.USER, user.highest_role) def testHighestRole_Administrator(self): roles = [ constants.USER_ROLE.USER, constants.USER_ROLE.TRUSTED_USER, constants.USER_ROLE.ADMINISTRATOR] user = test_utils.CreateUser(roles=roles) self.assertEqual(constants.USER_ROLE.ADMINISTRATOR, user.highest_role) def testHighestRole_NoRolesError(self): user = test_utils.CreateUser() user.roles = [] user.put() with self.assertRaises(user_models.NoRolesError): user.highest_role # pylint: disable=pointless-statement def testIsAdmin_Nope(self): lowly_peon = test_utils.CreateUser(roles=[constants.USER_ROLE.USER]) self.assertFalse(lowly_peon.is_admin) def testIsAdmin_HasAdminRole(self): fancy_admin = test_utils.CreateUser( roles=[constants.USER_ROLE.ADMINISTRATOR]) self.assertTrue(fancy_admin.is_admin) def testIsAdmin_IsFailsafe(self): self.PatchSetting('FAILSAFE_ADMINISTRATORS', [_TEST_EMAIL]) mr_failsafe = test_utils.CreateUser( email=_TEST_EMAIL, roles=[constants.USER_ROLE.USER]) self.assertTrue(mr_failsafe.is_admin) def testPermissions_Admin(self): admin = test_utils.CreateUser(admin=True) self.assertSetEqual(constants.PERMISSIONS.SET_ALL, admin.permissions) def testPermissions_User(self): user = test_utils.CreateUser() self.assertSetEqual(constants.PERMISSIONS.SET_USER, user.permissions) def testHasPermission(self): user = test_utils.CreateUser() self.assertTrue(user.HasPermission(constants.PERMISSIONS.VOTE)) self.assertFalse(user.HasPermission(constants.PERMISSIONS.EDIT_ALERTS)) def testLacksPermission(self): user = test_utils.CreateUser() self.assertFalse(user.LacksPermission(constants.PERMISSIONS.VOTE)) self.assertTrue(user.LacksPermission(constants.PERMISSIONS.EDIT_ALERTS)) if __name__ == '__main__': basetest.main()
StarcoderdataPython
3597292
#!/usr/bin/env python # -*- coding: utf-8 -*- # flake8: noqa __doc__ = """ This sample demonstrate the coupling of aqueous equilibrium equations generated from pyequion with the simulation using the DAETOOLs framework. This sample was based on the daetools's tutorial: `tutorial_adv_2.py` """ import sys import os from time import localtime, strftime import numpy as np from daetools.pyDAE import * from daetools.solvers.trilinos import pyTrilinos # from res_nahco3_cacl2_reduced_T_2 import res as res_speciation from res_nahco3_cacl2_T_2 import res as res_speciation import pyequion import aux_create_dynsim # import daetools_cm # import pyequion # Standard variable types are defined in variable_types.py from pyUnits import J, K, g, kg, kmol, m, mol, s, um no_small_positive_t = daeVariableType( "no_small_positive_t", dimless, 0.0, 1.0, 0.1, 1e-5 ) eq_idx_regular = { "size": 14, "Na+": 0, "HCO3-": 1, "Ca++": 2, "OH-": 3, "H+": 4, "CO2": 5, "CaOH+": 6, "NaOH": 7, "NaHCO3": 8, "CO3--": 9, "CaCO3": 10, "NaCO3-": 11, "Na2CO3": 12, "CaHCO3+": 13, "H2O": 14, "Cl-": 15, } eq_idx_reduced2 = { "size": 11, # REDUCEC "Na+": 0, "HCO3-": 1, "Ca++": 2, "OH-": 3, "H+": 4, "CO2": 5, "NaHCO3": 6, "CO3--": 7, "CaCO3": 8, "Na2CO3": 9, # WRONG, fixing "CaHCO3+": 10, "H2O": 11, "Cl-": 12, } # eq_idx = eq_idx_reduced2 eq_idx = eq_idx_regular iNa = 0 iC = 1 iCa = 2 iCl = 3 sys_eq_aux = aux_create_dynsim.get_caco3_nahco3_equilibrium() less_factor = 0.1 CONCS = np.array( [ 0.5 * less_factor * 150.0e-3, 0.5 * less_factor * 150.0e-3, 0.5 * less_factor * 50.0e-3, 0.5 * less_factor * 2 * 50.0e-3, ] ) comps_aux = { "Na+": CONCS[0] * 1e3, "HCO3-": CONCS[1] * 1e3, "Ca++": CONCS[2] * 1e3, "Cl-": CONCS[3] * 1e3, } solution_aux = pyequion.solve_solution(comps_aux, sys_eq_aux) guess_speciation = 10 ** (solution_aux.x) # guess_speciation = np.array([7.33051995e-02, 6.43325906e-02, 1.82951191e-02, 7.76126264e-07, # 2.23776785e-08, 1.90732600e-03, 8.07985599e-08, 2.03684279e-08, # 1.51672652e-03, 3.62336563e-04, 1.36791361e-03, 1.74388571e-04, # 1.83235834e-06, 5.33688654e-03]) sol_eq_full = pyequion.solve_solution(comps_aux) rhoc = 2.709997e3 # kg/m3 kv = 1.0 MW_C = 12.0107 MW_Na = 22.98977 MW_Ca = 40.078 MW_CaCO3 = 100.0869 MW_Cl = 35.453 f_cryst_mol = [0, 1, 1, 0] def calc_B(S): # Verdoes 92 Eb = 12.8 Ks = 1.4e18 in_exp = -Eb / ((np.log(S)) ** 2) # if in_exp < -300.0: # return 0.0 B = Ks * S * np.exp(in_exp) # B *= (self.V*1e-6) * 60.0 #to #/min return B * 1e-3 # : #/m^3/s -> #/kg/s def calc_G(S): # Verdoes 92 # Kg = 2.4e-12 #m/s Kg = 5.6e-10 # ref 22 in Verdoes g = 1.8 G = Kg * (S - 1.0) ** g return G class modelCaCO3Precip(daeModel): def __init__(self, Name, Parent=None, Description=""): daeModel.__init__(self, Name, Parent, Description) self.Nmoments = daeDomain( "Nmoments", self, dimless, "Number of Moments" ) self.mus = daeVariable( "mus", no_t, self, "Particle Moment concentrations", [self.Nmoments], ) self.lmin = daeParameter("lmin", dimless, self, "Minimal size") self.G = daeVariable("G", no_t, self, "Growth rate") self.B0 = daeVariable("B0", no_t, self, "Nucleation rate") self.NSpecies = daeDomain( "NSpecies", self, dimless, "Number of Species" ) self.NElementTotal = daeDomain( "NElementTotal", self, dimless, "Number of Elements" ) # self.conc_species = daeVariable("conc_species", no_t, self, "Conc Species", [self.NSpecies]) self.x_species = daeVariable( "x_species", no_t, self, "Conc Species", [self.NSpecies] ) self.conc_element_total = daeVariable( "conc_element_total", no_t, self, "Conc Element Total", [self.NElementTotal], ) # self.iap = daeVariable("iap", no_t, self, "Ionic Activity Product") self.S = daeVariable("S", no_t, self, "Supersaturation") self.aCapp = daeVariable("aCapp", no_t, self, "Ca++ Activity") self.aCO3mm = daeVariable("aCO3mm", no_t, self, "CO3-- Activity") self.pH = daeVariable("pH", no_t, self, "pH") self.massConcCrystalBulk = daeVariable( "massConcCrystalBulk", no_t, self, "massConcCrystalBulk" ) self.L10 = daeVariable("L10", no_t, self, "L10") self.TK = daeVariable("TK", no_t, self, "T") def DeclareEquations(self): daeModel.DeclareEquations(self) n_species = self.NSpecies.NumberOfPoints n_elements = self.NElementTotal.NumberOfPoints cNa = self.conc_element_total(iNa) cC = self.conc_element_total(iC) cCa = self.conc_element_total(iCa) cCl = self.conc_element_total(iCl) C = [cNa, cC, cCa, cCl] kappa = 1e-6 # Constant(1e-6 * m) #dimensionless auxiliary param mu0_ref = 1e20 # dimensionless auxiliary param # mu_refs = [mu0_ref*kappa**k for k in range(0,4)] "Element Conservation" rhoc_mol = rhoc / (MW_CaCO3 * 1e-3) # kg/m^3 -> mol/m^3 for j in range(0, n_elements): eq = self.CreateEquation("EleConservation({})".format(j), "") mu2_dim = self.mus(2) * mu0_ref * kappa ** 2 G_dim = self.G() * kappa eq.Residual = dt(C[j]) - ( -3.0 * f_cryst_mol[j] * kv * rhoc_mol * mu2_dim * G_dim ) eq.CheckUnitsConsistency = False "Moment Balance" eq = self.CreateEquation("Moment({})".format(0), "") eq.Residual = dt(self.mus(0)) - self.B0() eq.CheckUnitsConsistency = False for j in range(1, 4): eq = self.CreateEquation("Moment({})".format(j), "") eq.Residual = dt(self.mus(j)) - ( j * self.G() * self.mus(j - 1) # + self.B0()*self.lmin()**j ) eq.CheckUnitsConsistency = False "Nucleation Rate" # S = 2.0 #TO DO. S = self.S() eq = self.CreateEquation("NucleationRate", "") # eq.Residual = self.B0() - calc_B(S)*1e-8 B0_calc = calc_B(S) eq.Residual = self.B0() - (B0_calc / mu0_ref) "Growth Rate" eq = self.CreateEquation("GrowthRate", "") # eq.Residual = self.G() - calc_G(S) eq.Residual = self.G() - (calc_G(S) / kappa) # "Temperature" # eq = self.CreateEquation("TK", "") # eq.Residual = self.TK() - (25.0 + 273.15) "Chemical Speciation" args_speciation = ([cNa, cC, cCa, cCl], self.TK(), np.nan) x = [self.x_species(j) for j in range(n_species)] res_species = res_speciation(x, args_speciation) for i_sp in range(0, n_species): eq = self.CreateEquation("c_species({})".format(i_sp)) eq.Residual = res_species[i_sp] molal_species = [np.log10(self.x_species(j)) for j in range(n_species)] comps = { "Na+": cNa, "HCO3-": cC, "Ca++": cCa, "Cl-": cCl, } solution = pyequion.get_solution_from_x(sys_eq_aux, x, comps) "pH" eq = self.CreateEquation("pH", "") eq.Residual = self.pH() - solution.pH "Supersaturation" aCapp = pyequion.get_activity(solution, "Ca++") aCO3mm = pyequion.get_activity(solution, "CO3--") Ksp = 10 ** (solution.log_K_solubility["Calcite"]) iap = solution.ionic_activity_prod["Calcite"] eq = self.CreateEquation("aCapp", "") eq.Residual = self.aCapp() - aCapp eq = self.CreateEquation("aCapp", "") eq.Residual = self.aCO3mm() - aCO3mm eq = self.CreateEquation("S", "") eq.Residual = self.S() - Sqrt(aCapp * aCO3mm / Ksp) "Mass of Crystal in Bulk" eq = self.CreateEquation("massConcCrystlBulk", "") eq.Residual = ( self.massConcCrystalBulk() - (self.mus(3) * kappa ** 3 * mu0_ref) * rhoc * kv ) eq = self.CreateEquation("L10", "") eq.Residual = self.L10() - (self.mus(1) * kappa) / ( self.mus(0) + 1e-20 ) "Disturbing Temperature" self.IF(Time() < Constant(10 * 600 * s), eventTolerance=1e-5) eq = self.CreateEquation("TKIni", "") eq.Residual = self.TK() - (25.0 + 273.15) self.ELSE() eq = self.CreateEquation("TKMod", "") eq.Residual = self.TK() - (50.0 + 273.15) self.END_IF() pass class simTutorial(daeSimulation): def __init__(self): daeSimulation.__init__(self) self.m = modelCaCO3Precip("modelCaCO3Precip") def SetUpParametersAndDomains(self): self.m.Nmoments.CreateArray(4) self.m.NSpecies.CreateArray(eq_idx["size"]) self.m.NElementTotal.CreateArray(4) self.m.lmin.SetValue(0.0) pass def SetUpVariables(self): nMus = self.m.Nmoments.NumberOfPoints self.m.mus.SetInitialConditions(np.zeros(nMus)) for i_sp in range(0, self.m.NSpecies.NumberOfPoints): # self.m.conc_species.SetInitialGuess(i_sp, guess_speciation[i_sp]) self.m.x_species.SetInitialGuess(i_sp, solution_aux.x[i_sp]) self.m.conc_element_total.SetInitialConditions(CONCS) # self.m.iap.SetInitialGuess(1e-6) guess_aCapp = pyequion.get_activity(solution_aux, "Ca++") guess_aCO3mm = pyequion.get_activity(solution_aux, "CO3--") S = ( solution_aux.ionic_activity_prod["Calcite"] / 10 ** (solution_aux.log_K_solubility["Calcite"]) ) ** 0.5 self.m.pH.SetInitialGuess(solution_aux.pH) self.m.aCapp.SetInitialGuess(guess_aCapp) self.m.aCO3mm.SetInitialGuess(guess_aCO3mm) self.m.S.SetInitialGuess(S) self.m.TK.SetInitialGuess(25.0 + 273.15) pass def run(**kwargs): simulation = simTutorial() print( "Supported Trilinos solvers: %s" % pyTrilinos.daeTrilinosSupportedSolvers() ) # lasolver = pyTrilinos.daeCreateTrilinosSolver("Amesos_Klu", "") lasolver = pyTrilinos.daeCreateTrilinosSolver("Amesos_Umfpack", "") # lasolver = pyTrilinos.daeCreateTrilinosSolver("Amesos_Lapack", "") # lasolver = pyTrilinos.daeCreateTrilinosSolver("'AztecOO_ML", "") return daeActivity.simulate( simulation, reportingInterval=1, timeHorizon=20 * 60, lasolver=lasolver, # calculateSensitivities=True, **kwargs ) if __name__ == "__main__": guiRun = ( False if (len(sys.argv) > 1 and sys.argv[1] == "console") else True ) # run(guiRun = guiRun) run(guiRun=False)
StarcoderdataPython
9768677
<filename>ssc_lcd.py import RPi.GPIO as GPIO import time def lcd_init(config): # Initialise display lcd_byte(config,0x33,config.getboolean('lcd', 'LCD_CMD')) # 110011 Initialise lcd_byte(config,0x32,config.getboolean('lcd', 'LCD_CMD')) # 110010 Initialise lcd_byte(config,0x06,config.getboolean('lcd', 'LCD_CMD')) # 000110 Cursor move direction lcd_byte(config,0x0C,config.getboolean('lcd', 'LCD_CMD')) # 001100 Display On,Cursor Off, Blink Off lcd_byte(config,0x28,config.getboolean('lcd', 'LCD_CMD')) # 101000 Data length, number of lines, font size lcd_byte(config,0x01,config.getboolean('lcd', 'LCD_CMD')) # 000001 Clear display time.sleep(config.getfloat('lcd', 'E_DELAY')) def lcd_byte(config,bits, mode): # Send byte to data pins # bits = data # mode = True for character # False for command GPIO.output(config.getint('lcd', 'LCD_RS'), mode) # RS # High bits GPIO.output(config.getint('lcd', 'LCD_D4'), False) GPIO.output(config.getint('lcd', 'LCD_D5'), False) GPIO.output(config.getint('lcd', 'LCD_D6'), False) GPIO.output(config.getint('lcd', 'LCD_D7'), False) if bits&0x10==0x10: GPIO.output(config.getint('lcd', 'LCD_D4'), True) if bits&0x20==0x20: GPIO.output(config.getint('lcd', 'LCD_D5'), True) if bits&0x40==0x40: GPIO.output(config.getint('lcd', 'LCD_D6'), True) if bits&0x80==0x80: GPIO.output(config.getint('lcd', 'LCD_D7'), True) # Toggle 'Enable' pin lcd_toggle_enable(config) # Low bits GPIO.output(config.getint('lcd', 'LCD_D4'), False) GPIO.output(config.getint('lcd', 'LCD_D5'), False) GPIO.output(config.getint('lcd', 'LCD_D6'), False) GPIO.output(config.getint('lcd', 'LCD_D7'), False) if bits&0x01==0x01: GPIO.output(config.getint('lcd', 'LCD_D4'), True) if bits&0x02==0x02: GPIO.output(config.getint('lcd', 'LCD_D5'), True) if bits&0x04==0x04: GPIO.output(config.getint('lcd', 'LCD_D6'), True) if bits&0x08==0x08: GPIO.output(config.getint('lcd', 'LCD_D7'), True) # Toggle 'Enable' pin lcd_toggle_enable(config) def lcd_toggle_enable(config): # Toggle enable time.sleep(config.getfloat('lcd', 'E_DELAY')) GPIO.output(config.getint('lcd', 'LCD_E'), True) time.sleep(config.getfloat('lcd', 'E_PULSE')) GPIO.output(config.getint('lcd', 'LCD_E'), False) time.sleep(config.getfloat('lcd', 'E_DELAY')) def lcd_string(config,message,line): # Send string to display message = message.ljust(config.getint('lcd', 'LCD_WIDTH')," ") lcd_byte(config,line, config.getboolean('lcd', 'LCD_CMD')) for i in range(config.getint('lcd', 'LCD_WIDTH')): lcd_byte(config,ord(message[i]),config.getboolean('lcd', 'LCD_CHR'))
StarcoderdataPython
366495
import torch import numbers import numpy as np from typing import Optional def get_Rbasis( system: str, modification: Optional[str], a: Optional[float], b: Optional[float], c: Optional[float], alpha: Optional[float], beta: Optional[float], gamma: Optional[float], ) -> torch.Tensor: """Create lattice vectors from lattice system and modification""" def check_needed(**kwargs): """Check if all needed arguments are provided""" for key, value in kwargs.items(): if value is None: raise KeyError(system + " lattice system requires parameter " + key) if not isinstance(value, numbers.Number): raise TypeError("Lattice paramater " + key + " must be numeric") if value <= 0.0: raise ValueError("Lattice paramater " + key + " must be > 0") def check_spurious(**kwargs): """Check if any spurious arguments are provided""" for key, value in kwargs.items(): if value is not None: raise KeyError( system + " lattice system does not require" " parameter " + key ) def check_modification(allowed_systems): """Check compatibility of modification with lattice system""" if system not in allowed_systems: raise KeyError( modification + " modification not allowed for " + system + " lattices" ) # Check inputs and get a, b, c, alpha, beta, gamma for all cases: assert isinstance(system, str) system = system.lower() if system == "triclinic": check_needed(a=a, b=b, c=c, alpha=alpha, beta=beta, gamma=gamma) elif system == "monoclinic": check_needed(a=a, b=b, c=c, beta=beta) check_spurious(alpha=alpha, gamma=gamma) alpha = gamma = 90.0 elif system == "orthorhombic": check_needed(a=a, b=b, c=c) check_spurious(alpha=alpha, beta=beta, gamma=gamma) alpha = beta = gamma = 90.0 elif system == "tetragonal": check_needed(a=a, c=c) check_spurious(b=b, alpha=alpha, beta=beta, gamma=gamma) b = a alpha = beta = gamma = 90.0 elif system == "rhombohedral": check_needed(a=a, alpha=alpha) check_spurious(b=b, c=c, beta=beta, gamma=gamma) b = c = a beta = gamma = alpha elif system == "hexagonal": check_needed(a=a, c=c) check_spurious(b=b, alpha=alpha, beta=beta, gamma=gamma) b = a alpha = beta = 90.0 gamma = 120.0 elif system == "cubic": check_needed(a=a) check_spurious(b=b, c=c, alpha=alpha, beta=beta, gamma=gamma) b = c = a alpha = beta = gamma = 90.0 else: raise KeyError("Unknown lattice system: " + system) # Confirm that all geometry parameters are now available: assert isinstance(a, numbers.Number) assert isinstance(b, numbers.Number) assert isinstance(c, numbers.Number) assert isinstance(alpha, numbers.Number) assert isinstance(beta, numbers.Number) assert isinstance(gamma, numbers.Number) # Compute base lattice vectors: cos_alpha = np.cos(np.deg2rad(alpha)) cos_beta = np.cos(np.deg2rad(beta)) cos_gamma = np.cos(np.deg2rad(gamma)) sin_gamma = np.sin(np.deg2rad(gamma)) v0 = np.array((1.0, 0, 0)) v1 = np.array((cos_gamma, sin_gamma, 0)) v2 = np.array((cos_beta, (cos_alpha - cos_beta * cos_gamma) / sin_gamma, 0)) v2[2] = np.sqrt(1 - (v2 ** 2).sum()) Rbasis = torch.tensor(np.array([a * v0, b * v1, c * v2]).T) # Apply modifications if any: if modification is None: M = torch.eye(3) # transformation from base lattice else: assert isinstance(modification, str) modification = modification.lower() if modification == "body-centered": check_modification(["orthorhombic", "tetragonal", "cubic"]) M = 0.5 * torch.tensor([[-1, 1, 1], [1, -1, 1], [1, 1, -1]]) elif modification == "base-centered": check_modification(["monoclinic"]) M = 0.5 * torch.tensor([[1, -1, 0], [1, 1, 0], [0, 0, 2]]) elif modification == "face-centered": check_modification(["orthorhombic", "cubic"]) M = 0.5 * torch.tensor([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) else: raise KeyError("Unknown lattice modification: " + modification) return Rbasis @ M
StarcoderdataPython
120036
<filename>bot.py # initiating bot import os import discord from dotenv import load_dotenv from discord.ext import commands from f.alive import keep_alive import random # get .env secrets load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') OWNERS = os.getenv('OWNERS').split(", ") # import cogs initial_extensions = [ "jishaku", "cogs.ai" ] # rich presence activity = discord.Activity( name="100 commits to GitHub? Sure, why not? Meanwhile this bot commits suicide from bugs.", type=discord.ActivityType.playing ) # Discord Intents settings intents = discord.Intents.default() intents.members = True intents.presences = True bot = commands.Bot( help_command=None, command_prefix=["c:", "c: "], activity=activity, status=discord.Status.online, afk=False, intents=intents, strip_after_prefix=True, owner_ids=OWNERS, case_insensitive=True ) # load extensions if __name__ == '__main__': for extension in initial_extensions: bot.load_extension(extension) print(f"📥 {extension}") @bot.event async def on_ready(): # print the bot's status randcode = random.randint(1000000, 9999999) print(f'{bot.user} has connected to Discord! [{randcode}]') print(f'Successfully logged in and booted...!') @bot.command( name="help", ) async def help(ctx): await ctx.send( embed=discord.Embed( title="How to use this bot", description="https://github.com/writeblankspace/aichatbot/wiki", ) ) # run the bot keep_alive() bot.run(TOKEN)
StarcoderdataPython
5062635
<reponame>aaroncgw/csci-e88-final-project import os import json from dateutil import parser from http.client import IncompleteRead import tweepy import pykafka import pandas as pd from elasticsearch import Elasticsearch class TweetStreamListener(tweepy.StreamListener): def __init__(self): self.client = pykafka.KafkaClient("localhost:9092") self.kafka_topic = "TweetStreamListener" self.producer = self.client.topics[ bytes(self.kafka_topic, "ascii") ].get_producer() self.es = Elasticsearch( "https://db2cb7cbe8834bb1a48f960a437f461d.us-east-1.aws.found.io:9243", http_auth=(os.environ["ELASTIC_USERNAME"], os.environ["ELASTIC_PASSWORD"]), ) print("Connecting...") def on_connect(self): print("Connected!") def on_data(self, data): try: tweet = json.loads(data) tweet["timestamp"] = parser.parse(tweet["created_at"]).strftime( "%Y-%m-%dT%H:%M:%S.%f%z" ) self.es.index( index=self.kafka_topic.lower(), body=tweet ) # send raw data to elasticsearch directly if "extended_tweet" in tweet: tweet_text = tweet["extended_tweet"]["full_text"] else: tweet_text = tweet["text"] if tweet_text: send_data = "{}" json_send_data = json.loads(send_data) json_send_data["tweet"] = tweet_text.replace(",", "") json_send_data["created_at"] = tweet["created_at"] self.producer.produce(bytes(json.dumps(json_send_data), "ascii")) print("Published to Kafka: " + str(json_send_data)) except Exception as e: print("Exception: " + str(e)) print(data) def on_error(self, status_code): if status_code == 420: return False # 420 error occurs when rate limit exceeds print("Error received in TweetStreamListener: " + str(status_code)) return True # Don't kill the stream def on_timeout(self): print("TweetStreamListener timeout!") return True # Don't kill the stream def main(): LOCAL_ROOT = os.path.abspath("data") + os.sep df = pd.read_csv(LOCAL_ROOT + "twitter_userid.csv") user_ids = ( df["id"].apply(str).to_list() ) # tweepy could only filter tweets by user ids rather than usernames auth = tweepy.OAuthHandler(os.environ["KEY"], os.environ["KEY_SECRET"]) auth.set_access_token(os.environ["TOKEN"], os.environ["TOKEN_SECRET"]) api = tweepy.API(auth) while True: try: tweetStreamListener = tweepy.Stream( auth=api.auth, listener=TweetStreamListener() ) # tweetStreamListener.filter(languages=['en'], track=['bitcoin']) #fitler by keywords tweetStreamListener.filter( follow=user_ids[:50], languages=["en"] ) # fitler by user ids except IncompleteRead: # Oh well, reconnect and keep trucking continue except KeyboardInterrupt: # Or however you want to exit this loop tweetStreamListener.disconnect() break if __name__ == "__main__": main()
StarcoderdataPython
126719
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from tapi_server.models.base_model_ import Model from tapi_server.models.tapi_photonic_media_frequency_constraint import TapiPhotonicMediaFrequencyConstraint # noqa: F401,E501 from tapi_server import util class TapiPhotonicMediaSpectrumBand(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, lower_frequency=None, upper_frequency=None, frequency_constraint=None): # noqa: E501 """TapiPhotonicMediaSpectrumBand - a model defined in OpenAPI :param lower_frequency: The lower_frequency of this TapiPhotonicMediaSpectrumBand. # noqa: E501 :type lower_frequency: int :param upper_frequency: The upper_frequency of this TapiPhotonicMediaSpectrumBand. # noqa: E501 :type upper_frequency: int :param frequency_constraint: The frequency_constraint of this TapiPhotonicMediaSpectrumBand. # noqa: E501 :type frequency_constraint: TapiPhotonicMediaFrequencyConstraint """ self.openapi_types = { 'lower_frequency': int, 'upper_frequency': int, 'frequency_constraint': TapiPhotonicMediaFrequencyConstraint } self.attribute_map = { 'lower_frequency': 'lower-frequency', 'upper_frequency': 'upper-frequency', 'frequency_constraint': 'frequency-constraint' } self._lower_frequency = lower_frequency self._upper_frequency = upper_frequency self._frequency_constraint = frequency_constraint @classmethod def from_dict(cls, dikt) -> 'TapiPhotonicMediaSpectrumBand': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The tapi.photonic.media.SpectrumBand of this TapiPhotonicMediaSpectrumBand. # noqa: E501 :rtype: TapiPhotonicMediaSpectrumBand """ return util.deserialize_model(dikt, cls) @property def lower_frequency(self): """Gets the lower_frequency of this TapiPhotonicMediaSpectrumBand. The lower frequency bound of the media channel spectrum specified in MHz # noqa: E501 :return: The lower_frequency of this TapiPhotonicMediaSpectrumBand. :rtype: int """ return self._lower_frequency @lower_frequency.setter def lower_frequency(self, lower_frequency): """Sets the lower_frequency of this TapiPhotonicMediaSpectrumBand. The lower frequency bound of the media channel spectrum specified in MHz # noqa: E501 :param lower_frequency: The lower_frequency of this TapiPhotonicMediaSpectrumBand. :type lower_frequency: int """ self._lower_frequency = lower_frequency @property def upper_frequency(self): """Gets the upper_frequency of this TapiPhotonicMediaSpectrumBand. The upper frequency bound of the media channel spectrum specified in MHz # noqa: E501 :return: The upper_frequency of this TapiPhotonicMediaSpectrumBand. :rtype: int """ return self._upper_frequency @upper_frequency.setter def upper_frequency(self, upper_frequency): """Sets the upper_frequency of this TapiPhotonicMediaSpectrumBand. The upper frequency bound of the media channel spectrum specified in MHz # noqa: E501 :param upper_frequency: The upper_frequency of this TapiPhotonicMediaSpectrumBand. :type upper_frequency: int """ self._upper_frequency = upper_frequency @property def frequency_constraint(self): """Gets the frequency_constraint of this TapiPhotonicMediaSpectrumBand. :return: The frequency_constraint of this TapiPhotonicMediaSpectrumBand. :rtype: TapiPhotonicMediaFrequencyConstraint """ return self._frequency_constraint @frequency_constraint.setter def frequency_constraint(self, frequency_constraint): """Sets the frequency_constraint of this TapiPhotonicMediaSpectrumBand. :param frequency_constraint: The frequency_constraint of this TapiPhotonicMediaSpectrumBand. :type frequency_constraint: TapiPhotonicMediaFrequencyConstraint """ self._frequency_constraint = frequency_constraint
StarcoderdataPython
4939309
<reponame>sslivkoff/regression_code """use storm api to call other functions - these translations are less developed than use_other_api translations """ import functools import numpy as np from .... import huth from .... import aone def transform_kwargs(function, kwargs_transformers=None, output_transformer=None): """transforms a wrapped function's kwargs before calling it Parameters ---------- - function: function to be decorated - kwargs_transformers: iterable of functions that modify a dict in-place """ if kwargs_transformers is None: kwargs_transformers = [] if output_transformer is None: output_transformer = lambda outputs: outputs @functools.wraps(function) def wrapper(*args, **kwargs): for transformer in kwargs_transformers: transformer(kwargs) outputs = function(*args, **kwargs) return output_transformer(outputs) return wrapper def kernelize_kwargs(kwargs): """transform X data into kernels""" if 'Xtrain' in kwargs: kwargs['Ktrain'] = kwargs['Xtrain'].dot(kwargs['Xtrain'].T) if 'Xtest' in kwargs: kwargs['Ktest'] = kwargs['Xtest'].dot(kwargs['Xtrain'].T) kwargs.pop('Xtest') kwargs.pop('Xtrain') def make_huth_kwargs(kwargs): """translate kwargs into huth.ridge api""" kwargs['Rstim'] = kwargs.pop('Xtrain') kwargs['Pstim'] = kwargs.pop('Xtest') kwargs['Rresp'] = kwargs.pop('Ytrain') kwargs['Presp'] = kwargs.pop('Ytest') kwargs['alphas'] = kwargs.pop('ridges') if kwargs.get('metric') == 'R^2': kwargs['use_corr'] = False if 'n_folds' in kwargs: kwargs['nboots'] = kwargs.pop('n_folds') test_fraction = 1 - kwargs.pop('train_fraction', .8) len_blocks = kwargs.pop('len_blocks', 5) n_samples = kwargs['Rstim'].shape[0] kwargs['nchunks'] = int(n_samples * test_fraction / len_blocks) kwargs['chunklen'] = len_blocks for key in [ 'weights', 'predictions', 'performance', 'verbose', 'locality', 'metric', 'Ytest_zscored', ]: if key in kwargs: kwargs.pop(key) def make_aone_kwargs(kwargs, cv=False): """translate kwargs into aone.ridge api""" if not cv: if 'Xtest' in kwargs: kwargs['Xval'] = kwargs.pop('Xtest') if 'Ytest' in kwargs: kwargs['Yval'] = kwargs.pop('Ytest') if 'Ktest' in kwargs: kwargs['Kval'] = kwargs.pop('Ktest') if 'n_folds' in kwargs: kwargs['nfolds'] = kwargs.pop('n_folds') for key in [ 'locality', 'Ytest_zscored', ]: if key in kwargs: kwargs.pop(key) # # # ridge functions # ridge_corr_wrapper = transform_kwargs( huth.ridge.ridge_corr, kwargs_transformers=[make_huth_kwargs], output_transformer=lambda outputs: { 'performance': np.stack(outputs, axis=0), }, ) solve_l2_primal_wrapper = transform_kwargs( aone.models.solve_l2_primal, kwargs_transformers=[make_aone_kwargs], ) solve_l2_dual_wrapper = transform_kwargs( aone.models.solve_l2_dual, kwargs_transformers=[kernelize_kwargs, make_aone_kwargs], ) # # # cv functions # bootstrap_ridge_wrapper = transform_kwargs( huth.ridge.bootstrap_ridge, kwargs_transformers=[make_huth_kwargs], output_transformer=lambda wt, corrs, valphas, allRcorrs, valinds: { 'weights': wt, 'performance': corrs, 'local_optimal_ridge': valphas, }, ) cvridge_wrapper = transform_kwargs( aone.models.cvridge, kwargs_transformers=[functools.partial(make_aone_kwargs, cv=True)], ) kernel_cvridge_wrapper = transform_kwargs( aone.models.kernel_cvridge, kwargs_transformers=[ kernelize_kwargs, functools.partial(make_aone_kwargs, cv=True) ], )
StarcoderdataPython
1703843
<reponame>Virksaabnavjot/MapperReducer<filename>train/Mapper.py #!/usr/bin/env python import sys # Mapper to return 10 passengers by age groups # Data source: https://www.kaggle.com/c/titanic/data # Data header: "PassengerId" "Survived" "Pclass" "Name" "Sex" "Age" "SibSp" "Parch" "Ticket" "Fare" "Cabin" "Embarked" myList = [] n = 10 # Number of top N records for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split data values into list data = line.split(",") # convert age (currently a string) to int try: age = int(data[6]) except ValueError: # ignore/discard this line continue # add (age, record) touple to list myList.append( (age, line) ) # sort list in reverse order myList.sort(reverse=True) # keep only first N records if len(myList) > n: myList = myList[:n] # Print top N records for (k,v) in myList: print(v)
StarcoderdataPython
3521636
<reponame>phanak-sap/requre<filename>requre/postprocessing.py import logging from typing import Union, Any, Dict, Optional, List from .constants import KEY_MINIMAL_MATCH, METATADA_KEY from .storage import DataMiner, DataStructure, DataTypes logger = logging.getLogger(__name__) class DictProcessing: def __init__(self, requre_dict: dict): self.requre_dict = requre_dict def match(self, selector: list, internal_object: Union[dict, list, None] = None): if internal_object is None: internal_object = self.requre_dict if len(selector) == 0: logger.debug(f"all selectors matched") yield internal_object # add return here, to avoid multiple returns return if isinstance(internal_object, dict): for k, v in internal_object.items(): if v is None: return if selector and selector[0] == k: logger.debug(f"selector {k} matched") yield from self.match(selector=selector[1:], internal_object=v) else: yield from self.match(selector=selector, internal_object=v) elif isinstance(internal_object, list): for list_item in internal_object: if list_item is None: return yield from self.match(selector=selector, internal_object=list_item) else: return @staticmethod def replace(obj: Any, key: Any, value: Any) -> None: if isinstance(obj, dict): for k, v in obj.items(): if k == key: logger.debug(f"replacing: {obj[key]} by {value}") obj[key] = value else: DictProcessing.replace(obj=v, key=key, value=value) if isinstance(obj, list): for item in obj: DictProcessing.replace(obj=item, key=key, value=value) @staticmethod def minimal_match(dict_obj: Dict, metadata: Dict): tmp_dict = dict_obj first_item: Dict = {} key_name = DataTypes.__name__ ds = DataTypes.List if key_name in metadata: ds = DataTypes(metadata.get(key_name)) logger.debug(f"Use datatype: {ds}") for cntr in range(KEY_MINIMAL_MATCH): if not isinstance(tmp_dict, dict) or len(tmp_dict.keys()) != 1: return False key = list(tmp_dict.keys())[0] value = tmp_dict[key] tmp_dict = value if ds == DataTypes.DictWithList: if isinstance(tmp_dict, dict): tmp_first_item = tmp_dict[list(tmp_dict.keys())[0]] if isinstance(tmp_first_item, list): first_item = tmp_first_item[0] if ds == DataTypes.Dict: if isinstance(tmp_dict, dict): first_item = tmp_dict[list(tmp_dict.keys())[0]] if ds == DataTypes.List: if isinstance(tmp_dict, list): first_item = tmp_dict[0] if ds == DataTypes.Value: if isinstance(tmp_dict, dict): first_item = tmp_dict if isinstance(first_item, dict) and DataMiner().LATENCY_KEY in first_item.get( DataStructure.METADATA_KEY, {} ): logger.debug( f"Minimal key path ({KEY_MINIMAL_MATCH}) matched for {first_item.keys()}" ) return True return False def simplify( self, internal_object: Optional[Dict] = None, ignore_list: Optional[List] = None ): ignore_list = ignore_list or [] internal_object = ( self.requre_dict if internal_object is None else internal_object ) if isinstance(internal_object, dict): if len(internal_object.keys()) == 1: key = list(internal_object.keys())[0] if key in [METATADA_KEY] + ignore_list: return if self.minimal_match(internal_object, self.requre_dict[METATADA_KEY]): return if isinstance(internal_object[key], dict): value = internal_object.pop(key) print(f"Removing key: {key} -> {list(value.keys())}") for k, v in value.items(): internal_object[k] = v self.simplify( internal_object=internal_object, ignore_list=ignore_list ) else: for v in internal_object.values(): self.simplify(internal_object=v, ignore_list=ignore_list)
StarcoderdataPython
1883605
<filename>modules/ctcp_reply.py<gh_stars>1-10 #!/usr/bin/env python3 # Goshu IRC Bot # written by <NAME> <<EMAIL>> # licensed under the ISC license from time import strftime, localtime from gbot.modules import Module class ctcp_reply(Module): """Provides basic CTCP replies.""" core = True def ctcp_listener(self, event): """Responds to CTCP messages @listen in ctcp highest """ if event['ctcp_verb'] == 'version': ver = 'https://github.com/goshuirc/goshu' # tell them owner nick(s) if one is online server_name = event['server'].name runner_level, online_runners = self.bot.accounts.online_bot_runners(server_name) if online_runners: trailing_s = 's' if len(online_runners) > 1 else '' runner_msg = ("Hi, I'm an IRC bot! Online Contact{}: " "{}".format(trailing_s, ' '.join(online_runners))) event['source'].msg(runner_msg) event['source'].ctcp_reply('VERISON', ver) elif event['ctcp_verb'] == 'userinfo': userinfostring = None # userinfostring = "Please don't kline me, I'll play nice!" if userinfostring: event['source'].ctcp_reply('USERINFO', userinfostring) elif event['ctcp_verb'] == 'clientinfo': understood = ['CLIENTINFO', 'ERRMSG', 'PING', 'TIME', 'USERINFO', 'VERSION'] msg = 'Understood CTCP Pairs: {}'.format(','.join(understood)) event['source'].ctcp_reply('CLIENTINFO', msg) elif event['ctcp_verb'] == 'errmsg': # disabled below. could be bad, errmsg-storm? # event['source'].ctcp_reply(nm_to_n(event.source, 'ERRMSG '+event.arguments()[1] + # ':ERRMSG echo, no error has occured') pass elif event['ctcp_verb'] == 'time': event['source'].ctcp_reply('TIME', strftime('%a %b %d, %H:%M:%S %Y', localtime())) elif event['ctcp_verb'] == 'ping': event['source'].ctcp_reply('PING', event.ctcp_text)
StarcoderdataPython
6698961
import logging import os from typing import TYPE_CHECKING, List, Dict, Any from abc import ABC, abstractmethod from checkov.common.graph.graph_builder import Edge from checkov.common.graph.graph_builder.utils import calculate_hash, run_function_multithreaded if TYPE_CHECKING: from checkov.common.graph.graph_builder.local_graph import LocalGraph class VariableRenderer(ABC): MAX_NUMBER_OF_LOOPS = 50 def __init__(self, local_graph: "LocalGraph") -> None: self.local_graph = local_graph self.run_async = True if os.environ.get("RENDER_VARIABLES_ASYNC") == "True" else False self.max_workers = int(os.environ.get("RENDER_ASYNC_MAX_WORKERS", 50)) self.done_edges_by_origin_vertex: Dict[int, List[Edge]] = {} self.replace_cache: List[Dict[str, Any]] = [{}] * len(local_graph.vertices) def render_variables_from_local_graph(self) -> None: # find vertices with out-degree = 0 and in-degree > 0 end_vertices_indexes = self.local_graph.get_vertices_with_degrees_conditions( out_degree_cond=lambda degree: degree == 0, in_degree_cond=lambda degree: degree > 0 ) # all the edges entering `end_vertices` edges_to_render = self.local_graph.get_in_edges(end_vertices_indexes) loops = 0 while len(edges_to_render) > 0: logging.info(f"evaluating {len(edges_to_render)} edges") # group edges that have the same origin and label together edges_groups = self.group_edges_by_origin_and_label(edges_to_render) if self.run_async: run_function_multithreaded( func=self._edge_evaluation_task, data=edges_groups, max_group_size=1, num_of_workers=self.max_workers, ) else: for edge_group in edges_groups: self._edge_evaluation_task([edge_group]) for edge in edges_to_render: origin = edge.origin self.done_edges_by_origin_vertex.setdefault(origin, []).append(edge) for edge in edges_to_render: origin_vertex_index = edge.origin out_edges = self.local_graph.out_edges.get(origin_vertex_index, []) if all(e in self.done_edges_by_origin_vertex.get(origin_vertex_index, []) for e in out_edges): end_vertices_indexes.append(origin_vertex_index) edges_to_render = self.local_graph.get_in_edges(end_vertices_indexes) edges_to_render = list( { edge for edge in edges_to_render if edge not in self.done_edges_by_origin_vertex.get(edge.origin, []) } ) loops += 1 if loops >= self.MAX_NUMBER_OF_LOOPS: logging.warning(f"Reached 50 graph edge iterations, breaking.") break self.local_graph.update_vertices_configs() logging.info("done evaluating edges") self.evaluate_non_rendered_values() logging.info("done evaluate_non_rendered_values") def _edge_evaluation_task(self, edges: List[List[Edge]]) -> List[Edge]: inner_edges = edges[0] self.evaluate_vertex_attribute_from_edge(inner_edges) return inner_edges @abstractmethod def evaluate_vertex_attribute_from_edge(self, edge_list: List[Edge]) -> None: pass @staticmethod def group_edges_by_origin_and_label(edges: List[Edge]) -> List[List[Edge]]: edge_groups: Dict[str, List[Edge]] = {} for edge in edges: origin_and_label_hash = calculate_hash(f"{edge.origin}{edge.label}") edge_groups.setdefault(origin_and_label_hash, []).append(edge) return list(edge_groups.values()) def evaluate_non_rendered_values(self) -> None: pass
StarcoderdataPython
4843930
import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from ffn.training.import_util import import_symbol import time from train import prepare_ffn, define_data_input, train_eval_size, get_batch, EvalTracker import platform if platform.system() == 'Windows': DIVSTR = '::' elif platform.system() in ['Linux', 'Darwin']: DIVSTR = ':' else: DIVSTR = ':' FLAGS = flags.FLAGS # Options related to training data. flags.DEFINE_string('train_coords', None, 'Glob for the TFRecord of training coordinates.') # What's the use of TFRecord flags.DEFINE_string('data_volumes', None, 'Comma-separated list of <volume_name>:<volume_path>:' '<dataset>, where volume_name need to match the ' '"label_volume_name" field in the input example, ' 'volume_path points to HDF5 volumes containing uint8 ' 'image data, and `dataset` is the name of the dataset ' 'from which data will be read.') flags.DEFINE_string('label_volumes', None, 'Comma-separated list of <volume_name>:<volume_path>:' '<dataset>, where volume_name need to match the ' '"label_volume_name" field in the input example, ' 'volume_path points to HDF5 volumes containing int64 ' 'label data, and `dataset` is the name of the dataset ' 'from which data will be read.') flags.DEFINE_string('model_name', None, 'Name of the model to train. Format: ' '[<packages>.]<module_name>.<model_class>, if packages is ' 'missing "ffn.training.models" is used as default.') flags.DEFINE_string('model_args', None, 'JSON string with arguments to be passed to the model ' 'constructor.') # Training infra options. flags.DEFINE_string('train_dir', '/tmp', 'Path where checkpoints and other data will be saved.') flags.DEFINE_string('master', '', 'Network address of the master.') flags.DEFINE_integer('batch_size', 4, 'Number of images in a batch.') flags.DEFINE_integer('task', 0, 'Task id of the replica running the training.') flags.DEFINE_integer('ps_tasks', 0, 'Number of tasks in the ps job.') flags.DEFINE_integer('max_steps', 10000, 'Number of steps to train for.') flags.DEFINE_integer('replica_step_delay', 300, 'Require the model to reach step number ' '<replica_step_delay> * ' '<replica_id> before starting training on a given ' 'replica.') flags.DEFINE_integer('summary_rate_secs', 120, 'How often to save summaries (in seconds).') # FFN training options. flags.DEFINE_float('seed_pad', 0.05, 'Value to use for the unknown area of the seed.') flags.DEFINE_float('threshold', 0.9, 'Value to be reached or exceeded at the new center of the ' 'field of view in order for the network to inspect it.') flags.DEFINE_enum('fov_policy', 'fixed', ['fixed', 'max_pred_moves'], 'Policy to determine where to move the field of the ' 'network. "fixed" tries predefined offsets specified by ' '"model.shifts". "max_pred_moves" moves to the voxel with ' 'maximum mask activation within a plane perpendicular to ' 'one of the 6 Cartesian directions, offset by +/- ' 'model.deltas from the current FOV position.') # TODO(mjanusz): Implement fov_moves > 1 for the 'fixed' policy. flags.DEFINE_integer('fov_moves', 1, 'Number of FOV moves by "model.delta" voxels to execute ' 'in every dimension. Currently only works with the ' '"max_pred_moves" policy.') flags.DEFINE_boolean('shuffle_moves', True, 'Whether to randomize the order of the moves used by the ' 'network with the "fixed" policy.') flags.DEFINE_float('image_mean', None, 'Mean image intensity to use for input normalization.') flags.DEFINE_float('image_stddev', None, 'Image intensity standard deviation to use for input ' 'normalization.') flags.DEFINE_list('image_offset_scale_map', None, 'Optional per-volume specification of mean and stddev. ' 'Every entry in the list is a colon-separated tuple of: ' 'volume_label, offset, scale.') flags.DEFINE_list('permutable_axes', ['1', '2'], 'List of integers equal to a subset of [0, 1, 2] specifying ' 'which of the [z, y, x] axes, respectively, may be permuted ' 'in order to augment the training data.') flags.DEFINE_list('reflectable_axes', ['0', '1', '2'], 'List of integers equal to a subset of [0, 1, 2] specifying ' 'which of the [z, y, x] axes, respectively, may be reflected ' 'in order to augment the training data.') FLAGS = flags.FLAGS def run_training_step(sess, model, fetch_summary, feed_dict): """Runs one training step for a single FFN FOV.""" ops_to_run = [model.train_op, model.global_step, model.logits] # train_op defined in model.set_up_optimizer() if fetch_summary is not None: ops_to_run.append(fetch_summary) results = sess.run(ops_to_run, feed_dict) # get prediction for the operation step, prediction = results[1:3] if fetch_summary is not None: summ = results[-1] else: summ = None return prediction, step, summ def train_ffn(model_cls, **model_kwargs): with tf.Graph().as_default(): with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks, merge_devices=True)): # The constructor might define TF ops/placeholders, so it is important # that the FFN is instantiated within the current context. # model instantiation! model = model_cls(**model_kwargs) eval_shape_zyx = train_eval_size(model).tolist()[::-1] eval_tracker = EvalTracker(eval_shape_zyx) load_data_ops = define_data_input(model, queue_batch=1) prepare_ffn(model) merge_summaries_op = tf.summary.merge_all() if FLAGS.task == 0: save_flags() # Setup the Higher Order session enviroment! summary_writer = None saver = tf.train.Saver(keep_checkpoint_every_n_hours=0.25) scaffold = tf.train.Scaffold(saver=saver) with tf.train.MonitoredTrainingSession( master=FLAGS.master, is_chief=(FLAGS.task == 0), save_summaries_steps=None, save_checkpoint_secs=300, config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True), checkpoint_dir=FLAGS.train_dir, scaffold=scaffold) as sess: eval_tracker.sess = sess step = int(sess.run(model.global_step)) # evaluate the step # global_step is the tf inner mechanism that keeps the batches seen by # thus when revive a model from checkpoint the `step` can be restored if FLAGS.task > 0: # To avoid early instabilities when using multiple replicas, we use # a launch schedule where new replicas are brought online gradually. logging.info('Delaying replica start.') while step < FLAGS.replica_step_delay * FLAGS.task: time.sleep(5.0) step = int(sess.run(model.global_step)) else: summary_writer = tf.summary.FileWriterCache.get(FLAGS.train_dir) summary_writer.add_session_log( tf.summary.SessionLog(status=tf.summary.SessionLog.START), step) # Prepare the batch_it object by input shifts parameters into it fov_shifts = list(model.shifts) # x, y, z vector collection formed by input deltas in 3*3*3-1 directions if FLAGS.shuffle_moves: random.shuffle(fov_shifts) policy_map = { 'fixed': partial(fixed_offsets, fov_shifts=fov_shifts), 'max_pred_moves': max_pred_offsets } # delta, fov_shift come into policy map to batch_it = get_batch(lambda: sess.run(load_data_ops), eval_tracker, model, FLAGS.batch_size, policy_map[FLAGS.fov_policy]) t_last = time.time() # Start major loop while not sess.should_stop() and step < FLAGS.max_steps: # Run summaries periodically. t_curr = time.time() if t_curr - t_last > FLAGS.summary_rate_secs and FLAGS.task == 0: summ_op = merge_summaries_op t_last = t_curr # update at summary_rate_secs else: summ_op = None # Core lines to be modified w.r.t. Multi GPU computing seed, patches, labels, weights = next(batch_it) updated_seed, step, summ = run_training_step( sess, model, summ_op, feed_dict={ model.loss_weights: weights, model.labels: labels, model.input_patches: patches, model.input_seed: seed, }) # Save prediction results in the original seed array so that # they can be used in subsequent steps. mask.update_at(seed, (0, 0, 0), updated_seed) # Record summaries. if summ is not None: logging.info('Saving summaries.') summ = tf.Summary.FromString(summ) # Compute a loss over the whole training patch (i.e. more than a # single-step field of view of the network). This quantifies the # quality of the final object mask. summ.value.extend(eval_tracker.get_summaries()) eval_tracker.reset() assert summary_writer is not None summary_writer.add_summary(summ, step) if summary_writer is not None: summary_writer.flush() def main(argv=()): del argv # Unused. model_class = import_symbol(FLAGS.model_name) # Multiply the task number by a value large enough that tasks starting at a # similar time cannot end up with the same seed. seed = int(time.time() + FLAGS.task * 3600 * 24) logging.info('Random seed: %r', seed) random.seed(seed) train_ffn(model_class, batch_size=FLAGS.batch_size, **json.loads(FLAGS.model_args))
StarcoderdataPython
6501849
#!/usr/bin/env python """ Fix errors in a dataset. For now, only removing erroneous lines is supported. usage: %prog input errorsfile output -x, --ext: dataset extension (type) -m, --methods=N: comma separated list of repair methods """ import pkg_resources; pkg_resources.require( "bx-python" ) from bx.cookbook import doc_optparse from galaxy import util def main(): options, args = doc_optparse.parse( __doc__ ) methods = [] try: if options.methods: methods = options.methods.split(",") except: pass ext = options.ext in_file = open(args[0], "r") error_file = open(args[1], "r") out_file = open(args[2], "w") # string_to_object errors error_list = util.string_to_object(error_file.read()) # index by error type and then by line number error_lines = {} error_types = {} for error in error_list: if error.linenum: if error.linenum in error_lines: error_lines[error.linenum].append(error) else: error_lines[error.linenum] = [error] error_type = error.__class__.__name__ if error_type in error_types: error_types[error_type].append(error) else: error_types[error_type] = [error] linenum = 0 for line in in_file: linenum += 1 # write unless if "lines" in methods: if linenum in error_lines: line = None # other processing here? if line: out_file.write(line) if __name__ == "__main__": main()
StarcoderdataPython
3375978
import asyncio from .engine.fanhuaji import FanhuajiEngine from .engine.opencc import OpenCC as OpenCCEngine class Converter(): def __init__(self, engine, converter): self.engine = engine self.converter = converter def convert(self, content: str) -> str: """轉換 epub 內文 Args: content (str): epub 內文字串 Returns: [str]: 轉換後的內文 """ converted_content = None if not content: return None # opencc 轉換 if self.engine == 'opencc': opencc = OpenCCEngine(self.converter) converted_content = opencc.convert(content) payload = { 'text': content, 'converter': self.converter } # 繁化姬同步轉換 if self.engine == 'fanhuaji': fanhuaji = FanhuajiEngine() converted_content = fanhuaji.convert(**payload) # 繁化姬異步轉換 if self.engine == 'fanhuaji_async': fanhuaji = FanhuajiEngine() converted_content = asyncio.get_event_loop().run_until_complete( fanhuaji.async_convert(**payload)) return converted_content
StarcoderdataPython
8194094
from injector import singleton, Module from authserver.db.graph_database import AbstractGraphDatabase, Neo4jGraphDatabase class GraphDatabaseModule(Module): def configure(self, binder): binder.bind(AbstractGraphDatabase, to=Neo4jGraphDatabase, scope=singleton)
StarcoderdataPython
5134309
# -*- coding: utf-8 -*- """ Created on Tue May 26 15:32:05 2015 by Florin.Neacsu Copyright Xcision LLC. """ from XcIOCommon import * def ReadOCPparam(fname): """ Reads the file provided as input, assuming the following format |Radiation unit type: int |Outer cup size: int |The signded distance between the inside bottom of the OC and the couch reference point in mm: float |Path of the inside wall: about 5 lines; the last line only contains the keyword 'closepath' |Empty line |Path of the outside wall: about 8 lines; the last line only contains the keyword 'closepath' |Empty line |Fiducial curve: about 10 lines; the last line only contains the keyword 'closefc' Parameters ---------- fname: string A string pointing to a file on the hdd Returns ------- RU: int The radiation unit file OC: int The outer cup size DistanceBottomOCToCouch: float The signed distance in mm from the bottom of the inner wall to the couch reference point OCInsideWallDescription: string A string containing the description of the inside wall. Each line is separated by a ';' OCOutsideWallDescription: string A string containing the description of the outside wall. Each line is separated by a ';' FiducialCurveDescription: string A string containing the description of the fiducial curve. Each line is separated by a ';' Raises ------ IOError: If the fname is not pointing to an existing file ValueError: Whenever we try to parse to an expected format and it fails, or if there is an inconsitency in the values within the file IndexError: Wrong (as in unexpected) number of elements in a vector """ try: fileHandle = open(fname, 'r') except IOError, e: e.args += ('Invalid file name',) raise with fileHandle: try: line = fileHandle.readline() RU = int(line) line = fileHandle.readline() OC = int(line) line = fileHandle.readline() DistanceBottomOCToCouch = float(line) OCInsideWallDescription = GetWallDescription(fileHandle) #there is an empty line between the wall description #so read and discard line = fileHandle.readline() OCOutsideWallDescription = GetWallDescription(fileHandle) #empty line again, read and discard line = fileHandle.readline() FiducialCurveDescription = GetFiducialDescription(fileHandle) return (RU,OC,DistanceBottomOCToCouch,OCInsideWallDescription,OCOutsideWallDescription,FiducialCurveDescription) except ValueError, e: #raise ValueError('Invalid file format {0}\n{1}'.format(e.args, e.args)) e.args += ('Invalid file format',) raise except IndexError, e: e.args += ('Invalid file format',) raise
StarcoderdataPython