id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3397843
<filename>src/roadimage.py from road import Road from mark_tracker import MarkTracker from roadgraphics import * from crosswalk import CrossWalk import random import math import drawings as drw class RoadImage: def __init__(self, dimensions, path, background_images, asphalt_textures, templates_collection, seed=0, set_seed=True): self.w, self.h = dimensions self.path = path # Where the image will be saved self.road = Road(self.w, self.h) # Defining the dictionaries containing random images self.templates_collection = templates_collection self.backgrounds = background_images self.grounds = asphalt_textures if set_seed: random.seed(seed) def setSeed(self, seed): random.seed(seed) def defineLanes(self, min_lanes, max_lanes, variation): number_of_lanes = random.randint(min_lanes, max_lanes) self.number_of_lanes = number_of_lanes default_lane_proportion = (self.w / float(number_of_lanes))/float(self.w) # Variation is given in percentage # Creating the lanes: lane_sizes = [] for i in range(number_of_lanes - 1): # "addition" is the variation in the specific lane addition = random.randint(-variation, variation) / 100.00 * default_lane_proportion lane_width = addition + default_lane_proportion lane_width = round(lane_width, 2) # Rounding the value to simplificate the sizes # Adding the lane sizes in a list to create the last lane without any size issue: lane_sizes.append(lane_width) self.road.newLane(math.ceil(lane_width*self.w)) # Creating the last lane lanes_size = 0 for i in lane_sizes: lanes_size += i lane_width = self.w - math.floor(lanes_size * self.w) self.road.newLane(lane_width) def getRoad(self): return self.road def randomMark(self): # Returns a random template name templates_names = tuple(self.templates.keys()) random_key = templates_names[random.randint(0,len(templates_names) - 1)] return random_key def randomBackground(self): # Returns a random background name backgrounds = self.backgrounds return backgrounds[random.randint(0, len(backgrounds) - 1)] def randomGround(self): grounds = self.grounds return grounds[random.randint(0, len(grounds) - 1)] def getRotation(self, minx, maxx, miny, maxy, minz, maxz): def randomRotation(mind, maxd): multiplier = random.randint(0, 1000) / 1000 difference = maxd - mind return multiplier * difference + mind # Getting Y and Z rotation signals (positive or negative): ysig = random.sample((-1, 1), 1)[0] zsig = random.sample((-1, 1), 1)[0] # Getting rotations, in deegrees x = -randomRotation(minx, maxx) y = ysig * randomRotation(miny, maxy) z = zsig * randomRotation(minz, maxz) # Converting to radians: x = x/180.00 * math.pi y = y/180.00 * math.pi z = z/180.00 * math.pi # Returning rotations: return (x, y, z) def getShift(self, minx, maxx, miny, maxy): # Getting shifts, in pixels x = random.randint(0, 100) / 100 * (maxx - minx) + minx y = random.randint(0, 100) / 100 * (maxy - miny) + miny return (x, y) def getRandomLane(self): lanes = len(self.road.lanes) return random.randint(0, lanes-1) def getRandomSeparator(self, minwidth, maxwidth, mindotsize, maxdotsize, mindotdist, maxdotdist, minxdist, maxxdist): # Defining colors: colors = [ (255, 255, 255), # WHITE (255, 255, 0), # YELLOW (128, 128, 0) # DARK YELLOW ] # Getting random color: color = colors[random.randint(0,len(colors)-1)] # Getting random dot_size: dot_size = random.randint(mindotsize, maxdotsize) # Getting random dot_dist: dot_dist = random.randint(mindotdist, maxdotdist) # Getting random x_dist: x_dist = random.randint(minxdist, maxxdist) # Getting random width: width = random.randint(minwidth, maxwidth) # Getting random true or false: is_true = bool(random.getrandbits(1)) return (width, color, is_true, dot_size, dot_dist, x_dist) def getLanesNumber(self): return self.number_of_lanes def insert_templates_at_lanes(self, delta_x, delta_y, min_h, max_h, min_w, max_w): """ min_h, max_h, min_w and max_w are proportions, they must be between 0 and 1 delta_x and delta_y are proportions, they must be between 0 and 1 """ labels = self.templates_collection.labels m = len(labels) # m : number of loaded templates. road = self.getRoad() # L is a vector which each index represents a lane in the road: L = [math.ceil(m * random.randint(0, 100) / 100) for i in range(self.number_of_lanes)] # Creating one empty lane: if len(L) > 1: L[int(random.randint(0, 100) / 100) * (len(L)) - 1] = -1 # -1 means that there will be no template at that lane. # Defining the exact position and vectors of the to-be-inserted templates: templates = [] for l in range(len(L)): Ln = L[l] - 1 if Ln == -1: continue # Skipping the "supposed-to-be-empty" lanes lane = road.lanes[l] # Defining the template's dimensions: min_size = (min_h + min_w) / 2 * lane.w max_size = (max_h + max_w) / 2 * lane.w base_siz = random.randint(0, 100) / 100 * (max_size - min_size) + min_size base_dim = (int(base_siz), int(base_siz)) # Getting the template vector: template = self.templates_collection.get(labels[Ln], base_dim) # Inserting the template at the lane: dx, dy = lane.getAbsoluteCoordinates(int(delta_x * lane.w), int(delta_y * lane.h)) template.displacement = dx, dy templates.append(template) return templates def draw_templates(self, img, templates): for template in templates: img = template.draw(img, (255, 255, 255, 255)) return img def getTransform(self, maxblur, maxconstrast, maxbrightness): constrast = random.randint(0, maxconstrast) brightness = random.randint(0, maxbrightness) blurvalues = [1, 1, 3, 3, 5, 5, 7, 7, 9, 9] constrast = random.randint(0, maxconstrast) blur = blurvalues[random.randint(0, maxblur)] return blur, constrast/100, brightness/100 def getAgingMatrix(self, max_age): h, w = self.h, self.w aging_matrix = np.abs(np.random.randn(h, w)) aging_matrix = np.clip(aging_matrix, 0, 0.01 * max_age) return aging_matrix
StarcoderdataPython
6619224
from omero.gateway import ( BlitzObjectWrapper, _DatasetWrapper, _ImageWrapper, ) from qtpy.QtCore import QModelIndex from qtpy.QtGui import QStandardItem, QStandardItemModel from .gateway import QGateWay from typing import Dict class OMEROTreeItem(QStandardItem): def __init__(self, wrapper: BlitzObjectWrapper): super().__init__() self.wrapper = wrapper self.setData(wrapper) # self._has_fetched = False if self.hasChildren(): self.setText(f"{self.wrapper.getName()} ({self.numChildren()})") else: self.setText(f"{self.wrapper.getName()}") # def canFetchMore(self) -> bool: # if self._has_fetched or not self.hasChildren(): # return False # return self.wrapper.countChildren() > 0 # def fetchChildren(self): # for child in self.wrapper.listChildren(): # self.appendRow(OMEROTreeItem(child)) # self._has_fetched = True def hasChildren(self): return bool(self.wrapper.CHILD_WRAPPER_CLASS) def numChildren(self) -> int: return self.wrapper.countChildren() def isDataset(self) -> bool: return isinstance(self.wrapper, _DatasetWrapper) def isImage(self) -> bool: return isinstance(self.wrapper, _ImageWrapper) class OMEROTreeModel(QStandardItemModel): def __init__(self, gateway: QGateWay, parent=None): super().__init__(parent) self.gateway = gateway self.gateway.connected.connect( lambda g: self.gateway._submit(self._populate_tree) ) self._wrapper_map: Dict[BlitzObjectWrapper, QModelIndex] = {} def _populate_tree(self): if not self.gateway.isConnected(): return root = self.invisibleRootItem() projects = [] for project in list(self.gateway.conn.listProjects()): item = OMEROTreeItem(project) root.appendRow(item) projects.append(item) self._wrapper_map[project.getId()] = self.indexFromItem(item) yield if not self.gateway.isConnected(): return for item in projects: for dataset in list(item.wrapper.listChildren()): dchild = OMEROTreeItem(dataset) item.appendRow(dchild) self._wrapper_map[dataset.getId()] = self.indexFromItem(dchild) yield if not self.gateway.isConnected(): return for image in list(dataset.listChildren()): ichild = OMEROTreeItem(image) dchild.appendRow(ichild) self._wrapper_map[image.getId()] = self.indexFromItem(ichild) yield # def canFetchMore(self, index: QModelIndex) -> bool: # item = self.itemFromIndex(index) # return bool(item and item.canFetchMore()) # def fetchMore(self, index: QModelIndex) -> None: # self.itemFromIndex(index).fetchChildren() def hasChildren(self, index: QModelIndex) -> bool: item = self.itemFromIndex(index) if item is not None: return item.hasChildren() and item.numChildren() > 0 return True def itemFromIndex(self, index: QModelIndex) -> OMEROTreeItem: return super().itemFromIndex(index)
StarcoderdataPython
1636941
from datetime import datetime from django.db.models import Count import olympia.core.logger from olympia.amo.celery import task from olympia.amo.decorators import use_primary_db from .models import Collection, CollectionAddon log = olympia.core.logger.getLogger('z.task') @task @use_primary_db def collection_meta(*ids, **kw): log.info(f'[{len(ids)}@{collection_meta.rate_limit}] Updating collection metadata.') qs = CollectionAddon.objects.filter(collection__in=ids).values_list('collection') counts = dict(qs.annotate(Count('id'))) now = datetime.now() for collection_id, old_count in Collection.objects.filter(id__in=ids).values_list( 'pk', 'addon_count' ): addon_count = counts.get(collection_id, 0) if addon_count == old_count: continue # We want to set addon_count & modified without triggering post_save # as it would cause an infinite loop (this task is called on # post_save). So we update queryset.update() and set modified ourselves # instead of relying on auto_now behaviour. Collection.objects.filter(id=collection_id).update( addon_count=addon_count, modified=now )
StarcoderdataPython
3388643
<filename>zinki_smachine/src/zinki_smachine/__init__.py<gh_stars>0 from state import * from state_machine import * from state_name import * from transition_name import *
StarcoderdataPython
1922768
''' Server-Class for the extractions of IoC's. ''' # pylint: disable=C0413, C0411 import os import sys import json import pytz import re import iocextract as ioce sys.path.append('..') from io import StringIO from threading import Thread from kafka.producer import KafkaProducer from kafka.consumer import KafkaConsumer from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from ioc_finder import find_iocs from flask import Flask from flask import request from flask import render_template from flask_script import Server from flask_apscheduler import APScheduler from flask_dropzone import Dropzone from libs.core.filter import filter_dict_values from libs.core.filter import filter_by_blacklist from libs.core.merge_dicts import merge_dicts from libs.core.environment import envvar from libs.kafka.topichandler import create_topic_if_not_exists from libs.kafka.logging import LogMessage from libs.kafka.logging import send_health_message from libs.extensions.loader import load_extensions from libs.gitlabl.files import read_file_from_gitlab from libs.gitlabl.sanitize_title import sanitize_title from libs.text_summarization.tsummarization import summarize import traceback # ENVIRONMENT-VARS SERVICENAME = envvar("SERVICENAME", "Extractor") IOC_TOPIC_NAME = envvar("IOC_TOPIC", "ioc") SCRAPER_TOPIC_NAME = envvar("SCRAPER_TOPIC", "datascraper") # nosec KAFKA_SERVER = envvar("KAFKA_SERVER", "0.0.0.0:9092") HEALTHTOPIC = envvar("HEALTH_TOPIC", "health_report") # nosec GITLAB_SERVER = envvar("GITLAB_SERVER", "0.0.0.0:10082") GITLAB_TOKEN = envvar("GITLAB_TOKEN", "<PASSWORD>") GITLAB_REPO_NAME = envvar("GITLAB_REPO_NAME", "IOCFindings") DOCKER_REPORTS_PATH = "/app/iocextractor/reports" class Config: ''' Config class with configs for flask. ''' SCHEDULER_API_ENABLED = True app = Flask(SERVICENAME, template_folder='templates', static_folder="static/", static_url_path='/static') app.config.from_object(Config()) app.config['DROPZONE_ALLOWED_FILE_CUSTOM'] = True app.config['DROPZONE_ALLOWED_FILE_TYPE'] = '.pdf' app.config['DROPZONE_MAX_FILE_SIZE'] = 10 app.config['DROPZONE_MAX_FILES'] = 100 app.config['UPLOADED_PATH'] = os.path.join(DOCKER_REPORTS_PATH, 'uploads') dropzone = Dropzone(app) scheduler = APScheduler() scheduler.init_app(app) def flaskapp(): ''' flaskapp will return the FLASK_APP. @return a flask_app ''' return app class Extractor(Server): ''' Extractor will be the class for the extractor-server. ''' EXTENSIONS = load_extensions(SERVICENAME) BLACKLIST = {} @app.route('/', methods=['GET', 'POST']) def file_dropzone(): ''' file_dropzone will render a drag and drop view for the reports. @return a rendered template. ''' if request.method == 'POST': files = request.files.get('file') file_path = os.path.join(DOCKER_REPORTS_PATH, files.filename) files.save(file_path) return render_template('index.html') @staticmethod @scheduler.task("interval", id="refetch", seconds=30, timezone=pytz.UTC) def refetch_blacklist(): ''' refetch_blacklist will fetch the blacklist from the master every 30 minutes. ''' content = {} try: if Extractor.BLACKLIST is None or len(Extractor.BLACKLIST) <= 0: LogMessage("Using local blacklist.", LogMessage.LogTyp.INFO, SERVICENAME).log() with open(os.path.abspath("../datasets/blacklist.json")) as content: content = json.load(content) else: LogMessage("Using blacklist from gitlab.", LogMessage.LogTyp.INFO, SERVICENAME).log() content = read_file_from_gitlab(gitlabserver=GITLAB_SERVER, token=<PASSWORD>LAB_TOKEN, repository=GITLAB_REPO_NAME, file="blacklist.json", servicename=SERVICENAME, branch_name="master") content = json.loads(content) if content is not None: Extractor.BLACKLIST = content except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @staticmethod def pushfindings(findings): ''' pushfindings will push all findings to KAFKA. @param findings will be the findings. ''' try: producer = KafkaProducer(bootstrap_servers=KAFKA_SERVER, client_id='ioc_extractor', api_version=(2, 7, 0)) message = str(json.dumps(findings)).encode('UTF-8') producer.send(IOC_TOPIC_NAME, message) except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @staticmethod def extensions(string): ''' extensions will execute extensions for this server. @param string will be the string to check against. @return findings in the string machting the extensions-rules. ''' findings = {} try: for i in Extractor.EXTENSIONS: try: l_findings = re.findall(i.get_pattern(), string) if len(l_findings) > 0 and isinstance(l_findings[0], tuple): findings[str(i.field)] = [ element[i.get_group()] if len(element) - 1 >= i.get_group() else element.group(0) for element in l_findings] else: findings[str(i.field)] = l_findings except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() return findings def extract_ioc(pdftext): ''' extract_ioc will extract ioc from a given text all ioc. @param pdftext will be the text to search trough. @return will return a dictonary with all icos or an empty dict incase of no ioc or an error. ''' iocs = {} try: iocs = find_iocs(pdftext) urls = [rule for rule in ioce.extract_urls(pdftext, refang=True)] iocs['urls'] = list(dict.fromkeys(urls)) yara_rules = [rule for rule in ioce.extract_yara_rules(pdftext)] iocs['yara_rules'] = yara_rules if len(pdftext) > 200: iocs['textsummary'] = summarize(pdftext, SERVICENAME) ex_ioc = Extractor.extensions(pdftext) iocs = merge_dicts(iocs, filter_dict_values(ex_ioc, SERVICENAME), SERVICENAME) iocs = filter_by_blacklist(iocs, Extractor.BLACKLIST, SERVICENAME) except Exception as error: LogMessage(f"{str(error)} {''.join(traceback.format_tb(error.__traceback__))}", LogMessage.LogTyp.ERROR, SERVICENAME).log() return iocs @staticmethod def extract(reportpath): ''' extract will take a PDF-File as path and try to extract all IoC's. After the Extraction, the file will be removed. The IoC's will be pushed to KAFKA by calling the pushfindings-Function. @param reportpath will be the path to the PDF-File. ''' try: pdf_content = StringIO() LogMessage(f"Extract ioc's from file: {reportpath}", LogMessage.LogTyp.INFO, SERVICENAME).log() with open(reportpath, 'rb') as file: resource_manager = PDFResourceManager() device = TextConverter(resource_manager, pdf_content, laparams=LAParams()) interpreter = PDFPageInterpreter(resource_manager, device) for page in PDFPage.create_pages(PDFDocument(PDFParser(file))): interpreter.process_page(page) pdftext = pdf_content.getvalue() iocs = Extractor.extract_ioc(pdftext) input_filename = sanitize_title(unsanitized_title=str((os.path.basename(reportpath))), servicename=SERVICENAME) iocs['input_filename'] = input_filename Extractor.pushfindings(iocs) os.remove(reportpath) LogMessage(f"The ioc's had been extracted from the file and the file has been removed: {reportpath}", LogMessage.LogTyp.INFO, SERVICENAME).log() except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @scheduler.task("interval", id="health_push", seconds=5, timezone=pytz.UTC) def healthpush(): ''' healthpush will send a health message to KAFKA. ''' try: send_health_message(KAFKA_SERVER, HEALTHTOPIC, SERVICENAME) except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @staticmethod def handle_scraper_feed(data): ''' handle_scraper_feed take the data from scraper and extract all ioc and push the result to KAFKA for the ioc pusher. @param data will be the data from KAFKA. ''' try: if (json_data := json.loads(data.value.decode("utf-8"))) is not None: iocs = Extractor.extract_ioc(json_data.get('content')) if iocs is not None and len(iocs) > 0: input_filename = sanitize_title(unsanitized_title=str(json_data.get('title')), servicename=SERVICENAME) iocs['input_filename'] = input_filename Extractor.pushfindings(iocs) except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @staticmethod def consume_findings_from_scraper(): ''' consume_findings_from_scraper will consume all findings from KAFKA and push them into the gitlab repository. ''' try: consumer = KafkaConsumer(SCRAPER_TOPIC_NAME, bootstrap_servers=KAFKA_SERVER, client_id='ioc_extractor', api_version=(2, 7, 0), ) for report in consumer: Thread(target=Extractor.handle_scraper_feed, args=(report,), daemon=True).start() except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() @scheduler.task("interval", id="execute", seconds=10, timezone=pytz.UTC, misfire_grace_time=900) def execute(): ''' execute will run the service and search for PDF's and start for every file a thread. The thread will execute the extract-Function and extract all IoC's in a file. ''' try: if (reports := os.listdir(DOCKER_REPORTS_PATH)) is not None and len(reports) > 0: threads = [] for report in reports: if report.endswith(".pdf"): threads.append( Thread(target=Extractor.extract, args=(os.path.join(DOCKER_REPORTS_PATH, report),))) for instance in threads: instance.start() for instance in threads: instance.join() except Exception as error: LogMessage(str(error), LogMessage.LogTyp.ERROR, SERVICENAME).log() def __call__(self, app, *args, **kwargs): ''' __call__ will be executed befor the server creation and run some functions on startup. So a Topic will be create for the IoC's and the scheduler will be started for the cron-jobs. @param self is the Server-Object. @param app will be the app passed to the __call__ function of the server-class @param *args and **kwargs will be the vargs passed to the __call__ function of the server-class ''' create_topic_if_not_exists(KAFKA_SERVER, IOC_TOPIC_NAME) Extractor.BLACKLIST = Extractor.refetch_blacklist() scheduler.start() Thread(target=Extractor.consume_findings_from_scraper, daemon=True).start() return Server.__call__(self, app, *args, **kwargs)
StarcoderdataPython
8102763
import sys def get_python_version(): major=sys.version_info.major minor=sys.version_info.minor micro=sys.version_info.micro releaselevel=sys.version_info.releaselevel serial=sys.version_info.serial version=f"{major}.{minor}.{micro}" if releaselevel!="final": version+=f"-{releaselevel}.{serial}" return version PLUGIN_METADATA={ "id":"python", "version":get_python_version(), "name":f"Python {get_python_version()}", "description":f"Python {sys.version}", "link":"https://python.org" }
StarcoderdataPython
1643902
from django.apps import AppConfig class ShareimgConfig(AppConfig): name = 'shareimg'
StarcoderdataPython
3218065
<reponame>daVinciCEB/Basic-Python-Package import unittest from context import core class ExampleTest(unittest.TestCase): """An example test in unittest fashion.""" def setUp(self): pass def test_will_pass(self): self.assertEqual(1, 1) def test_will_not_pass(self): self.assertEqual(1, 1) def tearDown(self): pass if __name__ == '__main__': unittest.main()
StarcoderdataPython
3570868
# Training from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TensorBoard, CSVLogger from keras.optimizers import SGD from keras import backend as K from models.model3 import M_b_Xception_896 trainset_dir = 'data/train/' valset_dir = 'data/val/' num_classes = 6 learning_rate = 1e-3 batch_size = 8 input_shape = (229, 229, 3) momentum = 0.9 train_datagen = ImageDataGenerator(rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, fill_mode='nearest') val_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( trainset_dir, target_size=(input_shape[0], input_shape[1]), batch_size=batch_size) val_generator = val_datagen.flow_from_directory( valset_dir, target_size=(input_shape[0], input_shape[1]), batch_size=batch_size, shuffle=False) K.clear_session() optim = SGD(lr=learning_rate, momentum=momentum) model = M_b_Xception_896(input_shape, num_classes) model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['acc']) csv_path = 'result_show/M_b_Xception_896.csv' log_dir = 'result_show/M_b_Xception_896/' save_weights_path = 'weights/M_b_Xception_896/trash-model-weight-ep-{epoch:02d}-val_loss-{val_loss:.4f}-val_acc-{val_acc:.4f}.h5' checkpoint = ModelCheckpoint(save_weights_path, monitor='val_acc', verbose=1, save_weights_only=True, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.5, patience=20, verbose=1, min_lr='1e-4') #earlystop = EarlyStopping(monitor='val_acc', patience=25, verbose=1) logging = TensorBoard(log_dir=log_dir, batch_size=batch_size) csvlogger = CSVLogger(csv_path, append=True) callbacks = [checkpoint, reduce_lr, logging, csvlogger] num_epochs = 5000 model.fit_generator(train_generator, steps_per_epoch=len(train_generator), epochs=num_epochs, verbose=1, callbacks=callbacks, validation_data=val_generator, validation_steps=len(val_generator), workers=1) # fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, # callbacks=None, validation_data=None, validation_steps=None, # class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
StarcoderdataPython
6428700
<filename>tests/conftest.py import asyncio import pytest @pytest.fixture(scope='session') def simple_gen(): return _simple_gen async def _simple_gen(sequence, delay=0): for item in sequence: yield await asyncio.sleep(delay, item)
StarcoderdataPython
3496106
<filename>glycan_profiling/output/xml.py import os import re import bisect from collections import defaultdict, OrderedDict, namedtuple, deque from brainpy import mass_charge_ratio import glypy from glypy.composition import formula from glypy.io.nomenclature import identity from glypy.structure.glycan_composition import ( MonosaccharideResidue, FrozenMonosaccharideResidue, SubstituentResidue, FrozenGlycanComposition) from glycopeptidepy.structure import parser, modification from psims.mzid import components from psims.mzid.writer import MzIdentMLWriter from psims.controlled_vocabulary.controlled_vocabulary import load_gno from ms_deisotope.output import mzml from glycan_profiling import task, serialize, version from glycan_profiling.chromatogram_tree import Unmodified from glycan_profiling.chromatogram_tree.chromatogram import group_by class mass_term_pair(namedtuple("mass_term_pair", ('mass', 'term'))): def __lt__(self, other): return self.mass < float(other) def __gt__(self, other): return self.mass > float(other) def __float__(self): return self.mass valid_monosaccharides = [ glypy.MonosaccharideResidue.from_iupac_lite("Hex"), glypy.MonosaccharideResidue.from_iupac_lite("HexNAc"), glypy.MonosaccharideResidue.from_iupac_lite("dHex"), glypy.MonosaccharideResidue.from_iupac_lite("NeuAc"), glypy.MonosaccharideResidue.from_iupac_lite("NeuGc"), glypy.MonosaccharideResidue.from_iupac_lite("Pen"), glypy.MonosaccharideResidue.from_iupac_lite("Fuc"), # glypy.MonosaccharideResidue.from_iupac_lite("HexA"), # glypy.MonosaccharideResidue.from_iupac_lite("HexN"), ] def monosaccharide_to_term(monosaccharide): if glypy.MonosaccharideResidue.from_iupac_lite("dHex") == monosaccharide: return 'dHex' return str(monosaccharide) substituent_map = { "S": "sulfate", "P": "phosphate", # "Me": "methyl", # "Ac": "acetyl", } inverted_substituent_map = { v: k for k, v in substituent_map.items() } substituent_map['Sulpho'] = "sulfate" substituent_map['Phospho'] = "phosphate" def mparam(name, value=None, accession=None, cvRef="PSI-MS", **kwargs): if isinstance(name, dict): value = name.pop('value', None) accession = name.pop('accession') cvRef = name.pop('cvRef', cvRef) name_ = name.pop("name") kwargs.update(kwargs) name = name_ return components.CVParam( name=name, value=value, accession=accession, cvRef=cvRef, **kwargs) def parse_glycan_formula(glycan_formula): gc = FrozenGlycanComposition() if glycan_formula.startswith("\""): glycan_formula = glycan_formula[1:-1] for mono, count in re.findall(r"([^0-9]+)\((\d+)\)", glycan_formula): count = int(count) if mono in substituent_map: parsed = SubstituentResidue(substituent_map[mono]) elif mono in ("Sia", ): continue elif mono in ("Pent", ): mono = "Pen" parsed = FrozenMonosaccharideResidue.from_iupac_lite(mono) elif mono == 'Xxx': continue elif mono == 'X': continue else: parsed = FrozenMonosaccharideResidue.from_iupac_lite(mono) gc[parsed] += count return gc class GNOmeResolver(object): def __init__(self, cv=None): if cv is None: cv = load_gno() self.cv = cv self.build_mass_search_index() self.add_glycan_compositions() def add_glycan_compositions(self): formula_key = "GNO:00000202" for term in self.cv.terms.values(): glycan_formula = term.get(formula_key) if glycan_formula: term['glycan_composition'] = parse_glycan_formula(glycan_formula) def build_mass_search_index(self): mass_index = [] for term in self.cv.terms.values(): match = re.search(r"weight of (\d+\.\d+) Da", term.definition) if match: mass = float(match.group(1)) term['mass'] = mass mass_index.append(mass_term_pair(mass, term)) mass_index.sort() self.mass_index = mass_index def _find_mass_match(self, mass): i = bisect.bisect_left(self.mass_index, mass) lo = self.mass_index[i - 1] lo_err = abs(lo.mass - mass) hi = self.mass_index[i] hi_err = abs(hi.mass - mass) if hi_err < lo_err: term = hi.term elif hi_err > lo_err: term = lo.term else: raise ValueError( "Ambiguous duplicate masses (%0.2f, %0.2f)" % (lo.mass, hi.mass)) return term def resolve_gnome(self, glycan_composition): mass = glycan_composition.mass() term = self._find_mass_match(mass) recast = glycan_composition.clone().reinterpret(valid_monosaccharides) visit_queue = deque(term.children) while visit_queue: child = visit_queue.popleft() gc = child.get("glycan_composition") if gc is None: visit_queue.extend(child.children) elif gc == recast: return child def glycan_composition_to_terms(self, glycan_composition): out = [] term = self.resolve_gnome(glycan_composition) if term is not None: out.append({ "accession": term.id, "name": term.name, "cvRef": term.vocabulary.name }) reinterpreted = glycan_composition.clone().reinterpret(valid_monosaccharides) for mono, count in reinterpreted.items(): if isinstance(mono, SubstituentResidue): subst = inverted_substituent_map.get( mono.name.replace("@", "")) if subst is not None: out.append({ "name": "monosaccharide count", "value": ("%s:%d" % (subst, count)), "accession": "MS:XXXXX2", "cvRef": "PSI-MS" }) else: out.append({ "name": "unknown monosaccharide count", "value": ("%s:%0.3f:%d" % (mono.name.replace("@", ""), mono.mass(), count)), "accession": "MS:XXXXX3", "cvRef": "PSI-MS" }) elif isinstance(mono, MonosaccharideResidue): for known in valid_monosaccharides: if identity.is_a(mono, known): out.append({ "name": "monosaccharide count", "value": ("%s:%d" % (monosaccharide_to_term(known), count)), "accession": "MS:XXXXX2", "cvRef": "PSI-MS" }) break else: out.append({ "name": "unknown monosaccharide count", "value": ("%s:%0.3f:%d" % (monosaccharide_to_term(mono), mono.mass(), count)), "accession": "MS:XXXXX3", "cvRef": "PSI-MS" }) else: raise TypeError("Cannot handle unexpected component of type %s" % (type(mono), )) return out def convert_to_protein_dict(protein, include_sequence=True): data = { "id": protein.id, "accession": protein.name, "search_database_id": 1, } if include_sequence: data["sequence"] = protein.protein_sequence return data def convert_to_peptide_evidence_dict(glycopeptide, id_tracker): data = { "start_position": glycopeptide.protein_relation.start_position, "end_position": glycopeptide.protein_relation.end_position, "peptide_id": id_tracker(glycopeptide), "db_sequence_id": glycopeptide.protein_relation.protein_id, "is_decoy": False, "id": glycopeptide.id } return data def convert_to_identification_item_dict(spectrum_match, seen=None, id_tracker=None): if seen is None: seen = set() charge = spectrum_match.scan.precursor_information.charge if spectrum_match.target.id not in seen: return None data = { "charge_state": charge, "experimental_mass_to_charge": mass_charge_ratio( spectrum_match.scan.precursor_information.neutral_mass, charge), "calculated_mass_to_charge": mass_charge_ratio( spectrum_match.target.total_mass, charge), "peptide_id": id_tracker(spectrum_match.target), "peptide_evidence_id": spectrum_match.target.id, "score": mparam({ "name": "GlycReSoft:total score", "value": spectrum_match.score, "accession": "MS:XXX10A", }), "params": [ components.CVParam(**{ "name": "glycan dissociating, peptide preserving", "accession": "MS:XXX111", "cvRef": "PSI-MS"}), components.CVParam(**{ "name": "glycan eliminated, peptide dissociating", "accession": "MS:XXX114", "cvRef": "PSI-MS"}), { "name": "scan start time", "value": spectrum_match.scan.scan_time, "unit_name": "minute" } ], "id": spectrum_match.id } if spectrum_match.is_multiscore(): score_params = [ mparam("GlycReSoft:peptide score", spectrum_match.score_set.peptide_score, "MS:XXX10C"), mparam("GlycReSoft:glycan score", spectrum_match.score_set.glycan_score, "MS:XXX10B"), mparam("GlycReSoft:glycan coverage", spectrum_match.score_set.glycan_coverage, "MS:XXX10H"), mparam("GlycReSoft:joint q-value", spectrum_match.q_value, "MS:XXX10G"), mparam("GlycReSoft:peptide q-value", spectrum_match.q_value_set.peptide_q_value, "MS:XXX10E"), mparam("GlycReSoft:glycan q-value", spectrum_match.q_value_set.glycan_q_value, "MS:XXX10F"), mparam("GlycReSoft:glycopeptide q-value", spectrum_match.q_value_set.glycopeptide_q_value, "MS:XXX10D"), ] data['params'].extend(score_params) else: data['params'].extend([ mparam("GlycReSoft:glycopeptide q-value", spectrum_match.q_value, "MS:XXX10D"), ]) if spectrum_match.mass_shift.name != Unmodified.name: data['params'].append( mparam("GlycReSoft:mass shift", "%s:%0.3f:%0.3f" % ( spectrum_match.mass_shift.name, spectrum_match.mass_shift.mass, spectrum_match.mass_shift.tandem_mass), "MS:XXX10I")) return data def convert_to_spectrum_identification_dict(spectrum_solution_set, seen=None, id_tracker=None): data = { "spectra_data_id": 1, "spectrum_id": spectrum_solution_set.scan.scan_id, "id": spectrum_solution_set.id } idents = [] for item in spectrum_solution_set: d = convert_to_identification_item_dict(item, seen=seen, id_tracker=id_tracker) if d is None: continue idents.append(d) data['identifications'] = idents return data class MzMLExporter(task.TaskBase): def __init__(self, source, outfile): self.reader = mzml.ProcessedMzMLDeserializer(source) self.outfile = outfile self.writer = None self.n_spectra = None def make_writer(self): self.writer = mzml.MzMLScanSerializer( self.outfile, sample_name=self.reader.sample_run.name, n_spectra=self.n_spectra) def aggregate_scan_bunches(self, scan_ids): scans = defaultdict(list) for scan_id in scan_ids: scan = self.reader.get_scan_by_id(scan_id) scans[scan.precursor_information.precursor_scan_id].append( scan) bunches = [] for precursor_id, products in scans.items(): products.sort(key=lambda x: x.scan_time) precursor = self.reader.get_scan_by_id(precursor_id) bunches.append(mzml.ScanBunch(precursor, products)) bunches.sort(key=lambda bunch: bunch.precursor.scan_time) return bunches def begin(self, scan_bunches): self.n_spectra = sum(len(b.products) for b in scan_bunches) + len(scan_bunches) self.make_writer() for bunch in scan_bunches: self.put_scan_bunch(bunch) def put_scan_bunch(self, bunch): self.writer.save_scan_bunch(bunch) def extract_chromatograms_from_identified_glycopeptides(self, glycopeptide_list): by_chromatogram = group_by( glycopeptide_list, lambda x: ( x.chromatogram.chromatogram if x.chromatogram is not None else None)) i = 0 for chromatogram, members in by_chromatogram.items(): if chromatogram is None: continue self.enqueue_chromatogram(chromatogram, i, params=[ {"name": "GlycReSoft:profile score", "value": members[0].ms1_score}, {"name": "GlycReSoft:assigned entity", "value": str(members[0].structure)} ]) i += 1 def enqueue_chromatogram(self, chromatogram, chromatogram_id, params=None): if params is None: params = [] chromatogram_data = dict() rt, signal = chromatogram.as_arrays() chromatogram_dict = OrderedDict(zip(rt, signal)) chromatogram_data['chromatogram'] = chromatogram_dict chromatogram_data['chromatogram_type'] = 'selected ion current chromatogram' chromatogram_data['id'] = chromatogram_id chromatogram_data['params'] = params self.writer.chromatogram_queue.append(chromatogram_data) def complete(self): self.writer.complete() self.writer.format() class SequenceIdTracker(object): def __init__(self): self.mapping = dict() def convert(self, glycopeptide): s = str(glycopeptide) if s in self.mapping: return self.mapping[s] else: self.mapping[s] = glycopeptide.id return self.mapping[s] def __call__(self, glycopeptide): return self.convert(glycopeptide) def dump(self): for key, value in self.mapping.items(): print(value, key) def glycosylation_type_to_term(glycosylation_type): remap = { "N-Linked": { "name": "N-glycan", "accession": "MS:XXXXX5", "cvRef": "PSI-MS", }, "O-Linked": { "name": "<NAME>", "accession": "MS:XXXXX6", "cvRef": "PSI-MS", }, "GAG linker": { "name": "glycosaminoglycan", "accession": "MS:XXXXX7", "cvRef": "PSI-MS", }, } return remap[glycosylation_type] class MzIdentMLSerializer(task.TaskBase): def __init__(self, outfile, glycopeptide_list, analysis, database_handle, q_value_threshold=0.05, ms2_score_threshold=0, export_mzml=True, source_mzml_path=None, output_mzml_path=None, embed_protein_sequences=True): self.outfile = outfile self.database_handle = database_handle self._glycopeptide_list = glycopeptide_list self.protein_list = None self.analysis = analysis self.scan_ids = set() self._id_tracker = SequenceIdTracker() self.q_value_threshold = q_value_threshold self.ms2_score_threshold = ms2_score_threshold self.export_mzml = export_mzml self.source_mzml_path = source_mzml_path self.output_mzml_path = output_mzml_path self.embed_protein_sequences = embed_protein_sequences self.gnome_resolver = GNOmeResolver() @property def glycopeptide_list(self): return self._glycopeptide_list def extract_proteins(self): self.protein_list = [self.database_handle.query( serialize.Protein).get(i) for i in {gp.protein_relation.protein_id for gp in self.glycopeptide_list}] def convert_to_peptide_dict(self, glycopeptide, id_tracker): data = { "id": glycopeptide.id, "peptide_sequence": parser.strip_modifications(glycopeptide), "modifications": [] } i = 0 # TODO: handle N-terminal and C-terminal modifications glycosylation_event_count = len(glycopeptide.convert().glycosylation_manager) glycosylation_events_handled = 0 for _pos, mods in glycopeptide: i += 1 if not mods: continue else: mod = mods[0] if mod.rule.is_a("glycosylation"): glycosylation_events_handled += 1 is_aggregate_stub = False mod_params = [ glycosylation_type_to_term( str(mod.rule.glycosylation_type)) ] if mod.rule.is_core: mod_params.extend( self.gnome_resolver.glycan_composition_to_terms(glycopeptide.glycan_composition.clone())) mass = glycopeptide.glycan_composition.mass() if glycosylation_event_count == 1: mod_params.append({ "name": "glycan composition", "cvRef": "PSI-MS", "accession": "MS:XXXX14" }) else: mod_params.append({ "name": "glycan aggregate", "cvRef": "PSI-MS", "accession": "MS:XXXX15" }) if glycosylation_events_handled > 1: mass = 0 is_aggregate_stub = True if not is_aggregate_stub: mod_params.append({ "accession": 'MS:1000864', "cvRef": "PSI-MS", "name": "chemical formula", "value": formula(glycopeptide.glycan_composition.total_composition()), }) else: mod_params.append({ "accession": 'MS:1000864', "cvRef": "PSI-MS", "name": "chemical formula", "value": formula(mod.rule.composition), }) if mod.rule.is_composition: mod_params.extend(self.gnome_resolver.glycan_composition_to_terms(mod.rule.glycan.clone())) mod_params.append({ "name": "glycan composition", "cvRef": "PSI-MS", "accession": "MS:XXXX14" }) else: mod_params.append({ "name": "glycan structure", "cvRef": "PSI-MS", "accession": "MS:XXXXXXX" }) mass = mod.mass mod_dict = { "monoisotopic_mass_delta": mass, "location": i, # "name": "unknown modification", "name": "glycosylation modification", "params": [components.CVParam(**x) for x in mod_params] } data['modifications'].append(mod_dict) else: mod_dict = { "monoisotopic_mass_delta": mod.mass, "location": i, "name": mod.name, } data['modifications'].append(mod_dict) return data def extract_peptides(self): self.log("Extracting Proteins") self.extract_proteins() self._peptides = [] seen = set() self.log("Extracting Peptides") for gp in self.glycopeptide_list: d = self.convert_to_peptide_dict(gp.structure, self._id_tracker) if self._id_tracker(gp.structure) == gp.structure.id: self._peptides.append(d) seen.add(gp.structure.id) self.log("Extracting PeptideEvidence") self._peptide_evidence = [ convert_to_peptide_evidence_dict( gp.structure, self._id_tracker) for gp in self.glycopeptide_list ] self._proteins = [ convert_to_protein_dict(prot, self.embed_protein_sequences) for prot in self.protein_list ] def extract_spectrum_identifications(self): self.log("Extracting SpectrumIdentificationResults") spectrum_identifications = [] seen_scans = set() accepted_solution_ids = {gp.structure.id for gp in self.glycopeptide_list} for gp in self.glycopeptide_list: for solution in gp.spectrum_matches: if solution.scan.scan_id in seen_scans: continue if solution.best_solution().q_value > self.q_value_threshold: continue if solution.score < self.ms2_score_threshold: continue seen_scans.add(solution.scan.scan_id) d = convert_to_spectrum_identification_dict( solution, seen=accepted_solution_ids, id_tracker=self._id_tracker) if len(d['identifications']): spectrum_identifications.append(d) self.scan_ids = seen_scans self._spectrum_identification_list = { "id": 1, "identification_results": spectrum_identifications } def software_entry(self): software = { "name": "GlycReSoft", "version": version.version, "uri": None } return [software] def search_database(self): hypothesis = self.analysis.hypothesis spec = { "name": hypothesis.name, "location": self.database_handle._original_connection, "id": 1 } if "fasta_file" in hypothesis.parameters: spec['file_format'] = 'fasta format' spec['location'] = hypothesis.parameters['fasta_file'] elif "mzid_file" in hypothesis.parameters: spec['file_format'] = 'mzIdentML format' return spec def source_file(self): spec = { "location": self.database_handle._original_connection, "file_format": "data stored in database", "id": 1 } return spec def spectra_data(self): spec = { "location": self.analysis.parameters['sample_path'], "file_format": 'mzML format', "spectrum_id_format": "multiple peak list nativeID format", "id": 1 } return spec def protocol(self): hypothesis = self.analysis.hypothesis analysis = self.analysis mods = [] def transform_modification(mod): if isinstance(mod, basestring): mod_inst = modification.Modification(mod) target = modification.extract_targets_from_rule_string(mod) new_rule = mod_inst.rule.clone({target}) return new_rule return mod def pack_modification(mod, fixed=True): mod_spec = { "fixed": fixed, "mass_delta": mod.mass, "residues": [res.symbol for rule in mod.targets for res in rule.amino_acid_targets], "params": [ mod.name ] } return mod_spec for mod in hypothesis.parameters.get('constant_modifications', []): mod = transform_modification(mod) mods.append(pack_modification(mod, True)) for mod in hypothesis.parameters.get('variable_modifications', []): mod = transform_modification(mod) mods.append(pack_modification(mod, False)) strategy = analysis.parameters.get("search_strategy") if strategy == "multipart-target-decoy-competition": fdr_params = [ {"name": "peptide glycopeptide false discovery rate control strategy", "accession": "MS:XXX106", "cvRef": "PSI-MS"}, {"name": "glycan glycopeptide false discovery rate control strategy", "accession": "MS:XXX107", "cvRef": "PSI-MS"}, {"name": "total glycopeptide false discovery rate control strategy", "accession": "MS:XXX108", "cvRef": "PSI-MS"}, {"name": "joint glycopeptide false discovery rate control strategy", "accession": "MS:XXX11A", "cvRef": "PSI-MS"}, ] else: fdr_params = [ {"name": "total glycopeptide false discovery rate control strategy", "accession": "MS:XXX108", "cvRef": "PSI-MS"}, ] spec = { "enzymes": [ {"name": getattr(e, 'name', e), "missed_cleavages": hypothesis.parameters.get( 'max_missed_cleavages', None), "id": i} for i, e in enumerate(hypothesis.parameters.get('enzymes')) ], "fragment_tolerance": (analysis.parameters['fragment_error_tolerance'] * 1e6, None, "parts per million"), "parent_tolerance": (analysis.parameters['mass_error_tolerance'] * 1e6, None, "parts per million"), "modification_params": mods, "id": 1, "additional_search_params": [ { "name": "glycopeptide search", "accession": "MS:XXX101", "cvRef": "PSI-MS", } ] + fdr_params } spec['additional_search_params'] = [components.CVParam(**x) for x in spec['additional_search_params']] return spec def run(self): f = MzIdentMLWriter(self.outfile, vocabularies=[ components.CV( id='GNO', uri="http://purl.obolibrary.org/obo/gno.obo", full_name='GNO'), ]) self.log("Loading Spectra Data") spectra_data = self.spectra_data() self.log("Loading Search Database") search_database = self.search_database() self.log("Building Protocol") protocol = self.protocol() source_file = self.source_file() self.extract_peptides() self.extract_spectrum_identifications() had_specified_mzml_path = self.source_mzml_path is None if self.source_mzml_path is None: self.source_mzml_path = spectra_data['location'] if self.source_mzml_path is None: did_resolve_mzml_path = False else: did_resolve_mzml_path = os.path.exists(self.source_mzml_path) if not did_resolve_mzml_path: self.log("Could not locate source mzML file.") if not had_specified_mzml_path: self.log("If you did not specify an alternative location to " "find the mzML path, please do so.") if self.export_mzml and did_resolve_mzml_path: if self.output_mzml_path is None: prefix = os.path.splitext(self.outfile.name)[0] self.output_mzml_path = "%s.export.mzML" % (prefix,) exporter = None self.log("Begin Exporting mzML") with open(self.output_mzml_path, 'wb') as handle: exporter = MzMLExporter(self.source_mzml_path, handle) self.log("... Aggregating Scan Bunches") scan_bunches = exporter.aggregate_scan_bunches(self.scan_ids) self.log("... Exporting Spectra") exporter.begin(scan_bunches) self.log("... Exporting Chromatograms") exporter.extract_chromatograms_from_identified_glycopeptides( self.glycopeptide_list) self.log("... Finalizing mzML") exporter.complete() self.log("mzML Export Finished") analysis = [[spectra_data['id']], [search_database['id']]] with f: f.controlled_vocabularies() f.providence(software=self.software_entry()) f.register("SpectraData", spectra_data['id']) f.register("SearchDatabase", search_database['id']) f.register("SpectrumIdentificationList", self._spectrum_identification_list['id']) with f.sequence_collection(): for prot in self._proteins: f.write_db_sequence(**prot) for pep in self._peptides: f.write_peptide(**pep) for pe in self._peptide_evidence: f.write_peptide_evidence(**pe) with f.analysis_protocol_collection(): f.spectrum_identification_protocol(**protocol) with f.element("AnalysisCollection"): f.SpectrumIdentification(*analysis).write(f) with f.element("DataCollection"): f.inputs(source_file, search_database, spectra_data) with f.element("AnalysisData"): with f.spectrum_identification_list(id=self._spectrum_identification_list['id']): for result_ in self._spectrum_identification_list['identification_results']: result = dict(result_) identifications = result.pop("identifications") result = f.spectrum_identification_result(**result) with result: for item in identifications: f.write_spectrum_identification_item(**item) f.outfile.close()
StarcoderdataPython
3480722
<gh_stars>1-10 from django.shortcuts import get_object_or_404 from django.views.generic import ListView, DetailView from articles.models import Article, Tag class ArticleListView(ListView): model = Article ordering = ['-first_commit'] paginate_by = 10 def get_context_data(self, **kwargs): context = super(ArticleListView, self).get_context_data(**kwargs) context['tags'] = Tag.objects.iterator() context['article_count'] = Article.objects.count() return context class TaggedArticleListView(ListView): template_name = 'articles/tagged_article_list.html' paginate_by = 10 def tags(self): tag_list = self.kwargs['tags_with_plus'].split('+') for tag_name in set(tag_list): tag = get_object_or_404(Tag, name=tag_name) yield tag def get_queryset(self): articles = Article.objects for tag in self.tags(): articles = articles.filter(tags=tag) return articles.order_by('-first_commit') def get_context_data(self, **kwargs): context = super(TaggedArticleListView, self).get_context_data(**kwargs) context['current_tags'] = self.tags context['tags'] = Tag.objects.iterator() context['article_count'] = Article.objects.count() return context class ArticleDetailView(DetailView): model = Article def get_object(self): obj = super(ArticleDetailView, self).get_object() obj.views += 1 obj.save() return obj # def search(request): # q = request.GET.get('q') # # TODO # context = {} # return render(request, 'article/articles.html', context) class SearchView(ListView): model = Article
StarcoderdataPython
1918914
<reponame>1323ED5/tic-tac-toe-AI from src.dimension import Dimension from src.game_mechanic import GameMechanic from src.turn import generate_turns from src.utils import clear_console class AIMixin: def bot_turn(self): turns = generate_turns(self.area) root_dimension = Dimension(self.area, self.active_player) calculations = root_dimension.born() winnable_result = max(calculations) index_of_max = calculations.index(winnable_result) winnable_turn = turns[index_of_max] cell_id = winnable_turn.cell_id self.make_turn(cell_id) class ConsoleGame(GameMechanic, AIMixin): def display_area(self): print() print("", " | ".join(map(lambda x: " " if x is None else x, self.area[:3]))) print("-" * 11) print("", " | ".join(map(lambda x: " " if x is None else x, self.area[3:6]))) print("-" * 11) print("", " | ".join(map(lambda x: " " if x is None else x, self.area[6:9]))) print() def player_turn(self): cell_id = int(input("cell_id: ")) self.make_turn(cell_id) def start(self): while True: clear_console() self.display_area() if self.active_player == 0: self.player_turn() else: self.bot_turn() gameover = self.check_game_over() if gameover is not None: print("WON:", {1: "AI", 0: "TIE", -1: "YOU"}.get(gameover)) self.display_area() break
StarcoderdataPython
353960
<reponame>hechth/vimms<filename>vimms/scripts/box_controller.py import itertools import random from time import perf_counter from vimms.Box import GenericBox, DictGrid, ArrayGrid, LocatorGrid, AllOverlapGrid, IdentityDrift from vimms.GridEstimator import GridEstimator from vimms.ChemicalSamplers import DatabaseFormulaSampler from vimms.Chemicals import ChemicalMixtureCreator from vimms.Common import * from vimms.Controller.box import NonOverlapController from vimms.Environment import Environment from vimms.MassSpec import IndependentMassSpectrometer from vimms.Noise import GaussianPeakNoise class BoxEnv(): def __init__(self, min_rt, max_rt, max_mz, min_xlen, max_xlen, min_ylen, max_ylen): self.min_rt, self.max_rt = min_rt, max_rt self.max_mz = max_mz self.min_x1, self.max_x1 = min_rt, max_rt - max_xlen self.min_xlen, self.max_xlen, self.min_ylen, self.max_ylen = min_xlen, max_xlen, min_ylen, max_ylen self.grid = None def init_grid(self, grid_class, rt_box_size, mz_box_size): self.grid = grid_class(self.min_rt, self.max_rt, rt_box_size, 0, self.max_mz, mz_box_size) def generate_box(self): x1 = random.uniform(self.min_x1, self.max_x1) y1 = random.uniform(0, self.max_mz - self.max_ylen) xlen = random.uniform(self.min_xlen, self.max_xlen) ylen = random.uniform(self.min_ylen, self.max_ylen) return GenericBox(x1, x1 + xlen, y1, y1 + ylen, intensity=1) @classmethod def random_boxenv(cls): min_rt, max_rt = 0, random.randint(1000, 2000) max_mz = random.randint(1000, 3000) min_xlen = random.randint(1, 4) max_xlen = random.randint(min_xlen, 10) min_ylen = random.randint(1, 5) max_ylen = random.randint(min_ylen, 10) return BoxEnv(min_rt, max_rt, max_mz, min_xlen, max_xlen, min_ylen, max_ylen) def box_score(self, box): return self.grid.non_overlap(box) def register_box(self, box): self.grid.register_box(box) class TestEnv(BoxEnv): def __init__(self, min_rt, max_rt, max_mz, min_xlen, max_xlen, min_ylen, max_ylen): super().__init__(min_rt, max_rt, max_mz, min_xlen, max_xlen, min_ylen, max_ylen) self.boxes_by_injection = [[]] @classmethod def random_boxenv(cls, boxes_per_injection, no_injections): boxenv = super().random_boxenv() boxenv = TestEnv(boxenv.min_rt, boxenv.max_rt, boxenv.max_mz, boxenv.min_xlen, boxenv.max_xlen, boxenv.min_ylen, boxenv.max_ylen) boxenv.boxes_by_injection = [[boxenv.generate_box() for j in range(boxes_per_injection)] for i in range(no_injections)] return boxenv def test_simple_splitter(self): return [ [LocatorGrid.splitting_non_overlap(box, itertools.chain(*self.boxes_by_injection[:i], inj[:j])) for j, box in enumerate(inj)] for i, inj in enumerate(self.boxes_by_injection)] def test_non_overlap(self, grid_class, rt_box_size, mz_box_size): self.init_grid(grid_class, rt_box_size, mz_box_size) def score_box(box): score = self.grid.non_overlap(box) self.grid.register_box(box) return score return [[score_box(b) for b in inj] for inj in self.boxes_by_injection] def test_intensity_non_overlap(self, grid_class, rt_box_size, mz_box_size): self.init_grid(grid_class, rt_box_size, mz_box_size) def score_box(box): score = self.grid.intensity_non_overlap(box, box.intensity, {"theta1" : 1}) self.grid.register_box(box) return score return [[score_box(b) for b in inj] for inj in self.boxes_by_injection] def run_vimms(no_injections, rt_box_size, mz_box_size): rt_range = [(0, 1440)] min_rt, max_rt = rt_range[0] ionisation_mode, isolation_width = POSITIVE, 1 N, rt_tol, mz_tol, min_ms1_intensity = 10, 15, 10, 5000 min_roi_intensity, min_roi_length, min_roi_length_for_fragmentation = 500, 3, 3 grid = GridEstimator(LocatorGrid(min_rt, max_rt, rt_box_size, 0, 3000, mz_box_size), IdentityDrift()) hmdbpath = os.path.join(os.path.abspath(os.getcwd()), "..", "..", "tests", "fixtures", "hmdb_compounds.p") hmdb = load_obj(hmdbpath) df = DatabaseFormulaSampler(hmdb, min_mz=100, max_mz=1000) cm = ChemicalMixtureCreator(df, adduct_prior_dict={POSITIVE: {"M+H": 1}}) chemicals = cm.sample(2000, 1) boxes = [] for i in range(no_injections): mz_noise = GaussianPeakNoise(0.1) mass_spec = IndependentMassSpectrometer(POSITIVE, chemicals, mz_noise=mz_noise) controller = NonOverlapController( ionisation_mode, isolation_width, mz_tol, min_ms1_intensity, min_roi_intensity, min_roi_length, N, grid, rt_tol=rt_tol, min_roi_length_for_fragmentation=min_roi_length_for_fragmentation ) env = Environment(mass_spec, controller, min_rt, max_rt, progress_bar=True) set_log_level_warning() env.run() boxes.append([r.to_box(0.01, 0.01) for r in controller.roi_builder.get_rois()]) return boxes def main(): class Timer(): def __init__(self): self.time = None def start_time(self): self.time = perf_counter() def end_time(self): return perf_counter() - self.time def time_f(self, f): self.start_time() result = f() return result, self.end_time() def run_area_calcs(boxenv, rt_box_size, mz_box_size): def pretty_print(scores): print({i: x for i, x in enumerate(itertools.chain(*scores)) if x > 0.0 and x < 1.0}) print("\nRun area calcs start!") print("\nDictGrid Scores:") scores_by_injection, dict_time = Timer().time_f( lambda: boxenv.test_non_overlap(DictGrid, rt_box_size, mz_box_size)) pretty_print(scores_by_injection) print("\nBoolArrayGrid Scores:") scores_by_injection_2, array_time = Timer().time_f( lambda: boxenv.test_non_overlap(ArrayGrid, rt_box_size, mz_box_size)) pretty_print(scores_by_injection_2) print("\nExact Scores:") scores_by_injection_3, exact_time = Timer().time_f(lambda: boxenv.test_simple_splitter()) pretty_print(scores_by_injection_3) print("\nExact Scores Grid:") rt_box_size, mz_box_size = (boxenv.max_rt - boxenv.min_rt) / 50, boxenv.max_mz / 50 scores_by_injection_4, exact_grid_time = Timer().time_f( lambda: boxenv.test_non_overlap(LocatorGrid, rt_box_size, mz_box_size)) pretty_print(scores_by_injection_4) def compare_scores(scores_1, scores_2): return {i: (x, y) for i, (x, y) in enumerate(zip(itertools.chain(*scores_1), itertools.chain(*scores_2))) if not math.isclose(x, y)} print("Differences between grid + no grid:", compare_scores(scores_by_injection_3, scores_by_injection_4)) # note: below non_overlap (not multiplied by intensity) + intensity_non_overlap should have same behaviour assuming that all box intensities are 1 print("Differences between no intensity and intensity overlap:", compare_scores(scores_by_injection_4, boxenv.test_intensity_non_overlap( AllOverlapGrid, rt_box_size, mz_box_size))) print("\nDictGrid Time Taken: {}".format(dict_time)) print("BoolArray Time Taken: {}".format(array_time)) print("BoxSplitting Time Taken: {}".format(exact_time)) print("BoxSplitting with Grid Time Taken {}".format(exact_grid_time)) def box_adjust(boxenv, *no_boxes): for x_n, y_n in no_boxes: rt_box_size, mz_box_size = (boxenv.max_rt - boxenv.min_rt) / x_n, boxenv.max_mz / y_n _, exact_grid_time = Timer().time_f(lambda: boxenv.test_non_overlap(LocatorGrid, rt_box_size, mz_box_size)) print("Time with {}, {} Boxes: {}".format(x_n, y_n, exact_grid_time)) boxenv = TestEnv.random_boxenv(200, 3) run_area_calcs(boxenv, (boxenv.max_rt - boxenv.min_rt) / 10000, boxenv.max_mz / 10000) boxenv = TestEnv(0, 50, 50, 2, 3, 2, 3) boxenv.boxes_by_injection = [[GenericBox(0, 10, 0, 30, intensity=1), GenericBox(5, 15, 0, 30, intensity=2), GenericBox(0, 10, 15, 45, intensity=3), GenericBox(0, 17, 0, 30, intensity=4)]] run_area_calcs(boxenv, 0.2, 0.2) print("Intensity Non-Overlap Scores: ", boxenv.test_intensity_non_overlap(AllOverlapGrid, 0.2, 0.2)) print() box = GenericBox(0, 10, 0, 10) other_boxes = [[GenericBox(0 + x, 10 + x, 0, 10) for x in range(0, 11)], [GenericBox(0, 10, 0 + y, 10 + y) for y in range(0, 11)], [GenericBox(0 + n, 10 + n, 0 + n, 10 + n) for n in range(0, 11)]] for ls in other_boxes: print([box.overlap_2(b) for b in ls]) print() boxenv = TestEnv(0, 1440, 1500, 0, 0, 0, 0) vimms_boxes = run_vimms(20, (boxenv.max_rt - boxenv.min_rt) / 150, boxenv.max_mz / 150) boxenv.boxes_by_injection = vimms_boxes run_area_calcs(boxenv, 0.2, 0.01) print() for ratio in range(1, 11): print("---Ratio of {}---\n".format(ratio)) box_adjust(boxenv, *((n // ratio, n) for n in range(ratio, 1001, 10 * ratio))) from statistics import mean def box_lengths(b): return b.pt2.x - b.pt1.x, b.pt2.y - b.pt1.y print("Avg. xlen == {}, Avg. ylen == {}".format( *map(mean, zip(*(box_lengths(b) for inj in boxenv.boxes_by_injection for b in inj))))) boxenv = TestEnv(0, 1440, 1500, 0, 0, 0, 0) boxenv.boxes_by_injection = vimms_boxes grid = AllOverlapGrid(0, 2000, 100, 0, 3000, 100) _, time = Timer().time_f(lambda: grid.boxes_by_overlaps(boxes=itertools.chain(*boxenv.boxes_by_injection))) print(f"Time taken for split all no grid: {time}") def split_all(): for b in itertools.chain(*boxenv.boxes_by_injection): grid.register_box(b) return grid.boxes_by_overlaps() _, time = Timer().time_f(split_all) print(f"Time taken for split all grid: {time}") if __name__ == "__main__": main()
StarcoderdataPython
4970731
from app.api.models.LXDModule import LXDModule from pylxd import Client import logging logging = logging.getLogger(__name__) class LXCProfile(LXDModule): def __init__(self, input): logging.info('Connecting to LXD') super().__init__() self.input = input def info(self): try: return self.client.api.profiles[self.input.get('name')].get().json()['metadata'] except Exception as e: raise ValueError(e) def info(self, name): try: logging.info('Reading profile {} information'.format(name)) return self.client.api.profiles[name].get().json()['metadata'] except Exception as e: logging.error('Failed to retrieve information for profile {}'.format(name)) logging.exception(e) raise ValueError(e) def createProfile(self): try: logging.info('Creating profile {}'.format(self.input.get('name'))) self.client.profiles.create(self.input.get('name'), config=self.input.get('config'), devices=self.input.get('devices')) return self.client.api.profiles[self.input.get('name')].get().json()['metadata'] except Exception as e: logging.error('Failed to create container {}'.format(self.input.get('name'))) logging.exception(e) raise ValueError(e) def deleteProfile(self): try: logging.info('Deleting profile {}'.format(self.input.get('name'))) return self.client.api.profiles[self.input.get('name')].delete(json=self.input).json() except Exception as e: logging.error('Failed to delete profile {}'.format(self.input.get('name'))) logging.exception(e) raise ValueError(e) def updateProfile(self): try: logging.info('Updating profile {}'.format(self.input.get('name'))) self.client.api.profiles[self.input.get('name')].put(json={'config': self.input.get('config'), 'devices': self.input.get('devices')}) if self.input.get('new_name'): if self.input.get('new_name') != self.input.get('name'): return self.rename() return self.info(self.input.get('name')) except Exception as e: logging.error('Failed to update profile {}'.format(self.input.get('name'))) logging.exception(e) raise ValueError(e) def rename(self): try: logging.info('Renaming profile {}'.format(self.input.get('name'))) profile = self.client.profiles.get(self.input.get('name')) profile.rename(self.input.get('new_name')) return self.info(self.input.get('new_name')) except Exception as e: logging.error('Failed to rename profile {}'.format(self.input.get('name'))) logging.exception(e) raise ValueError(e)
StarcoderdataPython
12841803
<filename>proxy_server/helpers.py import base64 def generate_service_url(function_path, params=None, encrypted=False): if not params: return function_path else: path_end = str() for key, value in params.iteritems(): if encrypted: value = base64.urlsafe_b64encode(str(value)).replace('=', '') else: value = str(value) if not path_end: path_end += '?{0}={1}'.format(key, value) else: path_end += '&{0}={1}'.format(key, value) return function_path + path_end
StarcoderdataPython
209005
import time, math, board, busio, adafruit_mprls, adafruit_mma8451, serial, picamera cam = picamera.PiCamera() #path = "/sys/bus/w1/devices" #tempData = open(path+"w1_slave", "r") i2c = busio.I2C(board.SCL, board.SDA) mpr = adafruit_mprls.MPRLS(i2c, psi_min=0, psi_max=25) mma = adafruit_mma8451.MMA8451(i2c, address=0x1D) mhz = serial.Serial("/dev/ttyS0",9600,timeout=1) packet = [0xff,0x01,0x86,0x00,0x00,0x00,0x00,0x00,0x79] def read_temp(): '''read_temp() -> float Reads data from thermometer Returns temperature (Celsius)''' try: lines = tempData.readLines() while lines[0].strip()[-3:] != "YES": lines = tempData.readLines() return float(lines[1][lines[1].find("t=")+2:])/1000 except: return -1 def read_baro(): '''read_barometer() -> tuple Reads data from barometer Returns pressure (hPa), altitude (m)''' try: p = mpr.pressure return (p, (10**(math.log10(p/1013.25)/5.2558797) - 1) / 6.8755856 * -1 * 10**6 / 3.2808) except: return (-1, -1) def read_accel(): '''read_accel() -> tuple Reads data from accelerometer Returns acceleration in x, y, z directions''' try: x, y, z = mma.acceleration return (x, y, z) except: return (0, 0, 0) def read_co2(): '''read_co2() -> float (int?) Reads data from CO2 sensor Returns concentration of CO2 (ppm)''' try: mhz.write(bytearray(packet)) res = mhz.read(size=9) res = bytearray(res) return (res[2]<<8)|res[3] except: return -1 # 1 big log file log = open("sensor-data-log", "w") while True: #temp = read_temp() baro = read_baro() accel = read_accel() co2 = read_co2() log.write("{} {:4.3f} hPa {:6.3f} m X: {:.3f} m/s\u00b2 Y: {:.3f} m/s\u00b2 Z: {:.3f} m/s\u00b2 {} ppm".format(time.strftime("%H:%M:%S", time.gmtime(time.time()-14400)), baro[0], baro[1], accel[0], accel[1], accel[2], co2)) print("{} {:4.3f} hPa {:6.3f} m X: {:.3f} m/s\u00b2 Y: {:.3f} m/s\u00b2 Z: {:.3f} m/s\u00b2 {} ppm".format(time.strftime("%H:%M:%S", time.gmtime(time.time()-14400)), baro[0], baro[1], accel[0], accel[1], accel[2], co2)) #log.write("{} {:6.3f} K {:4.3f} hPa {:6.3f} m X: {:.3f} m/s\u00b2 Y: {:.3f} m/s\u00b2 Z: {:.3f} m/s\u00b2 {} ppm".format(time.strftime("%H:%M:%S", time.gmtime(time.time()-14400)), temp, baro[0], baro[1], accel[0], accel[1], accel[2], co2)) cam.capture("IMG_" + time.strftime("%H%M%S", time.gmtime(time.time()-14400)) + ".jpg") time.sleep(120)
StarcoderdataPython
6446362
""" Handles the connections to the database get_trending_scores puts the trending_scores from the database in a dictionary get_train_matrix fetches data from the database and puts it into a training matrix for the lightFM model get_test_matrix fetches data from the database and puts it into a test matrix from the lightFM model get_movie_title returns the movie title for one movie id """ from scipy.sparse import coo_matrix # import random from Product.Database.DatabaseManager.Retrieve.RetrieveMovie import RetrieveMovie from Product.Database.DatabaseManager.Retrieve.RetrieveRating import RetrieveRating from Product.Database.DatabaseManager.Retrieve.RetrieveUser import RetrieveUser def get_train_matrix(): """ Author: <NAME> / <NAME> Date: 2017-10-02 Last update: 2017-11-14 by <NAME> Purpose: returns the train matrix. The matrix is 80% (4/5) of the user ratings at the moment OBS! coo_matrix is a sparse matrix and will (most likely) have the same dimensions for train_matrix, test_matrix and new_user_matrix :return: training matrix in the form of a numpy matrix """ user_list = [] movie_list = [] rating_list = [] ratings = RetrieveRating().retrieve_ratings() counter = 0 # Puts everything but every 5th row (1, 2, 3, 4, 6, 7, 8, 9, 11...) in train_matrix for rating in ratings: if counter % 5 != 0: user_list.append(rating.user_id) movie_list.append(rating.movie_id) rating_list.append(rating.rating) counter += 1 # Added +1 because else the matrix will be to small # TODO Change dimensions to greater than 1 if problem with dimensions train_matrix = coo_matrix((rating_list, (user_list, movie_list)), shape=(RetrieveUser().retrieve_largest_user_id()+1, RetrieveMovie().retrieve_largest_movie_id()+1)) return train_matrix def get_test_matrix(): """ Author: <NAME> / <NAME> Date: 2017-11-06 Last update: 2017-11-14 by <NAME> Purpose: returns the test matrix. The matrix is 10% of the user ratings at the moment :return: test matrix in the form of a numpy matrix """ test_user_list = [] test_movie_list = [] test_rating_list = [] ratings = RetrieveRating().retrieve_ratings() counter = 0 # Puts every 10th row (5, 15, 25...) in test_matrix for rating in ratings: if counter % 5 == 0 and counter % 2 == 1: test_user_list.append(rating.user_id) test_movie_list.append(rating.movie_id) test_rating_list.append(rating.rating) counter += 1 # TODO Change dimensions to greater than 1 if problem with dimensions test_matrix = coo_matrix((test_rating_list, (test_user_list, test_movie_list)), shape=(RetrieveUser().retrieve_largest_user_id()+1, RetrieveMovie().retrieve_largest_movie_id()+1)) return test_matrix def get_new_users_matrix(): """ Author: <NAME> Date: 2017-11-06 Last update: 2017-11-14 by <NAME> Purpose: returns the new users matrix. The matrix is 10 % of the user ratings. Is used for showing that model is evolving :return: new users matrix in the form of a numpy matrix """ user_list = [] movie_list = [] rating_list = [] ratings = RetrieveRating().retrieve_ratings() counter = 0 # Puts every 10th row (10, 20, 30...) in new_users_matrix for rating in ratings: if counter % 10 == 0: user_list.append(rating.user_id) movie_list.append(rating.movie_id) rating_list.append(rating.rating) counter += 1 # TODO Change dimensions to greater than 1 if problem with dimensions new_users_matrix = coo_matrix((rating_list, (user_list, movie_list)), shape=(RetrieveUser().retrieve_largest_user_id()+1, RetrieveMovie().retrieve_largest_movie_id()+1)) return new_users_matrix def get_movie_title(movie_id): """ Author: <NAME> Date: 2017-11-01 Last update: 2017-11-13 Purpose: returns the movie title from a movie id input :param movie_id: :return: movie name as string """ return RetrieveMovie().retrieve_movie(movie_id).title
StarcoderdataPython
4826894
# coding:utf-8 from django import template register = template.Library() @register.filter def appc(value): return str(value) + "1222"
StarcoderdataPython
6533242
<gh_stars>1-10 # -*- mode: python; -*- """ Support code related to OS detection in general. System specific facilities or customization hooks live in mongo_platform_<PLATFORM>.py files. """ import os # --- OS identification --- # # This needs to precede the options section so that we can only offer some options on certain # operating systems. # This function gets the running OS as identified by Python # It should only be used to set up defaults for options/variables, because # its value could potentially be overridden by setting TARGET_OS on the # command-line. Treat this output as the value of HOST_OS def get_running_os_name(): running_os = os.sys.platform if running_os.startswith('linux'): running_os = 'linux' elif running_os.startswith('freebsd'): running_os = 'freebsd' elif running_os.startswith('openbsd'): running_os = 'openbsd' elif running_os == 'sunos5': running_os = 'solaris' elif running_os == 'win32': running_os = 'windows' elif running_os == 'darwin': running_os = 'macOS' else: running_os = 'unknown' return running_os def env_get_os_name_wrapper(self): return self['TARGET_OS'] def is_os_raw(target_os, os_list_to_check): darwin_os_list = [ 'macOS', 'tvOS', 'tvOS-sim', 'iOS', 'iOS-sim' ] linux_os_list = [ 'android', 'linux' ] posix_os_list = [ 'openbsd', 'freebsd', 'solaris' ] + darwin_os_list + linux_os_list os_families = { "darwin": darwin_os_list, "posix": posix_os_list, "linux": linux_os_list, } for os in os_list_to_check: if os == target_os or ( os in os_families and target_os in os_families[os] ): return True return False # This function tests the running OS as identified by Python # It should only be used to set up defaults for options/variables, because # its value could potentially be overridden by setting TARGET_OS on the # command-line. Treat this output as the value of HOST_OS def is_running_os(*os_list): return is_os_raw(get_running_os_name(), os_list) def env_os_is_wrapper(self, *os_list): return is_os_raw(self['TARGET_OS'], os_list)
StarcoderdataPython
6636881
from tkinter import ( Tk, Label, Button, PhotoImage, LEFT ) from tkinter.ttk import Separator class MainWindow: def __init__(self, dolar: str, euro: str, bitcoin: str) -> None: """Construtor da classe MainWindow.""" self.__lista_cotacoes: list = list([dolar, euro, bitcoin]) self.__main_window: Tk = Tk() self.__main_window.iconbitmap("images/money01.ico") self.__main_window.title("Cotações") self.__main_window.configure(background="#FFFFFF") self.__main_window.resizable(0, 0) self.__main_window.geometry( newGeometry="%dx%d+%d+%d" % ( 400, 200, self.__main_window.winfo_screenwidth() / 2 - 400 / 2, self.__main_window.winfo_screenheight() / 2 - 200 - 2 ) ) # Images: self.__exit = PhotoImage(file="images/exit_01.png") # Make Widgets: self.__make_labels(self.__lista_cotacoes[0], self.__lista_cotacoes[1], self.__lista_cotacoes[2]) self.__make_separators() self.__make_buttons() def __make_labels(self, dolar: str, euro: str, bitcoin: str) -> None: """Método responsável por criar todas as labels da janela principal.""" Label( master=self.__main_window, text="Cotações do Dia", background="#FFFFFF", foreground="#808080", font=("Candara Light Italic", 20) ).place(x=110, y=5) Label(master=self.__main_window, text="DOLAR", background="#FFFFFF", foreground="#436253", font=("Arial", 13)).place(x=38, y=60) Label(master=self.__main_window, text="EURO", background="#FFFFFF", foreground="#3e4758", font=("Arial", 13)).place(x=167, y=60) Label(master=self.__main_window, text="BITCOIN", background="#FFFFFF", foreground="#8ea97c", font=("Arial", 13)).place(x=280, y=60) Label(master=self.__main_window, text=f"R$ {dolar}", background="#FFFFFF", foreground="#436253", font=("Arial Black", 14) ).place(x=25, y=85) Label(master=self.__main_window, text=f"R$ {euro}", background="#FFFFFF", foreground="#3e4758", font=("Arial Black", 14) ).place(x=148, y=85) Label(master=self.__main_window, text=f"R$ {bitcoin}", background="#FFFFFF", foreground="#8ea97c", font=("Arial Black", 14) ).place(x=260, y=85) def __make_buttons(self): Button( master=self.__main_window, text="Sair", font=("Calibri Bold", 15), foreground="#FF0000", background="#ffffff", width=100, command=lambda: exit(0), image=self.__exit, cursor = "hand2", compound=LEFT).place(x=140, y=150) def __make_separators(self) -> None: """Método responsável por criar todos os separadores da janela principal.""" Separator(master=self.__main_window, orient="horizontal").place(x=25, y=40, width=350) def run(self) -> None: self.__main_window.mainloop()
StarcoderdataPython
3405142
<reponame>Bhuvan-21/SyferText import torch from torchvision import transforms class ToTensor: def __init__(self): self.transform = transforms.ToTensor() def __call__(self, x): return self.transform(x) class Resize: def __init__(self, size): self.transform = transforms.Resize(size) def __call__(self, x): return self.transform(x)
StarcoderdataPython
3576856
<reponame>Omarzintan/bumblebee-ai from features.default import BaseFeature import wolframalpha from features import wiki_search class Feature(BaseFeature): def __init__(self, bumblebee_api): self.tag_name = "wolfram_search" self.patterns = [ "calculate", "evaluate", "how many", "how much", "how long", "compute" ] self.api = bumblebee_api self.bs = bumblebee_api.get_speech() self.config = bumblebee_api.get_config() def action(self, spoken_text, arguments_list: list = []): search_query = self.get_search_query(spoken_text, self.patterns) app_id = self.config["Api_keys"]["wolframalpha"] try: client = wolframalpha.Client(app_id) except Exception: self.bs.respond("I cannot use the wolframalpha api key") return try: res = client.query(search_query, width=200) answer = next(res.results).text self.bs.respond(answer) except Exception: # Trying Wikipedia wiki_search_obj = wiki_search.Feature(self.api) wiki_search_obj.action(spoken_text) return ''' Parses spoken text to retrieve a search query for Wolframalpha Argument: <list> spoken_text (tokenized. i.e. list of words), OR <str> spoken_text (not tokenized), <list> patterns Return type: <string> spoken_text (this is actually the search query as retrieved from spoken_text.) ''' def get_search_query(self, spoken_text, patterns): search_terms = patterns query_found = False for search_term in search_terms: if search_term in spoken_text: search_index = spoken_text.index(search_term) # get everything after the search term spoken_text = spoken_text[search_index+1:] query_found = True break # In case none of the search terms are included in spoken_text. if not query_found: for phrase in patterns: # split the phrase into individual words phrase_list = phrase.split(' ') # remove phrase list from spoken_text spoken_text = [ word for word in spoken_text if word not in phrase_list ] return ' '.join(spoken_text)
StarcoderdataPython
1655051
<filename>StimControl/Experiments/Quest.py #!/usr/bin/env python # Copyright (c) 1996-2002 <NAME> # Copyright (c) 1996-9 <NAME> # Copyright (c) 2004-7 <NAME> # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # a. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # b. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # c. Neither the name of the Enthought nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH # DAMAGE. __all__ = ['QuestObject'] import math import copy import warnings import random import sys import time import numpy as num num.seterr(all='ignore') def getinf(x): return num.nonzero( num.isinf( num.atleast_1d(x) ) ) class QuestObject: """Measure threshold using a Weibull psychometric function. Threshold 't' is measured on an abstract 'intensity' scale, which usually corresponds to log10 contrast. The Weibull psychometric function: p2=delta*gamma+(1-delta)*(1-(1-gamma)*exp(-10**(beta*(x2+xThreshold)))) where x represents log10 contrast relative to threshold. The Weibull function itself appears only in recompute(), which uses the specified parameter values in self to compute a psychometric function and store it in self. All the other methods simply use the psychometric function stored as instance variables. recompute() is called solely by __init__() and beta_analysis() (and possibly by a few user programs). Thus, if you prefer to use a different kind of psychometric function, called Foo, you need only subclass QuestObject, overriding __init__(), recompute(), and (if you need it) beta_analysis(). instance variables: tGuess is your prior threshold estimate. tGuessSd is the standard deviation you assign to that guess. pThreshold is your threshold criterion expressed as probability of response==1. An intensity offset is introduced into the psychometric function so that threshold (i.e. the midpoint of the table) yields pThreshold. beta, delta, and gamma are the parameters of a Weibull psychometric function. beta controls the steepness of the psychometric function. Typically 3.5. delta is the fraction of trials on which the observer presses blindly. Typically 0.01. gamma is the fraction of trials that will generate response 1 when intensity==-inf. grain is the quantization of the internal table. E.g. 0.01. scope is the intensity difference between the largest and smallest intensity that the internal table can store. E.g. 5. This interval will be centered on the initial guess tGuess, i.e. [tGuess-scope/2, tGuess+scope/2]. QUEST assumes that intensities outside of this interval have zero prior probability, i.e. they are impossible. """ def __init__(self,tGuess,tGuessSd,pThreshold,beta,delta,gamma,grain=0.01,scope=None): """Initialize Quest parameters. Create an instance of QuestObject with all the information necessary to measure threshold. This was converted from the Psychtoolbox's QuestCreate function. """ grain = float(grain) # make sure grain is a float if scope is None: dim = 500 else: if scope <= 0: raise ValueError('argument "scope" must be greater than zero.') dim=scope/grain dim=2*math.ceil(dim/2.0) # round up to even integer self.updatePdf = True self.warnPdf = True self.normalizePdf = False self.tGuess = tGuess self.tGuessSd = tGuessSd self.pThreshold = pThreshold self.beta = beta self.delta = delta self.gamma = gamma self.grain = grain self.dim = dim self.recompute() def beta_analysis(self,stream=None): """Analyze the quest function with beta as a free parameter. It returns the mean estimates of alpha (as logC) and beta. Gamma is left at whatever value the user fixed it at. """ def beta_analysis1(stream=None): """private function called by beta_analysis()""" if stream is None: stream=sys.stdout q2 = [] for i in range(1,17): q_copy=copy.copy(self) q_copy.beta=2**(i/4.0) q_copy.dim=250 q_copy.grain=0.02 q_copy.recompute() q2.append(q_copy) na = num.array # shorthand t2 = na([q2i.mean() for q2i in q2]) p2 = na([q2i.pdf_at(t2i) for q2i,t2i in zip(q2,t2)]) sd2 = na([q2i.sd() for q2i in q2]) beta2 = na([q2i.beta for q2i in q2]) i=num.argsort(p2)[-1] t=t2[i] sd=q2[i].sd() p=num.sum(p2) betaMean=num.sum(p2*beta2)/p betaSd=math.sqrt(num.sum(p2*beta2**2)/p-(num.sum(p2*beta2)/p)**2) iBetaMean=num.sum(p2/beta2)/p iBetaSd=math.sqrt(num.sum(p2/beta2**2)/p-(num.sum(p2/beta2)/p)**2) stream.write('%5.2f %5.2f %5.2f %4.1f %4.1f %6.3f\n'%(t,10**t,sd,1/iBetaMean,betaSd,self.gamma)) print 'Now re-analyzing with beta as a free parameter. . . .' if stream is None: stream=sys.stdout stream.write('logC C sd beta sd gamma\n'); beta_analysis1(stream) def mean(self): """Mean of Quest posterior pdf. Get the mean threshold estimate. This was converted from the Psychtoolbox's QuestMean function. """ return self.tGuess + num.sum(self.pdf*self.x)/num.sum(self.pdf) def mode(self): """Mode of Quest posterior pdf. t,p=q.mode() 't' is the mode threshold estimate 'p' is the value of the (unnormalized) pdf at t. This was converted from the Psychtoolbox's QuestMode function. """ iMode = num.argsort(self.pdf)[-1] p=self.pdf[iMode] t=self.x[iMode]+self.tGuess return t,p def p(self,x): """probability of correct response at intensity x. p=q.p(x) The probability of a correct (or yes) response at intensity x, assuming threshold is at x=0. This was converted from the Psychtoolbox's QuestP function. """ if x < self.x2[0]: return self.x2[0] if x > self.x2[-1]: return self.x2[-1] return num.interp(x,self.x2,self.p2) def pdf_at(self,t): """The (unnormalized) probability density of candidate threshold 't'. This was converted from the Psychtoolbox's QuestPdf function. """ i=int(round((t-self.tGuess)/self.grain))+1+self.dim/2 i=min(len(self.pdf),max(1,i))-1 p=self.pdf[i] return p def quantile(self,quantileOrder=None): """Get Quest recommendation for next trial level. intensity=q.quantile([quantileOrder]) Gets a quantile of the pdf in the struct q. You may specify the desired quantileOrder, e.g. 0.5 for median, or, making two calls, 0.05 and 0.95 for a 90confidence interval. If the 'quantileOrder' argument is not supplied, then it's taken from the QuestObject instance. __init__() uses recompute() to compute the optimal quantileOrder and saves that in the QuestObject instance; this quantileOrder yields a quantile that is the most informative intensity for the next trial. This was converted from the Psychtoolbox's QuestQuantile function. """ if quantileOrder is None: quantileOrder = self.quantileOrder p = num.cumsum(self.pdf) if len(getinf(p[-1])[0]): raise RuntimeError('pdf is not finite') if p[-1]==0: raise RuntimeError('pdf is all zero') m1p = num.concatenate(([-1],p)) index = num.nonzero( m1p[1:]-m1p[:-1] )[0] if len(index) < 2: raise RuntimeError('pdf has only %g nonzero point(s)'%len(index)) ires = num.interp([quantileOrder*p[-1]],p[index],self.x[index])[0] return self.tGuess+ires def sd(self): """Standard deviation of Quest posterior pdf. Get the sd of the threshold distribution. This was converted from the Psychtoolbox's QuestSd function.""" p=num.sum(self.pdf) sd=math.sqrt(num.sum(self.pdf*self.x**2)/p-(num.sum(self.pdf*self.x)/p)**2) return sd def simulate(self,tTest,tActual): """Simulate an observer with given Quest parameters. response=QuestSimulate(q,intensity,tActual) Simulate the response of an observer with threshold tActual. This was converted from the Psychtoolbox's QuestSimulate function.""" t = min( max(tTest-tActual, self.x2[0]), self.x2[-1] ) response= num.interp([t],self.x2,self.p2)[0] > random.random() return response def recompute(self): """Recompute the psychometric function & pdf. Call this immediately after changing a parameter of the psychometric function. recompute() uses the specified parameters in 'self' to recompute the psychometric function. It then uses the newly computed psychometric function and the history in self.intensity and self.response to recompute the pdf. (recompute() does nothing if q.updatePdf is False.) This was converted from the Psychtoolbox's QuestRecompute function.""" if not self.updatePdf: return if self.gamma > self.pThreshold: warnings.warn( 'reducing gamma from %.2f to 0.5'%self.gamma) self.gamma = 0.5 self.i = num.arange(-self.dim/2,self.dim/2+1) self.x = self.i * self.grain self.pdf = num.exp(-0.5*(self.x/self.tGuessSd)**2) self.pdf = self.pdf/num.sum(self.pdf) i2 = num.arange(-self.dim,self.dim+1) self.x2 = i2*self.grain self.p2 = self.delta*self.gamma+(1-self.delta)*(1-(1-self.gamma)*num.exp(-10**(self.beta*self.x2))) if self.p2[0] >= self.pThreshold or self.p2[-1] <= self.pThreshold: raise RuntimeError('psychometric function range [%.2f %.2f] omits %.2f threshold'%(self.p2[0],self.p2[-1],self.pThreshold)) # XXX if len(getinf(self.p2)[0]): raise RuntimeError('psychometric function p2 is not finite') index = num.nonzero( self.p2[1:]-self.p2[:-1] )[0] # strictly monotonic subset if len(index) < 2: raise RuntimeError('psychometric function has only %g strictly monotonic points'%len(index)) self.xThreshold = num.interp([self.pThreshold],self.p2[index],self.x2[index])[0] self.p2 = self.delta*self.gamma+(1-self.delta)*(1-(1-self.gamma)*num.exp(-10**(self.beta*(self.x2+self.xThreshold)))) if len(getinf(self.p2)[0]): raise RuntimeError('psychometric function p2 is not finite') self.s2 = num.array( ((1-self.p2)[::-1], self.p2[::-1]) ) if not hasattr(self,'intensity') or not hasattr(self,'response'): self.intensity = [] self.response = [] if len(getinf(self.s2)[0]): raise RuntimeError('psychometric function s2 is not finite') eps = 1e-14 pL = self.p2[0] pH = self.p2[-1] pE = pH*math.log(pH+eps)-pL*math.log(pL+eps)+(1-pH+eps)*math.log(1-pH+eps)-(1-pL+eps)*math.log(1-pL+eps) pE = 1/(1+math.exp(pE/(pL-pH))) self.quantileOrder=(pE-pL)/(pH-pL) if len(getinf(self.pdf)[0]): raise RuntimeError('prior pdf is not finite') # recompute the pdf from the historical record of trials for intensity, response in zip(self.intensity,self.response): inten = max(-1e10,min(1e10,intensity)) # make intensity finite ii = len(self.pdf) + self.i-round((inten-self.tGuess)/self.grain)-1 if ii[0]<0: ii = ii-ii[0] if ii[-1]>=self.s2.shape[1]: ii = ii+self.s2.shape[1]-ii[-1]-1 iii = ii.astype(num.int_) if not num.allclose(ii,iii): raise ValueError('truncation error') self.pdf = self.pdf*self.s2[response,iii] if self.normalizePdf and k%100==0: self.pdf = self.pdf/num.sum(self.pdf) # avoid underflow; keep the pdf normalized if self.normalizePdf: self.pdf = self.pdf/num.sum(self.pdf) # avoid underflow; keep the pdf normalized if len(getinf(self.pdf)[0]): raise RuntimeError('prior pdf is not finite') def update(self,intensity,response): """Update Quest posterior pdf. Update self to reflect the results of this trial. The historical records self.intensity and self.response are always updated, but self.pdf is only updated if self.updatePdf is true. You can always call QuestRecompute to recreate q.pdf from scratch from the historical record. This was converted from the Psychtoolbox's QuestUpdate function.""" if response < 0 or response > self.s2.shape[0]: raise RuntimeError('response %g out of range 0 to %d'%(response,self.s2.shape[0])) if self.updatePdf: inten = max(-1e10,min(1e10,intensity)) # make intensity finite ii = len(self.pdf) + self.i-round((inten-self.tGuess)/self.grain)-1 if ii[0]<0 or ii[-1] > self.s2.shape[1]: if self.warnPdf: low=(1-len(self.pdf)-self.i[0])*self.grain+self.tGuess high=(self.s2.shape[1]-len(self.pdf)-self.i[-1])*self.grain+self.tGuess warnings.warn( 'intensity %.2f out of range %.2f to %.2f. Pdf will be inexact.'%(intensity,low,high), RuntimeWarning,stacklevel=2) if ii[0]<0: ii = ii-ii[0] else: ii = ii+self.s2.shape[1]-ii[-1]-1 iii = ii.astype(num.int_) if not num.allclose(ii,iii): raise ValueError('truncation error') self.pdf = self.pdf*self.s2[response,iii] if self.normalizePdf: self.pdf=self.pdf/num.sum(self.pdf) # keep a historical record of the trials self.intensity.append(intensity) self.response.append(response) def demo(): """Demo script for Quest routines. By commenting and uncommenting a few lines in this function, you can use this file to implement three QUEST-related procedures for measuring threshold. QuestMode: In the original algorithm of Watson & Pelli (1983) each trial and the final estimate are at the MODE of the posterior pdf. QuestMean: In the improved algorithm of King-Smith et al. (1994). each trial and the final estimate are at the MEAN of the posterior pdf. QuestQuantile & QuestMean: In the ideal algorithm of Pelli (1987) each trial is at the best QUANTILE, and the final estimate is at the MEAN of the posterior pdf. This was converted from the Psychtoolbox's QuestDemo function. <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>. (1994) Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vision Res, 34 (7), 885-912. <NAME>. (1987) The ideal psychometric procedure. Investigative Ophthalmology & Visual Science, 28 (Suppl), 366. <NAME>. and <NAME>. (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys, 33 (2), 113-20. """ print 'The intensity scale is abstract, but usually we think of it as representing log contrast.' tActual = None while tActual is None: sys.stdout.write('Specify true threshold of simulated observer: ') input = raw_input() try: tActual = float(input) except: pass tGuess = None while tGuess is None: sys.stdout.write('Estimate threshold: ') input = raw_input() try: tGuess = float(input) except: pass tGuessSd = 2.0 # sd of Gaussian before clipping to specified range pThreshold = 0.82 beta = 3.5 delta = 0.01 gamma = 0.5 q=QuestObject(tGuess,tGuessSd,pThreshold,beta,delta,gamma) # Simulate a series of trials. trialsDesired=100 wrongRight = 'wrong', 'right' timeZero=time.time() for k in range(trialsDesired): # Get recommended level. Choose your favorite algorithm. tTest=q.quantile() #tTest=q.mean() #tTest=q.mode() tTest=tTest+random.choice([-0.1,0,0.1]) # Simulate a trial timeSplit=time.time(); # omit simulation and printing from reported time/trial. response=q.simulate(tTest,tActual) print 'Trial %3d at %4.1f is %s'%(k+1,tTest,wrongRight[int(response)]) timeZero=timeZero+time.time()-timeSplit; # Update the pdf q.update(tTest,response); # Print results of timing. print '%.0f ms/trial'%(1000*(time.time()-timeZero)/trialsDesired) # Get final estimate. t=q.mean() sd=q.sd() print 'Mean threshold estimate is %4.2f +/- %.2f'%(t,sd) #t=QuestMode(q); #print 'Mode threshold estimate is %4.2f'%t print '\nQuest beta analysis. Beta controls the steepness of the Weibull function.\n' q.beta_analysis() print 'Actual parameters of simulated observer:' print 'logC beta gamma' print '%5.2f %4.1f %5.2f'%(tActual,q.beta,q.gamma) if __name__ == '__main__': demo() # run the demo
StarcoderdataPython
11312234
"""toolsql makes it easy to read and write from sql databases""" from .cli import * from .crud_utils import * from .migrate_utils import * from .sqlalchemy_utils import * from .dba_utils import * from .exceptions import * from .schema_utils import * from .spec import * from .summary_utils import * __version__ = '0.3.0'
StarcoderdataPython
4994597
<filename>src/pages.py import streamlit as st import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix, classification_report,plot_confusion_matrix from sklearn.model_selection import cross_val_score plt.style.use('fivethirtyeight') from config import config as cf class DataView: def __init__(self,input_df,df,col_properties): self.input_df = input_df self.df = df self.col_properties = col_properties def app(self): st.header('Data View') st.subheader('Raw data') st.dataframe(self.input_df.head()) st.markdown(f""" data has shape `{self.input_df.shape}` \n unique identifier: `customerId` \n Target variable: `churn` """) st.subheader('Processed data') st.dataframe(self.df.head()) st.subheader('Column properties') st.dataframe(self.col_properties) class PlotView: def __init__(self,df): self.df = df def app(self): st.header('Plots') st.subheader('Correlation Matrix') fig,ax = plt.subplots(figsize=(7,7)) ax = sns.heatmap( self.df.corr(), vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True ) ax.set_xticklabels( ax.get_xticklabels(), rotation=45, horizontalalignment='right' ) st.pyplot(fig) st.subheader('Stacked Histograms') cols = ['TotalCharges','MonthlyCharges','tenure'] fig,ax = plt.subplots(1,len(cols),figsize=(20,7)) for i,col in enumerate(cols): self.df.pivot(columns='isChurned')[col].plot(kind='hist', stacked=True,ax=ax[i],xlabel=col) ax[i].set_xlabel(col) st.pyplot(fig) st.subheader('Monthly Charges vs Total Charges') fig,ax = plt.subplots(figsize = (4,4)) self.df[self.df['isChurned']==0][['TotalCharges','MonthlyCharges','tenure','isChurned']].plot(kind='scatter',x='MonthlyCharges',y='TotalCharges' ,ax=ax,label='Not Churned',c='g',alpha=0.5) self.df[self.df['isChurned']==1][['TotalCharges','MonthlyCharges','tenure','isChurned']].plot(kind='scatter',x='MonthlyCharges',y='TotalCharges' , label='Churned' ,ax=ax ,c='r',alpha=0.5) st.pyplot(fig) st.subheader('Categorical Column distributions') cols = ['MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','StreamingTV','StreamingMovies','Contract'] fig,ax = plt.subplots(3,3,figsize=(15,10)) for i,col in enumerate(cols): if i < 3: self.df[col].value_counts().plot(kind='pie',ax = ax[i,0]) elif i < 6: self.df[col].value_counts().plot(kind='pie',ax = ax[i-3,1]) elif i < 9: self.df[col].value_counts().plot(kind='pie',ax = ax[i-6,2]) st.pyplot(fig) st.subheader('Churned customers by service type') cols = ['MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','StreamingTV','StreamingMovies','Contract'] fig,ax = plt.subplots(3,3,figsize=(15,10)) for i,col in enumerate(cols): if i < 3: self.df.groupby('isChurned')[col].value_counts().unstack(0).plot(kind='bar',ax = ax[i,0],rot=45) ax[i,0].set_title(col) ax[i,0].get_legend().remove() elif i < 6: self.df.groupby('isChurned')[col].value_counts().unstack(0).plot(kind='bar',ax = ax[i-3,1],rot=45) ax[i-3,1].set_title(col) ax[i-3,1].get_legend().remove() elif i < 9: self.df.groupby('isChurned')[col].value_counts().unstack(0).plot(kind='bar',ax = ax[i-6,2],rot=45) ax[i-6,2].set_title(col) ax[i-6,2].get_legend().remove() st.pyplot(fig) class ModelMetrics: def __init__(self,model_metrics): self.model_metrics = model_metrics def app(self): st.header('ML Model Metrics') accuracy_score = self.model_metrics["accuracy_score"] roc_auc_score = self.model_metrics["roc_auc_score"] st.dataframe(pd.DataFrame([[accuracy_score,roc_auc_score]], columns=['accuracy_score','roc_auc_score'])) st.subheader('Classification Report') st.markdown(self.model_metrics["classification_report"]) st.subheader('Confusion Matrix') fig,ax = plt.subplots(figsize=(5,5)) ax = sns.heatmap(self.model_metrics["confusion_matrix"],annot=True,fmt='g') ax.set_xlabel('Predicted labels') ax.set_ylabel('True labels') ax.xaxis.set_ticklabels(['Not Churned', 'Churned']); ax.yaxis.set_ticklabels(['Not Churned', 'Churned']) st.pyplot(fig)
StarcoderdataPython
11300837
<gh_stars>10-100 # BSD 3-Clause License # # Copyright (c) 2017, Science and Technology Facilities Council and # The University of Nottingham # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This testing module contains the tests for the testconnections method within the shellwrappers module. """ try: from unittest import mock except ImportError: import mock import pytest import longbow.exceptions as exceptions from longbow.shellwrappers import checkconnections def sshfunc(job, cmd): """Function to mock the throwing of exception for a test.""" if cmd[0] == "module avail" and job["resource"] == "resource1": raise exceptions.SSHError( "Err", ("", "bash: module: command not found", 0)) @mock.patch('longbow.shellwrappers.sendtossh') def test_testconnections_single(mock_sendtossh): """ Test that the connection test is launched. """ jobs = { "LongbowJob1": { "resource": "resource1" } } checkconnections(jobs) assert mock_sendtossh.call_count == 2, "sendtossh should be called twice" @mock.patch('longbow.shellwrappers.sendtossh') def test_testconnections_multiple(mock_sendtossh): """ Test that the connection test is run only for each host once. """ jobs = { "LongbowJob1": { "resource": "resource1" }, "LongbowJob2": { "resource": "resource2" }, "LongbowJob3": { "resource": "resource1" } } checkconnections(jobs) assert mock_sendtossh.call_count == 4, "should be called four times" @mock.patch('longbow.shellwrappers.sendtossh') def test_testconnections_sshexcept(mock_sendtossh): """ Test to see that if the underlying SSH call fails, the resulting SSHError is passed up the chain. This is important! """ jobs = { "LongbowJob1": { "resource": "resource1" }, "LongbowJob2": { "resource": "resource2" }, "LongbowJob3": { "resource": "resource1" } } mock_sendtossh.side_effect = exceptions.SSHError("SSH Error", "output") with pytest.raises(exceptions.SSHError): checkconnections(jobs) @mock.patch('longbow.shellwrappers.sendtossh') def test_testconnections_envfix(mock_sendtossh): """ Test that the environment checking works. """ jobs = { "LongbowJob1": { "resource": "resource1", "env-fix": "false" }, "LongbowJob2": { "resource": "resource2", "env-fix": "false" }, "LongbowJob3": { "resource": "resource1", "env-fix": "false" } } mock_sendtossh.side_effect = sshfunc checkconnections(jobs) assert jobs["LongbowJob1"]["env-fix"] == "true" assert jobs["LongbowJob2"]["env-fix"] == "false" assert jobs["LongbowJob3"]["env-fix"] == "true"
StarcoderdataPython
4826220
<reponame>MeWu-IDM/scirisweb #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 22 16:57:44 2019 @author: cliffk """ from distributed import Scheduler from tornado.ioloop import IOLoop from threading import Thread loop = IOLoop.current() t = Thread(target=loop.start, daemon=True) t.start() s = Scheduler(loop=loop) s.start('tcp://:8786') # Listen on TCP port 8786
StarcoderdataPython
3297126
import numpy as np print ("hello world") def circumference(r): return np.pi*2*r def surface_area (r): return np.pi*r**2
StarcoderdataPython
9607354
<filename>ranking.py import csv READ_PATH = 'yt_wonderland/data/world-happiness-report/2017.csv' WRITE_PATH = 'new_data.csv' DIMENSIONS_TO_RANK = [ { "name": "Economy_GDP_Per_Capita", "higher_is_better": True }, { "name": "Generosity", "higher_is_better": True }, { "name": "Family", "higher_is_better": True }, { "name": "Health_Life_Expectancy", "higher_is_better": True }, { "name": "Freedom", "higher_is_better": True }, { "name": "Trust_Government_Corruption", "higher_is_better": True }, ] with open(READ_PATH, 'r') as data_src: csv_reader = csv.reader(data_src) lines = [] countries = [] # read csv for line in csv_reader: lines.append(line) data_src.close() legend = lines[0] new_legend = list(legend) lines = lines[1::] # process into dicts for country_ln in lines: country = {} for i in xrange(len(legend)): if legend[i] == 'Country': country[legend[i]] = country_ln[i] elif legend[i] == 'Happiness_Rank': country[legend[i]] = int(country_ln[i]) else: country[legend[i]] = float(country_ln[i]) countries.append(country) def sort_and_add_rank(dimension, higher_is_better): if higher_is_better: countries.sort(lambda x,y: cmp(x[dimension], y[dimension]), reverse=True) else: countries.sort(lambda x,y: cmp(x[dimension], y[dimension]), reverse=False) for i in xrange(len(countries)): countries[i][dimension+"_Rank"] = i+1 print countries[i] # adding ranks for d in DIMENSIONS_TO_RANK: new_legend.append(d['name']+"_Rank") sort_and_add_rank(d['name'], d['higher_is_better']) # write to output with open(WRITE_PATH, 'w') as new_file: csv_writer = csv.writer(new_file) csv_writer.writerow(new_legend) for country in countries: csv_row = [] for dimension in new_legend: csv_row.append(country[dimension]) csv_writer.writerow(csv_row) new_file.close()
StarcoderdataPython
4877121
<reponame>grice/RNAtools import RNAtools.partAlign as m2 import os import math from pathlib import Path import pytest filepath = os.path.dirname(__file__) data_dir = Path(f'{filepath}/../data') @pytest.mark.skip(reason="Currently fails, not sure why though.") def test_partAlign(): """ Tests partition aligner.. """ # seq1 = f'{filepath}/../data/sequence_hsa-mir-380.txt' seq1 = data_dir / 'sequence_hsa-mir-380.txt' # seq2 = f'{filepath}/../data/sequence_hsa-mir-383.txt' seq2 = data_dir / 'sequence_hsa-mir-383.txt' x = m2.RNA(seq1) y = m2.RNA(seq2) assert (x.count == 37) assert (y.count == 55) scoreMax = m2.align_RNA_partition(x, y) assert (math.floor(scoreMax) == 192)
StarcoderdataPython
8136074
<gh_stars>10-100 import json from django.db import models from openhumans.models import OpenHumansMember CERTAINTY_CHOICES = [ (1, "Random guess"), (2, "Very uncertain"), (3, "Unsure"), (4, "Somewhat certain"), (5, "Very certain"), ] class RetrospectiveEvent(models.Model): member = models.ForeignKey(OpenHumansMember, on_delete=models.CASCADE) date = models.DateField() certainty = models.IntegerField(choices=CERTAINTY_CHOICES) notes = models.TextField( blank=True, help_text="Notes about this illness, e.g. do you know or believe it was a cold, flu, or coronavirus infection?", ) published = models.BooleanField(default=False) def as_json(self): data = { analysis.graph_type: json.loads(analysis.graph_data) for analysis in self.retrospectiveeventanalysis_set.all() } data["sickness_event"] = [ { "timestamp": self.date.isoformat(), "data": {"certainty": self.certainty, "notes": self.notes}, } ] return json.dumps(data, sort_keys=True) class RetrospectiveEventAnalysis(models.Model): event = models.ForeignKey(RetrospectiveEvent, on_delete=models.CASCADE) graph_data = models.TextField() graph_type = models.TextField(default="") @property def member(self): return self.event.member
StarcoderdataPython
3293765
""" Serializer for a request user's information """ # stdlib from typing import Dict # lib from rest_framework import serializers # local from api.models import Settings __all__ = [ 'SettingsSerializer', ] NOTIFICATION_VALUES = {True, False} THEMES = { 'beta', 'blue', 'green', 'purple', 'red', 'traffic', 'trans', } class SettingsSerializer(serializers.ModelSerializer): class Meta: model = Settings fields = ['notifications', 'theme'] def validate_notifications(self, notifications: Dict[str, bool]) -> Dict[str, bool]: """ Ensure that the notifications dict sent by the user only contains valid keys """ for key, value in notifications.items(): # Check that the key is in the allowed strings, and the value is a valid bool if key not in Settings.NOTIFICATIONS: raise serializers.ValidationError(f'"{key}" is not a valid choice.') if value not in NOTIFICATION_VALUES: raise serializers.ValidationError(f'"{key}" does not have a boolean for a value.') return notifications def validate_theme(self, theme: str) -> str: """ Ensure the theme is in the set of allowed themes """ if theme not in THEMES: raise serializers.ValidationError(f'"{theme}" is not a valid choice.') return theme
StarcoderdataPython
1834427
import random from datetime import datetime start_time = datetime.now() def merge_sort(arr): if len(arr) <= 1: return arr middle = len(arr) // 2 left = merge_sort(arr[:middle]) right = merge_sort(arr[middle:]) return merge(left, right) def merge(left, right): result = [] while len(left) > 0 and len(right) > 0: #пока не пустые if left[0] <= right [0]: #выбор наименьшего элемента из этих частей result.append(left[0]) left = left[1:] else: result.append(right[0]) right = right[1:] if len(left)>0: #если в левой что-то осталось result += left #добавляем к результату if len(right)>0: result += right return result arr = [random.randint(0, 1000) for i in range(1000)] print ('Исходный массив: \n' ,arr) print ('\nОтсортированный массив: ', merge_sort(arr)) end_time = datetime.now() print('\n\nПрошло времени: {}'.format(end_time - start_time))
StarcoderdataPython
8003463
<filename>plugin.git.browser/github/downloader.py # -*- coding: utf-8 -*- '''* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. *''' import sys import time import xbmcgui import requests from commoncore import kodi from commoncore import zipfile from .github_api import get_version_by_name, get_version_by_xml class downloaderException(Exception): pass def format_status(cached, total, speed): cached = kodi.format_size(cached) total = kodi.format_size(total) speed = kodi.format_size(speed, 'B/s') return "%s of %s at %s" % (cached, total, speed) def test_url(url): r = requests.head(url) return r.status_code == requests.codes.ok def download(url, addon_id, destination, unzip=False, quiet=False): version = None filename = addon_id + '.zip' r = requests.get(url, stream=True) kodi.log("Download: %s" % url) if r.status_code == requests.codes.ok: temp_file = kodi.vfs.join(kodi.get_profile(), "downloads") if not kodi.vfs.exists(temp_file): kodi.vfs.mkdir(temp_file, recursive=True) temp_file = kodi.vfs.join(temp_file, filename) try: total_bytes = int(r.headers["Content-Length"]) except: total_bytes = 0 block_size = 1000 cached_bytes = 0 if not quiet: pb = xbmcgui.DialogProgress() pb.create("Downloading",filename,' ', ' ') kodi.sleep(150) start = time.time() is_64bit = sys.maxsize > 2**32 if unzip and not is_64bit: zip_content = b'' with open(temp_file, 'wb') as f: for block in r.iter_content(chunk_size=block_size): if not block: break if not quiet and pb.iscanceled(): raise downloaderException('Download Aborted') return False cached_bytes += len(block) f.write(block) if unzip and not is_64bit: zip_content += block if total_bytes > 0: delta = int(time.time() - start) if delta: bs = int(cached_bytes / (delta)) else: bs = 0 if not quiet: percent = int(cached_bytes * 100 / total_bytes) pb.update(percent, "Downloading",filename, format_status(cached_bytes, total_bytes, bs)) if not quiet: pb.close() if unzip: if is_64bit: zip_ref = zipfile.ZipFile(temp_file, 'r') else: if kodi.strings.PY2: import StringIO zip_ref = zipfile.ZipFile(StringIO.StringIO(zip_content)) else: from io import BytesIO zip_ref = zipfile.ZipFile(BytesIO(zip_content)) zip_ref.extractall(destination) zip_ref.close() kodi.vfs.rm(temp_file, quiet=True) try: xml = kodi.vfs.read_file(kodi.vfs.join(destination, kodi.vfs.join(addon_id, 'addon.xml')), soup=True) version = get_version_by_xml(xml) if not version: version = get_version_by_name(filename) except: kodi.log("Unable to fine version from addon.xml for addon: %s" % addon_id) else: kodi.vfs.mv(temp_file, kodi.vfs.join(destination, filename)) else: kodi.close_busy_dialog() raise downloaderException(r.status_code) return version
StarcoderdataPython
162680
<filename>insert_DataBase_robot.py import pyautogui import time import pyperclip # Fazer o código para cada tipo de bd; pyautogui.PAUSE = 2.0 pyautogui.press('win') pyautogui.write('pgadmin4') pyautogui.press('enter')
StarcoderdataPython
1854484
<reponame>elipavlov/transport-nov-parser # coding=utf-8 from __future__ import unicode_literals from abc import ABCMeta, abstractmethod import six import math from django.db import models class EnumBase(six.with_metaclass(ABCMeta, object)): @property @abstractmethod def as_tuple(self): raise NotImplemented() @classmethod def as_reverse_tuple(cls): return tuple([(item[1], item[0]) for item in cls.as_tuple]) @classmethod def as_dict(cls): return dict(cls.as_tuple) @classmethod def as_reverse_dict(cls): return dict(cls.as_revert_tuple()) class GeoDirections(EnumBase): NORTH = 'n' NORTHEAST = 'ne' EAST = 'e' SOUTHEAST = 'se' SOUTH = 's' SOUTHWEST = 'sw' WEST = 'w' NORTHWEST = 'nw' as_tuple = ( (NORTH, "Север"), (NORTHEAST, "Северо-восток"), (EAST, "Восток"), (SOUTHEAST, "Юго-восток"), (SOUTH, "Юг"), (SOUTHWEST, "Юго-запад"), (WEST, "Запад"), (NORTHWEST, "Северо-запад"), ) @classmethod def normalize_angle(cls, angle): if angle < 0: return 360 + (angle % 360) else: return angle % 360 @classmethod def from_angle(cls, angle): step = 360/len(cls.as_tuple) angle = cls.normalize_angle(angle) comp_angle = round(angle + step/2, 1) e = 0.1 x = 0 for key, repr in cls.as_tuple: if x <= comp_angle < x + step: return key x += step else: return cls.NORTH class Directions(EnumBase): FORWARD = 'forward' BACKWARD = 'backward' CIRCULAR = 'circular' as_tuple = ( (FORWARD, "Вперёд"), (BACKWARD, "Назад"), (CIRCULAR, "Кольцевой"), ) class DataProviderTypes(EnumBase): TWOGIS_ROUTE_API = '2gis_route_api' ROUTES_HTML_PAGE = 'routes_html_page' ROUTE_HTML_PAGE = 'route_html_page' as_tuple = ( (TWOGIS_ROUTE_API, "2GIS route API"), (ROUTES_HTML_PAGE, "Routes HTML-page"), (ROUTE_HTML_PAGE, "Route HTML-page"), ) class Point(object): lon = 0.0 lat = 0.0 @property def length(self): return math.hypot(self.lon, self.lat) def distance_to(self, other): return math.hypot(self.lon-other.lon, self.lat-other.lat) def angle(self, other): cos_a = (self * other)/(self.length * other.length) # return math.degrees(math.acos(cos_a)) return math.degrees(cos_a) def __init__(self, lon=0.0, lat=0.0, repr=None): if repr is not None: lst = repr.replace('POINT', '').\ replace('(', '')\ .replace(')', '')\ .split(' ') self.lon = float(lst[0]) self.lat = float(lst[1]) else: self.lon = lon self.lat = lat def __add__(self, other): return Point( self.lon + other.lon, self.lat + other.lat) def __sub__(self, other): return Point( self.lon - other.lon, self.lat - other.lat) def __mul__(self, other): return self.lon * other.lon + self.lat * other.lat def __lshift__(self, other): diff = self - other return Point( self.lon+diff.lon, self.lat+diff.lat) def __rshift__(self, other): lon = self.lon-other.lon lat = self.lat-other.lat return Point( self.lon-lon, self.lat-lat) def __sub__(self, other): return Point( self.lon - other.lon, self.lat - other.lat) def __repr__(self): return 'POINT({lon:.13f} {lat:.13f})'.format(**self.__dict__) def __str__(self): return 'Point(lon: {lon:.6f}, lat: {lat:.6f})'.format(**self.__dict__) def __unicode__(self): return unicode(str(self)) class RouteTypes(EnumBase): BUS = 'bus' TROLLEYBUS = 'trolleybus' as_tuple = ( (BUS, "Автобус"), (TROLLEYBUS, "Троллейбус"), ) class NameAlias(models.Model): name = models.CharField(max_length=100) class META: abstract = True class Platform(models.Model): name = models.CharField(max_length=100) full_name = models.CharField(max_length=200, blank=True, default='') description = models.TextField(blank=True, default='') geo_direction = models.CharField(max_length=16, blank=True, choices=GeoDirections.as_tuple) def get_queryset(self, request): qs = super(Platform, self).get_queryset(request) qs = qs.annotate(models.Count('stops')) return qs def __eq__(self, other): if self.pk: return super(Platform, self).__eq__(other) else: return self.name.strip().lower() == other.name.strip().lower() def __str__(self): return self.name class PlatformAlias(NameAlias): platform = models.ForeignKey(Platform, related_name='aliases') class Stop(models.Model): platform = models.ForeignKey(Platform, on_delete=models.CASCADE, related_name='stops') longitude = models.FloatField(blank=True, null=True, help_text='Longitude in WGS84 system') latitude = models.FloatField(blank=True, null=True, help_text='Latitude in WGS84 system') alias = models.OneToOneField(PlatformAlias, null=True, on_delete=models.SET_NULL, related_name='stop') class META: unique_together = ('platform', 'longitude', 'latitude') def __eq__(self, other): if self.pk: return super(Stop, self).__eq__(other) else: return self.platform == other.platform\ and self.longitude == other.longitude\ and self.latitude == other.latitude def __repr__(self): return '{} {}'.format(self.platform, Point(self.longitude, self.latitude)) def __str__(self): return self.__repr__() class Route(models.Model): name = models.CharField(max_length=32) code = models.CharField(max_length=32, unique=True) type = models.CharField( max_length=32, choices=RouteTypes.as_tuple, default=RouteTypes.BUS, ) canceled = models.DateField(blank=True, null=True, default=None) class META: unique_together = ("name", "type") def __str__(self): return '%s (%s)' % (self.name, self.type) class DataProviderUrl(models.Model): link = models.URLField(help_text='The link for getting data through certain API') type = models.CharField(max_length=32, choices=DataProviderTypes.as_tuple) coding = models.CharField(max_length=32, default='utf-8') route = models.ForeignKey(Route, related_name='data_providers', blank=True, null=True, on_delete=models.CASCADE) route_code = models.CharField(max_length=32, blank=True, default='') class META: unique_together = ("name", "type") def __str__(self): return 'route: %s, type: %s' % (self.route, self.type) class RouteWeekDimension(models.Model): weekend = models.BooleanField(default=False) weekday = models.SmallIntegerField( default=1, help_text="Day of week from 1 to 7, first is monday") def __str__(self): return 'day: %s%s' % (self.weekday, ' we' if self.weekend else '') class RoutePoint(models.Model): week_dimension = models.ForeignKey(RouteWeekDimension) route = models.ForeignKey(Route, on_delete=models.CASCADE, related_name='route_points') stop = models.ForeignKey(Stop, on_delete=models.CASCADE, related_name='route_points') time = models.TimeField(blank=True, null=True) skip = models.BooleanField(default=False) lap = models.SmallIntegerField(default=-1) lap_start = models.BooleanField(default=False) direction = models.CharField(max_length=16, choices=Directions.as_tuple) order = models.SmallIntegerField(default=999) geo_direction = models.CharField(max_length=16, blank=True, choices=GeoDirections.as_tuple) angle = models.FloatField(default=0.0) on_demand = models.BooleanField(default=False) class META: unique_together = (('week_dimension', 'route', 'platform'), ('lap', 'order')) def next_stop(self): raise NotImplemented() def prev_stop(self): raise NotImplemented() def __str__(self): return '%s %s %s' % (self.route, self.stop, self.week_dimension) class RouteDateDimension(RouteWeekDimension): year = models.SmallIntegerField() month = models.SmallIntegerField() day = models.SmallIntegerField() week = models.SmallIntegerField() date = models.DateTimeField() class RouteSchedule(RoutePoint): date_dimension = models.ForeignKey(RouteDateDimension, related_name='route_schedules', on_delete=models.CASCADE)
StarcoderdataPython
6499357
from django.db import models from django.contrib.auth.models import AbstractUser, BaseUserManager class MyAccountManager(BaseUserManager): def create_user(self, first_name, last_name, username, email, password=None): if not email: raise ValueError('User must have an email address') if not username: raise ValueError('User must have an username') user = self.model( email=self.normalize_email(email), username=username, first_name=first_name, last_name=last_name ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, first_name, last_name, email, username, password): user = self.create_user( email=self.normalize_email(email), username=username, password=password, first_name=first_name, last_name=last_name ) user.is_admin = True user.is_active = True user.is_staff = True user.is_superadmin = True user.save(using=self._db) return user class Account(AbstractUser): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) username = models.CharField(max_length=50, unique=True) email = models.EmailField(max_length=100, unique=True) phone_number = models.CharField(max_length=50) # required data_joined = models.DateTimeField(auto_now_add=True) last_login = models.DateTimeField(auto_now_add=True) is_admin = models.BooleanField(default=False) is_staff = models.BooleanField(default=False) is_active = models.BooleanField(default=False) is_superadmin = models.BooleanField(default=False) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username', 'first_name', 'last_name'] objects = MyAccountManager() def __str__(self): return self.email def has_perm(self, perm, obj=None): return self.is_admin def has_module_perms(self, app_label): return True
StarcoderdataPython
173413
<reponame>Fritzenator/hashcode-2020 import numpy as np import numba @numba.jit(nopython=True) def knapsack(values, weights, max_weight): """ Returns tuple (total summed value, chosen items) """ t = np.zeros((len(values), max_weight + 1), dtype=np.float64) # Fill-in the value table using the recurrence formula for i in range(len(values)): for w in range(max_weight + 1): # If weight is above the sub-problem max weight, we can only not-choose # Thus we take the value of the previous best solution for sub-problem without # this item if weights[i] > w: # Check bounds. For sub-problem with 0 items we must have 0 value if i > 0: t[i, w] = t[i - 1, w] else: t[i, w] = 0 # If we can choose, see if the choice yields a higher value else: # If chosen the value is value of previous best with # the weight subtracted plus the value of this item value_if_chosen = t[i - 1, w - weights[i]] + values[i] # Previous row, current column is the value of the sub-problem # for same max weight but without this item (item not chosen) value_if_ignored = t[i - 1, w] t[i, w] = max(value_if_chosen, value_if_ignored) # print(t) # Backtrack from the value table to find the items chosen chosen_items = [] w = max_weight for i in range(len(values) - 1, -1, -1): # If we are in first row (sub-problem with only one item) # we need to check if the value is greater than 0 # if it is, it means the item 0 was chosen if i == 0 and t[i, w] != 0: chosen_items.append(0) # If we have higher value for choosing than for non-choosing # It means we have chosen i elif t[i, w] > t[i - 1, w]: chosen_items.append(i) w = w - weights[i] # Otherwise do nothing as i was not chosen return t[-1, -1], chosen_items # Find minimal number of coins needed using DP # Backtracking to find the actual coins is not yet implemented @numba.jit(nopython=True) def change_minimal_coins(money, coins): array = [money + 1 for _ in range(money + 1)] array[0] = 0 for i in range(1, money + 1): array[i] = 1 + min([array[i - c] for c in coins if i - c >= 0]) # print(array) return array[-1]
StarcoderdataPython
6435029
<reponame>caiges/populous<gh_stars>1-10 import unittest import os import time from PIL import Image from django.conf import settings from populous.thumbnail.base import Thumbnail from populous.thumbnail.main import DjangoThumbnail, get_thumbnail_setting from populous.thumbnail.processors import dynamic_import, get_valid_options from populous.thumbnail.tests.base import BaseTest, RELATIVE_PIC_NAME, PIC_NAME, THUMB_NAME, PIC_SIZE PROCESSORS = dynamic_import(get_thumbnail_setting('PROCESSORS')) VALID_OPTIONS = get_valid_options(PROCESSORS) class ThumbnailTest(BaseTest): def testThumbnails(self): # Thumbnail thumb = Thumbnail(source=PIC_NAME, dest=THUMB_NAME % 1, requested_size=(240, 240)) self.verify_thumbnail((240, 180), thumb) # Cropped thumbnail thumb = Thumbnail(source=PIC_NAME, dest=THUMB_NAME % 2, requested_size=(240, 240), opts=['crop']) self.verify_thumbnail((240, 240), thumb) # Thumbnail with altered JPEG quality thumb = Thumbnail(source=PIC_NAME, dest=THUMB_NAME % 3, requested_size=(240, 240), quality=95) self.verify_thumbnail((240, 180), thumb) def testRegeneration(self): # Create thumbnail thumb_name = THUMB_NAME % 4 thumb_size = (240, 240) thumb = Thumbnail(source=PIC_NAME, dest=thumb_name, requested_size=thumb_size) self.images_to_delete.add(thumb_name) thumb_mtime = os.path.getmtime(thumb_name) time.sleep(1) # Create another instance, shouldn't generate a new thumb thumb = Thumbnail(source=PIC_NAME, dest=thumb_name, requested_size=thumb_size) self.assertEqual(os.path.getmtime(thumb_name), thumb_mtime) # Recreate the source image, then see if a new thumb is generated Image.new('RGB', PIC_SIZE).save(PIC_NAME, 'JPEG') thumb = Thumbnail(source=PIC_NAME, dest=thumb_name, requested_size=thumb_size) self.assertNotEqual(os.path.getmtime(thumb_name), thumb_mtime) class DjangoThumbnailTest(BaseTest): def setUp(self): super(DjangoThumbnailTest, self).setUp() # Add another source image in a sub-directory for testing subdir and # basedir. self.sub_dir = os.path.join(settings.MEDIA_ROOT, 'test_thumbnail') try: os.mkdir(self.sub_dir) except OSError: pass self.pic_subdir = os.path.join(self.sub_dir, RELATIVE_PIC_NAME) Image.new('RGB', PIC_SIZE).save(self.pic_subdir, 'JPEG') self.images_to_delete.add(self.pic_subdir) def testFilenameGeneration(self): basename = RELATIVE_PIC_NAME.replace('.', '_') # Basic filename thumb = DjangoThumbnail(relative_source=RELATIVE_PIC_NAME, requested_size=(240, 120)) expected = os.path.join(settings.MEDIA_ROOT, basename) expected += '_240x120_q85.jpg' self.verify_thumbnail((160, 120), thumb, expected_filename=expected) # Changed quality and cropped thumb = DjangoThumbnail(relative_source=RELATIVE_PIC_NAME, requested_size=(240, 120), opts=['crop'], quality=95) expected = os.path.join(settings.MEDIA_ROOT, basename) expected += '_240x120_crop_q95.jpg' self.verify_thumbnail((240, 120), thumb, expected_filename=expected) # All options on thumb = DjangoThumbnail(relative_source=RELATIVE_PIC_NAME, requested_size=(240, 120), opts=VALID_OPTIONS) expected = os.path.join(settings.MEDIA_ROOT, basename) expected += '_240x120_bw_autocrop_crop_upscale_detail_sharpen_q85.jpg' self.verify_thumbnail((240, 120), thumb, expected_filename=expected) # Different basedir basedir = 'sorl-thumbnail-test-basedir' self.change_settings.change({'BASEDIR': basedir}) thumb = DjangoThumbnail(relative_source=self.pic_subdir, requested_size=(240, 120)) expected = os.path.join(basedir, self.sub_dir, basename) expected += '_240x120_q85.jpg' self.verify_thumbnail((160, 120), thumb, expected_filename=expected) # Different subdir self.change_settings.change({'BASEDIR': '', 'SUBDIR': 'subdir'}) thumb = DjangoThumbnail(relative_source=self.pic_subdir, requested_size=(240, 120)) expected = os.path.join(settings.MEDIA_ROOT, os.path.basename(self.sub_dir), 'subdir', basename) expected += '_240x120_q85.jpg' self.verify_thumbnail((160, 120), thumb, expected_filename=expected) # Different prefix self.change_settings.change({'SUBDIR': '', 'PREFIX': 'prefix-'}) thumb = DjangoThumbnail(relative_source=self.pic_subdir, requested_size=(240, 120)) expected = os.path.join(self.sub_dir, 'prefix-'+basename) expected += '_240x120_q85.jpg' self.verify_thumbnail((160, 120), thumb, expected_filename=expected) def tearDown(self): super(DjangoThumbnailTest, self).tearDown() subdir = os.path.join(self.sub_dir, 'subdir') if os.path.exists(subdir): os.rmdir(subdir) os.rmdir(self.sub_dir)
StarcoderdataPython
9706338
<reponame>KazakovDenis/django-extensions # -*- coding: utf-8 -*- from django.contrib.auth.mixins import UserPassesTestMixin class ModelUserFieldPermissionMixin(UserPassesTestMixin): model_permission_user_field = 'user' def get_model_permission_user_field(self): return self.model_permission_user_field def test_func(self): model_attr = self.get_model_permission_user_field() current_user = self.request.user return current_user == getattr(self.get_queryset().first(), model_attr)
StarcoderdataPython
279446
""" The PSD Submodule ================= The PSD submodule provides implementations of various particle size distributions for the use in scattering calculations. In addition to that, :code:`artssat.scattering.psd.arts` subpackage defines the interface for PSDs in ARTS, while the :code:`artssat.scattering.psd.data` subpackage provides functionality for the handling of PSD data. """ from artssat.scattering.psd.d14 import D14, D14N, D14MN from artssat.scattering.psd.my05 import MY05 from artssat.scattering.psd.ab12 import AB12 from artssat.scattering.psd.binned import Binned from artssat.scattering.psd.fixed_shape import FixedShape
StarcoderdataPython
5142008
import setuptools with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() setuptools.setup( name="madlib_generator", version="0.1.1", author="Adrian-at-CrimsonAuzre", author_email="<EMAIL>", description="A small example package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Adrian-at-CrimsonAuzre/madlib_generator", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", include_package_data=True, package_data={'madlib': ['data/*.json.gz']}, )
StarcoderdataPython
5073707
from keras.layers import Embedding # The Embedding layer takes at least two arguments: # the number of possible tokens, here 1000 (1 + maximum word index), # and the dimensionality of the embeddings, here 64. embedding_layer = Embedding(1000, 64) from keras.datasets import imdb from keras import preprocessing # Number of words to consider as features max_features = 10000 # Cut texts after this number of words # (among top max_features most common words) maxlen = 20 # Load the data as lists of integers. (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) # This turns our lists of integers # into a 2D integer tensor of shape `(samples, maxlen)` x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen) x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen) from keras.models import Sequential from keras.layers import Flatten, Dense model = Sequential() # We specify the maximum input length to our Embedding layer # so we can later flatten the embedded inputs model.add(Embedding(10000, 8, input_length=maxlen)) # After the Embedding layer, # our activations have shape `(samples, maxlen, 8)`. # We flatten the 3D tensor of embeddings # into a 2D tensor of shape `(samples, maxlen * 8)` model.add(Flatten()) # We add the classifier on top model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) model.summary() history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2) import os imdb_dir = '/home/yangsen/workspace/ai_algorithm/data/aclImdb' train_dir = os.path.join(imdb_dir, 'train') labels = [] texts = [] for label_type in ['neg', 'pos']: dir_name = os.path.join(train_dir, label_type) for fname in os.listdir(dir_name): if fname[-4:] == '.txt': f = open(os.path.join(dir_name, fname)) texts.append(f.read()) f.close() if label_type == 'neg': labels.append(0) else: labels.append(1) from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import numpy as np maxlen = 100 # We will cut reviews after 100 words training_samples = 200 # We will be training on 200 samples validation_samples = 10000 # We will be validating on 10000 samples max_words = 10000 # We will only consider the top 10,000 words in the dataset tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=maxlen) labels = np.asarray(labels) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) # Split the data into a training set and a validation set # But first, shuffle the data, since we started from data # where sample are ordered (all negative first, then all positive). indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:training_samples] y_train = labels[:training_samples] x_val = data[training_samples: training_samples + validation_samples] y_val = labels[training_samples: training_samples + validation_samples]
StarcoderdataPython
3373759
# Copyright 2018 Iguazio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mlrun from mlrun.utils import parse_versioned_object_uri from ..config import config feature_separator = "." expected_message = f"in the form feature-set{feature_separator}feature[ as alias]" def parse_feature_string(feature): """parse feature string into feature set name, feature name, alias""" # expected format: <feature-set>.<name|*>[ as alias] if feature_separator not in feature: raise mlrun.errors.MLRunInvalidArgumentError( f"feature {feature} must be {expected_message}" ) splitted = feature.split(feature_separator) if len(splitted) > 2: raise mlrun.errors.MLRunInvalidArgumentError( f"feature {feature} must be {expected_message}, cannot have more than one '.'" ) feature_set = splitted[0] feature_name = splitted[1] splitted = feature_name.split(" as ") if len(splitted) > 1: return feature_set.strip(), splitted[0].strip(), splitted[1].strip() return feature_set.strip(), feature_name.strip(), None def get_feature_set_by_uri(uri, project=None): """get feature set object from db by uri""" db = mlrun.get_run_db() default_project = project or config.default_project project, name, tag, uid = parse_versioned_object_uri(uri, default_project) return db.get_feature_set(name, project, tag, uid) def get_feature_vector_by_uri(uri): """get feature vector object from db by uri""" db = mlrun.get_run_db() project, name, tag, uid = parse_versioned_object_uri(uri, config.default_project) return db.get_feature_vector(name, project, tag, uid)
StarcoderdataPython
396212
<gh_stars>1-10 from django.shortcuts import render, get_object_or_404 as G404 from .models import ( PageSkin as S, PageNames as P, AboutPageNames, RotatorEditorPageNames, ) from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rekruter.models import ( RotationPlan, RotationStep, RotationSubStep, ) from rotator.models import ( Crop, CropFamily, CropDataSource as CDS, CropDataFamilySource as FDS, CropDataTagSource as TDS, CropTag, CropInteraction, CropBookString, ) from crop_rotator.settings import LANGUAGES as L from core.classes import ( PageElement as pe, PageLoad, # count_sources_pages, ) from core.snippets import ( flare, check_slaves, slice_list_3, summarize_plans, list_crops_to, none_ify, remove_repeating, ) from operator import attrgetter from random import shuffle from django.views import View import copy # Widok strony domowej. def home(request): pe_rp_published = RotationPlan.objects.filter(published=True) pe_rp_shuffled = list(pe_rp_published) shuffle(pe_rp_shuffled) # Losuje z widocznych na głównej. pe_rp_shuffled = pe_rp_shuffled[:4] plans_list = summarize_plans(pe_rp_shuffled, RotationStep, RotationSubStep) context = { "rotation_plans": plans_list, } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) template = "strona/home.html" return render(request, template, context_lazy) # Widok "O programie" def about(request): pe_apn = pe(AboutPageNames).baseattrs # policz rodziny niebędące "slaves" crf = CropFamily.objects.filter(is_family_slave=False) num_families = len(crf) # policz wszystkie rośliny uprawne pe_c = pe(Crop).allelements num_crops = len(pe_c) # policz wszystkie kategorie pe_ctag = pe(CropTag).allelements num_categories = len(pe_ctag) # policz wszystkie interakcje pe_interact = pe(CropInteraction).allelements num_interactions = len(pe_interact) # policz wszystkie źródła pe_sources = pe(CropBookString).allelements num_sources = len(pe_sources) context = { "about_us": pe_apn, "num_families": num_families, "num_crops": num_crops, "num_categories": num_categories, "num_interactions": num_interactions, "num_sources": num_sources, } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) template = "strona/about.html" return render(request, template, context_lazy) # Widok "O źródłach" def about_sources(request): pe_sources = pe(CropBookString).allelements # count_sources_pages(CDS) context = { "sources": pe_sources, } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) template = "strona/about_sources.html" return render(request, template, context_lazy) # Widok strony "O nawozach" def fertilize(request): pe_apn = pe(AboutPageNames).baseattrs context = { "about_us": pe_apn, } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) template = "strona/about.html" return render(request, template, context_lazy) # Spis wszystkich rodzin, bez "nibyrodzin" (typu owies u wiechlinowatych). class AllPlantFamilies(View): crf = CropFamily.objects.filter(is_family_slave=False) redirect_link = "family" template = "strona/all_plant_families.html" def get(self, request, *args, **kwargs): sl3 = slice_list_3(self.crf) context = { "redir": self.redirect_link, "families": self.crf, "ml1": sl3[0], "ml2": sl3[1], } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) return render(request, self.template, context_lazy) # Spis wszystkich tagów. class AllTags(AllPlantFamilies): redirect_link = "tag" crf = CropTag.objects.all() # Spis wszystkich roślin. class AllCrops(AllPlantFamilies): redirect_link = "crop" crf = Crop.objects.all() # Bazowy widok strony podglądu interakcji. Domyślnie wyświetla "Crop" # TODO: Przywrócić do stanu, żeby było czytelne. @method_decorator(cache_page(1), name='dispatch') class InteractionPage(View): is_family = False is_tag = False base_item = Crop template = "strona/crop.html" def get(self, request, crop_id, *args, **kwargs): myitem = pe(self.base_item) house = [] crop_family_from = [] crop_family_to = [] crop_tags_from = [] crop_tags_to = [] crop_from = [] crop_to = [] crop_to_new = [] crop_family_to_new = [] crop_tags_from_new = [] crop_tags_to_new = [] # Crop if not self.is_family and not self.is_tag: pe_c_id = myitem.by_id(G404=G404, id=crop_id) c_family = pe_c_id.family family_id = c_family.id crop_id = pe_c_id.id crop_from = none_ify( pe_c_id.crop_relationships.all().filter( is_server_generated=False).exclude(interaction_sign=0) ) crop_to_c = Crop.objects.filter( crop_relationships__about_crop=crop_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) family_to_c = CropFamily.objects.filter( crop_relationships__about_crop=crop_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) tag_to_c = CropTag.objects.filter( crop_relationships__about_crop=crop_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) crop_to = list_crops_to( pe_c_id, crop_to_c, family_to_c, tag_to_c, "crop") remove_repeating(crop_to_new, crop_to) pe_cds = CDS.objects.filter(from_crop=crop_id) master_family = pe_c_id.family.name if pe_c_id.family.is_family_slave and not pe_c_id.is_fertilizer and not pe_c_id.is_crop_mix: master_family = pe_c_id.family.family_master.name # Family if self.is_family: family_id = crop_id c_family = myitem.by_id(G404=G404, id=family_id) c_family_sub = False # Crop, Family if not self.is_tag: crop_family_from = none_ify(c_family.crop_relationships.all()) crop_to_f = Crop.objects.filter( crop_relationships__about_family=family_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) family_to_f = CropFamily.objects.filter( crop_relationships__about_family=family_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) tag_to_f = CropTag.objects.filter( crop_relationships__about_family=family_id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) crop_family_to = list_crops_to( c_family, crop_to_f, family_to_f, tag_to_f, "family") remove_repeating(crop_family_to_new, crop_family_to) # Crop, Tag if self.is_family: if c_family.is_family_slave: sub_id = c_family.family_master.id c_family_sub = myitem.by_id(G404=G404, id=sub_id) family_slav_list = check_slaves( c_family, c_family_sub, c_family.is_family_slave, ) pe_cds = FDS.objects.filter(from_family=family_id) pe_c_id = c_family for item in family_slav_list: pe_c_all = Crop.objects.filter(family=item.id) for crop_object in pe_c_all: house.append(crop_object) master_family = family_slav_list[0] # Tag if self.is_tag: tag = myitem.by_id(G404=G404, id=crop_id) for relationship in tag.crop_relationships.all(): crop_tags_from.append((tag, relationship)) remove_repeating(crop_tags_from_new, crop_tags_from) crop_to_t = Crop.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) family_to_t = CropFamily.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) tag_to_t = CropTag.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) crop_tags_to_0 = list_crops_to( tag, crop_to_t, family_to_t, tag_to_t, "tag") for item in crop_tags_to_0: crop_tags_to.append(item) remove_repeating(crop_tags_to_new, crop_tags_to) pe_cds = TDS.objects.filter(from_tag=crop_id) master_family = tag pe_c_id = tag family_slav_list = Crop.objects.filter(tags=tag.id) for item in family_slav_list: house.append(item) # Crop if not self.is_family and not self.is_tag: for tag in pe_c_id.tags.all(): for relationship in tag.crop_relationships.all(): crop_tags_from.append((tag, relationship)) remove_repeating(crop_tags_from_new, crop_tags_from) crop_to_t = Crop.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) family_to_t = CropFamily.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) tag_to_t = CropTag.objects.filter( crop_relationships__about_tag=tag.id, crop_relationships__is_server_generated=False, ).exclude(crop_relationships__interaction_sign=0) crop_tags_to_0 = list_crops_to( tag, crop_to_t, family_to_t, tag_to_t, "tag") for item in crop_tags_to_0: crop_tags_to.append(item) remove_repeating(crop_tags_to_new, crop_tags_to) house = sorted(house, key=attrgetter('name')) sl3 = slice_list_3(house) translatables = pe(RotatorEditorPageNames).baseattrs context = { "family": master_family, "crop": pe_c_id, "sources": pe_cds, "translatables": translatables, "crop_from": crop_from, "crop_to": crop_to_new, "house": house, "ml1": sl3[0], "ml2": sl3[1], "crop_family_from": crop_family_from, "crop_family_to": crop_family_to_new, "crop_tags_from": crop_tags_from_new, "crop_tags_to": crop_tags_to_new, } pl = PageLoad(P, L) context_lazy = pl.lazy_context(skins=S, context=context) return render(request, self.template, context_lazy) # Widok podglądu interakcji dla danej rodziny. @method_decorator(cache_page(360), name='dispatch') class InteractionFamily(InteractionPage): is_family = True base_item = CropFamily template = "strona/family.html" # Widok podglądu interakcji dla danego taga. @method_decorator(cache_page(360), name='dispatch') class InteractionTag(InteractionPage): is_tag = True base_item = CropTag template = "strona/family.html"
StarcoderdataPython
3543699
""" this script extracts a list of custom dimensions in a Google Analytics property using the Management API and exports to CSV """ import argparse import config import csv from apiclient.discovery import build from oauth2client.service_account import ServiceAccountCredentials import httplib2 from oauth2client import client from oauth2client import file from oauth2client import tools from six.moves import range def get_service(api_name, api_version, scope, key_file_location, service_account_email): credentials = ServiceAccountCredentials.from_p12_keyfile(service_account_email, key_file_location, scopes=scope) http = credentials.authorize(httplib2.Http()) service = build(api_name, api_version, http=http) return service def main(): # Refer to the config.py settings file for credentials service_account_email = config.apiSettings['service_account_email'] key_file_location = config.apiSettings['key_file_location'] print("Reading custom dimensions from property") scope = ['https://www.googleapis.com/auth/analytics.readonly'] service = get_service('analytics', 'v3', scope, key_file_location, service_account_email) print("Analyzing available accounts.") properties = service.management().webproperties().list(accountId='~all').execute() propertiesList = properties.get("items") for property in propertiesList: print ("Exporting:\t"+property["id"]+"\t"+property["name"]) csvname = "exports/"+property["id"] + ".csv" pchunks = property["id"].split("-") dimensions = service.management().customDimensions().list( accountId=pchunks[1], webPropertyId=property["id"], ).execute() dimList = dimensions.get("items") with open(csvname, 'w', newline='') as csvfile: dimdump = csv.writer(csvfile, delimiter=",") dimdump.writerow(["Index","Scope","Name","Active"]) for dimension in dimList: dimdump.writerow([str(dimension["index"]),dimension["scope"],dimension["name"],str(dimension["active"])]) print ("\nDone.\n") if __name__ == '__main__': main()
StarcoderdataPython
8029692
<reponame>object-oriented-human/competitive print(list(input()).index('F')+1)
StarcoderdataPython
6620535
<filename>app/settings.py import os # Amount of seconds before a player can win, this functions as a buffer, so that nobody wins by "accident" # Used by register_card() in office_game.py GAME_START_TIME_BUFFER = int(os.environ.get('OG_GAME_START_TIME_BUFFER', 10)) # Amount of seconds before a new card registration times out GAME_CARD_REGISTRATION_TIMEOUT = int(os.environ.get('OG_GAME_CARD_REGISTRATION_TIMEOUT', 60 * 60)) # Amount of seconds before another player has to register their card to start a new game GAME_PLAYER_REGISTRATION_TIMEOUT = int(os.environ.get('OG_GAME_PLAYER_REGISTRATION_TIMEOUT', 30)) # Amount of seconds before a game session runs out (in the case when players forget to register a winner) GAME_SESSION_TIME = int(os.environ.get('OG_GAME_SESSION_TIME', 15 * 60)) # Firebase details FIREBASE_API_KEY = os.environ.get('OG_FIREBASE_API_KEY', None) FIREBASE_DATABASE_URL = os.environ.get('OG_FIREBASE_DATABASE_URL', None) FIREBASE_STORAGE_BUCKET = os.environ.get('OG_FIREBASE_STORAGE_BUCKET', None) FIREBASE_AUTH_DOMAIN = os.environ.get('OG_FIREBASE_AUTH_DOMAIN', None) FIREBASE_TYPE = os.environ.get('OG_FIREBASE_TYPE', 'service_account') FIREBASE_PROJECT_ID = os.environ.get('OG_FIREBASE_PROJECT_ID', None) FIREBASE_PRIVATE_KEY_ID = os.environ.get('OG_FIREBASE_PRIVATE_KEY_ID', None) FIREBASE_PRIVATE_KEY = os.environ.get('OG_FIREBASE_PRIVATE_KEY', None) FIREBASE_CLIENT_EMAIL = os.environ.get('OG_FIREBASE_CLIENT_EMAIL', None) FIREBASE_CLIENT_ID = os.environ.get('OG_FIREBASE_CLIENT_ID', None) FIREBASE_AUTH_URI = os.environ.get('OG_FIREBASE_AUTH_URI', 'https://accounts.google.com/o/oauth2/auth') FIREBASE_TOKEN_URI = os.environ.get('OG_FIREBASE_TOKEN_URI', 'https://accounts.google.com/o/oauth2/token') FIREBASE_AUTH_PROVIDER_X509_CERT_URL = os.environ.get( 'OG_FIREBASE_AUTH_PROVIDER_X509_CERT_URL', 'https://www.googleapis.com/oauth2/v1/certs' ) FIREBASE_CLIENT_X509_CERT_URL = os.environ.get('OG_FIREBASE_CLIENT_X509_CERT_URL', None) # Reader details READER_VENDOR_ID = os.environ.get('OG_READER_VENDOR_ID', '0xffff') READER_PRODUCT_ID = os.environ.get('OG_READER_PRODUCT_ID', '0x0035') # Sentry details SENTRY_DSN = os.environ.get('OG_SENTRY_DSN', None) # Slack details # Notify Slack regarding game events? SLACK_MESSAGES_ENABLED = os.environ.get('OG_SLACK_MESSAGES_ENABLED', True) SLACK_TOKEN = os.environ.get('OG_SLACK_TOKEN', None) SLACK_DEV_CHANNEL = os.environ.get('OG_SLACK_DEV_CHANNEL', '#kontorspill_dev') SLACK_CHANNEL = os.environ.get('OG_SLACK_CHANNEL', '#kontorspill') SLACK_USERNAME = os.environ.get('OG_SLACK_USERNAME', 'Kontor Spill') SLACK_AVATAR_URL = os.environ.get('OG_SLACK_AVATAR_URL', None) SLACK_DEFAULT_USER_AVATAR_URL = os.environ.get('OG_SLACK_DEFAULT_USER_AVATAR_URL', 'https://capralifecycle.github.io/office-games-viewer/capra.png') SLACK_SYNC_INTERVAL = os.environ.get('OG_SLACK_SYNC_INTERVAL', 3600)
StarcoderdataPython
6660586
"""Supervisr PowerDNS DB Router""" class PowerDNSRouter: """ A router to control all database operations on models in the PowerDNS application. """ # pylint: disable=unused-argument def db_for_read(self, model, **hints): """Attempts to read auth models go to PowerDNS.""" if model._meta.app_label == 'supervisr_provider_nix_dns': return 'powerdns' return None # pylint: disable=unused-argument def db_for_write(self, model, **hints): """Attempts to write auth models go to PowerDNS.""" if model._meta.app_label == 'supervisr_provider_nix_dns': return 'powerdns' return None # pylint: disable=unused-argument def allow_relation(self, obj1, obj2, **hints): """Allow relations if a model in the auth app is involved.""" if obj1._meta.app_label == 'supervisr_provider_nix_dns' or \ obj2._meta.app_label == 'supervisr_provider_nix_dns': return True return None # pylint: disable=unused-argument, invalid-name def allow_migrate(self, db, app_label, model_name=None, **hints): """Make sure the auth app only appears in the 'PowerDNS' database.""" if db == 'powerdns': return app_label == 'supervisr_provider_nix_dns' return None
StarcoderdataPython
11364402
<reponame>internap/redlock-fifo # Copyright 2016 Internap # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading from time import sleep import mock import redlock from redlock_fifo.fifo_redlock import FIFORedlock from tests import test_extendable_redlock from tests.testutils import FakeRedisCustom, get_servers_pool, TestTimer, ThreadCollection class FIFORedlockTest(test_extendable_redlock.ExtendableRedlockTest): @mock.patch('redis.StrictRedis', new=FakeRedisCustom) def setUp(self): self.redlock = FIFORedlock(get_servers_pool(active=1, inactive=0)) self.redlock_with_51_servers_up_49_down = FIFORedlock(get_servers_pool(active=51, inactive=49)) self.redlock_with_50_servers_up_50_down = FIFORedlock(get_servers_pool(active=50, inactive=50)) @mock.patch('redis.StrictRedis', new=FakeRedisCustom) def test_call_order_orchestrated(self, critical_section=lambda lock_source, lock: None, default_ttl=100): connector = FIFORedlock(get_servers_pool(active=1, inactive=0), fifo_queue_length=3, fifo_retry_count=10, fifo_retry_delay=0, retry_delay=.1) test_timer = TestTimer() shared_memory = [] def thread_function(name, lock_source): lock = lock_source.lock('test_call_order_orchestrated', ttl=default_ttl) self.assertTrue(lock) shared_memory.append((name, test_timer.get_elapsed())) critical_section(lock_source, lock) thread_collection = ThreadCollection() thread_collection.start(thread_function, 'Thread A', connector) sleep(0.05) thread_collection.start(thread_function, 'Thread B', connector) sleep(0.051) thread_collection.start(thread_function, 'Thread C', connector) thread_collection.join() actual_order = [entry[0] for entry in shared_memory] actual_times = [entry[1] for entry in shared_memory] self.assertEquals(['Thread A', 'Thread B', 'Thread C'], actual_order) self.assertAlmostEqual(0, actual_times[0], delta=0.03) self.assertAlmostEqual(0.15, actual_times[1], delta=0.03) self.assertAlmostEqual(0.3, actual_times[2], delta=0.03) def test_call_order_orchestrated_with_unlock(self): def critical_section(lock_source, lock): sleep(0.1) lock_source.unlock(lock) self.test_call_order_orchestrated(critical_section=critical_section, default_ttl=1000) @mock.patch('redis.StrictRedis', new=FakeRedisCustom) def test_locks_are_released_when_position0_could_not_be_reached(self): connector = FIFORedlock([{'host': 'localhost', 'db': 'mytest'}], fifo_retry_delay=0) lock_A = connector.lock('pants', 10000) self.assertIsInstance(lock_A, redlock.Lock) lock_B = connector.lock('pants', 10000) self.assertEqual(lock_B, False) connector.unlock(lock_A) for server in connector.servers: self.assertEqual(server.keys(), []) @mock.patch('redis.StrictRedis', new=FakeRedisCustom) def test_ephemeral_locks_use_the_ephemeral_ttl_while_regular_locks_have_requested_ttl(self): """ pants ----- A # A locks A B # B locks, now second in queue A B C # C locks, now third in queue A B C D # D locks, now fourth in queue. D is retrying much faster than anyone else and with unlimited retries. A B C D # After 1 second, the situation is still the same. A C D # B dies unexpectedly, redis removes it due to short TTL A C D # C and D advance one spot C D # A unlocks C D # Within 1 second, C becomes first place D # C unlocks D # Within 1 second, D becomes first place # If D got first place, that means C hasn't correctly secured it's old position while trying to get a new one """ fifo_ephemeral_ttl_ms = 500 connector = FIFORedlock([{'host': 'localhost'}], fifo_ephemeral_ttl_ms=fifo_ephemeral_ttl_ms) locks = dict() # A locks locks['A'] = connector.lock('pants', 15000) self.assertIsInstance(locks['A'], redlock.Lock) for server in connector.servers: self.assertAlmostEqual(server.pttl('pants'), 15000, 500) # B locks, now second in queue def get_lock_b(connector): try: locks['B'] = connector.lock('pants', 20000) except: pass connector2 = FIFORedlock([{'host': 'localhost'}], fifo_ephemeral_ttl_ms=fifo_ephemeral_ttl_ms) thread_B = threading.Thread(target=get_lock_b, args=(connector2, )) thread_B.start() # C locks, now third in queue def get_lock_c(connector): locks['C'] = connector.lock('pants', 30000) thread_C = threading.Thread(target=get_lock_c, args=(connector, )) thread_C.start() # D locks, now fourth in queue. D is retrying much faster than anyone else. def get_lock_d(connector): locks['D'] = connector.lock('pants', 25000) connector3 = FIFORedlock([{'host': 'localhost'}], fifo_retry_delay=0, fifo_retry_count=2000, fifo_ephemeral_ttl_ms=1001) thread_D = threading.Thread(target=get_lock_d, args=(connector3, )) thread_D.start() # B dies unexpectedly, redis removes it due to short TTL connector2.lock_instance = mock.Mock() connector2.lock_instance.side_effect = Exception # C and D advance one spot # A unlocks connector.unlock(locks['A']) # Within 2 second, C becomes first place sleep(2) for server in connector.servers: self.assertIn('C', locks) self.assertEqual(server.get('pants'), locks['C'].key) # C unlocks connector.unlock(locks['C']) # Within 2 second, D becomes first place sleep(2) for server in connector.servers: self.assertIn('D', locks) self.assertEqual(server.get('pants'), locks['D'].key) thread_B.join() thread_C.join() thread_D.join()
StarcoderdataPython
6671463
import configparser from mirage.tables.helpUtils import UUID, isHexadecimal, isPrintable class Attribute: def __init__(self, ATThandle=None, ATTtype=None, ATTvalue=None): self.ATThandle = ATThandle self.ATTvalue = ATTvalue self.ATTtype = ATTtype def __str__(self): return ''' ATThandle -> {0} ATTtype -> {1} ATTvalue -> {2} '''.format(self.ATThandle, self.ATTtype, self.ATTvalue) def __eq__(self, other): if type(other) is type(self): return self.ATThandle == other.ATThandle and self.ATTvalue == other.ATTvalue and self.ATTtype == other.ATTtype return False class Service(): def __init__(self, beginHandle: int = -1, endHandle: int = -1, uuidValue: int = -1, serviceType: str = None): self.beginHandle = beginHandle self.endHandle = endHandle self.uuidValue = UUID(data=uuidValue) self.serviceType = serviceType def __str__(self): return ''' Begin Handle -> {0} End Handle -> {1} UUID Value -> {2} ServiceType -> {3} '''.format(self.beginHandle, self.endHandle, self.uuidValue, self.serviceType) def __eq__(self, other): if type(other) is type(self): return self.endHandle == other.endHandle and self.uuidValue == other.uuidValue and self.serviceType == other.serviceType return False class Characteristic(): def __init__(self, declarationHandle: int = -1, uuid: int = -1, valueHandle: int = -1, value: hex = -1, permissions: list = None): self.declarationHandle = declarationHandle self.uuid = UUID(data=uuid) self.valueHandle = valueHandle self.value = value self.permissions = permissions def __str__(self): return ''' Declaration Handle -> {0} UUID -> {1} Value Handle -> {2} Value -> {3} Permissions -> {4} '''.format(self.declarationHandle, self.uuid, self.valueHandle, self.value, self.permissions) def __eq__(self, other): if type(other) is type(self): return self.uuid == other.uuid and self.value == other.value and self.valueHandle == other.valueHandle return False class Descriptor(): def __init__(self, handle: int, uuid: int, value: hex): self.handle = handle self.uuid = UUID(data=uuid) self.value: UUID = value def __str__(self): return ''' Handle -> {0} UUID -> {1} Value -> {2} '''.format(self.handle, self.uuid, self.value) def __eq__(self, other): if type(other) is type(self): return self.handle == other.handle and self.uuid == other.uuid and self.value == other.value return False
StarcoderdataPython
11316965
<reponame>AndreAloise77/TccJogosTestes import os from datetime import datetime from typing import Dict, List # Import Tree from xml.etree.ElementTree import ElementTree # Import Services import Services.AGatsService import Services.ExtractProvDataService import Services.GatsService # Import Utils import Utils.UtilitiesProvConstants import Utils.UtilitiesFilePathConstants import Utils.UtilitiesIO # Import Models from Models.Graph.AGats import AGats from Models.Graph.Gats import Gats from Models.Graph.Graph import Graph from Models.Provenience.ProvEdge import ProvEdge from Models.Provenience.ProvVertex import ProvVertex # CONSTANTS AGATS_SERVICE = Services.AGatsService EXTRACT_PROV_DATA_SERVICE = Services.ExtractProvDataService GATS_SERVICE = Services.GatsService UTILITIES_CONSTANTS = Utils.UtilitiesProvConstants.UtilitiesProvConstants UTILITIES_IO = Utils.UtilitiesIO UTILITIES_FILE_PATH_CONSTANTS = Utils.UtilitiesFilePathConstants.UtilitiesFilePathConstants AGATS_FILENAME: str = 'Agats' GATS_FILENAME: str = 'Gats' class DataManipulationService: def __init__(self): self.graph: Graph = Graph() self.read_session_time: str = '' # Change call for the desired functionality def main(self): self.__create_agats() self.__import_agats() def __create_agats(self): self.__set_session_time() loop: int = 1 session_list: List[str] = [] gats_to_agats: Gats = \ self.__create_gats(loop, UTILITIES_FILE_PATH_CONSTANTS.READ_PROV_FILES_DIRECTORY, session_list) agats: AGats = AGats() agats.graph_agats = gats_to_agats.graph_gats agats.set_common_edges_on_creation(session_list) agats.set_invalid_edges_from_file(UTILITIES_FILE_PATH_CONSTANTS.INVALID_EDGE_FILENAME) should_paint: bool = True self.__export_agats(agats, should_paint) self.__ask_for_invalid_edges_to_user() def __import_agats(self): self.__set_session_time() folder_name_to_read: str = \ UTILITIES_IO.get_dir_base_name(UTILITIES_FILE_PATH_CONSTANTS.READ_OUT_PUT_AGATS_DIRECTORY) agats: AGats = AGats() agats.folder_name = folder_name_to_read path_structure: str = UTILITIES_FILE_PATH_CONSTANTS.FORMAT_FILE_STRUCTURE graph: Graph = agats.import_agats_file(path_structure, AGATS_FILENAME) self.graph = graph loop: int = 1 gats_file_name: str = '{} {}'.format(GATS_FILENAME, loop) loop += 1 gats_to_export: Gats = Gats() gats_to_export.graph_gats = graph self.__export_gats(gats_to_export, gats_file_name) session_list: List[str] = [gats_file_name] gats_to_agats: Gats() = \ self.__create_gats(loop, UTILITIES_FILE_PATH_CONSTANTS.READ_NEW_PROV_FILES_DIRECTORY, session_list) agats.graph_agats = gats_to_agats.graph_gats agats.set_common_edges_from_file_read(session_list) should_paint: bool = True self.__export_agats(agats, should_paint) self.__ask_for_invalid_edges_to_user() def __create_gats(self, loop: int, directory: str, session_list: List[str]) -> Gats: list_prov_files: List[str] = self.__get_file_path_list(directory) gats_to_agats: Gats = Gats() for path in list_prov_files: file_name: str = '{} {}'.format(GATS_FILENAME, loop) loop += 1 self.__create_graph(self.graph, path, file_name) graph_to_export: Gats = Gats() self.__create_graph(graph_to_export, path, file_name) gats_to_agats.graph_gats = self.graph self.graph.empty_lists() session_list.append(file_name) gats_to_export: Gats = Gats() gats_to_export.graph_gats = graph_to_export self.__export_gats(gats_to_export, file_name) return gats_to_agats def __export_agats(self, agats: AGats, should_color_graph: bool): AGATS_SERVICE.export_agats(self.read_session_time, agats, UTILITIES_FILE_PATH_CONSTANTS.FORMAT_FILE_STRUCTURE, AGATS_FILENAME, should_color_graph) def __export_gats(self, gats: Gats, file_name: str): GATS_SERVICE.export_gats(self.read_session_time, gats, UTILITIES_FILE_PATH_CONSTANTS.FORMAT_FILE_STRUCTURE, file_name) def __set_session_time(self): time: datetime = datetime.now() date_format: str = '%Y-%m-%d_%H-%M-%S' str_time: str = time.strftime(date_format) self.read_session_time = str_time @staticmethod def __read_session(graph: Graph, path: str, file_name: str): prov_service = EXTRACT_PROV_DATA_SERVICE tree: ElementTree = prov_service.get_tree_from_filename(path) vertex_dictionary: Dict[str, ProvVertex] = prov_service.get_tree_vertices_dictionary(tree) edge_dictionary: Dict[str, ProvEdge] = prov_service.get_tree_edges_dictionary(tree, vertex_dictionary) edge_dictionary_filtered = \ prov_service.filter_edge_dict_by_type_and_label(edge_dictionary, UTILITIES_CONSTANTS.ACTIVITY) graph.add_edges_to_graph(edge_dictionary_filtered, file_name) def __create_graph(self, graph: Graph, path: str, file_name: str): self.__read_session(graph, path, file_name) @staticmethod def __get_file_path_list(directory: str) -> List[str]: file_path_list: List[str] = UTILITIES_IO.get_fullname_from_all_files_in_dir(directory) return file_path_list @staticmethod def __ask_for_invalid_edges_to_user(): has_invalid_edge: bool = True filename = UTILITIES_FILE_PATH_CONSTANTS.READ_INVALID_EDGES_FILE_NAME file_path_and_name = os.path.join(UTILITIES_FILE_PATH_CONSTANTS.READ_INVALID_EDGES_FILES_DIRECTORY, filename) has_invalid_edge_message: str = "O modelo possui alguma aresta (edge) inválida não informada? (S/s ou N/n): " has_invalid_node_edges_message: str = \ "Entre com os IDs das regiões (nodes) que possuem uma aresta (edge) inválida (Ex:01 -> 02):" invalid_entry_message: str = "Por favor, entre com uma resposta válida (S/s ou N/n)" with open(file_path_and_name, 'a') as file: while has_invalid_edge: invalid_edge_response = input(has_invalid_edge_message) has_invalid: bool = (invalid_edge_response == 'S') or (invalid_edge_response == 's') has_valid: bool = (invalid_edge_response == 'N') or (invalid_edge_response == 'n') if has_valid: has_invalid_edge = False elif has_invalid: invalid_edge = input(has_invalid_node_edges_message) file.write(invalid_edge) file.write('\n') else: print(invalid_entry_message) # Method that show how many coded lines were made on the following projects @staticmethod def __show_lines_on_all_projects(): model_lines = EXTRACT_PROV_DATA_SERVICE.item_line_count(UTILITIES_FILE_PATH_CONSTANTS.MODELS_DIRECTORY) interface_lines = EXTRACT_PROV_DATA_SERVICE.item_line_count(UTILITIES_FILE_PATH_CONSTANTS.INTERFACE_DIRECTORY) services_lines = EXTRACT_PROV_DATA_SERVICE.item_line_count(UTILITIES_FILE_PATH_CONSTANTS.SERVICES_DIRECTORY) utils_lines = EXTRACT_PROV_DATA_SERVICE.item_line_count(UTILITIES_FILE_PATH_CONSTANTS.UTILS_DIRECTORY) resp = model_lines + interface_lines + services_lines + utils_lines print('\nModels Total Lines: {}\nInterface Total Lines: {}\nServices Total Lines: {}\nUtils Total Lines: {}' .format(model_lines, interface_lines, services_lines, utils_lines)) print('\nApplication Total Lines: {}'.format(resp))
StarcoderdataPython
4942374
<reponame>Lumonk/CNNs.PyTorch<gh_stars>1-10 from .transform import RandomLighting from .lrscheduler import LRScheduler, LRSequential from .sgd import SGD from .label_smoothing import CrossEntropyLoss_LS
StarcoderdataPython
6661171
from more_itertools import ilen from my.spotify import playlists, songs, Playlist, Song def test_spotify(): items = list(playlists()) assert len(items) > 0 plist = items[0] assert isinstance(plist, Playlist) songs = plist.songs assert len(songs) > 0 assert isinstance(songs[0], Song) def test_songs(): assert ilen(songs()) > 1
StarcoderdataPython
4971322
from pylons import tmpl_context as c from pylons import app_globals as g from pylons.i18n import _ from r2.config import feature from r2.controllers import add_controller from r2.controllers.reddit_base import RedditController from r2.lib.errors import errors from r2.lib.require import require, RequirementException from r2.lib.validator import ( json_validate, validate, validatedForm, VBoolean, VExistingUname, VGold, VJSON, VModhash, VUser, ) from reddit_gold.models import SnoovatarsByAccount from reddit_gold.pages import ( GoldInfoPage, Snoovatar, SnoovatarProfilePage, ) from reddit_gold.validators import VSnooColor @add_controller class GoldController(RedditController): def GET_about(self): return GoldInfoPage( _("gold"), show_sidebar=False, page_classes=["gold-page-ga-tracking"] ).render() def GET_partners(self): self.redirect("/gold/about", code=301) @validate( vuser=VExistingUname("username"), ) def GET_snoovatar(self, vuser): if not vuser or vuser._deleted or not vuser.gold: self.abort404() snoovatar = SnoovatarsByAccount.load(vuser, "snoo") user_is_owner = c.user_is_loggedin and c.user == vuser if not user_is_owner: if not snoovatar or not snoovatar["public"]: self.abort404() return SnoovatarProfilePage( user=vuser, content=Snoovatar( editable=user_is_owner, snoovatar=snoovatar, username=vuser.name, ), ).render() @add_controller class GoldApiController(RedditController): @validatedForm( VUser(), VGold(), VModhash(), public=VBoolean("public"), snoo_color=VSnooColor("snoo_color"), unvalidated_components=VJSON("components"), ) def POST_snoovatar(self, form, jquery, public, snoo_color, unvalidated_components): if form.has_errors("components", errors.NO_TEXT, errors.TOO_LONG, errors.BAD_STRING, ): return if form.has_errors("snoo_color", errors.BAD_CSS_COLOR): return try: tailors = g.plugins["gold"].tailors_data validated = {} for tailor in tailors: tailor_name = tailor["name"] component = unvalidated_components.get(tailor_name) # if the tailor requires a selection, ensure there is one if not tailor["allow_clear"]: require(component) # ensure this dressing exists dressing = component.get("dressingName") if dressing: for d in tailor["dressings"]: if dressing == d["name"]: break else: raise RequirementException validated[tailor_name] = component except RequirementException: c.errors.add(errors.INVALID_SNOOVATAR, field="components") form.has_errors("components", errors.INVALID_SNOOVATAR) return SnoovatarsByAccount.save( user=c.user, name="snoo", public=public, snoo_color=snoo_color, components=validated, )
StarcoderdataPython
4892153
<gh_stars>10-100 # Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT from requre.online_replacing import record_requests_for_all_methods from tests.integration.pagure.base import PagureTests from ogr.exceptions import OperationNotSupported, PagureAPIException @record_requests_for_all_methods() class Forks(PagureTests): def test_fork(self): assert self.ogr_fork.exists() assert self.ogr_fork.is_fork fork_description = self.ogr_fork.get_description() assert fork_description a = self.ogr_fork.parent assert a is_forked = a.is_forked() assert is_forked and isinstance(is_forked, bool) fork = a.get_fork(create=False) assert fork assert fork.is_fork urls = fork.get_git_urls() assert "{username}" not in urls["ssh"] def test_fork_in_str(self): str_representation = str(self.ogr_fork) assert 'username="' in str_representation assert "is_fork=True" in str_representation def test_nonexisting_fork(self): ogr_project_non_existing_fork = self.service.get_project( namespace=None, repo="ogr-tests", username="qwertzuiopasdfghjkl", is_fork=True, ) assert not ogr_project_non_existing_fork.exists() with self.assertRaises(PagureAPIException) as ex: ogr_project_non_existing_fork.get_description() assert "Project not found" in ex.exception.pagure_error def test_fork_property(self): fork = self.ogr_project.get_fork() assert fork assert fork.get_description() def test_create_fork(self): """ Remove your fork of ogr-tests https://pagure.io/fork/$USER/ogr-tests before regeneration data. But other tests needs to have already existed user fork. So regenerate data for other tests, remove data file for this test and regenerate it again. """ not_existing_fork = self.ogr_project.get_fork(create=False) assert not not_existing_fork assert not self.ogr_project.is_forked() old_forks = self.ogr_project.service.user.get_forks() self.ogr_project.fork_create() assert self.ogr_project.get_fork().exists() assert self.ogr_project.is_forked() new_forks = self.ogr_project.service.user.get_forks() assert len(old_forks) == len(new_forks) - 1 def test_create_fork_with_namespace(self): with self.assertRaises(OperationNotSupported): self.ogr_project.fork_create(namespace="some_random_namespace")
StarcoderdataPython
9725970
#---------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. #---------------------------------------------------------------------------------------------- from common.IR.graph import GraphClass, NodeClass from tensorflow.core.framework.node_def_pb2 import NodeDef from tensorflow.core.framework import attr_value_pb2 class TensorflowGraphNode(NodeClass): def __init__(self, layer): super(TensorflowGraphNode, self).__init__(layer) self.in_nodes = list() self.out_nodes = list() self._scope = str() @property def scope(self): return self._scope @scope.setter def scope(self, scope): self._scope = scope @property def name(self): return self.layer.name @property def type(self): return self.layer.op @property def tf_layer(self): return self.layer def get_attr(self, name, default_value = None): if name in self.layer.attr: attr = self.layer.attr[name] field = attr.WhichOneof('value') val = getattr(attr, field) if field else default_value if isinstance(val, attr_value_pb2.AttrValue.ListValue): return list(val.ListFields()[0][1]) else: return val.decode('utf-8') if isinstance(val, bytes) else val else: return default_value class TensorflowGraph(GraphClass): multi_tensor_type = [ "Slice", "Split", "Unpack" ] def __init__(self, model): # sanity check. pass super(TensorflowGraph, self).__init__(model) self.model = model def build(self): for i, layer in enumerate(self.model.node): self.layer_map[layer.name] = TensorflowGraphNode(layer) self.layer_name_map[layer.name] = layer.name for pred in layer.input: if pred not in self.layer_map: if not pred.split(':')[0] in self.layer_map: #test new_node = NodeDef() new_node.name = pred new_node.op = "NoOp" self.layer_map[pred] = TensorflowGraphNode(new_node) self.layer_name_map[pred] = pred self.tf_make_connection(pred, layer.name) super(TensorflowGraph, self).build() def tf_make_connection(self, src, dst): if ':' not in src and self.get_node(src).type in self.multi_tensor_type: src += ':0' self._make_connection(src, dst) src_node = self.get_node(src.split(':')[0]) dst_node = self.get_node(dst.split(':')[0]) if not src_node in self.layer_map[dst.split(':')[0]].in_nodes: self.layer_map[dst.split(':')[0]].in_nodes.append(src_node) if not dst_node in self.layer_map[src.split(':')[0]].out_nodes: self.layer_map[src.split(':')[0]].out_nodes.append(dst_node)
StarcoderdataPython
167559
from django.urls import reverse from django.test import TestCase from stacks.models import Stack from people.models import Person from rest_framework.test import APIClient from dashboards.models import Dashboard from domain_mappings.models import DomainMapping, MappingType from owf_groups.models import OwfGroupPeople requests = APIClient() class StacksApiTests(TestCase): fixtures = ['resources/fixtures/default_data.json', ] def tearDown(self): requests.logout() def setUp(self): self.admin_user = Person.objects.get(pk=1) self.regular_user = Person.objects.get(pk=2) self.stack = Stack.create(self.regular_user, { 'name': 'test stack 1', 'description': 'test description 1' }) def test_user_can_create_stack(self): requests.login(email='<EMAIL>', password='password') url = reverse('stacks-list') create_stack_payload = { 'name': 'test stack 2', 'description': 'testing user can create a stack' } response = requests.post(url, create_stack_payload) user_id = 2 # coming from the fixture that creates default users self.assertEqual(response.status_code, 201) self.assertTrue(response.data['id']) self.assertTrue(response.data['default_group']) self.assertEqual(response.data['name'], create_stack_payload['name']) self.assertEqual(response.data['description'], create_stack_payload['description']) self.assertTrue(response.data['stack_context']) self.assertEqual(response.data['owner']['id'], user_id) def test_owner_of_stack_can_share_stack(self): regular_user = Person.objects.get(pk=2) stack = Stack.create(regular_user, { 'name': 'test stack 1', 'description': 'test description 1' }) requests.login(email='<EMAIL>', password='password') url = reverse('stacks-share', args=(f'{stack.id}',)) response = requests.post(url) self.assertEqual(response.status_code, 204) def test_nonowner_of_stack_cannot_share_stack(self): regular_user = Person.objects.get(pk=2) stack = Stack.create(regular_user, { 'name': 'test stack 1', 'description': 'test description 1' }) requests.login(email='<EMAIL>', password='password') url = reverse('stacks-share', args=f'{stack.id}') response = requests.post(url) self.assertEqual(response.status_code, 403) def test_user_can_restore_stack(self): admin_user = Person.objects.get(pk=1) regular_user = Person.objects.get(pk=2) stack = Stack.create(admin_user, { 'name': 'test share stack', 'description': 'test description 1' }) stack.default_group.add_user(regular_user) regular_user.sync_dashboards() requests.login(email='<EMAIL>', password='password') url = reverse('stacks-restore', args=(f'{stack.id}',)) response = requests.post(url) self.assertEqual(response.status_code, 200) def test_admin_can_delete_stack(self): dashboard_ids_for_stack = list(Dashboard.objects.filter(stack=self.stack).values_list("id", flat=True)) stack_default_group_id = self.stack.default_group.id requests.login(email='<EMAIL>', password='password') url = reverse('admin_stacks-detail', args=(f'{self.stack.id}',)) response = requests.delete(url) self.assertEqual(response.status_code, 204) # check that all dashboards associated with the stack are deleted self.assertFalse(Dashboard.objects.filter(stack=self.stack).exists()) # check that all domain mappings for dashboards associated with the stack are deleted self.assertFalse(DomainMapping.objects.filter( src_id__in=dashboard_ids_for_stack, src_type=MappingType.dashboard) ) self.assertFalse(DomainMapping.objects.filter( dest_id__in=dashboard_ids_for_stack, dest_type=MappingType.dashboard) ) # check that all domain mappings for widgets assigned to the stack are deleted self.assertFalse(DomainMapping.objects.filter(src_id=stack_default_group_id, src_type=MappingType.group)) def test_nonadmin_can_delete_stack(self): requests.login(email='<EMAIL>', password='password') url = reverse('stacks-detail', args=(f'{self.stack.id}',)) reponse = requests.delete(url) self.assertFalse(OwfGroupPeople.objects.filter( group=self.stack.default_group, person=self.regular_user).exists() )
StarcoderdataPython
1685523
import pygame as pg from pygame.math import Vector2 from time import time from math import sin, cos, pi, sqrt from random import random from enum import Enum, auto from app import config from app.utils.functions import distance, sign, collide_rect from app.game.sprite import VectoredSprite # Directions RIGHT = 1 LEFT = -1 UP = -1 DOWN = 1 class CollideDirection(Enum): TOP = auto() BOTTOM = auto() LEFT = auto() RIGHT = auto() CENTER = auto() # Coordinates X = 0 Y = 1 class MaterialObject(VectoredSprite): """ Basic class of material object sprite. Moves, affected by gravity, stops when falls on an edge or on a platform. """ def __init__(self, game: "Game object", pos: Vector2, size: Vector2, gravity: int, *groups: list[pg.sprite.Group]): """ Initialize sprite """ super().__init__(pos, size, game.material_objects, *groups) # Save game object self.game: "Game object" = game # Initialize object's speed self.speed: Vector2 = Vector2(0, 0) # Track collide direction self.collide_direction: CollideDirection = None # Save gravity value self.gravity: int = gravity # Initialize delta-time mechanizm self.last_tick: float = time() self.dt = 0 # Initialize some fields used by child classes self.on_edge: bool = False def update_dt(self): """ Update delta-time to apply tick """ now: float = time() self.dt: float = now - self.last_tick self.last_tick = now def update(self): """ Update sprite """ super().update() self.update_dt() # Initialize variables to look if X or Y delta can be applied x_can_move: bool = True y_can_move: bool = True has_collision = False # Apply speed and gravity new_pos: Vector2 = Vector2(self.pos) new_speed: Vector2 = Vector2(self.speed) new_pos += self.speed * self.dt new_speed.y += self.gravity * self.dt new_pos.y += (self.gravity * self.dt ** 2) / 2 # Collide with edges # Floor if new_pos.y + self.size.y > config.GAME_SIZE.y: new_pos.y = config.GAME_SIZE.y - self.size.y self.on_edge = True y_can_move = False has_collision = True # Ceil if new_pos.y < 0: new_pos.y = 0 self.on_edge = True y_can_move = False has_collision = True # Right if new_pos.x + self.size.x > config.GAME_SIZE.x: new_pos.x = config.GAME_SIZE.x - self.size.x self.on_edge = True x_can_move = False has_collision = True # Left if new_pos.x < 0: new_pos.x = 0 self.on_edge = True x_can_move = False has_collision = True movement_direction: (int, int) = ( sign(new_pos.x - self.pos.x), sign(new_pos.y - self.pos.y) ) # Platforms for platform in self.game.platforms: new_x_collide, new_y_collide = collide_rect(platform.rect, pg.sprite.Rect(*new_pos, *self.size)) old_x_collide, old_y_collide = collide_rect(platform.rect, pg.sprite.Rect(*self.pos, *self.size)) if not (new_x_collide and new_y_collide): continue has_collision = True if movement_direction[X] == LEFT: if old_y_collide: x_can_move = False self.pos.x = platform.pos.x + platform.size.x if movement_direction[X] == RIGHT: if old_y_collide: x_can_move = False self.pos.x = platform.pos.x - self.size.x if movement_direction[Y] == DOWN: if old_x_collide: y_can_move = False self.pos.y = platform.pos.y - self.size.y if movement_direction[Y] == UP: if old_x_collide: y_can_move = False self.pos.y = platform.pos.y + platform.size.y self.on_collide() # Apply changes if not x_can_move: self.speed.x = 0 else: self.speed.x = new_speed.x self.pos.x = new_pos.x if not y_can_move: self.speed.y = 0 else: self.speed.y = new_speed.y self.pos.y = new_pos.y if not y_can_move and movement_direction[Y] == DOWN: self.collide_direction = CollideDirection.BOTTOM elif not y_can_move and movement_direction[Y] == UP: self.collide_direction = CollideDirection.TOP elif not x_can_move and movement_direction[X] == RIGHT: self.collide_direction = CollideDirection.RIGHT elif not x_can_move and movement_direction[X] == LEFT: self.collide_direction = CollideDirection.LEFT elif not has_collision: self.collide_direction = None if self.on_land: self.speed.x = 0 self.speed.y = 0 @property def on_land(self): return self.collide_direction == CollideDirection.BOTTOM def on_collide(self): pass class Player(MaterialObject): """ Player sprite """ def __init__(self, game: "Game object", pos: Vector2, color: (int, int, int), shortcuts: dict[str, int]): """ Initialize Player sprite """ super().__init__(game, pos, config.PLAYER_SIZE, config.PLAYER_GRAVITY, game.players) # Fill image with color and save color self.image.fill(color) self.color = color # Set default direction self.direction = RIGHT # Save shortcuts self.shortcuts = shortcuts # Initialize shoot timeout mechanizm self.shoot_from_time = 0 self.bombs = [] def update(self): """ Update Player sprite """ super().update() self.handle_controls() def handle_controls(self): """ Handle player controls """ pressed = pg.key.get_pressed() if pressed[self.shortcuts['JUMP']] and self.on_land: self.speed.y = config.PLAYER_JUMP * UP if pressed[self.shortcuts['RIGHT']] and not pressed[self.shortcuts['LEFT']]: self.speed.x = config.PLAYER_SPEED * RIGHT if not pressed[self.shortcuts['RIGHT']] and pressed[self.shortcuts['LEFT']]: self.speed.x = config.PLAYER_SPEED * LEFT # Calculate direction if self.speed.x > 0: self.direction = RIGHT elif self.speed.x < 0: self.direction = LEFT if pressed[self.shortcuts['SHOOT']]: self.shoot() if pressed[self.shortcuts['BOMB']]: self.launch_rocket() def shoot(self): """ Shoot action """ # Be affected by shoot timeout if not self.shoot_from_time <= time(): return self.shoot_from_time = time() + config.SHOOT_COOLDOWN self.bombs.append(Bullet( self.game, self )) def launch_rocket(self): if not self.shoot_from_time <= time(): return self.shoot_from_time = time() + config.SHOOT_COOLDOWN self.bombs.append(Rocket( self.game, self )) def kill(self): super().kill() while self.bombs: self.bombs.pop().boom() class Projectile(MaterialObject): def __init__(self, game: "Game object", color: (int, int, int), pos: Vector2, size: Vector2, speed: Vector2, gravity: int, is_killing: bool, can_lie: bool, shooter: Player): super().__init__(game, pos, size, gravity) # Fill surface with color self.image.fill(color) # Set speed self.speed = speed # Save whether to kill players self.is_killing: bool = is_killing # Save whether can lie self.can_lie = can_lie self.shooter = shooter def update(self): super().update() if self.on_edge: self.when_on_edge() if self.on_land: self.when_on_land() for player in pg.sprite.spritecollide(self, self.game.players, False): self.on_collide_player(player) def when_on_edge(self): if not self.can_lie: self.kill() def when_on_land(self): if not self.can_lie: self.kill() def on_collide(self): if not self.can_lie: self.kill() def on_collide_player(self, player: Player): if self.is_killing and player != self.shooter: player.kill() class Bomb(Projectile): def boom(self): super().kill() for i in range(config.N_PARTICLES): FireParticle(self.game, self.pos + ( Vector2(0, self.size.y) if self.collide_direction == CollideDirection.TOP else Vector2(0, -self.size.y) if self.collide_direction == CollideDirection.BOTTOM else Vector2(-self.size.x, 0) if self.collide_direction == CollideDirection.RIGHT else Vector2(self.size.x, 0) if self.collide_direction == CollideDirection.LEFT else Vector2(0) ), random() * pi if self.collide_direction == CollideDirection.BOTTOM else random() * pi + pi if self.collide_direction == CollideDirection.TOP else random() * pi + pi / 2 if self.collide_direction == CollideDirection.RIGHT else random() * pi - pi / 2 if self.collide_direction == CollideDirection.LEFT else random() * 2 * pi, self.shooter ) class Bullet(Bomb): def __init__(self, game: "Game object", shooter: Player): super().__init__(game, tuple(map(lambda x: x * 0.6, list(shooter.color))), shooter.rect.topleft - Vector2(config.BULLET_SIZE.x + 1, 0) if shooter.direction == LEFT else shooter.rect.topright + Vector2(1, 0), config.BULLET_SIZE, Vector2(config.BULLET_SPEED * shooter.direction, 0).rotate(config.SHOOT_ANGLE * -shooter.direction), config.BULLET_GRAVITY, True, False, shooter) def kill(self): self.boom() class FireParticle(Projectile): """ Fire particle sprite """ def __init__(self, game: "Game object", pos: Vector2, angle: int, shooter: Player): super().__init__(game, config.PARTICLE_COLOR, pos, config.PARTICLE_SIZE, Vector2(-config.PARTICLE_SPEED, 0).rotate_rad(angle), config.PARTICLE_GRAVITY, True, False, shooter) class Rocket(Bomb): def __init__(self, game: "Game object", shooter: Player): super().__init__(game, config.ROCKET_COLOR, Vector2(shooter.pos), config.ROCKET_SIZE, Vector2(config.ROCKET_SPEED, 0), 0, False, False, shooter) self.shooter: Player = shooter self.speed.rotate_ip(self.speed.angle_to(self.get_target_direction())) def get_target_direction(self): min_distance: Vector2 = None nearest_player: Player = None for player in self.game.players: if player == self.shooter: continue if nearest_player == None \ or min_distance.length() > distance(self, player).length(): min_distance = distance(player, self) nearest_player = player return min_distance def update(self): super().update() angle: float = self.get_target_direction().angle_to(Vector2(1, 0)) \ - self.speed.angle_to(Vector2(1, 0)) if 180 >= angle % 360 > 0: self.image.fill((255, 0, 0)) self.speed.rotate_ip(-config.ROCKET_ROTATION * self.dt) elif 180 < angle % 360: self.image.fill((0, 0, 255)) self.speed.rotate_ip(config.ROCKET_ROTATION * self.dt) def on_collide_player(self, player: Player): if player != self.shooter: self.kill() def kill(self): self.boom()
StarcoderdataPython
1796471
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 - cologler <<EMAIL>> # ---------- # # ---------- ''' NimbleText template: @property def <% $0.toWords().replace(/ /gm, '_').toLowerCase() %>(self): return self._get('$0') ''' class _BaseModel: def __init__(self, data: dict): if not isinstance(data, dict): raise TypeError self._data = data def _get(self, key): return self._data.get(key)
StarcoderdataPython
3515736
"""This file is part of the trivago/rebase library. # Copyright (c) 2018 trivago N.V. # License: Apache 2.0 # Source: https://github.com/trivago/rebase # Version: 1.2.2 # Python Version: 3.6 # Author: <NAME> <<EMAIL>> """ import uuid from typing import Any, Dict, List import logging import simplejson as json class Object(object): def __dir__(self): """Return a list of attributes for the class. Returns: a list of attributes for the class. """ return [*self._attributes.keys(), *['attributes', 'classname']] def __init__(self, **kwargs): """Initialize the object with the given attributes. If this method is overridden in the child, the parent implementation should be called in order to properly assign attributes. By default attributes are assigned dynamically to the object. But to have more control in child classes (such as remapping), it is recommended to override the `Object.properties()` method. Args: **kwargs: Arbitrary keyword argument which by default becomes an attribute of the object unless specified otherwise in `Object.properties()`. ```python print [i*2 for i in range(1,10)] ``` """ self._raw_attributes = kwargs self._attributes = {} self._id = None self._init_attributes() def __getattr__(self, attr_name: str) -> Any: """Return the value of an object attribute. Do not call this method directly as it is a python magic function that will be implicitly called when executing `value = object.attribute` or `value = getattr(object, 'attribute')` Args: attr_name (string): the attribute name Returns: Any: the value of the attribute Raises: AttributeError: If attribute is undefinied in `Object.properties()` """ if attr_name in self._properties(): return super().__getattr__(attr_name) elif attr_name not in self.properties(): raise AttributeError( f'Getting unknown property: `{self.classname}.{attr_name}`.') return self._attributes.get(attr_name) def __setattr__(self, attr_name: str, value: Any): """Set the value of an object attribute. Do not call this method directly as it is a python magic function that will be implicitly called when executing `object.attribute = value` or `setattr(object, 'attribute', value)` Args: attr_name (string): the attribute name value (Any): the attribute value Raises: AttributeError: If attribute is undefinied in `Object.properties()` """ if attr_name in self._properties(): super().__setattr__(attr_name, value) elif attr_name not in self.properties(): raise AttributeError( f'Setting unknown property: `{self.classname}.{attr_name}`.') else: attr = self.properties().get(attr_name) if isinstance(attr, tuple) and value is not None: k, v = attr if type(value) != v: raise AttributeError( f'`Value for {self.classname}.{attr_name}` should be of type {v}; {type(value)} provided.') self._attributes.update({attr_name: value}) def __str__(self) -> str: """Return a string representation of the object in json. Returns: a string representation of the object in json format. """ return json.dumps(self._debug(), use_decimal=True) def __repr__(self) -> str: """Return the representation of the object at creation. Returns: string: the representation with constructor arguments """ return '{classname}(**{args})'.format( classname=self.classname, args=self._raw_attributes ) def _debug(self) -> Dict[str, Any]: return { '_id': self.get_id(), 'attributes': self.attributes } def _enforce_data_type(self, data: Any, data_type: type) -> Any: try: if data is not None: if isinstance(data_type, type) and isinstance(data_type(), Object): return data_type(**data) elif data_type in (bool, str, int, float, complex, list, tuple, range, set, dict) or callable(data_type): return data_type(data) except TypeError: return data return data def _init_attributes(self): """Perform the mapping of attributes based `Object.properties()`. Returns: void """ for k, v in self.properties().items(): if isinstance(v, str): logging.debug('Key: %s is being parsed as `str` with value: %s', k, v) self._attributes.setdefault( k, self._get_attr_recurse(v, self._raw_attributes)) elif isinstance(v, tuple): logging.debug('Key: %s is being parsed as `tuple` with value: %s', k, v) attribute, data_type = v data = None if attribute and isinstance(attribute, str): data = self._get_attr_recurse( attribute, self._raw_attributes) elif callable(attribute): data = attribute() self._attributes.setdefault(k, self._enforce_data_type( data, data_type)) elif isinstance(v, type) and isinstance(v(), Object): logging.debug('Key: %s is being parsed as `rebase.core.Object` with value: %s', k, v) self._attributes.setdefault(k, v(**self._raw_attributes)) elif callable(v): logging.debug('Key: %s is being parsed as `callable` with value: %s', k, v) self._attributes.setdefault(k, v()) elif k in self._raw_attributes: logging.debug('Key: %s is being parsed as `raw_attributes` with value: %s', k, v) self._attributes.setdefault(k, self._raw_attributes.get(k)) else: logging.debug('Key: %s is being parsed as `raw_attributes` with value: %s', k, v) self._attributes.setdefault(k, self._raw_attributes.get(k, v)) def _get_attr_recurse(self, attr, obj, idx=0): if isinstance(obj, Object): return self._get_attr_recurse(attr, obj.attributes, idx) elif obj is None: return None attr_list = attr.split('.') key = attr_list.pop(idx) if key not in obj: return None if len(attr_list) == idx: return obj.get(key) else: return self._get_attr_recurse(attr, obj.get(key), idx+1) def _properties(self) -> List[str]: return ['_id', '_attributes', '_raw_attributes'] @property def attributes(self) -> Dict[str, Any]: """Return the attributes of the object based on `Object.properties()`. Return: dict: a dictionary of the attributes of the object """ return self.get(*self._attributes) @property def classname(self) -> str: """Return the qualified name of this class. Returns: string: the qualified name of this class """ return self.__class__.__name__ def get(self, *attrs) -> Dict[str, Any]: """Return a dict of the attribute names passed as arguments. Args: attrs (list): comma separated name of attributes for the object Returns: dict: the attributes of the object if set """ return { k: v.attributes if isinstance(v, Object) else [ x.attributes if isinstance(x, Object) else x for x in v ] if isinstance(v, list) else { x: y.attributes if isinstance(y, Object) else y for x, y in v.items() } if isinstance(v, dict) else { x.get_id(): x.attributes for x in v } if isinstance(v, set) else v for k, v in self._attributes.items() if k in attrs } def get_id(self): """Generate and return the unique id of the object. Returns: string: the unique id generated by uuid """ if not self._id: self._id = str(uuid.uuid4()) return self._id def properties(self) -> Dict[str, Any]: """Return the mapping of properties passed to the constructor. This method can be overridden if you want more customised _properties and do advanced mapping of your attributes. Returns: dict: the mapped properties passed to constructor """ return self._raw_attributes.get('properties') or { k: k for k, v in self._raw_attributes.items() }
StarcoderdataPython
3535032
"""Sample module""" import logging def sample_func(say=True): """Sample func""" logging.debug("Enter sample_func()") if say: logging.info("Sample func") return True if __name__ == "__main__": sample_func()
StarcoderdataPython
1859073
<gh_stars>100-1000 """Tasks are how scheduler identifies and executes your application."""
StarcoderdataPython
4959436
<reponame>ysd1123/BiliSpider ''' 内置 data() 函数,以字典形式返回参数 uuid 所对应的Bilibili 用户的数据。 video_view:视频浏览 article_view:文章浏览 like:总点赞 ''' import requests def data(uuid): def be_simple(orig_dict): simple_dict = {'video_view': orig_dict['archive']['view'], 'article_view': orig_dict['article']['view'], 'likes': orig_dict['likes']} return simple_dict url = 'https://api.bilibili.com/x/space/upstat?mid='+str(uuid) headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36'} Up_data = requests.get(url, headers=headers) Up_data.encoding = 'utf-8' dict_Updata = Up_data.json() if dict_Updata['code'] == 0: return be_simple(dict_Updata['data']) else: return 'Up 404' if __name__ == "__main__": pass
StarcoderdataPython
11350240
<reponame>l33tdaima/l33tdaima<gh_stars>1-10 class Solution: def checkValidStringV1(self, s: str) -> bool: # backtrack WILDCARD = ["(", "", ")"] def backtrack(wip, t): for i in range(len(t)): if t[i] == "*": # wildcard for w in WILDCARD: if backtrack(wip, w + t[i + 1 :]): return True return False if t[i] == "(": wip += 1 else: # ")" wip -= 1 if wip < 0: return False return wip == 0 return backtrack(0, s) def checkValidStringV2(self, s: str) -> bool: lower, upper = 0, 0 for c in s: if c == "(": lower, upper = lower + 1, upper + 1 elif c == ")": if lower > 0: lower -= 1 upper -= 1 else: if lower > 0: lower -= 1 upper += 1 if upper < 0: return False return lower == 0 # TESTS tests = [ ["", True], ["*", True], ["(", False], [")", False], ["()", True], ["(*)", True], ["(*))", True], ["(*()", True], [")*()", False], [ "(((((*(()((((*((**(((()()*)()()()*((((**)())*)*)))))))(())(()))())((*()()(((()((()*(())*(()**)()(())", False, ], ] for t in tests: sol = Solution() actual = sol.checkValidStringV2(t[0]) print("Is", t[0], "valid parenthesis string? ->", actual) assert actual == t[1]
StarcoderdataPython
139059
import imp import sys, pygame from pygame.locals import * # Needed for Key Constants pygame.init() # Initializes Pygame # Declarations size = width, height = 640, 480 # Defines Windows Size speed = [0, 0] # X and Y Speeds black = 0, 0, 0 # Represents black colour as RGB # Sets Windows Size screen = pygame.display.set_mode(size) # Clock to cap FPS clock = pygame.time.Clock() # Creates ball sprite ball = pygame.image.load("intro_ball.gif") ballrect = ball.get_rect() # Create Text Surface font = pygame.font.SysFont(None, 24) text = font.render('If you come for the king, you better not miss', True, (50, 50, 50)) # Music pygame.mixer.music.load("music/DukeNukem.mp3") pygame.mixer.music.set_volume(1) pygame.mixer.music.play() # Game Loop while 1: # Handle Events for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() # Handle Key Presses keys = pygame.key.get_pressed() if keys[K_UP] or keys[K_w]: # Up speed = [0, -10] ballrect = ballrect.move(speed) if keys[K_DOWN] or keys[K_s]: # Down speed = [0, 10] ballrect = ballrect.move(speed) if keys[K_LEFT] or keys[K_a]: # Left speed = [-10, 0] ballrect = ballrect.move(speed) if keys[K_RIGHT] or keys[K_d]: # Right speed = [10, 0] ballrect = ballrect.move(speed) # Draw to Screen screen.fill(black) screen.blit(text, (150, 230)) screen.blit(ball, ballrect) # Updates Display pygame.display.flip() clock.tick(30) # Caps FPS at 30
StarcoderdataPython
8133953
<gh_stars>0 #!/usr/bin/env python # $Id$ """ solutions""" import puzzler from puzzler.puzzles.pentahexes import PentahexesTriangle1 puzzler.run(PentahexesTriangle1)
StarcoderdataPython
242651
<reponame>hyzyla/directory.org.ua """Init tables Revision ID: 8512fa6a4a52 Revises: Create Date: 2022-01-22 17:42:33.225268 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "katottg", sa.Column("code", sa.String(), nullable=False), sa.Column("name", sa.String(), nullable=False), sa.Column("level", sa.Integer(), nullable=False), sa.Column("parent_id", sa.String(), nullable=True), sa.Column( "category", sa.Enum( "region", "special", "district", "community", "city", "urban_village", "village", "small_village", "municipal_district", name="katottgcategory", ), nullable=False, ), sa.Column("children_count", sa.Integer(), nullable=False), sa.ForeignKeyConstraint( ["parent_id"], ["katottg.code"], ), sa.PrimaryKeyConstraint("code"), ) op.create_index(op.f("ix_katottg_category"), "katottg", ["category"], unique=False) op.create_index(op.f("ix_katottg_code"), "katottg", ["code"], unique=False) op.create_index(op.f("ix_katottg_level"), "katottg", ["level"], unique=False) op.create_index(op.f("ix_katottg_name"), "katottg", ["name"], unique=False) op.create_index( op.f("ix_katottg_parent_id"), "katottg", ["parent_id"], unique=False ) op.create_table( "koatuu", sa.Column("code", sa.String(), nullable=False), sa.Column( "category", sa.Enum( "village", "small_village", "urban_village", "city", "municipal_district", name="koatuucategory", ), nullable=True, ), sa.Column("name", sa.String(), nullable=False), sa.Column("katottg_code", sa.String(), nullable=True), sa.Column("katottg_name", sa.String(), nullable=True), sa.Column( "katottg_category", sa.Enum( "region", "special", "district", "community", "city", "urban_village", "village", "small_village", "municipal_district", name="katottgcategory", ), nullable=True, ), sa.PrimaryKeyConstraint("code"), ) op.create_index(op.f("ix_koatuu_category"), "koatuu", ["category"], unique=False) op.create_index(op.f("ix_koatuu_code"), "koatuu", ["code"], unique=False) op.create_index( op.f("ix_koatuu_katottg_category"), "koatuu", ["katottg_category"], unique=False ) op.create_index( op.f("ix_koatuu_katottg_code"), "koatuu", ["katottg_code"], unique=False ) op.create_index( op.f("ix_koatuu_katottg_name"), "koatuu", ["katottg_name"], unique=False ) op.create_index(op.f("ix_koatuu_name"), "koatuu", ["name"], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_koatuu_name"), table_name="koatuu") op.drop_index(op.f("ix_koatuu_katottg_name"), table_name="koatuu") op.drop_index(op.f("ix_koatuu_katottg_code"), table_name="koatuu") op.drop_index(op.f("ix_koatuu_katottg_category"), table_name="koatuu") op.drop_index(op.f("ix_koatuu_code"), table_name="koatuu") op.drop_index(op.f("ix_koatuu_category"), table_name="koatuu") op.drop_table("koatuu") op.drop_index(op.f("ix_katottg_parent_id"), table_name="katottg") op.drop_index(op.f("ix_katottg_name"), table_name="katottg") op.drop_index(op.f("ix_katottg_level"), table_name="katottg") op.drop_index(op.f("ix_katottg_code"), table_name="katottg") op.drop_index(op.f("ix_katottg_category"), table_name="katottg") op.drop_table("katottg") # ### end Alembic commands ###
StarcoderdataPython
12824545
# encoding : UTF-8 from Engine.Display import debug3D_utils from Engine.Collisions import AABBCollider from Settings import * import pygame as pg from math import sqrt from Engine.Actions import ActionObject from Game.character_states import * class Character(ActionObject): def __init__(self, position=None, player_id=PlayerId.PLAYER_ID_1, max_velocity=None, jump_velocity=None): ActionObject.__init__(self, player_id) self._position = Vector3(position) if position is not None else Vector3() self.previous_position = Vector3(self._position) self.w = CHARACTER_W self.h = CHARACTER_H self.collider_relative_position = Vector3() self.collider = None self.is_colliding_ball = False self.max_velocity = max_velocity if max_velocity is not None else RUN_SPEED # m/s self.jump_velocity = jump_velocity if jump_velocity is not None else JUMP_VELOCITY # m/s self.velocity = Vector3() self.direction = Vector3() self.team = Team() self.state = Idling(self) self.set_default_collider() # sprite self.rect = pg.Rect(0, 0, 0, 0) self.rect_shadow = pg.Rect(0, 0, 0, 0) @property def position(self): return self._position @position.setter def position(self, value): self._position = value self.collider.center = self._position + self.collider_relative_position def draw_debug(self): prev_rect = self.rect prev_shadow_rect = self.rect_shadow ground_pos = Vector3(self.position) ground_pos.z = 0 self.rect_shadow = debug3D_utils.draw_horizontal_ellipse(ground_pos, self.w / 2) self.rect = self.collider.draw_debug() return [prev_shadow_rect.union(self.rect_shadow), prev_rect.union(self.rect)] def move_rel(self, dxyz, free_displacement=FREE_DISPLACEMENT): """ Move object with a certain displacement. :param pygame.Vector3 dxyz: displacement :param bool free_displacement: True if displacement will be not limited on court :return: None """ self.position += Vector3(dxyz) if not free_displacement: self.limit_displacement_on_court() def move(self, direction, dt, free_displacement=FREE_DISPLACEMENT): """ Move object along a specified direction and amount of time. The amplitude of displacement is dependant from : - :var direction: magnitude - :var self.max_velocity: - :var dt: :param pygame.Vector3 direction: direction of displacement :param float dt: amount of time in ms. Usually, dt is the time between 2 frames :param bool free_displacement: True if displacement will be not limited on court :return: None """ dxyz = 0.001 * dt * direction * self.max_velocity self.move_rel(dxyz, free_displacement) def limit_displacement_on_court(self): """ Limit displacement on court. Called by move_rel method. :return: None """ new_pos = self.position # net if self.team.id == TeamId.LEFT: if self.collider.get_bound_coords(axis=1, m_to_p=True) + self.collider_relative_position.y > 0: new_pos.y = -self.collider.size3.y / 2 - self.collider_relative_position.y else: if self.collider.get_bound_coords(axis=1, m_to_p=False) + self.collider_relative_position.y < 0: new_pos.y = self.collider.size3.y / 2 - self.collider_relative_position.y # out of court f = 1.5 game_engine = Engine.game_engine.GameEngine.get_instance() court = game_engine.court if self.team.id == TeamId.LEFT: new_pos.y = max(-f * court.w / 2, new_pos.y) else: new_pos.y = min(f * court.w / 2, new_pos.y) new_pos.x = max(-f * court.h / 2, new_pos.x) new_pos.x = min(f * court.h / 2, new_pos.x) self.position = new_pos def update_actions(self, action_events, **kwargs): dt = kwargs["dt"] if "dt" in kwargs.keys() else 0 filtered_action_events = self.filter_action_events_by_player_id(action_events) # state machine : # run current state self.state.run(filtered_action_events, dt=dt) # eventually switch state self.state = self.state.next(filtered_action_events, dt=dt) def update_physics(self, dt, free_displacement=FREE_DISPLACEMENT): self.previous_position = Vector3(self.position) self.velocity += Vector3(0, 0, -0.001 * dt * G) self.move_rel(0.001 * dt * self.velocity, free_displacement) def get_hands_position(self): """ Return hands position of character in world coordinates. :return: hands position :rtype pygame.Vector3: """ dh = Vector3(0, 0, self.h) dh.y = self.w / 2 if not self.team.id == TeamId.LEFT: dh.y *= -1 return self.position + dh def set_default_collider(self): """ Set default AABB Collider. :return: None """ self.collider_relative_position = Vector3(0, 0, self.h / 2) collider_size3 = Vector3(self.w, self.w, self.h) self.collider = AABBCollider(self._position + self.collider_relative_position, collider_size3) def set_diving_collider(self, direction): """ Set AABB Collider during diving. :param pygame.Vector3 direction: direction of diving :return: None """ dive_direction = Vector3(direction) collider_size3 = Vector3() collider_size3.x = max(self.w, self.h * abs(dive_direction.x)) collider_size3.y = max(self.w, self.h * abs(dive_direction.y)) collider_size3.z = self.w collider_rel_center = Vector3(self.h / 2 * dive_direction.x, self.h / 2 * dive_direction.y, self.w / 2) if dive_direction.x < 0: collider_rel_center.x += self.w / 2 elif dive_direction.x > 0: collider_rel_center.x -= self.w / 2 if dive_direction.y < 0: collider_rel_center.y += self.w / 2 elif dive_direction.y > 0: collider_rel_center.y -= self.w / 2 self.collider_relative_position = collider_rel_center self.collider = AABBCollider(self._position + self.collider_relative_position, collider_size3) def reset(self): self.set_default_collider() self.velocity = Vector3() def is_state_type_of(self, state_type): return self.state.__class__.type == state_type def get_time_to_run_to(self, target_position, origin_pos=None): """ Give time that takes character by running from an origin to a target position. Time is processed with displacements in 8 possible directions. :param pygame.Vector3 target_position: target position :param pygame.Vector3 origin_pos: origin position. Current character position is default value. :return: given time in sec :rtype: float """ if origin_pos is None: origin_pos = self.position # absolute delta position delta_pos = target_position - origin_pos delta_pos = Vector3([abs(delta_pos[i]) for i in (0, 1, 2)]) # diagonal travel dist_on_each_axis = min(delta_pos.x, delta_pos.y) diagonal_time = 1.4142 * dist_on_each_axis / self.max_velocity # orthogonal travel direct_time = (max(delta_pos.x, delta_pos.y) - dist_on_each_axis) / self.max_velocity return diagonal_time + direct_time def get_time_to_jump_to_height(self, h): """ Give time that takes the top of character reaches a specific height by jumping. Given time is processed in ascending phase. :param float h: height at which time is given :return: given time is sec or None if there is no solution :rtype: float or None """ # at t=t1, self.position.z(0) + self.h = h # -G / 2 * t1**2 + self.jump_velocity * t1 + self.h - h = 0 a, b, c = -G/2, self.jump_velocity, self.h - h delta = b**2 - 4 * a * c if delta >= 0: return (-b + sqrt(delta)) / (2 * a) # else: return None def get_max_height_jump(self): """ Give max height reached by top of character by jumping. :return: max height reached :rtype: float """ a, b, c = -G/2, self.jump_velocity, self.h delta = b**2 - 4 * a * c return -delta / (4 * a) class Team: def __init__(self, team_id=TeamId.NONE, characters_list=None): self.characters = characters_list self.score = 0 self.id = team_id self.set_team_to_characters() def reset(self, **kwargs): k = kwargs.keys() self.characters = kwargs["characters"] if "characters" in k else None self.set_team_to_characters() self.score = kwargs["score"] if "score" in k else 0 self.id = kwargs["score"] if "score" in k else TeamId.NONE def add_score(self, val=1): self.score += val def set_team_to_characters(self): if self.characters is not None: for ch in self.characters: ch.team = self
StarcoderdataPython
9760166
from typing import Any from boa3.builtin import public from boa3.builtin.nativecontract.stdlib import StdLib @public def deserialize_arg(arg: bytes) -> Any: return StdLib.deserialize(arg)
StarcoderdataPython
6570635
from distutils.core import setup setup(name='point-to-define', version='1.0', packages=['point_to_define'], )
StarcoderdataPython
1844142
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2016-11-13 15:31 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('website', '0007_auto_20161113_1346'), ] operations = [ migrations.AlterUniqueTogether( name='connexionrecord', unique_together=set([]), ), migrations.RemoveField( model_name='connexionrecord', name='comptoir', ), migrations.DeleteModel( name='ConnexionRecord', ), ]
StarcoderdataPython
4875313
# =============================================================================== # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # from traits.api import HasTraits, on_trait_change, Str, Int, Float, Button # from traitsui.api import View, Item, Group, HGroup, VGroup # ============= standard library imports ======================== # ============= local library imports ========================== # from agilent_gp_actuator import AgilentGPActuator # from pychron.hardware.arduino.arduino_gp_actuator import ArduinoGPActuator # from argus_gp_actuator import ArgusGPActuator from __future__ import absolute_import import time from pychron.hardware.core.abstract_device import AbstractDevice PACKAGES = dict(AgilentGPActuator='pychron.hardware.agilent.agilent_gp_actuator', ArduinoGPActuator='pychron.hardware.arduino.arduino_gp_actuator', QtegraGPActuator='pychron.hardware.actuators.qtegra_gp_actuator', PychronGPActuator='pychron.hardware.actuators.pychron_gp_actuator', NGXGPActuator='pychron.hardware.actuators.ngx_gp_actuator', NMGRLFurnaceActuator='pychron.hardware.actuators.nmgrl_furnace_actuator', DummyGPActuator='pychron.hardware.actuators.dummy_gp_actuator', RPiGPIO='pychron.hardware.rpi_gpio') class Actuator(AbstractDevice): """ """ _type = None def load_additional_args(self, config): """ """ # self._cdevice=None # if config.has_option('General','subsystem'): # # if a subsystem is specified than the physical actuator is part of a larger # # subsystem. ex One arduino can have a actuator subsystem and a data logging system # #if a subsystem is specified dont want to create our on instance of a GPActuator # pass klass = name = self.config_get(config, 'General', 'type') if 'qtegra' in klass.lower(): klass = 'QtegraGPActuator' self._type = klass if klass is not None: if 'subsystem' in klass: pass else: factory = self.get_factory(PACKAGES[klass], klass) self.debug('constructing cdevice: name={}, klass={}'.format(name, klass)) self._cdevice = factory(name=name, application=self.application, configuration_dir_name=self.configuration_dir_name) return True def open_channel(self, *args, **kw): """ """ if self._cdevice is not None: r = self._cdevice.open_channel(*args, **kw) if self.simulation: time.sleep(0.005) return r else: return True def close_channel(self, *args, **kw): """ """ if self._cdevice is not None: r = self._cdevice.close_channel(*args, **kw) if self.simulation: time.sleep(0.005) return r else: return True def get_channel_state(self, *args, **kw): """ """ if self._cdevice is not None: r = self._cdevice.get_channel_state(*args, **kw) if self.simulation: time.sleep(0.005) return r # ============= EOF ====================================
StarcoderdataPython
9777722
<filename>Exercicio_em_python/Dados_pessoais.py n = int(input("Quantas pessoas serão digitadas? ")) altura = [0 for x in range(n)] genero = [0 for x in range(n)] for i in range(n): altura[i] = float(input(f"Altura da {i+1}a pessoa: ")) genero[i] = str(input(f"Genero da {i+1}a pessoa: ")) menor = altura[0] maior = altura[0] for i in range(n): if menor > altura[i]: menor = altura[i] else: if maior < altura[i]: maior = altura[i] print(f"Menor altura = {menor:.2f}") print(f"Maior altura = {maior:.2f}") mulher = 0 homem = 0 for i in range(n): if genero[i] == 'f': mulher = mulher + altura[i] else: homem = homem + 1 media = mulher / n print(f"Media das alturas das mulheres = {media:.2f}") print(f"Numero de homens = {homem:}")
StarcoderdataPython
8193258
import gym import yaml from tqdm import tqdm import numpy as np import torch from torch.utils.data import DataLoader from src.atari_archive.utils.data import EnvDataset, Summary from src.atari_archive.utils.networks import ConvEncoder from src.atari_archive.utils.preprocess import preprocess_state from src.atari_archive.agents import OfflineDQNAgent def main(): with open('config.yml', 'r') as ymlfile: cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) train(cfg) def train(cfg: dict): print('Loading environment {}.'.format(cfg['ATARI_ENV'])) env = gym.make(cfg['ATARI_ENV']) env.reset() observation_space = env.observation_space.shape action_space = 3 action_map = {0: 0, 1: 2, 2: 3} state = torch.zeros((1, 16)) print('Creating Agent.') agent = OfflineDQNAgent(observation_space, action_space) summary = Summary(cfg['SUMMARY_PATH'], agent.name) agent.print_model() agent.add_summary_writer(summary) print('Initializing Dataloader.') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print('Utilizing device {}'.format(device)) training_data = EnvDataset(cfg['TRAIN_DATA_PATH']) data_loader = DataLoader(dataset=training_data, batch_size=cfg['BATCH_SIZE'], shuffle=True, num_workers=4, pin_memory=True) print('Initializing Encoder.') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") encoder = ConvEncoder() encoder.load_state_dict(torch.load(cfg['AUTO_SAVE_PATH'] + '/encoder.pt', map_location=device)) encoder.to(device) encoder.eval() print('Start training with {} epochs'.format(cfg['EPOCHS'])) for e in range(1, cfg['EPOCHS'] + 1): for i_batch, sample_batched in enumerate(tqdm(data_loader)): agent.learn(sample_batched) summary.adv_step() rewards = [] mean_reward = [] counter = 0 while counter < cfg['EVAL_EPISODES']: action = agent.act(state) if cfg['EVAL_RENDER']: env.render() state, reward, done, _ = env.step(action_map[int(action)]) state = preprocess_state(state).to(device) state, _, _ = encoder.encode(state) rewards.append(reward) if done: env.reset() mean_reward.append(sum(rewards)) rewards = [] counter += 1 agent.save(e) summary.add_scalar('Episode Reward', np.mean(mean_reward)) summary.adv_episode() summary.writer.flush() print('Closing environment.') env.close() if __name__ == '__main__': main()
StarcoderdataPython
5148663
# -*- coding: utf-8 -*- """ Model Map table air_lekeage_building_distribution :author: <NAME> :version: 0.1 :date: 15 Dec. 2017 """ __docformat__ = "restructuredtext" class AirLekeageBuildingDistribution(): """ DB Entity air_lekeage_building_distribution to Python object AirLekeageBuildingDistribution """ def __init__(self): self.__id = 0 self.__walls_perc = 0.0 self.__ceiling_perc = 0.0 self.__windows_doors_perc = 0.0 def __str__(self): return "id:" + str(self.id) + " walls_perc:" + str(self.walls_perc) + " period_id:" + str(self.period_id) + " air_lekeage:" + str(self.air_lekeage) @property def id(self): return self.__id @id.setter def id(self, val): self.__id = val @property def walls_perc(self): return self.__walls_perc @walls_perc.setter def walls_perc(self, val): self.__walls_perc = float(val.replace(",",".")) if isinstance(val,str) else float(val) @property def ceiling_perc(self): return self.__ceiling_perc @ceiling_perc.setter def ceiling_perc(self, val): self.__ceiling_perc = float(val.replace(",",".")) if isinstance(val,str) else float(val) @property def windows_doors_perc(self): return self.__windows_doors_perc @windows_doors_perc.setter def windows_doors_perc(self, val): self.__windows_doors_perc = float(val.replace(",",".")) if isinstance(val,str) else float(val)
StarcoderdataPython
3306067
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('fleet', '0013_auto_20170814_1138'), ] operations = [ migrations.AlterField( model_name='historicalvehicle', name='licence_plate', field=models.CharField(max_length=20, verbose_name='vehicle registration', db_index=True), ), migrations.AlterField( model_name='historicalvehicle', name='model_year', field=models.CharField(default=None, max_length=4, null=True, verbose_name='year model', blank=True), ), migrations.AlterField( model_name='vehicle', name='licence_plate', field=models.CharField(unique=True, max_length=20, verbose_name='vehicle registration'), ), migrations.AlterField( model_name='vehicle', name='make_n_model', field=models.ForeignKey(verbose_name='make &amp model', blank=True, to='fleet.VehicleMakeAndModel', null=True), ), migrations.AlterField( model_name='vehicle', name='model_year', field=models.CharField(default=None, max_length=4, null=True, verbose_name='year model', blank=True), ), ]
StarcoderdataPython
12827571
<reponame>RumbleDB/rumbleml-experiments # sklearn core from pyspark.ml import Pipeline # Preprocessing from pyspark.ml.feature import StandardScaler, MaxAbsScaler, PCA, VectorAssembler, Imputer, OneHotEncoder # Models from pyspark.ml.regression import LinearRegression from pyspark.ml.classification import LogisticRegression, RandomForestClassifier, LinearSVC, NaiveBayes, MultilayerPerceptronClassifier def get_clf(mode, **kwargs): ''' Code returning mllib classifier for pipelines ''' if mode == 'logistic': max_iter = kwargs.get('max_iter', 5) model = LogisticRegression(featuresCol="transformed_features", maxIter=max_iter) elif mode=='RandomForest': n_estimators = kwargs.get('n_estimators', 5) model = RandomForestClassifier(featuresCol="transformed_features", numTrees=n_estimators) elif mode=='LinearSVC': max_iter = kwargs.get('max_iter', 5) model = LinearSVC(featuresCol="transformed_features", maxIter=max_iter) elif mode=='NB': model = NaiveBayes(featuresCol="transformed_features") elif mode=='linear': model = LinearRegression(featuresCol="transformed_features") elif 'NN' in mode: solver = kwargs.get('solver', 'sgd') hidden_layer_sizes = kwargs.get('hidden_layer_sizes', (20,)) if isinstance(hidden_layer_sizes, list): hidden_layer_sizes = list(hidden_layer_sizes) activation = kwargs.get('activation', 'relu') learning_rate_init = kwargs.get('learning_rate', 0.001) max_iter = kwargs.get('max_iter', 5000) if mode=='NN': model = MultilayerPerceptronClassifier(solver=solver, layers=hidden_layer_sizes, stepSize=learning_rate_init, maxIter=max_iter) return model def get_pipe_ops(mode, inputCol="features", outputCol="transformed_features"): if mode == 'pipe_0': # just the classifier vecAssembler = VectorAssembler(outputCol=outputCol) vecAssembler.setInputCols([inputCol]) ops = [vecAssembler] elif mode == 'pipe_1': # 1-step scaler (*map) scaler = MaxAbsScaler(inputCol=inputCol, outputCol=outputCol) ops = [scaler] # elif mode == 'pipe_2': # 2-step function scaler (*map) # def logVar(x): # return MaxAbsScaler(np.log(x)) # ops = [('logscaler', FunctionTransformer(logVar))] elif mode == 'pipe_3': # dimensionality reduction (*map) pca = PCA(k=2, inputCol=inputCol, outputCol=outputCol) ops = [pca] # elif mode == 'pipe_4': # k-means (fork) # union = FeatureUnion([("indicator", MissingIndicator()), # ("kmeans", KMeans(random_state=0))]) # ops = [('union', union)] elif mode == 'pipe_5': # TODO # multiple dimensionality reductions (fork) pca = PCA(k=2, inputCol=inputCol, outputCol="pca_output") #svd = SVD() #lda = LDA() vecAssembler = VectorAssembler(outputCol=outputCol) vecAssembler.setInputCols(["pca_output"]) ops = [pca, vecAssembler] # elif mode == 'pipe_6': # # image blurring operator # grayify = RGB2GrayTransformer() # def gaussian_blur(x): # return skimage.filters.gaussian(x) # ops = [('grayify', grayify), ('blur', FunctionTransformer(gaussian_blur))] # elif mode == 'pipe_7': # # complex image processing operators # grayify = RGB2GrayTransformer() # hogify = HogTransformer( # pixels_per_cell=(4, 4), # cells_per_block=(2,2), # orientations=9, # block_norm='L2-Hys' # ) # ops = [('grayify', grayify), ('hogify', hogify)] else: raise ValueError("Invalid mode!") return ops def create_numerical_pipeline(ops_mode, imputer=True, clf_mode='logistic', **kwargs): ops = get_pipe_ops(ops_mode) clf = get_clf(clf_mode, **kwargs) # vecAssembler = VectorAssembler(outputCol="data") # vecAssembler.setInputCols(["col_0", "col_1", "col_2", "col_3", "col_4", "col_5", "col_6", "col_7", "col_8", "col_9", "col_10", "col_11", "col_12", "col_13"]) # ops = [vecAssembler] + ops if imputer: imp = Imputer(strategy='mean') ops = [imp] + ops ops = ops + [clf] pipe = Pipeline(stages=ops) return pipe def create_tabular_pipeline(num_mode, outputCols="output", categorical_ix=["cat_features"], numerical_ix=["num_features"], imputer=True, clf_mode='logistic', **kwargs): num_ops = get_pipe_ops(num_mode, outputCols=outputCols) # imp = Imputer(strategy='categorical') - mllib doesn't support categorical input cat_one_hot = OneHotEncoder(inputCols=categorical_ix, outputCols="cat_features") ops = [cat_one_hot] + num_ops if imputer: num_imputer = Imputer(inputCols=numerical_ix, strategy='median', outputCols='data') ops = [num_imputer] + ops clf = get_clf(clf_mode) vecAssembler = VectorAssembler(outputCols=outputCols) vecAssembler.setInputCols(["cat_output"]) ops = ops + [clf] pipe = Pipeline(stages=ops) return pipe
StarcoderdataPython
8125505
lanches = 'hambúrguer', 'suco', 'refri', 'sorvete' # COM FOR PODEMOS IMPRIMIR TODOS ELEMENTOS SEPARADAMENTE, JÁ QUE ELE ACEITA O range() OU UMA VARÍAVEL for comida in lanches: print(f'Eu comi {comida}.') # COMO PODEMOS FATIAR AS TUPLAS, HÁ OUTRA MANEIRA DE MOSTRAR OS ELEMENTOS for c in range(len(lanches)):# O LEN RETORNA A QUANTIDADE DE TERMOS DA TUPLAS print(f'O {lanches[c]} ESTÁ NA POSIÇÃO {c}')# POSSIBILITANDO TAMBÉM MOSTRAR SUA POSIÇÃO for pos, comida in enumerate(lanches):# O ENUMERATE TAMBÉM RETORNA A POSIÇÃO PARA O pos ENQUANTO O lanches RETORNA PARA comida print(f'O {comida} ESTÁ NA POSIÇÃO {pos}')
StarcoderdataPython
3575575
import numpy from scipy.ndimage import zoom from dexp.utils import xpArray from dexp.utils.backends import Backend, NumpyBackend def warp( image: xpArray, vector_field: xpArray, vector_field_upsampling: int = 2, vector_field_upsampling_order: int = 1, mode: str = "border", image_to_backend: bool = False, internal_dtype=None, ): """ Applies a warp transform (piece wise linear or constant) to an image based on a vector field. Only implemented for 1d, 2d, and 3d images. Parameters ---------- image : image to warp vector_field : vector field to warp inoput image with. The vector field is an array of dimension n+1 where n is the dimension of the input image. The first n dimensions can be of arbirary lengths, and the last vector is the warp vector for each image region that the first vector_field_upsampling : upsampling factor for teh vector field (best use a power of two) vector_field_upsampling_order : upsampling order: 0-> nearest, 1->linear, 2->quadratic, ... (uses scipy zoom) mode : How to handle warping that reaches outside of the image bounds, can be: 'clamp', 'border', 'wrap', 'mirror' image_to_backend : By default one can directly copy a numpy array to texture memory, if needed, this option let's one first more the data to a cupy array before moving to texture memory. Not recommended. internal_dtype : internal dtype. Right now the dtype must be float32 because of CUDa texture dtype limitations. Returns ------- Warped image """ if not (image.ndim + 1 == vector_field.ndim or (image.ndim == 1 and vector_field.ndim == 1)): raise ValueError("Vector field must have one additional dimension") if internal_dtype is None: internal_dtype = numpy.float32 if type(Backend.current()) is NumpyBackend: internal_dtype = numpy.float32 original_dtype = image.dtype if vector_field_upsampling != 1: # Note: unfortunately numpy does support float16 zooming, and cupy does not support high-order zooming... vector_field = Backend.to_numpy(vector_field, dtype=numpy.float32) if image.ndim > 1: vector_field = zoom( vector_field, zoom=(vector_field_upsampling,) * image.ndim + (1,), order=vector_field_upsampling_order ) else: vector_field = zoom(vector_field, zoom=(vector_field_upsampling,), order=vector_field_upsampling_order) # we can actually directly copy from numpy to texture mem! if image_to_backend: image = Backend.to_backend(image, dtype=internal_dtype) image = image.astype(dtype=internal_dtype, copy=False) vector_field = Backend.to_backend(vector_field, dtype=internal_dtype) from dexp.utils.backends import CupyBackend if type(Backend.current()) is NumpyBackend: raise NotImplementedError("Warping not yet implemented for the Numpy backend.") elif type(Backend.current()) is CupyBackend: params = (image, vector_field, mode) if image.ndim == 1: from dexp.processing.interpolation._cupy.warp_1d import _warp_1d_cupy result = _warp_1d_cupy(*params) elif image.ndim == 2: from dexp.processing.interpolation._cupy.warp_2d import _warp_2d_cupy result = _warp_2d_cupy(*params) elif image.ndim == 3: from dexp.processing.interpolation._cupy.warp_3d import _warp_3d_cupy result = _warp_3d_cupy(*params) else: raise NotImplementedError("Warping for ndim>3 not implemented.") result = result.astype(original_dtype, copy=False) return result
StarcoderdataPython
5048568
<reponame>aeko-empt/ovs-dbg import ovs_dbg.ofparse.ofp # noqa: F401 import ovs_dbg.ofparse.dp # noqa: F401
StarcoderdataPython
6614319
#!/usr/bin/env python3 import requests, datetime from time import sleep urls = ['http://cpt.hopper.pw:[email protected]/nic/update'] # basic auth to hopper.pw updates while True: for url in urls: try: r = requests.get(url, auth=('cpt.hopper.pw', 'LBbRhmu3gV')) print("response @", datetime.datetime.now(), ":", r.text) except requests.exceptions.RequestException as e: print(e, file=sys.stderr) # print to stderr sleep(300) # sleep for five minutes
StarcoderdataPython
12845876
""" Train and eval functions used in main.py """ import os import torch from torch.utils.data import DataLoader, DistributedSampler import math import sys import time import datetime from typing import Iterable from pathlib import Path import json import random import numpy as np import torch import wandb from dataset.evaluator import SmoothedValue, MetricLogger from model.detr import build_model from dataset.construction_dataset import build_dataset from dataset.evaluator import collate_fn, evaluate, save_on_master seed = 42 torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(False) # missing some deterministic impl device = torch.device("cuda:0") class Args: pass args = Args() # Postitional encoding args.position_embedding = "sine" # CNN Backbone args.backbone = "resnet50" args.dilation = None # Hungarian matcher args.set_cost_class = 1 args.set_cost_bbox = 5 args.set_cost_giou = 2 # Transformer args.hidden_dim = 256 args.dropout = 0.1 args.nheads = 8 args.dim_feedforward = 2048 args.enc_layers = 6 args.dec_layers = 6 args.pre_norm = None # DETR args.num_queries = 100 args.aux_loss = True # calculate loss at eache decoder layer args.masks = True args.frozen_weights = None args.bbox_loss_coef = 5 args.mask_loss_coef = 1 args.dice_loss_coef = 1 args.giou_loss_coef = 2 args.eos_coef = 0.1 # Dataset args.dataset_file = "coco_panoptic" # construction args.coco_path = "./data" args.coco_panoptic_path = "./data" # Training args.lr = 1e-4 args.weight_decay = 1e-4 args.lr_backbone = 0 # 0 means frozen backbone args.batch_size = 3 args.epochs = 2 args.lr_drop = 200 args.clip_max_norm = 0.1 args.output_dir = "out_dir" args.eval = False # !mkdir out_dir/panoptic_eval -p try: os.mkdir("out_dir/panoptic_eval") except Exception as e: pass # set if you plan to log on wandb ENABLE_WANDB = True # if set not train from scratch (detre pretrained on COCO) used_artifact = None # "2_2_attentionfreeze_aux:latest" # set if starting a new run wandb_experiment_name = "2_2_1_transf_unfreeze_aux" # set to None if starting a new run run_id = None if ENABLE_WANDB: import wandb if run_id is not None: wandb.init(project="detr", id=run_id, resume="allow") else: wandb.init(project="detr", name=wandb_experiment_name) wandb.config.position_embedding = args.position_embedding wandb.config.backbone = args.backbone wandb.config.dilation = args.dilation wandb.config.set_cost_class = args.set_cost_class wandb.config.set_cost_bbox = args.set_cost_bbox wandb.config.set_cost_giou = args.set_cost_giou wandb.config.hidden_dim = args.hidden_dim wandb.config.dropout = args.dropout wandb.config.nheads = args.nheads wandb.config.dim_feedforward = args.dim_feedforward wandb.config.enc_layers = args.enc_layers wandb.config.dec_layers = args.dec_layers wandb.config.pre_norm = args.pre_norm wandb.config.num_queries = args.num_queries wandb.config.aux_loss = args.aux_loss wandb.config.masks = args.masks wandb.config.frozen_weights = args.frozen_weights wandb.config.bbox_loss_coef = args.bbox_loss_coef wandb.config.mask_loss_coef = args.mask_loss_coef wandb.config.dice_loss_coef = args.dice_loss_coef wandb.config.giou_loss_coef = args.giou_loss_coef wandb.config.eos_coef = args.eos_coef wandb.config.lr = args.lr wandb.config.weight_decay = args.weight_decay wandb.config.lr_backbone = args.lr_backbone wandb.config.batch_size = args.batch_size wandb.config.epochs = args.epochs wandb.config.lr_drop = args.lr_drop wandb.config.clip_max_norm = args.clip_max_norm def freeze_attn(model, args): for i in range(args.dec_layers): for param in model.detr.transformer.decoder.layers[i].self_attn.parameters(): param.requires_grad = False for param in model.detr.transformer.decoder.layers[ i ].multihead_attn.parameters(): param.requires_grad = False for i in range(args.enc_layers): for param in model.detr.transformer.encoder.layers[i].self_attn.parameters(): param.requires_grad = False def freeze_decoder(model, args): for param in model.detr.transformer.decoder.parameters(): param.requires_grad = False def freeze_first_layers(model, args): for i in range(args.enc_layers // 2): for param in model.detr.transformer.encoder.layers[i].parameters(): param.requires_grad = False for i in range(args.dec_layers // 2): for param in model.detr.transformer.decoder.layers[i].parameters(): param.requires_grad = False def build_pretrained_model(args): pre_trained = torch.hub.load( "facebookresearch/detr", "detr_resnet50_panoptic", pretrained=True, return_postprocessor=False, num_classes=250, ) model, criterion, postprocessors = build_model(args) model.detr.backbone.load_state_dict(pre_trained.detr.backbone.state_dict()) model.detr.bbox_embed.load_state_dict(pre_trained.detr.bbox_embed.state_dict()) model.detr.query_embed.load_state_dict(pre_trained.detr.query_embed.state_dict()) model.detr.input_proj.load_state_dict(pre_trained.detr.input_proj.state_dict()) model.detr.transformer.load_state_dict(pre_trained.detr.transformer.state_dict()) model.bbox_attention.load_state_dict(pre_trained.bbox_attention.state_dict()) model.mask_head.load_state_dict(pre_trained.mask_head.state_dict()) freeze_attn(model, args) return model, criterion, postprocessors def train_one_epoch( model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0, ): model.train() criterion.train() metric_logger = MetricLogger(delimiter=" ") metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) metric_logger.add_meter( "class_error", SmoothedValue(window_size=1, fmt="{value:.2f}") ) header = "Epoch: [{}]".format(epoch) print_freq = 10 for samples, targets in metric_logger.log_every(data_loader, print_freq, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum( loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict ) # reduce losses over all GPUs for logging purposes loss_dict_reduced = loss_dict loss_dict_reduced_unscaled = { f"{k}_unscaled": v for k, v in loss_dict_reduced.items() } loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update( loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled ) metric_logger.update(class_error=loss_dict_reduced["class_error"]) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) if ENABLE_WANDB: wandb.log(loss_dict_reduced) wandb.log({"loss": loss_value}) metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} def train(): if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" model, criterion, postprocessors = build_pretrained_model(args) model.to(device) if ENABLE_WANDB: wandb.watch(model) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("number of params:", n_parameters) param_dicts = [ { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad ] }, { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad ], "lr": args.lr_backbone, }, ] optimizer = torch.optim.AdamW( param_dicts, lr=args.lr, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) if ENABLE_WANDB and used_artifact is not None: artifact = wandb.use_artifact(used_artifact) artifact_dir = artifact.download() checkpoint = torch.load(artifact_dir + "/checkpoint.pth") model.load_state_dict(checkpoint["model"]) if run_id is not None: optimizer.load_state_dict(checkpoint["optimizer"]) # lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) start_epoch = checkpoint["epoch"] else: start_epoch = 0 dataset_train = build_dataset(image_set="train", args=args) dataset_val = build_dataset(image_set="val", args=args) sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True ) data_loader_train = DataLoader( dataset_train, batch_sampler=batch_sampler_train, collate_fn=collate_fn, num_workers=4, ) data_loader_val = DataLoader( dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=collate_fn, num_workers=4, ) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location="cpu") model_without_ddp.detr.load_state_dict(checkpoint["model"]) output_dir = Path(args.output_dir) if args.eval: test_stats = evaluate( model, criterion, postprocessors, data_loader_val, device, args.output_dir ) print(test_stats) return print("Start training") start_time = time.time() for epoch in range(start_epoch + 1, args.epochs): train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm, ) lr_scheduler.step() if args.output_dir: checkpoint_path = output_dir / "checkpoint.pth" save_on_master( { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args, }, checkpoint_path, ) if ENABLE_WANDB: artifact = wandb.Artifact(wandb_experiment_name, type="model") artifact.add_file(checkpoint_path) wandb.log_artifact(artifact) test_stats = evaluate( model, criterion, postprocessors, data_loader_val, device, args.output_dir ) log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, **{f"test_{k}": v for k, v in test_stats.items()}, "epoch": epoch, "n_parameters": n_parameters, } if ENABLE_WANDB: wandb.log(test_stats) if args.output_dir: with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str))
StarcoderdataPython
6701938
<reponame>SHI3DO/Tennessine def prod(amount): A = [["IronIngot"], "Constructor", [amount], [amount/15], 1] return A
StarcoderdataPython
4912152
<reponame>dutxubo/nni # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import tensorflow as tf _counter = 0 def global_mutable_counting(): global _counter _counter += 1 return _counter class AverageMeter: def __init__(self, name): self.name = name self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val): self.val = val self.sum += val self.count += 1 self.avg = self.sum / self.count def __str__(self): return '{name} {val:4f} ({avg:4f})'.format(**self.__dict__) def summary(self): return '{name}: {avg:4f}'.format(**self.__dict__) class AverageMeterGroup: def __init__(self): self.meters = {} def update(self, data): for k, v in data.items(): if k not in self.meters: self.meters[k] = AverageMeter(k) self.meters[k].update(v) def __str__(self): return ' '.join(str(v) for v in self.meters.values()) def summary(self): return ' '.join(v.summary() for v in self.meters.values()) class StructuredMutableTreeNode: def __init__(self, mutable): self.mutable = mutable self.children = [] def add_child(self, mutable): self.children.append(StructuredMutableTreeNode(mutable)) return self.children[-1] def type(self): return type(self.mutable) def __iter__(self): return self.traverse() def traverse(self, order="pre", deduplicate=True, memo=None): if memo is None: memo = set() assert order in ["pre", "post"] if order == "pre": if self.mutable is not None: if not deduplicate or self.mutable.key not in memo: memo.add(self.mutable.key) yield self.mutable for child in self.children: for m in child.traverse(order=order, deduplicate=deduplicate, memo=memo): yield m if order == "post": if self.mutable is not None: if not deduplicate or self.mutable.key not in memo: memo.add(self.mutable.key) yield self.mutable def fill_zero_grads(grads, weights): ret = [] for grad, weight in zip(grads, weights): if grad is not None: ret.append(grad) else: ret.append(tf.zeros_like(weight)) return ret
StarcoderdataPython
276330
<reponame>pomes/valiant<filename>tests/repositories/pypi/__init__.py """PyPi Repo tests. Copyright (c) 2020 The Valiant Authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json import os from typing import Dict import py # https://py.readthedocs.io/en/latest/index.html import pytest from ... import MockResponse, MonkeyPatch # noqa: F401 from .validation import DATAFILE_VALIDATION # noqa: F401 _dir = os.path.dirname(os.path.realpath(__file__)) TEST_FILE_DIR = py.path.local(_dir) / "test-data" # Setup the datafiles: https://pypi.org/project/pytest-datafiles/ FIXTURE_DIR = py.path.local(_dir) / "package-data" _json_files = [ os.path.join(FIXTURE_DIR / j) for j in os.listdir(FIXTURE_DIR) if j[-4:] == "json" ] ALL_PKG_FILES = pytest.mark.datafiles(*_json_files) # End setup def load_test_json_data(path: py.path, filename: str) -> Dict: # noqa: ANN with open(path / filename, "r") as f: package_data = json.load(f) return package_data
StarcoderdataPython
393806
# -*- coding: utf-8 -*- from setuptools import setup import os readmefile = os.path.join(os.path.dirname(__file__), "README.md") with open(readmefile) as f: readme = f.read() setup( name='jumanpp-batch', version='0.1.2', description='Apply juman++ to batch inputs in parallel', author='<NAME>', author_email='<EMAIL>', url='https://github.com/kota7/jumanpp-batch', #download_url='', long_description=readme, long_description_content_type="text/markdown", #packages=[], py_modules=['jumanpp_batch'], install_requires=['jaconv', 'ushlex'], test_require=['parameterized'], package_data={}, entry_points={}, classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Natural Language :: Japanese', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. #'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', #'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8' ], test_suite='tests' )
StarcoderdataPython
1825824
<filename>colcon_acceleration/subverb/platform.py<gh_stars>1-10 # ____ ____ # / /\/ / # /___/ \ / Copyright (c) 2021, Xilinx®. # \ \ \/ Author: <NAME> <<EMAIL>> # \ \ # / / # /___/ /\ # \ \ / \ # \___\/\___\ # # Licensed under the Apache License, Version 2.0 # import os from colcon_core.plugin_system import satisfies_version from colcon_acceleration.subverb import AccelerationSubverbExtensionPoint, get_vitis_dir from colcon_acceleration import __version__ class PlatformSubverb(AccelerationSubverbExtensionPoint): """Report the platform enabled in the deployed firmware.""" def __init__(self): # noqa: D107 super().__init__() satisfies_version(AccelerationSubverbExtensionPoint.EXTENSION_POINT_VERSION, "^1.0") def main(self, *, context): # noqa: D102 """Platform enabled NOTE: firmware is board-specific. Consult the README of acceleration_firmware_kv260 and/or change branch as per your hardware/board requirements. NOTE 2: Location, syntax and other related matters are defined within the `acceleration_firmware_kv260` package. Refer to it for more details. """ print(self.get_platform())
StarcoderdataPython
4868717
<reponame>rmm-ch/ho-distribute #!/usr/bin/env python3 ''' plot data from a triplet of log files - assumes already converted to CSV example usage: $ ipython > %run csv_to_graph.py --logdir <path to where your csv files were saved> ''' import argparse import os.path, fnmatch import pandas as pd import matplotlib.pyplot as plt #import numpy as np def lookup_logs(pth, prefix=None): ''' assumes one set of logs in any given directory.''' fn_scd, fn_hdc, fn_bat = None, None, None if prefix is None: prefix = "" for fn in os.listdir(pth): if fnmatch.fnmatch(fn, "{}*datscd.csv".format(prefix)): fn_scd = os.path.join(pth, fn) if fnmatch.fnmatch(fn, "{}*dathdc.csv".format(prefix)): fn_hdc = os.path.join(pth, fn) if fnmatch.fnmatch(fn, "{}*batlvl.csv".format(prefix)): fn_bat = os.path.join(pth, fn) return (fn_scd, fn_hdc, fn_bat) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-v', '--verb', action='store_true') parser.add_argument('-d', '--logdir', type=str, required=True) args = parser.parse_args() # lazy / fragile lookup of log filenames fn_scd, fn_hdc, fn_bat = lookup_logs(args.logdir) # load the scd and hdc2010 data df_scd = pd.read_csv(fn_scd) df_hdc = pd.read_csv(fn_hdc) # turn the unix timestamps into interpretable datetime objects df_scd["timestamp"] = pd.to_datetime(df_scd.timestamp, unit='s') df_hdc["timestamp"] = pd.to_datetime(df_hdc.timestamp, unit='s') # do some simple plots axs_s = df_scd.plot(x="timestamp", y=["T", "RH", "CO2"], color="C0", subplots=True) #axs_h = df_hdc.plot(x="timestamp", y=["T", "RH", ], subplots=True) df_hdc.plot(x="timestamp", y="T", ax=axs_s[0], c='C3', label="T hdc2010") df_hdc.plot(x="timestamp", y="RH", ax=axs_s[1], c='C3', label="RH hdc2010") units = ["Temperature ($^o$C)", "Rel. Humidity (%)", "CO$_2$ (ppm)"] for i, a in enumerate(axs_s): a.set_ylabel(units[i]) a.grid(True) plt.tight_layout()
StarcoderdataPython
8129192
from AST import(And,Or,Arrow,Not,Var,true,false, Pred, Forall, Exists) from Exceptions import(LexException, ParseException) from enum import Enum def parse(text): return expr(lex(text)) #################################################################### # Lexer # converts a string of characters into a list of tokens # so "a && b -> T" # becomes [Token(TVAR,0,"a"), Token(TAND,2), Token(TVAR,5,"b"), # Token(TARROW,7), Token(TTRUE,10)] #################################################################### class TType(Enum): TTRUE = "T" TFALSE = "F" TNOT = "~" TAND = "&&" TOR = "||" TARROW = "->" TVAR = "<var>" TLPAREN = "(" TRPAREN = ")" TEOF = "<EOF>" TEX = "EX" TFA = "FA" TDOT = "." TCOMMA = "," def __init__(self, n): self.n = n def __str__(self): return self.n class Token(): def __init__(self, ttype, pos, val): self.ttype = ttype self.pos = pos self.val = val def __str__(self): return str(self.ttype) def alpha(c): return 'a' <= c <= 'z' or 'A' <= c <= 'Z' def lex(text): i = 0 tokens = [] while i < len(text): c = text[i] if i+1 < len(text): n = text[i+1] else: n = "" if c in " \r\n\t": # skip whitespace pass elif c+n == "FA": tokens.append(Token(TType.TFA,i,"FA")) i += 1 elif c+n == "EX": tokens.append(Token(TType.TEX,i,"EX")) i += 1 elif c == 'T': tokens.append(Token(TType.TTRUE,i,"T")) elif c == 'F': tokens.append(Token(TType.TFALSE,i,"F")) elif c == '~': tokens.append(Token(TType.TNOT,i,"~")) elif c == '(': tokens.append(Token(TType.TLPAREN,i,"(")) elif c == ')': tokens.append(Token(TType.TRPAREN,i,")")) elif c == '.': tokens.append(Token(TType.TDOT,i,".")) elif c == ',': tokens.append(Token(TType.TCOMMA,i,",")) elif c+n == "||": tokens.append(Token(TType.TOR,i,"||")) i += 1 elif c+n == "&&": tokens.append(Token(TType.TAND,i,"&&")) i += 1 elif c+n == "->": tokens.append(Token(TType.TARROW,i,"->")) i += 1 elif alpha(c): j = 0 var = "" while i+j < len(text) and alpha(text[i+j]): var += text[i+j] j += 1 tokens.append(Token(TType.TVAR,i,var)) i += (j-1) else: raise LexException(i,c) i += 1 tokens.append(Token(TType.TEOF,i,"<EOF>")) return tokens # E => FA x . E | EX x . E | I # I => O -> I # O => A || O # A => N && A # N => !L # L => var | T | F | (E) def expr(tokens): follow = [TType.TEOF, TType.TRPAREN] e = None if tokens[0].ttype == TType.TFA: if tokens[1].ttype == TType.TVAR: if tokens[2].ttype == TType.TDOT: tokens.pop(0) v = tokens.pop(0).val tokens.pop(0) e = Forall(v,expr(tokens)) else: raise ParseException(tokens[2].pos,[TType.TDOT],tokens[2].val) else: raise ParseException(tokens[1].pos,[TType.TVAR],tokens[1].val) elif tokens[0].ttype == TType.TEX: if tokens[1].ttype == TType.TVAR: if tokens[2].ttype == TType.TDOT: tokens.pop(0) v = tokens.pop(0).val tokens.pop(0) e = Exists(v,expr(tokens)) else: raise ParseException(tokens[2].pos,[TType.TDOT],tokens[2].val) else: raise ParseException(tokens[1].pos,[TType.TVAR],tokens[1].val) else: e = arrow_expr(tokens) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return e def arrow_expr(tokens): follow = [TType.TEOF, TType.TRPAREN] lhs = or_expr(tokens) if tokens[0].ttype == TType.TARROW: tokens.pop(0) rhs = arrow_expr(tokens) lhs = Arrow(lhs, rhs) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return lhs def or_expr(tokens): follow = [TType.TEOF, TType.TRPAREN, TType.TARROW] lhs = and_expr(tokens) while tokens[0].ttype == TType.TOR: tokens.pop(0) rhs = and_expr(tokens) lhs = Or(lhs, rhs) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return lhs def and_expr(tokens): follow = [TType.TEOF, TType.TRPAREN, TType.TARROW, TType.TOR] lhs = not_expr(tokens) while tokens[0].ttype == TType.TAND: tokens.pop(0) rhs = not_expr(tokens) lhs = And(lhs, rhs) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return lhs def not_expr(tokens): follow = [TType.TEOF, TType.TRPAREN, TType.TARROW, TType.TOR, TType.TAND] e = None if tokens[0].ttype == TType.TNOT: tokens.pop(0) ne = not_expr(tokens) e = Not(ne) else: e = term(tokens) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return e def term(tokens): first = [TType.TTRUE, TType.TFALSE, TType.TVAR, TType.TLPAREN] follow = [TType.TEOF, TType.TRPAREN, TType.TARROW, TType.TOR, TType.TAND] e = None if tokens[0].ttype == TType.TVAR: e = pred(tokens) elif tokens[0].ttype == TType.TTRUE: e = true() tokens.pop(0) elif tokens[0].ttype == TType.TFALSE: e = false() tokens.pop(0) elif tokens[0].ttype == TType.TLPAREN: tokens.pop(0) e = expr(tokens) if tokens[0].ttype != TType.TRPAREN: raise ParseException(tokens[0].pos,[TType.TRPAREN],tokens[0].val) tokens.pop(0) elif tokens[0].ttype == TType.TFA or \ tokens[0].ttype == TType.TEX: e = expr(tokens) else: raise ParseException(tokens[0].pos,first,tokens[0].val) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return e # ( v (, v)* ) def pred(tokens): follow = [TType.TEOF, TType.TRPAREN, TType.TARROW, TType.TOR, TType.TAND] e = None # initial name name = tokens.pop(0).val # P(v {, v} ) if tokens[0].ttype == TType.TLPAREN: tokens.pop(0) vs = [] if tokens[0].ttype == TType.TVAR: vs = [tokens.pop(0).val] # P() elif tokens[0].ttype == TType.TRPAREN: pass else: raise ParseException(tokens[0].pos, [TType.TVAR], tokens[0].val) # {, v} while tokens[0].ttype != TType.TRPAREN: if tokens[0].ttype == TType.TCOMMA and \ tokens[1].ttype == TType.TVAR: tokens.pop(0) vs.append(tokens.pop(0).val) else: raise ParseException(tokens[0].pos, [TType.TCOMMA], tokens[0].val) tokens.pop(0) e = Pred(name, vs) # v else: e = Var(name) if tokens[0].ttype not in follow: raise ParseException(tokens[0].pos,follow,tokens[0].val) return e
StarcoderdataPython
4882580
github_user = "example" github_pass = "<PASSWORD>" gmail_user = "<EMAIL>" gmail_pass = "<PASSWORD>" email_text = """\ From: {} To: {} Subject: Github Project \'{}\' Hi {}! I noticed you gave my project \'{}\' ({}) a star on Github. First of all: thank you for that! :) I would like to improve the project by taking into consideration your specific needs and wishes. That is why I would greatly appreciate it if you could send me a short reply with some information about yourself, why you gave a star to the project or features you would like to see included in the future. I am also open to discuss other follow up projects or good ideas that you might have. So just hit me up! Cheers! ExampleName - This email sent in an automated way. - Check out https://github.com/RafaelKuebler/GithubSurvey for more information. """
StarcoderdataPython
6650114
<gh_stars>0 from __future__ import print_function, absolute_import, division import os import shutil from os.path import join, dirname import sys import time from pprint import pprint import numpy as np from progress.bar import Bar as Bar from sklearn import metrics import json import torch import torch.nn as nn import torch.optim import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader, ConcatDataset from torchvision import transforms from torch.utils.tensorboard import SummaryWriter from torchvision.models.resnet import ResNet, BasicBlock, Bottleneck from src.opt import Options import src.log as log import src.utils as utils from model import LinearModel, weight_init from src.data import ToTensor, ClassificationDataset from src.data_utils import one_hot, load_gt, mean_missing_parts, \ mpjpe_2d_openpose, calc_auc from src.vis import create_grid def train(train_loader, model, criterion, optimizer, num_kpts=15, num_classes=200, lr_init=None, lr_now=None, glob_step=None, lr_decay=None, gamma=None, max_norm=True): losses = utils.AverageMeter() model.train() errs, accs = [], [] start = time.time() batch_time = 0 bar = Bar('>>>', fill='>', max=len(train_loader)) for i, sample in enumerate(train_loader): glob_step += 1 if glob_step % lr_decay == 0 or glob_step == 1: lr_now = utils.lr_decay(optimizer, glob_step, lr_init, lr_decay, gamma) inputs = sample['X'].cuda() # NOTE: PyTorch issue with dim0=1. if inputs.shape[0] == 1: continue targets = sample['Y'].reshape(-1).cuda() outputs = model(inputs) # calculate loss optimizer.zero_grad() loss = criterion(outputs, targets) losses.update(loss.item(), inputs.size(0)) loss.backward() if max_norm: nn.utils.clip_grad_norm(model.parameters(), max_norm=1) optimizer.step() # Set outputs to [0, 1]. softmax = nn.Softmax() outputs = softmax(outputs) outputs = outputs.data.cpu().numpy() targets = one_hot(targets.data.cpu().numpy(), num_classes) errs.append(np.mean(np.abs(outputs - targets))) accs.append(metrics.accuracy_score( np.argmax(targets, axis=1), np.argmax(outputs, axis=1)) ) # update summary if (i + 1) % 100 == 0: batch_time = time.time() - start start = time.time() bar.suffix = '({batch}/{size}) | batch: {batchtime:.4}ms | Total: {ttl} | ETA: {eta:} | loss: {loss:.6f}' \ .format(batch=i + 1, size=len(train_loader), batchtime=batch_time * 10.0, ttl=bar.elapsed_td, eta=bar.eta_td, loss=losses.avg) bar.next() bar.finish() err = np.mean(np.array(errs, dtype=np.float32)) acc = np.mean(np.array(accs, dtype=np.float32)) print (">>> train error: {} <<<".format(err)) print (">>> train accuracy: {} <<<".format(acc)) return glob_step, lr_now, losses.avg, err, acc def test(test_loader, model, criterion, num_kpts=15, num_classes=2, batch_size=64, inference=False, log=True): losses = utils.AverageMeter() model.eval() errs, accs = [], [] all_outputs, all_targets = [], [] start = time.time() batch_time = 0 if log: bar = Bar('>>>', fill='>', max=len(test_loader)) for i, sample in enumerate(test_loader): inputs = sample['X'].cuda() # NOTE: PyTorch issue with dim0=1. if inputs.shape[0] == 1: continue targets = sample['Y'].reshape(-1).cuda() outputs = model(inputs) # calculate loss loss = criterion(outputs, targets) losses.update(loss.item(), inputs.size(0)) # Set outputs to [0, 1]. softmax = nn.Softmax() outputs = softmax(outputs) outputs = outputs.data.cpu().numpy() targets = targets.data.cpu().numpy() all_outputs.append(outputs) all_targets.append(targets) # errs.append(np.mean(np.abs(outputs - targets))) # accs.append(accuracy_score( # np.argmax(targets, axis=1), # np.argmax(outputs, axis=1)) # ) # update summary if (i + 1) % 100 == 0: batch_time = time.time() - start start = time.time() if log: bar.suffix = '({batch}/{size}) | batch: {batchtime:.4}ms | Total: {ttl} | ETA: {eta:} | loss: {loss:.6f}' \ .format(batch=i + 1, size=len(test_loader), batchtime=batch_time * 10.0, ttl=bar.elapsed_td, eta=bar.eta_td, loss=losses.avg) bar.next() # err = np.mean(np.array(errs)) # acc = np.mean(np.array(accs)) all_outputs = np.concatenate(all_outputs) all_targets = np.concatenate(all_targets) pred_values = np.amax(all_outputs, axis=1) pred_labels = np.argmax(all_outputs, axis=1) err = np.mean(np.abs(pred_values - all_targets)) acc = np.mean(metrics.accuracy_score(all_targets, pred_labels)) auc = calc_auc(all_targets, pred_values) prec = metrics.average_precision_score(all_targets, pred_values) if log: bar.finish() print('>>> test error: {} <<<'.format(err)) print('>>> test accuracy: {} <<<'.format(acc)) return losses.avg, err, acc, auc, prec def extract_tb_sample(test_loader, model, batch_size): ''' Extract 2 correct and 2 wrong samples. ''' model.eval() num_correct = 0 num_wrong = 0 done = False sample_idxs = [-1] * 4 NUM = 2 for bidx, batch in enumerate(test_loader): inputs = batch['X'].cuda() targets = batch['Y'].reshape(-1).cuda() outputs = model(inputs) softmax = nn.Softmax() outputs = softmax(outputs) outputs = np.argmax(outputs.data.cpu().numpy(), axis=1) targets = targets.data.cpu().numpy() for idx in range(outputs.shape[0]): ttl_idx = bidx * batch_size + idx if outputs[idx] == targets[idx]: if num_correct < NUM: sample_idxs[num_correct] = ttl_idx num_correct += 1 else: if num_wrong < NUM: sample_idxs[NUM + num_wrong] = ttl_idx num_wrong += 1 if num_correct == NUM and num_wrong == NUM: done = True break if done: break if not done: print(f'>>> WARNING: Found only {num_correct}/2 ' f'correct and {num_wrong}/2 wrong samples') return sample_idxs def main(opt): start_epoch = 0 acc_best = 0. glob_step = 0 lr_now = opt.lr # save options log.save_options(opt, opt.ckpt) tb_logdir = f'./exp/{opt.name}' if os.path.exists(tb_logdir): shutil.rmtree(tb_logdir) writer = SummaryWriter(log_dir=f'./exp/{opt.name}') exp_dir_ = dirname(opt.load) # create model print(">>> creating model") # TODO: This is how to avoid weird data reshaping for non-3-channel inputs. # Have ResNet model take in grayscale rather than RGB # model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) if opt.arch == 'cnn': model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=opt.num_classes) else: model = LinearModel() model = model.cuda() model.apply(weight_init) print(">>> total params: {:.2f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0)) criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) # load ckpt if opt.load: print(">>> loading ckpt from '{}'".format(opt.load)) ckpt = torch.load(opt.load) start_epoch = ckpt['epoch'] acc_best = ckpt['acc'] glob_step = ckpt['step'] lr_now = ckpt['lr'] model.load_state_dict(ckpt['state_dict']) optimizer.load_state_dict(ckpt['optimizer']) print(">>> ckpt loaded (epoch: {} | acc: {})".format(start_epoch, acc_best)) if opt.resume: logger = log.Logger(os.path.join(opt.ckpt, 'log.txt'), resume=True) else: logger = log.Logger(os.path.join(opt.ckpt, 'log.txt')) logger.set_names(['epoch', 'lr', 'loss_train', 'err_train', 'acc_train', 'loss_test', 'err_test', 'acc_test']) transforms = [ ToTensor(), ] train_datasets = [] for dataset_name in opt.train_datasets: train_datasets.append(ClassificationDataset( name=dataset_name, num_kpts=opt.num_kpts, transforms=transforms, split='train', arch=opt.arch, gt=opt.gt)) train_dataset = ConcatDataset(train_datasets) train_loader = DataLoader(train_dataset, batch_size=opt.train_batch, shuffle=True, num_workers=opt.job) split = 'test' if opt.test else 'valid' test_dataset = ClassificationDataset( name=opt.test_dataset, num_kpts=opt.num_kpts, transforms=transforms, split=split, arch=opt.arch, gt=opt.gt) test_loader = DataLoader(test_dataset, batch_size=opt.test_batch, shuffle=False, num_workers=opt.job) subset_loaders = {} for subset in test_dataset.create_subsets(): subset_loaders[subset.split] = DataLoader(subset, batch_size=opt.test_batch, shuffle=False, num_workers=opt.job) cudnn.benchmark = True for epoch in range(start_epoch, opt.epochs): torch.cuda.empty_cache() print('==========================') print('>>> epoch: {} | lr: {:.5f}'.format(epoch + 1, lr_now)) if not opt.test: glob_step, lr_now, loss_train, err_train, acc_train = \ train(train_loader, model, criterion, optimizer, num_kpts=opt.num_kpts, num_classes=opt.num_classes, lr_init=opt.lr, lr_now=lr_now, glob_step=glob_step, lr_decay=opt.lr_decay, gamma=opt.lr_gamma, max_norm=opt.max_norm) loss_test, err_test, acc_test, auc_test, prec_test = \ test(test_loader, model, criterion, num_kpts=opt.num_kpts, num_classes=opt.num_classes, batch_size=opt.test_batch) ## Test subsets ## subset_losses = {} subset_errs = {} subset_accs = {} subset_aucs = {} subset_precs = {} subset_openpose = {} subset_missing = {} subset_grids = {} if len(subset_loaders) > 0: bar = Bar('>>>', fill='>', max=len(subset_loaders)) for key_idx, key in enumerate(subset_loaders): loss_sub, err_sub, acc_sub, auc_sub, prec_sub = test( subset_loaders[key], model, criterion, num_kpts=opt.num_kpts, num_classes=opt.num_classes, batch_size=4, log=False) subset_losses[key] = loss_sub subset_errs[key] = err_sub subset_accs[key] = acc_sub subset_aucs[key] = auc_sub subset_precs[key] = prec_sub sub_dataset = subset_loaders[key].dataset if sub_dataset.gt_paths is not None: gt_X = load_gt(sub_dataset.gt_paths) subset_openpose[key] = mpjpe_2d_openpose( sub_dataset.X, gt_X) subset_missing[key] = mean_missing_parts( sub_dataset.X) else: subset_openpose[key] = 0. subset_missing[key] = 0. sample_idxs = extract_tb_sample( subset_loaders[key], model, batch_size=opt.test_batch) sample_X = sub_dataset.X[sample_idxs] sample_img_paths = [sub_dataset.img_paths[x] for x in sample_idxs] if opt.arch == 'cnn': subset_grids[key] = create_grid( sample_X, sample_img_paths) bar.suffix = f'({key_idx+1}/{len(subset_loaders)}) | {key}' bar.next() if len(subset_loaders) > 0: bar.finish() ################### if opt.test: subset_accs['all'] = acc_test subset_aucs['all'] = auc_test subset_precs['all'] = prec_test report_dict = { 'acc': subset_accs, 'auc': subset_aucs, 'prec': subset_precs } report_idx = 0 report_path = f'report/{opt.name}-{report_idx}.json' while os.path.exists(f'report/{opt.name}-{report_idx}.json'): report_idx += 1 report_path = f'report/{opt.name}-{report_idx}.json' print(f'>>> Saving report to {report_path}...') with open(report_path, 'w') as acc_f: json.dump(report_dict, acc_f, indent=4) print('>>> Exiting (test mode)...') break # update log file logger.append([epoch + 1, lr_now, loss_train, err_train, acc_train, loss_test, err_test, acc_test], ['int', 'float', 'float', 'float', 'float', 'float', 'float', 'float']) # save ckpt is_best = acc_test > acc_best acc_best = max(acc_test, acc_best) if is_best: log.save_ckpt({'epoch': epoch + 1, 'lr': lr_now, 'step': glob_step, 'acc': acc_best, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}, ckpt_path=opt.ckpt, is_best=True) else: log.save_ckpt({'epoch': epoch + 1, 'lr': lr_now, 'step': glob_step, 'acc': acc_best, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}, ckpt_path=opt.ckpt, is_best=False) writer.add_scalar('Loss/train', loss_train, epoch) writer.add_scalar('Loss/test', loss_test, epoch) writer.add_scalar('Error/train', err_train, epoch) writer.add_scalar('Error/test', err_test, epoch) writer.add_scalar('Accuracy/train', acc_train, epoch) writer.add_scalar('Accuracy/test', acc_test, epoch) for key in subset_losses: writer.add_scalar(f'Loss/Subsets/{key}', subset_losses[key], epoch) writer.add_scalar(f'Error/Subsets/{key}', subset_errs[key], epoch) writer.add_scalar(f'Accuracy/Subsets/{key}', subset_accs[key], epoch) writer.add_scalar(f'OpenPose/Subsets/{key}', subset_openpose[key], epoch) writer.add_scalar(f'Missing/Subsets/{key}', subset_missing[key], epoch) if opt.arch == 'cnn': writer.add_images(f'Subsets/{key}', subset_grids[key], epoch, dataformats='NHWC') logger.close() writer.close() if __name__ == '__main__': option = Options().parse() main(option)
StarcoderdataPython
8156368
from logics.classes.exceptions import NotWellFormed def separate_arguments(string, comma_separator): """ Given a string in forrmat '(x,y,z...)' returns a list with format ['x', 'y', 'z', ...] Takes into account nested parentheses. For instance, '(1,(2,3),4)' will return ['1', '(2,3)', '4'] WILL NOT ELIMINATE WHITESPACES, if you give it '(1, 2, 3)' it will return ['1', ' 2', ' 3'] """ # If the string is in incorrect format, raises an error if string[0] != '(' or string[-1] != ')': raise NotWellFormed(f"'{string}' missing initial or final parentheses") # If given a single argument '(x)', returns ['x'] elif ',' not in string: return [string[1:-1]] else: num_parentheses_left = 0 num_parentheses_right = 0 comma_indexes = [0] argum_list = list() for x in range(0, len(string)): if string[x] == '(': num_parentheses_left += 1 elif string[x] == ')': num_parentheses_right += 1 elif string[x] == comma_separator: if num_parentheses_left == num_parentheses_right + 1: argum_list.append(string[comma_indexes[-1] + 1:x]) comma_indexes.append(x) argum_list.append(string[comma_indexes[-1] + 1:-1]) # the last argument return argum_list def get_main_constant(string, infix_cts, outer_parentheses=True): """ Searches for a constant that has 1 more left parenthesis open than right (or the same amount if outer_parentheses is set to False) Returns the constant and its index in the string If it does not find one, returns None If it finds more than one, raises NotWellFormed """ num_parentheses_left = 0 num_parentheses_right = 0 ct_present = False binary_ct = None binary_ct_index = None for x in range(len(string)): if string[x] == '(': num_parentheses_left += 1 elif string[x] == ')': num_parentheses_right += 1 else: for infix_ct in infix_cts: if string[x:x+len(infix_ct)] == infix_ct: if (outer_parentheses and num_parentheses_left == num_parentheses_right + 1) or \ (not outer_parentheses and num_parentheses_left == num_parentheses_right): # Do this instead of returning immediately to avoid things like (p v q v r) if ct_present: raise NotWellFormed(f"{string} contains more than one top-level binary operator") binary_ct = infix_ct binary_ct_index = x ct_present = True return binary_ct, binary_ct_index def get_last_opening_parenthesis(string): """ Returns index of the the parenthesis that opens the last closing parenthesis For example, in "∀x ∈ f(x) (Px v (Qx v Rx))" will return the index of the parenthesis before Px """ num_parentheses_left = 0 num_parentheses_right = 0 for char_index in range(len(string)-1, -1, -1): if string[char_index] == '(': num_parentheses_left += 1 if num_parentheses_left == num_parentheses_right: return char_index elif string[char_index] == ')': num_parentheses_right += 1 def get_closing_parenthesis(string): """ Given a string that starts with a parenthesis, e.g. (1+1)v0=0 returns the index of the closing parenthesis of the initial parenthesis """ num_parentheses_left = 0 num_parentheses_right = 0 for char_index in range(len(string)): if string[char_index] == '(': num_parentheses_left += 1 elif string[char_index] == ')': num_parentheses_right += 1 if num_parentheses_right == num_parentheses_left: return char_index # ---------------------------------------------------------------------------------------------------------------------- # Standard Godel encoding and decoding def godel_encode(string): """Godel encoding function for the language logics.instances.predicate.languages.arithmetic_truth_language Codes an *unparsed sentence* (the string you would give to the parser). Works as follows: * Constant ``"0"`` is represented by 0 * Auxiliary symbols begin with 1 (e.g. ``"("`` is 19, ``")"`` is 199) * Connectives begin with 2 (e.g. ``"~"`` is 29, ``"∧"`` is 299, ``"∨"`` is 2999) * Quantifiers begin with 3 (e.g. ``"∀"`` is 39, ``"∃"`` is 399) * Predicates begin with 4 (e.g. ``"="`` is 49, ``"Tr"`` is 49999) * Variables with 5, Predicate variables with 6 (e.g. ``"x"`` is 51, ``"x1"`` is 519, ``"X"`` is 61) * Metavariables and sentential constants begin with 7 (e.g. ``"A"`` is 79, ``"λ"`` is 79999) * Function symbols begin with 8 (e.g. ``"s"`` is 89, ``"+"`` is 899) Returns ------- str The *numeral* representing the Godel number of the sentence Raises ------ logics.classes.exceptions.NotWellFormed If it detects a character that is none of the above. Note that whitespace is taken as non-recognized. Examples -------- >>> from logics.utils.parsers.parser_utils import godel_encode >>> godel_encode('0=0') '0490' >>> godel_encode('0 = 0') Traceback (most recent call last): ... logics.classes.exceptions.NotWellFormed: Non-recognized character in Godel encoding >>> godel_encode('s(0)+s(0)=s(s(0))') '891901998998919019949891989190199199' >>> godel_encode('1+1=2') # Remember that arithmetic has only 0 as individual constant Traceback (most recent call last): ... logics.classes.exceptions.NotWellFormed: Non-recognized character 1 in Godel encoding >>> godel_encode('∀x(~0=0)') '395119290490199' >>> godel_encode('forall x (0=0)') Traceback (most recent call last): ... logics.classes.exceptions.NotWellFormed: Non-recognized character f in Godel encoding Notes ----- You will probably not need to call this function directly, the parser will call it for you, see below. """ new_string = '' current_index = 0 skip_characters = 0 for char in string: if skip_characters != 0: skip_characters -= 1 else: # Constant 0 is represented by 0 if char == '0': new_string += '0' # Auxiliary symbols begin with 1 elif char == '(': new_string += '19' elif char == ')': new_string += '199' elif char == ',': new_string += '1999' # Connectives begin with 2 elif char == '~': new_string += '29' elif char == '∧': new_string += '299' elif char == '∨': new_string += '2999' elif char == '→': new_string += '29999' elif char == '↔': new_string += '299999' # Quantifiers begin with 3 elif char == '∀': new_string += '39' elif char == '∃': new_string += '399' elif char == '∈': new_string += '3999' # Predicates 4 elif char == '=': new_string += '49' elif char == '>': new_string += '499' elif char == '<': new_string += '4999' elif char == 'T' and string[current_index+1 == 'r']: new_string += '49999' skip_characters += 1 # Variables 5, Predicate variables 6 elif char == 'x' or char == 'y' or char == 'z' or char == 'X' or char == 'Y' or char == 'Z': # begin with x 51 if char == 'x': new_string += '51' # begin with y 52 elif char == 'y': new_string += '52' # begin with z 53 elif char == 'z': new_string += '53' # begin with X 61 elif char == 'X': new_string += '61' # begin with Y 62 elif char == 'Y': new_string += '62' # begin with Z 63 elif char == 'Z': new_string += '63' var_number = 0 for char2_index in range(current_index + 1, len(string)): if string[char2_index].isdigit(): var_number = int(string[current_index+1:char2_index+1]) skip_characters += 1 else: break if var_number != 0: new_string += '9' * var_number # Metavariables and sentential constants 7 elif char == 'A': new_string += '79' elif char == 'B': new_string += '799' elif char == 'C': new_string += '7999' elif char == 'λ': new_string += '79999' # Function symbols 8 elif char == 's': new_string += '89' elif char == '+': new_string += '899' elif char == '*' and string[current_index + 1] != '*': new_string += '8999' elif char == '*' and string[current_index + 1] == '*': new_string += '89999' skip_characters += 1 elif char == 'q' and string[current_index:current_index + 5] == 'quote': new_string += '899999' skip_characters += 4 else: raise NotWellFormed(f'Non-recognized character {char} in Godel encoding') current_index += 1 return new_string def godel_decode(string): """Godel decoding function for the language logics.instances.predicate.languages.arithmetic_truth_language Reverses the function above. Examples -------- >>> from logics.utils.parsers.parser_utils import godel_decode >>> godel_decode('0490') '0=0' >>> godel_decode('891901998998919019949891989190199199') 's(0)+s(0)=s(s(0))' >>> godel_decode('395119290490199') '∀x(~0=0)' """ new_string = '' current_index = 0 skip_characters = 0 for char in string: if skip_characters != 0: skip_characters -= 1 else: # Individual constant 0 if char == '0': new_string += '0' # Auxiliary symbols 1 elif char == '1': if string[current_index:current_index + 4] == '1999': new_string += ',' skip_characters += 3 elif string[current_index:current_index + 3] == '199': new_string += ')' skip_characters += 2 elif string[current_index:current_index + 2] == '19': new_string += '(' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') # Connectives 2 elif char == '2': if string[current_index:current_index + 6] == '299999': new_string += '↔' skip_characters += 5 elif string[current_index:current_index + 5] == '29999': new_string += '→' skip_characters += 4 elif string[current_index:current_index + 4] == '2999': new_string += '∨' skip_characters += 3 elif string[current_index:current_index + 3] == '299': new_string += '∧' skip_characters += 2 elif string[current_index:current_index + 2] == '29': new_string += '~' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') # Quantifiers 3 elif char == '3': if string[current_index:current_index + 4] == '3999': new_string += '∈' skip_characters += 3 elif string[current_index:current_index + 3] == '399': new_string += '∃' skip_characters += 2 elif string[current_index:current_index + 2] == '39': new_string += '∀' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') # Predicates 4 elif char == '4': if string[current_index:current_index + 5] == '49999': new_string += 'Tr' skip_characters += 4 elif string[current_index:current_index + 4] == '4999': new_string += '<' skip_characters += 3 elif string[current_index:current_index + 3] == '499': new_string += '>' skip_characters += 2 elif string[current_index:current_index + 2] == '49': new_string += '=' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') # Variables 5 and 6 elif char == '5' or char == '6': if string[current_index:current_index + 2] == '51': new_string += 'x' elif string[current_index:current_index + 2] == '52': new_string += 'y' elif string[current_index:current_index + 2] == '53': new_string += 'z' elif string[current_index:current_index + 2] == '61': new_string += 'X' elif string[current_index:current_index + 2] == '62': new_string += 'Y' elif string[current_index:current_index + 2] == '63': new_string += 'Z' skip_characters += 1 var_number = 0 for char2_index in range(current_index + 2, len(string)): if string[char2_index] == '9': var_number += 1 skip_characters += 1 else: break if var_number != 0: new_string += str(var_number) # Metavariables 7 elif char == '7': if string[current_index:current_index + 5] == '79999': new_string += 'λ' skip_characters += 4 elif string[current_index:current_index + 4] == '7999': new_string += 'C' skip_characters += 3 elif string[current_index:current_index + 3] == '799': new_string += 'B' skip_characters += 2 elif string[current_index:current_index + 2] == '79': new_string += 'A' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') # Function symbols 8 elif char == '8': if string[current_index:current_index + 6] == '899999': new_string += 'quote' skip_characters += 5 elif string[current_index:current_index + 5] == '89999': new_string += '**' skip_characters += 4 elif string[current_index:current_index + 4] == '8999': new_string += '*' skip_characters += 3 elif string[current_index:current_index + 3] == '899': new_string += '+' skip_characters += 2 elif string[current_index:current_index + 2] == '89': new_string += 's' skip_characters += 1 else: raise NotWellFormed(f'Incorrect Godel encoding') else: raise NotWellFormed(f'Non-recognized character {char} in Godel encoding') current_index += 1 return new_string
StarcoderdataPython
3202070
import functools import inspect import mwbot.cli as cli import mwbot.cred as cred import mwbot.util as util from mwbot.bot import Task __all__ = [] export = util.append_name_wrapper(__all__) export(Task) def require_task(func): @functools.wraps(func) def wrapper(cls, *args, **kwargs): if type(cls) != type: raise TypeError('Not a class') if not issubclass(cls, Task): raise TypeError('Not an instance of Task') return func(cls, *args, **kwargs) return wrapper @export @require_task def main(cls): last_frame = inspect.stack()[2][0] if last_frame.f_globals['__name__'] == '__main__': while True: try: cls().main() break except cred.CredNotFoundError: try: if cli.prompt_yn('User not found. Create new user?', default=True): creds = cli.prompt_new_user() creds.save() else: break except cli.AbortInput: print('') break return cls @export def arg(*args, **kwargs): @require_task def wrapper(cls): if not hasattr(cls, '_arguments'): cls._arguments = [] cls._arguments.append(cli.ArgWrapper(*args, **kwargs)) return cls return wrapper
StarcoderdataPython
11326555
<gh_stars>0 """ Модульные тесты для проверки задания №6 с сайта: https://pythonworld.ru/osnovy/tasks.html """ import unittest from prime import is_prime class TestIsPrime(unittest.TestCase): """ Набор тестов для проверки поведения функции is_prime(). """ def test_prime(self): """ Тестовый случай с числом, которое является простым. """ self.assertEqual(is_prime(107), True) def test_not_prime(self): """ Тестовый случай с числом, которое не является простым. """ self.assertEqual(is_prime(32), False) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1743014
import logging import os import azure.functions as func from azure.storage.blob import BlobClient, BlobProperties, BlobType, ContentSettings def main(myblob: func.InputStream): logging.info(f"Python blob trigger function processed blob \n" f"Name: {myblob.name}\n" f"Blob Size: {myblob.length} bytes") input_account_key = os.environ["input_account_key"] input_container_name = os.environ["input_container_name"] output_connection_string = os.environ["output_connection_string"] output_container_name = os.environ["output_container_name"] logging.info( f"Instantiate client for {myblob.name} in {input_container_name}") in_client = BlobClient.from_blob_url(myblob.uri, input_account_key) logging.info( f"Get Blob Properties for {myblob.name} from {input_container_name}") properties = in_client.get_blob_properties() name = properties.name content_type = properties.content_settings.content_type logging.info( f"Instantiate client for {myblob.name} in {output_container_name}") out_client = BlobClient.from_connection_string( output_connection_string, output_container_name, name) logging.info(f"Copy {name}\n" f"from {input_container_name} to {output_container_name}\n" f"with content-type {content_type}") out_client.upload_blob( data=myblob, blob_type=BlobType.BlockBlob, length=myblob.length, overwrite=True, content_settings=ContentSettings(content_type=content_type)) logging.info(f"Upload complete for {output_container_name}/{name}")
StarcoderdataPython
233318
<filename>tests/core/helpers/test_helpers_iam.py # -*- coding: utf-8 -*- import pytest from cottonformation.core import helpers from cottonformation.tests.helpers import jprint class TestAssumeRolePolicyBuilder: def test_build(self): assert helpers.iam.AssumeRolePolicyBuilder( helpers.iam.ServicePrincipal.ec2(), helpers.iam.ServicePrincipal.awslambda(), helpers.iam.AccountPrincipal("111122223333", external_id="ext", mfa_auth=True), ).build() == { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "ec2.amazonaws.com" }, "Action": "sts:AssumeRole" }, { "Effect": "Allow", "Principal": { "Service": "lambda.amazonaws.com" }, "Action": "sts:AssumeRole" }, { "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::111122223333:root" }, "Action": "sts:AssumeRole", "Condition": { "StringEquals": { "sts:ExternalId": "ext" }, "Bool": { "aws:MultiFactorAuthPresent": "true" } } } ] } class TestAwsManagedPolicy: def test(self): _ = helpers.iam.AwsManagedPolicy.AmazonEC2FullAccess _ = helpers.iam.AwsManagedPolicy.AWSLambdaBasicExecutionRole if __name__ == "__main__": import os basename = os.path.basename(__file__) pytest.main([basename, "-s", "--tb=native"])
StarcoderdataPython
8053788
<reponame>ymarkovitch/ipp-crypto #=============================================================================== # Copyright 2017-2019 Intel Corporation # All Rights Reserved. # # If this software was obtained under the Intel Simplified Software License, # the following terms apply: # # The source code, information and material ("Material") contained herein is # owned by Intel Corporation or its suppliers or licensors, and title to such # Material remains with Intel Corporation or its suppliers or licensors. The # Material contains proprietary information of Intel or its suppliers and # licensors. The Material is protected by worldwide copyright laws and treaty # provisions. No part of the Material may be used, copied, reproduced, # modified, published, uploaded, posted, transmitted, distributed or disclosed # in any way without Intel's prior express written permission. No license under # any patent, copyright or other intellectual property rights in the Material # is granted to or conferred upon you, either expressly, by implication, # inducement, estoppel or otherwise. Any license under such intellectual # property rights must be express and approved by Intel in writing. # # Unless otherwise agreed by Intel in writing, you may not remove or alter this # notice or any other notice embedded in Materials by Intel or Intel's # suppliers or licensors in any way. # # # If this software was obtained under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # # Intel(R) Integrated Performance Primitives (Intel(R) IPP) Cryptography # import sys import os Header = sys.argv[1] ## Intel(R) IPP Crypto dispatcher will be generated for fucntions in Header OutDir = sys.argv[2] ## Output folder for generated files headerID= False ## Header ID define to avoid multiple include like: #if !defined( __IPPCP_H__ ) from gen_disp_common import readNextFunction HDR= open( Header, 'r' ) h= HDR.readlines() HDR.close() isFunctionFound = True curLine = 0 FunName = "" filename = "jmp_dynamic_lib" DISP= open( os.sep.join([OutDir, filename + ".asm"]), 'w' ) DISP.write(""" option casemap :none .code IPPAPI MACRO name:req extrn d&name&:qword name proc public jmp d&name& name endp ENDM """) while (isFunctionFound == True): result = readNextFunction(h, curLine, headerID) curLine = result['curLine'] FunName = result['FunName'] isFunctionFound = result['success'] if (isFunctionFound == True): DISP.write("IPPAPI {}\n".format(FunName)) DISP.write("end\n") DISP.close()
StarcoderdataPython
3366710
<gh_stars>1-10 import Utils from Utils import logCall import wx import six import wx.lib.intctrl import Model from HighPrecisionTimeEdit import HighPrecisionTimeEdit from Undo import undo import sys import random import datetime #------------------------------------------------------------------------------------------------ class CorrectNumberDialog( wx.Dialog ): def __init__( self, parent, entry, id = wx.ID_ANY ): wx.Dialog.__init__( self, parent, id, "Correct Number", style=wx.DEFAULT_DIALOG_STYLE|wx.TAB_TRAVERSAL ) self.entry = entry bs = wx.GridBagSizer(vgap=5, hgap=5) self.numEdit = wx.lib.intctrl.IntCtrl( self, size=(64,-1), style=wx.TE_RIGHT, value=int(self.entry.num), allow_none=False, min=1, max=9999 ) border = 4 bs.Add( wx.StaticText( self, label = u'{}: {} {}: {}'.format( _('Rider Lap'), self.entry.lap, _('Race Time'), Utils.formatTime(self.entry.t, True) )), pos=(0,0), span=(1,2), border = border, flag=wx.GROW|wx.ALL ) bs.Add( wx.StaticText( self, label = u'{}:'.format(_("Rider"))), pos=(1,0), span=(1,1), border = border, flag=wx.LEFT|wx.TOP|wx.ALIGN_RIGHT|wx.ALIGN_CENTRE_VERTICAL ) bs.Add( self.numEdit, pos=(1,1), span=(1,2), border = border, flag=wx.RIGHT|wx.TOP|wx.ALIGN_LEFT ) choices = [u'{}:'.format(_("Race Time"))] race = Model.race if race and race.startTime: choices.append( _("24 hr Clock Time:") ) self.timeChoice = wx.Choice( self, -1, choices = choices ) self.timeChoiceLastSelection = 0 self.timeChoice.SetSelection( self.timeChoiceLastSelection ) self.timeChoice.Bind( wx.EVT_CHOICE, self.doTimeChoice, self.timeChoice ) self.timeMsEdit = HighPrecisionTimeEdit( self, seconds=entry.t, size=(120, -1) ) bs.Add( self.timeChoice, pos=(2,0), span=(1,1), border = border, flag=wx.ALIGN_RIGHT|wx.LEFT|wx.BOTTOM|wx.ALIGN_CENTRE_VERTICAL ) bs.Add( self.timeMsEdit, pos=(2,1), span=(1,1), border = border, flag=wx.RIGHT|wx.BOTTOM|wx.ALIGN_LEFT ) bs.Add( wx.StaticText( self, label = u'{}:'.format(_("Lap Note"))), pos=(3,0), span=(1,1), border = border, flag=wx.LEFT|wx.TOP|wx.ALIGN_RIGHT|wx.ALIGN_CENTRE_VERTICAL ) self.noteEdit = wx.TextCtrl( self, size=(250,-1) ) if race: self.noteEdit.SetValue( getattr(race, 'lapNote', {}).get( (self.entry.num, self.entry.lap), u'' ) ) bs.Add( self.noteEdit, pos=(3,1), span=(1,2), border = border, flag=wx.RIGHT|wx.TOP|wx.ALIGN_LEFT ) self.okBtn = wx.Button( self, wx.ID_OK ) self.Bind( wx.EVT_BUTTON, self.onOK, self.okBtn ) self.cancelBtn = wx.Button( self, wx.ID_CANCEL ) self.Bind( wx.EVT_BUTTON, self.onCancel, self.cancelBtn ) border = 4 bs.Add( self.okBtn, pos=(4, 0), span=(1,1), border = border, flag=wx.ALL ) self.okBtn.SetDefault() bs.Add( self.cancelBtn, pos=(4, 1), span=(1,1), border = border, flag=wx.ALL ) self.SetSizerAndFit(bs) bs.Fit( self ) self.CentreOnParent(wx.BOTH) wx.CallAfter( self.SetFocus ) def doTimeChoice( self, event ): iSelection = event.GetSelection() if iSelection == self.timeChoiceLastSelection: return if not (Model.race and Model.race.startTime): return dtStart = Model.race.startTime t = self.timeMsEdit.GetSeconds() if iSelection == 0: # Clock time to race time. dtInput = datetime.datetime(dtStart.year, dtStart.month, dtStart.day) + datetime.timedelta(seconds = t) t = (dtInput - dtStart).total_seconds() else: # Race time to clock time. dtInput = dtStart + datetime.timedelta( seconds = t ) t = (dtInput - datetime.datetime(dtStart.year, dtStart.month, dtStart.day)).total_seconds() self.timeMsEdit.SetSeconds( t ) self.timeChoiceLastSelection = iSelection def onOK( self, event ): num = self.numEdit.GetValue() t = self.timeMsEdit.GetSeconds() if self.timeChoice.GetSelection() == 1 and Model.race and Model.race.startTime: dtStart = Model.race.startTime dtInput = datetime.datetime(dtStart.year, dtStart.month, dtStart.day) + datetime.timedelta(seconds = t) if dtInput < dtStart: Utils.MessageOK( self, u'\n\n'.join( [_('Cannot Enter Clock Time Before Race Start.'), _('(reminder: clock time is in 24-hour format)')] ), _('Time Entry Error'), iconMask = wx.ICON_ERROR ) return t = (dtInput - dtStart).total_seconds() race = Model.race offset = race.getStartOffset( num ) if t <= offset: Utils.MessageOK( self, u'{}: {}\n\n{}\n{}'.format( _('Cannot enter a time that is before the Category Start Offset'), Utils.formatTime(offset, highPrecision=True), _('All times earlier than the Start Offset are ignored.'), _('Please enter a time after the Start Offset.') ), _('Time Entry Error'), iconMask = wx.ICON_ERROR ) return race.lapNote = getattr( race, 'lapNote', {} ) if self.noteEdit.GetValue() != race.lapNote.get( (self.entry.num, self.entry.lap), u'' ) or self.entry.num != num or self.entry.t != t: undo.pushState() note = self.noteEdit.GetValue().strip() if not note: race.lapNote.pop( (self.entry.num, self.entry.lap), None ) else: race.lapNote[(self.entry.num, self.entry.lap)] = note if self.entry.num != num or self.entry.t != t: rider = race.getRider( num ) if self.entry.lap != 0: race.numTimeInfo.change( self.entry.num, self.entry.t, t ) race.deleteTime( self.entry.num, self.entry.t ) race.addTime( num, t + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) else: race.numTimeInfo.change( self.entry.num, rider.firstTime, t ) rider.firstTime = t race.setChanged() Utils.refresh() self.EndModal( wx.ID_OK ) def onCancel( self, event ): self.EndModal( wx.ID_CANCEL ) #------------------------------------------------------------------------------------------------ class ShiftNumberDialog( wx.Dialog ): def __init__( self, parent, entry, id = wx.ID_ANY ): wx.Dialog.__init__( self, parent, id, "Shift Time", style=wx.DEFAULT_DIALOG_STYLE|wx.TAB_TRAVERSAL ) self.entry = entry bs = wx.GridBagSizer(vgap=5, hgap=5) self.numEdit = wx.lib.intctrl.IntCtrl( self, size=(40, -1), style=wx.TE_RIGHT, value=int(self.entry.num), allow_none=False, min=1, max=9999 ) shiftOptions = [_('Earlier'), _('Later')] self.shiftBox = wx.RadioBox( self, wx.ID_ANY, _('Shift Direction'), wx.DefaultPosition, wx.DefaultSize, shiftOptions, 2, wx.RA_SPECIFY_COLS ) self.Bind(wx.EVT_RADIOBOX, self.updateNewTime, self.shiftBox) self.timeMsEdit = HighPrecisionTimeEdit( self ) self.timeMsEdit.Bind( wx.EVT_TEXT, self.updateNewTime ) self.newTime = wx.StaticText( self, label = u"00:00:00") border = 8 bs.Add( wx.StaticText( self, label = u'{}: {} {}: {}'.format( _('Rider Lap'), self.entry.lap, _('Race Time'), Utils.formatTime(self.entry.t,True)) ), pos=(0,0), span=(1,2), border = border, flag=wx.GROW|wx.ALL ) bs.Add( wx.StaticText( self, label = u'{}:'.format(_("Rider"))), pos=(1,0), span=(1,1), border = border, flag=wx.LEFT|wx.TOP|wx.ALIGN_RIGHT ) bs.Add( self.numEdit, pos=(1,1), span=(1,2), border = border, flag=wx.GROW|wx.RIGHT|wx.TOP ) bs.Add( self.shiftBox, pos=(2, 0), span=(1, 2), border = border, flag=wx.GROW|wx.LEFT|wx.RIGHT|wx.BOTTOM ) bs.Add( wx.StaticText( self, label = u'{}:'.format(_("Shift Time"))), pos=(3,0), span=(1,1), border = border, flag=wx.ALIGN_RIGHT|wx.LEFT|wx.RIGHT|wx.BOTTOM ) bs.Add( self.timeMsEdit, pos=(3,1), span=(1,1), border = border, flag=wx.GROW|wx.LEFT|wx.RIGHT ) bs.Add( self.newTime, pos=(4,0), span=(1,2), border = border, flag=wx.GROW|wx.LEFT|wx.RIGHT ) self.okBtn = wx.Button( self, wx.ID_OK ) self.Bind( wx.EVT_BUTTON, self.onOK, self.okBtn ) self.cancelBtn = wx.Button( self, wx.ID_CANCEL ) self.Bind( wx.EVT_BUTTON, self.onCancel, self.cancelBtn ) bs.Add( self.okBtn, pos=(5, 0), span=(1,1), border = border, flag=wx.ALL ) self.okBtn.SetDefault() bs.Add( self.cancelBtn, pos=(5, 1), span=(1,1), border = border, flag=wx.ALL ) self.SetSizerAndFit(bs) bs.Fit( self ) wx.CallAfter( self.updateNewTime ) self.CentreOnParent(wx.BOTH) wx.CallAfter( self.SetFocus ) def getNewTime( self ): tAdjust = self.timeMsEdit.GetSeconds() * (-1 if self.shiftBox.GetSelection() == 0 else 1) return self.entry.t + tAdjust def onOK( self, event ): num = self.numEdit.GetValue() t = self.getNewTime() if self.entry.num != num or self.entry.t != t: undo.pushState() with Model.LockRace() as race: rider = race.getRider( num ) if (self.entry.lap or 0) != 0: race.numTimeInfo.change( self.entry.num, self.entry.t, t ) race.deleteTime( self.entry.num, self.entry.t ) race.addTime( num, t + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) else: race.numTimeInfo.change( self.entry.num, rider.firstTime, t ) rider.firstTime = t race.setChanged() Utils.refresh() self.EndModal( wx.ID_OK ) def onCancel( self, event ): self.EndModal( wx.ID_CANCEL ) def updateNewTime( self, event = None ): s = u'{}: {} {}: {}'.format(_('Was'), Utils.formatTime(self.entry.t,True), _('Now'), Utils.formatTime(self.getNewTime(),True) ) self.newTime.SetLabel( s ) #------------------------------------------------------------------------------------------------ class InsertNumberDialog( wx.Dialog ): def __init__( self, parent, entry, id = wx.ID_ANY ): wx.Dialog.__init__( self, parent, id, "Insert Number", style=wx.DEFAULT_DIALOG_STYLE|wx.TAB_TRAVERSAL ) self.entry = entry bs = wx.GridBagSizer(vgap=5, hgap=5) self.numEdit = wx.lib.intctrl.IntCtrl( self, style=wx.TE_RIGHT, value=int(self.entry.num), allow_none=False, min=1, max=9999 ) self.okBtn = wx.Button( self, wx.ID_OK ) self.Bind( wx.EVT_BUTTON, self.onOK, self.okBtn ) self.cancelBtn = wx.Button( self, wx.ID_CANCEL ) self.Bind( wx.EVT_BUTTON, self.onCancel, self.cancelBtn ) border = 8 bs.Add( wx.StaticText( self, label = u'{}: {} {}: {}'.format( _('Rider Lap'), self.entry.lap, _('Race Time'), Utils.formatTime(self.entry.t,True)) ), pos=(0,0), span=(1,2), border = border, flag=wx.GROW|wx.ALL ) bs.Add( wx.StaticText( self, label = u'{}:'.format(_('Original')) ), pos=(1,0), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.LEFT|wx.ALIGN_RIGHT ) bs.Add( wx.StaticText( self, label = u'{}'.format(self.entry.num) ), pos=(1,1), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.RIGHT|wx.ALIGN_BOTTOM ) shiftOptions = [_('Before Entry'), _('After Entry')] self.beforeAfterBox = wx.RadioBox( self, wx.ID_ANY, _('Insert'), wx.DefaultPosition, wx.DefaultSize, shiftOptions, 2, wx.RA_SPECIFY_COLS ) bs.Add( self.beforeAfterBox, pos=(2,0), span=(1,2), border = border, flag=wx.TOP|wx.LEFT|wx.ALIGN_RIGHT ) bs.Add( wx.StaticText( self, label = u'{}'.format(_('Number')) ), pos=(3,0), span=(1,1), border = border, flag=wx.TOP|wx.LEFT|wx.ALIGN_RIGHT ) bs.Add( self.numEdit, pos=(3,1), span=(1,1), border = border, flag=wx.TOP|wx.RIGHT|wx.ALIGN_BOTTOM ) bs.Add( self.okBtn, pos=(4, 0), span=(1,1), border = border, flag=wx.ALL ) self.okBtn.SetDefault() bs.Add( self.cancelBtn, pos=(4, 1), span=(1,1), border = border, flag=wx.ALL|wx.ALIGN_RIGHT ) self.SetSizerAndFit(bs) bs.Fit( self ) self.CentreOnParent(wx.BOTH) wx.CallAfter( self.SetFocus ) def onOK( self, event ): num = self.numEdit.GetValue() if not num or num == self.entry.num: return tAdjust = 0.0001 + random.random() / 10000.0 # Add some randomness so that all inserted times will be unique. if self.beforeAfterBox.GetSelection() == 0: tAdjust = -tAdjust tInsert = self.entry.t + tAdjust undo.pushState() with Model.LockRace() as race: rider = race.getRider( num ) race.numTimeInfo.add( num, tInsert ) race.addTime( num, tInsert + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) Utils.refresh() self.EndModal( wx.ID_OK ) def onCancel( self, event ): self.EndModal( wx.ID_CANCEL ) #------------------------------------------------------------------------------------------------ class SplitNumberDialog( wx.Dialog ): def __init__( self, parent, entry, id = wx.ID_ANY ): wx.Dialog.__init__( self, parent, id, "Split Number", style=wx.DEFAULT_DIALOG_STYLE|wx.TAB_TRAVERSAL ) self.entry = entry bs = wx.GridBagSizer(vgap=5, hgap=5) self.numEdit1 = wx.lib.intctrl.IntCtrl( self, style=wx.TE_RIGHT, value=int(self.entry.num), allow_none=False, min=1, max=9999 ) self.numEdit2 = wx.lib.intctrl.IntCtrl( self, style=wx.TE_RIGHT, value=int(self.entry.num), allow_none=False, min=1, max=9999 ) self.okBtn = wx.Button( self, wx.ID_OK ) self.Bind( wx.EVT_BUTTON, self.onOK, self.okBtn ) self.cancelBtn = wx.Button( self, wx.ID_CANCEL ) self.Bind( wx.EVT_BUTTON, self.onCancel, self.cancelBtn ) border = 8 bs.Add( wx.StaticText( self, label = u'{}: {} {}: {}'.format( _('Rider Lap'), self.entry.lap, _('Race Time'), Utils.formatTime(self.entry.t,True)) ), pos=(0,0), span=(1,2), border = border, flag=wx.GROW|wx.ALL ) bs.Add( wx.StaticText( self, label = _('Num1:') ), pos=(1,0), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.LEFT|wx.ALIGN_RIGHT ) bs.Add( self.numEdit1, pos=(1,1), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.RIGHT|wx.ALIGN_BOTTOM ) bs.Add( wx.StaticText( self, label =_('Num2:') ), pos=(2,0), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.LEFT|wx.ALIGN_RIGHT ) bs.Add( self.numEdit2, pos=(2,1), span=(1,1), border = border, flag=wx.TOP|wx.BOTTOM|wx.RIGHT|wx.ALIGN_BOTTOM ) bs.Add( self.okBtn, pos=(3, 0), span=(1,1), border = border, flag=wx.ALL ) self.okBtn.SetDefault() bs.Add( self.cancelBtn, pos=(3, 1), span=(1,1), border = border, flag=wx.ALL|wx.ALIGN_RIGHT ) self.SetSizerAndFit(bs) bs.Fit( self ) self.CentreOnParent(wx.BOTH) wx.CallAfter( self.SetFocus ) def onOK( self, event ): num1 = self.numEdit1.GetValue() num2 = self.numEdit2.GetValue() if not num1 or not num2 or num1 == num2: return t1 = self.entry.t t2 = self.entry.t + 0.0001 * random.random() undo.pushState() with Model.LockRace() as race: rider = race.getRider( self.entry.num ) race.numTimeInfo.delete( self.entry.num, self.entry.t ) race.numTimeInfo.add( num1, t1 ) race.numTimeInfo.add( num2, t2 ) race.deleteTime( self.entry.num, self.entry.t ) race.addTime( num1, t1 + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) race.addTime( num2, t2 + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) Utils.refresh() self.EndModal( wx.ID_OK ) def onCancel( self, event ): self.EndModal( wx.ID_CANCEL ) #------------------------------------------------------------------------------------------------ @logCall def CorrectNumber( parent, entry ): dlg = CorrectNumberDialog( parent, entry ) dlg.ShowModal() dlg.Destroy() @logCall def ShiftNumber( parent, entry ): dlg = ShiftNumberDialog( parent, entry ) dlg.ShowModal() dlg.Destroy() @logCall def InsertNumber( parent, entry ): dlg = InsertNumberDialog( parent, entry ) dlg.ShowModal() dlg.Destroy() @logCall def SplitNumber( parent, entry ): if (entry.lap or 0) == 0: return dlg = SplitNumberDialog( parent, entry ) dlg.ShowModal() dlg.Destroy() @logCall def DeleteEntry( parent, entry ): if (entry.lap or 0) == 0: return race = Model.race raceStartTimeOfDay = Utils.StrToSeconds(race.startTime.strftime('%H:%M:%S.%f')) if race and race.startTime else None dlg = wx.MessageDialog(parent, u'{}: {}\n{}: {}\n{}: {}\n{}: {}\n\n{}?'.format( _('Bib'), entry.num, _('Lap'), entry.lap, _('Race Time'), Utils.formatTime(entry.t, True), _('Clock Time'), Utils.formatTime(entry.t + raceStartTimeOfDay, True) if raceStartTimeOfDay is not None else u'', _('Confirm Delete')), _('Delete Entry'), wx.OK | wx.CANCEL | wx.ICON_QUESTION ) # dlg.CentreOnParent(wx.BOTH) if dlg.ShowModal() == wx.ID_OK: undo.pushState() with Model.LockRace() as race: if race: race.numTimeInfo.delete( entry.num, entry.t ) race.deleteTime( entry.num, entry.t ) Utils.refresh() dlg.Destroy() @logCall def SwapEntry( a, b ): race = Model.race if not race: return riderA = race.getRider( a.num ) riderB = race.getRider( b.num ) # Add some numeric noise if the times are equal. if a.t == b.t: rAdjust = random.random() / 100000.0 if a.num < b.num: a_tNew, b_tNew = a.t, b.t + rAdjust else: a_tNew, b_tNew = a.t + rAdjust, b.t else: a_tNew, b_tNew = a.t, b.t race.numTimeInfo.change( a.num, a.t, b_tNew, Model.NumTimeInfo.Swap ) race.numTimeInfo.change( b.num, b.t, a_tNew, Model.NumTimeInfo.Swap ) race.deleteTime( a.num, a.t ) race.deleteTime( b.num, b.t ) race.addTime( a.num, b_tNew + ((riderB.firstTime or 0.0) if race.isTimeTrial else 0.0) ) race.addTime( b.num, a_tNew + ((riderA.firstTime or 0.0) if race.isTimeTrial else 0.0) ) class StatusChangeDialog( wx.Dialog ): def __init__( self, parent, message, title, t=None, externalData=None, id=wx.ID_ANY ): wx.Dialog.__init__( self, parent, id, title, style=wx.DEFAULT_DIALOG_STYLE|wx.TAB_TRAVERSAL ) font = wx.Font(12, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL) self.message = wx.StaticText( self, label=message ) self.message.SetFont( font ) if externalData is not None: self.externalData = wx.StaticText( self, label=externalData ) self.externalData.SetFont( font ) else: self.externalData = None if t is not None: self.entryTime = wx.CheckBox( self, label=u'{}: {}'.format(_('and Enter Last Lap Time at'), Utils.formatTime(t)) ) self.entryTime.SetValue( True ) self.entryTime.SetFont( font ) else: self.entryTime = None self.okBtn = wx.Button( self, wx.ID_OK ) self.Bind( wx.EVT_BUTTON, self.onOK, self.okBtn ) self.cancelBtn = wx.Button( self, wx.ID_CANCEL ) self.Bind( wx.EVT_BUTTON, self.onCancel, self.cancelBtn ) border = 16 vs = wx.BoxSizer( wx.VERTICAL ) vs.Add( self.message, flag=wx.ALL, border=border ) if self.externalData: vs.Add( self.externalData, flag=wx.RIGHT|wx.LEFT|wx.BOTTOM, border=border ) if self.entryTime: vs.Add( self.entryTime, flag=wx.RIGHT|wx.LEFT|wx.BOTTOM, border=border ) hs = wx.BoxSizer( wx.HORIZONTAL ) hs.Add( self.okBtn, flag=wx.ALL, border = border ) self.okBtn.SetDefault() hs.AddStretchSpacer() hs.Add( self.cancelBtn, flag=wx.ALL, border = border ) vs.Add( hs, flag=wx.EXPAND ) self.SetSizerAndFit( vs ) self.CentreOnParent(wx.BOTH) wx.CallAfter( self.SetFocus ) def getSetEntryTime( self ): return self.entryTime and self.entryTime.IsChecked() def onOK( self, event ): self.EndModal( wx.ID_OK ) def onCancel( self, event ): self.EndModal( wx.ID_CANCEL ) def DoStatusChange( parent, num, message, title, newStatus, lapTime=None ): if num is None: return False race = Model.race externalData = [] try: excelLink = race.excelLink externalInfo = excelLink.read() for f in ['LastName', 'FirstName', 'Team']: try: externalData.append( six.text_type(externalInfo[num][f] ) ) if f == 'Team': externalData[-1] = u'({})'.format(externalData[-1]) except KeyError: pass if len(externalData) == 3: # Format the team name slightly differently. externalData = u'{}: {}'.format( six.text_type(num), u', '.join(externalData[:-1]) ) + u' ' + externalData[-1] else: externalData = u'{}: {}'.format( six.text_type(num), u', '.join(externalData) ) if externalData else None except: externalData = None d = StatusChangeDialog(parent, message=message.format(num), title=title, externalData=externalData, t=lapTime) ret = d.ShowModal() lapTime = lapTime if d.getSetEntryTime() else None d.Destroy() if ret != wx.ID_OK: return False undo.pushState() with Model.LockRace() as race: if not race: return False if lapTime: race.addTime( num, lapTime ) rider = race.getRider( num ) rider.setStatus( newStatus ) race.setChanged() Utils.refresh() Utils.refreshForecastHistory() return True def getActionMessage( actionName ): return actionName + u' {}?' @logCall def DoDNF( parent, num, lapTime=None ): return DoStatusChange( parent, num, getActionMessage(_('DNF')), _('Confirm Did Not FINISH'), Model.Rider.DNF, lapTime ) @logCall def DoPull( parent, num, lapTime=None ): return DoStatusChange( parent, num, getActionMessage(_('Pull')), _('Confirm PULL Rider'), Model.Rider.Pulled, lapTime) @logCall def DoDNS( parent, num, lapTime=None ): return DoStatusChange( parent, num, getActionMessage(_('DNS')), _('Confirm Did Not START'), Model.Rider.DNS ) @logCall def DoDQ( parent, num, lapTime=None ): return DoStatusChange( parent, num, getActionMessage(_('DQ')), _('Confirm Disqualify'), Model.Rider.DQ ) @logCall def AddLapSplits( num, lap, times, splits ): undo.pushState() with Model.LockRace() as race: rider = race.riders[num] try: tLeft = times[lap-1] tRight = times[lap] # Split the first lap time to the same ratio as the distances. category = race.getCategory( num ) if ( lap == 1 and category is not None and category.distanceType == category.DistanceByLap and category.distance and category.firstLapDistance and category.distance != category.firstLapDistance ): flr = float(category.firstLapDistance) / float(category.distance) splitTime = (tRight - tLeft) / (flr + (splits-1)) firstLapSplitTime = splitTime * flr else: splitTime = firstLapSplitTime = (tRight - tLeft) / float(splits) newTime = tLeft for i in range( 1, splits ): newTime += (firstLapSplitTime if i == 1 else splitTime) race.numTimeInfo.add( num, newTime, Model.NumTimeInfo.Split ) race.addTime( num, newTime + ((rider.firstTime or 0.0) if race.isTimeTrial else 0.0) ) return True except (TypeError, KeyError, ValueError, IndexError) as e: Utils.logException( e, sys.exc_info() ) return False if __name__ == '__main__': app = wx.App( False ) frame = wx.Frame( None ) d = CorrectNumberDialog( frame, Model.Entry( 110, 3, 60*4+7, False ) ) d.Show() app.MainLoop()
StarcoderdataPython