id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
6524933
#coding=utf-8 import smtplib, mimetypes from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.image import MIMEImage from email.utils import COMMASPACE #mailto = ['<EMAIL>'] def sendMail(mailfrom='<EMAIL>', mailto='<EMAIL>', subject='x日志分析平台后台', content='测试内容'): msg = MIMEMultipart() #msg['From'] = "<EMAIL>" #mailto = ['<EMAIL>'] msg['To'] = COMMASPACE.join(mailto) msg['Subject'] = subject #添加邮件内容 txt = MIMEText(content) msg.attach(txt) # #添加二进制附件 # fileName = r'e:/PyQt4.rar' # ctype, encoding = mimetypes.guess_type(fileName) # if ctype is None or encoding is not None: # ctype = 'application/octet-stream' # maintype, subtype = ctype.split('/', 1) # att1 = MIMEImage((lambda f: (f.read(), f.close()))(open(fileName, 'rb'))[0], _subtype = subtype) # att1.add_header('Content-Disposition', 'attachment', filename = fileName) # msg.attach(att1) #发送邮件 smtp = smtplib.SMTP() smtp.connect('xxx.baixdu.com') #smtp.login('from', '密码') ret = smtp.sendmail(mailfrom, mailto, msg.as_string()) smtp.quit() print '邮件发送成功' ,mailto if __name__ == '__main__': mailto = ['<EMAIL>'] sendMail(mailto=mailto)
StarcoderdataPython
3579015
import dash import dash_core_components as dcc import dash_html_components as html from fbprophet import Prophet import utils.AlphaVantageUtils as av import utils.PostgresUtils as pg import utils.ModelUtils as mdl df_prices = pg.get_prices_with_features(av._TIC_MICROSOFT, av._INT_DAILY) name = pg.get_symbol_name(av._TIC_MICROSOFT) df_prices.drop(columns=['open', 'high', 'low', 'volume'], inplace=True) df_train, df_test = mdl.train_test_split(df_prices, 1000)
StarcoderdataPython
392725
<filename>main.py """ Created by Epic at 9/5/20 """ from color_format import basicConfig import speedcord from speedcord.http import Route, HttpClient, LockManager from os import environ as env from logging import getLogger, DEBUG from aiohttp import ClientSession from aiohttp.client_ws import ClientWebSocketResponse, WSMessage, WSMsgType from ujson import loads from urllib.parse import quote as uriquote from asyncio import Lock, sleep from speedcord.exceptions import NotFound, Unauthorized, Forbidden, HTTPException ws: ClientWebSocketResponse = None client = speedcord.Client(intents=1) basicConfig(getLogger()) logger = getLogger("worker") logger.setLevel(DEBUG) handlers = {} total_guilds_served = 0 class CustomHttp(HttpClient): async def request(self, route: Route, **kwargs): bucket = route.bucket for i in range(self.retry_attempts): if not self.global_lock.is_set(): self.logger.debug("Sleeping for Global Rate Limit") await self.global_lock.wait() ratelimit_lock: Lock = self.ratelimit_locks.get(bucket, Lock(loop=self.loop)) await ratelimit_lock.acquire() with LockManager(ratelimit_lock) as lockmanager: # Merge default headers with the users headers, # could probably use a if to check if is headers set? # Not sure which is optimal for speed kwargs["headers"] = { **self.default_headers, **kwargs.get("headers", {}) } # Format the reason try: reason = kwargs.pop("reason") except KeyError: pass else: if reason: kwargs["headers"]["X-Audit-Log-Reason"] = uriquote( reason, safe="/ ") r = await self.session.request(route.method, self.baseuri + route.path, **kwargs) # check if we have rate limit header information remaining = r.headers.get('X-Ratelimit-Remaining') if remaining == '0' and r.status != 429: # we've depleted our current bucket delta = float(r.headers.get("X-Ratelimit-Reset-After")) self.logger.debug( f"Ratelimit exceeded. Bucket: {bucket}. Retry after: " f"{delta}") lockmanager.defer() self.loop.call_later(delta, ratelimit_lock.release) status_code = r.status if status_code == 404: raise NotFound(r) elif status_code == 401: raise Unauthorized(r) elif status_code == 403: raise Forbidden(r, await r.text()) elif status_code == 429: if not r.headers.get("Via"): # Cloudflare banned? raise HTTPException(r, await r.text()) data = await r.json() retry_after = data["retry_after"] / 1000 is_global = data.get("global", False) if is_global: await ws.send_json({"t": "ratelimit", "d": "global"}) self.logger.warning( f"Global ratelimit hit! Retrying in " f"{retry_after}s") else: await ws.send_json({"t": "ratelimit", "d": bucket}) self.logger.warning( f"A ratelimit was hit (429)! Bucket: {bucket}. " f"Retrying in {retry_after}s") await sleep(retry_after) continue return r async def handle_worker(): global ws session = ClientSession() async with session.ws_connect(f"ws://{env['WORKER_MANAGER_HOST']}:6060/workers") as ws: await ws.send_json({ "t": "identify", "d": None }) message: WSMessage async for message in ws: if message.type == WSMsgType.TEXT: data = message.json(loads=loads) handler = handlers.get(data["t"], None) if handler is None: continue client.loop.create_task(handler(data["d"])) async def handle_dispatch_bot_info(data: dict): client.token = data["token"] client.name = data["name"] logger.info(f"Started worker with name {client.name}!") client.http = CustomHttp(client.token) await client.connect() async def handle_request(data: dict): request_data = data["data"] method = request_data["method"] path = request_data["path"] params = request_data["route_params"] kwargs = params["kwargs"] route = Route(method, path, **params) logger.debug(f"{method} {path}") r = await client.http.request(route, **kwargs) if r.status < 200 or r.status >= 300: logger.warning(await r.text()) @client.listen("GUILD_CREATE") async def on_guild_create(data, shard): global total_guilds_served await ws.send_json({"t": "add_guild", "d": data["id"]}) total_guilds_served += 1 logger.debug(f"New guild to serve: {data['name']}. Now serving {total_guilds_served} guilds.") @client.listen("GUILD_DELETE") async def on_guild_delete(data, shard): global total_guilds_served total_guilds_served -= 1 await ws.send_json({"t": "remove_guild", "d": data["id"]}) handlers["request"] = handle_request handlers["dispatch_bot_info"] = handle_dispatch_bot_info client.loop.run_until_complete(handle_worker()) client.loop.run_forever()
StarcoderdataPython
3231300
"""`AlphaIMS`, `AlphaAMS`""" import numpy as np from collections import OrderedDict from .base import DiskElectrode, ElectrodeArray, ElectrodeGrid, ProsthesisSystem class AlphaIMS(ProsthesisSystem): """Alpha IMS This class creates an AlphaIMS array and places it on the retina such that the center of the array is located at (x,y,z), given in microns, and the array is rotated by rotation angle ``rot``, given in radians. The array is oriented upright in the visual field, such that an array with center (0,0) has the top three rows lie in the lower retina (upper visual field). An electrode can be addressed by name, row/column index, or integer index (into the flattened array). .. note:: Column order is reversed in a left-eye implant. Parameters ---------- x : float x coordinate of the array center (um) y : float y coordinate of the array center (um) z: float or array_like Distance of the array to the retinal surface (um). Either a list with 60 entries or a scalar. rot : float Rotation angle of the array (rad). Positive values denote counter-clock-wise (CCW) rotations in the retinal coordinate system. eye : 'LE' or 'RE', optional, default: 'RE' Eye in which array is implanted. Examples -------- Create an AlphaIMS array centered on the fovea, at 100um distance from the retina: >>> from pulse2percept.implants import AlphaIMS >>> AlphaIMS(x=0, y=0, z=100, rot=0) # doctest: +NORMALIZE_WHITESPACE AlphaIMS(earray=pulse2percept.implants.base.ElectrodeGrid, eye='RE', shape=(37, 37), stim=None) Get access to the third electrode in the top row (by name or by row/column index): >>> alpha_ims = AlphaIMS(x=0, y=0, z=100, rot=0) >>> alpha_ims['A3'] DiskElectrode(r=50.0, x=-1152.0, y=-1296.0, z=100.0) >>> alpha_ims[0, 2] DiskElectrode(r=50.0, x=-1152.0, y=-1296.0, z=100.0) """ def __init__(self, x=0, y=0, z=0, rot=0, eye='RE', stim=None): self.eye = eye self.shape = (37, 37) elec_radius = 50 e_spacing = 72 # um self.earray = ElectrodeGrid(self.shape, e_spacing, x=x, y=y, z=z, rot=rot, etype=DiskElectrode, r=elec_radius) # Set stimulus if available: self.stim = stim # Set left/right eye: if not isinstance(eye, str): raise TypeError("'eye' must be a string, either 'LE' or 'RE'.") if eye != 'LE' and eye != 'RE': raise ValueError("'eye' must be either 'LE' or 'RE'.") # Unfortunately, in the left eye the labeling of columns is reversed... if eye == 'LE': # FIXME: Would be better to have more flexibility in the naming # convention. This is a quick-and-dirty fix: names = list(self.earray.keys()) objects = list(self.earray.values()) names = np.array(names).reshape(self.earray.shape) # Reverse column names: for row in range(self.earray.shape[0]): names[row] = names[row][::-1] # Build a new ordered dict: electrodes = OrderedDict([]) for name, obj in zip(names.ravel(), objects): electrodes.update({name: obj}) # Assign the new ordered dict to earray: self.earray.electrodes = electrodes def get_params(self): params = super().get_params() params.update({'shape': self.shape}) return params class AlphaAMS(ProsthesisSystem): """Alpha AMS This class creates an AlphaAMS array and places it below the retina such that the center of the array is located at (x,y,z), given in microns, and the array is rotated by rotation angle ``rot``, given in radians. The array is oriented upright in the visual field, such that an array with center (0,0) has the top three rows lie in the lower retina (upper visual field), as shown below: An electrode can be addressed by name, row/column index, or integer index (into the flattened array). .. note:: Column order is reversed in a left-eye implant. Parameters ---------- x : float x coordinate of the array center (um) y : float y coordinate of the array center (um) z: float || array_like Distance of the array to the retinal surface (um). Either a list with 60 entries or a scalar. rot : float Rotation angle of the array (rad). Positive values denote counter-clock-wise (CCW) rotations in the retinal coordinate system. eye : {'LE', 'RE'}, optional, default: 'RE' Eye in which array is implanted. Examples -------- Create an AlphaAMS array centered on the fovea, at 100um distance from the retina: >>> from pulse2percept.implants import AlphaAMS >>> AlphaAMS(x=0, y=0, z=100, rot=0) # doctest: +NORMALIZE_WHITESPACE AlphaAMS(earray=pulse2percept.implants.base.ElectrodeGrid, eye='RE', shape=(40, 40), stim=None) Get access to the third electrode in the top row (by name or by row/column index): >>> alpha_ims = AlphaAMS(x=0, y=0, z=100, rot=0) >>> alpha_ims['A3'] DiskElectrode(r=15.0, x=-1225.0, y=-1365.0, z=100.0) >>> alpha_ims[0, 2] DiskElectrode(r=15.0, x=-1225.0, y=-1365.0, z=100.0) """ def __init__(self, x=0, y=0, z=0, rot=0, eye='RE', stim=None): self.eye = eye self.shape = (40, 40) elec_radius = 15 e_spacing = 70 # um self.earray = ElectrodeGrid(self.shape, e_spacing, x=x, y=y, z=z, rot=rot, etype=DiskElectrode, r=elec_radius) # Set stimulus if available: self.stim = stim # Set left/right eye: if not isinstance(eye, str): raise TypeError("'eye' must be a string, either 'LE' or 'RE'.") if eye != 'LE' and eye != 'RE': raise ValueError("'eye' must be either 'LE' or 'RE'.") # Unfortunately, in the left eye the labeling of columns is reversed... if eye == 'LE': # FIXME: Would be better to have more flexibility in the naming # convention. This is a quick-and-dirty fix: names = list(self.earray.keys()) objects = list(self.earray.values()) names = np.array(names).reshape(self.earray.shape) # Reverse column names: for row in range(self.earray.shape[0]): names[row] = names[row][::-1] # Build a new ordered dict: electrodes = OrderedDict([]) for name, obj in zip(names.ravel(), objects): electrodes.update({name: obj}) # Assign the new ordered dict to earray: self.earray.electrodes = electrodes def get_params(self): params = super().get_params() params.update({'shape': self.shape}) return params
StarcoderdataPython
5015155
<reponame>Max-astro/A2Project basePath = '/Raid1/Illustris/TNG/' import numpy as np from illustris_python.snapshot import loadSubhalo from illustris_python.groupcat import loadSubhalos def specific_angular_momentum(x, v, m): """ specific angular momentum of a group of particles Parameters ---------- x : array_like array particle positions of shape (Nptcl, ndim) v : array_like array of particle velcities wth shape (Nptcl, ndim) m : array_like array of particle masses of shape (Nptcl,) Returns ------- L : nump.array specific angular momentum vector """ return (m[:,np.newaxis]*np.cross(x,v)).sum(axis=0) def galaxy_ang_mom(gal_id, basePath, snapNum, reduced=True): """ Parameters ---------- gal_id : int basepath : string snapNum : int Lbox : array_like reduced : bool Returns ------- eig_vals, eig_vecs """ # load galaxy position (most bound particle) gal_positions = loadSubhalos(basePath, snapNum, fields=['SubhaloPos'])/1000.0 gal_position = gal_positions[gal_id] # half mass radius gal_rhalfs = loadSubhalos(basePath, snapNum, fields=['SubhaloHalfmassRadType'])[:,4]/1000.0 gal_rhalf = gal_rhalfs[gal_id] # load stellar particles ptcl_coords = loadSubhalo(basePath, snapNum, gal_id, 4, fields=['Coordinates'])/1000.0 ptcl_masses = loadSubhalo(basePath, snapNum, gal_id, 4, fields=['Masses'])*10.0**10 ptcl_vels = loadSubhalo(basePath, snapNum, gal_id, 4, fields=['Velocities']) sf_time = loadSubhalo(basePath, snapNum, gal_id, 4, fields=['GFM_StellarFormationTime']) is_a_star = (sf_time>=0.0) # don't use wind particles # account for PBCs dx = ptcl_coords[:,0] - gal_position[0] dy = ptcl_coords[:,1] - gal_position[1] dz = ptcl_coords[:,2] - gal_position[2] ptcl_coords = np.vstack((dx,dy,dz)).T r = np.sqrt(np.sum(ptcl_coords**2, axis=1))/gal_rhalf mask = (r<=10.0) & (is_a_star) L = specific_angular_momentum(ptcl_coords[mask], ptcl_vels[mask], ptcl_masses[mask]) mag_L = np.sqrt(np.sum(L**2,axis=-1)) return L, mag_L, L/mag_L
StarcoderdataPython
11203633
from .app import get_application app = get_application()
StarcoderdataPython
6401489
<filename>setup.py from setuptools import find_packages, setup setup(name='transfer-contacts', version='0.1.0', description="Helps extract notes from a certain contact database program.", author="<NAME>", url='https://github.com/juharris/transfer-contacts', license="MIT", packages=find_packages(), install_requires=[ 'pandas', ] )
StarcoderdataPython
1664380
<filename>lib/__init__.py import sys from pathlib import Path from pathlib import Path lib_dir = (Path(__file__).parent).resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
StarcoderdataPython
3285248
<reponame>KonstantinosAng/CodeWars # see https://www.codewars.com/kata/5266876b8f4bf2da9b000362/train/python from TestFunction import Test def likes(names): if len(names) < 1: return "no one likes this" if len(names) == 1: return f"{names[0]} likes this" if len(names) == 2: return f"{names[0]} and {names[1]} like this" if len(names) == 3: return f"{names[0]}, {names[1]} and {names[2]} like this" return f"{names[0]}, {names[1]} and {len(names) - 2} others like this" test = Test(None) test.it('Basic tests') test.assert_equals(likes([]), 'no one likes this') test.assert_equals(likes(['Peter']), 'Peter likes this') test.assert_equals(likes(['Jacob', 'Alex']), 'Jacob and Alex like this') test.assert_equals(likes(['Max', 'John', 'Mark']), 'Max, John and Mark like this') test.assert_equals(likes(['Alex', 'Jacob', 'Mark', 'Max']), 'Alex, Jacob and 2 others like this')
StarcoderdataPython
12850443
<filename>src/worker/worker.py """Worker application. It calls an external slow task and send its output, line by line, as "log" events through SocketIO. The web page will then print the lines. """ # Disable the warning because eventlet must patch the standard library as soon # as possible. from communication import (CELERY, get_socketio) # pylint: disable=wrong-import-order import socket from datetime import datetime from subprocess import PIPE, Popen SOCKETIO = get_socketio() def announce(): """Tell this worker is up and running.""" hostname = socket.gethostname() time = datetime.now().strftime('%H:%M:%S') msg = '{} Worker {} is up.'.format(time, hostname) SOCKETIO.emit('log', {'data': msg}) announce() @CELERY.task def add_task(name): """Run the slow task as a subprocess and send results to the web site.""" args = './slow_task.sh', str(name) with Popen(args, stdout=PIPE, universal_newlines=True) as proc: for line in proc.stdout: SOCKETIO.emit('log', {'data': line.rstrip()})
StarcoderdataPython
142493
<gh_stars>0 """ Reference implementation of the MP3 correlation energy utilizing antisymmetrized spin-orbitals from an RHF reference. Requirements: SciPy 0.13.0+, NumPy 1.7.2+ References: Equations from [Szabo:1996] """ __authors__ = "<NAME>" __credits__ = ["<NAME>", "<NAME>"] __copyright__ = "(c) 2014-2017, The Psi4NumPy Developers" __license__ = "BSD-3-Clause" __date__ = "2017-05-23" import time import numpy as np np.set_printoptions(precision=5, linewidth=200, suppress=True) import psi4 # Memory for Psi4 in GB psi4.set_memory('2 GB') psi4.core.set_output_file('output.dat', False) # Memory for numpy in GB numpy_memory = 2 mol = psi4.geometry(""" O H 1 1.1 H 1 1.1 2 104 symmetry c1 """) psi4.set_options({'basis': 'cc-pvdz', 'scf_type': 'pk', 'mp2_type': 'conv', 'mp2_type': 'conv', 'freeze_core': 'false', 'e_convergence': 1e-8, 'd_convergence': 1e-8}) # First compute RHF energy using Psi4 scf_e, wfn = psi4.energy('SCF', return_wfn=True) # Grab data from C = wfn.Ca() ndocc = wfn.doccpi()[0] nmo = wfn.nmo() SCF_E = wfn.energy() eps = np.asarray(wfn.epsilon_a()) # Compute size of ERI tensor in GB ERI_Size = (nmo ** 4) * 8e-9 print('Size of the ERI/MO tensor will be %4.2f GB.' % ERI_Size) memory_footprint = ERI_Size * 2.5 if memory_footprint > numpy_memory: clean() raise Exception("Estimated memory utilization (%4.2f GB) exceeds numpy_memory \ limit of %4.2f GB." % (memory_footprint, numpy_memory)) #Make spin-orbital MO t=time.time() print('Starting ERI build and spin AO -> spin-orbital MO transformation...') mints = psi4.core.MintsHelper(wfn.basisset()) MO = np.asarray(mints.mo_spin_eri(C, C)) eps = np.repeat(eps, 2) nso = nmo * 2 print('..finished transformation in %.3f seconds.\n' % (time.time() - t)) # Update nocc and nvirt nocc = ndocc * 2 nvirt = MO.shape[0] - nocc # Build epsilon tensor eocc = eps[:nocc] evir = eps[nocc:] epsilon = 1/(eocc.reshape(-1, 1, 1, 1) + eocc.reshape(-1, 1, 1) - evir.reshape(-1, 1) - evir) # Create occupied and virtual slices o = slice(0, nocc) v = slice(nocc, MO.shape[0]) # MP2 Correlation: [Szabo:1996] pp. 352, Eqn 6.72 MP2corr_E = 0.25 * np.einsum('abrs,rsab,abrs', MO[o, o, v, v], MO[v, v, o, o], epsilon) MP2total_E = SCF_E + MP2corr_E print('MP2 correlation energy: %16.10f' % MP2corr_E) print('MP2 total energy: %16.10f' % MP2total_E) # Compare to Psi4 psi4.compare_values(psi4.energy('MP2'), MP2total_E, 6, 'MP2 Energy') # MP3 Correlation: [Szabo:1996] pp. 353, Eqn. 6.75 eqn1 = 0.125 * np.einsum('abrs,cdab,rscd,abrs,cdrs->', MO[o, o, v, v], MO[o, o, o, o], MO[v, v, o, o], epsilon, epsilon) eqn2 = 0.125 * np.einsum('abrs,rstu,tuab,abrs,abtu', MO[o, o, v, v], MO[v, v, v, v], MO[v, v, o, o], epsilon, epsilon) eqn3 = np.einsum('abrs,cstb,rtac,absr,acrt', MO[o, o, v, v], MO[o, v, v, o], MO[v, v, o, o], epsilon, epsilon) MP3corr_E = eqn1 + eqn2 + eqn3 MP3total_E = MP2total_E + MP3corr_E print('\nMP3 correlation energy: %16.10f' % MP3corr_E) print('MP3 total energy: %16.10f' % MP3total_E) # Compare to Psi4 psi4.compare_values(psi4.energy('MP3'), MP3total_E, 6, 'MP3 Energy')
StarcoderdataPython
5114819
class FbsIterateItem(): def __init__(self, formula, parent, step, inv_nf): self.formula = formula self.parent = parent self.step = step self.inv_nf = inv_nf self.remained = 1 self.childs = []
StarcoderdataPython
8156173
<filename>sidewalkify/cli.py """Handle data fetching/cleaning tasks automatically. Reads and writes from a pseudo-database in the filesystem, organized as ./cities/<city>/ """ import click # TODO: Add type hints for geopandas import geopandas as gpd # type: ignore from . import graph from . import draw @click.command() @click.argument("infile") @click.argument("outfile") @click.option("--driver", default="GeoJSON") @click.option("--precision", default=1) def sidewalkify( infile: str, outfile: str, driver: str, precision: int ) -> None: gdf = gpd.read_file(infile) crs = gdf.crs G = graph.create_graph(gdf, precision=precision) paths = graph.find_paths(G) sidewalks = draw.draw_sidewalks(paths, crs=crs) sidewalks.to_file(outfile, driver=driver)
StarcoderdataPython
3359183
<gh_stars>1-10 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.testsdk import ResourceGroupPreparer, JMESPathCheck from azure.cli.testsdk import ScenarioTest from .scenario_mixin import CdnScenarioMixin class CdnEndpointScenarioTest(CdnScenarioMixin, ScenarioTest): @ResourceGroupPreparer() def test_endpoint_crud(self, resource_group): from knack.util import CLIError profile_name = 'profile123' self.endpoint_list_cmd(resource_group, profile_name, expect_failure=True) self.profile_create_cmd(resource_group, profile_name) list_checks = [JMESPathCheck('length(@)', 0)] self.endpoint_list_cmd(resource_group, profile_name, checks=list_checks) endpoint_name = self.create_random_name(prefix='endpoint', length=24) origin = 'www.example.com' checks = [JMESPathCheck('name', endpoint_name), JMESPathCheck('origins[0].hostName', origin), JMESPathCheck('isHttpAllowed', True), JMESPathCheck('isHttpsAllowed', True), JMESPathCheck('isCompressionEnabled', False), JMESPathCheck('queryStringCachingBehavior', 'IgnoreQueryString')] self.endpoint_create_cmd(resource_group, endpoint_name, profile_name, origin, checks=checks) list_checks = [JMESPathCheck('length(@)', 1)] self.endpoint_list_cmd(resource_group, profile_name, checks=list_checks) update_checks = [JMESPathCheck('name', endpoint_name), JMESPathCheck('origins[0].hostName', origin), JMESPathCheck('isHttpAllowed', False), JMESPathCheck('isHttpsAllowed', True), JMESPathCheck('isCompressionEnabled', True), JMESPathCheck('queryStringCachingBehavior', 'IgnoreQueryString')] options = '--no-http --enable-compression' self.endpoint_update_cmd(resource_group, endpoint_name, profile_name, options=options, checks=update_checks) update_checks = [JMESPathCheck('name', endpoint_name), JMESPathCheck('origins[0].hostName', origin), JMESPathCheck('isHttpAllowed', True), JMESPathCheck('isHttpsAllowed', False), JMESPathCheck('isCompressionEnabled', False), JMESPathCheck('queryStringCachingBehavior', 'IgnoreQueryString')] options = '--no-http false --no-https --enable-compression false' self.endpoint_update_cmd(resource_group, endpoint_name, profile_name, options=options, checks=update_checks) self.endpoint_delete_cmd(resource_group, endpoint_name, profile_name) @ResourceGroupPreparer() def test_endpoint_start_and_stop(self, resource_group): profile_name = 'profile123' self.profile_create_cmd(resource_group, profile_name) endpoint_name = self.create_random_name(prefix='endpoint', length=24) origin = 'www.example.com' self.endpoint_create_cmd(resource_group, endpoint_name, profile_name, origin) checks = [JMESPathCheck('resourceState', 'Stopped')] self.endpoint_stop_cmd(resource_group, endpoint_name, profile_name) self.endpoint_show_cmd(resource_group, endpoint_name, profile_name, checks=checks) checks = [JMESPathCheck('resourceState', 'Running')] self.endpoint_start_cmd(resource_group, endpoint_name, profile_name) self.endpoint_show_cmd(resource_group, endpoint_name, profile_name, checks=checks) @ResourceGroupPreparer() def test_endpoint_load_and_purge(self, resource_group): profile_name = 'profile123' self.profile_create_cmd(resource_group, profile_name, options='--sku Standard_Verizon') endpoint_name = self.create_random_name(prefix='endpoint', length=24) origin = 'www.example.com' self.endpoint_create_cmd(resource_group, endpoint_name, profile_name, origin) content_paths = ['/index.html', '/javascript/app.js'] self.endpoint_load_cmd(resource_group, endpoint_name, profile_name, content_paths) content_paths = ['/index.html', '/javascript/*'] self.endpoint_purge_cmd(resource_group, endpoint_name, profile_name, content_paths)
StarcoderdataPython
5161276
import numpy as np from holoviews.core import (HoloMap, GridSpace, Layout, Empty, Dataset, NdOverlay, DynamicMap, Dimension) from holoviews.element import Curve, Image, Points, Histogram from holoviews.streams import Stream from .testplot import TestBokehPlot, bokeh_renderer try: from bokeh.layouts import Column, Row from bokeh.models import Div, ToolbarBox, GlyphRenderer, Tabs, Panel, Spacer, GridBox from bokeh.plotting import Figure except: pass class TestLayoutPlot(TestBokehPlot): def test_layout_update_visible(self): hmap = HoloMap({i: Curve(np.arange(i), label='A') for i in range(1, 3)}) hmap2 = HoloMap({i: Curve(np.arange(i), label='B') for i in range(3, 5)}) plot = bokeh_renderer.get_plot(hmap+hmap2) subplot1, subplot2 = [p for k, p in sorted(plot.subplots.items())] subplot1 = subplot1.subplots['main'] subplot2 = subplot2.subplots['main'] self.assertTrue(subplot1.handles['glyph_renderer'].visible) self.assertFalse(subplot2.handles['glyph_renderer'].visible) plot.update((4,)) self.assertFalse(subplot1.handles['glyph_renderer'].visible) self.assertTrue(subplot2.handles['glyph_renderer'].visible) def test_layout_title(self): hmap1 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) hmap2 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) plot = bokeh_renderer.get_plot(hmap1+hmap2) title = plot.handles['title'] self.assertIsInstance(title, Div) text = ('<span style="color:black;font-family:Arial;font-style:bold;' 'font-weight:bold;font-size:12pt">Default: 0</span>') self.assertEqual(title.text, text) def test_layout_title_fontsize(self): hmap1 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) hmap2 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) layout = Layout([hmap1, hmap2]).opts(plot=dict(fontsize={'title': '12pt'})) plot = bokeh_renderer.get_plot(layout) title = plot.handles['title'] self.assertIsInstance(title, Div) text = ('<span style="color:black;font-family:Arial;font-style:bold;' 'font-weight:bold;font-size:12pt">Default: 0</span>') self.assertEqual(title.text, text) def test_layout_title_show_title_false(self): hmap1 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) hmap2 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) layout = Layout([hmap1, hmap2]).opts(plot=dict(show_title=False)) plot = bokeh_renderer.get_plot(layout) self.assertTrue('title' not in plot.handles) def test_layout_title_update(self): hmap1 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) hmap2 = HoloMap({a: Image(np.random.rand(10,10)) for a in range(3)}) plot = bokeh_renderer.get_plot(hmap1+hmap2) plot.update(1) title = plot.handles['title'] self.assertIsInstance(title, Div) text = ('<span style="color:black;font-family:Arial;font-style:bold;' 'font-weight:bold;font-size:12pt">Default: 1</span>') self.assertEqual(title.text, text) def test_layout_gridspaces(self): layout = (GridSpace({(i, j): Curve(range(i+j)) for i in range(1, 3) for j in range(2,4)}) + GridSpace({(i, j): Curve(range(i+j)) for i in range(1, 3) for j in range(2,4)}) + Curve(range(10))).cols(2) layout_plot = bokeh_renderer.get_plot(layout) plot = layout_plot.state # Unpack until getting down to two rows self.assertIsInstance(plot, Column) self.assertEqual(len(plot.children), 2) toolbar, grid = plot.children self.assertIsInstance(toolbar, ToolbarBox) self.assertIsInstance(grid, GridBox) self.assertEqual(len(grid.children), 3) (col1, _, _), (col2, _, _), (fig, _, _) = grid.children self.assertIsInstance(col1, Column) self.assertIsInstance(col2, Column) grid1 = col1.children[0] grid2 = col2.children[0] # Check the row of GridSpaces self.assertEqual(len(grid1.children), 3) _, (col1, _, _), _ = grid1.children self.assertIsInstance(col1, Column) inner_grid1 = col1.children[0] self.assertEqual(len(grid2.children), 3) _, (col2, _, _), _ = grid2.children self.assertIsInstance(col2, Column) inner_grid2 = col2.children[0] for grid in [inner_grid1, inner_grid2]: self.assertEqual(len(grid.children), 4) (gfig1, _, _), (gfig2, _, _), (gfig3, _, _), (gfig4, _, _) = grid.children self.assertIsInstance(gfig1, Figure) self.assertIsInstance(gfig2, Figure) self.assertIsInstance(gfig3, Figure) self.assertIsInstance(gfig4, Figure) def test_layout_instantiate_subplots(self): layout = (Curve(range(10)) + Curve(range(10)) + Image(np.random.rand(10,10)) + Curve(range(10)) + Curve(range(10))) plot = bokeh_renderer.get_plot(layout) positions = [(0, 0), (0, 1), (0, 2), (0, 3), (1, 0)] self.assertEqual(sorted(plot.subplots.keys()), positions) def test_layout_instantiate_subplots_transposed(self): layout = (Curve(range(10)) + Curve(range(10)) + Image(np.random.rand(10,10)) + Curve(range(10)) + Curve(range(10))) plot = bokeh_renderer.get_plot(layout(plot=dict(transpose=True))) positions = [(0, 0), (0, 1), (1, 0), (2, 0), (3, 0)] self.assertEqual(sorted(plot.subplots.keys()), positions) def test_empty_adjoint_plot(self): adjoint = Curve([0,1,1,2,3]) << Empty() << Curve([0,1,1,0,1]) plot = bokeh_renderer.get_plot(adjoint) adjoint_plot = plot.subplots[(0, 0)] self.assertEqual(len(adjoint_plot.subplots), 3) grid = plot.state.children[1] (f1, _, _), (f2, _, _), (s1, _, _) = grid.children self.assertIsInstance(s1, Spacer) self.assertEqual(s1.width, 0) self.assertEqual(s1.height, 0) self.assertEqual(f1.plot_height, f2.plot_height) def test_layout_plot_with_adjoints(self): layout = (Curve([]) + Curve([]).hist()).cols(1) plot = bokeh_renderer.get_plot(layout) toolbar, grid = plot.state.children self.assertIsInstance(toolbar, ToolbarBox) self.assertIsInstance(grid, GridBox) for (fig, _, _) in grid.children: self.assertIsInstance(fig, Figure) self.assertTrue([len([r for r in f.renderers if isinstance(r, GlyphRenderer)]) for (f, _, _) in grid.children], [1, 1, 1]) def test_layout_plot_tabs_with_adjoints(self): layout = (Curve([]) + Curve([]).hist()).options(tabs=True) plot = bokeh_renderer.get_plot(layout) self.assertIsInstance(plot.state, Tabs) panel1, panel2 = plot.state.tabs self.assertIsInstance(panel1, Panel) self.assertIsInstance(panel2, Panel) self.assertEqual(panel1.title, 'Curve I') self.assertEqual(panel2.title, 'AdjointLayout I') def test_layout_shared_source_synced_update(self): hmap = HoloMap({i: Dataset({chr(65+j): np.random.rand(i+2) for j in range(4)}, kdims=['A', 'B', 'C', 'D']) for i in range(3)}) # Create two holomaps of points sharing the same data source hmap1= hmap.map(lambda x: Points(x.clone(kdims=['A', 'B'])), Dataset) hmap2 = hmap.map(lambda x: Points(x.clone(kdims=['D', 'C'])), Dataset) # Pop key (1,) for one of the HoloMaps and make Layout hmap2.pop((1,)) layout = (hmap1 + hmap2).opts(plot=dict(shared_datasource=True)) # Get plot plot = bokeh_renderer.get_plot(layout) # Check plot created shared data source and recorded expected columns sources = plot.handles.get('shared_sources', []) source_cols = plot.handles.get('source_cols', {}) self.assertEqual(len(sources), 1) source = sources[0] data = source.data cols = source_cols[id(source)] self.assertEqual(set(cols), {'A', 'B', 'C', 'D'}) # Ensure the source contains the expected columns self.assertEqual(set(data.keys()), {'A', 'B', 'C', 'D'}) # Update to key (1,) and check the source contains data # corresponding to hmap1 and filled in NaNs for hmap2, # which was popped above plot.update((1,)) self.assertEqual(data['A'], hmap1[1].dimension_values(0)) self.assertEqual(data['B'], hmap1[1].dimension_values(1)) self.assertEqual(data['C'], np.full_like(hmap1[1].dimension_values(0), np.NaN)) self.assertEqual(data['D'], np.full_like(hmap1[1].dimension_values(0), np.NaN)) def test_shared_axes(self): curve = Curve(range(10)) img = Image(np.random.rand(10,10)) plot = bokeh_renderer.get_plot(curve+img) plot = plot.subplots[(0, 1)].subplots['main'] x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual((x_range.start, x_range.end), (-.5, 9)) self.assertEqual((y_range.start, y_range.end), (-.5, 9)) def test_shared_axes_disable(self): curve = Curve(range(10)) img = Image(np.random.rand(10,10)).opts(plot=dict(shared_axes=False)) plot = bokeh_renderer.get_plot(curve+img) plot = plot.subplots[(0, 1)].subplots['main'] x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual((x_range.start, x_range.end), (-.5, .5)) self.assertEqual((y_range.start, y_range.end), (-.5, .5)) def test_layout_empty_subplots(self): layout = Curve(range(10)) + NdOverlay() + HoloMap() + HoloMap({1: Image(np.random.rand(10,10))}) plot = bokeh_renderer.get_plot(layout) self.assertEqual(len(plot.subplots.values()), 2) def test_layout_set_toolbar_location(self): layout = (Curve([]) + Points([])).options(toolbar='left') plot = bokeh_renderer.get_plot(layout) self.assertIsInstance(plot.state, Row) self.assertIsInstance(plot.state.children[0], ToolbarBox) def test_layout_disable_toolbar(self): layout = (Curve([]) + Points([])).options(toolbar=None) plot = bokeh_renderer.get_plot(layout) self.assertIsInstance(plot.state, GridBox) self.assertEqual(len(plot.state.children), 2) def test_layout_shared_inverted_yaxis(self): layout = (Curve([]) + Curve([])).options('Curve', invert_yaxis=True) plot = bokeh_renderer.get_plot(layout) subplot = list(plot.subplots.values())[0].subplots['main'] self.assertEqual(subplot.handles['y_range'].start, 1) self.assertEqual(subplot.handles['y_range'].end, 0) def test_layout_dimensioned_stream_title_update(self): stream = Stream.define('Test', test=0)() dmap = DynamicMap(lambda test: Curve([]), kdims=['test'], streams=[stream]) layout = dmap + Curve([]) plot = bokeh_renderer.get_plot(layout) self.assertIn('test: 0', plot.handles['title'].text) stream.event(test=1) self.assertIn('test: 1', plot.handles['title'].text) plot.cleanup() self.assertEqual(stream._subscribers, []) def test_layout_axis_link_matching_name_label(self): layout = Curve([1, 2, 3], vdims=('a', 'A')) + Curve([1, 2, 3], vdims=('a', 'A')) plot = bokeh_renderer.get_plot(layout) p1, p2 = (sp.subplots['main'] for sp in plot.subplots.values()) self.assertIs(p1.handles['y_range'], p2.handles['y_range']) def test_layout_axis_not_linked_mismatching_name(self): layout = Curve([1, 2, 3], vdims=('b', 'A')) + Curve([1, 2, 3], vdims=('a', 'A')) plot = bokeh_renderer.get_plot(layout) p1, p2 = (sp.subplots['main'] for sp in plot.subplots.values()) self.assertIsNot(p1.handles['y_range'], p2.handles['y_range']) def test_layout_axis_linked_unit_and_no_unit(self): layout = (Curve([1, 2, 3], vdims=Dimension('length', unit='m')) + Curve([1, 2, 3], vdims='length')) plot = bokeh_renderer.get_plot(layout) p1, p2 = (sp.subplots['main'] for sp in plot.subplots.values()) self.assertIs(p1.handles['y_range'], p2.handles['y_range']) def test_layout_axis_not_linked_mismatching_unit(self): layout = (Curve([1, 2, 3], vdims=Dimension('length', unit='m')) + Curve([1, 2, 3], vdims=Dimension('length', unit='cm'))) plot = bokeh_renderer.get_plot(layout) p1, p2 = (sp.subplots['main'] for sp in plot.subplots.values()) self.assertIsNot(p1.handles['y_range'], p2.handles['y_range']) def test_dimensioned_streams_with_dynamic_callback_returns_layout(self): stream = Stream.define('aname', aname='a')() def cb(aname): x = np.linspace(0, 1, 10) y = np.random.randn(10) curve = Curve((x, y), group=aname) hist = Histogram(y) return (curve + hist).opts(shared_axes=False) m = DynamicMap(cb, kdims=['aname'], streams=[stream]) p = bokeh_renderer.get_plot(m) T = 'XYZT' stream.event(aname=T) self.assertIn('aname: ' + T, p.handles['title'].text, p.handles['title'].text) p.cleanup() self.assertEqual(stream._subscribers, [])
StarcoderdataPython
4862717
<reponame>Lenus254/password-locker from credentials import Credentials import unittest user_credentials = [] class TestCredentials(unittest.TestCase): def tearDown(self): ''' this test clears the credentialss list after every test ''' Credentials.user_credentials = [] def setUp(self): ''' this test creates a new instance of the credential class before each test ''' self.new_credential = Credentials('twitter', '<PASSWORD>') def test_init(self): ''' this test checks whether the data enterd into the properties if called wll appear ''' self.assertEqual(self.new_credential.site_name, 'twitter') self.assertEqual(self.new_credential.password, '<PASSWORD>') def test_save_credential(self): ''' this is a test to check whether the credentials are appended to the credential list ''' self.new_credential.save_credentials() self.assertEqual(len(Credentials.user_credentials), 1) def test_save_multiple(self): ''' Test function to test whetther several credentials can be appended to credentials list ''' self.new_credential.save_credentials() test_credential = Credentials('facebook', '54321') test_credential.save_credentials() self.assertEqual(len(Credentials.user_credentials), 2) def test_delete_credentials(self): ''' checks whether delete function is working to remove credentials ''' self.new_credential.save_credentials() test_credential = Credentials('facebook', '54321') test_credential.save_credentials() self.new_credential.delete_credentials() self.assertEqual(len(Credentials.user_credentials), 1) def test_display_credentials(self): self.assertEqual(Credentials.display_credentials(), Credentials.user_credentials) def test_search_credential(self): ''' this test checks whether saved credentials can be searched ''' self.new_credential.save_credentials() test_credential = Credentials('facebook', '54321') # credential test_credential.save_credentials() found_credentials = Credentials.search_by_site('facebook') self.assertEqual(found_credentials.site_name, test_credential.site_name) def test_credentials_exists(self): ''' return boolean true if the password searched if found ''' self.new_credential.save_credentials() test_credential = Credentials('facebook', '54321') # new credential test_credential.save_credentials() site_exist = Credentials.credential_exists('facebook') self.assertTrue(site_exist) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4927197
<gh_stars>0 # LookWell v0.0 # srl from lookwell import ItemList, Mill def get_list0(): list = ItemList({ "items": [ { "tags": ["upc/0001", "food/organic/apple"], "desc": "2# bag of fuji apple", "unit": { "unit": "pound", "qty": 2, "container": "bag" }, } ] }) return list def test_itemlist(): list = get_list0() assert list is not None item = list.findByTag("upc/0001") assert item is not None assert item.unitstr() == "2 pound bag" def test_mill(): mill = Mill(get_list0()) assert mill.qtyByTag('upc/0001') is None mill.process({ "date": "2021-03-01" }) assert mill.qtyByTag('upc/0001') is None mill.process({ "buy": { "tag": "upc/0001", "qty": 2, } }) assert mill.qtyByTag("upc/0001").getInUnit("pound") == 4 mill.process({ "date": "2021-03-02", "census": [ {"tag": "upc/0001", "qty": {"unit": "each", "qty": 9}}]}) assert mill.qtyByTag("upc/001").getInUnit("each") == 9 mill.process({ "date": "2021-03-03", "eat": [ {"tag": "upc/0001", "qty": {"unit": "each", "qty": 2}}]}) assert mill.qtyByTag("upc/001").getInUnit("each") == 7
StarcoderdataPython
3558175
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('api', '0115_auto_20160323_0756'), ] operations = [ migrations.RenameField( model_name='card', old_name='skill_up_cards', new_name='_skill_up_cards', ), ]
StarcoderdataPython
8196801
import copy import time import numpy import theano import theano.tensor as T import lasagne from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils import check_random_state, check_array, check_X_y from sklearn.utils.validation import check_is_fitted from sklearn.metrics import f1_score, roc_auc_score from classifiers.utils import split_train_data, iterate class CNNClassifier(BaseEstimator, ClassifierMixin): def __init__(self, layers: dict=None, dropout: float=0.5, learning_rate: float=2e-3, max_epochs_number: int=1000, epochs_before_stopping: int=10, validation_fraction: float=None, beta1: float=0.9, beta2: float=0.999, epsilon: float=1e-08, batch_size: int=500, batch_norm: bool=True, verbose: bool=False, warm_start: bool=False, random_state=None, eval_metric: str='Logloss'): """ Создать свёрточную нейросеть типа LeNet, состоящую из чередующихся слоёв свёртки и макс-пулинга. Структура свёрточной сети задаётся словарём layers. В этом словаре должно быть три ключа "conv", "pool" и "dense", описывающих, соответственно, параметры свёрточных слоёв, слоёв пулинга и полносвязных слоёв (предполагается, что любая свёрточная сеть после серии чередующихся слоёв свёртки и подвыборки завершается хотя бы одним скрытым полносвязным слоем). Структура слоёв свёртки описывается N-элементым кортежем или списком, каждый элемент которого, в свою очередь, также представляет собой кортеж или список, но только из двух элементов: количества карт признаков в свёрточном слое и размера рецептивного поля. Размер рецептивного поля - это, как нетрудно догадаться, тоже 2-элементный кортеж или список, в котором заданы ширина и высота рецептивного поля для всех нейронов всех карт признаков свёрточного слоя. Если один из размеров рецептивного поля установлен в 0, то используется соответствующий размер (ширина или высота) карты признаков предыдущего слоя (или входной карты, если текущий слой - первый). Пример возможной структуры слоёв свёртки: (32, (5, 0), (64, (2, 0))). В данном примере указано, что свёрточная сеть должна иметь два слоя свёртки. Первый из слоёв включает в себя 32 карты признаков, а все нейроны этого слоя имеют рецептивное поле высотой 5 элементов, а шириной - во всю ширину входной карты (тем самым двумерная свёртка элегантным движением превращается в одномерную - только по высоте, но не по ширине). Второй из свёрточных слоёв включает в себя уже 64 карты признаков, а все нейроны этого слоя имеют рецептивное поле высотой 5 элементов, а шириной во всю ширину карты признаков предшествующего слоя пулинга. Структура слоёв подвыборки также описывается N-элементым кортежем или списком, причём количество слоёв пулинга должно строго совпадать с количеством слоёв свёртки, поскольку в свёрточной сети за каждым слоем свёртки обязательно следует слой пулинга. Но каждый элемент, описывающий отдельный слой пулинга, отличается от элемента для описания слоя свёртки. Дело в том, что число карт признаков слоя пулинга всегда равно числу карт признаков предшествующего ему слоя свёртки, и, таким образом, дополнительно указывать это число при описании слоя пулинга не имеет смысла. В таком случае один элемент, описывающий отдельный слой пулинга - это 2-элеметный кортеж или список, задающий размер рецептивного поля всех нейронов слоя пулинга - ширину и высоту. И ширина, и высота должны быть положительными вещественными числами. Они определяют, во сколько раз слой пулинга будет сжимать карту признаков предшествующего ему слоя свёртки по высоте и ширине соответственно. Пример возможной структуры слоёв пулинга: ((3, 1), (2, 1)). В данном примере указано, что свёрточная сеть должна иметь два слоя пулинга. Первый из них сжимает карту признаков предшествующего ему слоя свёртки в три раза по высоте, а ширину оставляет неизменной. Второй же слой пулинга сжимает карту признаков предшествующего ему слоя свёртки в два раза по высоте, а ширину также оставляет неизменной. Структура полносвязных скрытых слоёв - это просто кортеж или список положительных целых чисел, например, (300, 100), что означает 300 нейронов в первом полносвязном скрытом слое и 100 нейронов во втором полносвязном скрытом слое. Число нейронов в выходном слое всегда определяется автоматически на основе числа распознаваемых классов. Все функции активации имеют тип ReLU, кроме функций активации нейронов выходного слоя. Для выходного же слоя используется либо логистическая сигмоида, если число распознаваемых классов равно двум, либо же SOFTMAX-функция активации, если число распознаваемых классов больше двух. Дропаут применяется только к полносвязной части свёрточной нейронной сети (к слоям свёртки и подвыборки применять дропаут бессмысленно и даже вредно). В качестве алгоритма обучения используется Adamax, параметры которого доступны для настройки. Начать обучение свёрточной нейронной сети можно как "с нуля", инициализировав все веса случайным образом, так и со старых значений весов, доставшихся "в наследство" от прошлых экспериментов (этим управляется параметром warm_start, который должен быть установлен в True, если мы хотим использовать старые значения весов в начале процедуры обучения). В процессе обучения для предотвращения переобучения (overfitting) может быть использован критерий раннего останова (early stopping). Этот критерий автоматически включается, если параметр validation_fraction не является None либо же если в метод fit() в качестве дополнительного аргумента "validation" передано контрольное (валидационное) множество примеров (см. комментарии к методу fit()). При включении критерия раннего останова процесс обучения продолжается до тех пор, пока ошибка обобщения не прекратит убывать на протяжении последних epochs_before_stopping эпох обучения (таким образом, параметр epochs_before_stopping определяет некое "терпение" нейросети в режиме раннего останова). Если же режим раннего останова не используется, то обучение нейросети будет продолжаться до тех пор, пока ошибка обучения (а не обобщения!) не прекратит убывать на протяжении того же количества epochs_before_stopping эпох подряд. Но в обоих случаях число эпох обучения не может превысить величину max_epochs_number (при достижении этого числа эпох обучение прекращается безотносительно выполнения других критериев). :param layers: Структура слоёв свёрточной сети (словарь с тремя ключами "conv", "pool" и "dense"). :param dropout: Коэффициент дропаута - вещественное число больше 0, но меньше 1. :param learning_rate: Коэффициент скорости обучения для алгоритма Adamax - положительное вещественное число. :param max_epochs_number: Максимальное число эпох обучения (положительное целое число). :param epochs_before_stopping: Максимальное "терпение" сети в методе раннего останова (early stopping). :param validation_fraction: Доля примеров обучающего множества для расчёта ошибки обобщения при early stopping. :param beta1: Параметр алгоритма Adamax. :param beta2: Параметр алгоритма Adamax. :param epsilon: Параметр алгоритма Adamax. :param batch_size: Размер одного "минибатча" при обучении и эксплуатации сети - положительное целое число. :param batch_norm: Флажок, указывающий, надо ли использовать батч-нормализацию при обучении. :param verbose: Флажок, указывающий, надо ли логгировать процесс обучения (печатать на экран с помощью print). :param warm_start: Флажок, указывающий, надо ли начинать обучение со старых значений весов. :param random_state: Генератор случайных чисел (нужен, прежде всего, для отладки). :param eval_metric: Метрика, используемая для оценки способности к обобщению ("Logloss", "F1", "ROC-AUC"). """ super().__init__() self.layers = layers self.dropout = dropout self.learning_rate = learning_rate self.max_epochs_number = max_epochs_number self.validation_fraction = validation_fraction self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.verbose = verbose self.epochs_before_stopping = epochs_before_stopping self.batch_size = batch_size self.batch_norm = batch_norm self.warm_start = warm_start self.random_state = random_state self.eval_metric = eval_metric def fit(self, X, y, **fit_params): """ Обучить свёрточную нейросеть на заданном множестве примеров: входных примеров X и соответствующих меток y. В процессе обучения, чтобы применить критерий раннего останова, можно задать контрольное (валидационное) множество, на котором будет вычисляться ошибка обобщения. Это можно сделать с использованием необязательного аргумента validation. Если этот аргумент указан, то он должен представлять собой двухэлементый кортеж или список, первым элементом которого является множество входных примеров X_val, а вторым элементов - множество меток классов y_val. X_val, как и множество обучающих примеров X, должно быть 4-мерным numpy.ndarray-массивом, а y_val, как и y, должно быть 1-мерным numpy.ndarray-массивом меток классов. Первое измерение массивов X и X_val - это число примеров. Соответственно, первое измерение X должно быть равно первому (и единственному) измерению y, а первое измерение X_val - первому (и единственному) измерению y_val. Если необязательный аргумент validation не указан, то контрольное (валидационное) множество автоматически случайным образом отшипывается от обучающего множества в пропорции, заданной параметром validation_fraction. Если же и необязательный аргумент validation не указан, и параметр validation_fraction установлен в None, то критерий раннего останова не используется. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - обучающие примеры, а остальные - размеры примера). :param y: 1-мерный numpy.ndarray-массив меток классов для каждого примера (метка - это целое неотрицательное). :param validation: Необязательный параметр, задающий контрольное (валидационное) множество для early stopping. :return self. """ self.check_params(**self.get_params(deep=False)) X, y = self.check_train_data(X, y) input_structure = X.shape[1:] self.random_state = check_random_state(self.random_state) classes_list = sorted(list(set(y.tolist()))) if self.warm_start: check_is_fitted(self, ['cnn_', 'predict_fn_', 'n_iter_', 'input_size_', 'loss_value_', 'classes_list_']) if X.shape[1:] != self.input_size_: raise ValueError('Samples of `X` do not correspond to the input structure! ' 'Got {0}, expected {1}'.format(X.shape[1:], self.input_size_)) if self.classes_list_ != classes_list: raise ValueError('List of classes is wrong. Got {0}, expected {1}.'.format( classes_list, self.classes_list_ )) old_params = lasagne.layers.get_all_param_values(self.cnn_) else: old_params = None if (len(classes_list) > 2) and (self.eval_metric == 'ROC-AUC'): raise ValueError('You can not use `ROC-AUC` metric for early stopping ' 'if number of classes is greater than 2.') if (not hasattr(self, 'cnn_train_fn_')) or (not hasattr(self, 'cnn_val_fn_')) or \ (not hasattr(self, 'predict_fn_')) or (not hasattr(self, 'cnn_')): cnn_input_var = T.tensor4('inputs') target_var = T.ivector('targets') self.cnn_, _ = self.build_cnn(input_structure, len(classes_list), cnn_input_var) train_loss, _ = self.build_loss(len(classes_list), target_var, self.cnn_, False) params = lasagne.layers.get_all_params(self.cnn_, trainable=True) updates = lasagne.updates.adamax(train_loss, params, learning_rate=self.learning_rate, beta1=self.beta1, beta2=self.beta2, epsilon=self.epsilon) self.cnn_train_fn_ = theano.function([cnn_input_var, target_var], train_loss, updates=updates, allow_input_downcast=True) test_loss, test_prediction = self.build_loss(len(classes_list), target_var, self.cnn_, True) self.cnn_val_fn_ = theano.function([cnn_input_var, target_var], test_loss, allow_input_downcast=True) self.predict_fn_ = theano.function([cnn_input_var], test_prediction, allow_input_downcast=True) if old_params is not None: lasagne.layers.set_all_param_values(self.cnn_, old_params) if 'validation' in fit_params: if (not isinstance(fit_params['validation'], tuple)) and (not isinstance(fit_params['validation'], list)): raise ValueError('Validation data are specified incorrectly!') if len(fit_params['validation']) != 2: raise ValueError('Validation data are specified incorrectly!') X_val, y_val = self.check_train_data(fit_params['validation'][0], fit_params['validation'][1]) if X.shape[1:] != X_val.shape[1:]: raise ValueError('Validation inputs do not correspond to train inputs!') if set(y.tolist()) != set(y_val.tolist()): raise ValueError('Validation targets do not correspond to train targets!') train_indices = numpy.arange(0, X.shape[0], 1, numpy.int32) val_indices = numpy.arange(0, X_val.shape[0], 1, numpy.int32) elif self.validation_fraction is not None: n = int(round(self.validation_fraction * X.shape[0])) if (n <= 0) or (n >= X.shape[0]): raise ValueError('Train data cannot be split into train and validation subsets!') X_val = None y_val = None train_indices, val_indices = split_train_data(y, n, self.random_state) else: X_val = None y_val = None train_indices = numpy.arange(0, X.shape[0], 1, numpy.int32) val_indices = None if self.verbose: print("") print("Training is started...") best_eval_metric = None cur_eval_metric = None best_params = None best_epoch_ind = None early_stopping = False for epoch_ind in range(self.max_epochs_number): train_err = 0 start_time = time.time() for batch in self.__iterate_minibatches(X, y, train_indices, shuffle=True): inputs, targets = batch train_err += self.cnn_train_fn_(inputs, targets) train_err /= train_indices.shape[0] val_err = 0.0 if val_indices is None: if best_eval_metric is None: best_epoch_ind = epoch_ind best_eval_metric = train_err best_params = lasagne.layers.get_all_param_values(self.cnn_) elif train_err < best_eval_metric: best_epoch_ind = epoch_ind best_eval_metric = train_err best_params = lasagne.layers.get_all_param_values(self.cnn_) else: val_err = 0 if X_val is None: for batch in self.__iterate_minibatches(X, y, val_indices, shuffle=False): inputs, targets = batch val_err += self.cnn_val_fn_(inputs, targets) else: for batch in self.__iterate_minibatches(X_val, y_val, val_indices, shuffle=False): inputs, targets = batch val_err += self.cnn_val_fn_(inputs, targets) val_err /= val_indices.shape[0] if self.eval_metric == 'Logloss': cur_eval_metric = val_err if best_eval_metric is None: best_epoch_ind = epoch_ind best_eval_metric = cur_eval_metric best_params = lasagne.layers.get_all_param_values(self.cnn_) elif cur_eval_metric < best_eval_metric: best_epoch_ind = epoch_ind best_eval_metric = cur_eval_metric best_params = lasagne.layers.get_all_param_values(self.cnn_) else: if self.eval_metric == 'F1': if X_val is None: cur_eval_metric = f1_score( y[val_indices], self.__predict(X[val_indices], len(classes_list)), average=('binary' if len(classes_list) < 3 else 'macro') ) else: cur_eval_metric = f1_score( y_val, self.__predict(X_val, len(classes_list)), average=('binary' if len(classes_list) < 3 else 'macro') ) else: if X_val is None: cur_eval_metric = roc_auc_score( y[val_indices], self.__predict_proba(X[val_indices], len(classes_list))[:, 1] ) else: cur_eval_metric = roc_auc_score( y_val, self.__predict_proba(X_val, len(classes_list))[:, 1] ) if best_eval_metric is None: best_epoch_ind = epoch_ind best_eval_metric = cur_eval_metric best_params = lasagne.layers.get_all_param_values(self.cnn_) elif cur_eval_metric > best_eval_metric: best_epoch_ind = epoch_ind best_eval_metric = cur_eval_metric best_params = lasagne.layers.get_all_param_values(self.cnn_) if self.verbose: print("Epoch {} of {} took {:.3f}s".format( epoch_ind + 1, self.max_epochs_number, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err)) if val_indices is not None: print(" validation loss:\t\t{:.6f}".format(val_err)) if self.eval_metric != 'Logloss': print(" validation {}:\t\t{:.6f}".format(self.eval_metric, cur_eval_metric)) if best_epoch_ind is not None: if (epoch_ind - best_epoch_ind) >= self.epochs_before_stopping: early_stopping = True break if best_params is None: raise ValueError('The multilayer perceptron cannot be trained!') self.loss_value_ = best_eval_metric if self.warm_start: self.n_iter_ += (best_epoch_ind + 1) else: self.n_iter_ = best_epoch_ind + 1 lasagne.layers.set_all_param_values(self.cnn_, best_params) del best_params self.input_size_ = input_structure if self.verbose: if early_stopping: print('Training is stopped according to the early stopping criterion.') else: print('Training is stopped according to the exceeding of maximal epochs number.') self.classes_list_ = classes_list return self def __predict(self, X, n_classes): """ Распознать обученной нейросетью заданное множество входных примеров X. Перед распознаванием ничего не проверять - ни корректность параметров нейросети, ни правильность входных данных. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - тестовые примеры, а остальные - размеры примера). :param n_classes: количество распознаваемых классов. :return 1-мерный numpy.ndarray-массив распознанных меток классов(целых чисел), равный по длине 1-му измерению X. """ n_samples = X.shape[0] y_pred = numpy.zeros((n_samples,), dtype=numpy.int32) if n_classes > 2: sample_ind = 0 for batch in self.__iterate_minibatches_for_prediction(X): inputs = batch outputs = self.predict_fn_(inputs) n_outputs = outputs.shape[0] if sample_ind + n_outputs <= n_samples: y_pred[sample_ind:(sample_ind + n_outputs)] = outputs.argmax(axis=1).astype(y_pred.dtype) else: y_pred[sample_ind:n_samples] = outputs[:(n_samples - sample_ind)].argmax(axis=1).astype( y_pred.dtype) sample_ind += n_outputs else: sample_ind = 0 for batch in self.__iterate_minibatches_for_prediction(X): inputs = batch outputs = self.predict_fn_(inputs) n_outputs = outputs.shape[0] if sample_ind + n_outputs <= n_samples: y_pred[sample_ind:(sample_ind + n_outputs)] = (outputs >= 0.5).astype(y_pred.dtype) else: y_pred[sample_ind:n_samples] = (outputs[:(n_samples - sample_ind)] >= 0.5).astype(y_pred.dtype) sample_ind += n_outputs return y_pred def predict(self, X): """ Распознать обученной нейросетью заданное множество входных примеров X. Перед распознаванием проверить корректность установки всех параметров нейросети и правильность задания множества входных примеров. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - тестовые примеры, а остальные - размеры примера). :return 1-мерный numpy.ndarray-массив распознанных меток классов(целых чисел), равный по длине 1-му измерению X. """ check_is_fitted(self, ['cnn_', 'predict_fn_', 'n_iter_', 'input_size_', 'loss_value_', 'classes_list_']) X = self.check_input_data(X) return self.__predict(X, len(self.classes_list_)) def __predict_proba(self, X, n_classes): """ Вычислить вероятности распознавания классов для заданного множества входных примеров X. Перед вычислением вероятностей ничего не проверять - ни корректность параметров нейросети, ни правильность входных данных. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - тестовые примеры, а остальные - размеры примера). :param n_classes: количество распознаваемых классов. :return 2-мерный numpy.ndarray-массив, число строк которого равно 1-му измерению X, а столбцов - числу классов. """ n_samples = X.shape[0] sample_ind = 0 if n_classes > 2: probabilities = numpy.empty((n_samples, n_classes), dtype=numpy.float32) for batch in self.__iterate_minibatches_for_prediction(X): inputs = batch outputs = self.predict_fn_(inputs) n_outputs = outputs.shape[0] if sample_ind + n_outputs <= n_samples: probabilities[sample_ind:(sample_ind + n_outputs)] = outputs else: probabilities[sample_ind:n_samples] = outputs[:(n_samples - sample_ind)] sample_ind += n_outputs res = probabilities else: probabilities = numpy.empty((n_samples,), dtype=numpy.float32) for batch in self.__iterate_minibatches_for_prediction(X): inputs = batch outputs = self.predict_fn_(inputs) n_outputs = outputs.shape[0] if sample_ind + n_outputs <= n_samples: probabilities[sample_ind:(sample_ind + n_outputs)] = outputs else: probabilities[sample_ind:n_samples] = outputs[:(n_samples - sample_ind)] sample_ind += n_outputs probabilities = probabilities.reshape((probabilities.shape[0], 1)) res = numpy.hstack((1.0 - probabilities, probabilities)) return res def predict_proba(self, X): """ Вычислить вероятности распознавания классов для заданного множества входных примеров X. Перед вычислением вероятностей проверить корректность установки всех параметров нейросети и правильность задания множества входных примеров. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - тестовые примеры, а остальные - размеры примера). :return 2-мерный numpy.ndarray-массив, число строк которого равно 1-му измерению X, а столбцов - числу классов. """ check_is_fitted(self, ['cnn_', 'predict_fn_', 'n_iter_', 'input_size_', 'loss_value_', 'classes_list_']) X = self.check_input_data(X) return self.__predict_proba(X, len(self.classes_list_)) def predict_log_proba(self, X): """ Вычислить логарифмы вероятностей распознавания классов для заданного множества входных примеров X. :param X: 4-мерный numpy.ndarray-массив (1-е измерение - тестовые примеры, а остальные - размеры примера). :return 2-мерный numpy.ndarray-массив, число строк которого равно 1-му измерению X, а столбцов - числу классов. """ return numpy.log(self.predict_proba(X)) def get_params(self, deep=True): """ Получить словарь управляющих параметров нейросети. Данный метод используется внутри sklearn.pipeline.Pipeline, sklearn.model_selection.GridSearchCV и пр. Соответствено, если мы хотим насладиться всей мощью scikit-learn и использовать наш класс там, то данный метод нужно корректно реализовать. :return словарь управляющих параметров нейросети (без параметров, настроенных по итогам обучения). """ return {'layers': copy.deepcopy(self.layers) if deep else self.layers, 'dropout': self.dropout, 'learning_rate': self.learning_rate, 'max_epochs_number': self.max_epochs_number, 'validation_fraction': self.validation_fraction, 'epochs_before_stopping': self.epochs_before_stopping, 'beta1': self.beta1, 'beta2': self.beta2, 'epsilon': self.epsilon, 'batch_size': self.batch_size, 'verbose': self.verbose, 'batch_norm': self.batch_norm, 'warm_start': self.warm_start, 'eval_metric': self.eval_metric} def set_params(self, **parameters): """ Установить новые значения управляющих параметров нейросети из словаря. Данный метод используется внутри sklearn.pipeline.Pipeline, sklearn.model_selection.GridSearchCV и пр. Соответствено, если мы хотим насладиться всей мощью scikit-learn и использовать наш класс там, то данный метод нужно корректно реализовать. :param parameters: Названия и значения устанавливаемых параметров, заданные словарём. :return self """ for parameter, value in parameters.items(): self.__setattr__(parameter, value) return self @staticmethod def check_params(**kwargs): """ Проверить корректность значений всех возможных параметров и, если что, бросить ValueError. """ if not 'layers' in kwargs: raise ValueError('Structure of hidden layers is not specified!') if not isinstance(kwargs['layers'], dict): raise ValueError('Structure of hidden layers must be dictionary consisting from three items!') if len(kwargs['layers']) != 3: raise ValueError('Structure of hidden layers must be dictionary consisting from three items!') if 'conv' not in kwargs['layers']: raise ValueError('Description of convolution layers (`conv` key) cannot be found in the `layers` dict!') conv_layers = kwargs['layers']['conv'] if 'pool' not in kwargs['layers']: raise ValueError('Description of pooling layers (`pool` key) cannot be found in the `layers` dict!') pooling_layers = kwargs['layers']['pool'] if 'dense' not in kwargs['layers']: raise ValueError('Description of dense layers (`dense` key) cannot be found in the `layers` dict!') dense_layers = kwargs['layers']['dense'] if (not isinstance(conv_layers, tuple)) and (not isinstance(conv_layers, list)): raise ValueError('Structure of convolution layers must be list or tuple!') if len(conv_layers) < 1: raise ValueError('List of convolution layers is empty!') if (not isinstance(pooling_layers, tuple)) and (not isinstance(pooling_layers, list)): raise ValueError('Structure of pooling layers must be list or tuple!') if len(pooling_layers) < 1: raise ValueError('List of pooling layers is empty!') if (not isinstance(dense_layers, tuple)) and (not isinstance(dense_layers, list)): raise ValueError('Structure of dense layers must be list or tuple!') if len(dense_layers) < 1: raise ValueError('List of dense layers is empty!') if len(conv_layers) != len(pooling_layers): raise ValueError('Number of convolution layers must be equal to number of pooling layers!') for ind in range(len(conv_layers)): err_msg = 'Structure of convolution layer {0} is wrong!'.format(ind + 1) if (not isinstance(conv_layers[ind], tuple)) and (not isinstance(conv_layers[ind], list)): raise ValueError(err_msg) if len(conv_layers[ind]) != 2: raise ValueError(err_msg) if not isinstance(conv_layers[ind][0], int): raise ValueError(err_msg) if conv_layers[ind][0] < 1: raise ValueError(err_msg) if (not isinstance(conv_layers[ind][1], tuple)) and (not isinstance(conv_layers[ind][1], list)): raise ValueError(err_msg) if len(conv_layers[ind][1]) != 2: raise ValueError(err_msg) if not isinstance(conv_layers[ind][1][0], int): raise ValueError(err_msg) if conv_layers[ind][1][0] < 0: raise ValueError(err_msg) if not isinstance(conv_layers[ind][1][1], int): raise ValueError(err_msg) if conv_layers[ind][1][1] < 0: raise ValueError(err_msg) if (conv_layers[ind][1][0] <= 0) and (conv_layers[ind][1][1] <= 0): raise ValueError(err_msg) err_msg = 'Structure of pooling layer {0} is wrong!'.format(ind + 1) if (not isinstance(pooling_layers[ind], tuple)) and (not isinstance(pooling_layers[ind], list)): raise ValueError(err_msg) if len(pooling_layers[ind]) != 2: raise ValueError(err_msg) if pooling_layers[ind][0] < 0: raise ValueError(err_msg) if pooling_layers[ind][1] < 0: raise ValueError(err_msg) if (pooling_layers[ind][0] <= 0) and (pooling_layers[ind][1] <= 0): raise ValueError(err_msg) receptive_field_for_pool_layer = ( pooling_layers[ind][0] if pooling_layers[ind][0] > 0 else 1, pooling_layers[ind][1] if pooling_layers[ind][1] > 0 else 1 ) if (receptive_field_for_pool_layer[0] < 1) or (receptive_field_for_pool_layer[1] < 1): raise ValueError(err_msg) n_dense_layers = len(dense_layers) for layer_ind in range(n_dense_layers): if (not isinstance(dense_layers[layer_ind], int)) or (dense_layers[layer_ind] < 1): raise ValueError('Size of fully-connected layer {0} is inadmissible!'.format(layer_ind)) if 'dropout' not in kwargs: raise ValueError('Dropout probability is not specified!') if (kwargs['dropout'] <= 0.0) or (kwargs['dropout'] >= 1.0): raise ValueError('Dropout probability is wrong!') if 'learning_rate' not in kwargs: raise ValueError('Learning rate is not specified!') if kwargs['learning_rate'] <= 0.0: raise ValueError('Learning rate must be positive value!') if 'max_epochs_number' not in kwargs: raise ValueError('Maximal number of train epochs is not specified!') if (not isinstance(kwargs['max_epochs_number'], int)) or (kwargs['max_epochs_number'] <= 0): raise ValueError('Maximal number of train epochs must be positive integer value!') if 'validation_fraction' not in kwargs: raise ValueError('Validation fraction is not specified!') if kwargs['validation_fraction'] is not None: if (kwargs['validation_fraction'] <= 0.0) or (kwargs['validation_fraction'] >= 1.0): raise ValueError('Validation fraction must be in (0.0, 1.0) or None!') if not 'beta1' in kwargs: raise ValueError('Beta1 for the Adamax algorithm is not specified!') if (kwargs['beta1'] < 0.0) or (kwargs['beta1'] >= 1.0): raise ValueError('Beta1 for the Adamax algorithm must be in [0.0, 1.0)!') if not 'beta2' in kwargs: raise ValueError('Beta2 for the Adamax algorithm is not specified!') if (kwargs['beta2'] < 0.0) or (kwargs['beta2'] >= 1.0): raise ValueError('Beta2 for the Adamax algorithm must be in [0.0, 1.0)!') if 'epsilon' not in kwargs: raise ValueError('Epsilon for the Adamax algorithm is not specified!') if kwargs['epsilon'] <= 0.0: raise ValueError('Epsilon for the Adamax algorithm must be positive value!') if not 'batch_size' in kwargs: raise ValueError('Batch size is not specified!') if (not isinstance(kwargs['batch_size'], int)) or (kwargs['batch_size'] <= 0): raise ValueError('Batch size must be positive integer value!') if not 'epochs_before_stopping' in kwargs: raise ValueError('Maximal number of consecutive epochs when validation score is not improving ' 'is not specified!') if (not isinstance(kwargs['epochs_before_stopping'], int)) or (kwargs['epochs_before_stopping'] <= 0): raise ValueError('Maximal number of consecutive epochs when validation score is not improving must be ' 'positive integer value!') if kwargs['epochs_before_stopping'] > kwargs['max_epochs_number']: raise ValueError('Maximal number of consecutive epochs when validation score is not improving must be ' 'positive integer value!') if not 'batch_norm' in kwargs: raise ValueError('Flag of the batch normalization is not specified!') if not isinstance(kwargs['batch_norm'], bool): raise ValueError('Flag of the batch normalization must be boolean value!') if not 'warm_start' in kwargs: raise ValueError('Flag of the warm start is not specified!') if not isinstance(kwargs['warm_start'], bool): raise ValueError('Flag of the warm start must be boolean value!') if not 'verbose' in kwargs: raise ValueError('Flag of the verbose mode is not specified!') if (not isinstance(kwargs['verbose'], bool)) and (not isinstance(kwargs['verbose'], int)): raise ValueError('Flag of the verbose mode must be boolean or integer value!') if not 'eval_metric' in kwargs: raise ValueError('Metric for evaluation and early stopping is not specified!') if not isinstance(kwargs['eval_metric'], str): raise ValueError('Metric for evaluation and early stopping must be a string value!') if kwargs['eval_metric'] not in {'Logloss', 'F1', 'ROC-AUC'}: raise ValueError('"{0}" is unknown metric for evaluation and early stopping! ' 'We expect "Logloss", "F1" or "ROC-AUC".'.format(kwargs['eval_metric'])) def check_train_data(self, X, y): """ Проверить корректность обучающего (или тестового) множества входных примеров X и меток классов y. Если что-то пошло не так, то бросить ValueError. """ X, y = check_X_y(X, y, accept_sparse=False, dtype=[numpy.float32, numpy.float64, numpy.uint8], allow_nd=True) if len(X.shape) != 4: raise ValueError('`X` must be a 4-D array (samples, input maps, rows of input map, columns of input map)!') for sample_ind in range(y.shape[0]): if y[sample_ind] < 0: raise ValueError('Target values must be non-negative integer numbers!') if set(y.tolist()) != set(range(int(y.max()) + 1)): raise ValueError('Target values must be non-negative integer numbers!') return X, y def check_input_data(self, X): """ Проверить корректность множества входных примеров X и бросить ValueError в случае ошибки. """ X = check_array(X, accept_sparse=False, dtype=[numpy.float32, numpy.float64, numpy.uint8], allow_nd=True) if len(X.shape) != 4: raise ValueError('`X` must be 4D array (samples, input maps, rows of input map, columns of input map)!') if X.shape[1:] != self.input_size_: raise ValueError('Samples of `X` do not correspond to the input structure! ' 'Got {0}, expected {1}'.format(X.shape[1:], self.input_size_)) return X def build_cnn(self, input_structure, number_of_classes, input_var, trainable_shared_params=None): """ Построить вычислительный граф нейросети средствами Theano/Lasagne. :param input_structure - 3-элементный кортеж, задающий количество входных карт, их высоту и ширину. :param number_of_classes - число распознаваемых классов. :param input_var - символьная входная переменная для вычислительного графа Theano. :param trainable_shared_params - расшариваемые параметры нейросети-близнеца (или None, если близнецов нет). :return кортеж из двух вычислительных графов Theano: для всей сети в целом и для сети без выходного слоя. """ l_in = lasagne.layers.InputLayer( shape=(None, input_structure[0], input_structure[1], input_structure[2]), input_var=input_var ) input_size = (input_structure[1], input_structure[2]) conv_layers = self.layers['conv'] pooling_layers = self.layers['pool'] dense_layers = self.layers['dense'] if conv_layers[0][0] <= 0: raise ValueError('Convolution layer 1: {0} is wrong number of feature maps!'.format(conv_layers[0][0])) receptive_field_for_conv_layer = ( conv_layers[0][1][0] if conv_layers[0][1][0] > 0 else input_size[0], conv_layers[0][1][1] if conv_layers[0][1][1] > 0 else input_size[1] ) if (receptive_field_for_conv_layer[0] <= 0) or (receptive_field_for_conv_layer[1] <= 0): raise ValueError('Convolution layer 1: ({0}, {1}) is wrong size of receptive field!'.format( receptive_field_for_conv_layer[0], receptive_field_for_conv_layer[1] )) feature_map_for_conv_layer = ( input_size[0] + 1 - receptive_field_for_conv_layer[0], input_size[1] + 1 - receptive_field_for_conv_layer[1] ) if (feature_map_for_conv_layer[0] <= 0) or (feature_map_for_conv_layer[1] <= 0): raise ValueError('Convolution layer 1: ({0}, {1}) is wrong size of feature map!'.format( feature_map_for_conv_layer[0], feature_map_for_conv_layer[1] )) if self.batch_norm: l_conv = lasagne.layers.batch_norm( lasagne.layers.Conv2DLayer( l_in, num_filters=conv_layers[0][0], filter_size=receptive_field_for_conv_layer, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[0], name='l_conv_1' ) ) else: l_conv = lasagne.layers.Conv2DLayer( l_in, num_filters=conv_layers[0][0], filter_size=receptive_field_for_conv_layer, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[0], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[1], name='l_conv_1' ) receptive_field_for_pool_layer = ( pooling_layers[0][0] if pooling_layers[0][0] > 0 else 1, pooling_layers[0][1] if pooling_layers[0][1] > 0 else 1 ) if (receptive_field_for_pool_layer[0] <= 0) or (receptive_field_for_pool_layer[1] <= 0): raise ValueError('Pooling layer 1: ({0}, {1}) is wrong size of receptive field!'.format( receptive_field_for_pool_layer[0], receptive_field_for_pool_layer[1] )) feature_map_for_pool_layer = ( feature_map_for_conv_layer[0] // receptive_field_for_pool_layer[0], feature_map_for_conv_layer[1] // receptive_field_for_pool_layer[1] ) if (feature_map_for_pool_layer[0] <= 0) or (feature_map_for_pool_layer[1] <= 0): raise ValueError('Pooling layer 1: ({0}, {1}) is wrong size of feature map!'.format( feature_map_for_pool_layer[0], feature_map_for_pool_layer[1] )) l_pool = lasagne.layers.Pool2DLayer( l_conv, pool_size=receptive_field_for_pool_layer, name='l_pool_1' ) input_size = feature_map_for_pool_layer for ind in range(len(conv_layers) - 1): if conv_layers[ind + 1][0] <= 0: raise ValueError('Convolution layer {0}: {1} is wrong number of feature maps!'.format( ind + 2, conv_layers[ind + 1][0] )) receptive_field_for_conv_layer = ( conv_layers[ind + 1][1][0] if conv_layers[ind + 1][1][0] > 0 else input_size[0], conv_layers[ind + 1][1][1] if conv_layers[ind + 1][1][1] > 0 else input_size[1] ) if (receptive_field_for_conv_layer[0] <= 0) or (receptive_field_for_conv_layer[1] <= 0): raise ValueError('Convolution layer {0}: ({1}, {2}) is wrong size of receptive field!'.format( ind + 2, receptive_field_for_conv_layer[0], receptive_field_for_conv_layer[1] )) feature_map_for_conv_layer = ( input_size[0] + 1 - receptive_field_for_conv_layer[0], input_size[1] + 1 - receptive_field_for_conv_layer[1] ) if (feature_map_for_conv_layer[0] <= 0) or (feature_map_for_conv_layer[1] <= 0): raise ValueError('Convolution layer {0}: ({1}, {2}) is wrong size of feature map!'.format( ind + 2, feature_map_for_conv_layer[0], feature_map_for_conv_layer[1] )) if self.batch_norm: l_conv = lasagne.layers.batch_norm( lasagne.layers.Conv2DLayer( l_pool, num_filters=conv_layers[ind + 1][0], filter_size=receptive_field_for_conv_layer, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[(ind + 1) * 3], name='l_conv_{0}'.format(ind + 2) ) ) else: l_conv = lasagne.layers.Conv2DLayer( l_pool, num_filters=conv_layers[ind + 1][0], filter_size=receptive_field_for_conv_layer, nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[(ind + 1) * 2], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[(ind + 1) * 2 + 1], name='l_conv_{0}'.format(ind + 2) ) receptive_field_for_pool_layer = ( pooling_layers[ind + 1][0] if pooling_layers[ind + 1][0] > 0 else 1, pooling_layers[ind + 1][1] if pooling_layers[ind + 1][1] > 0 else 1 ) if (feature_map_for_pool_layer[0] <= 0) or (feature_map_for_pool_layer[1] <= 0): raise ValueError('Pooling layer {0}: ({1}, {2}) is wrong size of feature map!'.format( ind + 2, feature_map_for_pool_layer[0], feature_map_for_pool_layer[1] )) feature_map_for_pool_layer = ( feature_map_for_conv_layer[0] // receptive_field_for_pool_layer[0], feature_map_for_conv_layer[1] // receptive_field_for_pool_layer[1] ) if (feature_map_for_pool_layer[0] <= 0) or (feature_map_for_pool_layer[1] <= 0): raise ValueError('Pooling layer {0}: ({1}, {2}) is wrong size of feature map!'.format( ind + 2, feature_map_for_pool_layer[0], feature_map_for_pool_layer[1] )) l_pool = lasagne.layers.Pool2DLayer( l_conv, pool_size=receptive_field_for_pool_layer, name='l_pool_{0}'.format(ind + 2) ) input_size = feature_map_for_pool_layer layer_ind = len(conv_layers) * 3 if self.batch_norm else len(conv_layers) * 2 l_in_drop = lasagne.layers.DropoutLayer(l_pool, p=self.dropout) if self.batch_norm: l_hid_old = lasagne.layers.batch_norm( lasagne.layers.DenseLayer( l_in_drop, num_units=dense_layers[0], nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[layer_ind], name='l_dense_1' ) ) layer_ind += 3 else: l_hid_old = lasagne.layers.DenseLayer( l_in_drop, num_units=dense_layers[0], nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[layer_ind], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[layer_ind + 1], name='l_dense_1' ) layer_ind += 2 last_real_layer = l_hid_old l_hid_old_drop = lasagne.layers.DropoutLayer(l_hid_old, p=self.dropout) for ind in range(len(dense_layers) - 1): if self.batch_norm: l_hid_new = lasagne.layers.batch_norm( lasagne.layers.DenseLayer( l_hid_old_drop, num_units=dense_layers[ind + 1], nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[layer_ind], name='l_dense_{0}'.format(ind + 2) ) ) layer_ind += 3 else: l_hid_new = lasagne.layers.DenseLayer( l_hid_old_drop, num_units=dense_layers[ind + 1], nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeUniform(gain='relu') if trainable_shared_params is None else trainable_shared_params[layer_ind], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[layer_ind + 1], name='l_dense_{0}'.format(ind + 2) ) layer_ind += 2 last_real_layer = l_hid_new l_hid_new_drop = lasagne.layers.DropoutLayer(l_hid_new, p=self.dropout) l_hid_old_drop = l_hid_new_drop last_layer = l_hid_old_drop if number_of_classes > 2: cnn_output = lasagne.layers.DenseLayer( last_layer, num_units=number_of_classes, nonlinearity=lasagne.nonlinearities.softmax, W=lasagne.init.GlorotUniform() if trainable_shared_params is None else trainable_shared_params[-2], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[-1], name='l_cnn' ) else: cnn_output = lasagne.layers.DenseLayer( last_layer, num_units=1, nonlinearity=lasagne.nonlinearities.sigmoid, W=lasagne.init.GlorotUniform() if trainable_shared_params is None else trainable_shared_params[-2], b=lasagne.init.Constant(0.0) if trainable_shared_params is None else trainable_shared_params[-1], name='l_cnn' ) return cnn_output, last_real_layer def build_loss(self, number_of_classes, target_var, cnn, deterministic): """ Построить вычислительный граф для функции потерь и классификационной функции средствами Theano/Lasagne. :param number_of_classes: Число распознаваемых классов. :param target_var: Символьная переменная Theano, задающая желаемые метки классов для обучения/тестирования. :param cnn: вычислительный граф Theano для всей нейросети. :param deterministic: булевый флаг, определяющий режим работы (True - тестирование, False - обучение). :return 2-элементный кортеж: построенные графы для функции потерь и для классификационной функции. """ if number_of_classes > 2: prediction = lasagne.layers.get_output(cnn) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) output_prediction = lasagne.layers.get_output(cnn, deterministic=deterministic) else: prediction = lasagne.layers.get_output(cnn) loss = lasagne.objectives.binary_crossentropy(prediction, target_var) output_prediction = T.flatten(lasagne.layers.get_output(cnn, deterministic=deterministic)) loss = loss.sum() return loss, output_prediction def dump_all(self): """ Выполнить сериализацию нейросети в словарь (dict). Метод выгружает значения всех параметров нейросети в словарь, ключами которого являются названия параметров, а значениями - соответственно, значения. В сериализации участвуют абсолютно все параметры, кроме random_state, т.е. и управляющие параметры, задаваемые, например, в конструкторе, и настраиваемые параметры, значения которых устанавливаются по итогам обучения (веса нейросети, распознаваемые классы и прочее). При сериализации выполняется копирование (а не передача по ссылка) всех составных структур данных. :return: словарь для всех параметров нейросети. """ try: check_is_fitted(self, ['cnn_', 'predict_fn_', 'n_iter_', 'input_size_', 'loss_value_', 'classes_list_']) is_trained = True except: is_trained = False params = self.get_params(True) if is_trained: params['weights_and_biases'] = lasagne.layers.get_all_param_values(self.cnn_) params['loss_value_'] = self.loss_value_ params['n_iter_'] = self.n_iter_ params['input_size_'] = self.input_size_ params['classes_list_'] = copy.copy(self.classes_list_) return params def load_all(self, new_params): """ Выполнить десериализацию нейросети из словаря (dict). Метод проверяет корректность всех параметров нейросети, заданных во входном словаре, и в случае успешной проверки переносит эти значения в нейросеть (в случае неудачи бросает исключение ValueError). В десериализации участвуют абсолютно все параметры, кроме random_state, т.е. и управляющие параметры, задаваемые, например, в конструкторе, и настраиваемые параметры, значения которых устанавливаются по итогам обучения (веса нейросети, распознаваемые классы и прочее). При десериализации выполняется копирование (а не передача по ссылка) всех составных структур данных. :param new_params: словарь (dict) со всеми параметрами нейросети для десериализации. :return: self """ if not isinstance(new_params, dict): raise ValueError('`new_params` is wrong! Expected {0}.'.format(type({0: 1}))) self.check_params(**new_params) expected_param_keys = {'layers', 'dropout', 'learning_rate', 'max_epochs_number', 'validation_fraction', 'epochs_before_stopping', 'beta1', 'beta2', 'epsilon', 'batch_size', 'verbose', 'batch_norm', 'warm_start', 'eval_metric'} params_after_training = {'weights_and_biases', 'loss_value_', 'n_iter_', 'input_size_', 'classes_list_'} is_fitted = len(set(new_params.keys())) > len(expected_param_keys) if is_fitted: if set(new_params.keys()) != (expected_param_keys | params_after_training): raise ValueError('`new_params` does not contain the expected keys!') self.layers = copy.deepcopy(new_params['layers']) self.dropout = new_params['dropout'] self.learning_rate = new_params['learning_rate'] self.max_epochs_number = new_params['max_epochs_number'] self.validation_fraction = new_params['validation_fraction'] self.beta1 = new_params['beta1'] self.beta2 = new_params['beta2'] self.epsilon = new_params['epsilon'] self.verbose = new_params['verbose'] self.epochs_before_stopping = new_params['epochs_before_stopping'] self.batch_size = new_params['batch_size'] self.batch_norm = new_params['batch_norm'] self.warm_start = new_params['warm_start'] self.eval_metric = new_params['eval_metric'] if getattr(self, 'random_state', None) is None: self.random_state = None if is_fitted: if not isinstance(new_params['loss_value_'], float): raise ValueError('`new_params` is wrong! Generalization loss `loss_value_` must be ' 'floating-point number!') if not isinstance(new_params['n_iter_'], int): raise ValueError('`new_params` is wrong! Generalization loss `n_iter_` must be positive integer!') if new_params['n_iter_'] <= 0: raise ValueError('`new_params` is wrong! Generalization loss `n_iter_` must be positive integer!') if (not isinstance(new_params['input_size_'], tuple)) and (not isinstance(new_params['input_size_'], list)): raise ValueError('`new_params` is wrong! All input data sizes `input_size_` must be list or tuple!') if len(new_params['input_size_']) != 3: raise ValueError('`new_params` is wrong! All input data sizes `input_size_` must be 3-D sequence!') for cur in new_params['input_size_']: if not isinstance(cur, int): raise ValueError('`new_params` is wrong! Each input data size `input_size_` must be ' 'positive integer number!') if cur <= 0: raise ValueError('`new_params` is wrong! Each input data size `input_size_` must be ' 'positive integer number!') if (not isinstance(new_params['classes_list_'], list)) and \ (not isinstance(new_params['classes_list_'], tuple)): raise ValueError('`new_params` is wrong! The classes list `classes_list_` must be list or tuple!') if len(new_params['classes_list_']) < 2: raise ValueError('`new_params` is wrong! The classes list `classes_list_` must consist from ' 'two or more classes!') self.random_state = check_random_state(self.random_state) self.loss_value_ = new_params['loss_value_'] self.n_iter_ = new_params['n_iter_'] self.classes_list_ = copy.copy(new_params['classes_list_']) self.input_size_ = copy.copy(new_params['input_size_']) cnn_input_var = T.tensor4('inputs') target_var = T.ivector('targets') self.cnn_, _ = self.build_cnn(self.input_size_, len(self.classes_list_), cnn_input_var) _, test_prediction = self.build_loss(len(self.classes_list_), target_var, self.cnn_, True) lasagne.layers.set_all_param_values(self.cnn_, new_params['weights_and_biases']) self.predict_fn_ = theano.function([cnn_input_var], test_prediction, allow_input_downcast=True) return self def __iterate_minibatches(self, inputs, targets, indices, shuffle=False): """ Итерироваться "минибатчами" по датасету - входным примерам inputs и соответствующим меткам классов targets. :param inputs: Входные примеры X. :param targets: Метки классов y. :param indices: Индексы интересных нам примеров, участвующих в итерировании. :param shuffle: Булевый флажок, указывающий, итерироваться случайно или всё же последовательно. :return Итератор (каждый элемент: "минибатч" из batch_size входных примеров и соответствующих им меток классов). """ for indices_in_batch in iterate(indices, self.batch_size, shuffle, self.random_state if shuffle else None): yield inputs[indices_in_batch], targets[indices_in_batch] def __iterate_minibatches_for_prediction(self, inputs): """ Итерироваться "минибатчами" по входным примерам inputs. :param inputs: Входные примеры X. :return Итератор (каждый элемент: "минибатч" из batch_size входных примеров). """ for indices_in_batch in iterate(numpy.arange(0, inputs.shape[0], 1, numpy.int32), self.batch_size, False, None): yield inputs[indices_in_batch] def __copy__(self): cls = self.__class__ result = cls.__new__(cls) result.load_all(self.dump_all()) return result def __deepcopy__(self, memodict={}): cls = self.__class__ result = cls.__new__(cls) result.load_all(self.dump_all()) return result def __getstate__(self): """ Нужно для сериализации через pickle. """ return self.dump_all() def __setstate__(self, state): """ Нужно для десериализации через pickle. """ self.load_all(state)
StarcoderdataPython
4977918
#!/usr/bin/env python3 ############################################################ # Usage: piScanner.py # Imports barcode and date from sshScript to create the filename # for a picture that is taken from a Raspberry Pi camera. # This script is used in conjuncture with sshScript. ############################################################ import time import picamera import socket # function to get the parameters (date and barcode) for the # filename and returns them in a list # Usage: List = getParam(0612,423423) def getParam(date,barcode): paramList = [date,barcode] print("The date is " + str(paramList[0])) print("The barcode is " + str(paramList[1])) return paramList # function to get the file name by taking an array # that contains the parameters and formating it # usage: name = getFileName(List) def getFileName(list): paramList = list # get the hostname of the server/pi piName = socket.gethostname() picName = piName + "_" + paramList[0] +"_"+ paramList[1] + ".jpg" return picName # function to take the picture and name it # Usage: takePic("myPicture") def takePic(name): picName = name picPath = "/home/pi/Desktop/local-folder/"+picName # picPath local directory must be the same as line 1 in syncScript # and picPath local-folder must exist in the Raspberry Pi # desktop before running this script with picamera.PiCamera() as camera: # Camera resolution is set for an 8 megapixel camera. # Modify as desired (e.g. 2592, 1944 for a 5 megapixel camera). camera.resolution = (3280, 2464) # Set ISO to the desired value camera.iso = 300 # Wait for the automatic gain control to settle time.sleep(2) # Now fix the values camera.shutter_speed = camera.exposure_speed camera.exposure_mode = 'off' g = camera.awb_gains camera.awb_mode = 'off' camera.awb_gains = g camera.capture(filename, quality=100) # starts the preview and then wait 1 seconds before # taking the picture time.sleep(1) camera.capture(picPath) print("Picture Taken: " + picName + "\n") # run this script only if the script is run directly. if __name__ == "__main__": from sys import argv # get the necessary arguments that will be passed # by the shell script List = getParam(argv[1],argv[2]) filename = getFileName(List) takePic(filename)
StarcoderdataPython
6487040
from hazma.parameters import alpha_em, qe from hazma.parameters import charged_pion_mass as mpi from hazma.parameters import electron_mass as me from hazma.parameters import muon_mass as mmu from cmath import sqrt, log, pi import numpy as np class VectorMediatorFSR: def __dnde_xx_to_v_to_ffg(self, egam, Q, f): """Return the fsr spectra for fermions from decay of vector mediator. Computes the final state radiaton spectrum value dNdE from a vector mediator given a gamma ray energy of `egam`, center of mass energy `Q` and final state fermion `f`. Paramaters ---------- egam : float Gamma ray energy. Q: float Center of mass energy of mass of off-shell vector mediator. f : float Name of the final state fermion: "e" or "mu". Returns ------- spec_val : float Spectrum value dNdE from vector mediator. """ if f == "e": mf = me elif f == "mu": mf = mmu mu_l = mf / Q x = 2 * egam / Q ret_val = 0.0 if ( 4.0 * mf ** 2 <= (Q ** 2 - 2.0 * Q * egam) <= Q ** 2 and Q > 2.0 * mf and Q > 2.0 * self.mx ): val = (( 2 * alpha_em * ( -( sqrt(1 + (4 * mu_l ** 2) / (-1 + x)) * (2 - 2 * x + x ** 2 - 4 * (-1 + x) * mu_l ** 2) ) + (2 + (-2 + x) * x - 4 * x * mu_l ** 2 - 8 * mu_l ** 4) * log( -( (1 + sqrt(1 + (4 * mu_l ** 2) / (-1 + x))) / (-1 + sqrt(1 + (4 * mu_l ** 2) / (-1 + x))) ) ) ) ) / (pi * Q * x * sqrt(1 - 4 * mu_l ** 2) * (1 + 2 * mu_l ** 2))).real assert val >= 0 return val else: return 0.0 def dnde_xx_to_v_to_ffg(self, egam, Q, f): """Return the fsr spectra for fermions from decay of vector mediator. Computes the final state radiaton spectrum value dNdE from a vector mediator given a gamma ray energy of `egam`, center of mass energy `Q` and final state fermion `f`. Paramaters ---------- egam : float Gamma ray energy. Q: float Center of mass energy of mass of off-shell vector mediator. f : float Mass of the final state fermion. Returns ------- spec_val : float Spectrum value dNdE from vector mediator. """ if hasattr(egam, "__len__"): return np.array([self.__dnde_xx_to_v_to_ffg(e, Q, f) for e in egam]) else: return self.__dnde_xx_to_v_to_ffg(egam, Q, f) def __dnde_xx_to_v_to_pipig(self, egam, Q): """Unvectorized dnde_xx_to_v_to_pipig""" mx = self.mx mu_pi = mpi / Q x = 2.0 * egam / Q x_min = 0.0 x_max = 1 - 4.0 * mu_pi ** 2 if x < x_min or x > x_max or Q < 2 * mpi or Q < 2.0 * mx: return 0.0 else: val = (( 4 * alpha_em * ( sqrt(1 + (4 * mu_pi ** 2) / (-1 + x)) * (-1 + x + x ** 2 - 4 * (-1 + x) * mu_pi ** 2) + (-1 + x + 2 * mu_pi ** 2) * (-1 + 4 * mu_pi ** 2) * log( -( (1 + sqrt(1 + (4 * mu_pi ** 2) / (-1 + x))) / (-1 + sqrt(1 + (4 * mu_pi ** 2) / (-1 + x))) ) ) ) ) / (pi * Q * x * (1 - 4 * mu_pi ** 2) ** 1.5)).real assert val >= 0 return val def dnde_xx_to_v_to_pipig(self, eng_gams, Q): """ Returns the gamma ray energy spectrum for two fermions annihilating into two charged pions and a photon. Parameters ---------- eng_gam : numpy.ndarray or double Gamma ray energy. Q : double Center of mass energy, or sqrt((ppip + ppim + pg)^2). Returns ------- Returns gamma ray energy spectrum for :math:`\chi\bar{\chi}\to\pi^{+}\pi^{-}\gamma` evaluated at the gamma ray energy(ies). """ if hasattr(eng_gams, "__len__"): return np.array( [self.__dnde_xx_to_v_to_pipig(eng_gam, Q) for eng_gam in eng_gams] ) else: return self.__dnde_xx_to_v_to_pipig(eng_gams, Q)
StarcoderdataPython
11281250
from pygccxml import declarations from pybindx.writers import base_writer class CppConsturctorWrapperWriter(base_writer.CppBaseWrapperWriter): """ Manage addition of constructor wrapper code """ def __init__(self, class_info, ctor_decl, class_decl, wrapper_templates, class_short_name=None): super(CppConsturctorWrapperWriter, self).__init__(wrapper_templates) self.class_info = class_info self.ctor_decl = ctor_decl self.class_decl = class_decl self.class_short_name = class_short_name if self.class_short_name is None: self.class_short_name = self.class_decl.name def exclusion_critera(self): # Check for exclusions exclusion_args = self.class_info.hierarchy_attribute_gather('calldef_excludes') ctor_arg_exludes = self.class_info.hierarchy_attribute_gather('constructor_arg_type_excludes') for eachArg in self.ctor_decl.argument_types: if eachArg.decl_string.replace(" ", "") in exclusion_args: return True for eachExclude in ctor_arg_exludes: if eachExclude in eachArg.decl_string: return True for eachArg in self.ctor_decl.argument_types: if "iterator" in eachArg.decl_string.lower(): return True if self.ctor_decl.parent != self.class_decl: return True if self.ctor_decl.is_artificial and declarations.is_copy_constructor(self.ctor_decl): return True if self.class_decl.is_abstract and len(self.class_decl.recursive_bases)>0: if any(t.related_class.is_abstract for t in self.class_decl.recursive_bases): return True return False def add_self(self, output_string): if self.exclusion_critera(): return output_string output_string += " "*8 + '.def(py::init<' num_arg_types = len(self.ctor_decl.argument_types) for idx, eachArg in enumerate(self.ctor_decl.argument_types): output_string += eachArg.decl_string if idx < num_arg_types-1: output_string += ", " output_string += ' >()' default_args = "" if not self.default_arg_exclusion_criteria(): for eachArg in self.ctor_decl.arguments: default_args += ', py::arg("{}")'.format(eachArg.name) if eachArg.default_value is not None: default_args += ' = ' + eachArg.default_value output_string += default_args + ')\n' return output_string
StarcoderdataPython
341715
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME>. aïvázis # orthologue # (c) 1998-2019 all rights reserved # """ Instantiate a simple mutable record using raw data """ def test(): import pyre.records class record(pyre.records.record): """ A sample record """ sku = pyre.records.measure() description = pyre.records.measure() cost = pyre.records.measure() # build a record r = record.pyre_mutable(data=("9-4013", "organic kiwi", .85)) # check assert r.sku == "9-4013" assert r.description == "organic kiwi" assert r.cost == .85 # make a change to the cost r.cost = 1 # and verify that it was stored assert r.cost == 1 # all done return r # main if __name__ == "__main__": # skip pyre initialization since we don't rely on the executive pyre_noboot = True # do... test() # end of file
StarcoderdataPython
6579762
<filename>model/layers.py """Creates the layers for a BiMPM model architecture.""" import torch import torch.nn as nn import torch.nn.functional as F class CharacterRepresentationEncoder(nn.Module): """A character embedding layer with embeddings that are learned along with other network parameters during training. """ def __init__(self, args): """Initialize the character embedding layer model architecture, and the char rnn. Parameters ---------- args : Args An object with all arguments for BiMPM model. """ super(CharacterRepresentationEncoder, self).__init__() self.char_hidden_size = args.char_hidden_size self.char_encoder = nn.Embedding( args.char_vocab_size, args.char_input_size, padding_idx=0) self.lstm = nn.LSTM( input_size=args.char_input_size, hidden_size=args.char_hidden_size, num_layers=1, bidirectional=False, batch_first=True) def forward(self, chars): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- chars : Tensor A PyTorch Tensor with shape (batch_size, seq_len, max_word_len) Returns ------- Tensor A PyTorch Tensor with shape (batch_size, seq_len, char_hidden_size). """ batch_size, seq_len, max_word_len = chars.size() chars = chars.view(batch_size * seq_len, max_word_len) # out_shape: (1, batch_size * seq_len, char_hidden_size) chars = self.lstm(self.char_encoder(chars))[-1][0] return chars.view(-1, seq_len, self.char_hidden_size) class WordRepresentationLayer(nn.Module): """A word representation layer which will create word and char embeddings which will then be concatenated and trained with other model parameters. """ def __init__(self, args, model_data): """Initialize the word representation layer, and store pre-trained embeddings. Also initialize the char rnn. Parameters ---------- args : Args An object with all arguments for BiMPM model. model_data : {Quora, SNLI} A data loading object which returns word vectors and sentences. """ super(WordRepresentationLayer, self).__init__() self.drop = args.dropout self.word_encoder = nn.Embedding(args.word_vocab_size, args.word_dim) self.word_encoder.weight.data.copy_(model_data.TEXT.vocab.vectors) self.word_encoder.weight.requires_grad = False # Freeze parameters self.char_encoder = CharacterRepresentationEncoder(args) def dropout(self, tensor): """Defines a dropout function to regularize the parameters. Parameters ---------- tensor : Tensor A Pytorch Tensor. Returns ------- Tensor A PyTorch Tensor with same size as input. """ return F.dropout(tensor, p=self.drop, training=self.training) def forward(self, p): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- p : Sentence A sentence object with chars and word batches. Returns ------- Tensor A PyTorch Tensor with size (batch_size, seq_len, word_dim + char_hidden_size). """ words = self.word_encoder(p['words']) chars = self.char_encoder(p['chars']) p = torch.cat([words, chars], dim=-1) return self.dropout(p) class ContextRepresentationLayer(nn.Module): """A context representation layer to incorporate contextual information into the representation of each time step of p and q. """ def __init__(self, args): """Initialize the context representation layer, and initialize an lstm. Parameters ---------- args : Args An object with all arguments for BiMPM model. """ super(ContextRepresentationLayer, self).__init__() self.drop = args.dropout self.input_size = args.word_dim + args.char_hidden_size self.lstm = nn.LSTM( input_size=self.input_size, hidden_size=args.hidden_size, num_layers=1, bidirectional=True, batch_first=True) def dropout(self, tensor): """Defines a dropout function to regularize the parameters. Parameters ---------- tensor : Tensor A Pytorch Tensor. Returns ------- Tensor A PyTorch Tensor with same size as input. """ return F.dropout(tensor, p=self.drop, training=self.training) def forward(self, p): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- p : Tensor A PyTorch Tensor with size (batch_size, seq_len, word_dim + char_hidden_size). Returns ------- Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes) """ p = self.lstm(p)[0] return self.dropout(p) class MatchingLayer(nn.Module): """A matching layer to compare contextual embeddings from one sentence against the contextual embeddings of the other sentence. """ def __init__(self, args): """Initialize the mactching layer architecture. Parameters ---------- args : Args An object with all arguments for BiMPM model. """ super(MatchingLayer, self).__init__() self.drop = args.dropout self.hidden_size = args.hidden_size self.l = args.num_perspectives self.W = nn.ParameterList([ nn.Parameter(torch.rand(self.l, self.hidden_size)) for _ in range(8) ]) def dropout(self, tensor): """Defines a dropout function to regularize the parameters. Parameters ---------- tensor : Tensor A Pytorch Tensor. Returns ------- Tensor A PyTorch Tensor with same size as input. """ return F.dropout(tensor, p=self.drop, training=self.training) def cat(self, *args): """Concatenate matching vectors. Parameters ---------- *args Variable length argument list. Returns ------- Tensor A PyTorch Tensor with input tensors concatenated over dim 2. """ return torch.cat(list(args), dim=2) # dim 2 is num_perspectives def split(self, tensor, direction='fw'): """Split the output of an bidirectional rnn into forward or backward passes. Parameters ---------- tensor : Tensor A Pytorch Tensor containing the output of a bidirectional rnn. direction : str, optional The direction of the rnn pass to return (default is 'fw'). Returns ------- Tensor A Pytorch Tensor for the rnn pass in the specified direction. """ if direction == 'fw': return torch.split(tensor, self.hidden_size, dim=-1)[0] elif direction == 'bw': return torch.split(tensor, self.hidden_size, dim=-1)[-1] def match(self, p, q, w, direction='fw', split=True, stack=True, cosine=False): """Match two sentences based on various matching strategies and time-step constraints. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes) if split is True, else it is size (batch_size, seq_len, hidden_size). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). split : bool, optional Split input Tensor if output from bidirectional rnn (default is True). stack : bool, optional Stack input Tensor if input size is (batch_size, hidden_size), for the second sentence `q` for example, in the case of the full-matching strategy, when matching only the last time-step (default is True). cosine : bool, optional Perform cosine similarity using built-in PyTorch Function, for example, in the case of a full-matching or attentive-matching strategy (default is False). Returns ------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, l) with the weights multiplied by the input sentence. Tensor If cosine=True, returns a tensor of size (batch_size, seq_len, l) representing the distance between `p` and `q`. """ if split: p = self.split(p, direction) q = self.split(q, direction) if stack: seq_len = p.size(1) # out_shape: (batch_size, seq_len_p, hidden_size) if direction == 'fw': q = torch.stack([q[:, -1, :]] * seq_len, dim=1) elif direction == 'bw': q = torch.stack([q[:, 0, :]] * seq_len, dim=1) # out_shape: (1, l, 1, hidden_size) w = w.unsqueeze(0).unsqueeze(2) # out_shape: (batch_size, l, seq_len_{p, q}, hidden_size) p = w * torch.stack([p] * self.l, dim=1) q = w * torch.stack([q] * self.l, dim=1) if cosine: # out_shape: (batch_size, seq_len, l) return F.cosine_similarity(p, q, dim=-1).permute(0, 2, 1) return (p, q) def attention(self, p, q, w, direction='fw', att='mean'): """Create either a mean or max attention vector for the attentive matching strategies. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). att : str, optional The type of attention vector to generate (default is 'mean'). Returns ------- att_p_match, att_q_match : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size). """ # out_shape: (batch_size, seq_len_{p, q}, hidden_size) p = self.split(p, direction) q = self.split(q, direction) # out_shape: (batch_size, seq_len_p, 1) p_norm = p.norm(p=2, dim=2, keepdim=True) # out_shape: (batch_size, 1, seq_len_q) q_norm = q.norm(p=2, dim=2, keepdim=True).permute(0, 2, 1) # out_shape: (batch_size, seq_len_p, seq_len_q) dot = torch.bmm(p, q.permute(0, 2, 1)) magnitude = p_norm * q_norm cosine = dot / magnitude # out_shape: (batch_size, seq_len_p, seq_len_q, hidden_size) weighted_p = p.unsqueeze(2) * cosine.unsqueeze(-1) weighted_q = q.unsqueeze(1) * cosine.unsqueeze(-1) if att == 'mean': # out_shape: (batch_size, seq_len_{q, p}, hidden_size)) p_vec = weighted_p.sum(dim=1) /\ cosine.sum(dim=1, keepdim=True).permute(0, 2, 1) q_vec = weighted_q.sum(dim=2) / cosine.sum(dim=2, keepdim=True) elif att == 'max': # out_shape: (batch_size, seq_len_{q, p}, hidden_size) p_vec, _ = weighted_p.max(dim=1) q_vec, _ = weighted_q.max(dim=2) # out_shape: (batch_size, seq_len_{p, q}, l) att_p_match = self.match( p, q_vec, w, split=False, stack=False, cosine=True) att_q_match = self.match( q, p_vec, w, split=False, stack=False, cosine=True) return (att_p_match, att_q_match) def full_match(self, p, q, w, direction='fw'): """Match each contextual embedding with the last time-step of the other sentence for either the forward or backward pass. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). Returns ------- Tensor A PyTorch Tensor with size (batch_size, seq_len, l). """ # out_shape: (batch_size, seq_len_{p, q}, l) return self.match( p, q, w, direction, split=True, stack=True, cosine=True) def maxpool_match(self, p, q, w, direction='fw'): """Match each contextual embedding with each time-step of the other sentence for either the forward or backward pass. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). Returns ------- pool_p, pool_q : array_like A tuple of PyTorch Tensors with size (batch_size, seq_len, l). """ # out_shape: (batch_size, l, seq_len_{p, q}, hidden_size) p, q = self.match( p, q, w, direction, split=True, stack=False, cosine=False) # out_shape: (batch_size, l, seq_len_{p, q}, 1) p_norm = p.norm(p=2, dim=-1, keepdim=True) q_norm = q.norm(p=2, dim=-1, keepdim=True) # out_shape: (batch_size, l, seq_len_p, seq_len_q) dot = torch.matmul(p, q.permute(0, 1, 3, 2)) magnitude = p_norm * q_norm.permute(0, 1, 3, 2) # out_shape: (batch_size, seq_len_p, seq_len_q, l) cosine = (dot / magnitude).permute(0, 2, 3, 1) # out_shape: (batch_size, seq_len_{p, q}, l) pool_p, _ = cosine.max(dim=2) pool_q, _ = cosine.max(dim=1) return (pool_p, pool_q) def attentive_match(self, p, q, w, direction='fw'): """Match each contextual embedding with its mean attentive vector. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). Returns ------- array_like A tuple of PyTorch Tensors with size (batch_size, seq_len, l). """ # out_shape: (batch_size, seq_len_{p, q}, l) return self.attention(p, q, w, direction, att='mean') def max_attentive_match(self, p, q, w, direction='fw'): """Match each contextual embedding with its max attentive vector. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). w : Parameter A Pytorch Parameter with size (num_perspectives, hidden_size). direction : str, optional The direction of the rnn pass to return (default is 'fw'). Returns ------- array_like A tuple of PyTorch Tensors with size (batch_size, seq_len, l). """ # out_shape: (batch_size, seq_len_{p, q}, l) return self.attention(p, q, w, direction, att='max') def match_operation(self, p, q, W): """Match each contextual embedding with its attentive vector. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). W : ParameterList A list of Pytorch Parameters with size (num_perspectives, hidden_size). Returns ------- array_like A list of PyTorch Tensors of size (batch_size, seq_len, l*8). """ full_p2q_fw = self.full_match(p, q, W[0], 'fw') full_p2q_bw = self.full_match(p, q, W[1], 'bw') full_q2p_fw = self.full_match(q, p, W[0], 'fw') full_q2p_bw = self.full_match(q, p, W[1], 'bw') pool_p_fw, pool_q_fw = self.maxpool_match(p, q, W[2], 'fw') pool_p_bw, pool_q_bw = self.maxpool_match(p, q, W[3], 'bw') att_p2mean_fw, att_q2mean_fw = self.attentive_match(p, q, W[4], 'fw') att_p2mean_bw, att_q2mean_bw = self.attentive_match(p, q, W[5], 'bw') att_p2max_fw, att_q2max_fw = self.max_attentive_match(p, q, W[6], 'fw') att_p2max_bw, att_q2max_bw = self.max_attentive_match(p, q, W[7], 'bw') # Concatenate all the vectors for each sentence p_vec = self.cat(full_p2q_fw, pool_p_fw, att_p2mean_fw, att_p2max_fw, full_p2q_bw, pool_p_bw, att_p2mean_bw, att_p2max_bw) q_vec = self.cat(full_q2p_fw, pool_q_fw, att_q2mean_fw, att_q2max_fw, full_q2p_bw, pool_q_bw, att_q2mean_bw, att_q2max_bw) # out_shape: (batch_size, seq_len_{p, q}, l*8) return (self.dropout(p_vec), self.dropout(q_vec)) def forward(self, p, q): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, hidden_size, num_passes). Returns ------- array_like A list of PyTorch Tensors of size (batch_size, seq_len, l*8). """ return self.match_operation(p, q, self.W) class AggregationLayer(nn.Module): """An aggregation layer to combine two sequences of matching vectors into fixed-length matching vector. """ def __init__(self, args): """Initialize the aggregation layer architecture. Parameters ---------- args : Args An object with all arguments for BiMPM model. """ super(AggregationLayer, self).__init__() self.hidden_size = args.hidden_size self.drop = args.dropout self.lstm = nn.LSTM( input_size=args.num_perspectives * 8, hidden_size=args.hidden_size, num_layers=1, bidirectional=True, batch_first=True) def dropout(self, tensor): """Defines a dropout function to regularize the parameters. Parameters ---------- tensor : Tensor A Pytorch Tensor. Returns ------- Tensor A PyTorch Tensor with same size as input. """ return F.dropout(tensor, p=self.drop, training=self.training) def forward(self, p, q): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- p, q : Tensor A PyTorch Tensor with size (batch_size, seq_len, l*8). Returns ------- Tensor A PyTorch Tensor of size (batch_size, hidden_size*4). """ # out_shape: (2, batch_size, hidden_size) p = self.lstm(p)[-1][0] q = self.lstm(q)[-1][0] # out_shape: (batch_size, hidden_size*4) x = torch.cat([ p.permute(1, 0, 2).contiguous().view(-1, self.hidden_size * 2), q.permute(1, 0, 2).contiguous().view(-1, self.hidden_size * 2) ], dim=1) return self.dropout(x) class PredictionLayer(nn.Module): """An prediction layer to evaluate the probability distribution for a class given the two sentences. The number of outputs would change based on task. """ def __init__(self, args): """Initialize the prediction layer architecture. Parameters ---------- args : Args An object with all arguments for BiMPM model. """ super(PredictionLayer, self).__init__() self.drop = args.dropout self.hidden_layer = nn.Linear(args.hidden_size * 4, args.hidden_size * 2) self.output_layer = nn.Linear(args.hidden_size * 2, args.class_size) def dropout(self, tensor): """Defines a dropout function to regularize the parameters. Parameters ---------- tensor : Tensor A Pytorch Tensor. Returns ------- Tensor A PyTorch Tensor with same size as input. """ return F.dropout(tensor, p=self.drop, training=self.training) def forward(self, match_vec): """Defines forward pass computations flowing from inputs to outputs in the network. Parameters ---------- match_vec : Tensor A PyTorch Tensor of size (batch_size, hidden_size*4). Returns ------- Tensor A PyTorch Tensor of size (batch_size, class_size). """ x = torch.tanh(self.hidden_layer(match_vec)) return self.output_layer(self.dropout(x))
StarcoderdataPython
12821962
<reponame>CitrineInformatics/pypif-sdk #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from pypif_sdk.func import * from pypif_sdk.func.calculate_funcs import _expand_formula_, _expand_hydrate_, _create_compositional_array_, _consolidate_elemental_array_, _calculate_n_atoms_, _add_ideal_atomic_weights_, _add_ideal_weight_percent_, _create_emprical_compositional_array_, _add_atomic_percents_, _get_element_in_pif_composition_ from pypif.obj import * import json test_pif_one = ChemicalSystem( names=["nonanal"], chemical_formula="C9H18O", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_two = ChemicalSystem( names=["nonanal"], chemical_formula="C6H10OC3H8", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_three = ChemicalSystem( names=["parenth nonanal"], chemical_formula="CH3(CH2)7OHC", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_four = ChemicalSystem( names=["copper(II) nitrate trihydrate"], chemical_formula="Cu(NO3)2 · 3H2O", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_five = ChemicalSystem( names=["ammonium hexathiocyanoplatinate(IV)"], chemical_formula="(NH4)2[Pt(SCN)6]", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_six = ChemicalSystem( names=["ammonium hexathiocyanoplatinate(IV)"], chemical_formula="(NH$_{4}$)$_{2}$[Pt(SCN)$_6$]", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_seven = ChemicalSystem( names=["calcium sulfate hemihydrate"], chemical_formula="CaSO4·0.5H2O", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_eight = ChemicalSystem( names=["Zr glass"], chemical_formula="Zr46.75Ti8.25Cu7.5Ni10Be27.5", properties=[Property(name="foo", scalars=[Scalar(value="bar")])] ) test_pif_nine = ChemicalSystem( names=["Zr glass"], chemical_formula="Zr46.75Ti8.25Cu7.5Ni10Be27.5", properties=[Property(name="foo", scalars=[Scalar(value="bar")])], composition=[Composition(element="Zirconium")] ) def test_calculate_ideal_atomic_percent(): """ Tests that calculate_ideal_atomic_percent() works under a variety of circumstances """ pif_one = calculate_ideal_atomic_percent(test_pif_one) assert round(pif_one.composition[0].idealAtomicPercent, 2) == 32.14 assert round(pif_one.composition[1].idealAtomicPercent, 2) == 64.29 assert round(pif_one.composition[2].idealAtomicPercent, 2) == 3.57 pif_two = calculate_ideal_atomic_percent(test_pif_two) assert len(pif_two.composition) == 3 assert round(pif_two.composition[0].idealAtomicPercent, 2) == 32.14 assert round(pif_two.composition[1].idealAtomicPercent, 2) == 64.29 assert round(pif_two.composition[2].idealAtomicPercent, 2) == 3.57 pif_three = calculate_ideal_atomic_percent(test_pif_three) assert len(pif_three.composition) == 3 assert round(pif_three.composition[0].idealAtomicPercent, 2) == 32.14 assert round(pif_three.composition[1].idealAtomicPercent, 2) == 64.29 assert round(pif_three.composition[2].idealAtomicPercent, 2) == 3.57 pif_four = calculate_ideal_atomic_percent(test_pif_four) assert len(pif_four.composition) == 4 assert round(pif_four.composition[0].idealAtomicPercent, 2) == 5.56 assert round(pif_four.composition[1].idealAtomicPercent, 2) == 11.11 assert round(pif_four.composition[2].idealAtomicPercent, 2) == 50.00 assert round(pif_four.composition[3].idealAtomicPercent, 2) == 33.33 pif_five = calculate_ideal_atomic_percent(test_pif_five) assert len(pif_five.composition) == 5 assert round(pif_five.composition[0].idealAtomicPercent, 2) == 27.59 assert round(pif_five.composition[1].idealAtomicPercent, 2) == 27.59 assert round(pif_five.composition[2].idealAtomicPercent, 2) == 3.45 assert round(pif_five.composition[3].idealAtomicPercent, 2) == 20.69 assert round(pif_five.composition[4].idealAtomicPercent, 2) == 20.69 pif_six = calculate_ideal_atomic_percent(test_pif_six) assert len(pif_six.composition) == 5 assert round(pif_six.composition[0].idealAtomicPercent, 2) == 27.59 assert round(pif_six.composition[1].idealAtomicPercent, 2) == 27.59 assert round(pif_six.composition[2].idealAtomicPercent, 2) == 3.45 assert round(pif_six.composition[3].idealAtomicPercent, 2) == 20.69 assert round(pif_six.composition[4].idealAtomicPercent, 2) == 20.69 pif_seven = calculate_ideal_atomic_percent(test_pif_seven) assert len(pif_seven.composition) == 4 assert round(pif_seven.composition[0].idealAtomicPercent, 2) == 13.33 assert round(pif_seven.composition[1].idealAtomicPercent, 2) == 13.33 assert round(pif_seven.composition[2].idealAtomicPercent, 2) == 60.00 assert round(pif_seven.composition[3].idealAtomicPercent, 2) == 13.33 pif_eight = calculate_ideal_atomic_percent(test_pif_eight) assert len(pif_eight.composition) == 5 assert round(pif_eight.composition[0].idealAtomicPercent, 2) == 46.75 assert round(pif_eight.composition[1].idealAtomicPercent, 2) == 8.25 assert round(pif_eight.composition[2].idealAtomicPercent, 2) == 7.5 assert round(pif_eight.composition[3].idealAtomicPercent, 2) == 10 assert round(pif_eight.composition[4].idealAtomicPercent, 2) == 27.5 def test_calculate_ideal_weight_percent(): """ Tests that calculate_ideal_weight_percent() works under a variety of circumstances """ pif_one = calculate_ideal_weight_percent(test_pif_one) assert len(pif_one.composition) == 3 assert round(pif_one.composition[0].idealWeightPercent, 2) == 76.00 assert round(pif_one.composition[1].idealWeightPercent, 2) == 12.76 assert round(pif_one.composition[2].idealWeightPercent, 2) == 11.25 pif_two = calculate_ideal_weight_percent(test_pif_two) assert len(pif_two.composition) == 3 assert round(pif_two.composition[0].idealWeightPercent, 2) == 76.00 assert round(pif_two.composition[1].idealWeightPercent, 2) == 12.76 assert round(pif_two.composition[2].idealWeightPercent, 2) == 11.25 pif_three = calculate_ideal_weight_percent(test_pif_three) assert len(pif_three.composition) == 3 assert round(pif_three.composition[0].idealWeightPercent, 2) == 76.00 assert round(pif_three.composition[1].idealWeightPercent, 2) == 12.76 assert round(pif_three.composition[2].idealWeightPercent, 2) == 11.25 pif_four = calculate_ideal_weight_percent(test_pif_four) assert len(pif_four.composition) == 4 assert round(pif_four.composition[0].idealWeightPercent, 2) == 26.30 assert round(pif_four.composition[1].idealWeightPercent, 2) == 11.60 assert round(pif_four.composition[2].idealWeightPercent, 2) == 59.60 assert round(pif_four.composition[3].idealWeightPercent, 2) == 2.50 pif_five = calculate_ideal_weight_percent(test_pif_five) assert len(pif_five.composition) == 5 assert round(pif_five.composition[0].idealWeightPercent, 2) == 19.33 assert round(pif_five.composition[1].idealWeightPercent, 2) == 1.39 assert round(pif_five.composition[2].idealWeightPercent, 2) == 33.66 assert round(pif_five.composition[3].idealWeightPercent, 2) == 33.19 assert round(pif_five.composition[4].idealWeightPercent, 2) == 12.43 pif_six = calculate_ideal_weight_percent(test_pif_six) assert len(pif_six.composition) == 5 assert round(pif_six.composition[0].idealWeightPercent, 2) == 19.33 assert round(pif_six.composition[1].idealWeightPercent, 2) == 1.39 assert round(pif_six.composition[2].idealWeightPercent, 2) == 33.66 assert round(pif_six.composition[3].idealWeightPercent, 2) == 33.19 assert round(pif_six.composition[4].idealWeightPercent, 2) == 12.43 pif_seven = calculate_ideal_weight_percent(test_pif_seven) assert len(pif_seven.composition) == 4 assert round(pif_seven.composition[0].idealWeightPercent, 2) == 27.61 assert round(pif_seven.composition[1].idealWeightPercent, 2) == 22.09 assert round(pif_seven.composition[2].idealWeightPercent, 2) == 49.60 assert round(pif_seven.composition[3].idealWeightPercent, 2) == 0.69 pif_eight = calculate_ideal_weight_percent(test_pif_eight) assert len(pif_eight.composition) == 5 assert round(pif_eight.composition[0].idealWeightPercent, 2) == 71.42 assert round(pif_eight.composition[1].idealWeightPercent, 2) == 6.61 assert round(pif_eight.composition[2].idealWeightPercent, 2) == 7.98 assert round(pif_eight.composition[3].idealWeightPercent, 2) == 9.83 assert round(pif_eight.composition[4].idealWeightPercent, 2) == 4.15 def test_expand_formula_(): """ Tests _expand_formula_() to ensure complex parentheses are handled correctly """ assert _expand_formula_("(NH4)2[Pt(SCN)6]") == "N2H8PtS6C6N6" def test_expand_hydrate_(): """ Tests _expand_hydrate_() to ensure hydrate chemical formulas can be properly expanded even with decimal values """ assert _expand_hydrate_(5, "CaSO4·0.5H2O") == "CaSO4HO0.5" def test_create_compositional_array_(): """ Tests that _create_compositional_array_() returns an array of compositions for both whole number and decimal values """ assert _create_compositional_array_("N2H8PtS6C6N6") == [ {"symbol": "N", "occurances": 2}, {"symbol": "H", "occurances": 8}, {"symbol": "Pt", "occurances": 1}, {"symbol": "S", "occurances": 6}, {"symbol": "C", "occurances": 6}, {"symbol": "N", "occurances": 6}] assert _create_compositional_array_("CaSO4HO0.5") == [ {"symbol": "Ca", "occurances": 1}, {"symbol": "S", "occurances": 1}, {"symbol": "O", "occurances": 4}, {"symbol": "H", "occurances": 1}, {"symbol": "O", "occurances": 0.5} ] def test_consolidate_elemental_array_(): """ Tests that _consolidate_elemental_array_() returns a consolidates array of compositions for both whole number and decimal values """ input_array = [ {"symbol": "N", "occurances": 2}, {"symbol": "H", "occurances": 8}, {"symbol": "Pt", "occurances": 1}, {"symbol": "S", "occurances": 6}, {"symbol": "C", "occurances": 6}, {"symbol": "N", "occurances": 6}, {"symbol": "C", "occurances": 2} ] output_array = [ {"symbol": "N", "occurances": 8}, {"symbol": "H", "occurances": 8}, {"symbol": "Pt", "occurances": 1}, {"symbol": "S", "occurances": 6}, {"symbol": "C", "occurances": 8} ] input_array_dec = [ {"symbol": "Ca", "occurances": 1}, {"symbol": "S", "occurances": 1}, {"symbol": "O", "occurances": 4}, {"symbol": "H", "occurances": 1}, {"symbol": "O", "occurances": 0.5} ] output_array_dec = [ {"symbol": "Ca", "occurances": 1}, {"symbol": "S", "occurances": 1}, {"symbol": "O", "occurances": 4.5}, {"symbol": "H", "occurances": 1} ] assert _consolidate_elemental_array_(input_array) == output_array assert _consolidate_elemental_array_(input_array_dec) == output_array_dec def test_calculate_n_atoms_(): """ Tests that _calculate_n_atoms_ returns the correct value for both whole number and decimal values """ assert _calculate_n_atoms_([ {"symbol": "Ca", "occurances": 1}, {"symbol": "S", "occurances": 1}, {"symbol": "O", "occurances": 4}, {"symbol": "H", "occurances": 1}, {"symbol": "O", "occurances": 0.5} ]) == 7.5 def test_add_ideal_atomic_weights_(): """ Tests that _add_ideal_atomic_weights_() returns a modified array """ input_array = [ {"symbol": "N", "occurances": 8}, {"symbol": "H", "occurances": 8}, {"symbol": "Pt", "occurances": 1}, {"symbol": "S", "occurances": 6}, {"symbol": "C", "occurances": 8} ] output_array = [ {"symbol": "N", "occurances": 8, "weight": 14.007 * 8}, {"symbol": "H", "occurances": 8, "weight": 1.008 * 8}, {"symbol": "Pt", "occurances": 1, "weight": 195.084}, {"symbol": "S", "occurances": 6, "weight": 32.06 * 6}, {"symbol": "C", "occurances": 8, "weight": 12.011 * 8} ] assert _add_ideal_atomic_weights_(input_array) == output_array def test_add_ideal_weight_percent_(): """ Tests that _add_ideal_weight_percent_() returns a modified array """ input_array = [ {"symbol": "N", "occurances": 8, "weight": 14.007 * 8}, {"symbol": "H", "occurances": 8, "weight": 1.008 * 8}, {"symbol": "Pt", "occurances": 1, "weight": 195.084}, {"symbol": "S", "occurances": 6, "weight": 32.06 * 6}, {"symbol": "C", "occurances": 8, "weight": 12.011 * 8} ] output_array = [ {"symbol": "N", "occurances": 8, "weight": 14.007 * 8, "weight_percent": 14.007 * 8 / 603.652 * 100}, {"symbol": "H", "occurances": 8, "weight": 1.008 * 8, "weight_percent": 1.008 * 8 / 603.652 * 100}, {"symbol": "Pt", "occurances": 1, "weight": 195.084, "weight_percent": 195.084 / 603.652 * 100}, {"symbol": "S", "occurances": 6, "weight": 32.06 * 6, "weight_percent": 32.06 * 6 / 603.652 * 100}, {"symbol": "C", "occurances": 8, "weight": 12.011 * 8, "weight_percent": 12.011 * 8 / 603.652 * 100} ] assert _add_ideal_weight_percent_(input_array) == output_array def test_create_emprical_compositional_array_(): """ Tests that _create_emprical_compositional_array_() returns an emperical array of elements """ assert _create_emprical_compositional_array_("CaSO4HO0.5") == [ {"symbol": "Ca", "occurances": 1}, {"symbol": "S", "occurances": 1}, {"symbol": "O", "occurances": 4.5}, {"symbol": "H", "occurances": 1} ] def test_add_atomic_percents_(): """ Tests that _add_atomic_percents_() returns a modified array """ input_array = [ {"symbol": "N", "occurances": 8}, {"symbol": "H", "occurances": 8}, {"symbol": "Pt", "occurances": 1}, {"symbol": "S", "occurances": 6}, {"symbol": "C", "occurances": 8} ] output_array = [ {"symbol": "N", "occurances": 8, "atomic_percent": 8 / 31 * 100}, {"symbol": "H", "occurances": 8, "atomic_percent": 8 / 31 * 100}, {"symbol": "Pt", "occurances": 1, "atomic_percent": 1 / 31 * 100}, {"symbol": "S", "occurances": 6, "atomic_percent": 6 / 31 * 100}, {"symbol": "C", "occurances": 8, "atomic_percent": 8 / 31 * 100} ] assert _add_atomic_percents_(input_array) == output_array def test_get_element_in_pif_composition_(): """ tests that _check_if_element_exists_in_pif_composition_() can check for both element names and element symbols """ assert _get_element_in_pif_composition_(test_pif_eight, "Ca") == False correct_comp = Composition(element="Zirconium") assert dumps(_get_element_in_pif_composition_( test_pif_nine, "Zr")) == dumps([correct_comp, 0])
StarcoderdataPython
12848069
from functools import wraps from flask import current_app, request from flask_restful import abort def auth_simple_token(func): @wraps(func) def wrapper(*args, **kwargs): token = request.headers.get('x-simple-auth') if current_app.config['API_KEY'] == token: return func(*args, **kwargs) abort(401) return wrapper
StarcoderdataPython
3427959
import numpy as np import keras from keras.models import model_from_json from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv3D, MaxPooling3D from keras import backend as K def get_liveness_model(): model = Sequential() model.add(Conv3D(32, kernel_size=(3, 3, 3), activation='relu', input_shape=(24,100,100,1))) model.add(Conv3D(64, (3, 3, 3), activation='relu')) model.add(MaxPooling3D(pool_size=(2, 2, 2))) model.add(Conv3D(64, (3, 3, 3), activation='relu')) model.add(MaxPooling3D(pool_size=(2, 2, 2))) model.add(Conv3D(64, (3, 3, 3), activation='relu')) model.add(MaxPooling3D(pool_size=(2, 2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2, activation='softmax')) return model
StarcoderdataPython
8017872
<filename>machines/worker/code/home/management/commands/cache_movie_images.py from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): help = 'Caches all the movie images available in the system for faster reloading at a later point' def handle(self, *args, **options): from home.models import Movie import time for m in Movie.objects.all(): print "Loading assets for %s" % m.name m.get_poster_thumbnail_url() m.get_poster_url() #time.sleep(1) self.stdout.write("Loaded all assets")
StarcoderdataPython
11214065
<reponame>farzanaaswin0708/Data-Science-Projects #!/usr/bin/env python import mnist import numpy as np import sys """ a simple nn classifier using L1 distance """ class nn_classifier: def __init__(self, dataset): self.images, self.labels = dataset[0], dataset[1]; """ predict label of the given image """ def predict(self, image): min_dist, label = sys.maxint, -1; for (timage, tlabel) in zip(self.images, self.labels): diff = timage.astype(int) - image.astype(int); dist = sum(map(lambda x: x ** 2, diff)); if dist < min_dist: min_dist, label = dist, tlabel; return label; """ add sample to training set -- for prototype selector """ def addSample(self, image, label): self.images.append(image); self.labels.append(label); if __name__ == "__main__": train_dataset = mnist.read_dataset("train"); nc = nn_classifier(train_dataset); images, labels = mnist.read_dataset("test"); print labels[10], nc.predict(images[10]);
StarcoderdataPython
12837854
# _*_ coding:utf-8 _*_ # 作者:hungryboy # @Time: 2021/1/28 # @File: class01.py print("欢迎来到hungryboy的python世界!") def test(): print("这是一个函数,在Demo类外面") class Demo: print("this is a demo") def demo(self): print("这是Demo类中的方法!")
StarcoderdataPython
6595794
<gh_stars>1-10 import turtle t = turtle.Pen() def settings(width=1, speed=2, pencolor='red', fillcolor='yellow'): t.width(width) t.speed(speed) t.pencolor(pencolor) t.fillcolor(fillcolor) def square(a, pen='blue', fill='green'): t.fillcolor(fill) t.pencolor(pen) t.begin_fill() for i in range(4): t.forward(a) t.left(90) t.end_fill() settings(speed=6, width=4, ) square(30, 'orange', 'blue') t.up() t.forward(100) t.down() square(40) t.right(90) t.up() t.forward(100) t.down() square(60, '#47cc9b', '#fc0f96') turtle.Screen().exitonclick()
StarcoderdataPython
1921250
import torch import time from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import pytorch_lightning as pl from torch.utils.data import Dataset import torch.autograd.functional as AGF from pytorch_lightning.callbacks import EarlyStopping import torch.linalg as linalg from pytorch_lightning import loggers as pl_loggers import matplotlib.pyplot as plt from torchdiffeq import odeint import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({ "text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}) global_max_epoches = 1000 global_train_flag = True global_data_size = 6 global_optimizer_lr = 5e-2 torch.manual_seed(55) class TrainDataset(Dataset): def __init__(self, dataSize): MyData = torch.zeros(dataSize, 2) MyLabel = torch.zeros(dataSize, 1) for i in range(int(dataSize/2)): r = 2 theta = torch.tensor(i/int(dataSize/2)*1*3.14) MyLabel[i, :] = 0 MyData[i, :] = torch.tensor( [r*torch.cos(theta), r*torch.sin(theta)]) plt.plot(MyData[i, 0], MyData[i, 1], 'bx',markersize=12) MyLabel[i+int(dataSize/2), :] = 1 MyData[i+int(dataSize/2), :] = torch.tensor( [(r+2)*torch.cos(theta), (r+2)*torch.sin(theta)]) plt.plot(MyData[i+int(dataSize/2), 0], MyData[i+int(dataSize/2), 1], 'ro', markersize=12) number_of_samples = 50 radius = 0.3 angle = 2*3.14*torch.linspace(0, 1, number_of_samples) for i in range(0, len(MyData), 1): sample = MyData[i]+torch.stack([radius*torch.cos(angle), radius*torch.sin(angle)]).T randindex = torch.randperm(dataSize) self.MyData = MyData[randindex, :] self.MyLabel = MyLabel[randindex, :] def __len__(self): return len(self.MyData) def __getitem__(self, idx): return self.MyData[idx, :], self.MyLabel[idx, :] class classification_layer(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(2, 1) def forward(self, x): x = self.fc(x) return x class ODEFunc(nn.Module): def __init__(self): super(ODEFunc, self).__init__() self.net = nn.Sequential( nn.Linear(2, 64), nn.Tanh(), nn.Linear(64, 64), nn.Tanh(), nn.Linear(64, 2), ) def forward(self, t, x): return self.net(x) class swiss_roll_node(pl.LightningModule): def __init__(self): super().__init__() self.t = torch.linspace(0., 0.5, 10) self.func = ODEFunc() self.classification_layer = classification_layer() def node_propagation(self, x0): # traj_x = odeint(self.func, x0, t, method='dopri5') traj_x = odeint(self.func, x0, self.t, method='euler') return traj_x def forward(self, x0): # the final value of node propagation is input to the classification and the sigmoid function prediction_probability = torch.sigmoid( self.classification_layer(self.node_propagation(x0)[-1])) # output is in the raneg of (0,1) return prediction_probability def configure_optimizers(self): optimizer1 = torch.optim.Adam( self.func.parameters(), lr=global_optimizer_lr) optimizer2 = torch.optim.Adam( self.classification_layer.parameters(), lr=global_optimizer_lr) def lambda1(epoch): return 0.99 ** epoch scheduler1 = torch.optim.lr_scheduler.LambdaLR( optimizer1, lr_lambda=lambda1) scheduler2 = torch.optim.lr_scheduler.LambdaLR( optimizer2, lr_lambda=lambda1) return [optimizer1, optimizer2], [scheduler1, scheduler2] def training_step(self, train_batch, batch_idx, optimizer_idx): lossFunc = nn.BCELoss() x0, label = train_batch loss = lossFunc(self.forward(x0), label) return loss def test_step(self, batch, batch_idx): data, label = batch # below calculate the successful prediction rate on the training data success_rate = (torch.ge(self.forward(data), 0.5).int() == label).sum()/len(label) self.log("success_rate", success_rate) # plot points around the train point and the propatation number_of_samples = 50 radius = 0.3 angle = 2*3.14*torch.linspace(0, 1, number_of_samples) for i in range(0, len(data), 1): if label[i] == 0: plt.plot(data[i, 0], data[i, 1], 'bx',markersize = 5) if label[i] == 1: plt.plot(data[i, 0], data[i, 1], 'ro',markersize = 5) # plt.plot(data[i, 0], data[i, 1], '+') sample = data[i]+torch.stack([radius*torch.cos(angle), radius*torch.sin(angle)]).T plt.plot(sample[:, 0], sample[:, 1], '--',color = 'purple') traj = self.node_propagation(sample) plt.plot(traj[-1, :, 0], traj[-1, :, 1], '--',color = 'orange') # plot the classification boundary delta = 0.025 xrange = torch.arange(-5.0, 5.0, delta) yrange = torch.arange(-5.0, 5.0, delta) x, y = torch.meshgrid(xrange, yrange) equation = self.classification_layer( torch.stack([x.flatten(), y.flatten()]).T)-0.5 plt.contour(x, y, equation.reshape(x.size()), [0], linestyles={'dashed'}) # plot the trajectory data_propagation = self.node_propagation(data) for i in range(len(data)): ith_traj = data_propagation[:, i, :] if label[i] == 0: plt.plot(ith_traj[:, 0].cpu(), ith_traj[:, 1].cpu(), '--', color='black') if label[i] == 1: plt.plot(ith_traj[:, 0].cpu(), ith_traj[:, 1].cpu(), '-.', color='black') xv, yv = torch.meshgrid(torch.linspace(-20, 20, 30), torch.linspace(-20, 20, 30)) y1 = torch.stack([xv.flatten(), yv.flatten()]) vector_field = self.func.net(y1.T) u = vector_field[:, 0].reshape(xv.size()) v = vector_field[:, 1].reshape(xv.size()) print('shape of u',u.shape) plt.quiver(xv, yv, u, v, color='grey') plt.xticks([]) plt.yticks([]) plt.xlim([-12.5, 13]) plt.ylim([-5, 7]) plt.savefig('node_propatation_neural_ODE.pdf') return success_rate # data if __name__ == '__main__': plt.figure training_data = TrainDataset(dataSize=global_data_size) train_dataloader = DataLoader( training_data, batch_size=global_data_size) model = swiss_roll_node() trainer = pl.Trainer(gpus=None, num_nodes=1, max_epochs=global_max_epoches) if global_train_flag: trainer.fit(model, train_dataloader) trainer.save_checkpoint("example_pendulum.ckpt") time.sleep(5) new_model = swiss_roll_node.load_from_checkpoint( checkpoint_path="example_pendulum.ckpt") domain = [-10, 10, -10, 10] N = 200 xa = np.linspace(domain[0], domain[1], N) ya = np.linspace(domain[2], domain[3], N) xv, yv = np.meshgrid(xa, ya) y = np.stack([xv.flatten(), yv.flatten()]) y = np.expand_dims(y.T, axis=1) data2d = torch.from_numpy(y).float() with torch.no_grad(): labels = torch.ge(new_model(data2d), 0.5).int() plt.contourf(xa, ya, labels.view( [N, N]), levels=[-0.5, 0.5, 1.5], colors=['#99C4E2', '#EAB5A0']) plt.xticks([]) plt.yticks([]) plt.xlim([-3, 4.8]) plt.ylim([-2, 4.8]) plt.savefig('swiss_roll_neural_ode.pdf') print("classification boundry ploted") plt.figure(2) trainer = pl.Trainer(gpus=None, num_nodes=1, max_epochs=global_max_epoches) success_rate = trainer.test(new_model, train_dataloader) print("after training, the successful predition rate on train set is", success_rate) plt.show()
StarcoderdataPython
6619543
import os.path activate_this = os.path.join(os.path.dirname(__file__), '../env/bin/activate_this.py') with open(activate_this) as f: exec(f.read(), {'__file__': activate_this}) import examples.voice.assistant_library_with_local_commands_demo as assistant assistant.main()
StarcoderdataPython
1984964
from django.urls import path from . import api_views, views urlpatterns = [ path('', views.pm_inbox, name='personal_messages-inbox'), path('sentbox/', views.pm_sentbox, name='personal_messages-sentbox'), path('compose/', views.pm_compose, name='personal_messages-compose'), path('<int:pk>/', views.pm_detail, name='personal_messages-detail'), ]
StarcoderdataPython
5123384
<filename>testplan/cli/utils/command_list.py """ Implements command list type. """ from typing import List, Callable import click class CommandList: """ Utility class, used for creating, storing, and registering Click commands. """ def __init__(self, commands: List[click.Command] = None) -> None: """ :param commands: list of Click commands """ self.commands = commands or [] def command(self, *args, **kwargs) -> Callable: """ Decorator that creates new Click command and adds it to command list. """ def inner(func): command = click.command(*args, **kwargs)(func) self.commands.append(command) return command return inner def register_to(self, group: click.Group) -> None: """ Registers all commands to the given group. :param group: Click group to register the commands to """ for command in self.commands: group.add_command(command)
StarcoderdataPython
9695267
<filename>tests/integration/routes/test_status.py from tests.integration.integration_test_case import IntegrationTestCase class TestStatus(IntegrationTestCase): def test_status_page(self): self.get("/status") self.assertStatusOK() self.assertTrue("version" in self.getResponseData())
StarcoderdataPython
3497970
<filename>doc/example/convert_config.py import os import tempfile # set up the config to convert the notebooks to html output_dir = os.path.join(tempfile.gettempdir(), 'notebooks') notebooks = sorted([os.path.join(output_dir, f) for f in os.listdir(output_dir) if f.endswith('.ipynb')]) c.NbConvertApp.notebooks = notebooks
StarcoderdataPython
8110303
<gh_stars>0 #!/usr/bin/env python3 from autobahn.asyncio.websocket import WebSocketServerProtocol, \ WebSocketServerFactory from Translatron.DocumentDB import YakDBDocumentDatabase, documentSerializer from nltk.tokenize.regexp import RegexpTokenizer from nltk.tokenize import word_tokenize try: import simplejson as json except ImportError: import json import threading import time from ansicolor import blue, yellow, red from YakDB.InvertedIndex import InvertedIndex from Translatron.Misc.UniprotMetadatabase import initializeMetaDatabase def has_alpha_chars(string): return any((ch.isalnum() for ch in string)) # Initialize objects that will be passed onto the client upon request metaDB = initializeMetaDatabase() class TranslatronProtocol(WebSocketServerProtocol): def __init__(self): """Setup a new connection""" print(yellow("Initializing new YakDB connection")) self.db = YakDBDocumentDatabase() # Initialize NLTK objects self.nerTokenizer = RegexpTokenizer(r'\s+', gaps=True) def onConnect(self, request): pass def onOpen(self): pass def performDocumentSearch(self, query): """ Perform a token search on the document database. Search is performed in multi-token prefix (all must hit) mode. Tokens with no hits at all are ignored entirely """ startTime = time.time() queryTokens = map(str.lower, word_tokenize(query)) levels = [b"title", b"content", b"metadata"] #Remove 1-token parts from the query -- they are way too general! #Also remove exclusively-non-alnum tokens queryTokens = [tk for tk in queryTokens if (len(tk) > 1 and has_alpha_chars(tk))] results = self.db.searchDocumentsMultiTokenPrefix(queryTokens, levels=levels) #Return only those paragraphs around the hit paragraph (or the first 3 pararaphs) for hitLocation, doc in results.items(): (docId, docLoc) = InvertedIndex.splitEntityIdPart(hitLocation) #Compute which paragraphs to display minShowPar = 0 maxShowPar = 2 if docLoc.startswith(b"paragraph"): paragraphNo = int(docLoc[9:]) minShowPar = max(0, paragraphNo - 1) maxShowPar = min(len(doc[b"paragraphs"]), paragraphNo + 1) #Modify documents results[hitLocation][b"hitLocation"] = docLoc results[hitLocation][b"paragraphs"] = doc[b"paragraphs"][minShowPar:maxShowPar] # Measure timing timeDiff = (time.time() - startTime) * 1000.0 print("Document search for %d tokens took %.1f milliseconds" % (len(queryTokens), timeDiff)) return results def uniquifyEntities(self, entities): """Remove duplicates from a list of entities (key: ["id"])""" seen = set() result = [] for entity in entities: itemId = entity[b"id"] if itemId in seen: continue seen.add(itemId) result.append(entity) return result def performEntitySearch(self, query): """ Search entities. Tokens are not splitted in order to allow simple search for multi-token entities like "Biological process" """ results = self.db.searchEntitiesSingleTokenMultiExact([query], level=b"aliases") #Return only result array. TODO can't we just use results[query] if query not in results: return [] return results[query] def filterNERTokens(self, token): """ Filter function to remove stuff that just clutters the display. """ #Short numbers are NOT considered database IDs. #NOTE: In reality, pretty much all numbers are Allergome database IDs, e.g. see # http://www.allergome.org/script/dettaglio.php?id_molecule=14 if len(token) <= 5 and token.isdigit(): return False return True def performEntityNER(self, query): "Search a query text for entity/entity alias hits" startTime = time.time() tokens = self.nerTokenizer.tokenize(query) queryTokens = [s.encode("utf-8") for s in tokens] # Search for case-sensitive hits searchFN = InvertedIndex.searchSingleTokenMultiExact results = searchFN(self.db.entityIdx.index, frozenset(filter(self.filterNERTokens, queryTokens)), level=b"aliases") # Results contains a list of tuples (dbid, db) for each hit. dbid is db + b":" + actual ID # We only need the actual ID, so remove the DBID prefix (which is required to avoid inadvertedly merging entries). # This implies that the DBID MUST contain a colon! results = {k: [(a.partition(b":")[2], b) for (a, b) in v] for k, v in results.items() if v} # # Multi-token NER # Based on case-insensitive entries where only the first token is indexed. # # TESTING: Multi token NER lowercaseQueryTokens = [t.lower() for t in queryTokens] t1 = time.time() ciResults = searchFN(self.db.entityIdx.index, frozenset(lowercaseQueryTokens), level=b"cialiases") t2 = time.time() print("TX " + str(t2 - t1)) for (firstTokenHit, hits) in ciResults.items(): #Find all possible locations where the full hit could start, i.e. where the first token produced a hit possibleHitStartIndices = [i for i, x in enumerate(lowercaseQueryTokens) if x == firstTokenHit] #Iterate over all possible for hit in hits: hitLoc, _, hitStr = hit[1].rpartition(b"\x1D") # Full (whitespace separated) entity name if not hitStr: continue #Ignore malformed entries. Should usually not happen hitTokens = [t.lower() for t in hitStr.split()] numTokens = len(hitTokens) #Check if at any possible hit start index the same tokens occur (in the same order ) for startIdx in possibleHitStartIndices: actualTokens = lowercaseQueryTokens[startIdx : startIdx+numTokens] #Check if the lists are equal. Shortcut for single-token hits if numTokens == 1 or all((a == b for a, b in zip(actualTokens, hitTokens))): #Reconstruct original (case-sensitive) version of the hit csTokens = queryTokens[startIdx : startIdx+numTokens] #NOTE: This MIGHT cause nothing to be highlighted, if the reconstruction # of the original text is not equal to the actual text. This is true exactly # if the tokenizer removes or changes characters besides whitespace in the text. csHit = b" ".join(csTokens) # Emulate defaultdict behaviour if not csHit in results: results[csHit] = [] results[csHit].append((hitStr, hitLoc)) t3 = time.time() print("TY " + str(t3 - t2)) # TODO: Remove results which are subsets of other hits. This occurs only if we have multi-token results removeKeys = set() # Can't modify dict while iterating it, so aggregate keys to delete for key in results.keys(): # Ignore single part results if any((chr(c).isspace() for c in key)): tokens = key.split() for token in tokens: # Remove sub-hit in results. # This avoids the possibility of highlighting the smaller hit if token in results: removeKeys.add(token) # Remove aggregated keys for key in removeKeys: del results[key] # Result: For each token with hits --> (DBID, Database name) # Just takes the first DBID.It is unlikely that different DBIDs are found, but we # can only link to one using the highlighted label ret = {k: (v[0][0], v[0][1]) for k, v in results.items() if v} # Measure timing timeDiff = (time.time() - startTime) * 1000.0 print("NER for %d tokens took %.1f milliseconds" % (len(queryTokens), timeDiff)) return ret def onMessage(self, payload, isBinary): request = json.loads(payload.decode('utf8')) # Perform action depending on query type qtype = request["qtype"] if qtype == "docsearch": results = self.performDocumentSearch(request["term"]) del request["term"] request["results"] = list(results.values()) elif qtype == "ner": results = self.performEntityNER(request["query"]) del request["query"] request["results"] = results elif qtype == "metadb": # Send meta-database to generate request["results"] = metaDB elif qtype == "entitysearch": request["entities"] = self.performEntitySearch(request["term"]) del request["term"] elif qtype == "getdocuments": # Serve one or multiple documents by IDs docIds = [s.encode() for s in request["query"]] request["results"] = self.db.docIdx.findEntities(docIds) del request["query"] else: print(red("Unknown websocket request type: %s" % request["qtype"], bold=True)) return # Do not send reply #Return modified request object: Keeps custom K/V pairs but do not re-send query self.sendMessage(json.dumps(request, default=documentSerializer).encode("utf-8"), False) def onClose(self, wasClean, code, reason): print("WebSocket connection closed: {0}".format(reason)) def startWebsocketServer(): print(blue("Websocket server starting up...")) try: import asyncio except ImportError: ## Trollius >= 0.3 was renamed import trollius as asyncio #Asyncio only setups an event loop in the main thread, else we need to if threading.current_thread().name != 'MainThread': loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) factory = WebSocketServerFactory("ws://0.0.0.0:9000", debug = False) factory.protocol = TranslatronProtocol loop = asyncio.get_event_loop() server = loop.create_server(factory, '0.0.0.0', 9000) server = loop.run_until_complete(server) try: loop.run_forever() except KeyboardInterrupt: pass finally: server.close() loop.close()
StarcoderdataPython
1945936
from mantid.simpleapi import * from matplotlib import pyplot as plt import sys thisdir = os.path.abspath(os.path.dirname(__file__)) if thisdir not in sys.path: sys.path.insert(0, thisdir) def detector_position_for_reduction(path, conf, SNAP_definition_file, saved_file_path): sim=Load(path) AddSampleLog(sim, LogName='det_arc1', LogText= '{}'.format(conf.mon1), LogType='Number Series', NumberType='Double') AddSampleLog(sim, LogName='det_arc2', LogText= '{}'.format(conf.mon2), LogType='Number Series', NumberType='Double') LoadInstrument(sim, Filename=SNAP_definition_file, RewriteSpectraMap='True') SaveNexus(sim, saved_file_path)
StarcoderdataPython
1848298
import torch import functools import numpy as np import librosa import online_scd.data as data class InputFrameGenerator(object): def __init__(self, blocksize, stepsize): self.blocksize = blocksize self.stepsize = stepsize self.buffer = None def frames(self, frames): if self.buffer is not None: stack = np.concatenate([self.buffer, frames]) else: stack = frames.copy() stack_length = len(stack) nb_frames = ( stack_length - self.blocksize + self.stepsize) // self.stepsize nb_frames = max(nb_frames, 0) frames_length = nb_frames * self.stepsize + \ self.blocksize - self.stepsize last_block_size = stack_length - frames_length self.buffer = stack[int(nb_frames * self.stepsize):] for index in range(0, int(nb_frames * self.stepsize), int(self.stepsize)): yield stack[index:index + self.blocksize] class StreamingSlidingWindowCmn: def __init__(self, num_feats, cmn_window=600): self.cmn_window = cmn_window self.rolling_position = 0 self.rolling_buffer = np.zeros((num_feats, cmn_window)) self.buffer_length = 0 def process(self, frame): self.rolling_buffer[:, self.rolling_position] = frame self.rolling_position = (self.rolling_position + 1) % self.cmn_window self.buffer_length = min(self.buffer_length + 1, self.cmn_window) return frame - self.rolling_buffer[:, 0:self.buffer_length].mean(1) class AudioStream2MelSpectrogram: def __init__(self, sample_rate=16000, num_fbanks=40, cmn_window=600): self.sample_rate = sample_rate self.num_fbanks = num_fbanks self.input_frame_generator = InputFrameGenerator(400, 160) self.cmn = StreamingSlidingWindowCmn(num_fbanks, cmn_window) def process_audio(self, audio): for frames in self.input_frame_generator.frames(audio): single_feat = librosa.feature.melspectrogram(frames, sr=self.sample_rate, center=False, n_fft=int(2.5*self.sample_rate/100.0), hop_length=self.sample_rate//100, fmin=40, fmax=self.sample_rate//2-400, n_mels=self.num_fbanks) single_feat = single_feat[:, 0] single_feat = np.log(np.clip(single_feat, data.EPSILON.numpy(), None)) single_feat = self.cmn.process(single_feat) yield single_feat class StreamingDecoder: def __init__(self, model): self.model = model self.model.eval() self.audio2mel = AudioStream2MelSpectrogram(16000, model.hparams.num_fbanks) self.mels_to_conv_input = InputFrameGenerator(model.encoder_fov, model.hparams.detection_period) self.hidden_state = None self.frame_counter = 0 self.discard_counter = 0 def process_audio(self, audio): for feature in self.audio2mel.process_audio(audio): for x in self.mels_to_conv_input.frames(feature.reshape(1, self.model.hparams.num_fbanks)): x = torch.from_numpy(x).permute(1, 0).unsqueeze(0).float() x = self.model.encode_windowed_features(x) y, self.hidden_state = self.model.decode_single_timestep(x, self.hidden_state) probs = y.log_softmax(dim=-1).exp() if self.discard_counter < (self.model.hparams.label_delay - self.model.encoder_fov//2) // self.model.hparams.detection_period: # we discard output for the 1st second (or whatever the label delay is) self.discard_counter += 1 else: yield probs.squeeze() def find_speaker_change_times(self, audio, threshold=0.5): for y in self.process_audio(audio): if y[1] > threshold: change_time = self.frame_counter / 100 if change_time > 0: yield change_time self.frame_counter += 10
StarcoderdataPython
3237787
import argparse import sqlite3 from urllib.parse import urlparse, parse_qsl, unquote, quote import lxml.html import requests def create_connection(db_file): try: connection = sqlite3.connect(db_file) return connection except Exception as e: print(e) return None if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--year', help='Year to be processed', default='2008') # Defaults to the oldest year args = parser.parse_args() if args.year: year = args.year exceptions = {'3B46301A6C8B850D87A730DA365B0960', 'E5FEFE44A3070BC9FC176503EC1A603F', '0C1AFF9AEAA0953F1B1F9B818C2771C9', '7C912BA5616D2E24E9F700D90E4BA2B6', '905BB7DE4BC4E29D7FD2D1969667B568', '773B14EEB416FA762C443D909FFED344', '1C0DB4785FC78DF4395263D40261C614', '5066110701B0AE95948A158F0B262EBB', '5651A6C10C4D375A1901142C49C5C70C', '8BED72498D055E55ABCA7AD29B180BF4'} parse_link = f'https://www.chickensmoothie.com/archive/{year}/' print(f'Parsing: "{parse_link}"') response = requests.get(parse_link) dom = lxml.html.fromstring(response.text) event_links = dom.xpath('//li[@class="event active"]/a/@href') + dom.xpath('//li[@class="event "]/a/@href') # Get the links to all the monthlies and special pets for event in event_links: # For each event event = quote(event) base_link = f'https://www.chickensmoothie.com{event}' # The link to the event archive response = requests.get(base_link) # Get the HTML dom = lxml.html.fromstring(response.text) event_title = unquote(event[14:-1]) print(f'Finding pets from {event_title} Event') if len(dom.xpath('//div[@class="pages"]')) == 0: # If there is only the current page pages = 1 else: # If there are other pages of pets pages = len(dom.xpath('//div[@class="pages"][1]/a')) # Get the number of pages print(f'{pages} page(s) found') for page in range(pages): # For each page if page == 0: link = base_link else: current_page = page * 7 link = f'{base_link}?pageStart={current_page}' response = requests.get(link) dom = lxml.html.fromstring(response.text) print(f'Finding pets from "{link}" page') image_links = dom.xpath('//img[@alt="Pet"]/@src') pet_ids = set() for image_link in image_links: components = urlparse(image_link) parameters = dict(parse_qsl(components.query)) if parameters['k'] not in exceptions: pet_ids.add(parameters['k']) conn = create_connection('cs_archive.sqlite3') c = conn.cursor() counter = 0 for pet_id in pet_ids: try: c.execute('INSERT INTO ChickenSmoothie_Archive (Pet_ID, Year, Event, Archive_Link) VALUES (?, ?, ?, ?)', (pet_id, year, event_title, link)) counter += 1 except sqlite3.IntegrityError: print(f'WARNING: Pet ID {pet_id} already exists in database.') print(f'Inserted {counter} row(s)') conn.commit() conn.close() print('\n') conn = create_connection('cs_archive.sqlite3') c = conn.cursor() c.execute('UPDATE ChickenSmoothie_Archive SET Archive_Link=? WHERE Archive_Link=?', (f'https://www.chickensmoothie.com/archive/{year}/Valentine%27s%20Day/', f'https://www.chickensmoothie.com/archive/{year}/Valentine%2527s%20Day/')) c.execute('UPDATE ChickenSmoothie_Archive SET Archive_Link=? WHERE Archive_Link=?', (f'https://www.chickensmoothie.com/archive/{year}/Valentine%27s/', f'https://www.chickensmoothie.com/archive/{year}/Valentine%2527s/')) c.execute('UPDATE ChickenSmoothie_Archive SET Archive_Link=? WHERE Archive_Link=?', (f'https://www.chickensmoothie.com/archive/{year}/St.%20Patrick%27s%20Day/', f'https://www.chickensmoothie.com/archive/{year}/St.%20Patrick%2527s%20Day/')) c.execute('UPDATE ChickenSmoothie_Archive SET Archive_Link=? WHERE Archive_Link=?', (f'https://www.chickensmoothie.com/archive/{year}/April%20Fool%27s/', f'https://www.chickensmoothie.com/archive/{year}/April%20Fool%2527s/')) c.execute('UPDATE ChickenSmoothie_Archive SET Event=? WHERE Event=?', ("Valentine's Day", 'Valentine%27s Day')) c.execute('UPDATE ChickenSmoothie_Archive SET Event=? WHERE Event=?', ("Valentine's", 'Valentine%27s')) c.execute('UPDATE ChickenSmoothie_Archive SET Event=? WHERE Event=?', ("St. Patrick's Day", 'St. Patrick%27s Day')) c.execute('UPDATE ChickenSmoothie_Archive SET Event=? WHERE Event=?', ("April Fool's", 'April Fool%27s')) conn.commit() conn.close()
StarcoderdataPython
3303987
from __future__ import print_function import time import redis import logging import traceback from django.conf import settings from .models import CountBeansTask from django_task.job import Job from rq import get_current_job class CountBeansJob(Job): @staticmethod def execute(job, task): params = task.retrieve_params_as_dict() num_beans = params['num_beans'] for i in range(0, num_beans): time.sleep(0.01) task.set_progress((i + 1) * 100 / num_beans, step=10)
StarcoderdataPython
58717
class _EventTarget: '''https://developer.mozilla.org/en-US/docs/Web/API/EventTarget''' NotImplemented class _Node(_EventTarget): '''https://developer.mozilla.org/en-US/docs/Web/API/Node''' NotImplemented class _Element(_Node): '''ref of https://developer.mozilla.org/en-US/docs/Web/API/Element''' NotImplemented
StarcoderdataPython
67052
# Copyright 2013 OpenStack Foundation # Copyright 2013 Rackspace Hosting # Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import inspect import os from oslo_log import log as logging import oslo_messaging as messaging from oslo_service import loopingcall from oslo_service import service from oslo_utils import importutils from osprofiler import profiler from trove.common import cfg from trove.common.i18n import _ from trove.common import profile from trove.common.rpc import secure_serializer as ssz from trove import rpc CONF = cfg.CONF LOG = logging.getLogger(__name__) class RpcService(service.Service): def __init__(self, key, host=None, binary=None, topic=None, manager=None, rpc_api_version=None, secure_serializer=ssz.SecureSerializer): super(RpcService, self).__init__() self.key = key self.host = host or CONF.host self.binary = binary or os.path.basename(inspect.stack()[-1][1]) self.topic = topic or self.binary.rpartition('trove-')[2] _manager = importutils.import_object(manager) self.manager_impl = profiler.trace_cls("rpc")(_manager) self.rpc_api_version = rpc_api_version or \ self.manager_impl.RPC_API_VERSION self.secure_serializer = secure_serializer profile.setup_profiler(self.binary, self.host) def start(self): LOG.debug("Creating RPC server for service %s", self.topic) target = messaging.Target(topic=self.topic, server=self.host, version=self.rpc_api_version) if not hasattr(self.manager_impl, 'target'): self.manager_impl.target = target endpoints = [self.manager_impl] self.rpcserver = rpc.get_server( target, endpoints, key=self.key, secure_serializer=self.secure_serializer) self.rpcserver.start() # TODO(hub-cap): Currently the context is none... do we _need_ it here? report_interval = CONF.report_interval if report_interval > 0: pulse = loopingcall.FixedIntervalLoopingCall( self.manager_impl.run_periodic_tasks, context=None) pulse.start(interval=report_interval, initial_delay=report_interval) pulse.wait() def stop(self): # Try to shut the connection down, but if we get any sort of # errors, go ahead and ignore them.. as we're shutting down anyway try: self.rpcserver.stop() except Exception: LOG.info(_("Failed to stop RPC server before shutdown. ")) pass super(RpcService, self).stop()
StarcoderdataPython
3461813
from datetime import date, datetime from decimal import Decimal from base.models import BaseModel from carteiras.models import CentroCusto from dateutil.relativedelta import relativedelta from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models class Cartao(BaseModel): PERMISSAO_PARCELAMENTO_POSITIVO = True PERMISSAO_PARCELAMENTO_NEGATIVO = False ESCOLHAS_PERMISSAO_PARCELAMENTO = [ (PERMISSAO_PARCELAMENTO_POSITIVO, "Sim"), (PERMISSAO_PARCELAMENTO_NEGATIVO, "Não"), ] nome = models.CharField(max_length=100) slug = models.SlugField(max_length=100) valor_limite = models.DecimalField(max_digits=11, decimal_places=2) valor_total = models.DecimalField(max_digits=11, decimal_places=2, default=Decimal("0.0")) dia_fechamento = models.IntegerField( default=1, validators=[MaxValueValidator(25), MinValueValidator(1)] ) pode_parcelar = models.BooleanField(choices=ESCOLHAS_PERMISSAO_PARCELAMENTO) centro_custo = models.OneToOneField( CentroCusto, on_delete=models.CASCADE, related_name="cartao" ) class Meta: ordering = ["nome"] unique_together = (("centro_custo_id", "slug"),) indexes = [ models.Index(fields=["centro_custo_id", "slug"]), ] def __str__(self): return f"{self.nome}" @property def proximo_fechamento(self) -> date: hoje = datetime.now().date() try: data_fechamento = hoje.replace(self.dia_fechamento) except BaseException: data_fechamento = (hoje + relativedelta(months=1)).replace( day=1 ) - relativedelta(days=1) if data_fechamento < hoje: data_fechamento = data_fechamento + relativedelta(months=1) return data_fechamento @property def tem_lancamentos(self) -> bool: return self.centro_custo.lancamentos.exists() def tem_limite(self, valor: Decimal) -> bool: return not (self.valor_total + valor) > self.valor_limite def adicionar_despesa(self, valor: Decimal) -> "Cartao": if self.tem_limite(valor): self.valor_total = self.valor_total + valor else: raise Exception("Cartão não tem limite para a despesa!") return self def adicionar_receita(self, valor: Decimal) -> "Cartao": self.valor_total = self.valor_total - valor return self
StarcoderdataPython
11342070
from feedly.feeds.aggregated_feed.base import AggregatedFeed from feedly.serializers.aggregated_activity_serializer import \ NotificationSerializer from feedly.storage.redis.timeline_storage import RedisTimelineStorage import copy import datetime import json import logging logger = logging.getLogger(__name__) class NotificationFeed(AggregatedFeed): ''' Similar to an aggregated feed, but: - doesnt use the activity storage (serializes everything into the timeline storage) - features denormalized counts - pubsub signals which you can subscribe to For now this is entirely tied to Redis ''' #: notification feeds only need a small max length max_length = 99 key_format = 'notification_feed:1:user:%(user_id)s' #: the format we use to denormalize the count count_format = 'notification_feed:1:user:%(user_id)s:count' #: the key used for locking lock_format = 'notification_feed:1:user:%s:lock' #: the main channel to publish pubsub_main_channel = 'juggernaut' timeline_serializer = NotificationSerializer activity_storage_class = None activity_serializer = None def __init__(self, user_id, **kwargs): ''' User id (the user for which we want to read/write notifications) ''' AggregatedFeed.__init__(self, user_id, **kwargs) # location to which we denormalize the count self.format_dict = dict(user_id=user_id) self.count_key = self.count_format % self.format_dict # set the pubsub key if we're using it self.pubsub_key = user_id self.lock_key = self.lock_format % self.format_dict from feedly.storage.redis.connection import get_redis_connection self.redis = get_redis_connection() def add_many(self, activities, **kwargs): ''' Similar to the AggregatedActivity.add_many The only difference is that it denormalizes a count of unseen activities ''' with self.redis.lock(self.lock_key, timeout=2): current_activities = AggregatedFeed.add_many( self, activities, **kwargs) # denormalize the count self.denormalize_count() # return the current state of the notification feed return current_activities def get_denormalized_count(self): ''' Returns the denormalized count stored in self.count_key ''' result = self.redis.get(self.count_key) or 0 result = int(result) return result def set_denormalized_count(self, count): ''' Updates the denormalized count to count :param count: the count to update to ''' self.redis.set(self.count_key, count) self.publish_count(count) def publish_count(self, count): ''' Published the count via pubsub :param count: the count to publish ''' count_dict = dict(unread_count=count, unseen_count=count) count_data = json.dumps(count_dict) data = {'channel': self.pubsub_key, 'data': count_data} encoded_data = json.dumps(data) self.redis.publish(self.pubsub_main_channel, encoded_data) def denormalize_count(self): ''' Denormalize the number of unseen aggregated activities to the key defined in self.count_key ''' # now count the number of unseen count = self.count_unseen() # and update the count if it changed stored_count = self.get_denormalized_count() if stored_count != count: self.set_denormalized_count(count) return count def count_unseen(self, aggregated_activities=None): ''' Counts the number of aggregated activities which are unseen :param aggregated_activities: allows you to specify the aggregated activities for improved performance ''' count = 0 if aggregated_activities is None: aggregated_activities = self[:self.max_length] for aggregated in aggregated_activities: if not aggregated.is_seen(): count += 1 return count def mark_all(self, seen=True, read=None): ''' Mark all the entries as seen or read :param seen: set seen_at :param read: set read_at ''' with self.redis.lock(self.lock_key, timeout=10): # get the current aggregated activities aggregated_activities = self[:self.max_length] # create the update dict update_dict = {} for aggregated_activity in aggregated_activities: changed = False old_activity = copy.deepcopy(aggregated_activity) if seen is True and not aggregated_activity.is_seen(): aggregated_activity.seen_at = datetime.datetime.today() changed = True if read is True and not aggregated_activity.is_read(): aggregated_activity.read_at = datetime.datetime.today() changed = True if changed: update_dict[old_activity] = aggregated_activity # send the diff to the storage layer new, deleted = [], [] changed = update_dict.items() self._update_from_diff(new, changed, deleted) # denormalize the count self.denormalize_count() # return the new activities return aggregated_activities class RedisNotificationFeed(NotificationFeed): timeline_storage_class = RedisTimelineStorage
StarcoderdataPython
6616118
<gh_stars>10-100 import tensorflow as tf from tfsnippet.utils import assert_deps from .base import Distribution from .wrapper import as_distribution __all__ = ['BatchToValueDistribution'] class BatchToValueDistribution(Distribution): """ Distribution that converts the last few `batch_ndims` into `values_ndims`. See :meth:`Distribution.batch_ndims_to_value` for more details. """ def __init__(self, distribution, ndims): """ Construct a new :class:`BatchToValueDistribution`. Args: distribution (Distribution): The source distribution. ndims (int): The last few `batch_ndims` to be converted into `value_ndims`. Must be non-negative. """ distribution = as_distribution(distribution) ndims = int(ndims) if ndims < 0: raise ValueError('`ndims` must be non-negative integers: ' 'got {!r}'.format(ndims)) with tf.name_scope('BatchToValueDistribution.init'): # get new batch shape batch_shape = distribution.batch_shape batch_static_shape = distribution.get_batch_shape() if ndims > 0: # static shape if batch_static_shape.ndims < ndims: raise ValueError( '`distribution.batch_shape.ndims` is less then `ndims`' ': distribution {}, batch_shape.ndims {}, ndims {}'. format(distribution, batch_static_shape.ndims, ndims) ) batch_static_shape = batch_static_shape[: -ndims] # dynamic shape batch_shape = batch_shape[: -ndims] with assert_deps([ tf.assert_greater_equal( tf.size(distribution.batch_shape), ndims) ]) as asserted: if asserted: # pragma: no cover batch_shape = tf.identity(batch_shape) # get new value ndims value_ndims = ndims + distribution.value_ndims self._distribution = distribution self._ndims = ndims super(BatchToValueDistribution, self).__init__( dtype=distribution.dtype, is_continuous=distribution.is_continuous, is_reparameterized=distribution.is_reparameterized, batch_shape=batch_shape, batch_static_shape=batch_static_shape, value_ndims=value_ndims, ) @property def base_distribution(self): """ Get the base distribution. Returns: Distribution: The base distribution. """ return self._distribution def expand_value_ndims(self, ndims): ndims = int(ndims) if ndims == 0: return self return BatchToValueDistribution( self._distribution, ndims + self._ndims) batch_ndims_to_value = expand_value_ndims def sample(self, n_samples=None, group_ndims=0, is_reparameterized=None, compute_density=None, name=None): from tfsnippet.bayes import StochasticTensor group_ndims = int(group_ndims) t = self._distribution.sample( n_samples=n_samples, group_ndims=group_ndims + self._ndims, is_reparameterized=is_reparameterized, compute_density=compute_density, name=name ) ret = StochasticTensor( distribution=self, tensor=t.tensor, n_samples=n_samples, group_ndims=group_ndims, is_reparameterized=t.is_reparameterized, log_prob=t._self_log_prob ) ret._self_prob = t._self_prob return ret def log_prob(self, given, group_ndims=0, name=None): group_ndims = int(group_ndims) return self._distribution.log_prob( given=given, group_ndims=group_ndims + self._ndims, name=name )
StarcoderdataPython
1805509
<reponame>paulo-raca/python-progressbar<gh_stars>0 import time import pytest import progressbar max_values = [None, 10, progressbar.UnknownLength] def test_widgets_small_values(): widgets = [ 'Test: ', progressbar.Percentage(), ' ', progressbar.Bar(marker=progressbar.RotatingMarker()), ' ', progressbar.ETA(), ' ', progressbar.AbsoluteETA(), ' ', progressbar.FileTransferSpeed(), ] p = progressbar.ProgressBar(widgets=widgets, max_value=10).start() p.update(0) for i in range(10): time.sleep(1) p.update(i + 1) p.finish() @pytest.mark.parametrize('max_value', [10 ** 6, 10 ** 8]) def test_widgets_large_values(max_value): widgets = [ 'Test: ', progressbar.Percentage(), ' ', progressbar.Bar(marker=progressbar.RotatingMarker()), ' ', progressbar.ETA(), ' ', progressbar.AbsoluteETA(), ' ', progressbar.FileTransferSpeed(), ] p = progressbar.ProgressBar(widgets=widgets, max_value=max_value).start() for i in range(0, 10 ** 6, 10 ** 4): time.sleep(1) p.update(i + 1) p.finish() def test_format_widget(): widgets = [] for mapping in progressbar.FormatLabel.mapping: widgets.append(progressbar.FormatLabel('%%(%s)r' % mapping)) p = progressbar.ProgressBar(widgets=widgets) for i in p(range(10)): time.sleep(1) @pytest.mark.parametrize('max_value', [None, 10]) def test_all_widgets_small_values(max_value): widgets = [ progressbar.Timer(), progressbar.ETA(), progressbar.AdaptiveETA(), progressbar.AbsoluteETA(), progressbar.DataSize(), progressbar.FileTransferSpeed(), progressbar.AdaptiveTransferSpeed(), progressbar.AnimatedMarker(), progressbar.Counter(), progressbar.Percentage(), progressbar.FormatLabel('%(value)d'), progressbar.SimpleProgress(), progressbar.Bar(), progressbar.ReverseBar(), progressbar.BouncingBar(), progressbar.CurrentTime(), progressbar.CurrentTime(microseconds=False), progressbar.CurrentTime(microseconds=True), ] p = progressbar.ProgressBar(widgets=widgets, max_value=max_value) for i in range(10): time.sleep(1) p.update(i + 1) p.finish() @pytest.mark.parametrize('max_value', [10 ** 6, 10 ** 7]) def test_all_widgets_large_values(max_value): widgets = [ progressbar.Timer(), progressbar.ETA(), progressbar.AdaptiveETA(), progressbar.AbsoluteETA(), progressbar.DataSize(), progressbar.FileTransferSpeed(), progressbar.AdaptiveTransferSpeed(), progressbar.AnimatedMarker(), progressbar.Counter(), progressbar.Percentage(), progressbar.FormatLabel('%(value)d/%(max_value)d'), progressbar.SimpleProgress(), progressbar.Bar(fill=lambda progress, data, width: '#'), progressbar.ReverseBar(), progressbar.BouncingBar(), progressbar.FormatCustomText('Custom %(text)s', dict(text='text')), ] p = progressbar.ProgressBar(widgets=widgets, max_value=max_value) p.update() time.sleep(1) p.update() for i in range(0, 10 ** 6, 10 ** 4): time.sleep(1) p.update(i) @pytest.mark.parametrize('min_width', [None, 1, 2, 80, 120]) @pytest.mark.parametrize('term_width', [1, 2, 80, 120]) def test_all_widgets_min_width(min_width, term_width): widgets = [ progressbar.Timer(min_width=min_width), progressbar.ETA(min_width=min_width), progressbar.AdaptiveETA(min_width=min_width), progressbar.AbsoluteETA(min_width=min_width), progressbar.DataSize(min_width=min_width), progressbar.FileTransferSpeed(min_width=min_width), progressbar.AdaptiveTransferSpeed(min_width=min_width), progressbar.AnimatedMarker(min_width=min_width), progressbar.Counter(min_width=min_width), progressbar.Percentage(min_width=min_width), progressbar.FormatLabel('%(value)d', min_width=min_width), progressbar.SimpleProgress(min_width=min_width), progressbar.Bar(min_width=min_width), progressbar.ReverseBar(min_width=min_width), progressbar.BouncingBar(min_width=min_width), progressbar.FormatCustomText('Custom %(text)s', dict(text='text'), min_width=min_width), progressbar.DynamicMessage('custom', min_width=min_width), progressbar.CurrentTime(min_width=min_width), ] p = progressbar.ProgressBar(widgets=widgets, term_width=term_width) p.update(0) p.update() for widget in p._format_widgets(): if min_width and min_width > term_width: assert widget == '' else: assert widget != '' @pytest.mark.parametrize('max_width', [None, 1, 2, 80, 120]) @pytest.mark.parametrize('term_width', [1, 2, 80, 120]) def test_all_widgets_max_width(max_width, term_width): widgets = [ progressbar.Timer(max_width=max_width), progressbar.ETA(max_width=max_width), progressbar.AdaptiveETA(max_width=max_width), progressbar.AbsoluteETA(max_width=max_width), progressbar.DataSize(max_width=max_width), progressbar.FileTransferSpeed(max_width=max_width), progressbar.AdaptiveTransferSpeed(max_width=max_width), progressbar.AnimatedMarker(max_width=max_width), progressbar.Counter(max_width=max_width), progressbar.Percentage(max_width=max_width), progressbar.FormatLabel('%(value)d', max_width=max_width), progressbar.SimpleProgress(max_width=max_width), progressbar.Bar(max_width=max_width), progressbar.ReverseBar(max_width=max_width), progressbar.BouncingBar(max_width=max_width), progressbar.FormatCustomText('Custom %(text)s', dict(text='text'), max_width=max_width), progressbar.DynamicMessage('custom', max_width=max_width), progressbar.CurrentTime(max_width=max_width), ] p = progressbar.ProgressBar(widgets=widgets, term_width=term_width) p.update(0) p.update() for widget in p._format_widgets(): if max_width and max_width < term_width: assert widget == '' else: assert widget != ''
StarcoderdataPython
4841888
# 1 LAYER , TENSOrflow layers api import tensorflow as tf import gym import numpy as np num_inputs = 4 #4 inputs are the 2 velocities, position , angle num_hidden = 4 num_outputs = 1 # 1 output, either the probability to got left or right initializer = tf.contrib.layers.variance_scaling_initializer() X = tf.placeholder(tf.float32,shape = [None,num_inputs]) hidden_layer_one = tf.layers.dense(X,num_hidden, activation = tf.nn.relu,kernel_initializer = initializer) hidden_layer_two = tf.layers.dense(hidden_layer_one,num_hidden, activation = tf.nn.relu,kernel_initializer = initializer) # THE PROBABILITY IS JUST 0 OR 1 , SO WE'LL USE THE SIGMOID ACTVATION output_layer = tf.layers.dense(hidden_layer_two,num_outputs,activation= tf.nn.sigmoid, kernel_initializer = initializer) probabilities = tf.concat(axis = 1 ,values = [output_layer,1-output_layer]) action = tf.multinomial(probabilities,num_samples = 1) init = tf.global_variables_initializer() epi = 50 step_limit = 500 #very unlikely we'll ever hit 500 steps env = gym.make('CartPole-v0') avg_steps = [] # h with tf.Session() as sess: sess.run(init) for i_episode in range(epi): obs = env.reset() for step in range (step_limit): action_value = action.eval(feed_dict = {X:obs.reshape(1,num_inputs)}) # Now we'll pass in the step =function obs,reward,done,info = env.step(action_value[0][0]) # 0 or 1 if done: avg_steps.append(step) print("Done after {} Steps".format(step)) break print("After {} Episodes, average steps per game was {}".format(epi ,np.mean(avg_steps))) env.close()
StarcoderdataPython
3525902
<gh_stars>10-100 """ 这是一个仪表图像处理实例,基于k210芯片,歪朵拉开发板。 同级根目录下mnist.kmodel需放置于sd卡,请讲sd卡命名为sd。 TODO: 1、更好的针对印刷体数据集的数据增广; 2、指针自适应特征颜色提取范围; """ from fpioa_manager import fm, board_info from machine import UART import utime fm.register(board_info.PIN9,fm.fpioa.UART2_TX) fm.register(board_info.PIN10,fm.fpioa.UART2_RX) uart_B = UART(UART.UART2, 115200, 8, None, 1, timeout=10) import sensor, image, time, lcd, math import KPU as kpu #task = kpu.load("/sd/paste_mnist.kmodel") task = kpu.load("/sd/mnist.kmodel") info=kpu.netinfo(task) lcd.init(freq=15000000) sensor.reset() # Reset and initialize the sensor. It will # run automatically, call sensor.run(0) to stop sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_vflip(True) sensor.set_auto_gain(True) sensor.set_auto_whitebal(True) sensor.set_gainceiling(8) sensor.skip_frames(time = 2000) # Wait for settings take effect. clock = time.clock() # Create a clock object to track the FPS. def mnist_run(img, dx, dy, dis, x00 =0, y00 = 80, nnn = 2): if nnn == 4: x00 = x00 dy = dy img0 = img.copy((x00+dis*nnn,y00+nnn*0, dx, dy)) #img0.mean(2, threshold=True, offset=1, invert=True) #A img0.median(2, percentile=0.3, threshold=True, offset=-3, invert=True) #img0.midpoint(2, bias=0.3, threshold=True, offset=0, invert=True) #img0.mode(2, threshold=True, offset=0, invert=True) #B #img0.binary([(110,255)], invert = True) for dx0 in range(dx): for dy0 in range(dy): a0 = img0.get_pixel(dx0,dy0) img.set_pixel(x00+dis*nnn+dx0,y00+nnn*0+dy0,a0) #img1 = img0.copy((1,1, dx-1, dy-1)) img1 = img0 img1 = img1.resize(28,28) img1 = img1.to_grayscale(1) img1.pix_to_ai() fmap=kpu.forward(task,img1) plist=fmap[:] pmax=max(plist) max_index=plist.index(pmax) kpu.fmap_free(fmap) return max_index, pmax def search_col(x_input, y_input, img, width = 320, height = 240): x_l = [] y_l = [] for x in range(x_input - 32,x_input + 32): for y in range(y_input - 32,y_input + 32): if math.sqrt((x-x_input)*(x-x_input) + (y-y_input)*(y-y_input))<32 and math.sqrt((x-x_input)*(x-x_input) + (y-y_input)*(y-y_input))>14: col = img.get_pixel(x,y) if col[0]>120 and col[1]<100 and col[2]<100: x_l.append(x-x_input) y_l.append(-y+y_input) #img.set_pixel(x,y,(255,255,255)) #else: #img.set_pixel(x,y,(0,0,0)) angle_count = 0 le = 0 x_c = 0 y_c = 0 for i in range(len(x_l)): leng = math.sqrt(x_l[i]**2 + y_l[i]**2) le = le + leng angle_count = angle_count + math.acos(y_l[i]/leng)*leng x_c = x_c + x_l[i] y_c = y_c + y_l[i] if le == 0: angle = 0 else: angle = angle_count/le dx = 0 dy = 0 dx = int(30 * math.sin(angle)) dy = int(30 * math.cos(angle)) if x_c < 0: angle = -angle + 2*math.pi dx = -dx img.draw_line((x_input, y_input,x_input+dx, y_input-dy), thickness = 2, color=(0,0,255)) return angle/math.pi*180 num_list = [0, 0, 0, 0, 5] p_list = [0,0,0,0,0] angle_list = [0,0,0,0] while(True): count_0 = 0 count_4 = 0 clock.tick() # Update the FPS clock. img = sensor.snapshot() # Take a picture and return the image. #img.mean(1, threshold=True, offset=5, invert=True) #img.binary([(100,255)], invert = True) #img.erode(1) x00 = 91 y00 = 4 dx = 20 dy = 20 dis = 25 p_thre = 0.95 for i in range(0,5): class_num, pmax = mnist_run(img, dx, dy, dis,\ x00 =x00, y00 = y00,\ nnn=i) if pmax > p_thre: num_list[i] = class_num p_list[i] = pmax for i in range(0,5): if i == 4: x00 = x00 dy = dy img.draw_rectangle((x00+dis*i,y00+i*0, dx, dy), color=255) R_list = [] c_color = [] x_list = [101+3, 175+2, 241, 263] y_list = [176-6, 193-6, 156-6, 84-6] angle_list[0] = search_col(x_list[0], y_list[0], img, width = 320, height = 240) angle_list[1] = search_col(x_list[1], y_list[1], img, width = 320, height = 240) angle_list[2] = search_col(x_list[2], y_list[2], img, width = 320, height = 240) angle_list[3] = search_col(x_list[3], y_list[3], img, width = 320, height = 240) print(num_list) print(p_list) #print(angle_list) R = 32 img.draw_circle(x_list[0], y_list[0], R, color = (255, 0, 0), thickness = 2, fill = False) img.draw_circle(x_list[1], y_list[1], R, color = (255, 0, 0), thickness = 2, fill = False) img.draw_circle(x_list[2], y_list[2], R, color = (255, 0, 0), thickness = 2, fill = False) img.draw_circle(x_list[3], y_list[3], R, color = (255, 0, 0), thickness = 2, fill = False) # R-G-B 180-60-60 r = 3 img.draw_circle(x_list[0], y_list[0], r, color = (255, 255, 0), thickness = 1, fill = False) img.draw_circle(x_list[1], y_list[1], r, color = (255, 255, 0), thickness = 1, fill = False) img.draw_circle(x_list[2], y_list[2], r, color = (255, 255, 0), thickness = 1, fill = False) img.draw_circle(x_list[3], y_list[3], r, color = (255, 255, 0), thickness = 1, fill = False) utime.sleep_ms(250) #str(num_list[0]) uart_B.write(str(0)+ str(0)+ str(0)+ str(0)+ str(6)+\ '.' + str(int(angle_list[3]/36)) + str(int(angle_list[2]/36)) + str(int(angle_list[1]/36)) + str(int(angle_list[0]/36))) lcd.display(img) # Display on LCD #lcd.draw_string(20,20,"%d: %.3f"%(max_index,pmax),lcd.WHITE,lcd.BLACK)
StarcoderdataPython
99126
import itertools # combine iterators it = itertools.chain([1, 2, 3], [4, 5, 6]) # repeat a value it = itertools.repeat("hello", 3) print(list(it)) # repeat an iterator's items it = itertools.cycle([1, 2]) result = [next(it) for _ in range(10)] print(result) # split an iterator it1, it2, it3 = itertools.tee(["first", "second"], 3) print(list(it1)) print(list(it2)) print(list(it3)) # zip unequal length iterators with a default value keys = ["one", "two", "three"] values = [1, 2] it = itertools.zip_longest(keys, values) longest = list(it) print(longest) #
StarcoderdataPython
4998246
import numpy as np import pandas as pd import scipy.optimize as opt from family import * class FormulaError(Exception): def handle(): return "Something is wrong with your formula..." class lm: def __init__(self, formula, data=None): assert isinstance(data, pd.DataFrame) assert isinstance(formula, str) ''' formula is something like 'Y ~ X+Age+BMI' ''' self.formula = formula.replace(" ", "") try: _Y_var, _X_var = self.formula.split("~") variables = _X_var.split("+") except ValueError as e: raise FormulaError(FormulaError.handle()) if data is None: # look in global environment pass try: if variables[0] in ["0", "1"]: _intercept = bool(int(variables[1])) assert all(not var.isdigit() for var in [_Y_var] + variables[1:]) else: _intercept = True assert all(not var.isdigit() for var in [_Y_var] + variables) self.y = data[_Y_var].values # pd Series (or column) if variables[0] == '.': variables = data.columns variables.remove(_Y_var) self.x = data[variables].values except KeyError: print("The names in the formula don't match the ones in the DataFrame.") raise KeyError except AssertionError: raise FormulaError(FormulaError.handle()) n, p = self.x.shape _x = np.hstack((np.ones(shape=[n, 1]), self.x)) self.coefficients = np.linalg.inv(_x.T@_x)@[email protected] self.fitted_values = [email protected] self.residuals = self.y - self.fitted_values class glm(lm): def __init__(self, formula, data=None, family=gaussian()): ''' attributes inherited include: formula, y, x, coefficients, residuals only works for binomial with logit link, for now ''' super().__init__(formula, data) self.family = family if isinstance(family, gaussian): # do nothing: all inherited attributes are okay (linear model) pass elif isinstance(family, binomial): # use Newton-raphson for minimization of negative log-likelihood link = family.link if link == "logit": def neg_likelihood(beta): _x = np.hstack((np.ones(shape=[n, 1]), self.x)) return -sum(np.exp(beta@_x) + self.y*(beta@_x)) init_beta = np.zeros(len(self.coefficients)) self.coefficients = opt.minimize(fun=neg_likelihood, x0=init_beta, method="Newton-CG")
StarcoderdataPython
3399601
from karlovic.model_server import model_server
StarcoderdataPython
3488880
<filename>ml-agents/mlagents/trainers/benchmark.py from mlagents.envs.brain import BrainInfo import numpy as np class BenchmarkManager(object): agent_status = [[]] agent_amount = None agent_benchmark_result = [] #[episode_len, cumulative_reward, success_goal] success_threshold = None # agent_benchmark_result = [[5,100,True],[6,120,False], [10,255,True]] benchmark_episode = None verbose = False @staticmethod def is_complete(): return len(BenchmarkManager.agent_benchmark_result) >= BenchmarkManager.benchmark_episode @staticmethod def add_result(info: BrainInfo): for agent_index in range(BenchmarkManager.agent_amount): BenchmarkManager.agent_status[agent_index][0] += 1 BenchmarkManager.agent_status[agent_index][1] += info.rewards[agent_index] if info.local_done[agent_index]: if BenchmarkManager.verbose: print('Episode Length', BenchmarkManager.agent_status[agent_index][0]) print('Cumulative Reward', BenchmarkManager.agent_status[agent_index][1]) u = BenchmarkManager.agent_status[agent_index][:] if info.rewards[agent_index] >= BenchmarkManager.success_threshold: u.append(True) else: u.append(False) BenchmarkManager.agent_benchmark_result.append(u[:]) BenchmarkManager.agent_status[agent_index][0] = 0 BenchmarkManager.agent_status[agent_index][1] = 0 @staticmethod def analyze(): result = np.array(BenchmarkManager.agent_benchmark_result) print('Episode Length: Avg = %.2f, Std = %.2f' % (np.average(result[:,0]), np.std(result[:,0]))) print('Reward: Avg = %.2f, Std = %.2f' % (np.average(result[:,1]), np.std(result[:,1]))) print( 'Success Rate: ', '{:.0%}'.format(np.sum(result[:,2]) / len(BenchmarkManager.agent_benchmark_result)) ) def __init__(self, agent_amount, benchmark_episode, success_threshold, verbose): BenchmarkManager.agent_status = [[0 for x in range(2)] for y in range(agent_amount)] BenchmarkManager.agent_amount = agent_amount BenchmarkManager.benchmark_episode = benchmark_episode BenchmarkManager.success_threshold = success_threshold BenchmarkManager.verbose = verbose
StarcoderdataPython
4967602
<filename>vagrant/main.py #!/usr/bin/env python3 import psycopg2 def get_query_result(query): db = psycopg2.connect(database="news") c = db.cursor() c.execute(query) result = c.fetchall() db.close() return result def print_breaks(): print() print("########==============================================########") print() query = """ SELECT title_path.t, count(log.path) AS c FROM (SELECT DISTINCT articles.title AS t, log.path AS p FROM articles LEFT JOIN log ON log.path ILIKE '%' || articles.slug || '%' AND log.status = '200 OK') AS title_path LEFT JOIN log on log.path = title_path.p GROUP BY title_path.t ORDER BY c DESC LIMIT(3); """ print("Quais são os três artigos mais populares de todos os tempos?") print() print("{:>35s}{:>20s}".format("Título", "Nº de acessos")) for row in get_query_result(query): print("{:>35s}{:>20d}".format(row[0], row[1])) print_breaks() query = """ SELECT slug_name.aun, count(log.path) AS c FROM (SELECT articles.slug AS ars, authors.name AS aun FROM authors LEFT JOIN articles ON authors.id = articles.author) AS slug_name LEFT JOIN log ON log.path ILIKE '%' || slug_name.ars || '%' AND log.status = '200 OK' GROUP BY slug_name.aun ORDER BY c DESC LIMIT(3); """ print("Quem são os autores de artigos mais populares de todos os tempos?") print() print("{:>35s}{:>20s}".format("Author", "Nº de acessos")) for row in get_query_result(query): print("{:>35s}{:>20d}".format(row[0], row[1])) print_breaks() query = """ SELECT * FROM (SELECT to_char(date_trunc('day', time), 'DD Mon YYYY'), (SUM( CASE WHEN status = '404 NOT FOUND' THEN 1 ELSE 0 END )::DECIMAL / COUNT(status) ) * 100 AS percent_total FROM log GROUP BY 1 ORDER BY 1) AS temp_table WHERE percent_total > 1; """ print("Em quais dias mais de 1% das requisições resultaram em erros?") print() print("{:>15s}{:>20s}".format("DATA", "PORCENTAGEM (%)")) result = get_query_result(query)[0] print("{:>15s}{:>19.4f}%".format(result[0], float(result[1]))) print_breaks()
StarcoderdataPython
5046138
<reponame>ceyeoh/fyp_doppler<filename>website/utils.py import numpy as np import pandas as pd from PIL import Image, ImageFilter ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"} def allowed_file(filename): return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS def find_y(img, thres, tol=10, gthres=0.1): y1, y2 = 0, 0 for row in range(img.shape[0]): if img[row].max() > thres: gtruth = np.array(np.unique((img[row] > thres), return_counts=True)).T if gtruth[-1][-1] > gthres * img.shape[1]: if row - tol < 0: y1 = 0 else: y1 = row - tol break for row in sorted(range(img.shape[0]), reverse=True): if img[row].max() > thres: gtruth = np.array(np.unique((img[row] > thres), return_counts=True)).T if gtruth[-1][-1] > gthres * img.shape[1]: if row + tol > img.shape[0]: y2 = img.shape[0] else: y2 = row + tol break return y1, y2 def find_x(img, thres): x1, x2 = 0, 0 for col in range(img.shape[1]): if img[:, col].max() > thres: x1 = col break for col in sorted(range(img.shape[1]), reverse=True): if img[:, col].max() > thres: x2 = col break return x1, x2 def loader(filename): img = Image.open(filename) img = img.convert("L") w, h = img.size x1 = 0.1 * w x2 = 0.85 * w y1 = 0.51 * h y2 = 0.94 * h img = img.crop((x1, y1, x2, y2)) img = img.filter(ImageFilter.GaussianBlur(radius=2)) img_mat = np.array(img) x1, x2 = find_x(img_mat, thres=100) y1, y2 = find_y(img_mat, thres=60, gthres=0.075) img = img.crop((x1, y1, x2, y2)) c = 1 img = img.resize([i * c for i in [448, 112]]) return img.convert("RGB")
StarcoderdataPython
3375480
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests the AWSCollector.""" from __future__ import unicode_literals import unittest import mock from libcloudforensics.providers.aws.internal import account as aws_account from libcloudforensics.providers.aws.internal import ebs, ec2 from dftimewolf import config from dftimewolf.lib import state from dftimewolf.lib.collectors import aws from dftimewolf.lib.containers import containers with mock.patch('boto3.session.Session._setup_loader') as mock_session: mock_session.return_value = None FAKE_AWS_ACCOUNT = aws_account.AWSAccount( default_availability_zone='fake-zone-2b') FAKE_ANALYSIS_VM = ec2.AWSInstance( FAKE_AWS_ACCOUNT, 'fake-analysis-vm-id', 'fake-zone-2', 'fake-zone-2b', name='fake-analysis-vm') FAKE_INSTANCE = ec2.AWSInstance( FAKE_AWS_ACCOUNT, 'my-owned-instance-id', 'fake-zone-2', 'fake-zone-2b') FAKE_VOLUME = ebs.AWSVolume( 'fake-volume-id', FAKE_AWS_ACCOUNT, 'fake-zone-2', 'fake-zone-2b', False) FAKE_BOOT_VOLUME = ebs.AWSVolume( 'fake-boot-volume-id', FAKE_AWS_ACCOUNT, 'fake-zone-2', 'fake-zone-2b', False, name='fake-boot-volume', device_name='/dev/spf') FAKE_VOLUME_COPY = ebs.AWSVolume( 'fake-volume-id-copy', FAKE_AWS_ACCOUNT, 'fake-zone-2', 'fake-zone-2b', False) class AWSCollectorTest(unittest.TestCase): """Tests for the AWS collector.""" def testInitialization(self): """Tests that the collector can be initialized.""" test_state = state.DFTimewolfState(config.Config) gcloud_collector = aws.AWSCollector(test_state) self.assertIsNotNone(gcloud_collector) # pylint: disable=invalid-name @mock.patch('boto3.session.Session._setup_loader') @mock.patch('libcloudforensics.providers.aws.internal.ec2.AWSInstance') @mock.patch('libcloudforensics.providers.aws.forensics.StartAnalysisVm') def testSetUp1(self, mock_StartAnalysisVm, mock_AWSInstance, mock_loader): """Tests that the collector can be initialized.""" test_state = state.DFTimewolfState(config.Config) mock_StartAnalysisVm.return_value = (mock_AWSInstance, None) mock_loader.return_value = None aws_collector = aws.AWSCollector(test_state) # Setup the collector with minimum information aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='my-owned-instance-id' ) self.assertEqual([], test_state.errors) self.assertEqual( 'test-remote-profile-name', aws_collector.remote_profile_name) self.assertEqual('test-remote-zone', aws_collector.remote_zone) self.assertEqual('fake_incident_id', aws_collector.incident_id) self.assertEqual([], aws_collector.volume_ids) self.assertEqual(aws_collector.all_volumes, False) self.assertEqual( 'test-remote-profile-name', aws_collector.analysis_profile_name) self.assertEqual('test-remote-zone', aws_collector.analysis_zone) mock_StartAnalysisVm.assert_called_with( 'aws-forensics-vm-fake_incident_id', 'test-remote-zone', 50, ami=None, cpu_cores=16, dst_profile='test-remote-profile-name' ) # pylint: disable=invalid-name @mock.patch('boto3.session.Session._setup_loader') @mock.patch('libcloudforensics.providers.aws.forensics.StartAnalysisVm') def testSetUp2(self, mock_StartAnalysisVm, mock_loader): """Tests that the collector can be initialized.""" test_state = state.DFTimewolfState(config.Config) mock_StartAnalysisVm.return_value = (FAKE_INSTANCE, None) mock_loader.return_value = None aws_collector = aws.AWSCollector(test_state) # Setup the collector with an instance ID, destination zone and profile. aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='my-owned-instance-id', all_volumes=True, analysis_profile_name='test-analysis-profile-name', analysis_zone='test-analysis-zone' ) self.assertEqual([], test_state.errors) self.assertEqual( 'test-remote-profile-name', aws_collector.remote_profile_name) self.assertEqual('test-remote-zone', aws_collector.remote_zone) self.assertEqual('fake_incident_id', aws_collector.incident_id) self.assertEqual([], aws_collector.volume_ids) self.assertEqual(aws_collector.all_volumes, True) self.assertEqual('my-owned-instance-id', aws_collector.remote_instance_id) self.assertEqual( 'test-analysis-profile-name', aws_collector.analysis_profile_name) self.assertEqual('test-analysis-zone', aws_collector.analysis_zone) mock_StartAnalysisVm.assert_called_with( 'aws-forensics-vm-fake_incident_id', 'test-analysis-zone', 50, ami=None, cpu_cores=16, dst_profile='test-analysis-profile-name' ) # pylint: disable=line-too-long, invalid-name @mock.patch('boto3.session.Session._setup_loader') @mock.patch('libcloudforensics.providers.aws.forensics.StartAnalysisVm') @mock.patch('libcloudforensics.providers.aws.forensics.CreateVolumeCopy') @mock.patch('dftimewolf.lib.collectors.aws.AWSCollector._FindVolumesToCopy') @mock.patch('libcloudforensics.providers.aws.internal.ec2.AWSInstance.AttachVolume') def testProcess(self, unused_mock_AttachVolume, mock_FindVolumesToCopy, mock_CreateVolumeCopy, mock_StartAnalysisVm, mock_loader): """Tests the collector's Process() function.""" mock_StartAnalysisVm.return_value = (FAKE_ANALYSIS_VM, None) mock_FindVolumesToCopy.return_value = [FAKE_VOLUME] mock_CreateVolumeCopy.return_value = FAKE_VOLUME_COPY mock_loader.return_value = None test_state = state.DFTimewolfState(config.Config) aws_collector = aws.AWSCollector(test_state) aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='my-owned-instance-id', all_volumes=True, analysis_profile_name='test-analysis-profile-name', analysis_zone='test-analysis-zone' ) aws_collector.Process() mock_CreateVolumeCopy.assert_called_with( 'test-remote-zone', dst_zone='test-analysis-zone', volume_id=FAKE_VOLUME.volume_id, src_profile='test-remote-profile-name', dst_profile='test-analysis-profile-name') forensics_vms = test_state.GetContainers(containers.ForensicsVM) forensics_vm = forensics_vms[0] self.assertEqual('fake-analysis-vm', forensics_vm.name) self.assertEqual( 'fake-volume-id-copy', forensics_vm.evidence_disk.volume_id) # pylint: disable=line-too-long @mock.patch('boto3.session.Session._setup_loader') @mock.patch('libcloudforensics.providers.aws.internal.ec2.AWSInstance.GetBootVolume') @mock.patch('libcloudforensics.providers.aws.internal.ebs.EBS.GetVolumeById') @mock.patch('libcloudforensics.providers.aws.internal.ec2.AWSInstance.ListVolumes') @mock.patch('libcloudforensics.providers.aws.internal.ec2.EC2.GetInstanceById') @mock.patch('libcloudforensics.providers.aws.forensics.StartAnalysisVm') # We're manually calling protected functions # pylint: disable=protected-access, invalid-name def testFindVolumesToCopy(self, mock_StartAnalysisVm, mock_GetInstanceById, mock_ListVolumes, mock_GetVolumeById, mock_GetBootVolume, mock_loader): """Tests the FindVolumesToCopy function with different SetUp() calls.""" test_state = state.DFTimewolfState(config.Config) aws_collector = aws.AWSCollector(test_state) mock_StartAnalysisVm.return_value = (FAKE_INSTANCE, None) mock_loader.return_value = None mock_ListVolumes.return_value = { FAKE_BOOT_VOLUME.volume_id: FAKE_BOOT_VOLUME, FAKE_VOLUME.volume_id: FAKE_VOLUME } mock_GetVolumeById.return_value = FAKE_VOLUME mock_GetInstanceById.return_value = FAKE_INSTANCE mock_GetBootVolume.return_value = FAKE_BOOT_VOLUME # Nothing is specified, AWSCollector should collect the instance's # boot volume aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='my-owned-instance-id' ) volumes = aws_collector._FindVolumesToCopy() self.assertEqual(1, len(volumes)) self.assertEqual('fake-boot-volume-id', volumes[0].volume_id) mock_GetInstanceById.assert_called_once() mock_GetBootVolume.assert_called_once() mock_ListVolumes.assert_not_called() # Specifying all_volumes should return all volumes for the instance # (see mock_ListVolumes return value) aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='my-owned-instance-id', all_volumes=True ) volumes = aws_collector._FindVolumesToCopy() self.assertEqual(2, len(volumes)) self.assertEqual('fake-boot-volume-id', volumes[0].volume_id) self.assertEqual('fake-volume-id', volumes[1].volume_id) mock_ListVolumes.assert_called_once() # If a list of 1 volume ID is passed, that volume only should be returned aws_collector.SetUp( 'test-remote-profile-name', 'test-remote-zone', 'fake_incident_id', remote_instance_id='', volume_ids=FAKE_VOLUME.volume_id ) volumes = aws_collector._FindVolumesToCopy() self.assertEqual(1, len(volumes)) self.assertEqual('fake-volume-id', volumes[0].volume_id) mock_GetVolumeById.assert_called_once() if __name__ == '__main__': unittest.main()
StarcoderdataPython
1795705
<reponame>Brndan/decharges-sudeducation from django.views.generic import TemplateView from decharges.decharge.mixins import CheckConfigurationMixin, FederationRequiredMixin from decharges.decharge.models import ( TempsDeDecharge, UtilisationCreditDeTempsSyndicalPonctuel, UtilisationTempsDecharge, ) from decharges.decharge.views.utils import calcul_repartition_temps from decharges.user_manager.models import Syndicat class SyndicatsARelancer( CheckConfigurationMixin, FederationRequiredMixin, TemplateView ): template_name = "decharge/syndicats_a_relancer.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) annee_en_cours = self.params.annee_en_cours context["annee"] = annee_en_cours temps_de_decharge_mutualise = TempsDeDecharge.objects.filter( annee=annee_en_cours ) utilisation_temps_decharge = UtilisationTempsDecharge.objects.filter( annee=annee_en_cours, ) utilisation_cts = UtilisationCreditDeTempsSyndicalPonctuel.objects.filter( annee=annee_en_cours, ) syndicats_depassant_leur_quota = [] for syndicat in Syndicat.objects.all(): ( cts_consommes, temps_decharge_federation, temps_donnes, temps_donnes_total, temps_recus_par_des_syndicats, temps_recus_par_la_federation, temps_restant, temps_utilises, temps_utilises_total, ) = calcul_repartition_temps(annee_en_cours, self.federation, syndicat) if temps_restant < 0: syndicats_depassant_leur_quota.append((syndicat, abs(temps_restant))) context["syndicats_n_ayant_rien_rempli"] = ( Syndicat.objects.exclude(pk=self.federation.pk) .exclude(temps_de_decharges_donnes__in=temps_de_decharge_mutualise) .exclude( utilisation_temps_de_decharges_par_annee__in=utilisation_temps_decharge ) .exclude(utilisation_cts_ponctuels_par_annee__in=utilisation_cts) .order_by("username") ) context["syndicats_depassant_leur_quota"] = syndicats_depassant_leur_quota return context
StarcoderdataPython
6660528
<filename>hamiltonian/manager.py<gh_stars>0 # Copyright (c) 2020 <NAME> # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ Nodes Managers """ import abc import math import numpy as np from collections import defaultdict from .render import animate class Manager(object): """ A manager class adds nodes or links and refreshes their positions. """ def __init__(self, callback=None, **kwargs): self._callback = callback self._needs_refresh = False def start(self, **kwargs): """ Start animating """ animate(self.render_callback, **kwargs) def refresh(self): """ Function to ask for a refresh of the nodes destionations """ self._needs_refresh = True def render_callback(self, render): """ Internal function called on each frame """ if self._callback: self._callback(self) if self._needs_refresh: # We only refresh the destination positions if necessary self.update(render) self._needs_refresh = False @abc.abstractmethod def update(self, render, **kwargs): """ Function called by the graphical thread to change the current schema. This is supposed to be overloaded by a manager class, to use: - render.get_node - render.add_node - render.remove_node - render.add_link - render.remove_link """ pass ### HUB MANAGER ### def _get_circle_locs(r, n, phi=0): """ Get the List of n desired locations in the circle of radius r """ tht = 2 * math.pi / n return [ np.array((r * math.cos(phi + tht * i), r * math.sin(phi + tht * i))) for i in range(n) ] def _get_next_hub_pos(hubs): """ Get the position of the center of the next hub based on existing one """ nb = len(hubs.keys()) return np.array((nb % 2, nb * 2)) class HubManager(Manager): """ Order Nodes in hubs """ def __init__(self, callback=None, radius=1.): self.objects = defaultdict(list) self.hubs = {} self.radius = radius self.new_points = {} super(HubManager, self).__init__(callback) def get_rad_and_phi(self, layer): """ Internal function to get the radius and angles of Nodes around another one. """ rd = self.radius / (2 ** layer) phi = math.pi / 4 if ((1 + layer) % 2) else 0 return rd, phi def add_hub(self, name, pos=None, **kwargs): """ Add a standalone hub :param name: the hub's name :param pos: the hub's position """ self.objects[name] = [] if pos is None: pos = _get_next_hub_pos(self.hubs) self.hubs[name] = pos self.new_points[name] = (None, kwargs) self.refresh() def add_point(self, name, under, **kwargs): """ Add a point linked to another one :param name: the point's name :param under: the parent's name """ self.objects[name] = [] self.objects[under].append(name) self.new_points[name] = (under, kwargs) self.refresh() def update(self, render, cur=None, center=None, i=0): """ Internal function used to recalculate all destinations """ if cur is None: # Entry: iterate through hubs for hub, pos in self.hubs.items(): if hub in self.new_points: kwargs = self.new_points.pop(hub)[1] render.add_node(hub, pos, **kwargs) self.update(render, cur=hub, center=pos, i=0) return subs = self.objects[cur] if not subs: # Node has no child return rd, phi = self.get_rad_and_phi(i) poss = _get_circle_locs(rd, len(subs), phi) for i, name in enumerate(subs): pos = center + poss[i] # Check for new point if name in self.new_points: # Create point at desired location under, kwargs = self.new_points.pop(name) node = render.add_node(name, pos, **kwargs) if under: # Link to upper point render.add_link(render.get_node(under), node, **kwargs) else: # Update node destination node = render.get_node(name) node.set_destination(pos) if self.objects[name]: self.update(render, cur=name, center=pos, i=i+1)
StarcoderdataPython
3592005
import os import uuid from datetime import datetime, timedelta import mock import pytz from django.conf import settings from django.contrib.auth.models import User from django.test import TestCase from utils.widget import quill from wiki.forms import wikipageform from wiki.models import wikipage, wikisection from wiki.models.permissionpage import PermissionPage from wiki.models.permissionsection import PermissionSection from wiki.models.wikipage import Keywords, WikiPage from wiki.models.wikisection import WikiSection def render_mock(request, template, data, content_type='test'): return {'request':request, 'template':template, 'data': data, 'content_type':content_type} def redirect_mock(link): return link def reverse_mock(link, kwargs=None): if kwargs is None: return link return link class req: def __init__(self, method='GET', post={}, user=None): self.method = method self.user = user self.POST = post class WikiPageFormTestCase(TestCase): def setUp(self): self.firstUser = User(is_superuser=True, username='test1', password='<PASSWORD>', email='<EMAIL>', first_name='testname1', last_name='testlast2') self.secondUser = User(is_superuser=False, username='test2', password='<PASSWORD>', email='<EMAIL>', first_name='testname2', last_name='testlast2') self.thirdUser = User(is_superuser=False, username='test3', password='<PASSWORD>', email='<EMAIL>', first_name='testname3', last_name='testlast3') self.fourthUser = User(is_superuser=False, username='test4', password='<PASSWORD>', email='<EMAIL>', first_name='testname4', last_name='testlast4') self.firstUser.save() self.secondUser.save() self.thirdUser.save() self.fourthUser.save() self.wikiuuid = [uuid.uuid4(), uuid.uuid4(), uuid.uuid4(), uuid.uuid4()] self.wikistext = ['{"ops":[{"insert":"123123\\n"}]}', 'text', None] self.wikisuuid = [uuid.uuid4(), uuid.uuid4(), uuid.uuid4(), uuid.uuid4(), uuid.uuid4()] self.wikipath = 'wiki' self.wikipagelink = 'wiki_page' self.wikimainpagelink = 'wiki_homepage' self.softwarename = 'name' self.formtemplate = 'forms/unimodelform.html' self.contenttype = 'text/html' self.createdtime = datetime.now(pytz.utc) self.wikiPages = [] self.permissions = [] for i in range(3): self.wikiPages.append(WikiPage(unid=self.wikiuuid[i], createdon=self.createdtime, updatedon=self.createdtime, createdby=self.firstUser, updatedby=self.secondUser, title='testpage'+str(i+1))) self.wikiPages[i].save() self.wikiPages[i].createdon=self.createdtime + timedelta(hours=i) self.wikiPages[i].updatedon=self.createdtime + timedelta(hours=i) self.wikiPages[i].save() self.pagepermissions = [] pagep = PermissionPage(createdby=self.firstUser, accesslevel=20, grantedto=self.thirdUser, wikipage=self.wikiPages[2]) pagep.save() self.pagepermissions.append(pagep) pagep = PermissionPage(createdby=self.firstUser, accesslevel=30, grantedto=self.fourthUser, wikipage=self.wikiPages[2]) pagep.save() self.pagepermissions.append(pagep) self.wikiSections = [] for i in range(3): self.wikiSections.append(WikiSection(unid=self.wikisuuid[i], createdon=self.createdtime, updatedon=self.createdtime, createdby=self.firstUser, updatedby=self.secondUser, title='testsec'+str(i+1), pageorder=i+1, text=self.wikistext[i], wikipage=self.wikiPages[0])) self.wikiSections[i].save() self.wikiSections[i].createdon=self.createdtime + timedelta(hours=i) self.wikiSections[i].updatedon=self.createdtime + timedelta(hours=i) perm = PermissionSection(createdby=self.firstUser, accesslevel=20, grantedto=self.secondUser, section=self.wikiSections[i]) perm.save() self.permissions.append(perm) perm = PermissionSection(createdby=self.firstUser, accesslevel=10, grantedto=self.thirdUser, section=self.wikiSections[i]) perm.save() self.permissions.append(perm) if i==1: self.wikiSections[1].createdby = None self.wikiSections[1].updatedby = None self.wikiSections[i].save() settings.SOFTWARE_NAME_SHORT = self.softwarename wikipageform.settings.SOFTWARE_NAME_SHORT = self.softwarename wikipageform.settings.WIKI_FILES = self.wikipath os.path.exists = mock.Mock(return_value=True, spec='os.path.exists') os.makedirs = mock.Mock(return_value=None, spec='os.makedirs') wikipageform.render = mock.Mock(side_effect=render_mock) wikipageform.redirect = mock.Mock(side_effect=redirect_mock) wikipageform.reverse = mock.Mock(side_effect=reverse_mock) wikipage.reverse = mock.Mock(side_effect=reverse_mock) def test_wiki_page_form_get_request_super_user(self): post = {'action':'add'} method = 'GET' request = req(method=method, user=self.firstUser) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'add') self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Post Article') self.assertEqual(data['submbutton'], 'Post article') self.assertEqual(data['backurl'], self.wikimainpagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_get_request_no_access(self): method = 'GET' request = req(method=method, user=self.thirdUser) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_get_request_no_permissions(self): method = 'GET' request = req(method=method, user=self.fourthUser) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_post_request_no_action(self): post = {} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'add') self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Post Article') self.assertEqual(data['submbutton'], 'Post article') self.assertEqual(data['backurl'], self.wikimainpagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_post_request_no_action_no_permissions(self): post = {} method = 'POST' request = req(method=method, user=self.thirdUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_add_request_success(self): post = {'action':'add', 'title':self.wikiPages[0].title} method = 'POST' WikiPage.objects.all().delete() request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikipagelink) self.assertEqual(len(WikiPage.objects.all()), 1) wiki = WikiPage.objects.all()[0] self.assertEqual(wiki.title, self.wikiPages[0].title) self.assertEqual(wiki.createdby, self.firstUser) self.assertEqual(wiki.updatedby, self.firstUser) def test_wiki_page_form_add_request_failed_no_access(self): post = {'action':'add', 'title':self.wikiPages[0].title} method = 'POST' request = req(method=method, user=self.thirdUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_add_request_failed_no_permissions(self): post = {'action':'add', 'title':self.wikiPages[0].title} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_add_request_failed_no_title(self): post = {'action':'add', 'title':None} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'add') self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Post Article') self.assertEqual(data['submbutton'], 'Post article') self.assertEqual(data['backurl'], self.wikimainpagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertTrue(('title' in data['form'].data) or (data['form'].data == {})) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_change_request_success_super_user(self): post = {'action':'change', 'targetid': self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'changed') self.assertEqual(data['targetid'], self.wikiPages[0].unid) self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Change Posted Article') self.assertEqual(data['submbutton'], 'Change posted article') self.assertEqual(data['deletebutton'], 'Delete article') self.assertEqual(data['backurl'], self.wikipagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertTrue('title' in data['form'].initial) self.assertEqual(data['form'].initial['title'], self.wikiPages[0].title) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_change_request_success_permission(self): post = {'action':'change', 'targetid': self.wikiPages[2].unid} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'changed') self.assertEqual(data['targetid'], self.wikiPages[2].unid) self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Change Posted Article') self.assertEqual(data['submbutton'], 'Change posted article') self.assertEqual(data['deletebutton'], 'Delete article') self.assertEqual(data['backurl'], self.wikipagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertTrue('title' in data['form'].initial) self.assertEqual(data['form'].initial['title'], self.wikiPages[2].title) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_change_request_fail_no_access(self): post = {'action':'change', 'targetid': self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.thirdUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_change_request_fail_no_permissions(self): post = {'action':'change', 'targetid': self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_change_request_fail_no_page(self): post = {'action':'change', 'targetid':uuid.uuid4()} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_change_request_fail_no_target_id(self): post = {'action':'change'} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_changed_request_success_super_user(self): post = {'action':'changed', 'targetid': self.wikiPages[0].unid, 'title':'new title'} method = 'POST' self.wikiPages[0].updatedby = self.secondUser self.wikiPages[0].save() wiki = WikiPage.objects.get(unid=self.wikiPages[0].unid) self.assertEqual(wiki.updatedby, self.secondUser) request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikipagelink) wiki = WikiPage.objects.get(unid=self.wikiPages[0].unid) self.assertEqual(wiki.title, 'new title') self.assertEqual(wiki.createdby, self.firstUser) self.assertEqual(wiki.updatedby, self.firstUser) self.assertNotEqual(wiki.updatedon, wiki.createdon) def test_wiki_page_form_changed_request_success_permissions(self): post = {'action':'changed', 'targetid': self.wikiPages[2].unid, 'title':'new title'} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikipagelink) wiki = WikiPage.objects.get(unid=self.wikiPages[2].unid) self.assertEqual(wiki.title, 'new title') self.assertEqual(wiki.createdby, self.firstUser) self.assertEqual(wiki.updatedby, self.fourthUser) self.assertNotEqual(wiki.updatedon, wiki.createdon) def test_wiki_page_form_changed_request_failed_no_access(self): post = {'action':'changed', 'targetid': self.wikiPages[0].unid, 'title':'new title'} method = 'POST' request = req(method=method, user=self.thirdUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_changed_request_failed_no_permissions(self): post = {'action':'changed', 'targetid': self.wikiPages[0].unid, 'title':'new title'} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_changed_request_failed_no_title(self): post = {'action':'changed', 'targetid': self.wikiPages[0].unid, 'title': None} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result['request'], request) self.assertEqual(result['template'], self.formtemplate) data = result['data'] self.assertEqual(data['action'], 'changed') self.assertEqual(data['targetid'], self.wikiPages[0].unid) self.assertEqual(data['PAGE_TITLE'], 'Post an article: ' + self.softwarename) self.assertEqual(data['minititle'], 'Change Posted Article') self.assertEqual(data['submbutton'], 'Change posted article') self.assertEqual(data['deletebutton'], 'Delete article') self.assertEqual(data['backurl'], self.wikipagelink) self.assertEqual(data['needquillinput'], True) self.assertIsInstance(data['form'], wikipageform.WikiPageForm) self.assertTrue('title' in data['form'].initial) self.assertEqual(data['form'].initial['title'], self.wikiPages[0].title) self.assertEqual(result['content_type'], self.contenttype) def test_wiki_page_form_changed_request_fail_no_page(self): post = {'action':'changed', 'targetid':uuid.uuid4()} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_changed_request_fail_no_target_id(self): post = {'action':'changed'} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_delete_request_success_super_user(self): post = {'action':'delete', 'targetid':self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) try: wiki = WikiPage.objects.get(unid=self.wikiPages[0].unid) except: wiki=None self.assertIsNone(wiki) def test_wiki_page_form_delete_request_success_permission(self): post = {'action':'delete', 'targetid':self.wikiPages[2].unid} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) try: wiki = WikiPage.objects.get(unid=self.wikiPages[2].unid) except: wiki=None self.assertIsNone(wiki) def test_wiki_page_form_delete_request_fail_wrong_action(self): post = {'action':'qwertyu', 'targetid':self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_delete_request_fail_no_access(self): post = {'action':'delete', 'targetid':self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.thirdUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_delete_request_fail_no_permissions(self): post = {'action':'delete', 'targetid':self.wikiPages[0].unid} method = 'POST' request = req(method=method, user=self.fourthUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_delete_request_fail_no_page(self): post = {'action':'delete', 'targetid':uuid.uuid4()} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_form_delete_request_fail_no_target_id(self): post = {'action':'delete'} method = 'POST' request = req(method=method, user=self.firstUser, post=post) result = wikipageform.WikiArticleFormParse(request) self.assertEqual(result, self.wikimainpagelink) def test_wiki_page_viewable_super_user(self): self.assertTrue(self.wikiPages[0].viewable(self.firstUser)) def test_wiki_page_viewable_permission_editable(self): self.assertTrue(self.wikiPages[0].viewable(self.secondUser)) def test_wiki_page_viewable_permission_viewable(self): self.assertTrue(self.wikiPages[0].viewable(self.thirdUser)) def test_wiki_page_not_viewable_permission(self): self.assertFalse(self.wikiPages[0].viewable(self.fourthUser)) def test_wiki_page_viewable_common_knowledge(self): self.wikiPages[0].commonknowledge = True self.wikiPages[0].save() self.assertTrue(self.wikiPages[0].viewable(self.fourthUser))
StarcoderdataPython
6668069
from typing import Dict, List from src.controller import fields import src.model.person class AddPersons(fields.AddMovieFieldBaseClass): """ Action to add list of persons Kludgy to use fields controller as base class, but given time constraints it'll do. """ def execute(self, person_names: List[str]): self.execute_add(person_names, src.model.person.Person, 'person') class PersonIndexLookup(fields.MovieFieldIndexLookup): """ Looks up person id by name """ def query(self) -> Dict[str, int]: return self.query_index_lookup(src.model.person.Person)
StarcoderdataPython
6466897
<gh_stars>0 import networkx as network import matplotlib.pyplot as gestor def dibujar(grafo): grafico = network.DiGraph() for index in grafo.getElementos(): vertice = grafo.obtener(index) grafico.add_node(vertice.getId(), nombre=vertice.getNombre()) for arista in vertice.getConectados(): grafico.add_edge(index, arista) network.draw(grafico) gestor.show() network.draw(grafico) gestor.savefig("grafico.png")
StarcoderdataPython
1952045
from django import forms class BootstrapFormMixin: fields = {} def _init_bootstrap_form_controls(self): for _, field in self.fields.items(): if not hasattr(field.widget, 'attrs'): setattr(field.widget, 'attrs', {}) if 'class' not in field.widget.attrs: field.widget.attrs['class'] = '' field.widget.attrs['class'] += ' form-control' class DisabledFieldsFormMixin: disabled_fields = '__all__' fields = {} def _init_disabled_fields(self): for name, field in self.fields.items(): if self.disabled_fields != '__all__' and name not in self.disabled_fields: continue if not hasattr(field.widget, 'attrs'): setattr(field.widget, 'attrs', {}) if isinstance(field, forms.ChoiceField): field.widget.attrs['disabled'] = 'readonly' else: field.widget.attrs['readonly'] = 'readonly'
StarcoderdataPython
3425409
#! /usr/bin/env python """ Author: <NAME> Date: graph_helper, plotting output of the network """ import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from termcolor import colored from scipy.stats import gaussian_kde import pandas as pd from copy import deepcopy from termcolor import colored import numpy as np note_str = colored("NOTE: ", 'blue') warn_str = colored("WARNING: ", 'red') def selectunits(data, units=32, is_bilstm = False): """Select random number of unit in data """ data = [data[0]] print(np.shape(data)) batch_num, max_timesteps, units_all = np.shape(data) print(np.shape(data)) np.random.seed(0) res = np.zeros((1, max_timesteps, units)) if is_bilstm == True: # still have bug l = list(range(units//2)) np.random.shuffle(l) sub_data1 = data[:, 0:units//2] sub_data2 = data[:, units//2:] res1 = sub_data1[:, l] res2 = sub_data2[:, l] res = np.concatenate((res1, res2), axis = 1) else: l = np.random.choice(units_all, units) for i in range(len(data)): res[i] = data[i][:, l] return res def show_scatter_density(data, units): """Draw th scatter density of the neuron Argument: data: the shape should be [max_timesteps, units] """ data = data[0] print(np.shape(data)) fig, ax = plt.subplots() for i in range(units): z = gaussian_kde(data[:, i])(data[:, i]) x = [i+1] * data.shape[0] a = ax.scatter(x, data[:, i], c=z, s=100, edgecolor='') plt.colorbar(a) plt.xlabel('Selected units') plt.ylabel('Activation') plt.show() def show_box_plot(data, units): data = data[0] df = pd.DataFrame(data) boxplot = df.boxplot() def show_features_0D(data, marker='o', cmap='bwr', color=None, **kwargs): """Plots 0D aligned scatterplots in a standalone graph. iter == list/tuple (both work) Arguments: data: np.ndarray, 2D: (samples, channels). marker: str. Pyplot kwarg specifying scatter plot marker shape. cmap: str. Pyplot cmap (colormap) kwarg for the heatmap. Overridden by `color`!=None. color: (float iter) iter / str / str iter / None. Pyplot kwarg, specifying marker colors in order of drawing. If str/ float iter, draws all curves in one color. Overrides `cmap`. If None, automatically colors along equally spaced `cmap` gradient intervals. Ex: ['red', 'blue']; [[0., .8, 1.], [.2, .5, 0.]] (RGB) kwargs: scale_width: float. Scale width of resulting plot by a factor. scale_height: float. Scale height of resulting plot by a factor. show_borders: bool. If True, shows boxes around plot(s). title_mode: bool/str. If True, shows generic supertitle. If str in ('grads', 'outputs'), shows supertitle tailored to `data` dim (2D/3D). If other str, shows `title_mode` as supertitle. If False, no title is shown. show_y_zero: bool. If True, draws y=0. title_fontsize: int. Title fontsize. channel_axis: int. `data` axis holding channels/features. -1 = last axis. markersize: int/int iter. Pyplot kwarg `s` specifying marker size(s). markerwidth: int. Pyplot kwarg `linewidth` specifying marker thickness. ylims: str ('auto'); float list/tuple. Plot y-limits; if 'auto', sets both lims to max of abs(`data`) (such that y=0 is centered). """ scale_width = kwargs.get('scale_width', 1) scale_height = kwargs.get('scale_height', 1) show_borders = kwargs.get('show_borders', False) title_mode = kwargs.get('title_mode', 'outputs') show_y_zero = kwargs.get('show_y_zero', True) title_fontsize = kwargs.get('title_fontsize', 14) markersize = kwargs.get('markersize', 15) markerwidth = kwargs.get('markerwidth', 2) ylims = kwargs.get('ylims', 'auto') def _catch_unknown_kwargs(kwargs): allowed_kwargs = ('scale_width', 'scale_height', 'show_borders', 'title_mode', 'show_y_zero', 'title_fontsize', 'channel_axis', 'markersize', 'markerwidth', 'ylims') for kwarg in kwargs: if kwarg not in allowed_kwargs: raise Exception("unknown kwarg `%s`" % kwarg) def _get_title(data, title_mode): feature = "Context-feature" context = "Context-units" if title_mode in ['grads', 'outputs']: feature = "Gradients" if title_mode=='grads' else "Outputs" context = "Timesteps" return "(%s vs. %s) vs. Channels" % (feature, context) _catch_unknown_kwargs(kwargs) if len(data.shape)!=2: raise Exception("`data` must be 2D") if color is None: cmap = cm.get_cmap(cmap) cmap_grad = np.linspace(0, 256, len(data[0])).astype('int32') color = cmap(cmap_grad) color = np.vstack([color] * data.shape[0]) x = np.ones(data.shape) * np.expand_dims(np.arange(1, len(data) + 1), -1) if show_y_zero: plt.axhline(0, color='k', linewidth=1) plt.scatter(x.flatten(), data.flatten(), marker=marker, s=markersize, linewidth=markerwidth, color=color) plt.gca().set_xticks(np.arange(1, len(data) + 1), minor=True) plt.gca().tick_params(which='minor', length=4) if ylims == 'auto': ymax = np.max(np.abs(data)) ymin = -ymax else: ymin, ymax = ylims plt.gca().set_ylim(-ymax, ymax) if title_mode: title = _get_title(data, title_mode) plt.title(title, weight='bold', fontsize=title_fontsize) if not show_borders: plt.box(None) plt.gcf().set_size_inches(12*scale_width, 4*scale_height) plt.show() def show_features_2D(data, n_rows=None, norm=None, cmap='bwr', reflect_half=False, timesteps_xaxis=True, max_timesteps=None, **kwargs): """Plots 2D heatmaps in a standalone graph or subplot grid. iter == list/tuple (both work) Arguments: data: np.ndarray, 2D/3D. Data to plot. 2D -> standalone graph; 3D -> subplot grid. 3D: (samples, timesteps, channels) 2D: (timesteps, channels) n_rows: int/None. Number of rows in subplot grid. If None, determines automatically, closest to n_rows == n_cols. norm: float iter. Normalizes colors to range between norm==(vmin, vmax), according to `cmap`. Ex: `cmap`='bwr' ('blue white red') -> all values <=vmin and >=vmax will be shown as most intense blue and red, and those exactly in-between are shown as white. cmap: str. Pyplot cmap (colormap) kwarg for the heatmap. reflect_half: bool. If True, second half of channels dim will be flipped about the timesteps dim. timesteps_xaxis: bool. If True, the timesteps dim (`data` dim 1) if plotted along the x-axis. max_timesteps: int/None. Max number of timesteps to show per plot. If None, keeps original. kwargs: scale_width: float. Scale width of resulting plot by a factor. scale_height: float. Scale height of resulting plot by a factor. show_borders: bool. If True, shows boxes around plot(s). show_xy_ticks: int/bool iter. Slot 0 -> x, Slot 1 -> y. Ex: [1, 1] -> show both x- and y-ticks (and their labels). [0, 0] -> hide both. show_colorbar: bool. If True, shows one colorbar next to plot(s). title_mode: bool/str. If True, shows generic supertitle. If str in ('grads', 'outputs'), shows supertitle tailored to `data` dim (2D/3D). If other str, shows `title_mode` as supertitle. If False, no title is shown. title_fontsize: int. Title fontsize. tight: bool. If True, plots compactly by removing subplot padding. channel_axis: int, 0 or -1. `data` axis holding channels/features. -1 --> (samples, timesteps, channels) 0 --> (channels, timesteps, samples) borderwidth: float / None. Width of subplot borders. dpi: int. Pyplot kwarg, 'dots per inch', specifying plot resolution """ scale_width = kwargs.get('scale_width', 1) scale_height = kwargs.get('scale_height', 1) show_borders = kwargs.get('show_borders', True) show_xy_ticks = kwargs.get('show_xy_ticks', [True, True]) show_colorbar = kwargs.get('show_colorbar', False) title_mode = kwargs.get('title_mode', 'outputs') title_fontsize = kwargs.get('title_fontsize', 14) tight = kwargs.get('tight', False) channel_axis = kwargs.get('channel_axis', -1) borderwidth = kwargs.get('borderwidth', None) dpi = kwargs.get('dpi', 76) def _catch_unknown_kwargs(kwargs): allowed_kwargs = ('scale_width', 'scale_height', 'show_borders', 'show_xy_ticks', 'show_colorbar', 'title_mode', 'title_fontsize', 'channel_axis', 'tight', 'borderwidth', 'dpi') for kwarg in kwargs: if kwarg not in allowed_kwargs: raise Exception("unknown kwarg `%s`" % kwarg) def _get_title(data, title_mode, timesteps_xaxis, vmin, vmax): feature = "Context-feature" context = "Context-units" context_order = "(%s vs. Channels)" % context extra_dim = "" if title_mode in ['grads', 'outputs']: feature = "Gradients" if title_mode=='grads' else "Outputs" context = "Timesteps" if timesteps_xaxis: context_order = "(Channels vs. %s)" % context if len(data.shape)==3: extra_dim = ") vs. Samples" context_order = "(" + context_order norm_txt = "(%s, %s)" % (vmin, vmax) if (vmin is not None) else "auto" return "{} vs. {}{} -- norm={}".format(context_order, feature, extra_dim, norm_txt) def _process_data(data, max_timesteps, reflect_half, timesteps_xaxis, channel_axis): if max_timesteps is not None: data = data[..., :max_timesteps, :] if reflect_half: data = data.copy() # prevent passed array from changing half_chs = data.shape[-1]//2 data[..., half_chs:] = np.flip(data[..., half_chs:], axis=0) if timesteps_xaxis: if len(data.shape) != 3: data = np.expand_dims(data, 0) data = np.transpose(data, (0, 2, 1)) return data _catch_unknown_kwargs(kwargs) if len(data.shape) not in (2, 3): raise Exception("`data` must be 2D or 3D") data = _process_data(data, max_timesteps, reflect_half, timesteps_xaxis, channel_axis) vmin, vmax = norm or (None, None) n_subplots = len(data) if len(data.shape)==3 else 1 n_rows, n_cols = _get_nrows_and_ncols(n_rows, n_subplots) fig, axes = plt.subplots(n_rows, n_cols, dpi=dpi, sharex=True, sharey=True) axes = np.asarray(axes) if title_mode: title = _get_title(data, title_mode, timesteps_xaxis, vmin, vmax) y = .93 + .12 * tight plt.suptitle(title, weight='bold', fontsize=title_fontsize, y=y) for ax_idx, ax in enumerate(axes.flat): img = ax.imshow(data[ax_idx], cmap=cmap, vmin=vmin, vmax=vmax) if not show_xy_ticks[0]: ax.set_xticks([]) if not show_xy_ticks[1]: ax.set_yticks([]) ax.axis('tight') if not show_borders: ax.set_frame_on(False) if show_colorbar: fig.colorbar(img, ax=axes.ravel().tolist()) if tight: plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) if borderwidth is not None: for ax in axes.flat: [s.set_linewidth(borderwidth) for s in ax.spines.values()] plt.gcf().set_size_inches(8*scale_width, 8*scale_height) plt.show() def _get_nrows_and_ncols(n_rows, n_subplots): if n_rows is None: n_rows = int(np.sqrt(n_subplots)) n_cols = max(int(n_subplots / n_rows), 1) # ensure n_cols != 0 n_rows = int(n_subplots / n_cols) while not ((n_subplots / n_cols).is_integer() and (n_subplots / n_rows).is_integer()): n_cols -= 1 n_rows = int(n_subplots / n_cols) return n_rows, n_cols
StarcoderdataPython
12825160
import unittest import pandas as pd import geopandas as gpd from shapely.geometry import Polygon, Point import streetmapper class TestJoinBldgsBlocks(unittest.TestCase): def setUp(self): self.blocks = gpd.GeoDataFrame( {'block_uid': [1, 2]}, geometry=[ Polygon(((0, -1), (0, 1), (1, 1), (1, -1))), # top side Polygon(((0, -1), (0, 1), (-1, 1), (-1, -1))) # bottom side ] ) def testNoBldgs(self): bldgs = gpd.GeoDataFrame() blocks = self.blocks matches, multimatches, nonmatches =\ streetmapper.pipeline.join_bldgs_blocks(bldgs, blocks, 'bldg_uid', 'block_uid') self.assertEqual(len(matches), 0) self.assertEqual(len(multimatches), 0) self.assertEqual(len(nonmatches), 0) def testFullyUnivariateMatch(self): bldgs = gpd.GeoDataFrame( {'bldg_uid': [1, 2, 3, 4]}, geometry=[ Polygon(((0, 0), (0, 1), (1, 1), (1, 0))).buffer(-0.01), # top right Polygon(((0, 0), (0, -1), (1, -1), (1, 0))).buffer(-0.01), # top left Polygon(((0, 0), (0, 1), (-1, 1), (-1, 0))).buffer(-0.01), # bottom right Polygon(((0, 0), (0, -1), (-1, -1), (-1, 0))).buffer(-0.01) # bottom left ] ) blocks = self.blocks matches, multimatches, nonmatches =\ streetmapper.pipeline.join_bldgs_blocks(bldgs, blocks, 'bldg_uid', 'block_uid') self.assertEqual(len(matches), 4) self.assertEqual(len(multimatches), 0) self.assertEqual(len(nonmatches), 0) def testAllKindsOfMatches(self): bldgs = gpd.GeoDataFrame( {'bldg_uid': [1, 2, 3]}, geometry=[ Polygon(((0, 0), (0, 1), (1, 1), (1, 0))).buffer(-0.01), # top right, interior Polygon(((-1, 0), (1, 0), (1, -1), (-1, -1))).buffer(-0.01), # bottom, spanning Polygon(((10, 10), (10, 11), (11, 11), (11, 10))) # exterior ] ) blocks = self.blocks matches, multimatches, nonmatches =\ streetmapper.pipeline.join_bldgs_blocks(bldgs, blocks, 'bldg_uid', 'block_uid') self.assertEqual(len(matches), 1) self.assertEqual(len(multimatches), 2) self.assertEqual(len(nonmatches), 1) class TestBldgsOnBlock(unittest.TestCase): def setUp(self): self.block = Polygon(((0, 0), (0, 2), (2, 2), (2, 0))) def testSimple(self): bldgs = gpd.GeoDataFrame(geometry=[ Polygon(((0, 0), (0, 1), (1, 1), (1, 0))), # in Polygon(((10, 10), (10, 11), (11, 11), (11, 10))) # out ]) result = streetmapper.pipeline.bldgs_on_block(bldgs, self.block) assert len(result) == 1 def testMulitmatchOff(self): bldgs = gpd.GeoDataFrame(geometry=[ Polygon(((0, 0), (0, 1), (1, 1), (1, 0))), # in Polygon(((1, 1), (5, 1), (5, 5), (1, 5))) # through ]) result = streetmapper.pipeline.bldgs_on_block(bldgs, self.block, include_multimatches=False) assert len(result) == 1
StarcoderdataPython
1849601
<reponame>ggabriel96/mapnames import string import unittest as ut from mapnames import string class EditDistanceTest(ut.TestCase): def test_identity(self): for i in range(len(string.digits)): id = string.digits[:i] self.assertEqual(string.wagner_fischer(id, id), 0) def test_one_empty(self): for i in range(len(string.digits)): s = string.digits[:i] self.assertEqual(string.wagner_fischer('', s), i) self.assertEqual(string.wagner_fischer(s, ''), i) def test_ascending(self): for i in range(len(string.digits)): s1 = string.digits[:i] for j in range(len(string.digits)): s2 = string.digits[:j] self.assertEqual(string.wagner_fischer(s1, s2), abs(i - j)) def test_misc(self): self.assertEqual(string.wagner_fischer('abc', 'b'), 2) self.assertEqual(string.wagner_fischer('abc', 'b'), 2) self.assertEqual(string.wagner_fischer('abc', 'ac'), 1) self.assertEqual(string.wagner_fischer('abc', 'bc'), 1) self.assertEqual(string.wagner_fischer('abcdefg', 'abce'), 3) # Different from last case because of symmetric 'd' self.assertEqual(string.wagner_fischer('abcdefg', 'gfedcba'), 6) # '0123456789' and '9876543210' self.assertEqual( string.wagner_fischer(string.digits, string.digits[::-1]), len(string.digits)) if __name__ == '__main__': ut.main()
StarcoderdataPython
4868526
"""Runs integration test on the bot """ import os import unittest import re from tgintegration import BotIntegrationClient from karmabot.responses import START_BOT_RESPONSE, SUCCESSFUL_CLEAR_CHAT, SHOW_KARMA_NO_HISTORY_RESPONSE from karmabot.commands_strings import START_COMMAND, CLEAR_CHAT_COMMAND, SHOW_KARMA_COMMAND, USER_INFO_COMMAND, CHAT_INFO_COMMAND, SHOW_KARMA_KEYBOARD_COMMAND class IntegrationTests(unittest.TestCase): """ Runs intergation tests""" def setUp(self): """ Sets up the environment""" API_ID = os.environ.get("API_ID") API_HASH = os.environ.get("API_HASH") TEST_BOT_NAME = os.environ.get("TEST_BOT_NAME") if None in [API_HASH, API_ID, TEST_BOT_NAME]: print("API_ID, API_HASH, TEST_BOT_NAME not set") raise ValueError() self.TEST_BOT_NAME = TEST_BOT_NAME client = BotIntegrationClient( bot_under_test=TEST_BOT_NAME, session_name='./session/my_account', # Arbitrary file path to the Pyrogram session file api_id=API_ID, # See "Requirements" above, ... api_hash=API_HASH, # alternatively use a `config.ini` file max_wait_response=15, # Maximum timeout for bot responses min_wait_consecutive=2 # Minimum time to wait for consecutive messages ) client.start() #client.clear_chat() self.client = client def tearDown(self): self.client.stop() #pass @unittest.skip("dont care that this works for now") def test_start(self): """ Test start command""" response = self.client.send_command_await(START_COMMAND, num_expected=1) self.assertEqual(len(response.messages), 1) self.assertEqual(response.messages[0].text, START_BOT_RESPONSE) @unittest.skip("dont care that this works for now") def test_showkarma_works_on_empty_chat(self): """Clears the chat and tests that showkarma doesn't give a response""" clear_chat_response = self.client.send_command_await(CLEAR_CHAT_COMMAND, num_expected=1) self.assertEqual(len(clear_chat_response.messages), 1) self.assertEqual(clear_chat_response.messages[0].text, SUCCESSFUL_CLEAR_CHAT) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) self.assertEqual(show_karma_response.messages[0].text, SHOW_KARMA_NO_HISTORY_RESPONSE) @unittest.skip("vote overriding broken right now") def test_votes_can_be_overriden(self): """Tests that if a message is +1 and then -1, the total net karma is 0""" self.client.send_command_await(CLEAR_CHAT_COMMAND, num_expected=1) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) message = show_karma_response.messages[0] chat_id = message.chat.id message_id = message.message_id self.client.send_message(chat_id, "+1", reply_to_message_id=message_id) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) bot_response = show_karma_response.messages[0].text bot_name_without_at = self.TEST_BOT_NAME[1:] does_bot_have_1_karma = bool(re.search(f"{bot_name_without_at}: 1", bot_response)) self.assertTrue(does_bot_have_1_karma) self.client.send_message(chat_id, "-1", reply_to_message_id=message_id) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) does_bot_have_zero_karma = bool(re.search(f"{bot_name_without_at}: 0", show_karma_response.messages[0].text)) self.assertTrue(does_bot_have_zero_karma, '-1 on same message should override last vote') @unittest.skip("TEMPORARY") def test_upvote(self): """Tests that upvoting a message results in +1 karma""" self.client.send_command_await(CLEAR_CHAT_COMMAND) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) message = show_karma_response.messages[0] chat_id = message.chat.id message_id = message.message_id self.client.send_message(chat_id, "+1", reply_to_message_id=message_id) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) bot_name_without_at = self.TEST_BOT_NAME[1:] bot_response = show_karma_response.messages[0].text does_bot_have_1_karma = re.search(f"{bot_name_without_at}: 1", bot_response) self.assertTrue(does_bot_have_1_karma, "Bot should have 1 karma after 1 plus 1") @unittest.skip("dont care that this works for now") def test_downvote(self): """Tests that downvoting a message results in -1 karma""" self.client.send_command_await(CLEAR_CHAT_COMMAND) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) message = show_karma_response.messages[0] chat_id = message.chat.id message_id = message.message_id self.client.send_message(chat_id, "-1", reply_to_message_id=message_id) show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) self.assertEqual(len(show_karma_response.messages), 1) bot_name_without_at = self.TEST_BOT_NAME[1:] bot_response = show_karma_response.messages[0].text does_bot_have_1_karma = re.search(f"{bot_name_without_at}: -1", bot_response) self.assertTrue(does_bot_have_1_karma, "Bot should have 1 karma after 1 plus 1") #(chat_id, "+1", send_to_message_id=message_id) #print(f"Message id: {message.message_id}") #TOOD: how to send message as response to other message. Could be done directly with pyrogram #print(clear_chat_response) #print(dir(clear_chat_response)) #clear chat #run showkarma (capture message id) #make sure has empty result #plus 1 showkarma message #make sure there is a number 1 in karma #TODO: test keyboard implementation #TODO: test non existent use cases (userstats where userid doesn't exist, etc) #TODO: host multiple bots with swarm and split integration tests amoung them @unittest.skip("TEMPORARY") def test_userinfo(self): # self.client.send_command_await(CLEAR_CHAT_COMMAND) # show_karma_response = self.client.send_command_await(SHOW_KARMA_COMMAND, num_expected=1) # self.assertEqual(len(show_karma_response.messages), 1) # message = show_karma_response.messages[0] # chat_id = message.chat.id # message_id = message.message_id # self.client.send_message(chat_id, "+1", reply_to_message_id=message_id) command = f"{USER_INFO_COMMAND} {self.TEST_BOT_NAME[1:]}" user_info_response = self.client.send_command_await(command, num_expected=1) self.assertEqual(len(user_info_response.messages), 1) @unittest.skip("TEMPORARY") def test_chatinfo(self): response = self.client.send_command_await(CHAT_INFO_COMMAND, num_expected=1) self.assertEqual(len(response.messages), 1) #TODO: check that number of users with karma is 2 #TODO: Check total reply count @unittest.skip("test not yet implemented") def test_history_graph(self): #TODO: run command, check that a file asset is sent back #TODO: add another test case for showing a file not being sent when there is no data in the chat pass def test_check_chat_karmas(self): response = self.client.send_command_await(SHOW_KARMA_KEYBOARD_COMMAND, num_expected=1) keyboards = response.inline_keyboards # TODO: how to verify that there is history in another chat? #TODO: perhaps there should be a hidden flag to include chat with the bot self.assertTrue(keyboards is not None) self.assertTrue(len(keyboards) > 0) keyboard = keyboards[0] karma_result = keyboard.press_button_await(pattern=r'.*', num_expected=1) bot_name_without_at = self.TEST_BOT_NAME[1:] #print(karma_result) did_bot_provide_karma = re.search(f"{bot_name_without_at}", str(karma_result)) self.assertTrue(did_bot_provide_karma) if __name__ == "__main__": #TOOD: seperate this into test suites for the various features unittest.main()
StarcoderdataPython
12850594
import autokeras as ak from tensorflow.python.util import nest from tf2cv.models.resnet import ResNet LAYER_OPTIONS = [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 2, 2, 1], [2, 2, 2, 2], [3, 3, 3, 3], [3, 4, 6, 3]] class CustomResnetBlock(ak.Block): def __init__(self, in_size=(224, 224), in_channels=3, layer_options=LAYER_OPTIONS, **kwargs): super().__init__(**kwargs) self.in_channels = in_channels self.in_size = in_size self.layers_options = layer_options def build(self, hp, inputs=None): input_node = nest.flatten(inputs)[0] # Get HP Params for network bottleneck = hp.Boolean('hp_bottleneck', default=False) layers_option_idx = list(range(len(self.layers_options))) layers_sel = hp.Choice('idx_layers', values=layers_option_idx) layers = self.layers_options[layers_sel] if self.in_size[0] < 100: init_block_channels = 16 channels_per_layers = [16, 32, 64] layers = layers[:3] else: init_block_channels = 64 channels_per_layers = [64, 128, 256, 512] if bottleneck: bottleneck_factor = 4 channels_per_layers = [ci * bottleneck_factor for ci in channels_per_layers] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] width_scale = hp.Float('width_scale', min_value=0.5, max_value=1.5, step=0.1) if width_scale != 1.0: # it should not change the last block of last layer channels = [[int(cij * width_scale) if (i != len(channels) - 1) or (j != len(ci) - 1) else cij for j, cij in enumerate(ci)] for i, ci in enumerate(channels)] init_block_channels = int(init_block_channels * width_scale) # Create layers net = ResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, conv1_stride=True, in_channels=self.in_channels, in_size=self.in_size, use_with_ak_classification=True).features output_node = net(input_node) return output_node
StarcoderdataPython
3312002
from os.path import exists, dirname from os import makedirs, environ from kivy.factory import Factory as F from kivy.properties import StringProperty from kivy.resources import resource_add_path from ncis_inspector.controller import discover_classes try: from kaki.app import App IS_KAKI_APP = True except ImportError: IS_KAKI_APP = False if environ.get("DEBUG"): print("Kaki is missing, use Kivy app, but reloading will be missed") class Application(App): CLASSES = { "InspectorApplicationRoot": "ncis_inspector.app", "KivyInspectorView": "ncis_inspector.views.view_kivy" } # CLASSES = dict(discover_classes()) # Doesn't work cause self deps AUTORELOADER_PATHS = [ ('ncis_inspector', {'recursive': True}), ] name = StringProperty("NCIS-Dash") if IS_KAKI_APP: def build_app(self): self.load_config() return F.InspectorApplicationRoot() else: def build(self): self.load_config() return F.InspectorApplicationRoot() def load_config(self): resource_add_path(dirname(__file__)) config = super(Application, self).load_config() if not config.filename: config.filename = self.get_application_config() def build_config(self, config): config.setdefaults('general', { 'version': '0' }) def get_application_config(self): if exists('{}.ini'.format(self.name)): path = '{}.ini'.format(self.name) else: path = '{}/%(appname)s.ini'.format( self.user_data_dir ) cfg = super(Application, self).get_application_config(path) d = dirname(cfg) if d and not exists(d): makedirs(d) return cfg def main(): Application().run() if __name__ == '__main__': main()
StarcoderdataPython
3491114
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def traverse(self, root, level): if(root): self.max_level = max(level, self.max_level) if(self.max_level == len(self.res)): self.res.append([]) self.res[level].append(root.val) self.traverse(root.left, level+1) self.traverse(root.right, level+1) def levelOrderBottom(self, root: TreeNode) -> List[List[int]]: self.res = [] self.max_level = 0 self.traverse(root, 0) self.res.reverse() return self.res
StarcoderdataPython
156267
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # # Licence APL2.0 # ########################################################### # standard libraries # external packages # local imports from base.indiClass import IndiClass class DomeIndi(IndiClass): """ """ __all__ = ['DomeIndi'] def __init__(self, app=None, signals=None, data=None): self.signals = signals super().__init__(app=app, data=data, threadPool=app.threadPool) self.data = data self.lastAzimuth = None self.app.update1s.connect(self.updateStatus) def setUpdateConfig(self, deviceName): """ setUpdateRate corrects the update rate of dome devices to get an defined setting regardless, what is setup in server side. :param deviceName: :return: success """ if deviceName != self.deviceName: return False if self.device is None: return False update = self.device.getNumber('POLLING_PERIOD') if 'PERIOD_MS' not in update: return False if update.get('PERIOD_MS', 0) == self.UPDATE_RATE: return True update['PERIOD_MS'] = self.UPDATE_RATE suc = self.client.sendNewNumber(deviceName=deviceName, propertyName='POLLING_PERIOD', elements=update, ) return suc def updateStatus(self): """ updateStatus emits the actual azimuth status every 3 second in case of opening a window and get the signals late connected as INDI does not repeat any signal of it's own :return: true for test purpose """ if not self.client.connected: return False azimuth = self.data.get('ABS_DOME_POSITION.DOME_ABSOLUTE_POSITION', 0) self.signals.azimuth.emit(azimuth) return True def updateNumber(self, deviceName, propertyName): """ updateNumber is called whenever a new number is received in client. it runs through the device list and writes the number data to the according locations. :param deviceName: :param propertyName: :return: """ if not super().updateNumber(deviceName, propertyName): return False for element, value in self.device.getNumber(propertyName).items(): if element == 'DOME_ABSOLUTE_POSITION': azimuth = self.data.get('ABS_DOME_POSITION.DOME_ABSOLUTE_POSITION', 0) self.signals.azimuth.emit(azimuth) slewing = self.device.ABS_DOME_POSITION['state'] == 'Busy' self.data['Slewing'] = slewing if element == 'SHUTTER_OPEN': moving = self.device.DOME_SHUTTER['state'] == 'Busy' if moving: self.data['Shutter.Status'] = 'Moving' else: self.data['Shutter.Status'] = '-' return True def slewToAltAz(self, altitude=0, azimuth=0): """ :param altitude: :param azimuth: :return: success """ if self.device is None: return False if self.deviceName is None or not self.deviceName: return False position = self.device.getNumber('ABS_DOME_POSITION') if 'DOME_ABSOLUTE_POSITION' not in position: return False position['DOME_ABSOLUTE_POSITION'] = azimuth suc = self.client.sendNewNumber(deviceName=self.deviceName, propertyName='ABS_DOME_POSITION', elements=position, ) return suc def openShutter(self): """ :return: success """ if self.device is None: return False if self.deviceName is None or not self.deviceName: return False position = self.device.getSwitch('DOME_SHUTTER') if 'SHUTTER_OPEN' not in position: return False position['SHUTTER_OPEN'] = 'On' position['SHUTTER_CLOSE'] = 'Off' suc = self.client.sendNewSwitch(deviceName=self.deviceName, propertyName='DOME_SHUTTER', elements=position, ) return suc def closeShutter(self): """ :return: success """ if self.device is None: return False if self.deviceName is None or not self.deviceName: return False position = self.device.getSwitch('DOME_SHUTTER') if 'SHUTTER_CLOSE' not in position: return False position['SHUTTER_OPEN'] = 'Off' position['SHUTTER_CLOSE'] = 'On' suc = self.client.sendNewSwitch(deviceName=self.deviceName, propertyName='DOME_SHUTTER', elements=position, ) return suc def abortSlew(self): """ :return: success """ if self.device is None: return False if self.deviceName is None or not self.deviceName: return False position = self.device.getSwitch('DOME_ABORT_MOTION') if 'ABORT' not in position: return False position['ABORT'] = 'On' suc = self.client.sendNewSwitch(deviceName=self.deviceName, propertyName='DOME_ABORT_MOTION', elements=position, ) return suc
StarcoderdataPython
6411317
<reponame>jcazallasc/lana-python-challenge<filename>app/checkout_backend/uses_cases/offers/multi_buy_offer.py from .base_offer import BaseOffer class MultiBuyOffer(BaseOffer): def get_subtotal_amount( self, product_quantity: int, product_price: int, ) -> int: num_free_products = product_quantity // self.offer.quantity return (product_quantity - num_free_products) * product_price
StarcoderdataPython
6648169
<filename>src/dir_handler.py import pathlib def get_folder(): folder = pathlib.Path.home() / '.intellijournal' folder.mkdir(exist_ok=True) return folder def get_journal(): journal = get_folder() / 'journal.db' journal.touch() return journal def get_config(): config = get_folder() / 'config' config.touch() return config
StarcoderdataPython
399872
<filename>scx11scanner/utils.py ''' Created on 1.11.2016 @author: <NAME> ''' def kbinterrupt_decorate(func): ''' Decorator. Adds KeyboardInterrupt handling to ControllerBase methods. ''' def func_wrapper(*args, **kwargs): try: return func(*args, **kwargs) except KeyboardInterrupt: this = args[0] this._abort() raise return func_wrapper def wait_decorate(func): ''' Decorator. Adds waiting ''' def func_wrapper(*args, **kwargs): this = args[0] wait = kwargs['wait'] func(*args, **kwargs) if wait: this.x.wait_to_finish() return func_wrapper
StarcoderdataPython
11246165
import os import logging from logging.handlers import RotatingFileHandler from celery import Celery from flask import Flask from flask_environments import Environments from flask_mongoengine import MongoEngine from celery.signals import before_task_publish, task_prerun, task_success, task_failure import mongoengine from datetime import datetime import pytz from config import celery_config from db.mongo_models import task_monitor app = Flask(__name__) env = Environments(app) env.from_object('config.flask_config') basedir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # os.path.abspath(os.path.dirname(__file__)) file_handler = RotatingFileHandler(basedir+"/logs/logger_flask.log", encoding='utf-8') formatter = logging.Formatter("%(asctime)s\t%(levelname)s\t%(message)s") file_handler.setFormatter(formatter) # 初始化mongodb monogo_conn = MongoEngine() monogo_conn.init_app(app) flask_celery = Celery(app.name, broker = celery_config.CELERY_BROKER_URL) flask_celery.config_from_object('config.celery_config') # 引入路由 import apps.flask_route @before_task_publish.connect() def task_before_sent_handler(sender=None, headers=None, body=None, **kwargs): # information about task are located in headers for task messages # using the task protocol version 2. mongoengine.connect(**celery_config.mongoengine_SETTINGS) task_name = sender args = headers.get('argsrepr') task_id = headers.get('id') task_monitor_ob = task_monitor() task_monitor_ob.task_id = task_id task_monitor_ob.task_name = task_name task_monitor_ob.before_sent_args = args now = datetime.now(tz = pytz.timezone('Asia/Shanghai')) task_monitor_ob.create_time = now task_monitor_ob.update_time = now task_monitor_ob.celery_stask_status = 0 task_monitor_ob.save() @task_prerun.connect() def task_prerun_handler(task_id = None, args = None, **kwargs): mongoengine.connect(**celery_config.mongoengine_SETTINGS) #information about task are located in headers for task messages # using the task protocol version 2. print("task_prerun_handler:" + str(task_id)) task_monitor_ob = task_monitor.objects(task_id= task_id).first() task_monitor_ob.task_prerun_args = args task_monitor_ob.celery_stask_status = 1 task_monitor_ob.update_time = datetime.now(tz = pytz.timezone('Asia/Shanghai')) task_monitor_ob.save() @task_success.connect() def task_success_handler(sender=None, headers=None, body=None, **kwargs): # information about task are located in headers for task messages # using the task protocol version 2. mongoengine.connect(**celery_config.mongoengine_SETTINGS) task_id = sender.request.get('id') print("task_success_handler:" + str(task_id)) task_monitor_ob = task_monitor.objects(task_id= task_id).first() task_monitor_ob.celery_stask_status = 5 task_monitor_ob.update_time = datetime.now(tz = pytz.timezone('Asia/Shanghai')) task_monitor_ob.save() @task_failure.connect() def task_failure_handler(sender=None, headers=None, body=None, **kwargs): # information about task are located in headers for task messages # using the task protocol version 2. mongoengine.connect(**celery_config.mongoengine_SETTINGS) task_id = sender.request.get('id') task_monitor_ob = task_monitor.objects(task_id= task_id).first() task_monitor_ob.celery_stask_status = 6 task_monitor_ob.update_time = datetime.now(tz = pytz.timezone('Asia/Shanghai')) task_monitor_ob.save()
StarcoderdataPython
1933590
<filename>cogs/economy.py import discord from discord.ext import commands from cogs.utils.dataIO import dataIO from collections import namedtuple, defaultdict from datetime import datetime from random import randint from copy import deepcopy from .utils import checks from cogs.utils.chat_formatting import pagify, box from __main__ import send_cmd_help import os import time import logging default_settings = {"PAYDAY_TIME": 300, "PAYDAY_CREDITS": 120, "SLOT_MIN": 5, "SLOT_MAX": 100, "SLOT_TIME": 0, "REGISTER_CREDITS": 0} slot_payouts = """Slot machine payouts: :two: :two: :six: Bet * 5000 :four_leaf_clover: :four_leaf_clover: :four_leaf_clover: +1000 :cherries: :cherries: :cherries: +800 :two: :six: Bet * 4 :cherries: :cherries: Bet * 3 Three symbols: +500 Two symbols: Bet * 2""" class BankError(Exception): pass class AccountAlreadyExists(BankError): pass class NoAccount(BankError): pass class InsufficientBalance(BankError): pass class NegativeValue(BankError): pass class SameSenderAndReceiver(BankError): pass class Bank: def __init__(self, bot, file_path): self.accounts = dataIO.load_json(file_path) self.bot = bot def create_account(self, user, *, initial_balance=0): server = user.server if not self.account_exists(user): if server.id not in self.accounts: self.accounts[server.id] = {} if user.id in self.accounts: # Legacy account balance = self.accounts[user.id]["balance"] else: balance = initial_balance timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") account = {"name": user.name, "balance": balance, "created_at": timestamp } self.accounts[server.id][user.id] = account self._save_bank() return self.get_account(user) else: raise AccountAlreadyExists() def account_exists(self, user): try: self._get_account(user) except NoAccount: return False return True def withdraw_credits(self, user, amount): server = user.server if amount < 0: raise NegativeValue() account = self._get_account(user) if account["balance"] >= amount: account["balance"] -= amount self.accounts[server.id][user.id] = account self._save_bank() else: raise InsufficientBalance() def deposit_credits(self, user, amount): server = user.server if amount < 0: raise NegativeValue() account = self._get_account(user) account["balance"] += amount self.accounts[server.id][user.id] = account self._save_bank() def set_credits(self, user, amount): server = user.server if amount < 0: raise NegativeValue() account = self._get_account(user) account["balance"] = amount self.accounts[server.id][user.id] = account self._save_bank() def transfer_credits(self, sender, receiver, amount): if amount < 0: raise NegativeValue() if sender is receiver: raise SameSenderAndReceiver() if self.account_exists(sender) and self.account_exists(receiver): sender_acc = self._get_account(sender) if sender_acc["balance"] < amount: raise InsufficientBalance() self.withdraw_credits(sender, amount) self.deposit_credits(receiver, amount) else: raise NoAccount() def can_spend(self, user, amount): account = self._get_account(user) if account["balance"] >= amount: return True else: return False def wipe_bank(self, server): self.accounts[server.id] = {} self._save_bank() def get_server_accounts(self, server): if server.id in self.accounts: raw_server_accounts = deepcopy(self.accounts[server.id]) accounts = [] for k, v in raw_server_accounts.items(): v["id"] = k v["server"] = server acc = self._create_account_obj(v) accounts.append(acc) return accounts else: return [] def get_all_accounts(self): accounts = [] for server_id, v in self.accounts.items(): server = self.bot.get_server(server_id) if server is None: # Servers that have since been left will be ignored # Same for users_id from the old bank format continue raw_server_accounts = deepcopy(self.accounts[server.id]) for k, v in raw_server_accounts.items(): v["id"] = k v["server"] = server acc = self._create_account_obj(v) accounts.append(acc) return accounts def get_balance(self, user): account = self._get_account(user) return account["balance"] def get_account(self, user): acc = self._get_account(user) acc["id"] = user.id acc["server"] = user.server return self._create_account_obj(acc) def _create_account_obj(self, account): account["member"] = account["server"].get_member(account["id"]) account["created_at"] = datetime.strptime(account["created_at"], "%Y-%m-%d %H:%M:%S") Account = namedtuple("Account", "id name balance " "created_at server member") return Account(**account) def _save_bank(self): dataIO.save_json("data/economy/bank.json", self.accounts) def _get_account(self, user): server = user.server try: return deepcopy(self.accounts[server.id][user.id]) except KeyError: raise NoAccount() class Economy: """Economy Get rich and have fun with imaginary currency!""" def __init__(self, bot): global default_settings self.bot = bot self.bank = Bank(bot, "data/economy/bank.json") self.file_path = "data/economy/settings.json" self.settings = dataIO.load_json(self.file_path) if "PAYDAY_TIME" in self.settings: # old format default_settings = self.settings self.settings = {} self.settings = defaultdict(lambda: default_settings, self.settings) self.payday_register = defaultdict(dict) self.slot_register = defaultdict(dict) @commands.group(name="bank", pass_context=True) async def _bank(self, ctx): """Bank operations""" if ctx.invoked_subcommand is None: await send_cmd_help(ctx) @_bank.command(pass_context=True, no_pm=True) async def register(self, ctx): """Registers an account at the Twentysix bank""" user = ctx.message.author credits = 0 if ctx.message.server.id in self.settings: credits = self.settings[ctx.message.server.id].get("REGISTER_CREDITS", 0) try: account = self.bank.create_account(user) await self.bot.say("{} Account opened. Current balance: {}".format( user.mention, account.balance)) except AccountAlreadyExists: await self.bot.say("{} You already have an account at the" " Twentysix bank.".format(user.mention)) @_bank.command(pass_context=True) async def balance(self, ctx, user: discord.Member=None): """Shows balance of user. Defaults to yours.""" if not user: user = ctx.message.author try: await self.bot.say("{} Your balance is: {}".format( user.mention, self.bank.get_balance(user))) except NoAccount: await self.bot.say("{} You don't have an account at the" " Twentysix bank. Type `{}bank register`" " to open one.".format(user.mention, ctx.prefix)) else: try: await self.bot.say("{}'s balance is {}".format( user.name, self.bank.get_balance(user))) except NoAccount: await self.bot.say("That user has no bank account.") @_bank.command(pass_context=True) async def transfer(self, ctx, user: discord.Member, sum: int): """Transfer credits to other users""" author = ctx.message.author try: self.bank.transfer_credits(author, user, sum) logger.info("{}({}) transferred {} credits to {}({})".format( author.name, author.id, sum, user.name, user.id)) await self.bot.say("{} credits have been transferred to {}'s" " account.".format(sum, user.name)) except NegativeValue: await self.bot.say("You need to transfer at least 1 credit.") except SameSenderAndReceiver: await self.bot.say("You can't transfer credits to yourself.") except InsufficientBalance: await self.bot.say("You don't have that sum in your bank account.") except NoAccount: await self.bot.say("That user has no bank account.") @_bank.command(name="set", pass_context=True) @checks.admin_or_permissions(manage_server=True) async def _set(self, ctx, user: discord.Member, sum: int): """Sets credits of user's bank account Admin/owner restricted.""" author = ctx.message.author try: self.bank.set_credits(user, sum) logger.info("{}({}) set {} credits to {} ({})".format( author.name, author.id, str(sum), user.name, user.id)) await self.bot.say("{}'s credits have been set to {}".format( user.name, str(sum))) except NoAccount: await self.bot.say("User has no bank account.") @commands.command(pass_context=True, no_pm=True) async def payday(self, ctx): # TODO """Get some free credits""" author = ctx.message.author server = author.server id = author.id if self.bank.account_exists(author): if id in self.payday_register[server.id]: seconds = abs(self.payday_register[server.id][ id] - int(time.perf_counter())) if seconds >= self.settings[server.id]["PAYDAY_TIME"]: self.bank.deposit_credits(author, self.settings[ server.id]["PAYDAY_CREDITS"]) self.payday_register[server.id][ id] = int(time.perf_counter()) await self.bot.say( "{} Here, take some credits. Enjoy! (+{}" " credits!)".format( author.mention, str(self.settings[server.id]["PAYDAY_CREDITS"]))) else: dtime = self.display_time( self.settings[server.id]["PAYDAY_TIME"] - seconds) await self.bot.say( "{} Too soon. For your next payday you have to" " wait {}.".format(author.mention, dtime)) else: self.payday_register[server.id][id] = int(time.perf_counter()) self.bank.deposit_credits(author, self.settings[ server.id]["PAYDAY_CREDITS"]) await self.bot.say( "{} Here, take some credits. Enjoy! (+{} credits!)".format( author.mention, str(self.settings[server.id]["PAYDAY_CREDITS"]))) else: await self.bot.say("{} You need an account to receive credits." " Type `{}bank register` to open one.".format( author.mention, ctx.prefix)) @commands.group(pass_context=True) async def leaderboard(self, ctx): """Server / global leaderboard Defaults to server""" if ctx.invoked_subcommand is None: await ctx.invoke(self._server_leaderboard) @leaderboard.command(name="server", pass_context=True) async def _server_leaderboard(self, ctx, top: int=10): """Prints out the server's leaderboard Defaults to top 10""" # Originally coded by Airenkun - edited by irdumb server = ctx.message.server if top < 1: top = 10 bank_sorted = sorted(self.bank.get_server_accounts(server), key=lambda x: x.balance, reverse=True) if len(bank_sorted) < top: top = len(bank_sorted) topten = bank_sorted[:top] highscore = "" place = 1 for acc in topten: highscore += str(place).ljust(len(str(top)) + 1) highscore += (acc.name + " ").ljust(23 - len(str(acc.balance))) highscore += str(acc.balance) + "\n" place += 1 if highscore != "": for page in pagify(highscore, shorten_by=12): await self.bot.say(box(page, lang="py")) else: await self.bot.say("There are no accounts in the bank.") @leaderboard.command(name="global") async def _global_leaderboard(self, top: int=10): """Prints out the global leaderboard Defaults to top 10""" if top < 1: top = 10 bank_sorted = sorted(self.bank.get_all_accounts(), key=lambda x: x.balance, reverse=True) unique_accounts = [] for acc in bank_sorted: if not self.already_in_list(unique_accounts, acc): unique_accounts.append(acc) if len(unique_accounts) < top: top = len(unique_accounts) topten = unique_accounts[:top] highscore = "" place = 1 for acc in topten: highscore += str(place).ljust(len(str(top)) + 1) highscore += ("{} |{}| ".format(acc.name, acc.server.name) ).ljust(23 - len(str(acc.balance))) highscore += str(acc.balance) + "\n" place += 1 if highscore != "": for page in pagify(highscore, shorten_by=12): await self.bot.say(box(page, lang="py")) else: await self.bot.say("There are no accounts in the bank.") def already_in_list(self, accounts, user): for acc in accounts: if user.id == acc.id: return True return False @commands.command() async def payouts(self): """Shows slot machine payouts""" await self.bot.whisper(slot_payouts) @commands.command(pass_context=True, no_pm=True) async def slot(self, ctx, bid: int): """Play the slot machine""" author = ctx.message.author server = author.server if not self.bank.account_exists(author): await self.bot.say("{} You need an account to use the slot machine. Type `{}bank register` to open one.".format(author.mention, ctx.prefix)) return if self.bank.can_spend(author, bid): if bid >= self.settings[server.id]["SLOT_MIN"] and bid <= self.settings[server.id]["SLOT_MAX"]: if author.id in self.slot_register: if abs(self.slot_register[author.id] - int(time.perf_counter())) >= self.settings[server.id]["SLOT_TIME"]: self.slot_register[author.id] = int( time.perf_counter()) await self.slot_machine(ctx.message, bid) else: await self.bot.say("Slot machine is still cooling off! Wait {} seconds between each pull".format(self.settings[server.id]["SLOT_TIME"])) else: self.slot_register[author.id] = int(time.perf_counter()) await self.slot_machine(ctx.message, bid) else: await self.bot.say("{0} Bid must be between {1} and {2}.".format(author.mention, self.settings[server.id]["SLOT_MIN"], self.settings[server.id]["SLOT_MAX"])) else: await self.bot.say("{0} You need an account with enough funds to play the slot machine.".format(author.mention)) async def slot_machine(self, message, bid): reel_pattern = [":cherries:", ":cookie:", ":two:", ":four_leaf_clover:", ":cyclone:", ":sunflower:", ":six:", ":mushroom:", ":heart:", ":snowflake:"] # padding prevents index errors padding_before = [":mushroom:", ":heart:", ":snowflake:"] padding_after = [":cherries:", ":cookie:", ":two:"] reel = padding_before + reel_pattern + padding_after reels = [] for i in range(0, 3): n = randint(3, 12) reels.append([reel[n - 1], reel[n], reel[n + 1]]) line = [reels[0][1], reels[1][1], reels[2][1]] display_reels = "~~\n~~ " + \ reels[0][0] + " " + reels[1][0] + " " + reels[2][0] + "\n" display_reels += ">" + reels[0][1] + " " + \ reels[1][1] + " " + reels[2][1] + "\n" display_reels += " " + reels[0][2] + " " + \ reels[1][2] + " " + reels[2][2] + "\n" if line[0] == ":two:" and line[1] == ":two:" and line[2] == ":six:": bid = bid * 5000 slotMsg = "{}{} 226! Your bet is multiplied * 5000! {}! ".format( display_reels, message.author.mention, str(bid)) elif line[0] == ":four_leaf_clover:" and line[1] == ":four_leaf_clover:" and line[2] == ":four_leaf_clover:": bid += 1000 slotMsg = "{}{} Three FLC! +1000! ".format( display_reels, message.author.mention) elif line[0] == ":cherries:" and line[1] == ":cherries:" and line[2] == ":cherries:": bid += 800 slotMsg = "{}{} Three cherries! +800! ".format( display_reels, message.author.mention) elif line[0] == line[1] == line[2]: bid += 500 slotMsg = "{}{} Three symbols! +500! ".format( display_reels, message.author.mention) elif line[0] == ":two:" and line[1] == ":six:" or line[1] == ":two:" and line[2] == ":six:": bid = bid * 4 slotMsg = "{}{} 26! Your bet is multiplied * 4! {}! ".format( display_reels, message.author.mention, str(bid)) elif line[0] == ":cherries:" and line[1] == ":cherries:" or line[1] == ":cherries:" and line[2] == ":cherries:": bid = bid * 3 slotMsg = "{}{} Two cherries! Your bet is multiplied * 3! {}! ".format( display_reels, message.author.mention, str(bid)) elif line[0] == line[1] or line[1] == line[2]: bid = bid * 2 slotMsg = "{}{} Two symbols! Your bet is multiplied * 2! {}! ".format( display_reels, message.author.mention, str(bid)) else: slotMsg = "{}{} Nothing! Lost bet. ".format( display_reels, message.author.mention) self.bank.withdraw_credits(message.author, bid) slotMsg += "\n" + \ " Credits left: {}".format( self.bank.get_balance(message.author)) await self.bot.send_message(message.channel, slotMsg) return True self.bank.deposit_credits(message.author, bid) slotMsg += "\n" + \ " Current credits: {}".format( self.bank.get_balance(message.author)) await self.bot.send_message(message.channel, slotMsg) @commands.group(pass_context=True, no_pm=True) @checks.admin_or_permissions(manage_server=True) async def economyset(self, ctx): """Changes economy module settings""" server = ctx.message.server settings = self.settings[server.id] if ctx.invoked_subcommand is None: msg = "```" for k, v in settings.items(): msg += "{}: {}\n".format(k, v) msg += "```" await send_cmd_help(ctx) await self.bot.say(msg) @economyset.command(pass_context=True) async def slotmin(self, ctx, bid: int): """Minimum slot machine bid""" server = ctx.message.server self.settings[server.id]["SLOT_MIN"] = bid await self.bot.say("Minimum bid is now " + str(bid) + " credits.") dataIO.save_json(self.file_path, self.settings) @economyset.command(pass_context=True) async def slotmax(self, ctx, bid: int): """Maximum slot machine bid""" server = ctx.message.server self.settings[server.id]["SLOT_MAX"] = bid await self.bot.say("Maximum bid is now " + str(bid) + " credits.") dataIO.save_json(self.file_path, self.settings) @economyset.command(pass_context=True) async def slottime(self, ctx, seconds: int): """Seconds between each slots use""" server = ctx.message.server self.settings[server.id]["SLOT_TIME"] = seconds await self.bot.say("Cooldown is now " + str(seconds) + " seconds.") dataIO.save_json(self.file_path, self.settings) @economyset.command(pass_context=True) async def paydaytime(self, ctx, seconds: int): """Seconds between each payday""" server = ctx.message.server self.settings[server.id]["PAYDAY_TIME"] = seconds await self.bot.say("Value modified. At least " + str(seconds) + " seconds must pass between each payday.") dataIO.save_json(self.file_path, self.settings) @economyset.command(pass_context=True) async def paydaycredits(self, ctx, credits: int): """Credits earned each payday""" server = ctx.message.server self.settings[server.id]["PAYDAY_CREDITS"] = credits await self.bot.say("Every payday will now give " + str(credits) + " credits.") dataIO.save_json(self.file_path, self.settings) @economyset.command(pass_context=True) async def registercredits(self, ctx, credits: int): """Credits given on registering an account""" server = ctx.message.server if credits < 0: credits = 0 self.settings[server.id]["REGISTER_CREDITS"] = credits await self.bot.say("Registering an account will now give {} credits.".format(credits)) dataIO.save_json(self.file_path, self.settings) # What would I ever do without stackoverflow? def display_time(self, seconds, granularity=2): intervals = ( # Source: http://stackoverflow.com/a/24542445 ('weeks', 604800), # 60 * 60 * 24 * 7 ('days', 86400), # 60 * 60 * 24 ('hours', 3600), # 60 * 60 ('minutes', 60), ('seconds', 1), ) result = [] for name, count in intervals: value = seconds // count if value: seconds -= value * count if value == 1: name = name.rstrip('s') result.append("{} {}".format(value, name)) return ', '.join(result[:granularity]) def check_folders(): if not os.path.exists("data/economy"): print("Creating data/economy folder...") os.makedirs("data/economy") def check_files(): f = "data/economy/settings.json" if not dataIO.is_valid_json(f): print("Creating default economy's settings.json...") dataIO.save_json(f, {}) f = "data/economy/bank.json" if not dataIO.is_valid_json(f): print("Creating empty bank.json...") dataIO.save_json(f, {}) def setup(bot): global logger check_folders() check_files() logger = logging.getLogger("red.economy") if logger.level == 0: # Prevents the logger from being loaded again in case of module reload logger.setLevel(logging.INFO) handler = logging.FileHandler( filename='data/economy/economy.log', encoding='utf-8', mode='a') handler.setFormatter(logging.Formatter( '%(asctime)s %(message)s', datefmt="[%d/%m/%Y %H:%M]")) logger.addHandler(handler) bot.add_cog(Economy(bot))
StarcoderdataPython
9682486
<gh_stars>0 """ """ import openpyxl xlsx = '../resource/excel/dimensions.xlsx' wb = openpyxl.Workbook() sheet = wb['Sheet'] sheet['A1'] = 'Tall row' sheet['A2'] = 'Wide column' sheet.row_dimensions[1].height = 70 sheet.column_dimensions['B'].width = 20 wb.save(xlsx) print('Generate Success')
StarcoderdataPython
153697
from functools import singledispatch from functools import update_wrapper class singledispatchmethod: """Single-dispatch generic method descriptor. Supports wrapping existing descriptors and handles non-descriptor callables as instance methods. """ def __init__(self, func): if not callable(func) and not hasattr(func, "__get__"): raise TypeError(f"{func!r} is not callable or a descriptor") self.dispatcher = singledispatch(func) self.func = func def register(self, cls, method=None): """generic_method.register(cls, func) -> func Registers a new implementation for the given *cls* on a *generic_method*. """ return self.dispatcher.register(cls, func=method) def __get__(self, obj, cls=None): def _method(*args, **kwargs): method = self.dispatcher.dispatch(args[0].__class__) return method.__get__(obj, cls)(*args, **kwargs) _method.__isabstractmethod__ = self.__isabstractmethod__ _method.register = self.register update_wrapper(_method, self.func) return _method @property def __isabstractmethod__(self): return getattr(self.func, "__isabstractmethod__", False)
StarcoderdataPython
3469263
from label_cnn import LabelCNN from full_cnn import FullCNN from keras import Model from keras.layers import Activation, Concatenate, Add, Input, Cropping2D, Permute from keras_helpers import BasicLayers, ResNetLayers, InceptionResNetLayer, RedNetLayers class Inceptuous(LabelCNN): def __init__(self, model_name='Inceptuous'): super().__init__(model_name=model_name) def build_model(self): layers = BasicLayers(relu_version=self.RELU_VERSION) input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x = layers.cbr(x, 32, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(1, 1), padding='same') # Half-size, 32 features x1 = layers.cbr(x, 32, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(1, 1), padding='same') x2 = layers._max_pool(x, pool=(3, 3), strides=(2, 2), padding='same') x = Concatenate(axis=1)([x1, x2]) x = layers._spatialdropout(x) # Half-size, 64 features x1 = layers.cbr(x, 64, kernel_size=(1, 1)) x1 = layers.cbr(x1, 64, kernel_size=(3, 3), strides=(2, 2)) x2 = layers.cbr(x, 64, kernel_size=(1, 1)) x2 = layers.cbr(x2, 64, kernel_size=(1, 5)) x2 = layers.cbr(x2, 64, kernel_size=(5, 1)) x2 = layers.cbr(x2, 64, kernel_size=(3, 3), strides=(2, 2)) x = Concatenate(axis=1)([x1, x2]) x = layers._spatialdropout(x) # Half-size, 128 features x1 = layers.cbr(x, 128, kernel_size=(3, 3), strides=(2, 2)) x2 = layers._max_pool(x, pool=(3, 3)) x = Concatenate(axis=1)([x1, x2]) x = layers._spatialdropout(x) # Half-size, 256 features x1 = layers.cbr(x, 256, kernel_size=(1, 1)) x1 = layers.cbr(x1, 256, kernel_size=(3, 3), strides=(2, 2)) x2 = layers.cbr(x, 256, kernel_size=(1, 1)) x2 = layers.cbr(x2, 256, kernel_size=(1, 3)) x2 = layers.cbr(x2, 256, kernel_size=(3, 1)) x2 = layers.cbr(x2, 256, kernel_size=(3, 3), strides=(2, 2)) x = Concatenate(axis=1)([x1, x2]) x = layers._spatialdropout(x) # Half-size, 512 features x = layers._flatten(x) x = layers._dense(x, 2 * ((self.IMAGE_SIZE * self.IMAGE_SIZE) // (self.PATCH_SIZE * self.PATCH_SIZE))) x = layers._act_fun(x) x = layers._dense(x, self.NB_CLASSES) # Returns a logit x = Activation('softmax')(x) # No logit anymore self.model = Model(inputs=input_tensor, outputs=x) class InceptionResNet(LabelCNN): def __init__(self): super().__init__(image_size=128, batch_size=32, model_name="Inception-ResNet-v2") def build_model(self): incres = InceptionResNetLayer(relu_version=self.RELU_VERSION, half_size=True) # incres = InceptionResNetLayer() input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x = incres.stem(x) for i in range(5): x = incres.block16(x) x = incres.block7(x) x = incres._act_fun(x) for i in range(10): x = incres.block17(x) x = incres.block18(x) x = incres._act_fun(x) for i in range(5): x = incres.block19(x) #x = incres.cbr(x, 1024, (1, 1)) #x = incres.cbr(x, 256, (1, 1)) x = incres._flatten(x) x = incres._dense(x, 6 * ((self.IMAGE_SIZE * self.IMAGE_SIZE) // (self.PATCH_SIZE * self.PATCH_SIZE))) x = incres._dropout(x, 0.5) x = incres._act_fun(x) x = incres._dense(x, self.NB_CLASSES) # Returns a logit x = Activation('softmax')(x) # No logit anymore self.model = Model(inputs=input_tensor, outputs=x) class ResNet(LabelCNN): FULL_PREACTIVATION = False def __init__(self, model_name="ResNet18", full_preactivation=False): super().__init__(image_size=112, batch_size=16, relu_version='parametric', model_name=model_name) self.FULL_PREACTIVATION = full_preactivation def build_model(self): resnet = ResNetLayers(relu_version=self.RELU_VERSION, full_preactivation=self.FULL_PREACTIVATION) input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x = resnet.stem(x) for i, layers in enumerate(resnet.REPETITIONS_SMALL): for j in range(layers): x = resnet.vanilla(x, resnet.FEATURES[i], (j == 0)) x = resnet._flatten(x) x = resnet._dense(x, 2 * ((self.IMAGE_SIZE * self.IMAGE_SIZE) // (self.PATCH_SIZE * self.PATCH_SIZE))) # x = resnet._dropout(x, 0.5) x = resnet._act_fun(x) x = resnet._dense(x, self.NB_CLASSES) # Returns a logit x = Activation('softmax')(x) # No logit anymore self.model = Model(inputs=input_tensor, outputs=x) class RedNet(FullCNN): FULL_PREACTIVATION = False def __init__(self, model_name="RedNet50", full_preactivation=False): super().__init__(image_size=608, batch_size=2, model_name=model_name) self.FULL_PREACTIVATION = full_preactivation def build_model(self): rednet = RedNetLayers(relu_version=self.RELU_VERSION, full_preactivation=self.FULL_PREACTIVATION) agent_list = [] agent_layers = [] input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x, a0 = rednet.stem(x) agent_layers.append(rednet.agent_layer(a0, rednet.FEATURES[0])) for i, layers in enumerate(rednet.REPETITIONS_NORMAL): if i == 0: for j in range(layers): x = rednet.bottleneck(x, rednet.FEATURES[i], (j == 0)) else: for j in range(layers): x = rednet.bottleneck_down(x, rednet.FEATURES[i], (j == 0)) agent_list.append(x) agent_layers = [] for i in range(len(agent_list)): agent_layers.append(rednet.agent_layer(agent_list[i], rednet.FEATURES[i])) x = agent_layers.pop() for i, layers in enumerate(rednet.REPETITIONS_UP_NORMAL): for j in range(layers): x = rednet.residual_up(x, rednet.FEATURES_UP[i], (j == layers - 1)) if i + 1 != len(rednet.REPETITIONS_UP_NORMAL): x = Add()([x, agent_layers.pop()]) x = rednet.last_block(x) x = rednet._tcbr(x, self.NB_CLASSES, kernel_size=(2, 2), strides=(2, 2)) x = Permute((2, 3, 1))(x) # Permute to allow softmax to work x = Activation('softmax')(x) # No logit anymore x = Permute((3, 1, 2))(x) # Permute back data to have normal format self.model = Model(inputs=input_tensor, outputs=x) class SimpleNet(LabelCNN): def __init__(self, model_name='SimpleNet'): super().__init__(image_size=72, batch_size=64, relu_version='parametric', model_name=model_name) def build_model(self): layers = BasicLayers(relu_version=self.RELU_VERSION) input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x = layers.cbr(x, 64, kernel_size=(3, 3)) for i in range(3): x = layers.cbr(x, 128, kernel_size=(3, 3)) x = layers._max_pool(x, pool=(2, 2)) for i in range(2): x = layers.cbr(x, 128, kernel_size=(3, 3)) x = layers.cbr(x, 128, kernel_size=(3, 3)) x = layers._max_pool(x, pool=(2, 2)) for i in range(2): x = layers.cbr(x, 128, kernel_size=(3, 3)) x = layers._max_pool(x, pool=(2, 2)) x = layers.cbr(x, 128, kernel_size=(1, 1)) x = layers.cbr(x, 128, kernel_size=(1, 1)) x = layers._max_pool(x, pool=(2, 2)) x = layers.cbr(x, 128, kernel_size=(3, 3)) x = layers._max_pool(x, pool=(2, 2)) x = layers._flatten(x) x = layers._dense(x, 6 * ((self.IMAGE_SIZE * self.IMAGE_SIZE) // (self.PATCH_SIZE * self.PATCH_SIZE))) x = layers._dropout(x, 0.5) x = layers._act_fun(x) x = layers._dense(x, self.NB_CLASSES) # Returns a logit x = Activation('softmax')(x) # No logit anymore self.model = Model(inputs=input_tensor, outputs=x) class EasyNet(LabelCNN): def __init__(self, model_name='EasyNet'): super().__init__(image_size=72, batch_size=64, relu_version='parametric', model_name=model_name) def build_model(self): layers = BasicLayers(relu_version=self.RELU_VERSION) input_tensor = Input(shape=self.INPUT_SHAPE) x = input_tensor x = layers.cbr(x, 64, (5, 5)) x = layers._max_pool(x, pool=(2, 2)) x = layers._spatialdropout(x, 0.25) x = layers.cbr(x, 128, (3, 3)) x = layers._max_pool(x, pool=(2, 2)) x = layers._spatialdropout(x, 0.25) x = layers.cbr(x, 256, (3, 3)) x = layers._max_pool(x, pool=(2, 2)) x = layers._spatialdropout(x, 0.25) x = layers.cbr(x, 512, (3, 3)) x = layers._max_pool(x, pool=(2, 2)) x = layers._spatialdropout(x, 0.25) x = layers._flatten(x) x = layers._dense(x, 6 * ((self.IMAGE_SIZE * self.IMAGE_SIZE) // (self.PATCH_SIZE * self.PATCH_SIZE))) x = layers._dropout(x, 0.5) x = layers._act_fun(x) x = layers._dense(x, self.NB_CLASSES) # Returns a logit x = Activation('softmax')(x) # No logit anymore self.model = Model(inputs=input_tensor, outputs=x)
StarcoderdataPython
6583829
from flask import Flask from flask_restplus import Api, Resource, fields app = Flask(__name__) api = Api(app) a_language = api.model('Language', {'language': fields.String('The language')}) languages = [] python = {'language':'Python'} languages.append(python) @api.route('/language') class Language(Resource): def get(self): return languages @api.expect(a_language) def post(self): languages.append(api.payload) return {'results': "Language added"}, 201 if __name__ == '__main__': app.run(debug=True)
StarcoderdataPython
238027
# Generated by Django 3.2.6 on 2021-08-16 06:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("syncing", "0001_initial"), ] operations = [ migrations.AddField( model_name="signup", name="attendance_pending", field=models.CharField(default="", max_length=15), ), migrations.AddField( model_name="signup", name="result_pending", field=models.CharField(default="", max_length=15), ), ]
StarcoderdataPython
3346455
#!/usr/bin/python3 from PIL import Image from imutils.video import VideoStream from imutils.video import FPS from imutils.object_detection import non_max_suppression import numpy as np import argparse import imutils import time import cv2 import pytesseract from pytesseract import Output import os import re def run(): # Check if Tesseract is installed on the computer try: output = os.popen("which tesseract").read() tesseract_match = re.match("(.*?)(?=\\n)", output) tesseract_path = tesseract_match.group(1) pytesseract.pytesseract.tesseract_cmd = tesseract_path except: print("You don't seem to have Tesseract installed. Have a look here: https://tesseract-ocr.github.io/tessdoc/Downloads.html") # Set window and lecture configurations configs = [ ("min_confidence", 0.3), ("width", 288), ("height", 288), ("east", "frozen_east_text_detection.pb"), ] args = {k: v for k, v in configs} # Initialize the original frame dimensions, the new frame dimensions and the ratio between the dimensions (W, H) = (None, None) (newW, newH) = (args["width"], args["height"]) (rW, rH) = (None, None) # Define the two output layer names for the EAST detector model that we are interested: # The first is the output probabilities # The second can be used to derive the bounding box coordinates of text layerNames = [ "feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"] # Load the pre-trained EAST text detector print("[INFO] Loading EAST text detector...") net = cv2.dnn.readNet(args["east"]) # Grab the reference to the webcam print("[INFO] Starting video stream...") print("[INFO] Type the 'Q' key on the Text Detection Window to end the execution.") vs = VideoStream(src=0).start() time.sleep(1.0) # Start the FPS throughput estimator fps = FPS().start() fn = 0 # Frame number # Loop over frames from the video stream while True: # Grab the current frame frame = vs.read() # Check to see if we have reached the end of the stream if frame is None: break # Resize the frame, maintaining the aspect ratio frame = imutils.resize(frame, width=1000) orig = frame.copy() # If our frame dimensions are None # We still need to compute the ratio of old frame dimensions to new frame dimensions if W is None or H is None: (H, W) = frame.shape[:2] rW = W / float(newW) rH = H / float(newH) # Resize the frame, this time ignoring aspect ratio frame = cv2.resize(frame, (newW, newH)) # Construct a blob from the frame and then perform a forward pass # of the model to obtain the two output layer sets blob = cv2.dnn.blobFromImage( frame, 1.0, (newW, newH), (123.68, 116.78, 103.94), swapRB=True, crop=False ) net.setInput(blob) (scores, geometry) = net.forward(layerNames) # Decode the predictions, then apply non-maxima suppression to # suppress weak, overlapping bounding boxes (rects, confidences) = decode_predictions(scores, geometry, args) boxes = non_max_suppression(np.array(rects), probs=confidences) # Loop over the bounding boxes for (startX, startY, endX, endY) in boxes: # Scale the bounding box coordinates based on the respective ratios startX = int(startX * rW) startY = int(startY * rH) endX = int(endX * rW) endY = int(endY * rH) # Draw the bounding box on the frame cv2.rectangle(orig, (startX, startY), (endX, endY), (0, 255, 0), 2) # Update the FPS counter fps.update() # Show the output frame on screen cv2.imshow("Text Detection", orig) # Print extracted text from the frame if at least 3 characters are identified pwd = os.getcwd() cv2.imwrite("{}/image.jpg".format(pwd), get_grayscale(orig)) try: fn += 1 text = pytesseract.image_to_string(Image.open("{}/image.jpg".format(pwd)), lang = "eng") val = re.search('[a-zA-Z]{3,}',text) if val[0].isalpha(): print("\033[1m✅ Extracted Text ({})\033[0m".format(fn)) print(text) except: pass key = cv2.waitKey(1) & 0xFF # Break the loop if the `q` key is pressed on output frame screen if key == ord("q"): break # Stop the timer and display FPS information fps.stop() print("[INFO] Elasped time: {:.2f}".format(fps.elapsed())) print("[INFO] Approx. FPS: {:.2f}".format(fps.fps())) # Release the webcam pointer vs.stop() # Close all windows cv2.destroyAllWindows() def get_grayscale(image): return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) def increase_brightness(img, value=30): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv) lim = 255 - value v[v > lim] = 255 v[v <= lim] += value final_hsv = cv2.merge((h, s, v)) img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR) return img def decode_predictions(scores, geometry, args): # Grab the number of rows and columns from the scores volume, then initialize # a set of bounding box rectangles and corresponding confidence scores (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] # Loop over the number of rows for y in range(0, numRows): # Extract the scores (probabilities), followed by the geometrical data # used to derive potential bounding box coordinates that surround text scoresData = scores[0, 0, y] xData0 = geometry[0, 0, y] xData1 = geometry[0, 1, y] xData2 = geometry[0, 2, y] xData3 = geometry[0, 3, y] anglesData = geometry[0, 4, y] # Loop over the number of columns for x in range(0, numCols): # If the score does not have sufficient probability, ignore it if scoresData[x] < args["min_confidence"]: continue # Compute the offset factor as our resulting feature maps will be 4x smaller than the input image (offsetX, offsetY) = (x * 4.0, y * 4.0) # Extract the rotation angle for the prediction andthen compute the sin and cosine angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) # Use the geometry volume to derive the width and height of the bounding box h = xData0[x] + xData2[x] w = xData1[x] + xData3[x] # Compute both the starting and ending (x, y)-coordinates for the text prediction bounding box endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) startX = int(endX - w) startY = int(endY - h) # Add the bounding box coordinates and probability score to our respective lists rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) # Return a tuple of the bounding boxes and associated confidences return (rects, confidences)
StarcoderdataPython
4882546
import unittest import json import pandas as pd import numpy as np from assistant_dialog_skill_analysis.utils import skills_util from assistant_dialog_skill_analysis.data_analysis import divergence_analyzer class TestDivergenceAnalyzer(unittest.TestCase): """Test for Divergence Analyzer module""" def setUp(self): unittest.TestCase.setUp(self) with open("tests/resources/test_workspaces/skill-Customer-Care-Sample.json", "r") as skill_file: workspace_data, workspace_vocabulary = \ skills_util.extract_workspace_data(json.load(skill_file)) self.workspace_df = pd.DataFrame(workspace_data) self.train_set_pd = pd.DataFrame({'utterance': ['boston is close to new york'], 'intent': ['Boston_New_York']}) self.test_set_pd = pd.DataFrame( {'utterance': ['both boston and new york are on east coast', 'boston is close to new york'], 'intent': ['Boston_New_York', 'Boston_New_York']}) def test_label_percentage(self): label_percentage_dict = divergence_analyzer._label_percentage(self.workspace_df) label_percentage_vec = np.array(list(label_percentage_dict.values())) self.assertEqual(np.all(label_percentage_vec > 0), True, "label percentage test fail") self.assertEqual(np.sum(label_percentage_vec), 1, "label percentage test fail") def test_train_test_vocab_difference(self): train_vocab, test_vocab = \ divergence_analyzer._train_test_vocab_difference(self.train_set_pd, self.test_set_pd) self.assertEqual(train_vocab, set(['boston', 'is', 'close', 'to', 'new', 'york']), "train test vocab difference test fail") def test_train_test_uttterance_length_difference(self): temp_df = divergence_analyzer._train_test_utterance_length_difference(self.train_set_pd, self.test_set_pd) self.assertEqual(temp_df.iloc[0]['Absolute Difference'], 1.5, 'train test utterance length differene test fail') def test_train_test_label_difference(self): # Test 1 percentage_dict1 = {'Intent1': .5, 'Intent2': .5} percentage_dict2 = {'Intent1': .5, 'Intent2': .5} missing_labels, difference_dict, js_distance = \ divergence_analyzer._train_test_label_difference(percentage_dict1, percentage_dict2) self.assertEqual(js_distance, 0, "train test difference test fail") self.assertEqual(missing_labels, [], "train test difference test fail") self.assertEqual(difference_dict['Intent1'], [50, 50, 0], "train test difference test fail") # Test 2 percentage_dict1 = {'Intent1': 1, 'Intent2': 0} percentage_dict2 = {'Intent1': 1} missing_labels, difference_dict, js_distance = \ divergence_analyzer._train_test_label_difference(percentage_dict1, percentage_dict2) self.assertEqual(js_distance, 0, "train test difference test fail") self.assertEqual(missing_labels, ['Intent2'], "train test difference test fail") self.assertEqual(difference_dict['Intent1'], [100, 100, 0], "train test difference test fail") # Test 3 percentage_dict1 = {'Intent1': 1, 'Intent2': 0} percentage_dict2 = {'Intent1': 0, 'Intent2': 1} missing_labels, difference_dict, js_distance = \ divergence_analyzer._train_test_label_difference(percentage_dict1, percentage_dict2) self.assertEqual(js_distance, 1, "train test difference test fail") self.assertEqual(difference_dict['Intent1'], [100, 0, 100], "train test difference test fail") self.assertEqual(difference_dict['Intent2'], [0, 100, 100], "train test difference test fail") self.assertEqual(len(missing_labels), 0, "train test difference test fail") # Test 4 percentage_dict1 = {'Intent1': 1} percentage_dict2 = {'Intent2': 1} missing_labels, difference_dict, js_distance = \ divergence_analyzer._train_test_label_difference(percentage_dict1, percentage_dict2) self.assertEqual(str(js_distance), 'nan', "train test difference test fail") self.assertEqual(missing_labels, ['Intent1'], "train test difference test fail") self.assertEqual(len(difference_dict), 0, "train test difference test fail") def tearDown(self): unittest.TestCase.tearDown(self) if __name__ == '__main__': unittest.main()
StarcoderdataPython
11332904
from dataclasses import dataclass from shared.paths import RESOURCE_DIR @dataclass(frozen=True) class Edge: src: int dest: int weight: int def find(parent: list[int], x: int) -> int: while x != parent[x]: x = parent[x] return x def union(parent: list[int], rank: list[int], edge: Edge) -> None: rx = find(parent, edge.src) ry = find(parent, edge.dest) if rx == ry: return if rank[rx] > rank[ry]: parent[ry] = rx else: parent[rx] = ry if rank[rx] == rank[ry]: rank[ry] += 1 def kruskal(graph: list[Edge], vertices: int) -> list[Edge]: graph = sorted(graph, key=lambda item: item.weight) parent = [i for i in range(vertices + 1)] rank = [0 for _ in range(vertices + 1)] a = [] for edge in graph: if find(parent, edge.src) != find(parent, edge.dest): a.append(edge) union(parent, rank, edge) return a def read_file(path: str) -> list[Edge]: with open(path, 'r') as f: return [Edge(i, j, int(weight)) for i, line in enumerate(f) for j, weight in enumerate(line.rstrip().split(',')) if weight.isnumeric()] def find_max_saving(graph: list[Edge], vertices: int) -> int: tree = kruskal(graph, vertices) start_weight = sum(edge.weight for edge in graph) // 2 final_weight = sum(edge.weight for edge in tree) return start_weight - final_weight def main(): graph = read_file(RESOURCE_DIR / 'problem_107_network.txt') vertices = 40 savings = find_max_saving(graph, vertices) print(savings) if __name__ == "__main__": main()
StarcoderdataPython
5094347
# pylint: disable=W0614,wildcard-import """ A hack to be able to load easy_thumbnails templatetags using {% load easy_thumbnails %} instead of {% lead thumbnail %}. The reason for doing this is that sorl.thumbnail and easy_thumbnails both name their templatetag module 'thumbnail' and one gets conflicts. The reason for using both thumbnail libraries is that they are used in different apps on pypi. """ from easy_thumbnails.templatetags.thumbnail import * # noqa: F401, F403
StarcoderdataPython
11212654
#! /usr/local/bin/python import sys import os import re # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This ProcessError.py file as part of tiny-ci will # # Be run for every failed test # # # # It is up to the user to decide how the error should # # be handled in this script # # # # By default the script is set up to send an email # # with the error message (altough the SMTP settings # # first needs to be filled in) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Here is the avalible information about the failure # testName = sys.argv[1] errorMessage = sys.argv[2] # SMTP settings # SMTPserver = '' sender = '' destination = [''] USERNAME = "" PASSWORD = "" text_subtype = 'plain' content="""\ A tiny-ci test has failed\n """ + errorMessage subject="Failed tiny-ci test '" + testName + "'"; ## SEND THE EMAIL ## from smtplib import SMTP_SSL as SMTP from email.MIMEText import MIMEText try: msg = MIMEText(content, text_subtype) msg['Subject'] = subject msg['From'] = sender conn = SMTP(SMTPserver) conn.set_debuglevel(False) conn.login(USERNAME, PASSWORD) try: conn.sendmail(sender, destination, msg.as_string()) finally: conn.close() except Exception, exc: sys.exit( "mail failed; %s" % str(exc) )
StarcoderdataPython
1846922
from django.core.management.base import BaseCommand, CommandError from tournaments.models import Tournament import os import csv class Command(BaseCommand): help = 'Load Projected Tournament Winnings' def handle(self, *args, **options): players_tournament_obj = Tournament.objects.get(name = 'The PLAYERS Championship') os.chdir(os.path.join(os.getcwd(), 'external_files')) csv_file_name = 'The PLAYERS Projected Winnings.csv' winnings = [] with open(csv_file_name, encoding = 'utf-8-sig') as csv_file: reader = csv.DictReader(csv_file) for row in reader: winnings.append(row['Projected']) players_tournament_obj.projected_winnings = str(winnings) players_tournament_obj.save(update_fields = ['projected_winnings']) self.stdout.write(self.style.SUCCESS('Successfully loaded projected winnings'))
StarcoderdataPython
1793184
<reponame>MateuszG/django_auth import pytest; import tempfile; import os @pytest.fixture() def cleandir(): newpath = tempfile.mkdtemp() # '/tmp/tmpKUnnz2' os.chdir(newpath) @pytest.mark.usefixtures("cleandir") class TestDirectoryInit: def test_cwd_starts_empty(self): assert os.listdir(os.getcwd()) == [] with open("myfile", "w") as f: f.write("hello") assert os.listdir(os.getcwd()) == ['myfile'] def test_cwd_again_starts_empty(self): assert os.listdir(os.getcwd()) == []
StarcoderdataPython
3337478
import PIL from PIL import Image import src.pos as pos class ImageMaker: """ This is a class for making Binary PFPs. Attributes: color (str): The color of the PFP. """ def __init__(self): """ Initializes the ImageMaker class. Parameters: None Returns: None. Only usable functions. """ def basic_pfp_maker(self, color): """ Makes a 64x64 image using the function in src\pos.py. It uses the function in src\pos.py to make a 64x64 image of the 64x64 array of 0 and 1 integers. It then converts the image to a PIL image and saves it as a PNG file. Parameters: None Returns: None, just saves an image. """ color = color.lower() bg = Image.open('./assets/imgs/64-64.png') clr_asset = Image.open('./assets/imgs/' + color + '.png') white = Image.open('./assets/imgs/white.png') positions = pos.create_pos_lists() for i in range(len(positions)): for j in range(len(positions[i])): if positions[i][j] == 1: bg.paste(clr_asset, (j * 8, i * 8)) else: bg.paste(white, (j * 8, i * 8)) bg.save('profile.png') def alternating_pfp_maker(self, color_1, color_2): """ Makes a 64x64 image using the function in src\pos.py. It uses the function in src\pos.py to make a 64x64 image of the 64x64 array of 0 and 1 integers. It then converts the image to a PIL image and saves it as a PNG file. The only exception is that the image doesn't have the same color, it has alternating rows of colors. Parameters: None Returns: None, just saves an image. """ bg = Image.open('./assets/imgs/64-64.png') clr_asset_1 = Image.open('./assets/imgs/' + color_1 + '.png') clr_asset_2 = Image.open('./assets/imgs/' + color_2 + '.png') white = Image.open('./assets/im.0000000000gs/white.png') positions = pos.create_pos_lists() for i in range(len(positions)): for j in range(len(positions[i])): if i % 2 == 0 and positions[i][j] == 1: bg.paste(clr_asset_1, (j * 8, i * 8)) elif i % 2 == 0 or positions[i][j] == 1: bg.paste(white, (j * 8, i * 8)) else: bg.paste(clr_asset_2, (j * 8, i * 8)) bg.save('profile2.png')
StarcoderdataPython
5137570
import numpy as np import support.data_preprocessing as dpre data = np.array([[18, 11, 5, 13, 14, 9, 9, 22, 26, 24, 19, 0, 14, 15, 8, 16, 8, 8, 16, 7, 11, 10, 20, 18, 15, 14, 49, 10, 16, 18, 8, 5, 9, 7, 13, 0, 7, 4, 11, 10], [11, 14, 15, 18, 11, 13, 22, 11, 10, 4, 41, 65, 57, 38, 20, 62, 44, 15, 10, 47, 24, 17, 0, 9, 39, 13, 11, 12, 21, 19, 9, 15, 33, 8, 8, 7, 13, 2, 23, 12], [1, 0, 1, 1, 0, 4, 0, 3, 4, 4, 1, 0, 1, 6, 8, 6, 4, 5, 1, 2, 3, 8, 8, 6, 0, 2, 2, 3, 2, 4, 3, 3, 0, 3, 5, 4, 2, 5, 1, 4]]) train_X_data = np.array([[18, 11, 5, 13, 14, 9, 9, 22, 26, 24, 19, 0, 14, 15, 8, 16, 8, 8, 16, 7, 11, 10, 20, 18, 15, 14, 49, 10, 16, 18], [11, 14, 15, 18, 11, 13, 22, 11, 10, 4, 41, 65, 57, 38, 20, 62, 44, 15, 10, 47, 24, 17, 0, 9, 39, 13, 11, 12, 21, 19], [1, 0, 1, 1, 0, 4, 0, 3, 4, 4, 1, 0, 1, 6, 8, 6, 4, 5, 1, 2, 3, 8, 8, 6, 0, 2, 2, 3, 2, 4]]) train_y_data = np.array([[8, 5, 9, 7, 13, 0, 7, 4, 11, 10], [9, 15, 33, 8, 8, 7, 13, 2, 23, 12], [3, 3, 0, 3, 5, 4, 2, 5, 1, 4]]) test_data = np.array([[18, 11, 5, 13, 14, 9, 9, 22, 26, 24, 19, 0, 14, 15, 8, 16, 8, 8, 16, 7, 11, 10, 20, 18, 15, 14, 49, 10, 16, 18, 8, 5, 9, 7, 13, 0, 7, 4, 11, 10, 4, 8, 19, 6, 7, 12, 7, 14, 5, 9], [11, 14, 15, 18, 11, 13, 22, 11, 10, 4, 41, 65, 57, 38, 20, 62, 44, 15, 10, 47, 24, 17, 0, 9, 39, 13, 11, 12, 21, 19, 9, 15, 33, 8, 8, 7, 13, 2, 23, 12, 4, 1, 0, 9, 3, 10, 6, 12, 21, 9], [1, 0, 1, 1, 0, 4, 0, 3, 4, 4, 1, 0, 1, 6, 8, 6, 4, 5, 1, 2, 3, 8, 8, 6, 0, 2, 2, 3, 2, 4, 3, 3, 0, 3, 5, 4, 2, 5, 1, 4, 2, 1, 1, 3, 6, 2, 5, 3, 7, 3]]) test_X_data = np.array([[19, 0, 14, 15, 8, 16, 8, 8, 16, 7, 11, 10, 20, 18, 15, 14, 49, 10, 16, 18, 8, 5, 9, 7, 13, 0, 7, 4, 11, 10], [41, 65, 57, 38, 20, 62, 44, 15, 10, 47, 24, 17, 0, 9, 39, 13, 11, 12, 21, 19, 9, 15, 33, 8, 8, 7, 13, 2, 23, 12], [1, 0, 1, 6, 8, 6, 4, 5, 1, 2, 3, 8, 8, 6, 0, 2, 2, 3, 2, 4, 3, 3, 0, 3, 5, 4, 2, 5, 1, 4]]) test_y_data = np.array([[4, 8, 19, 6, 7, 12, 7, 14, 5, 9], [4, 1, 0, 9, 3, 10, 6, 12, 21, 9], [2, 1, 1, 3, 6, 2, 5, 3, 7, 3]]) def test_normalise(): norm_data = dpre.normalise_transform(data) # normalising should not change data shape assert norm_data.shape == data.shape reverse_data = dpre.normalise_reverse(norm_data) # normalise_reverse should be able to turn normalised data back to original data assert np.amax(abs(reverse_data - data)) < 0.00001 def test_split(): train_X, train_y, test_X, test_y = split_data(data, test_data, pred_days=10) # split_data function should be able to spilt data properly assert train_X == train_X_data assert train_y == train_y_data assert test_X == test_y_data assert test_y == test_y_data
StarcoderdataPython
5089033
from collections import defaultdict import json from typing import Any from zipfile import ZipFile import geopandas as gpd import pandera from pandera import DataFrameSchema, Column, Check, Index import pandas as pd def concatenate_local_authority_floor_areas(upstream: Any, product: Any) -> None: dcc = pd.read_excel(upstream["download_valuation_office_floor_areas_dcc"]) dlrcc = pd.read_excel(upstream["download_valuation_office_floor_areas_dlrcc"]) sdcc = pd.read_excel(upstream["download_valuation_office_floor_areas_sdcc"]) fcc = pd.read_excel(upstream["download_valuation_office_floor_areas_fcc"]) dublin = pd.concat([dcc, dlrcc, sdcc, fcc]) dublin.to_csv(product, index=False) def validate_dublin_floor_areas(product: Any) -> None: dublin_floor_areas = pd.read_csv(product) schema = DataFrameSchema( columns={ "PropertyNo": Column( dtype=pandera.engines.numpy_engine.Int64, checks=[ Check.greater_than_or_equal_to(min_value=272845.0), Check.less_than_or_equal_to(max_value=5023334.0), ], nullable=False, unique=False, coerce=False, required=True, regex=False, ), "County": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=False, unique=False, coerce=False, required=True, regex=False, ), "LA": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=False, unique=False, coerce=False, required=True, regex=False, ), "Category": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=False, unique=False, coerce=False, required=True, regex=False, ), "Use1": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=True, unique=False, coerce=False, required=True, regex=False, ), "Use2": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=True, unique=False, coerce=False, required=True, regex=False, ), "List_Status": Column( dtype=pandera.engines.numpy_engine.Object, checks=None, nullable=False, unique=False, coerce=False, required=True, regex=False, ), "Total_SQM": Column( dtype=pandera.engines.numpy_engine.Float64, checks=[ Check.greater_than_or_equal_to(min_value=0.0), Check.less_than_or_equal_to(max_value=5373112.83), ], nullable=False, unique=False, coerce=False, required=True, regex=False, ), "X_ITM": Column( dtype=pandera.engines.numpy_engine.Float64, checks=[ Check.greater_than_or_equal_to(min_value=599999.999), Check.less_than_or_equal_to(max_value=729666.339), ], nullable=True, unique=False, coerce=False, required=True, regex=False, ), "Y_ITM": Column( dtype=pandera.engines.numpy_engine.Float64, checks=[ Check.greater_than_or_equal_to(min_value=716789.52), Check.less_than_or_equal_to(max_value=4820966.962), ], nullable=True, unique=False, coerce=False, required=True, regex=False, ), }, index=Index( dtype=pandera.engines.numpy_engine.Int64, checks=[ Check.greater_than_or_equal_to(min_value=0.0), Check.less_than_or_equal_to(max_value=53285.0), ], nullable=False, coerce=False, name=None, ), coerce=True, strict=False, name=None, ) schema(dublin_floor_areas) def convert_benchmark_uses_to_json(upstream: Any, product: Any) -> None: uses_grouped_by_category = defaultdict() with ZipFile(upstream["download_benchmark_uses"]) as zf: for filename in zf.namelist(): name = filename.split("/")[-1].replace(".txt", "") with zf.open(filename, "r") as f: uses_grouped_by_category[name] = [ line.rstrip().decode("utf-8") for line in f ] benchmark_uses = {i: k for k, v in uses_grouped_by_category.items() for i in v} with open(product, "w") as f: json.dump(benchmark_uses, f) def weather_adjust_benchmarks(upstream: Any, product: Any) -> None: benchmarks = pd.read_csv(upstream["download_benchmarks"]) # 5y average for Dublin Airport from 2015 to 2020 dublin_degree_days = 2175 tm46_degree_days = 2021 degree_day_factor = dublin_degree_days / tm46_degree_days weather_dependent_electricity = ( benchmarks["Typical electricity [kWh/m²y]"] * benchmarks["% electricity pro-rated to degree days"] * degree_day_factor ) weather_independent_electricity = benchmarks["Typical electricity [kWh/m²y]"] * ( 1 - benchmarks["% electricity pro-rated to degree days"] ) electricity = weather_dependent_electricity + weather_independent_electricity # ASSUMPTION: space heat is the only electrical heat electricity_heat = ( weather_dependent_electricity * benchmarks["% suitable for DH or HP"] ) weather_dependent_fossil_fuel = ( benchmarks["Typical fossil fuel [kWh/m²y]"] * benchmarks["% fossil fuel pro-rated to degree days"] * degree_day_factor ) weather_independent_fossil_fuel = benchmarks["Typical fossil fuel [kWh/m²y]"] * ( 1 - benchmarks["% fossil fuel pro-rated to degree days"] ) fossil_fuel = weather_dependent_fossil_fuel + weather_independent_fossil_fuel # ASSUMPTION: fossil fuel is only used for space heat & hot water fossil_fuel_heat = fossil_fuel * benchmarks["% suitable for DH or HP"] industrial_low_temperature_heat = ( benchmarks["Industrial space heat [kWh/m²y]"] * degree_day_factor + benchmarks["Industrial process energy [kWh/m²y]"] * benchmarks["% suitable for DH or HP"] ) industrial_high_temperature_heat = benchmarks[ "Industrial process energy [kWh/m²y]" ] * (1 - benchmarks["% suitable for DH or HP"]) normalised_benchmarks = pd.DataFrame( { "Benchmark": benchmarks["Benchmark"], "typical_area_m2": benchmarks["Typical Area [m²]"], "area_upper_bound_m2": benchmarks["Area Upper Bound [m²]"], "typical_electricity_kwh_per_m2y": electricity, "typical_fossil_fuel_kwh_per_m2y": fossil_fuel, "typical_building_energy_kwh_per_m2y": benchmarks[ "Industrial building total [kWh/m²y]" ], "typical_process_energy_kwh_per_m2y": benchmarks[ "Industrial process energy [kWh/m²y]" ], "typical_electricity_heat_kwh_per_m2y": electricity_heat, "typical_fossil_fuel_heat_kwh_per_m2y": fossil_fuel_heat, "typical_industrial_low_temperature_heat_kwh_per_m2y": industrial_low_temperature_heat, "typical_industrial_high_temperature_heat_kwh_per_m2y": industrial_high_temperature_heat, } ) normalised_benchmarks.to_csv(product, index=False) def replace_unexpectedly_large_floor_areas_with_typical_values( upstream: Any, product: Any ) -> None: buildings = pd.read_csv(upstream["concatenate_local_authority_floor_areas"]) benchmarks = pd.read_csv(upstream["weather_adjust_benchmarks"]) with open(upstream["convert_benchmark_uses_to_json"], "r") as f: benchmark_uses = json.load(f) buildings["Benchmark"] = ( buildings["Use1"].map(benchmark_uses).rename("Benchmark").fillna("Unknown") ) buildings_with_benchmarks = buildings.merge(benchmarks) bounded_area_m2 = buildings_with_benchmarks["Total_SQM"].rename("bounded_area_m2") typical_area = buildings_with_benchmarks["typical_area_m2"] greater_than_zero_floor_area = buildings_with_benchmarks["Total_SQM"] > 0 greater_than_typical_benchmark_upper_bound = ( buildings_with_benchmarks["Total_SQM"] > buildings_with_benchmarks["area_upper_bound_m2"] ) valid_benchmark = ~buildings_with_benchmarks["Benchmark"].isin(["Unknown", "None"]) area_is_greater_than_expected = ( greater_than_zero_floor_area & greater_than_typical_benchmark_upper_bound & valid_benchmark ) bounded_area_m2.loc[area_is_greater_than_expected] = typical_area.loc[ area_is_greater_than_expected ] propertyno_bounded_area_map = pd.concat( [buildings["PropertyNo"], bounded_area_m2], axis=1 ) propertyno_bounded_area_map.to_csv(product, index=False) def save_unknown_benchmark_uses(upstream: Any, product: Any) -> None: buildings = pd.read_csv(upstream["concatenate_local_authority_floor_areas"]) benchmarks = pd.read_csv(upstream["weather_adjust_benchmarks"]) with open(upstream["convert_benchmark_uses_to_json"], "r") as f: benchmark_uses = json.load(f) buildings["Benchmark"] = ( buildings["Use1"].map(benchmark_uses).rename("Benchmark").fillna("Unknown") ) buildings_with_benchmarks = buildings.merge(benchmarks) benchmark_is_unknown = buildings_with_benchmarks["Benchmark"] == "Unknown" unknown_benchmark_uses = pd.Series( buildings_with_benchmarks.loc[benchmark_is_unknown, "Use1"].unique(), name="Use1", ) unknown_benchmark_uses.to_csv(product, index=False) def apply_energy_benchmarks_to_floor_areas( upstream: Any, product: Any, boiler_efficiency: float ) -> None: buildings = pd.read_csv(upstream["concatenate_local_authority_floor_areas"]) benchmarks = pd.read_csv(upstream["weather_adjust_benchmarks"]) with open(upstream["convert_benchmark_uses_to_json"], "r") as f: benchmark_uses = json.load(f) buildings["Benchmark"] = ( buildings["Use1"].map(benchmark_uses).rename("Benchmark").fillna("Unknown") ) buildings_with_benchmarks = buildings.merge(benchmarks) # Replace invalid floor areas with typical values bounded_area_m2 = buildings_with_benchmarks["Total_SQM"].rename("bounded_area_m2") greater_than_zero_floor_area = buildings_with_benchmarks["Total_SQM"] > 0 greater_than_typical_benchmark_upper_bound = ( buildings_with_benchmarks["Total_SQM"] > buildings_with_benchmarks["area_upper_bound_m2"] ) valid_benchmark = ~buildings_with_benchmarks["Benchmark"].isin(["Unknown", "None"]) area_is_greater_than_expected = ( greater_than_zero_floor_area & greater_than_typical_benchmark_upper_bound & valid_benchmark ) bounded_area_m2.loc[area_is_greater_than_expected] = buildings_with_benchmarks[ "typical_area_m2" ].loc[area_is_greater_than_expected] buildings_with_benchmarks["bounded_area_m2"] = bounded_area_m2 # Apply Benchmarks kwh_to_mwh = 1e-3 buildings_with_benchmarks["electricity_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_electricity_kwh_per_m2y"].fillna(0) * kwh_to_mwh ).fillna(0) buildings_with_benchmarks["fossil_fuel_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_fossil_fuel_kwh_per_m2y"].fillna(0) * kwh_to_mwh * boiler_efficiency ).fillna(0) buildings_with_benchmarks["building_energy_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_building_energy_kwh_per_m2y"].fillna(0) * kwh_to_mwh ) buildings_with_benchmarks["process_energy_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_process_energy_kwh_per_m2y"].fillna(0) * kwh_to_mwh ) buildings_with_benchmarks["electricity_heat_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_electricity_heat_kwh_per_m2y"].fillna(0) * kwh_to_mwh * boiler_efficiency ).fillna(0) buildings_with_benchmarks["fossil_fuel_heat_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks["typical_fossil_fuel_heat_kwh_per_m2y"].fillna(0) * kwh_to_mwh * boiler_efficiency ).fillna(0) buildings_with_benchmarks["industrial_low_temperature_heat_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks[ "typical_industrial_low_temperature_heat_kwh_per_m2y" ].fillna(0) * kwh_to_mwh ) buildings_with_benchmarks["industrial_high_temperature_heat_demand_mwh_per_y"] = ( bounded_area_m2.fillna(0) * buildings_with_benchmarks[ "typical_industrial_high_temperature_heat_kwh_per_m2y" ].fillna(0) * kwh_to_mwh ) buildings_with_benchmarks.to_csv(product, index=False) def link_valuation_office_to_small_areas(upstream: Any, product: Any) -> None: valuation_office = pd.read_csv(upstream["apply_energy_benchmarks_to_floor_areas"]) small_area_boundaries = gpd.read_file( str(upstream["download_small_area_boundaries"]) ) valuation_office_geo = gpd.GeoDataFrame( valuation_office, geometry=gpd.points_from_xy( x=valuation_office["X_ITM"], y=valuation_office["Y_ITM"], crs="EPSG:2157" ), ) valuation_office_in_small_areas = gpd.sjoin( valuation_office_geo, small_area_boundaries[["small_area", "geometry"]], op="within", ).drop(columns=["geometry", "index_right"]) valuation_office_in_small_areas.to_csv(product, index=False) def remove_none_and_unknown_benchmark_buildings(upstream: Any, product: Any) -> None: buildings = pd.read_csv(upstream["link_valuation_office_to_small_areas"]) without_none_or_unknown_benchmarks = buildings.query( "Benchmark != ['Unknown', 'None']" ) without_none_or_unknown_benchmarks.to_csv(product, index=None)
StarcoderdataPython
3568832
''' Create a program that reads a number and show its multiplication table ''' number = int(input('Type a number: ')) print('-' * 12) print(f'\033[34m{number}\033[m x \033[34m{1:>2}\033[m = \033[32m{number * 1}\033[m') print(f'\033[34m{number}\033[m x \033[34m{2:>2}\033[m = \033[32m{number * 2}\033[m') print(f'\033[34m{number}\033[m x \033[34m{3:>2}\033[m = \033[32m{number * 3}\033[m') print(f'\033[34m{number}\033[m x \033[34m{4:>2}\033[m = \033[32m{number * 4}\033[m') print(f'\033[34m{number}\033[m x \033[34m{5:>2}\033[m = \033[32m{number * 5}\033[m') print(f'\033[34m{number}\033[m x \033[34m{6:>2}\033[m = \033[32m{number * 6}\033[m') print(f'\033[34m{number}\033[m x \033[34m{7:>2}\033[m = \033[32m{number * 7}\033[m') print(f'\033[34m{number}\033[m x \033[34m{8:>2}\033[m = \033[32m{number * 8}\033[m') print(f'\033[34m{number}\033[m x \033[34m{9:>2}\033[m = \033[32m{number * 9}\033[m') print(f'\033[34m{number}\033[m x \033[34m{10}\033[m = \033[32m{number * 10}\033[m') print('-' * 12)
StarcoderdataPython
1772215
<filename>script.mrknow.urlresolver/lib/urlresolver9/plugins/mailru.py """ OVERALL CREDIT TO: t0mm0, Eldorado, VOINAGE, BSTRDMKR, tknorris, smokdpi, TheHighway urlresolver XBMC Addon Copyright (C) 2011 t0mm0 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re import json import urllib from lib import helpers from urlresolver9 import common from urlresolver9.resolver import UrlResolver, ResolverError class MailRuResolver(UrlResolver): name = "mail.ru" domains = ['mail.ru', 'my.mail.ru', 'videoapi.my.mail.ru', 'api.video.mail.ru'] pattern = '(?://|\.)(mail\.ru)/.+?/(?:embed/|)(inbox|mail|embed)/(?:(.+?)/.+?/)?(\d+)' def __init__(self): self.net = common.Net() def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) print host print media_id response = self.net.http_GET(web_url) html = response.content if html: try: js_data = json.loads(html) sources = [(video['key'], video['url']) for video in js_data['videos']] sources = sources[::-1] source = helpers.pick_source(sources) source = source.encode('utf-8') return source + helpers.append_headers({'Cookie': response.get_headers(as_dict=True).get('Set-Cookie', '')}) except: raise ResolverError('No playable video found.') else: raise ResolverError('No playable video found.') def get_url(self, host, media_id): location, user, media_id = media_id.split('|') if user == 'None': try: web_url = 'https://my.mail.ru/video/embed/%s' % media_id response = self.net.http_GET(web_url) html = response.content.encode('utf-8') media_id = re.search(r'[\"\']movieSrc[\"\']\s?:\s?[\"\'](.*?)[\"\']', html).groups()[0] return 'http://videoapi.my.mail.ru/videos/%s.json?ver=0.2.60' % (media_id) except: raise ResolverError('No playable video found.') else: return 'http://videoapi.my.mail.ru/videos/%s/%s/_myvideo/%s.json?ver=0.2.60' % (location, user, media_id) def get_host_and_id(self, url): r = re.search(self.pattern, url) if r: return (r.groups()[0], '%s|%s|%s' % (r.groups()[1], r.groups()[2], r.groups()[3])) else: return False
StarcoderdataPython
304396
# Copyright (C) 2010 # Author: <NAME> # Contact: <<EMAIL>> __version__ = '1.5.2' __all__ = [ 'OpenSSL', 'ecc', 'cipher', 'hash', ] from .openssl import OpenSSL from .ecc import ECC from .cipher import Cipher from .hash import hmac_sha256, hmac_sha512, pbkdf2
StarcoderdataPython
8138719
<reponame>DazEB2/SimplePyScripts<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://github.com/madmaze/pytesseract import re # pip install pillow from PIL import Image # pip install pytesseract # Tesseract.exe from https://github.com/UB-Mannheim/tesseract/wiki import pytesseract pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # Simple image to string img = Image.open('test.jpg') text = pytesseract.image_to_string(img, lang='eng') text = re.sub(r'(\s){2,}', '\1', text) print(text) # At this Time. two Great Empires struggled # for Dominion over Ivalice:Archadia in the East. Rozarria. the West. # AIChdadladT he Invasion of the Kingdom of NabradiawasArchadia's first Step RRs s. westward M Cigale # abradiaWith Cord Rasler's area omeland con rit aNthe Hell-Fires of War. it aa TaeWa eeiad Velma Veerwould soon mete out a like Fate to Valmasca. # KOZarrlaThe Fall of the Fortress at Nalbina # tolled the Destruction of the greater # part of Dalmasca’'s f orces.
StarcoderdataPython
6570224
<filename>blender/2.79/scripts/addons/presets/operator/mesh.primitive_round_cube_add/Capsule.py import bpy op = bpy.context.active_operator op.radius = 0.5 op.arc_div = 8 op.lin_div = 0 op.size = (0.0, 0.0, 3.0) op.div_type = 'CORNERS'
StarcoderdataPython
1843494
from stream_framework.feeds.aggregated_feed.cassandra import CassandraAggregatedFeed from stream_framework.feeds.notification_feed.base import BaseNotificationFeed from stream_framework.storage.redis.lists_storage import RedisListsStorage from lego.apps.feed.activities import Activity, AggregatedActivity, NotificationActivity from lego.apps.feed.aggregator import FeedAggregator from lego.apps.feed.feed_models import AggregatedActivityModel from lego.apps.feed.feed_serializers import AggregatedActivitySerializer class AggregatedFeed(CassandraAggregatedFeed): """ Aggregated feed. Group activities by type. Usage: * Set the column_family used to store the feed in cassandra timeline_cf_name = '' """ key_format = '%(user_id)s' timeline_model = AggregatedActivityModel timeline_serializer = AggregatedActivitySerializer aggregator_class = FeedAggregator activity_class = Activity aggregated_activity_class = AggregatedActivity class NotificationFeed(AggregatedFeed, BaseNotificationFeed): """ Track read/seen states on an aggregated feed. """ markers_storage_class = RedisListsStorage aggregated_activity_class = NotificationActivity
StarcoderdataPython
93510
# -*- coding: utf-8 -*- """ threaded_ping_server.py ~~~~~~~~~~~~~~~~~~~~~~~ TCP server based on threads simulating ping output. """ __author__ = '<NAME>' __copyright__ = 'Copyright (C) 2018, Nokia' __email__ = '<EMAIL>' import logging import select import socket import sys import threading import time from contextlib import closing ping_output = ''' greg@debian:~$ ping 10.0.2.15 PING 10.0.2.15 (10.0.2.15) 56(84) bytes of data. 64 bytes from 10.0.2.15: icmp_req=1 ttl=64 time=0.080 ms 64 bytes from 10.0.2.15: icmp_req=2 ttl=64 time=0.037 ms 64 bytes from 10.0.2.15: icmp_req=3 ttl=64 time=0.045 ms ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable 64 bytes from 10.0.2.15: icmp_req=7 ttl=64 time=0.123 ms 64 bytes from 10.0.2.15: icmp_req=8 ttl=64 time=0.056 ms ''' def ping_sim_tcp_server(server_port, ping_ip, client, address): _, client_port = address logger = logging.getLogger('threaded.ping.tcp-server({} -> {})'.format(server_port, client_port)) logger.debug('connection accepted - client at tcp://{}:{}'.format(*address)) ping_out = ping_output.replace("10.0.2.15", ping_ip) ping_lines = ping_out.splitlines(True) with closing(client): for ping_line in ping_lines: data = ping_line.encode(encoding='utf-8') try: client.sendall(data) except socket.error: # client is gone break time.sleep(1) # simulate delay between ping lines logger.info('Connection closed') def server_loop(server_port, server_socket, ping_ip, done_event): logger = logging.getLogger('threaded.ping.tcp-server({})'.format(server_port)) while not done_event.is_set(): # without select we can't break loop from outside (via done_event) # since .accept() is blocking read_sockets, _, _ = select.select([server_socket], [], [], 0.1) if not read_sockets: continue client_socket, client_addr = server_socket.accept() client_socket.setblocking(1) client_thread = threading.Thread(target=ping_sim_tcp_server, args=(server_port, ping_ip, client_socket, client_addr)) client_thread.start() logger.debug("Ping Sim: ... bye") def start_ping_sim_server(server_address, ping_ip): """Run server simulating ping command output, this is one-shot server""" _, server_port = server_address logger = logging.getLogger('threaded.ping.tcp-server({})'.format(server_port)) server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind(server_address) server_socket.listen(1) logger.debug("Ping Sim started at tcp://{}:{}".format(*server_address)) done_event = threading.Event() server_thread = threading.Thread(target=server_loop, args=(server_port, server_socket, ping_ip, done_event)) server_thread.start() return server_thread, done_event def tcp_connection(address, moler_conn): """Forwarder reading from tcp network transport layer""" logger = logging.getLogger('threaded.tcp-connection({}:{})'.format(*address)) logger.debug('... connecting to tcp://{}:{}'.format(*address)) client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect(address) with closing(client_socket): while True: data = client_socket.recv(128) if data: logger.debug('<<< {!r}'.format(data)) # Forward received data into Moler's connection moler_conn.data_received(data) yield data else: logger.debug("... closed") break def start_ping_servers(servers_addr): servers = [] for address, ping_ip in servers_addr: # simulate pinging given IP server_thread, server_done = start_ping_sim_server(address, ping_ip) servers.append((server_thread, server_done)) return servers def stop_ping_servers(servers): for server_thread, server_done in servers: server_done.set() server_thread.join() # ============================================================================== if __name__ == '__main__': logging.basicConfig( level=logging.DEBUG, format='%(asctime)s |%(name)-40s |%(message)s', datefmt='%H:%M:%S', stream=sys.stderr, ) connections2serve = [(('localhost', 5671), '10.0.2.15'), (('localhost', 5672), '10.0.2.16')] servers = start_ping_servers(connections2serve) time.sleep(2) stop_ping_servers(servers)
StarcoderdataPython
343366
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Federated feature engineering client-side support postive_ratio, woe, iv, ks, auc """ import logging from . import metrics_client as mc logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class FederatedFeatureEngineeringClient(object): """ Federated feature engineering client-side implementation """ def __init__(self, key_len=1024): """ init paillier instance with given key_len """ self._paillier = mc.hu.Paillier() self._paillier.keygen(key_len) logger.info('keygen done, key_len is {} bits'.format(key_len)) def connect(self, channel): """ client init the grpc channel with server """ self._channel = channel def get_positive_ratio(self, labels): """ return postive ratio to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a positive ratio list including feature_size dicts each dict represents the positive ratio (float) of each feature value e.g. [{0: 0.2, 1: 0.090909}, {1: 0.090909, 0: 0.2, 2: 0.02439}...] """ return mc.get_mpc_postive_ratio_alice(self._channel, labels, self._paillier) def get_woe(self, labels): """ return woe to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a woe list including feature_size dicts each dict represents the woe (float) of each feature value e.g. [{1: 0.0, 0: 0.916291}, {2: -1.386294, 1: 0.0, 0: 0.916291}] """ return mc.get_mpc_woe_alice(self._channel, labels, self._paillier) def get_iv(self, labels): """ return iv to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a list corresponding to the iv of each feature e.g. [0.56653, 0.56653] """ return mc.get_mpc_iv_alice(self._channel, labels, self._paillier) def get_woe_iv(self, labels): """ return woe, iv to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a tuple of woe and iv """ return mc.get_mpc_iv_alice(self._channel, labels, self._paillier, True) def get_ks(self, labels): """ reutrn ks to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a list corresponding to the ks of each feature e.g. [0.3, 0.3] """ return mc.get_mpc_ks_alice(self._channel, labels, self._paillier) def get_auc(self, labels): """ reutrn auc to client params: labels: a list in the shape of (sample_size, 1) labels[i] is either 0 or 1, represents negative and positive resp. e.g. [[1], [0], [1],...,[1]] return: a list corresponding to the auc of each feature e.g. [0.33, 0.33] """ return mc.get_mpc_auc_alice(self._channel, labels, self._paillier)
StarcoderdataPython
3472700
<filename>preprocess/analyse_data.py # -*- coding:utf-8 -*- import pandas as pd train = pd.read_csv('../data/kaggle/train.tsv', sep="\t") print(train.head(5))
StarcoderdataPython