id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
1766600
""" Code that processes SQL files and returns modules of database functions. """ from . import parser, context from .exceptions import NoConnectionError from contextlib import contextmanager from glob import glob import os from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import threading import re __pdoc__ = {} class Module(object): """ Holds a set of SQL functions loaded from files. """ sqlpath = None def __init__(self, sqlpath): """ Loads functions found in the *sql files specified by `sqlpath` into properties on this object. The named sql functions in files should be unique. """ if not os.path.isdir(sqlpath): raise ValueError('Directory not found: %s' % sqlpath) self.sqlpath = sqlpath self._statements = {} self._engine = None self._sessionmaker = None self._locals = threading.local() for sqlfile in glob(os.path.join(self.sqlpath, '*sql')): with open(sqlfile, 'r') as f: pugsql = f.read() # handle multiple statements per file statements = re.split(r'\n+(?=--\s*:name)', pugsql) for statement in statements: s = parser.parse(statement, ctx=context.Context(sqlfile)) if hasattr(self, s.name): if s.name not in self._statements: raise ValueError( 'Error loading %s - the function name "%s" is ' 'reserved. Please choose another name.' % ( sqlfile, s.name)) raise ValueError( 'Error loading %s - a SQL function named %s was already ' 'defined in %s.' % ( sqlfile, s.name, self._statements[s.name].filename)) s.set_module(self) setattr(self, s.name, s) self._statements[s.name] = s @contextmanager def transaction(self): """ Returns a session that manages a transaction scope, in which many statements can be run. Statements run on this module will automatically use this transaction. The normal use case is to use this like a context manager, rather than interact with the result: foo = pugsql.module('sql/foo') with foo.transaction(): x = foo.get_x(x_id=1234) foo.update_x(x_id=1234, x+1) # when the context manager exits, the transaction is committed. # if an exception occurs, it is rolled back. The transaction is active for statements executed on the current thread only. For engines that support SAVEPOINT, calling this method a second time begins a nested transaction. For more info, see here: https://docs.sqlalchemy.org/en/13/orm/session_transaction.html """ if not getattr(self._locals, 'session', None): if not self._sessionmaker: raise NoConnectionError() self._locals.session = self._sessionmaker() session = self._locals.session try: yield session session.commit() except Exception as e: session.rollback() raise e finally: session.close() self._locals.session = None def _execute(self, clause, *multiparams, **params): if getattr(self._locals, 'session', None): return self._locals.session.execute(clause, multiparams or params) if not self._engine: raise NoConnectionError() return self._engine.execute(clause, *multiparams, **params) @property def _dialect(self): """ Gets the dialect for the SQLAlchemy engine. """ if not self._engine: raise NoConnectionError() return self._engine.dialect def connect(self, connstr): """ Sets the connection string for SQL functions on this module. See https://docs.sqlalchemy.org/en/13/core/engines.html for examples of legal connection strings for different databases. """ self.set_engine(create_engine(connstr)) def set_engine(self, engine): """ Sets the SQLAlchemy engine for SQL functions on this module. This can be used instead of the connect method, when more customization of the connection engine is desired. See also: https://docs.sqlalchemy.org/en/13/core/connections.html """ self._engine = engine self._sessionmaker = sessionmaker(bind=engine) def disconnect(self): """ Disassociates the module from any connection it was previously given. """ self._engine = None self._sessionmaker = None def __iter__(self): return iter(self._statements.values()) __pdoc__['Module.sqlpath'] = ( 'The path that the `pugsql.compiler.Module` was loaded from.') modules = {} def _module(sqlpath): """ Compiles a new `pugsql.compiler.Module`, or returns a cached one. Use the `pugsql.module` function instead of this one. """ global modules if sqlpath not in modules: modules[sqlpath] = Module(sqlpath) return modules[sqlpath]
StarcoderdataPython
1690895
<reponame>Syunkolee9891/Mayan-EDMS<filename>mayan/apps/document_states/links.py from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from mayan.apps.documents.permissions import permission_document_type_edit from mayan.apps.navigation.classes import Link from .permissions import ( permission_workflow_create, permission_workflow_delete, permission_workflow_edit, permission_workflow_tools, permission_workflow_view, ) link_setup_document_type_workflows = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_document_type_workflow_list', permissions=(permission_document_type_edit,), text=_('Workflows'), view='document_states:document_type_workflows', ) link_setup_workflow_create = Link( icon_class_path='mayan.apps.document_states.icons.icon_workflow_create', permissions=(permission_workflow_create,), text=_('Create workflow'), view='document_states:setup_workflow_create' ) link_setup_workflow_delete = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_delete', permissions=(permission_workflow_delete,), tags='dangerous', text=_('Delete'), view='document_states:setup_workflow_delete', ) link_setup_workflow_document_types = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_document_type_list', permissions=(permission_workflow_edit,), text=_('Document types'), view='document_states:setup_workflow_document_types', ) link_setup_workflow_edit = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_edit', permissions=(permission_workflow_edit,), text=_('Edit'), view='document_states:setup_workflow_edit', ) link_setup_workflow_list = Link( icon_class_path='mayan.apps.document_states.icons.icon_setup_workflow_list', permissions=(permission_workflow_view,), text=_('Workflows'), view='document_states:setup_workflow_list' ) link_setup_workflow_state_action_delete = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_action_delete', permissions=(permission_workflow_edit,), tags='dangerous', text=_('Delete'), view='document_states:setup_workflow_state_action_delete', ) link_setup_workflow_state_action_edit = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_action_edit', permissions=(permission_workflow_edit,), text=_('Edit'), view='document_states:setup_workflow_state_action_edit', ) link_setup_workflow_state_action_list = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_action_list', permissions=(permission_workflow_edit,), text=_('Actions'), view='document_states:setup_workflow_state_action_list', ) link_setup_workflow_state_action_selection = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_action', permissions=(permission_workflow_edit,), text=_('Create action'), view='document_states:setup_workflow_state_action_selection', ) link_setup_workflow_state_create = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_create', permissions=(permission_workflow_edit,), text=_('Create state'), view='document_states:setup_workflow_state_create', ) link_setup_workflow_state_delete = Link( args='object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_delete', permissions=(permission_workflow_edit,), tags='dangerous', text=_('Delete'), view='document_states:setup_workflow_state_delete', ) link_setup_workflow_state_edit = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state_edit', permissions=(permission_workflow_edit,), text=_('Edit'), view='document_states:setup_workflow_state_edit', ) link_setup_workflow_states = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_state', permissions=(permission_workflow_view,), text=_('States'), view='document_states:setup_workflow_state_list', ) link_setup_workflow_transition_create = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_transition_create', permissions=(permission_workflow_edit,), text=_('Create transition'), view='document_states:setup_workflow_transition_create', ) link_setup_workflow_transition_delete = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_transition_delete', permissions=(permission_workflow_edit,), tags='dangerous', text=_('Delete'), view='document_states:setup_workflow_transition_delete', ) link_setup_workflow_transition_edit = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_transition_edit', permissions=(permission_workflow_edit,), text=_('Edit'), view='document_states:setup_workflow_transition_edit', ) link_setup_workflow_transitions = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_transition', permissions=(permission_workflow_view,), text=_('Transitions'), view='document_states:setup_workflow_transition_list', ) link_workflow_transition_events = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_transition_triggers', permissions=(permission_workflow_edit,), text=_('Transition triggers'), view='document_states:setup_workflow_transition_events' ) link_workflow_preview = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_preview', permissions=(permission_workflow_view,), text=_('Preview'), view='document_states:workflow_preview' ) link_tool_launch_all_workflows = Link( icon_class_path='mayan.apps.document_states.icons.icon_tool_launch_all_workflows', permissions=(permission_workflow_tools,), text=_('Launch all workflows'), view='document_states:tool_launch_all_workflows' ) # Document workflow instances link_document_workflow_instance_list = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_document_workflow_instance_list', permissions=(permission_workflow_view,), text=_('Workflows'), view='document_states:document_workflow_instance_list', ) link_workflow_instance_detail = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_instance_detail', permissions=(permission_workflow_view,), text=_('Detail'), view='document_states:workflow_instance_detail', ) link_workflow_instance_transition = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_instance_transition', text=_('Transition'), view='document_states:workflow_instance_transition', ) # Runtime proxies link_workflow_runtime_proxy_document_list = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_runtime_proxy_document_list', permissions=(permission_workflow_view,), text=_('Workflow documents'), view='document_states:workflow_document_list', ) link_workflow_runtime_proxy_list = Link( icon_class_path='mayan.apps.document_states.icons.icon_workflow_runtime_proxy_list', permissions=(permission_workflow_view,), text=_('Workflows'), view='document_states:workflow_list' ) link_workflow_runtime_proxy_state_document_list = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_runtime_proxy_state_document_list', permissions=(permission_workflow_view,), text=_('State documents'), view='document_states:workflow_state_document_list', ) link_workflow_runtime_proxy_state_list = Link( args='resolved_object.pk', icon_class_path='mayan.apps.document_states.icons.icon_workflow_runtime_proxy_state_list', permissions=(permission_workflow_view,), text=_('States'), view='document_states:workflow_state_list', )
StarcoderdataPython
1778709
""" process_your_images.py (author: <NAME> / git: ankonzoid) Process your images in the `input` directory using any of the following techniques. The results Standard techniques: 1) Force resizing (ypixels, xpixels) -> (ypixels_force, xpixels_force) 2) Grey scaling (3 rgb channels -> 1 greyscale channel) 3) K-means color quantization (using cluster colors or user-defined colors) 4) Edge detection (gaussian blue, then sobel edge detection) Extra techniques (requires opencv): 1) object crop (opencv for contour search, then force resize to object binding box) 2) object binarization """ import os from src.img2resize import img2resize from src.img2greyscale import img2greyscale from src.img2kmeans import img2kmeans from src.img2edges import img2edges def main(): settings = { "img2resize": {"use": True, "ypixels": 100, "xpixels": 100}, "img2greyscale": {"use": True}, "img2kmeans": {"use": False, "k": 5, "use_custom_colors": False, "custom_colors": [[1, 1, 1], [37/255, 156/255, 247/255], [0, 0, 0]]}, "img2edges": {"use": True}, # requires opencv } # Run our tools process_your_images(settings, input_dir="input", output_dir="output") def process_your_images(settings, input_dir="input", output_dir="output"): # Check input and output directories exist if not os.path.isdir(input_dir): exit("err: could not find input directory '{}'".format(input_dir)) if not os.path.isdir(output_dir): exit("err: could not find output directory '{}'".format(output_dir)) # Process each image in the input directory files_input_dir = os.listdir(input_dir) n_files = len(files_input_dir) for i, file in enumerate(files_input_dir): # extract local filenames # Consider only files that end with .jpg and .jpeg if not file.endswith((".jpg", ".jpeg")): continue # Build filename and nametag for output img_filename = os.path.join(input_dir, file) nametag = os.path.splitext(file)[0] # Process image print("[{}/{}] Processing '{}'...".format(i+1, n_files, file)) if settings["img2resize"]["use"]: output_filename = os.path.join(output_dir, nametag + "_resized.jpg") img2resize(img_filename, output_filename, ypixels=settings["img2resize"]["ypixels"], xpixels=settings["img2resize"]["xpixels"]) if settings["img2greyscale"]["use"]: output_filename = os.path.join(output_dir, nametag + "_greyscale.jpg") img2greyscale(img_filename, output_filename) if settings["img2kmeans"]["use"]: output_filename = os.path.join(output_dir, nametag + "_kmeans.jpg") img2kmeans(img_filename, output_filename, k=settings["img2kmeans"]["k"], use_custom_colors=settings["img2kmeans"]["use_custom_colors"], custom_colors=settings["img2kmeans"]["custom_colors"]) if settings["img2edges"]["use"]: output_filename = os.path.join(output_dir, nametag + "_edges.jpg") img2edges(img_filename, output_filename) # Driver if __name__ == '__main__': main()
StarcoderdataPython
4835148
<reponame>hamed1361554/recipe-app-api from django.contrib.auth import get_user_model from django.test import TestCase from rest_framework.reverse import reverse from rest_framework.test import APIClient import rest_framework.status as status TOKEN_URL = reverse('users:token') def create_user(**kwargs): return get_user_model().objects.create_user(**kwargs) class UserTokenTests(TestCase): """User Token Tests""" def setUp(self): """Sets up""" self.client = APIClient() def test_create_user_token(self): """Tests that user token created successfully""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>' } create_user(**payload) res = self.client.post(TOKEN_URL, payload) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertIn('token', res.data) def test_invalid_user_credentials(self): """Tests that invalid user credentials fails""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>' } create_user(**payload) res = self.client.post(TOKEN_URL, {**payload, 'password': '<PASSWORD>'}) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) self.assertNotIn('token', res.data) def test_invalid_user(self): """Tests that invalid user fails""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>' } res = self.client.post(TOKEN_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) self.assertNotIn('token', res.data) def test_invalid_user_password(self): """Tests that invalid user fails""" payload = { 'email': '<EMAIL>', 'password': '' } res = self.client.post(TOKEN_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) self.assertNotIn('token', res.data)
StarcoderdataPython
6514978
from pyridge.generic.scaler import Scaler import numpy as np class StandardScaler(Scaler): """ Scaler for data, similar to StandardScaler from sklearn but avoiding shape restrictions. """ def __init__(self): self.mean_: np.float self.std_: np.float def get_params(self): return {'mean_': self.mean_, 'std_': self.std_} def fit(self, values): self.mean_ = np.mean(values, axis=0) self.std_ = np.std(values, axis=0) def transform(self, values): return (values - self.mean_) / self.std_ def fit_transform(self, values): self.fit(values) return self.transform(values) def inverse_transform(self, values): return values * self.std_ + self.mean_
StarcoderdataPython
5003504
# -*- coding: utf-8 -*- # Created on Sun Jul 19 18:10:11 2020 # # Copyright 2020 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from alpha_vantage.timeseries import TimeSeries import pandas as pd import time as time KEY = 'yourkeyhere!' # Define output_format as pandas, otherwise we'll get the data in JSON format ts = TimeSeries(key=KEY, output_format='pandas') data = ts.get_daily('TSLA', outputsize='full')[0] data.columns = ['open', 'high', 'low', 'close', 'volume'] # Data comes sorted by date desc and we need to reverse it data = data.iloc[::-1] stocks = ["TSLA", "AMZN", "GOOG", "MSFT", "FB", "ES=F", "CABK.MC"] close_price = pd.DataFrame() # To overcome the API call frequency limitation, we need to make our query slower number_api_calls = 0 for symbol_ticker in stocks: start_time = time.time() ts = TimeSeries(key=KEY, output_format='pandas') data = ts.get_intraday(symbol=symbol_ticker, interval='1min', outputsize='full')[0] number_api_calls += 1 data.columns = ['open', 'high', 'low', 'close', 'volume'] close_price[symbol_ticker] = data['close'] if number_api_calls == 5: number_api_calls = 0 time.sleep(60 - ((time.time() - start_time) % 60.0))
StarcoderdataPython
3406764
<filename>api/cron.py<gh_stars>1-10 import redis from .models import Patch from django.db import transaction @transaction.atomic def store_from_redis(): pool = redis.ConnectionPool(host="127.0.0.1", port=6379, max_connections=10) rds = redis.Redis(connection_pool=pool) for patch in Patch.objects.select_for_update().all(): result = rds.hget("apply_count_hash", "/report_update?patch_id=%d" % (patch.id)) if result is not None: count = int(result) if count > patch.apply_count: patch.apply_count = count patch.supersave() else: # TODO # Data inconsistency occurred, to logging pass result = rds.hget("download_count_hash", "patch_id=%d" % (patch.id)) if result is not None: count = int(result) if count > patch.download_count: patch.download_count = count patch.supersave() else: # TODO # Data inconsistency occurred, to logging pass def main(): store_from_redis() if __name__ == '__main__': main()
StarcoderdataPython
1909989
import argparse import sys from typing import List, Tuple, Set, Union # Part 1 def two_sum(lst: List[int], total: int) -> Union[Tuple[int, int], None] : container: Set[int] = set() for num in lst: if total - num in container: return (num, total - num) else: container.add(num) # Part 2 def three_sum(lst: List[int], total: int) -> Union[Tuple[int, int, int], None]: container: Set[int] = set() for num in lst: tup = two_sum(lst, total - num) if tup: return (num, tup[0], tup[1]) else: container.add(num) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Solve day1 of AoC 2020") parser.add_argument( "input file", metavar="FILE", help="name of input file (day1.in)" ) args: argparse.Namespace = parser.parse_args() file_name: str = sys.argv[1] with open(file_name) as f: lst: List[int] = list(map(int, f.read().split())) result1: Union[Tuple[int, int], None] = two_sum(lst, 2020) if result1: num1, num2 = result1 print(f"Part 1: The product of {num1} and {num2} is: {num1 * num2}") result2: Union[Tuple[int, int, int], None] = three_sum(lst, 2020) if result2: num1, num2, num3 = result2 print( f"Part 2: The product of {num1}, {num2} and {num3} is: {num1 * num2 * num3}" )
StarcoderdataPython
8002957
import time while(True): print 'hello' time.sleep(2)
StarcoderdataPython
5099748
<reponame>terop/latexbot #!/usr/bin/env python3 """A program (bot) for rendering short snippets of LaTeX code as an image. A LaTeX distribution needs to be installed on the machine where this code is ran.""" import sys from io import BytesIO from tempfile import NamedTemporaryFile from os.path import basename from os import remove from shlex import split from glob import glob import re import subprocess from sympy import preview from jinja2 import Environment, PackageLoader from flask import Flask, request, abort, send_file, make_response, render_template # pylint: disable=invalid-name app = Flask(__name__) app.config.from_pyfile('latexbot.cfg') def render(latex_source, mode, image_name=None, output_buffer=None): """Renders the given LaTeX source and outputs it in a PNG image with the given name. Returns True on success and False otherwise.""" try: if mode == 'link': preview(latex_source, euler=False, viewer='file', filename=image_name) else: preview(latex_source, euler=False, output='png', viewer='BytesIO', outputbuffer=output_buffer) except RuntimeError as err: print('Got a Latex error: {}'.format(err), file=sys.stderr) return False return True # Routes @app.route('/', methods=['GET']) def index(): """Index route.""" return render_template('index.html') @app.route('/render/<latex_input>', methods=['GET']) def render_url_input(latex_input): """Render the provided LaTeX input.""" if 'mode' in request.args: mode = request.args['mode'] else: mode = app.config['OUTPUT_MODE'] # Hack to generate a temporary filename with NamedTemporaryFile(dir='/tmp', prefix='latexbot_', suffix='.png', delete=True) as tmpfile: tmpfile_name = tmpfile.name if mode == 'link': if not render(latex_input, mode, image_name=tmpfile_name): return make_response('Internal server error, please check input validity', 500) return '{}{}image/{}'.format(request.url_root, '{}/'.format(app.config['EXTRA_URL_PATH']) if app.config['EXTRA_URL_PATH'] != '' else '', re.search(r'latexbot_(\w+)\.png', basename(tmpfile_name)).group(1)) else: out_buffer = BytesIO() if not render(latex_input, mode, output_buffer=out_buffer): return make_response('Internal server error, please check input validity', 500) out_buffer.seek(0) return send_file(out_buffer, mimetype='image/png') @app.route('/image/<image_id>', methods=['GET']) def get_image(image_id): """Returns the image referred by the given ID.""" try: image = open('/tmp/latexbot_{}.png'.format(image_id), 'rb') except FileNotFoundError: print('Tried to access non-existent image: {}'.format(image_id), file=sys.stderr) abort(404) return send_file(image, mimetype='image/png') @app.route('/input', methods=['GET']) def input_form(): """Render an input form.""" return render_template('input.html') @app.route('/input', methods=['POST']) def render_from_form(): """Render LaTeX from the input form.""" env = Environment(loader=PackageLoader('latexbot', 'templates')) template = env.get_template('template.tex') # pylint: disable=no-member rendered_template = template.render(latex_input=request.form['latex-input']) with NamedTemporaryFile(dir='/tmp', prefix='latexbot_', suffix='.tex', delete=True) as tmpfile: tmpfile_name = tmpfile.name with open(tmpfile_name, 'w') as tmpfile: tmpfile.write(rendered_template) rc = subprocess.call(['latex', '-interaction=nonstopmode', '-output-directory=/tmp', tmpfile_name]) if rc != 0: # Render failed for f in glob(tmpfile_name.replace('tex', '*')): remove(f) return make_response('Internal server error: LaTeX rendering failed. ' 'Please check input validity.', 500) rc = subprocess.call(split('dvipng -T tight -D 150 -z 9 {} -o {}'. format(tmpfile_name.replace('.tex', '.dvi'), tmpfile_name.replace('.tex', '.png')))) if rc != 0: # DVI to PNG conversion failed for f in glob(tmpfile_name.replace('tex', '*')): remove(f) return make_response('Internal server error: image conversion failed.', 500) # Remove auxiliary files generated during render for f in glob(tmpfile_name.replace('tex', '*')): if not f.endswith('png'): remove(f) if request.form['output'] == 'link': return '{}{}image/{}'.format(request.url_root, '{}/'.format(app.config['EXTRA_URL_PATH']) if app.config['EXTRA_URL_PATH'] != '' else '', re.search(r'latexbot_(\w+)\.tex', basename(tmpfile_name)).group(1)) else: return send_file(open(tmpfile_name.replace('.tex', '.png'), 'rb'), mimetype='image/png') if __name__ == '__main__': app.run(host='0.0.0.0')
StarcoderdataPython
3473684
<reponame>ManuelAlvarezC/keyboard-anywhere # -*- coding: utf-8 -*- """Top-level package for keyboard_anywhere.""" __author__ = '<NAME>' __email__ = '<EMAIL>' __version__ = '0.0.0.dev0'
StarcoderdataPython
4863915
''' URL: https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/ Time complexity: O(n) Space complexity: O(1) ''' class Solution(object): def maxProfit(self, prices, fee): """ :type prices: List[int] :type fee: int :rtype: int """ if len(prices) == 0: return 0 ti0 = 0 ti1 = float('-inf') for i in range(len(prices)): old_ti0 = ti0 ti0 = max(ti0, ti1 + prices[i]) ti1 = max(ti1, ti0 - prices[i] - fee) return ti0
StarcoderdataPython
9714069
import hashlib import json import time from command import buildcmd from common import * def sifchain_denom_hash(network_descriptor, token_contract_address): assert on_peggy2_branch assert token_contract_address.startswith("0x") s = str(network_descriptor) + token_contract_address.lower() return "sif" + hashlib.sha256(s.encode("UTF-8")).digest().hex() class Sifnoded: def __init__(self, cmd, home=None): self.cmd = cmd self.binary = "sifnoded" self.home = home self.keyring_backend = "test" # self.sifnoded_burn_gas_cost = 16 * 10**10 * 393000 # see x/ethbridge/types/msgs.go for gas # self.sifnoded_lock_gas_cost = 16 * 10**10 * 393000 def init(self, moniker, chain_id): args = [self.binary, "init", moniker, "--chain-id", chain_id] res = self.cmd.execst(args) return json.loads(res[2]) # output is on stderr def keys_list(self): args = ["keys", "list", "--output", "json"] res = self.sifnoded_exec(args, keyring_backend=self.keyring_backend, sifnoded_home=self.home) return json.loads(stdout(res)) def keys_show(self, name, bech=None): args = ["keys", "show", name] + \ (["--bech", bech] if bech else []) res = self.sifnoded_exec(args, keyring_backend=self.keyring_backend, sifnoded_home=self.home) return yaml_load(stdout(res)) def get_val_address(self, moniker): res = self.sifnoded_exec(["keys", "show", "-a", "--bech", "val", moniker], keyring_backend=self.keyring_backend, sifnoded_home=self.home) expected = exactly_one(stdout_lines(res)) result = exactly_one(self.keys_show(moniker, bech="val"))["address"] assert result == expected return result # How "sifnoded keys add <name> --keyring-backend test" works: # If name does not exist yet, it creates it and returns a yaml # If name alredy exists, prompts for overwrite (y/n) on standard input, generates new address/pubkey/mnemonic # Directory used is xxx/keyring-test if "--home xxx" is specified, otherwise $HOME/.sifnoded/keyring-test def keys_add(self, moniker, mnemonic): stdin = [" ".join(mnemonic)] res = self.sifnoded_exec(["keys", "add", moniker, "--recover"], keyring_backend=self.keyring_backend, sifnoded_home=self.home, stdin=stdin) account = exactly_one(yaml_load(stdout(res))) return account # Creates a new key in the keyring and returns its address ("sif1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"). # Since this is a test keyring, we don't need to save the generated private key. # If we wanted to recreate it, we can capture the mnemonic from the message that is printed to stderr. def keys_add_1(self, moniker): res = self.sifnoded_exec(["keys", "add", moniker], keyring_backend=self.keyring_backend, sifnoded_home=self.home, stdin=["y"]) account = exactly_one(yaml_load(stdout(res))) unused_mnemonic = stderr(res).splitlines()[-1].split(" ") return account def keys_delete(self, name): self.cmd.execst(["sifnoded", "keys", "delete", name, "--keyring-backend", self.keyring_backend], stdin=["y"], check_exit=False) def add_genesis_account(self, sifnodeadmin_addr, tokens): tokens_str = ",".join([sif_format_amount(amount, denom) for amount, denom in tokens]) self.sifnoded_exec(["add-genesis-account", sifnodeadmin_addr, tokens_str], sifnoded_home=self.home) def add_genesis_validators(self, address): args = ["sifnoded", "add-genesis-validators", address] res = self.cmd.execst(args) return res # At the moment only on future/peggy2 branch, called from PeggyEnvironment def add_genesis_validators_peggy(self, evm_network_descriptor, valoper, validator_power): self.sifnoded_exec(["add-genesis-validators", str(evm_network_descriptor), valoper, str(validator_power)], sifnoded_home=self.home) def set_genesis_oracle_admin(self, address): self.sifnoded_exec(["set-genesis-oracle-admin", address], sifnoded_home=self.home) def set_genesis_whitelister_admin(self, address): self.sifnoded_exec(["set-genesis-whitelister-admin", address], sifnoded_home=self.home) def set_gen_denom_whitelist(self, denom_whitelist_file): self.sifnoded_exec(["set-gen-denom-whitelist", denom_whitelist_file], sifnoded_home=self.home) # At the moment only on future/peggy2 branch, called from PeggyEnvironment # This was split from init_common def peggy2_add_account(self, name, tokens, is_admin=False): # TODO Peggy2 devenv feed "yes\nyes" into standard input, we only have "y\n" account = self.keys_add_1(name) account_address = account["address"] self.add_genesis_account(account_address, tokens) if is_admin: self.set_genesis_oracle_admin(account_address) self.set_genesis_whitelister_admin(account_address) return account_address def peggy2_add_relayer_witness_account(self, name, tokens, evm_network_descriptor, validator_power, denom_whitelist_file): account_address = self.peggy2_add_account(name, tokens) # Note: is_admin=False # Whitelist relayer/witness account valoper = self.get_val_address(name) self.set_gen_denom_whitelist(denom_whitelist_file) self.add_genesis_validators_peggy(evm_network_descriptor, valoper, validator_power) return account_address def tx_clp_create_pool(self, chain_id, from_name, symbol, fees, native_amount, external_amount): args = ["tx", "clp", "create-pool", "--chain-id", chain_id, "--from", from_name, "--symbol", symbol, "--fees", sif_format_amount(*fees), "--nativeAmount", str(native_amount), "--externalAmount", str(external_amount), "--yes"] res = self.sifnoded_exec(args, keyring_backend=self.keyring_backend) # TODO home? return yaml_load(stdout(res)) def peggy2_token_registry_register_all(self, registry_path, gas_prices, gas_adjustment, from_account, chain_id ): args = ["tx", "tokenregistry", "register-all", registry_path, "--gas-prices", sif_format_amount(*gas_prices), "--gas-adjustment", str(gas_adjustment), "--from", from_account, "--chain-id", chain_id, "--yes"] res = self.sifnoded_exec(args, keyring_backend=self.keyring_backend, sifnoded_home=self.home) return [json.loads(x) for x in stdout(res).splitlines()] def peggy2_set_cross_chain_fee(self, admin_account_address, network_id, ethereum_cross_chain_fee_token, cross_chain_fee_base, cross_chain_lock_fee, cross_chain_burn_fee, admin_account_name, chain_id, gas_prices, gas_adjustment ): # Checked OK args = ["tx", "ethbridge", "set-cross-chain-fee", admin_account_address, str(network_id), ethereum_cross_chain_fee_token, str(cross_chain_fee_base), str(cross_chain_lock_fee), str(cross_chain_burn_fee), "--from", admin_account_name, "--chain-id", chain_id, "--gas-prices", sif_format_amount(*gas_prices), "--gas-adjustment", str(gas_adjustment), "-y"] res = self.sifnoded_exec(args, keyring_backend=self.keyring_backend, sifnoded_home=self.home) return res def sifnoded_start(self, tcp_url=None, minimum_gas_prices=None, log_format_json=False, log_file=None): sifnoded_exec_args = self.build_start_cmd(tcp_url=tcp_url, minimum_gas_prices=minimum_gas_prices, log_format_json=log_format_json) return self.cmd.spawn_asynchronous_process(sifnoded_exec_args, log_file=log_file) def build_start_cmd(self, tcp_url=None, minimum_gas_prices=None, log_format_json=False): args = [self.binary, "start"] + \ (["--minimum-gas-prices", sif_format_amount(*minimum_gas_prices)] if minimum_gas_prices is not None else []) + \ (["--rpc.laddr", tcp_url] if tcp_url else []) + \ (["--log_level", "debug"] if log_format_json else []) + \ (["--log_format", "json"] if log_format_json else []) + \ (["--home", self.home] if self.home else []) return buildcmd(args) def sifnoded_exec(self, args, sifnoded_home=None, keyring_backend=None, stdin=None, cwd=None): args = [self.binary] + args + \ (["--home", sifnoded_home] if sifnoded_home else []) + \ (["--keyring-backend", keyring_backend] if keyring_backend else []) res = self.cmd.execst(args, stdin=stdin, cwd=cwd) return res def get_status(self, host, port): url = "http://{}:{}/node_info".format(host, port) return json.loads(http_get(url).decode("UTF-8")) def wait_up(self, host, port): while True: from urllib.error import URLError try: return self.get_status(host, port) except URLError: time.sleep(1) class Sifgen: def __init__(self, cmd): self.cmd = cmd self.binary = "sifgen" # Reference: docker/localnet/sifnode/root/scripts/sifnode.sh (branch future/peggy2): # sifgen node create "$CHAINNET" "$MONIKER" "$MNEMONIC" --bind-ip-address "$BIND_IP_ADDRESS" --standalone --keyring-backend test def create_standalone(self, chainnet, moniker, mnemonic, bind_ip_address, keyring_backend=None): args = ["node", "create", chainnet, moniker, mnemonic, bind_ip_address] return self.sifgen_exec(args, keyring_backend=keyring_backend) def sifgen_exec(self, args, keyring_backend=None, cwd=None, env=None): args = [self.binary] + args + \ (["--keyring-backend", keyring_backend] if keyring_backend else []) return self.cmd.execst(args, cwd=cwd, env=env) class Ebrelayer: def __init__(self, cmd): self.cmd = cmd self.binary = "ebrelayer" def peggy2_build_ebrelayer_cmd(self, init_what, network_descriptor, tendermint_node, web3_provider, bridge_registry_contract_address, validator_mnemonic, chain_id, node=None, keyring_backend=None, sign_with=None, symbol_translator_file=None, relayerdb_path=None, log_format=None, extra_args=None, ethereum_private_key=None, ethereum_address=None, home=None, cwd=None ): env = _env_for_ethereum_address_and_key(ethereum_address, ethereum_private_key) args = [ self.binary, init_what, "--network-descriptor", str(network_descriptor), # Network descriptor for the chain (31337) "--tendermint-node", tendermint_node, # URL to tendermint node "--web3-provider", web3_provider, # Ethereum web3 service address (ws://localhost:8545/) "--bridge-registry-contract-address", bridge_registry_contract_address, "--validator-mnemonic", validator_mnemonic, "--chain-id", chain_id # chain ID of tendermint node (localnet) ] + \ (extra_args if extra_args else []) + \ (["--node", node] if node else []) + \ (["--keyring-backend", keyring_backend] if keyring_backend else []) + \ (["--from", sign_with] if sign_with else []) + \ (["--relayerdb-path", relayerdb_path] if relayerdb_path else []) + \ (["--home", home] if home else []) + \ (["--symbol-translator-file", symbol_translator_file] if symbol_translator_file else []) + \ (["--log_format", log_format] if log_format else []) return buildcmd(args, env=env, cwd=cwd) # Legacy stuff - pre-peggy2 # Called from IntegrationContext def init(self, tendermind_node, web3_provider, bridge_registry_contract_address, validator_moniker, validator_mnemonic, chain_id, ethereum_private_key=None, ethereum_address=None, gas=None, gas_prices=None, node=None, keyring_backend=None, sign_with=None, symbol_translator_file=None, relayerdb_path=None, trace=True, cwd=None, log_file=None ): env = _env_for_ethereum_address_and_key(ethereum_address, ethereum_private_key) args = [self.binary, "init", tendermind_node, web3_provider, bridge_registry_contract_address, validator_moniker, " ".join(validator_mnemonic), "--chain-id={}".format(chain_id)] + \ (["--gas", str(gas)] if gas is not None else []) + \ (["--gas-prices", sif_format_amount(*gas_prices)] if gas_prices is not None else []) + \ (["--node", node] if node is not None else []) + \ (["--keyring-backend", keyring_backend] if keyring_backend is not None else []) + \ (["--from", sign_with] if sign_with is not None else []) + \ (["--symbol-translator-file", symbol_translator_file] if symbol_translator_file else []) + \ (["--relayerdb-path", relayerdb_path] if relayerdb_path else []) + \ (["--trace"] if trace else []) return self.cmd.popen(args, env=env, cwd=cwd, log_file=log_file) # This is probably useful for any program that uses web3 library in the same way # ETHEREUM_ADDRESS has to start with "0x" and ETHEREUM_PRIVATE_KEY has to be without "0x". def _env_for_ethereum_address_and_key(ethereum_address, ethereum_private_key): env = {} if ethereum_private_key: assert not ethereum_private_key.startswith("0x") env["ETHEREUM_PRIVATE_KEY"] = ethereum_private_key if ethereum_address: assert ethereum_address.startswith("0x") env["ETHEREUM_ADDRESS"] = ethereum_address return env or None # Avoid passing empty environment
StarcoderdataPython
9722709
from abc import ABCMeta, abstractmethod class BaseInsSegModel(metaclass=ABCMeta): """Base model. The model object must inherit form this class.""" def __init__(self, project_id, data_dir, **kwargs): """ :param project_id: The project id that use this model. :param train_dir: the dataset for training . :param test_dir: the dataset for testing :param :param :param kwargs: Other necessary params. """ self._proj_id = project_id self.data_dir = data_dir @abstractmethod def fit(self, **kwargs): """Train the model use the all train dataset. """ def fit_on_subset(self, **kwargs): """Train the model use the subset train dataset. """ @abstractmethod def predict_proba(self, data_dir, **kwargs): """proba predict. :param data_dir: str The path to the data folder. :param kwargs: list of dict Other necessary params. """ @abstractmethod def predict(self, data_dir, **kwargs): """predict class label. :param data_dir: str The path to the data folder. """ @abstractmethod def test(self, data_dir, label, batch_size:'int', **kwargs): """test the model. return the miou """ @abstractmethod def save_model(self): """Save the model after using (distributed system)."""
StarcoderdataPython
6621735
<gh_stars>1-10 import sys sys.path.append(__path__[0]) from mef90EXODUS import * from mef90ABAQUS import * from mef90GMSH import * from mef90MSC import *
StarcoderdataPython
8087013
#!/bin/env/python #-*- encoding: utf-8 -*- """ """ from __future__ import print_function, division import os def main(): # OSX Cleanup dirpath = os.path.dirname(os.path.abspath(__file__)) for root, dirs, files in os.walk(dirpath): for d in dirs: if d in ['__pycache__']: path = os.path.join(root, d) print("Removing: {}".format(path)) os.system('rm -rf {}'.format(path)) print("Removing dKeras.egg-info") os.system('rm -rf {}'.format(os.path.join(dirpath,'dKeras.egg-info'))) if __name__ == "__main__": main()
StarcoderdataPython
3256178
from django.urls import reverse from django.test import TestCase from sso.organisations.models import OrganisationCountry from sso.test.client import SSOClient class AccountsTest(TestCase): fixtures = ['roles.json', 'test_l10n_data.json', 'app_roles.json', 'test_organisation_data.json', 'test_app_roles.json', 'test_user_data.json'] def setUp(self): self.client = SSOClient() def tearDown(self): pass def test_app_admin_user_list(self): result = self.client.login(username='ApplicationAdmin', password='<PASSWORD>') self.assertEqual(result, True) response = self.client.get(reverse('accounts:app_admin_user_list'), data={'country': OrganisationCountry.objects.first().pk}) self.assertEqual(response.status_code, 200) response = self.client.get(reverse('accounts:app_admin_user_list'), data={'country': 99999}) self.assertEqual(response.status_code, 200) def test_app_admin_update_user(self): result = self.client.login(username='ApplicationAdmin', password='<PASSWORD>') self.assertEqual(result, True) # User.objects.get() response = self.client.get(reverse('accounts:app_admin_user_list')) self.assertEqual(response.status_code, 200) self.assertContains(response, reverse('accounts:app_admin_update_user', kwargs={'uuid': 'a8992f0<PASSWORD>c83ee'})) response = self.client.get(reverse('accounts:app_admin_update_user', kwargs={'uuid': 'a8992f0348634f76b0dac2de4e4c83ee'})) self.assertEqual(response.status_code, 200)
StarcoderdataPython
8175030
from __future__ import print_function from traceback import print_tb from tk_utils import * from imutils.video import VideoStream import time,subprocess out = "/home/nishantg96/ZeMA/" rospy.init_node('myNodeName') # cam = VideoStream(src=0,resolution=(1280,720)).start() # cam2 = VideoStream(src=1,resolution=(1280,720)).start() width = 1280 height = 720 cap = cv2.VideoCapture(0, cv2.CAP_V4L2) cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) cap2 = cv2.VideoCapture(2, cv2.CAP_V4L2) cap2.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) cap2.set(cv2.CAP_PROP_FRAME_WIDTH, width) cap2.set(cv2.CAP_PROP_FRAME_HEIGHT, height) mypid = os.getpid() time.sleep(2.0) app = camera_gui(cap,cap2,out) app.root.mainloop() print("Main Exited Successfully") com = "pkill -9 -f main.py" subprocess.Popen(com, stdout = subprocess.PIPE, shell = True)
StarcoderdataPython
4821129
<reponame>jsatt/python-catalog #!/usr/bin/env python from setuptools import setup long_description = open('README.rst').read() setup_args = dict( name='pycatalog', version='1.2.0', description='Data structure for complexe enumeration.', long_description=long_description, author='<NAME>', author_email='<EMAIL>', url='https://github.com/jsatt/python-catalog', license="MIT License", install_requires=[ 'future' ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Software Development', ], py_modules=['catalog'], ) if __name__ == '__main__': setup(**setup_args)
StarcoderdataPython
3576024
<filename>addons/website_sale_stock/controllers/main.py # -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo.addons.website_sale.controllers.main import WebsiteSale from odoo import http,_ from odoo.http import request from odoo.exceptions import ValidationError class WebsiteSaleStock(WebsiteSale): @http.route() def payment_transaction(self, *args, **kwargs): """ Payment transaction override to double check cart quantities before placing the order """ order = request.website.sale_get_order() values = [] for line in order.order_line: if line.product_id.type == 'product' and line.product_id.inventory_availability in ['always', 'threshold']: cart_qty = sum(order.order_line.filtered(lambda p: p.product_id.id == line.product_id.id).mapped('product_uom_qty')) avl_qty = line.product_id.with_context(warehouse=order.warehouse_id.id).virtual_available if cart_qty > avl_qty: values.append(_( 'You ask for %(quantity)s products but only %(available_qty)s is available', quantity=cart_qty, available_qty=avl_qty if avl_qty > 0 else 0 )) if values: raise ValidationError('. '.join(values) + '.') return super(WebsiteSaleStock, self).payment_transaction(*args, **kwargs)
StarcoderdataPython
5122028
import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.sparse import csr_matrix, identity, kron from scipy.sparse.linalg import eigs, eigsh import itertools from scipy.linalg import block_diag, eig, expm, eigh from scipy.sparse import save_npz, load_npz, csr_matrix, csc_matrix import scipy.sparse as sp from scipy.special import binom import yaml import copy import warnings import os import time from .Hamiltonians import DisplacedAnharmonicOscillator, PolymerVibrations, Polymer, DiagonalizeHamiltonian, LadderOperators from .general_Liouvillian_classes import LiouvillianConstructor class OpenPolymer(Polymer,LiouvillianConstructor): def __init__(self,site_energies,site_couplings,dipoles): """Extends Polymer object to an open systems framework, using the Lindblad formalism to describe bath coupling """ super().__init__(site_energies,site_couplings,dipoles) # Values that need to be set self.optical_dephasing_gamma = 0 self.optical_relaxation_gamma = 0 self.site_to_site_dephasing_gamma = 0 self.site_to_site_relaxation_gamma = 0 self.exciton_relaxation_gamma = 0 self.exciton_exciton_dephasing_gamma = 0 self.kT = 0 def optical_dephasing_operator(self): total_deph = self.occupied_list[0].copy() for i in range(1,len(self.occupied_list)): total_deph += self.occupied_list[i] return total_deph def optical_dephasing_instructions(self): O = self.optical_dephasing_operator() gamma = self.optical_dephasing_gamma return self.make_Lindblad_instructions(gamma,O) def optical_dephasing_Liouvillian(self): instructions = self.optical_dephasing_instructions() return self.make_Liouvillian(instructions) def boltzmann_factors(self,E1,E2): if E1 == E2: return 0.5,0.5 if E1 < E2: return self.boltzmann_factors_ordered_inputs(E1,E2) else: E1_to_E2, E2_to_E1 = self.boltzmann_factors_ordered_inputs(E2,E1) return E2_to_E1, E1_to_E2 def boltzmann_factors_ordered_inputs(self,E1,E2): """E1 must be less than E2""" if self.kT == 0: return 1, 0 Z = np.exp(-E1/self.kT) + np.exp(-E2/self.kT) if np.isclose(Z,0): E2_to_E1 = 1 E1_to_E2 = 0 else: E2_to_E1 = np.exp(-E1/self.kT)/Z E1_to_E2 = np.exp(-E2/self.kT)/Z return E2_to_E1, E1_to_E2 def optical_relaxation_instructions(self): eg = 0 ins_list = [] gamma = self.optical_relaxation_gamma for n in range(len(self.energies)): en = self.energies[n] bg, bn = self.boltzmann_factors(eg,en) O = self.up_list[n] instructions2 = self.make_Lindblad_instructions(gamma * bg,O.T) ins_list += instructions2 if np.isclose(bn,0): pass else: instructions1 = self.make_Lindblad_instructions(gamma * bn,O) ins_list += instructions1 return ins_list def optical_relaxation_Liouvillian(self): inst_list = self.optical_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_relaxation_instructions(self): nm = itertools.combinations(range(len(self.energies)),2) i = 0 ins_list = [] gamma = self.site_to_site_relaxation_gamma for n,m in nm: en = self.energies[n] em = self.energies[m] bn,bm = self.boltzmann_factors(en,em) O = self.exchange_list[i] instructions1 = self.make_Lindblad_instructions(gamma * bn,O) instructions2 = self.make_Lindblad_instructions(gamma * bm,O.T) ins_list += instructions1 ins_list += instructions2 i+=1 return ins_list def site_to_site_relaxation_Liouvillian(self): inst_list = self.site_to_site_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_dephasing_operator_list(self): s_deph_list = [] for (i,j) in itertools.combinations(range(self.num_sites),2): s_deph_list.append(self.occupied_list[i] - self.occupied_list[j]) return s_deph_list def all_site_dephasing_instructions(self): s_deph_list = self.site_to_site_dephasing_operator_list() Lindblad_instruction_list = [] gamma = self.site_to_site_dephasing_gamma for O in s_deph_list: Lindblad_instruction_list += self.make_Lindblad_instructions(gamma,O) return Lindblad_instruction_list def all_site_dephasing_Liouvillian(self): inst_list = self.all_site_dephasing_instructions() L = self.make_Liouvillian(inst_list) return L/(2*self.num_sites) def set_electronic_dissipation_instructions(self): inst_list = [] if self.optical_dephasing_gamma != 0: inst_list += self.optical_dephasing_instructions() if self.site_to_site_dephasing_gamma != 0: inst_list += self.all_site_dephasing_instructions() if self.site_to_site_relaxation_gamma != 0: inst_list += self.site_to_site_relaxation_instructions() if self.optical_relaxation_gamma != 0: inst_list += self.optical_relaxation_instructions() self.electronic_dissipation_instructions = inst_list def make_manifold_hamiltonian_instructions(self,ket_manifold,bra_manifold): Hket = self.get_electronic_hamiltonian(manifold_num = ket_manifold) Hbra = self.get_electronic_hamiltonian(manifold_num = bra_manifold) return self.make_commutator_instructions2(-1j*Hket,-1j*Hbra) def make_total_Liouvillian(self): drho = self.make_Liouvillian(self.make_manifold_hamiltonian_instructions('all','all')) if self.num_sites > 1: drho += self.all_exciton_dephasing_Liouvillian() drho += self.exciton_relaxation_Liouvillian() # drho += self.optical_relaxation_Liouvillian() drho += self.optical_dephasing_Liouvillian() self.L = drho def eigfun(self,L,*,check_eigenvectors = True,invert = True,populations_only = False): eigvals, eigvecs = np.linalg.eig(L) eigvals = np.round(eigvals,12) sort_indices = eigvals.argsort() eigvals.sort() eigvecs = eigvecs[:,sort_indices] for i in range(eigvals.size): max_index = np.argmax(np.abs(eigvecs[:,i])) if np.real(eigvecs[max_index,i]) < 0: eigvecs[:,i] *= -1 if eigvals[i] == 0: # eigenvalues of 0 correspond to thermal distributions, # which should have unit trace in the Hamiltonian space if populations_only: trace_norm = eigvecs[:,i].sum() eigvecs[:,i] = eigvecs[:,i] / trace_norm else: shape = int(np.sqrt(eigvals.size)) trace_norm = eigvecs[:,i].reshape(shape,shape).trace() if np.isclose(trace_norm,0): pass else: eigvecs[:,i] = eigvecs[:,i] / trace_norm if invert: eigvecs_left = np.linalg.pinv(eigvecs) else: eigvals_left, eigvecs_left = np.linalg.eig(L.T) eigvals_left = np.round(eigvals_left,12) sort_indices_left = eigvals_left.argsort() eigvals_left.sort() eigvecs_left = eigvecs_left[:,sort_indices_left] eigvecs_left = eigvecs_left.T for i in range(eigvals_left.size): norm = np.dot(eigvecs_left[i,:],eigvecs[:,i]) eigvecs_left[i,:] *= 1/norm if check_eigenvectors: LV = L.dot(eigvecs) D = eigvecs_left.dot(LV) if np.allclose(D,np.diag(eigvals),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(eigvals))))) self.eigenvalues = eigvals self.eigenvectors = {'left':eigvecs_left,'right':eigvecs} return eigvals, eigvecs, eigvecs_left def save_L(self,dirname): save_npz(os.path.join(dirname,'L.npz'),csr_matrix(self.L)) def save_L_by_manifold(self): np.savez(os.path.join(self.base_path,'L.npz'),**self.L_by_manifold) def save_eigsystem(self,dirname): np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds = self.eigenvectors['right']) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds = self.eigenvectors['left']) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds = self.eigenvalues) def save_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu.shape[0]) mu_ket = np.kron(self.mu,II.T) mu_bra = np.kron(II,self.mu.T) mu_mask_tol = 10 mu_ket_t = np.dot(np.dot(evl,mu_ket),ev) mu_ket_3d = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d[:,:,0] = mu_ket_t mu_bra_t = np.dot(np.dot(evl,mu_bra),ev) mu_bra_3d = np.zeros((mu_bra_t.shape[0],mu_bra_t.shape[0],3),dtype='complex') mu_bra_3d[:,:,0] = mu_bra_t if mask: ket_mask = np.zeros(mu_ket_t.shape,dtype='bool') ket_mask[:,:] = np.round(mu_ket_t,mu_mask_tol)[:,:] mu_ket_t_masked = mu_ket_t * ket_mask mu_ket_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d_masked[:,:,0] = mu_ket_t_masked bra_mask = np.zeros(mu_bra_t.shape,dtype='bool') bra_mask[:,:] = np.round(mu_bra_t,mu_mask_tol)[:,:] mu_bra_t_masked = mu_bra_t * bra_mask mu_bra_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_bra_3d_masked[:,:,0] = mu_bra_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket=ket_mask,bra=bra_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket=mu_ket_3d_masked,bra=mu_bra_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(self.mu_ket_up.T,II.T) mu_bra_up = np.kron(II,self.mu_ket_up) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_t = np.dot(np.dot(evl,mu_ket_up),ev) mu_ket_up_3d = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up_t mu_bra_up_t = np.dot(np.dot(evl,mu_bra_up),ev) mu_bra_up_3d = np.zeros((mu_bra_up_t.shape[0],mu_bra_up_t.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up_t mu_ket_down_t = np.dot(np.dot(evl,mu_ket_down),ev) mu_ket_down_3d = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down_t mu_bra_down_t = np.dot(np.dot(evl,mu_bra_down),ev) mu_bra_down_3d = np.zeros((mu_bra_down_t.shape[0],mu_bra_down_t.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down_t if mask: ket_up_mask = np.zeros(mu_ket_up_t.shape,dtype='bool') ket_up_mask[:,:] = np.round(mu_ket_up_t,mu_mask_tol)[:,:] mu_ket_up_t_masked = mu_ket_up_t * ket_up_mask mu_ket_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d_masked[:,:,0] = mu_ket_up_t_masked bra_up_mask = np.zeros(mu_bra_up_t.shape,dtype='bool') bra_up_mask[:,:] = np.round(mu_bra_up_t,mu_mask_tol)[:,:] mu_bra_up_t_masked = mu_bra_up_t * bra_up_mask mu_bra_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_bra_up_3d_masked[:,:,0] = mu_bra_up_t_masked ket_down_mask = np.zeros(mu_ket_down_t.shape,dtype='bool') ket_down_mask[:,:] = np.round(mu_ket_down_t,mu_mask_tol)[:,:] mu_ket_down_t_masked = mu_ket_down_t * ket_down_mask mu_ket_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d_masked[:,:,0] = mu_ket_down_t_masked bra_down_mask = np.zeros(mu_bra_down_t.shape,dtype='bool') bra_down_mask[:,:] = np.round(mu_bra_down_t,mu_mask_tol)[:,:] mu_bra_down_t_masked = mu_bra_down_t * bra_down_mask mu_bra_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_bra_down_3d_masked[:,:,0] = mu_bra_down_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket_up=ket_up_mask,bra_up=bra_up_mask, ket_down=ket_down_mask,bra_down=bra_down_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket_up=mu_ket_up_3d_masked, bra_up=mu_bra_up_3d_masked,ket_down=mu_ket_down_3d_masked, bra_down=mu_bra_down_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu_site_basis(self,dirname): II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(self.mu_ket_up.T,II.T) mu_bra_up = np.kron(II,self.mu_ket_up) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_3d = np.zeros((mu_ket_up.shape[0],mu_ket_up.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up mu_bra_up_3d = np.zeros((mu_bra_up.shape[0],mu_bra_up.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up mu_ket_down_3d = np.zeros((mu_ket_down.shape[0],mu_ket_down.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down mu_bra_down_3d = np.zeros((mu_bra_down.shape[0],mu_bra_down.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down np.savez(os.path.join(dirname,'mu_site_basis.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) class OpenPolymerVibrations(OpenPolymer): def __init__(self,yaml_file,*,mask_by_occupation_num=True,force_detailed_balance=False,for_RKE=False): """Initial set-up is the same as for the Polymer class, but I also need to unpack the vibrational_frequencies, which must be passed as a nested list. Each site may have N vibrational modes, and each has a frequency, a displacement and a frequency shift for the excited state for sites a, b, ... """ with open(yaml_file) as yamlstream: params = yaml.load(yamlstream,Loader=yaml.SafeLoader) self.base_path = os.path.split(yaml_file)[0] self.save_path = os.path.join(self.base_path,'open') os.makedirs(self.save_path,exist_ok=True) super().__init__(params['site_energies'],params['site_couplings'],np.array(params['dipoles'])) self.H_diagonalization_time = 0 self.L_diagonalization_time = 0 self.L_construction_time = 0 self.truncation_size = params['initial truncation size'] try: self.maximum_manifold = params['maximum_manifold'] except: self.maximum_manifold = np.inf self.maximum_manifold = min(self.maximum_manifold,self.num_sites) self.params = params self.set_bath_coupling() if self.optical_relaxation_gamma != 0: self.manifolds_separable = False else: self.manifolds_separable = True self.set_electronic_dissipation_instructions() self.occupation_num_mask = mask_by_occupation_num self.set_vibrations() self.set_vibrational_ladder_operators() e_ham = self.extract_electronic_subspace(self.electronic_hamiltonian,0,self.maximum_manifold) self.total_hamiltonian = np.kron(e_ham,self.vibrational_identity) self.add_vibrations() t0 = time.time() self.set_H_eigsystem_by_manifold() self.H_diagonalization_time = time.time() - t0 self.make_condon_mu() self.make_condon_mu_dict() if force_detailed_balance: H_eigentransform = True t0 = time.time() self.all_instructions = self.make_commutator_instructions(-1j*self.total_hamiltonian) self.set_L_by_manifold(H_eigentransform=H_eigentransform,add_eigenstate_relaxation_effects = False) self.add_eigenstate_relaxation_effects() self.add_eigenstate_optical_dephasing_effects() self.L_construction_time = time.time() - t0 else: H_eigentransform = False t0 = time.time() self.all_instructions = self.convert_electronic_instructions_to_full_instructions(self.electronic_dissipation_instructions) self.all_instructions += self.make_commutator_instructions(-1j*self.total_hamiltonian) self.all_instructions += self.vibrational_dissipation_instructions() if self.manifolds_separable: self.set_L_by_manifold(H_eigentransform=H_eigentransform) else: self.set_L() self.L_construction_time = time.time() - t0 if for_RKE: self.set_mu_by_manifold(H_eigentransform=H_eigentransform,L_eigentransform=False) self.save_mu_by_manifold(pruned=False) self.save_L_by_manifold() self.save_rho0(H_eigentransform=H_eigentransform) else: t0 = time.time() if self.manifolds_separable: self.set_eigensystem_by_manifold(force_detailed_balance = force_detailed_balance) self.set_mu_by_manifold(H_eigentransform=H_eigentransform) self.save_mu_by_manifold(pruned=True) self.save_eigensystem_by_manifold() self.L_diagonalization_time = time.time() - t0 else: self.set_eigensystem() # self.set_mu() # self.save_mu(pruned=True) # self.save_eigensystem() # self.L_diagonalization_time = time.time() - t0 self.save_timings() def save_timings(self): save_dict = {'H_diagonalization_time':self.H_diagonalization_time, 'L_diagonalization_time':self.L_diagonalization_time, 'L_construction_time':self.L_construction_time} np.savez(os.path.join(self.save_path,'Liouvillian_timings.npz'),**save_dict) def set_H_eigsystem_by_manifold(self): self.H_eigenvalues = [] self.H_eigenvectors = [] for i in range(self.maximum_manifold+1): e,v = np.linalg.eigh(self.extract_vibronic_manifold(self.total_hamiltonian,i)) for i in range(e.size): max_ind = np.argmax(np.abs(v[:,i])) if v[max_ind,i] < 0: v[:,i] = v[:,i] * -1 self.H_eigenvalues.append(e) self.H_eigenvectors.append(v) def save_rho0(self,*,H_eigentransform=False): H_size = self.H_eigenvalues[0].size if H_size == 1: rho0 = np.array([[1]]) elif self.kT == 0: rho0 = np.zeros((H_size,H_size)) rho0[0,0] = 1 else: Z = np.sum(np.exp(-self.H_eigenvalues[0]/self.kT)) rho0_diag = np.exp(-self.H_eigenvalues[0]/self.kT)/Z rho0 = np.diag(rho0_diag) if H_eigentransform: # Already in the eigenbasis pass else: # Go back to original basis v = self.H_eigenvectors[0] rho0 = v.dot(rho0.dot(v.T)) rho0 = rho0.flatten() np.save(os.path.join(self.base_path,'rho0.npy'),rho0) def save_L(self): save_npz(os.path.join(self.save_path,'L.npz'),csr_matrix(self.L)) def save_L_by_manifold(self): np.savez(os.path.join(self.save_path,'L.npz'),**self.L_by_manifold) def eigfun2(self,ket_manifold_num,bra_manifold_num,*,check_eigenvectors = True): key = str(ket_manifold_num) + str(bra_manifold_num) L = self.L_by_manifold[key] E = L.diagonal().copy() V = np.eye(E.size,dtype='complex') VL = V.copy() if ket_manifold_num == bra_manifold_num: size = self.H_eigenvalues[ket_manifold_num].size pop_inds = np.arange(size)*(size+1) L_pop = L[pop_inds,:] L_pop = L_pop[:,pop_inds] e, v, vl = self.eigfun(L_pop,populations_only=True) E[pop_inds] = e[:] for i,j in zip(pop_inds,range(len(pop_inds))): V[pop_inds,i] = v[:,j] VL[pop_inds,i] = vl[:,j] if check_eigenvectors: LV = L.dot(V) D = VL.dot(LV) if np.allclose(D,np.diag(E),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(E))))) self.eigenvalues = E self.eigenvectors = {'left':VL,'right':V} return E,V,VL def vibrational_occupation_to_indices(self,vibration,occ_num,manifold_num): single_mode_occ = np.arange(self.truncation_size) vib_occ = self.vibrational_vector_of_ones_kron(vibration,single_mode_occ) masked_single_mode_occ = vib_occ[self.vibrational_mask] electronic_manifold_hamiltonian = self.get_electronic_hamiltonian(manifold_num = manifold_num) elec_size = electronic_manifold_hamiltonian.shape[0] masked_single_mode_occ = np.kron(np.ones(elec_size),masked_single_mode_occ) return np.where(masked_single_mode_occ == occ_num)[0] def electronic_occupation_to_indices(self,site_num,manifold_num): single_mode_occ = np.arange(2) elec_occ = self.electronic_vector_of_ones_kron(site_num,single_mode_occ) mask = self.electronic_manifold_mask(manifold_num) masked_elec_occ = elec_occ[mask] masked_elec_occ = np.kron(masked_elec_occ,np.ones(self.vibrational_mask[0].size)) return np.where(masked_elec_occ == 1)[0] def get_vibrational_relaxation_rates(self,manifold_num): e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): for n in range(self.num_vibrations): if j > i: rates[i,j] += self.single_vibrational_relaxation_rate(i,j,n,manifold_num) return rates def single_vibrational_relaxation_rate(self,i,j,vibration,manifold_num): vi = self.H_eigenvectors[manifold_num][:,i] vj = self.H_eigenvectors[manifold_num][:,j] rate = 0 for k in range(self.truncation_size): k_inds = self.vibrational_occupation_to_indices(vibration,k,manifold_num) kp1_inds = self.vibrational_occupation_to_indices(vibration,k+1,manifold_num) for k_ind,kp1_ind in zip(k_inds,kp1_inds): rate = rate + np.abs(vi[k_ind])**2 * np.abs(vj[kp1_ind])**2*np.sqrt(k+1) return rate def get_electronic_relaxation_rates(self,a,b,manifold_num): e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): if j > i: rates[i,j] += self.single_electronic_relaxation_rate(i,j,a,b,manifold_num) return rates def get_all_electronic_relaxation_rates(self,manifold_num): """Treats all sites as having the same relaxation rates """ e = self.H_eigenvalues[manifold_num] rates = np.zeros((e.size,e.size)) for i in range(e.size): for j in range(e.size): if j > i: for a in range(len(self.energies)): Ea = self.energies[a] for b in range(len(self.energies)): Eb = self.energies[b] if Eb > Ea: rates[i,j] += self.single_electronic_relaxation_rate(i,j,a,b,manifold_num) return rates def get_all_relaxation_rates(self,manifold_num): rates = self.vibrational_gamma * self.get_vibrational_relaxation_rates(manifold_num) rates = rates + self.site_to_site_relaxation_gamma * self.get_all_electronic_relaxation_rates(manifold_num) return rates def all_eigenstate_relaxation_instructions_by_manifold(self,manifold_num): rates = self.get_all_relaxation_rates(manifold_num) E = self.H_eigenvalues[manifold_num] ins = [] for i in range(rates.shape[0]): for j in range(rates.shape[1]): if j > i: O = np.zeros(rates.shape) O[i,j] = 1 down, up = self.boltzmann_factors(E[i],E[j]) down = down * rates[i,j] up = up * rates[i,j] ins += self.make_Lindblad_instructions(down,O) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions(up,O.T) return ins def all_eigenstate_relaxation_instructions_by_coherence(self,ket_manifold_num,bra_manifold_num): if ket_manifold_num == bra_manifold_num: return self.all_eigenstate_relaxation_instructions_by_manifold(ket_manifold_num) ket_rates = self.get_all_relaxation_rates(ket_manifold_num) E_ket = self.H_eigenvalues[ket_manifold_num] bra_rates = self.get_all_relaxation_rates(bra_manifold_num) E_bra = self.H_eigenvalues[bra_manifold_num] ins = [] Obra = np.zeros(bra_rates.shape) for i in range(ket_rates.shape[0]): for j in range(ket_rates.shape[1]): if j > i: Oket = np.zeros(ket_rates.shape) Oket[i,j] = 1 down,up = self.boltzmann_factors(E_ket[i],E_ket[j]) down = down * ket_rates[i,j] up = up * ket_rates[i,j] ins += self.make_Lindblad_instructions2_Obra0(down,Oket,Obra) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions2_Obra0(up,Oket.T,Obra) Oket = np.zeros(ket_rates.shape) for i in range(bra_rates.shape[0]): for j in range(bra_rates.shape[1]): if j > i: Obra = np.zeros(bra_rates.shape) Obra[i,j] = 1 down,up = self.boltzmann_factors(E_bra[i],E_bra[j]) down = down * bra_rates[i,j] up = up * bra_rates[i,j] ins += self.make_Lindblad_instructions2_Oket0(down,Oket,Obra) if np.isclose(up,0): pass else: ins += self.make_Lindblad_instructions2_Oket0(up,Oket,Obra.T) return ins def single_electronic_relaxation_rate(self,i,j,a,b,manifold_num): vi = self.H_eigenvectors[manifold_num][:,i] vj = self.H_eigenvectors[manifold_num][:,j] a_inds = self.electronic_occupation_to_indices(a,manifold_num) b_inds = self.electronic_occupation_to_indices(b,manifold_num) rate = np.sum(np.abs(vi[a_inds])**2) * np.sum(np.abs(vj[b_inds])**2) return rate def make_eigenstate_relaxation_Lindblad_all_rates(self,rates,manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" E = self.H_eigenvalues[manifold_num] size = E.size pop_inds = np.arange(size)*(size+1) pop_subspace = np.zeros((pop_inds.size,pop_inds.size)) L_diagonal = np.zeros((size,size)) for i in range(size): for j in range(size): if j > i: down,up = self.boltzmann_factors(E[i],E[j]) down = down * rates[i,j] up = up * rates[i,j] pop_subspace[j,j] += -0.5*down pop_subspace[i,j] += 0.5*down pop_subspace[i,i] += -0.5*up pop_subspace[j,i] += 0.5*up L_diagonal[j,:] += -0.25*down L_diagonal[:,j] += -0.25*down L_diagonal[j,j] += -0.5*down L_diagonal[i,:] += -0.25*up L_diagonal[:,i] += -0.25*up L_diagonal[i,i] += -0.5*up L_total = np.diag(L_diagonal.ravel()) for i,j in zip(pop_inds,np.arange(pop_inds.size)): L_total[i,pop_inds] = pop_subspace[j,:] return L_total def make_eigenstate_relaxation_Lindblad_all_rates_by_coherence(self,ket_rates,bra_rates,ket_manifold_num,bra_manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" if ket_manifold_num == bra_manifold_num: return self.make_eigenstate_relaxation_Lindblad_all_rates(ket_rates,ket_manifold_num) E_ket = self.H_eigenvalues[ket_manifold_num] E_bra = self.H_eigenvalues[bra_manifold_num] ket_size = E_ket.size bra_size = E_bra.size L_diagonal = np.zeros((ket_size,bra_size)) for i in range(ket_size): for j in range(ket_size): if j > i: down,up = self.boltzmann_factors(E_ket[i],E_ket[j]) down = down * ket_rates[i,j] up = up * ket_rates[i,j] L_diagonal[j,:] += -0.25*down L_diagonal[i,:] += -0.25*up for i in range(bra_size): for j in range(bra_size): if j > i: down,up = self.boltzmann_factors(E_bra[i],E_bra[j]) down = down * bra_rates[i,j] down = down * bra_rates[i,j] L_diagonal[:,j] += -0.25*down L_diagonal[:,i] += -0.25*up L_total = np.diag(L_diagonal.ravel()) return L_total def add_eigenstate_relaxation_effects(self): for k in range(self.maximum_manifold+1): rates_k = self.get_all_relaxation_rates(k) for l in range(self.maximum_manifold+1): rates_l = self.get_all_relaxation_rates(l) key = str(k) + str(l) L = self.L_by_manifold[key] L += self.make_eigenstate_relaxation_Lindblad_all_rates_by_coherence(rates_k,rates_l,k,l) def add_eigenstate_optical_dephasing_effects(self): for k in range(self.maximum_manifold+1): for l in range(self.maximum_manifold+1): if k == l: pass else: key = str(k) + str(l) L = self.L_by_manifold[key] L += self.make_eigenstate_optical_dephasing_Lindblad(k,l) def make_eigenstate_relaxation_Lindblad(self,gamma,i,j,manifold_num): """From j to i. Factor of 0.5 matches my previous definition of Lindblad formalism""" size = self.H_eigenvalues[manifold_num].size pop_inds = np.arange(size)*(size+1) pop_subspace = np.zeros((pop_inds.size,pop_inds.size)) pop_subspace[j,j] = -0.5 pop_subspace[i,j] = 0.5 L_diagonal = np.zeros((size,size)) L_diagonal[j,:] = -0.25 L_diagonal[:,j] = -0.25 L_diagonal[j,j] = -0.5 L_total = np.diag(L_diagonal.ravel()) for i,j in zip(pop_inds,np.arange(pop_inds.size)): L_total[i,pop_inds] = pop_subspace[j,:] return gamma*L_total def make_eigenstate_relaxation_Lindblad_optical_coherence(self,gamma,i,j,ket_manifold_num,bra_manifold_num,*, relaxation_in_ket = True): """From j to i. Factor of 0.25 matches my previous definition of Lindblad formalism""" ket_size = self.H_eigenvalues[ket_manifold_num].size bra_size = self.H_eigenvalues[bra_manifold_num].size L_diagonal = np.zeros((ket_size,bra_size)) if relaxation_in_ket: L_diagonal[j,:] = -0.25 else: L_diagonal[:,j] = -0.25 L_total = np.diag(L_diagonal.ravel()) return gamma*L_total def make_eigenstate_optical_dephasing_Lindblad(self,ket_manifold_num,bra_manifold_num): """Use a constant dephasing rate for all states: my best idea is to createe the dephasing Lindblad for the electronic space only, and use it to fill in a single rate on the diagonal of the Liouvillian. The trick is to get dephasing between the nth and n+kth manifold right, when k > 1 (k = 1 is simply gamma)""" opt_deph = self.optical_dephasing_Liouvillian().diagonal().reshape(self.electronic_hamiltonian.shape) opt_deph = self.extract_coherence(opt_deph,ket_manifold_num,bra_manifold_num).ravel() if np.allclose(opt_deph[0],opt_deph): pass else: raise Exception('All optical dephasing rates are not the same, unknown error') ket_size = self.H_eigenvalues[ket_manifold_num].size bra_size = self.H_eigenvalues[bra_manifold_num].size opt_deph = np.ones((ket_size,bra_size),dtype='complex') * opt_deph[0] return np.diag(opt_deph.ravel()) def set_bath_coupling(self): try: self.site_to_site_relaxation_gamma = self.params['bath']['site_to_site_relaxation_gamma'] except KeyError: pass try: self.site_to_site_dephasing_gamma = self.params['bath']['site_to_site_dephasing_gamma'] except KeyError: pass try: self.optical_dephasing_gamma = self.params['bath']['optical_dephasing_gamma'] except KeyError: pass try: self.optical_relaxation_gamma = self.params['bath']['optical_relaxation_gamma'] except KeyError: pass try: self.vibrational_gamma = self.params['bath']['vibrational_gamma'] except KeyError: self.vibrational_gamma = 0.1 try: self.kT = self.params['bath']['kT'] except KeyError: pass def convert_electronic_instructions_to_full_instructions(self,inst_list): new_inst_list = [] for ins in inst_list: left,right = ins if self.manifolds_separable == True: pass else: left = self.extract_electronic_subspace(left,0,self.maximum_manifold) right = self.extract_electronic_subspace(right,0,self.maximum_manifold) left = np.kron(left,self.vibrational_identity) right = np.kron(right,self.vibrational_identity) new_inst_list.append((left,right)) return new_inst_list def vibronic_manifold_mask(self,manifold_num): """Gets the indices of the Hilbert space that occupy a particular electronic manifold, including all vibrational degrees of freedom from that manifold """ try: vib_size = self.vibrational_mask[0].size except AttributeError: N = self.truncation_size nv = self.num_vibrations vib_size = N**nv vib_ones = np.ones(vib_size,dtype='int') vibronic_occupation_number = np.kron(self.electronic_total_occupation_number,vib_ones) manifold_inds = np.where(vibronic_occupation_number == manifold_num)[0] return manifold_inds def extract_vibronic_coherence(self,O,manifold1,manifold2): """Returns result of projecting the Operator O onto manifold1 on the left and manifold2 on the right """ manifold1_inds = self.vibronic_manifold_mask(manifold1) manifold2_inds = self.vibronic_manifold_mask(manifold2) O = O[manifold1_inds,:] O = O[:,manifold2_inds] return O def extract_vibronic_manifold(self,O,manifold_num): """Projects operator into the given electronic excitation manifold """ return self.extract_vibronic_coherence(O,manifold_num,manifold_num) def set_L(self): self.L = self.make_Liouvillian(self.all_instructions) def set_eigensystem(self): self.eigfun(self.L) def set_L_by_manifold(self,*,H_eigentransform=False,add_eigenstate_relaxation_effects = False): all_inst = self.all_instructions self.L_by_manifold = dict() for i in range(self.maximum_manifold+1): for j in range(self.maximum_manifold+1): key = str(i) + str(j) inst = self.extract_coherence_instructions_from_full_instructions(all_inst,i,j,H_eigentransform=H_eigentransform) if add_eigenstate_relaxation_effects: inst += self.all_eigenstate_relaxation_instructions_by_coherence(i,j) self.L_by_manifold[key] = self.make_Liouvillian(inst) def set_eigensystem_by_manifold(self,*,force_detailed_balance = False): self.right_eigenvectors_by_manifold = dict() self.left_eigenvectors_by_manifold = dict() self.eigenvalues_by_manifold = dict() for i in range(self.maximum_manifold+1): for j in range(self.maximum_manifold+1): key = str(i) + str(j) if force_detailed_balance: e, r, l = self.eigfun2(i,j,check_eigenvectors = False) else: e, r, l = self.eigfun(self.L_by_manifold[key]) self.right_eigenvectors_by_manifold[key] = r self.left_eigenvectors_by_manifold[key] = l self.eigenvalues_by_manifold[key] = e def make_mu_by_manifold_ket(self,old_manifold,change,*,H_eigentransform=False,L_eigentransform=True): i,j = old_manifold i2 = i + change if i2 >= 0 and i2 <= self.maximum_manifold: pass else: return None, None if H_eigentransform: Vold = self.H_eigenvectors[i] Vnew = self.H_eigenvectors[i2] else: pass j2 = j bra_eye = np.eye(self.extract_vibronic_manifold(self.total_hamiltonian,j).shape[0]) old_key = str(i) + str(j) new_key = str(i2) + str(j2) all_mus = [] mu_dtype='float64' for pol in self.pols: full_mu = self.vibronic_mu_dict[pol] mu = self.extract_vibronic_coherence(full_mu,i2,i) if H_eigentransform: mu = Vnew.T.dot(mu.dot(Vold)) mu = np.kron(mu,bra_eye) if L_eigentransform: l = self.left_eigenvectors_by_manifold[new_key] r = self.right_eigenvectors_by_manifold[old_key] mu = l.dot(mu.dot(r)) if np.allclose(np.imag(mu),0): mu = np.real(mu) else: mu_dtype = 'complex128' all_mus.append(mu) mu_shape = all_mus[0].shape mu_3d = np.zeros((mu_shape[0],mu_shape[1],3),dtype=mu_dtype) for i in range(3): mu_3d[:,:,i] = all_mus[i] mu_key = old_key + '_to_' + new_key return mu_key, mu_3d def make_mu_by_manifold_bra(self,old_manifold,change,*,H_eigentransform=False,L_eigentransform=True): i,j = old_manifold j2 = j + change if j2 >= 0 and j2 <= self.maximum_manifold: pass else: return None, None if H_eigentransform: Vold = self.H_eigenvectors[j] Vnew = self.H_eigenvectors[j2] else: pass i2 = i ket_eye = np.eye(self.extract_vibronic_manifold(self.total_hamiltonian,i).shape[0]) old_key = str(i) + str(j) new_key = str(i2) + str(j2) all_mus = [] mu_dtype='float64' for pol in self.pols: full_mu = self.vibronic_mu_dict[pol] mu = self.extract_vibronic_coherence(full_mu,j,j2) if H_eigentransform: mu = Vold.T.dot(mu.dot(Vnew)) mu = np.kron(ket_eye,mu.T) if L_eigentransform: l = self.left_eigenvectors_by_manifold[new_key] r = self.right_eigenvectors_by_manifold[old_key] mu = l.dot(mu.dot(r)) if np.allclose(np.imag(mu),0): mu = np.real(mu) else: mu_dtype = 'complex128' all_mus.append(mu) mu_shape = all_mus[0].shape mu_3d = np.zeros((mu_shape[0],mu_shape[1],3),dtype=mu_dtype) for i in range(3): mu_3d[:,:,i] = all_mus[i] mu_key = old_key + '_to_' + new_key return mu_key, mu_3d def append_mu_by_manifold(self,old_manifold,change,ket_flag,H_eigentransform=False, L_eigentransform=True): if ket_flag: f = self.make_mu_by_manifold_ket else: f = self.make_mu_by_manifold_bra key, mu = f(old_manifold,change,H_eigentransform=H_eigentransform, L_eigentransform=L_eigentransform) if key == None: pass else: boolean_mu = np.zeros(mu.shape[:2],dtype='bool') boolean_mu[:,:] = np.round(np.sum(np.abs(mu)**2,axis=-1),12) mu = mu * boolean_mu[:,:,np.newaxis] self.boolean_mu_by_manifold[key] = boolean_mu self.mu_by_manifold[key] = mu def set_mu_by_manifold(self,H_eigentransform=False,L_eigentransform=True): self.mu_by_manifold = dict() self.boolean_mu_by_manifold = dict() changes = [-1,1] for i in range(self.maximum_manifold+1): for j in range(self.maximum_manifold+1): manifold = (i,j) self.append_mu_by_manifold(manifold,1,True,H_eigentransform=H_eigentransform,L_eigentransform=L_eigentransform) self.append_mu_by_manifold(manifold,-1,True,H_eigentransform=H_eigentransform,L_eigentransform=L_eigentransform) self.append_mu_by_manifold(manifold,1,False,H_eigentransform=H_eigentransform,L_eigentransform=L_eigentransform) self.append_mu_by_manifold(manifold,-1,False,H_eigentransform=H_eigentransform,L_eigentransform=L_eigentransform) def save_mu_by_manifold(self,*,pruned=True): if pruned: np.savez(os.path.join(self.save_path,'mu_pruned.npz'),**self.mu_by_manifold) np.savez(os.path.join(self.save_path,'mu_boolean.npz'),**self.boolean_mu_by_manifold) else: np.savez(os.path.join(self.save_path,'mu.npz'),**self.mu_by_manifold) def save_eigensystem_by_manifold(self): np.savez(os.path.join(self.save_path,'eigenvalues.npz'),**self.eigenvalues_by_manifold) np.savez(os.path.join(self.save_path,'right_eigenvectors.npz'),**self.right_eigenvectors_by_manifold) np.savez(os.path.join(self.save_path,'left_eigenvectors.npz'),**self.left_eigenvectors_by_manifold) def extract_coherence_instructions_from_full_instructions(self,inst_list,manifold1,manifold2,*,H_eigentransform=False,trim = None): new_inst_list = [] H1 = self.extract_vibronic_manifold(self.total_hamiltonian,manifold1) H2 = self.extract_vibronic_manifold(self.total_hamiltonian,manifold2) if H_eigentransform: V1 = self.H_eigenvectors[manifold1] V2 = self.H_eigenvectors[manifold2] else: V1 = np.eye(H1.shape[0]) V2 = np.eye(H2.shape[0]) for (left,right) in inst_list: new_left = self.extract_vibronic_manifold(left,manifold1) new_left = V1.T.dot(new_left.dot(V1)) new_right = self.extract_vibronic_manifold(right,manifold2) new_right = V2.T.dot(new_right.dot(V2)) new_inst_list.append((new_left[:trim,:trim],new_right[:trim,:trim])) return new_inst_list def extract_manifold_instructions_from_full_instructions(self,inst_list,manifold): return self.extract_coherence_instructions_from_full_instructions(inst_list,manifold,manifold) def add_vibrations(self): v0 = self.empty_vibrations v1 = self.occupied_vibrations self.vibrational_hamiltonian = np.zeros(self.total_hamiltonian.shape) for i in range(len(v0)): self.vibrational_hamiltonian += v0[i] self.vibrational_hamiltonian += v1[i] self.total_hamiltonian = self.total_hamiltonian + self.vibrational_hamiltonian def set_vibrations(self): vibration_params = self.params['vibrations'] # Vibrations in the ground manifold are assumed to be diagonal emp_vibs = [self.construct_vibrational_hamiltonian(mode_dict,0) for mode_dict in vibration_params] self.num_vibrations = len(emp_vibs) occ_vibs = [self.construct_vibrational_hamiltonian(mode_dict,1) for mode_dict in vibration_params] if self.occupation_num_mask: self.set_vibrational_total_occupation_number() else: N = self.truncation_size nv = self.num_vibrations self.vibrational_mask = (np.arange(N**nv),) self.vibrational_identity = np.eye(N**nv) empty_vibrations = self.kron_up_vibrations(emp_vibs) occupied_vibrations = self.kron_up_vibrations(occ_vibs) self.empty_vibrations = [] self.occupied_vibrations = [] for i in range(self.num_vibrations): site_index = vibration_params[i]['site_label'] if self.manifolds_separable == True: empty = self.empty_list[site_index] occupied = self.occupied_list[site_index] else: empty = self.extract_electronic_subspace(self.empty_list[site_index],0,self.maximum_manifold) occupied = self.extract_electronic_subspace(self.occupied_list[site_index],0,self.maximum_manifold) self.empty_vibrations.append(np.kron(empty,empty_vibrations[i])) self.occupied_vibrations.append(np.kron(occupied,occupied_vibrations[i])) def kron_up_vibrations(self,vibrations_list): n = self.num_vibrations if n == 1: return vibrations_list new_vibrations_list = [] for i in range(n): new_vibration = self.vibration_identity_kron(i,vibrations_list[i]) if self.occupation_num_mask: new_vibration = self.mask_vibrational_space(new_vibration) new_vibrations_list.append(new_vibration) return new_vibrations_list def mask_vibrational_space(self,O): inds = self.vibrational_mask if type(O) is np.ndarray: O = O[inds[0],:].copy() O = O[:,inds[0]].copy() return O if type(O) is csr_matrix: pass else: O = O.tocsr() O = O[inds[0]] O = O.transpose() O = O[inds[0]] O = O.transpose() return O def vibration_identity_kron(self,position,item): """Takes in a single vibrational hamiltonians and krons it with the correct number of vibrational identities, inserting it into its position as indexed by its mode position as specified in the input file""" identities = [np.eye(self.truncation_size) for n in range(self.num_vibrations-1)] identities.insert(position,item) mat = identities.pop(0) for next_item in identities: mat = np.kron(mat,next_item) return mat def vibrational_vector_of_ones_kron(self,position,item): """Takes in a single vibrational hamiltonians and krons it with the correct number of vibrational identities, inserting it into its position as indexed by its mode position as specified in the input file""" N = self.truncation_size nv = self.num_vibrations ones_list = [np.ones(N) for i in range(nv-1)] ones_list.insert(position,item) vec = ones_list.pop(0) for next_item in ones_list: vec = np.kron(vec,next_item) return vec def set_vibrational_total_occupation_number(self): N = self.truncation_size nv = self.num_vibrations single_mode_occ = np.arange(N) occ_num = self.vibrational_vector_of_ones_kron(0,single_mode_occ) for i in range(1,nv): occ_num += self.vibrational_vector_of_ones_kron(i,single_mode_occ) self.vibrational_total_occupation_number = occ_num self.vibrational_mask = np.where(occ_num < N) self.vibrational_identity = np.eye(self.vibrational_mask[0].size) def construct_vibrational_hamiltonian(self,single_mode,electronic_occupation): """For each vibrational mode, construct a list of sparse matrices defining the vibrational hamiltonian for that mode in each excited state""" w = single_mode['omega_g'] lam = single_mode['reorganization'][electronic_occupation] d = single_mode['displacement'][electronic_occupation] kin = single_mode['kinetic'][electronic_occupation] pot = single_mode['potential'][electronic_occupation] aho = DisplacedAnharmonicOscillator(self.truncation_size) aho.set_ham(lam,d,kin,pot) return 0.5 * w * aho.ham def construct_vibrational_ladder_operator(self,single_mode,electronic_occupation): """Construct ladder operator given the electronic occupation for that site""" w = single_mode['omega_g'] d = single_mode['displacement'][electronic_occupation] lad = LadderOperators(self.truncation_size,disp=d,extra_size=0) up = lad.ad return up def set_vibrational_ladder_operators(self): vibration_params = self.params['vibrations'] emp_ups = [] occ_ups = [] for i in range(len(vibration_params)): ad = self.construct_vibrational_ladder_operator(vibration_params[i],0) emp_ups.append(ad) ad = self.construct_vibrational_ladder_operator(vibration_params[i],1) occ_ups.append(ad) empty_ups = self.kron_up_vibrations(emp_ups) occupied_ups = self.kron_up_vibrations(occ_ups) self.empty_ups = [] self.occupied_ups = [] for i in range(self.num_vibrations): site_index = vibration_params[i]['site_label'] if self.manifolds_separable == True: empty = self.empty_list[site_index] occupied = self.occupied_list[site_index] else: empty = self.extract_electronic_subspace(self.empty_list[site_index],0,self.maximum_manifold) occupied = self.extract_electronic_subspace(self.occupied_list[site_index],0,self.maximum_manifold) self.empty_ups.append(np.kron(empty,empty_ups[i])) self.occupied_ups.append(np.kron(occupied,occupied_ups[i])) def make_vibrational_dissipation_Liouvillian(self): ins_list = self.vibrational_dissipation_instructions() L = self.make_Liouvillian(ins_list) return L def vibrational_dissipation_instructions(self): gamma = self.vibrational_gamma instructions = [] for k in range(self.num_vibrations): E = self.params['vibrations'][k]['omega_g'] if self.params['vibrations'][k]['potential'][1][0] != 1: warnings.warn('The case of different excited and ground state frequencies is not properly handled by thermal dissipation') if self.kT == 0: N = 0 else: N = 1/(np.exp(E/self.kT)-1) O = (self.occupied_ups[k]).T + (self.empty_ups[k]).T ins1 = self.make_Lindblad_instructions(gamma*(N+1),O) instructions += ins1 if N == 0: pass else: ins2 = self.make_Lindblad_instructions(gamma*N,O.T) instructions += ins2 return instructions def make_total_Liouvillian(self): ins = self.make_commutator_instructions(-1j*self.total_hamiltonian) self.L = self.make_Liouvillian(ins) self.L += self.make_vibrational_dissipation_Liouvillian() def make_condon_mu(self): try: vib_size = self.vibrational_mask[0].size except AttributeError: N = self.truncation_size nv = self.num_vibrations vib_size = N**nv self.mu = np.kron(self.mu,np.eye(vib_size)) self.mu_ket_up = np.kron(self.mu_ket_up,np.eye(vib_size)) def make_condon_mu_dict(self): try: vib_size = self.vibrational_mask[0].size except AttributeError: N = self.truncation_size nv = self.num_vibrations vib_size = N**nv self.vibronic_mu_dict = dict() for pol in self.pols: self.vibronic_mu_dict[pol] = np.kron(self.mu_dict[pol],np.eye(vib_size))
StarcoderdataPython
5106749
"""Miscellaneous API handlers.""" import copy from typing import Dict, Any, AnyStr from aiohttp import web from dependency_injector.wiring import Provide from newsfeed.containers import Container async def get_status_handler(_: web.Request) -> web.Response: """Handle status requests.""" return web.json_response({'status': 'OK'}) async def get_openapi_schema_handler( _: web.Request, *, base_path: AnyStr = Provide[ Container.config.webapi.base_path ], ) -> web.Response: """Handle OpenAPI schema requests.""" schema: Dict[str, Any] = copy.deepcopy(OPENAPI_SCHEMA) schema['servers'] = [{'url': base_path}] return web.json_response(schema) OPENAPI_SCHEMA = { 'openapi': '3.0.2', 'info': { 'version': '1.0.0', 'title': 'NewsFeed Microservice', }, 'paths': { '/newsfeed/{newsfeed_id}/events/': { 'get': { 'summary': 'Return newsfeed events', 'operationId': 'get_newsfeed_events', 'tags': [ 'Events', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, ], 'responses': { '200': { 'description': 'List of newsfeed events', 'content': { 'application/json': { 'schema': { '$ref': '#/components/schemas/EventsList', }, }, }, }, }, }, 'post': { 'summary': 'Post newsfeed event', 'operationId': 'post_newsfeed_event', 'tags': [ 'Events', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, ], 'requestBody': { 'required': True, 'content': { 'application/json': { 'schema': { 'properties': { 'data': { 'type': 'object', 'example': { 'field_1': 'some_data', 'field_2': 'other_data', 'field_etc': 'etc_data', }, }, }, }, }, }, }, 'responses': { '202': { 'description': 'Event has been successfully posted', 'content': { 'application/json': { 'schema': { '$ref': '#/components/schemas/Event', }, }, }, }, }, }, }, '/newsfeed/{newsfeed_id}/events/{event_id}/': { 'delete': { 'summary': 'Delete newsfeed event', 'operationId': 'delete_newsfeed_event', 'tags': [ 'Events', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, { 'in': 'path', 'name': 'event_id', 'required': True, 'schema': { 'type': 'string', 'format': 'uuid', }, }, ], 'responses': { '204': { 'description': 'Newsfeed event has been successfully deleted', }, }, }, }, '/newsfeed/{newsfeed_id}/subscriptions/': { 'get': { 'summary': 'Return newsfeed subscriptions', 'operationId': 'get_newsfeed_subscriptions', 'tags': [ 'Subscriptions', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, ], 'responses': { '200': { 'description': 'List of newsfeed subscriptions', 'content': { 'application/json': { 'schema': { '$ref': '#/components/schemas/SubscriptionsList', }, }, }, }, }, }, 'post': { 'summary': 'Post newsfeed subscription', 'operationId': 'post_newsfeed_subscription', 'tags': [ 'Subscriptions', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, ], 'requestBody': { 'required': True, 'content': { 'application/json': { 'schema': { 'properties': { 'to_newsfeed_id': { 'type': 'string', 'example': '123', }, }, }, }, }, }, 'responses': { '201': { 'description': 'Subscription has been successfully created', 'content': { 'application/json': { 'schema': { '$ref': '#/components/schemas/Subscription', }, }, }, }, }, }, }, '/newsfeed/{newsfeed_id}/subscriptions/{subscription_id}/': { 'delete': { 'summary': 'Delete newsfeed subscription', 'operationId': 'delete_newsfeed_subscription', 'tags': [ 'Subscriptions', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, { 'in': 'path', 'name': 'subscription_id', 'required': True, 'schema': { 'type': 'string', 'format': 'uuid', }, }, ], 'responses': { '204': { 'description': 'Newsfeed subscription has been successfully deleted', }, }, }, }, '/newsfeed/{newsfeed_id}/subscribers/subscriptions/': { 'get': { 'summary': 'Return newsfeed subscriber subscriptions', 'operationId': 'get_newsfeed_subscriber_subscriptions', 'tags': [ 'Subscriptions', ], 'parameters': [ { 'in': 'path', 'name': 'newsfeed_id', 'required': True, 'schema': { 'type': 'string', }, }, ], 'responses': { '200': { 'description': 'List of newsfeed subscriber subscriptions', 'content': { 'application/json': { 'schema': { '$ref': '#/components/schemas/SubscriptionsList', }, }, }, }, }, }, }, '/status/': { 'get': { 'summary': 'Return current microservice status', 'operationId': 'get_status', 'tags': [ 'Miscellaneous', ], 'responses': { '200': { 'description': 'Information about current service status', }, }, }, }, '/docs/': { 'get': { 'summary': 'Return microservice OpenAPI v3 documentation', 'operationId': 'get_docs', 'tags': [ 'Miscellaneous', ], 'responses': { '200': { 'description': 'Service OpenAPI v3 documentation', }, }, }, }, }, 'components': { 'schemas': { 'Event': { 'properties': { 'id': { 'type': 'string', 'format': 'uuid', }, 'newsfeed_id': { 'type': 'string', 'example': '123', }, 'data': { 'type': 'object', 'example': { 'payload_id': 835, }, }, 'parent_fqid': { 'type': 'array', 'items': { 'type': 'string', }, 'example': ['123', '9d75e08f-f73f-4d80-a581-d3f9290520e6'], }, 'child_fqids': { 'type': 'array', 'items': { 'type': 'array', 'example': ['123', '9d75e08f-f73f-4d80-a581-d3f9290520e6'], }, }, 'first_seen_at': { 'type': 'integer', 'example': 1571436411, }, 'published_at': { 'type': 'integer', 'example': 1571436411, }, }, }, 'EventsList': { 'properties': { 'results': { 'type': 'array', 'items': { '$ref': '#/components/schemas/Event', }, }, }, }, 'Subscription': { 'properties': { 'id': { 'type': 'string', 'format': 'uuid', }, 'newsfeed_id': { 'type': 'string', 'example': '123', }, 'to_newsfeed_id': { 'type': 'string', 'example': '124', }, 'subscribed_at': { 'type': 'integer', 'example': 1571436411, }, }, }, 'SubscriptionsList': { 'properties': { 'results': { 'type': 'array', 'items': { '$ref': '#/components/schemas/Subscription', }, }, }, }, }, }, }
StarcoderdataPython
8077303
# -*- coding: utf-8 -*- """ Created on Mon Feb 4 10:02:05 2019 @author: yoelr """ import biosteam as bst __all__ = ('load_process_settings',) # %% Process settings def load_process_settings(): bst.process_tools.default_utilities() bst.CE = 607.5 # 2019 bst.PowerUtility.price = 0.065 HeatUtility = bst.HeatUtility steam_utility = HeatUtility.get_agent('low_pressure_steam') steam_utility.heat_transfer_efficiency = 0.9 steam_utility.regeneration_price = 0.30626 steam_utility.T = 529.2 steam_utility.P = 44e5 HeatUtility.get_agent('cooling_water').regeneration_price = 0 HeatUtility.get_agent('chilled_water').heat_transfer_price = 0 ton2kg = 1./907.18474 # ton/hr to kg/hr ethanol_density_kgL = 0.789 # kg/L liter_per_gallon = 3.78541 ethanol_cost = 2.15 # USD/gal ethanol_density_kggal = liter_per_gallon * ethanol_density_kgL # kg/gal enzyme_price = 4.24 * 50/1000 # USD/kg
StarcoderdataPython
3399385
<filename>armory/scenarios/multimodal_so2sat_scenario.py """ Multimodal image classification, currently designed for So2Sat dataset """ import copy import logging import numpy as np from armory.utils import metrics from armory.scenarios.scenario import Scenario logger = logging.getLogger(__name__) class So2SatClassification(Scenario): def __init__(self, *args, **kwargs): if "attack_modality" not in kwargs.keys(): raise ValueError("`attack_modality` must be defined for So2Sat scenario") attack_modality = (kwargs.pop("attack_modality") or "").lower() if attack_modality not in ("sar", "eo", "both"): raise ValueError( f"Multimodal scenario requires attack_modality parameter in {'SAR', 'EO', 'Both'}" ) self.attack_modality = attack_modality super().__init__(*args, **kwargs) def load_attack(self): attack_config = self.config["attack"] attack_channels_mask = attack_config.get("generate_kwargs", {}).get("mask") if attack_channels_mask is None: if self.attack_modality == "sar": logger.info("No mask configured. Attacking all SAR channels") attack_channels_mask = np.concatenate( (np.ones(4, dtype=np.float32), np.zeros(10, dtype=np.float32)), axis=0, ) elif self.attack_modality == "eo": logger.info("No mask configured. Attacking all EO channels") attack_channels_mask = np.concatenate( (np.zeros(4, dtype=np.float32), np.ones(10, dtype=np.float32)), axis=0, ) elif self.attack_modality == "both": logger.info("No mask configured. Attacking all SAR and EO channels") attack_channels_mask = np.ones(14, dtype=np.float32) else: assert isinstance( attack_channels_mask, list ), "Mask is specified, but incorrect format. Expected list" attack_channels_mask = np.array(attack_channels_mask) where_mask = np.where(attack_channels_mask)[0] if self.attack_modality == "sar": assert np.all( np.logical_and(where_mask >= 0, where_mask < 4) ), "Selected SAR-only attack modality, but specify non-SAR channels" elif self.attack_modality == "eo": assert np.all( np.logical_and(where_mask >= 4, where_mask < 14) ), "Selected EO-only attack modality, but specify non-EO channels" elif self.attack_modality == "both": assert np.all( np.logical_and(where_mask >= 0, where_mask < 14) ), "Selected channels are out-of-bounds" assert ( len(attack_channels_mask) == 14 ), f"Expected channel mask of length 14, found length {len(attack_channels_mask)}" assert np.all( np.logical_or(attack_channels_mask == 0, attack_channels_mask == 1) ), "Expected binary attack channel mask, but found values outside {0,1}" super().load_attack() self.generate_kwargs["mask"] = attack_channels_mask def load_metrics(self): super().load_metrics() # Overwrite standard metrics_logger metrics_config = self.config["metric"] performance_metrics = copy.deepcopy(metrics_config) performance_metrics.pop("perturbation") metrics_logger = metrics.MetricsLogger.from_config( performance_metrics, skip_benign=self.skip_benign, skip_attack=self.skip_attack, targeted=self.targeted, ) self.profiler_kwargs[ "computational_resource_dict" ] = metrics_logger.computational_resource_dict perturbation_metrics = copy.deepcopy(self.config["metric"]) perturbation_metrics.pop("task") if self.attack_modality in ("sar", "both"): sar_perturbation_logger = metrics.MetricsLogger.from_config( perturbation_metrics, skip_benign=True, skip_attack=False, targeted=self.targeted, ) else: sar_perturbation_logger = None if self.attack_modality in ("eo", "both"): eo_perturbation_logger = metrics.MetricsLogger.from_config( perturbation_metrics, skip_benign=True, skip_attack=False, targeted=self.targeted, ) else: eo_perturbation_logger = None self.metrics_logger = metrics_logger self.sar_perturbation_logger = sar_perturbation_logger self.eo_perturbation_logger = eo_perturbation_logger def run_attack(self): x, y, y_pred = self.x, self.y, self.y_pred with metrics.resource_context(name="Attack", **self.profiler_kwargs): if self.attack_type == "preloaded": logger.warning( "Specified preloaded attack. Ignoring `attack_modality` parameter" ) if len(x) == 2: x, x_adv = x else: x_adv = x if self.targeted: y, y_target = y else: y_target = None misclassified = False else: if self.use_label: y_target = y elif self.targeted: y_target = self.label_targeter.generate(y) elif self.skip_benign: y_target = None # most attacks will call self.model.predict(x) else: y_target = y_pred if self.skip_misclassified: if self.targeted: misclassified = all( metrics.categorical_accuracy(y_target, y_pred) ) else: misclassified = not any(metrics.categorical_accuracy(y, y_pred)) else: misclassified = False if misclassified: x_adv = x else: x_adv = self.attack.generate( x=x, y=y_target, **self.generate_kwargs ) if misclassified: y_pred_adv = y_pred else: # Ensure that input sample isn't overwritten by model x_adv.flags.writeable = False y_pred_adv = self.model.predict(x_adv, **self.predict_kwargs) self.metrics_logger.update_task(y, y_pred_adv, adversarial=True) if self.targeted: self.metrics_logger.update_task( y_target, y_pred_adv, adversarial=True, targeted=True ) # Update perturbation metrics for SAR/EO separately x_sar = np.stack( (x[..., 0] + 1j * x[..., 1], x[..., 2] + 1j * x[..., 3]), axis=3 ) x_adv_sar = np.stack( (x_adv[..., 0] + 1j * x_adv[..., 1], x_adv[..., 2] + 1j * x_adv[..., 3],), axis=3, ) x_eo = x[..., 4:] x_adv_eo = x_adv[..., 4:] if self.sar_perturbation_logger is not None: self.sar_perturbation_logger.update_perturbation(x_sar, x_adv_sar) if self.eo_perturbation_logger is not None: self.eo_perturbation_logger.update_perturbation(x_eo, x_adv_eo) if self.sample_exporter is not None: self.sample_exporter.export(x, x_adv, y, y_pred_adv) self.x_adv, self.y_target, self.y_pred_adv = x_adv, y_target, y_pred_adv def finalize_results(self): metrics_logger = self.metrics_logger metrics_logger.log_task() metrics_logger.log_task(adversarial=True) if self.targeted: metrics_logger.log_task(adversarial=True, targeted=True) self.results = metrics_logger.results() metrics_logger.log_task(adversarial=True) if self.targeted: metrics_logger.log_task(adversarial=True, targeted=True) # Merge performance, SAR, EO results combined_results = metrics_logger.results() if self.sar_perturbation_logger is not None: combined_results.update( { f"sar_{k}": v for k, v in self.sar_perturbation_logger.results().items() } ) if self.eo_perturbation_logger is not None: combined_results.update( {f"eo_{k}": v for k, v in self.eo_perturbation_logger.results().items()} ) self.results = combined_results
StarcoderdataPython
3565642
<reponame>mamaheux/bass-amplifier<filename>tools/signal_processing/ui/utils/gain_plot_widget.py import matplotlib.pyplot as plt from PySide2.QtWidgets import QWidget, QVBoxLayout from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg class GainPlotWidget(QWidget): def __init__(self, min_frequency=10, max_frequency=24000, min_gain=-20, max_gain=20): super().__init__() self._min_frequency = min_frequency self._max_frequency = max_frequency self._min_gain = min_gain self._max_gain = max_gain self._fig = plt.figure() self._ax = self._fig.add_subplot(111) self._canvas = FigureCanvasQTAgg(self._fig) vlayout = QVBoxLayout() vlayout.addWidget(self._canvas) self.setLayout(vlayout) def update(self, f, g): self._ax.cla() self._ax.semilogx([self._min_frequency, self._max_frequency], [0, 0], '--', color='tab:orange') self._ax.semilogx(f, g, color='tab:blue') self._ax.set_xlim(self._min_frequency, self._max_frequency) self._ax.set_ylim(self._min_gain, self._max_gain) self._ax.set_xlabel('Frequency (Hz)') self._ax.set_ylabel('Gain (dB)') self._canvas.draw()
StarcoderdataPython
1649018
<filename>akill.py from __future__ import print_function __module_name__ = 'AKILL script' __module_version__ = '0.1' __module_description__ = 'AKILL oper script for Atheme and forks services packages' __author__ = '<NAME>.' import hexchat help_hook = "\"/sakill <nick|hostmask> <public reason> | <private oper reason>\"" \ " AKILLs the specified nick or hostmask for 24 hours." def sakill(word, word_eol, userdata): user = word[1] public_reason = ' '.join(word[2:word.index('|')]) private_reason = ' '.join(word[word.index('|') + 1:]) if len(word) > 1: try: hexchat.command("os akill add %s !T 24h You have violated foo's terms of service. " "%s. If in error, please send an e-mail to <EMAIL> | %s" % (user, public_reason, private_reason)) return hexchat.EAT_ALL except ValueError: hexchat.prnt("USAGE: /sakill <nick|hostmask> <public reason> | <private oper reason>") return hexchat.EAT_ALL else: hexchat.prnt("USAGE: /sakill <nick|hostmask> <public reason> | <private oper reason>") return hexchat.EAT_ALL def unload_sakill(userdata): print(__module_name__, 'version', __module_version__, 'unloaded.') hexchat.hook_command('sakill', sakill, help = help_hook) hexchat.hook_unload(unload_sakill) print(__module_name__, 'version', __module_version__, 'loaded.')
StarcoderdataPython
68172
class Solution: def minPathSum(self, grid: List[List[int]]) -> int: if len(grid) <= 0 or grid is None: return 0 rows = len(grid) cols = len(grid[0]) for r in range(rows): for c in range(cols): if r==0 and c==0: continue if r-1<0: grid[r][c] = grid[r][c] + grid[r][c-1] elif c-1<0: grid[r][c] = grid[r][c] + grid[r-1][c] else: grid[r][c] = grid[r][c] + min(grid[r-1][c], grid[r][c-1]) return grid[rows-1][cols-1]
StarcoderdataPython
6539102
""" This script makes Figure 2: a dial plot of the microburst width as a function of L and MLT Parameters ---------- catalog_name: str The name of the catalog in the config.PROJECT_DIR/data/ directory. r2_thresh: float The adjusted R^2 threshold for the fits. I chose a default value of 0.9. max_width_ms: float Maximum microburst width (FWHM) in milliseconds to histogram. A good default is 500 ms. percentiles: np.array The distribution percentiles for the FWHM distributions in L-MLT space. This script implicitly assumes that you supply 3 percentile values, between 0 and 100, for the 4 subplots (3 percentiles and 1 microburst occurrence distribution) """ import pathlib import string import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.colors from sampex_microburst_widths import config from sampex_microburst_widths.stats import dial_plot plt.rcParams.update({'font.size': 13}) cmap = 'viridis' catalog_name = 'microburst_catalog_04.csv' ### Script parameters statistics_thresh=100 # Don't calculate stats if less microbursts in the bin. percentiles = np.array([50]) r2_thresh = 0.9 max_width_ms = 500 L_bins = np.linspace(2, 8.1, num=20) L_labels = [2,4,6] MLT_bins = np.linspace(0, 24, num=40) df = pd.read_csv(pathlib.Path(config.PROJECT_DIR, 'data', catalog_name)) df.dropna(inplace=True) df['width_ms'] = 1000*df['width_s'] # Convert seconds to ms. df['fwhm_ms'] = 1000*df['fwhm'] df = df[df['width_ms'] < max_width_ms] df['fwhm_ms'] = df['fwhm_ms'].abs() df = df[df.adj_r2 > r2_thresh] num_microbursts_H, _, _ = np.histogram2d(df['MLT'], df['L_Shell'], bins=[MLT_bins, L_bins]) H = np.nan*np.zeros( (len(MLT_bins), len(L_bins), len(percentiles)) ) for i, (start_MLT, end_MLT) in enumerate(zip(MLT_bins[:-1], MLT_bins[1:])): for j, (start_L, end_L) in enumerate(zip(L_bins[:-1], L_bins[1:])): df_flt = df.loc[( (df['MLT'] > start_MLT) & (df['MLT'] < end_MLT) & (df['L_Shell'] > start_L) & (df['L_Shell'] < end_L) ), 'fwhm_ms'] if df_flt.shape[0] >= statistics_thresh: H[i, j, :] = df_flt.quantile(percentiles/100) fig = plt.figure(figsize=(9, 4)) ax = [plt.subplot(1, 2, i, projection='polar') for i in range(1, 3)] for i, ax_i in enumerate(ax[:-1]): d = dial_plot.Dial(ax_i, MLT_bins, L_bins, H[:, :, i]) d.draw_dial(L_labels=L_labels, mesh_kwargs={'cmap':cmap}, colorbar_kwargs={'label':f'microburst duration [ms]', 'pad':0.1}) annotate_str = f'({string.ascii_lowercase[i]}) {percentiles[i]}th percentile' ax_i.text(-0.2, 1.2, annotate_str, va='top', transform=ax_i.transAxes, weight='bold', fontsize=15) d4 = dial_plot.Dial(ax[-1], MLT_bins, L_bins, num_microbursts_H) d4.draw_dial(L_labels=L_labels, mesh_kwargs={'norm':matplotlib.colors.LogNorm(), 'cmap':cmap}, colorbar_kwargs={'label':'Number of microbursts', 'pad':0.1}) annotate_str = f'({string.ascii_lowercase[len(ax)-1]}) Microburst occurrence' ax[-1].text(-0.2, 1.2, annotate_str, va='top', transform=ax[-1].transAxes, weight='bold', fontsize=15) for ax_i in ax: ax_i.set_rlabel_position(235) plt.suptitle(f'Distribution of SAMPEX microburst durations in L-MLT', fontsize=20) plt.tight_layout() plt.show()
StarcoderdataPython
5044313
<filename>thortils/utils/math.py import random import numpy as np import math from scipy.spatial.transform import Rotation as scipyR # Operations def remap(oldval, oldmin, oldmax, newmin, newmax, enforce=False): newval = (((oldval - oldmin) * (newmax - newmin)) / (oldmax - oldmin)) + newmin if enforce: return min(max(newval, newmin), newmax) else: return newval def closest(values, query): """Returns the entry in `values` that is closest to `query` in terms of absolute value difference.""" return min(values, key=lambda v: abs(v-query)) def normalize_angles(angles): """Returns array-like of angles within 0 to 360 degrees""" return type(angles)(map(lambda x: x % 360, angles)) def euclidean_dist(p1, p2): return math.sqrt(sum([(a - b)** 2 for a, b in zip(p1, p2)])) def roundany(x, base): """ rounds the number x (integer or float) to the closest number that increments by `base`. """ return base * round(x / base) def floorany(x, base): return base * math.floor(x / base) def clip(x, minval, maxval): return min(maxval, max(x, minval)) def diff(rang): return rang[1] - rang[0] def in_range(x, rang): return x >= rang[0] and x < rang[1] def in_range_inclusive(x, rang): return x >= rang[0] and x <= rang[1] def in_region(p, ranges): return in_range(p[0], ranges[0]) and in_range(p[1], ranges[1]) and in_range(p[2], ranges[2]) def approx_equal(v1, v2, epsilon=1e-6): if len(v1) != len(v2): return False for i in range(len(v1)): if abs(v1[i] - v2[i]) > epsilon: return False return True _operations_ = ['remap', 'closest', 'normalize_angles', 'euclidean_dist', 'roundany', 'floorany', 'clip', 'diff', 'in_range', 'in_range_inclusive', 'in_region', 'approx_equal'] ######## Conversions def to_radians(th): return th*np.pi / 180 def to_rad(th): return th*np.pi / 180 def to_degrees(th): return th*180 / np.pi def to_deg(th): return th*180 / np.pi def cart2pol(x, y): rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi) def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return(x, y) _conversions_ = ['to_radians', 'to_rad', 'to_degrees', 'to_deg', 'cart2pol', 'pol2cart'] ########## Transform; all input angles are degrees def R_x(th): th = to_rad(th) return np.array([ 1, 0, 0, 0, 0, np.cos(th), -np.sin(th), 0, 0, np.sin(th), np.cos(th), 0, 0, 0, 0, 1 ]).reshape(4,4) def R_y(th): th = to_rad(th) return np.array([ np.cos(th), 0, np.sin(th), 0, 0, 1, 0, 0, -np.sin(th), 0, np.cos(th), 0, 0, 0, 0, 1 ]).reshape(4,4) def R_z(th): th = to_rad(th) return np.array([ np.cos(th), -np.sin(th), 0, 0, np.sin(th), np.cos(th), 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]).reshape(4,4) def R2d(th): th = to_rad(th) return np.array([ np.cos(th), -np.sin(th), np.sin(th), np.cos(th) ]).reshape(2,2) def R_between(v1, v2): if len(v1) != 3 or len(v2) != 3: raise ValueError("Only applicable to 3D vectors!") v = np.cross(v1, v2) c = np.dot(v1, v2) s = np.linalg.norm(v) I = np.identity(3) vX = np.array([ 0, -v[2], v[1], v[2], 0, -v[0], -v[1], v[0], 0 ]).reshape(3,3) R = I + vX + np.matmul(vX,vX) * ((1-c)/(s**2)) return R def R_euler(thx, thy, thz, affine=False, order='xyz'): """ Obtain the rotation matrix of Rz(thx) * Ry(thy) * Rx(thz); euler angles """ R = scipyR.from_euler(order, [thx, thy, thz], degrees=True) if affine: aR = np.zeros((4,4), dtype=float) aR[:3,:3] = R.as_matrix() aR[3,3] = 1 R = aR return R def R_quat(x, y, z, w, affine=False): R = scipyR.from_quat([x,y,z,w]) if affine: aR = np.zeros((4,4), dtype=float) aR[:3,:3] = R.as_matrix() aR[3,3] = 1 R = aR return R def R_to_euler(R, order='xyz'): """ Obtain the thx,thy,thz angles that result in the rotation matrix Rz(thx) * Ry(thy) * Rx(thz) Reference: http://planning.cs.uiuc.edu/node103.html """ return R.as_euler(order, degrees=True) def R_to_quat(R): return R.as_quat() def euler_to_quat(thx, thy, thz, order='xyz'): return scipyR.from_euler(order, [thx, thy, thz], degrees=True).as_quat() def quat_to_euler(x, y, z, w, order='xyz'): return scipyR.from_quat([x,y,z,w]).as_euler(order, degrees=True) def T(dx, dy, dz): return np.array([ 1, 0, 0, dx, 0, 1, 0, dy, 0, 0, 1, dz, 0, 0, 0, 1 ]).reshape(4,4) def vec(p1, p2): """ vector from p1 to p2 """ if type(p1) != np.ndarray: p1 = np.array(p1) if type(p2) != np.ndarray: p2 = np.array(p2) return p2 - p1 def proj(vec1, vec2, scalar=False): # Project vec1 onto vec2. Returns a vector in the direction of vec2. scale = np.dot(vec1, vec2) / np.linalg.norm(vec2) if scalar: return scale else: return vec2 * scale _transforms_ = ['R_x', 'R_y', 'R_z', 'R2d', 'R_between', 'R_euler', 'R_quat', 'R_to_euler', 'R_to_quat', 'euler_to_quat', 'quat_to_euler', 'T', 'vec', 'proj'] # Probability def sep_spatial_sample(candidates, sep, num_samples, sample_func=None, rnd=random): """Draws samples from candidates, such that the samples are minimally of euclidean distance `sep` apart. Note that this will attempt to draw `num_samples` samples but is not guaranteed to return this number of samples. You can optionally supply a sample_func that takes in the candidates and return a sample. If not provided, will draw uniformly. The samples will not be at duplicate locations.""" samples = set() for _ in range(num_samples): if sample_func is None: s = rnd.sample(candidates, 1)[0] else: s = sample_func(candidates) if len(samples) > 0: closest = min(samples, key=lambda c: euclidean_dist(s, c)) if euclidean_dist(closest, s) >= sep: samples.add(s) else: samples.add(s) return samples _probability_ = ["sep_spatial_sample"] __all__ = _operations_ + _conversions_ + _transforms_ + _probability_
StarcoderdataPython
8084108
"""Unit test package for gpdre."""
StarcoderdataPython
1665527
<reponame>samarthg/jira-scrum-update-automation<filename>fabfile.py from fabric.api import local def hello(): print("hi there") def prepare_patch(): local("bumpversion patch") def prepare_minor(): local("bumpversion minor") def prepare_major(): local("bumpversion major") def release(): local("git push origin master") local("git push --tags origin master") local("python setup.py sdist upload -r pypi")
StarcoderdataPython
6487218
""" ========================================================================== TorusRouterFL.py ========================================================================== FL route unit that implements dimension order routing. Author : <NAME> Date : June 30, 2019 """ from pymtl3 import * from .directions import * from .RouteUnitDorFL import RouteUnitDorFL class TorusRouterFL: def __init__( s, pos_x, pos_y, ncols, nrows, dimension='y' ): s.pos_x = pos_x s.pos_y = pos_y s.ncols = ncols s.nrows = nrows s.dimension = dimension s.route_unit = RouteUnitDorFL( pos_x, pos_y, ncols, nrows, dimension='y' ) #----------------------------------------------------------------------- # arrange_src_pkts #----------------------------------------------------------------------- # A helper function that puts each packet in [lst] into corresponding # source. def arrange_src_pkts( s, lst ): src_pkts = [ [] for _ in range(5) ] for pkt in lst: if pkt.src_x == s.pos_x and pkt.src_y == s.pos_y: in_dir = SELF elif s.dimension == 'y': src_x = pkt.src_x.uint() src_y = pkt.src_y.uint() dst_x = pkt.dst_x.uint() dst_y = pkt.dst_y.uint() # Same x - either comes from north or south if src_x == s.pos_x: north_dist = dst_y - src_y if dst_y > src_y else dst_y + s.nrows - src_y south_dist = src_y - dst_y if dst_y < src_y else src_y + s.nrows - dst_y in_dir = SOUTH if north_dist < south_dist else NORTH # Different x - either comes from west or east else: east_dist = dst_x - src_x if dst_x > src_x else dst_x + s.ncols - src_x west_dist = src_x - dst_x if dst_x < src_x else src_x + s.ncols - dst_x in_dir = EAST if west_dist < east_dist else WEST else: # s.dimension=='x' # Same y - either comes from west or east if src_x == s.pos_x: east_dist = dst_x - src_x if dst_x > src_x else dst_x + s.ncols - src_x west_dist = src_x - dst_x if dst_x < src_x else src_x + s.ncols - dst_x in_dir = EAST if west_dist < east_dist else WEST # Different y - either comes from north or south else: north_dist = dst_y - src_y if dst_y > src_y else dst_y + s.nrows - src_y south_dist = src_y - dst_y if dst_y < src_y else src_y + s.nrows - dst_y in_dir = SOUTH if north_dist < south_dist else NORTH src_pkts[ in_dir ].append( pkt ) return src_pkts #----------------------------------------------------------------------- # route #----------------------------------------------------------------------- # Use FL route unit to route each packet in [src_pkts] to corresponding # destination. def route( s, src_pkts ): assert len( src_pkts ) == 5 dst_pkts = [ [] for _ in range(5) ] for pkts in src_pkts: tmp = s.route_unit.route( pkts ) for i in range(5): dst_pkts[i].extend( tmp[i] ) return dst_pkts
StarcoderdataPython
1646657
""" Entendendo o *args - O *args é um parâmetro, como outro qualquer. Isso significa que você poderá charmar de qualquer coisa, desde que começe com asterisco. Exemplo: *xis Mas por convenção, utilizamos *args para definí-lo Mas o que é o *args? O parâmetro *args utilizado em uma função, coloca os valores extras informados como entrada em uma tupla. Então desde já lembre-se que tuplas são imutáveis. # Exemplos def soma_todos_numeros(num1=1, num2=2, num3=3, num4=4): return num1 + num2 + num3 + num4 print(soma_todos_numeros(4, 6, 9)) print(soma_todos_numeros(4, 6)) print(soma_todos_numeros(4, 6, 9, 5)) # Entendendo o args def soma_todos_numeros(nome, email, *args): return sum(args) print(soma_todos_numeros('Angelina', 'Jolie')) print(soma_todos_numeros('Angelina', 'Jolie', 1)) print(soma_todos_numeros('Angelina', 'Jolie', 2, 3)) print(soma_todos_numeros('Angelina', 'Jolie', 2, 3, 4)) print(soma_todos_numeros('Angelina', 'Jolie', 3, 4, 5, 6)) print(soma_todos_numeros('Angelina', 'Jolie', 23.4, 12.5)) # Outro exemplo de utilização do *args def verifica_info(*args): if 'Geek' in args and 'University' in args: return 'Bem-vindo Geek!' return 'Eu não tenho certeza quem você é ...' print(verifica_info()) print(verifica_info(1, True, 'University', 'Geek')) print(verifica_info(1, 'University', 3.145)) """ def soma_todos_numeros(*args): return sum(args) # print(soma_todos_numeros()) # print(soma_todos_numeros(3, 4, 5, 6)) numeros = [1, 2, 3, 4, 5, 6, 7] # Desempacotador print(soma_todos_numeros(*numeros)) # OBS: O asterisco serve para que informemos ao Python que estamos #passando como argumento uma coleção de dados. Desta forma, ele saberá # que precisará antes desempacotar estes dados.
StarcoderdataPython
1821094
""" Print inconsistencies to give to and try to force mods to fix """ import json from pathlib import Path import process_artists.config1_exceptions song_database = Path("../app/data/expand_mapping.json") with open(song_database, encoding="utf-8") as json_file: song_database = json.load(json_file) for exception in process_artists.config1_exceptions.alternative_names: for alt_name in exception: print(f'"{alt_name}"', end=" ") for anime in song_database: id_list = set() for song in anime["songs"]: if alt_name in song["artist"]: id_list.add(anime["annId"]) for id in id_list: print(id, end=" ") print() print()
StarcoderdataPython
68053
# -*- mode: python -*- #!/usr/bin/env sage import sys from sage.all import * def usage(): print("Usage: {0} Lmax [precision]".format(sys.argv[0])) def gen_gaunt_table(lmax, prec = None): tmpl = "{0:4d} {1:4d} {2:4d} {3:4d} {4:4d} {5:5d} {6:23.15e}\n" with open("gaunt_lmax{0}".format(lmax), 'w') as out: for l1 in range(lmax + 1): for l2 in range(lmax + 1): for l3 in range(lmax + 1): if (l1 + l2 + l3) % 2 == 1: continue for m1 in range(-l1, l1+1): for m2 in range(-l2, l2+1): for m3 in range(-l3, l3+1): v = gaunt(l1, l2, l3, m1, m2, m3, prec = prec) out.write(tmpl.format(l1, l2, l3, m1, m2, m3, float(v))) return if __name__ == "__main__": if not (len(sys.argv) == 2 or len(sys.argv) == 3): usage() sys.exit(1) prec = None if len(sys.argv) == 3: prec = int(sys.argv[2]) lmax = int(sys.argv[1]) gen_gaunt_table(lmax, prec = prec)
StarcoderdataPython
1661368
<reponame>mintproject/mint_cli from unittest import TestCase from dame.modelcatalogapi import get_setup from dame.utils import obtain_id SETUP_FULL_INFO = "cycles-0.10.2-alpha-collection-oromia-single-point" SETUP_PARTIAL_INFO = "dsi_1.0_cfg" testing = "testing" class Test(TestCase): def test_get_setup(self): assert obtain_id(get_setup(SETUP_FULL_INFO, profile=testing).id) == SETUP_FULL_INFO assert obtain_id(get_setup(SETUP_PARTIAL_INFO, profile=testing).id) == SETUP_PARTIAL_INFO
StarcoderdataPython
184314
# For Keystone Engine. AUTO-GENERATED FILE, DO NOT EDIT [systemz_const.py] KS_ERR_ASM_SYSTEMZ_INVALIDOPERAND = 512 KS_ERR_ASM_SYSTEMZ_MISSINGFEATURE = 513 KS_ERR_ASM_SYSTEMZ_MNEMONICFAIL = 514
StarcoderdataPython
3560110
# Generated by Django 3.2.9 on 2021-11-10 21:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('djasana', '0023_alter_attachment_url_download_length'), ] operations = [ migrations.AddField( model_name='customfield', name='created_by', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='djasana.user', to_field='remote_id'), ), ]
StarcoderdataPython
1987925
import os from flask import Flask, request, abort, jsonify from flask_sqlalchemy import SQLAlchemy from sqlalchemy import desc, func from flask_cors import CORS import random from models import setup_db, Question, Category QUESTIONS_PER_PAGE = 10 def format_categories(categories): return {category.id : category.type for category in categories} def format_questions(questions): return [question.format() for question in questions] def create_app(test_config=None): # create and configure the app app = Flask(__name__) setup_db(app) ''' Setting up CORS. Allows '*' for origins. ''' CORS(app) ''' The after_request decorator to set Access-Control-Allow ''' @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,true') response.headers.add('Access-Control-Allow-Methods', 'GET,PATCH,POST,DELETE,OPTIONS') return response ''' The endpoint to handle GET requests for all available categories. ''' @app.route('/categories', methods=['GET']) def get_categories(): categories = Category.query.order_by(Category.id).all() # no need to throw an error if categories are empty. # Seems absolutely valid from API perspective return jsonify({ "success": True, "categories": format_categories(categories) }) ''' GET endpoint to handle requests for questions, including pagination (every 10 questions). This endpoint returns a list of questions, number of total questions, current category, categories. ''' @app.route('/questions', methods=['GET']) def get_questions(): page = request.args.get('page', 1, type=int) questions = Question.query.paginate(page, QUESTIONS_PER_PAGE).items categories = Category.query.order_by(Category.id).all() return jsonify({ "success": True, "questions": format_questions(questions), "total_questions": Question.query.count(), "categories": format_categories(categories) }) ''' DELETE endpoint to delete question using a question ID. ''' @app.route('/questions/<int:question_id>', methods=['DELETE']) def delete_question(question_id): try: question = Question.query.get(question_id) question.delete() return jsonify({ "success": True, "deleted_question": question_id }) except: abort(422) ''' POST endpoint to add a new question, which will require the question and answer text, category, and difficulty score. ''' @app.route('/questions', methods=['POST']) def post_question(): body = request.get_json() if (not 'question' in body) or (not 'answer' in body) or (not 'category' in body) or (not 'difficulty' in body): abort(422) question = body.get('question') answer = body.get('answer') category = body.get('category') difficulty = body.get('difficulty') try: question_obj = Question(question, answer, category, difficulty) question_obj.insert() return jsonify({ "success": True, "created_question": question_obj.format() }) except: abort(422) ''' POST endpoint to get questions based on a search term. It returns any questions for whom the search term is a substring of the question. ''' @app.route('/questions/search', methods=['POST']) def search_questions(): body = request.get_json() search_term = body.get('searchTerm', None) if not search_term: abort(422) try: searched = Question.query.filter(func.lower(Question.question).contains(search_term.lower())).all() return jsonify({ "success": True, "questions": format_questions(searched), "total_questions": len(searched), }) except: abort(422) ''' GET endpoint to get questions based on category. ''' @app.route('/categories/<int:category_id>/questions', methods=['GET']) def get_questions_by_category(category_id): try: questions_with_needed_category = Question.query.filter(Question.category == str(category_id)).all() return jsonify({ "success": True, "questions": format_questions(questions_with_needed_category), "current_category": category_id }) except: abort(404) ''' POST endpoint to get questions to play the quiz. This endpoint takes category and previous question parameters and returns a random questions within the given category, if provided, and that is not one of the previous questions. ''' @app.route('/quizzes', methods=['POST']) def play_game(): body = request.get_json() if not 'previous_questions' in body: abort(422) try: category = body.get('quiz_category', None) prev_questions = set(body.get('previous_questions')) possible_questions = [] if category is None or category['id'] == 0: possible_questions = Question.query.filter(Question.id not in prev_questions).all() else: possible_questions = Question.query.filter_by(category=category['id']).filter(Question.id not in prev_questions).all() new_question = random.choice(possible_questions).format() if len (possible_questions) > 0 else None return jsonify({ "success": True, "question": new_question }) except: abort(422) ''' Error handlers for all expected errors. ''' @app.errorhandler(404) def not_found(error): return jsonify({ "success": False, "error": 404, "message": "Not Found" }), 404 @app.errorhandler(422) def not_found(error): return jsonify({ "success": False, "error": 422, "message": "Unprocessable Entity" }), 422 @app.errorhandler(400) def bad_request(error): return jsonify({ "success": False, "error": 400, "message": "Bad Request" }), 400 @app.errorhandler(500) def internal_server_error(error): return jsonify({ "success": False, "error": 500, "message": "Internal Server Error" }), 500 return app
StarcoderdataPython
92660
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from telemetry.internal.platform.tracing_agent import chrome_tracing_agent class FakePlatformBackend(object): pass class FakeDevtoolsClient(object): def __init__(self, remote_port): self.is_alive = True self.tracing_started = False self.remote_port = remote_port self.will_raise_exception_in_stop_tracing = False def IsAlive(self): return self.is_alive def StartChromeTracing(self, _trace_options, _filter_string, _timeout=10): self.tracing_started = True def StopChromeTracing(self, _trace_data_builder): self.tracing_started = False if self.will_raise_exception_in_stop_tracing: raise Exception def IsChromeTracingSupported(self): return True class FakeTraceOptions(object): def __init__(self): self.enable_chrome_trace = True class FakeCategoryFilter(object): def __init__(self): self.filter_string = 'foo' class ChromeTracingAgentUnittest(unittest.TestCase): def setUp(self): self.platform1 = FakePlatformBackend() self.platform2 = FakePlatformBackend() self.platform3 = FakePlatformBackend() def StartTracing(self, platform_backend, enable_chrome_trace=True): assert chrome_tracing_agent.ChromeTracingAgent.IsSupported(platform_backend) agent = chrome_tracing_agent.ChromeTracingAgent(platform_backend) trace_options = FakeTraceOptions() trace_options.enable_chrome_trace = enable_chrome_trace agent.Start(trace_options, FakeCategoryFilter(), 10) return agent def StopTracing(self, tracing_agent): tracing_agent.Stop(None) def testRegisterDevtoolsClient(self): chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(1), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(2), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(3), self.platform1) tracing_agent_of_platform1 = self.StartTracing(self.platform1) with self.assertRaises(chrome_tracing_agent.ChromeTracingStartedError): chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(4), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(5), self.platform2) self.StopTracing(tracing_agent_of_platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(6), self.platform1) def testIsSupport(self): self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform1)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform2)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform3)) devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform2) devtool2.is_alive = False # Chrome tracing is only supported on platform 1 since only platform 1 has # an alive devtool. self.assertTrue( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform1)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform2)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform3)) def testStartAndStopTracing(self): devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) devtool3 = FakeDevtoolsClient(3) devtool4 = FakeDevtoolsClient(2) # Register devtools 1, 2, 3 on platform1 and devtool 4 on platform 2 chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool3, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool4, self.platform2) devtool2.is_alive = False tracing_agent1 = self.StartTracing(self.platform1) with self.assertRaises(chrome_tracing_agent.ChromeTracingStartedError): self.StartTracing(self.platform1) self.assertTrue(devtool1.tracing_started) self.assertFalse(devtool2.tracing_started) self.assertTrue(devtool3.tracing_started) # Devtool 4 shouldn't have tracing started although it has the same remote # port as devtool 2 self.assertFalse(devtool4.tracing_started) self.StopTracing(tracing_agent1) self.assertFalse(devtool1.tracing_started) self.assertFalse(devtool2.tracing_started) self.assertFalse(devtool3.tracing_started) self.assertFalse(devtool4.tracing_started) # Test that it should be ok to start & stop tracing on platform1 again. tracing_agent1 = self.StartTracing(self.platform1) self.StopTracing(tracing_agent1) tracing_agent2 = self.StartTracing(self.platform2) self.assertTrue(devtool4.tracing_started) self.StopTracing(tracing_agent2) self.assertFalse(devtool4.tracing_started) def testExceptionRaisedInStopTracing(self): devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) # Register devtools 1, 2 on platform 1 chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform1) tracing_agent1 = self.StartTracing(self.platform1) self.assertTrue(devtool1.tracing_started) self.assertTrue(devtool2.tracing_started) devtool2.will_raise_exception_in_stop_tracing = True with self.assertRaises(chrome_tracing_agent.ChromeTracingStoppedError): self.StopTracing(tracing_agent1) devtool1.is_alive = False devtool2.is_alive = False # Register devtools 3 on platform 1 should not raise any exception. devtool3 = FakeDevtoolsClient(3) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool3, self.platform1) # Start & Stop tracing on platform 1 should work just fine. tracing_agent2 = self.StartTracing(self.platform1) self.StopTracing(tracing_agent2)
StarcoderdataPython
1802514
<reponame>vietbm-hcm/modoboa """SimpleUsers views.""" from django.template.loader import render_to_string from django.utils.translation import ugettext as _ from django.contrib.auth.decorators import login_required from reversion import revisions as reversion from modoboa.lib.web_utils import render_to_json_response from ..forms import ForwardForm from ..lib import needs_mailbox from ..models import Alias @login_required @needs_mailbox() @reversion.create_revision() def forward(request, tplname="admin/forward.html"): mb = request.user.mailbox al = Alias.objects.filter(address=mb.full_address, internal=False).first() if request.method == "POST": form = ForwardForm(request.POST) if form.is_valid(): if al is None: al = Alias.objects.create( address=mb.full_address, domain=mb.domain, enabled=mb.user.is_active) recipients = form.cleaned_data["dest"] if form.cleaned_data["keepcopies"]: recipients.append(mb.full_address) al.set_recipients(recipients) if len(recipients) == 0: al.delete() else: al.post_create(request.user) return render_to_json_response(_("Forward updated")) return render_to_json_response( {'form_errors': form.errors}, status=400 ) form = ForwardForm() if al is not None and al.recipients: recipients = list(al.recipients) if al.aliasrecipient_set.filter(r_mailbox=mb).exists(): form.fields["keepcopies"].initial = True recipients.remove(mb.full_address) form.fields["dest"].initial = "\n".join(recipients) return render_to_json_response({ "content": render_to_string(tplname, {"form": form}, request) })
StarcoderdataPython
6486793
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Helper methods for generating a retrieval-augmented dataset.""" import json import os import random from absl import logging from language.casper.augment import casper_converters from language.casper.utils import data_types import tensorflow as tf RawExample = data_types.RawExample AugmentedExample = data_types.AugmentedExample def expand_path_patterns(path_patterns): """Expands the glob patterns in the given list.""" paths = [] for pattern in path_patterns: paths.extend(tf.io.gfile.glob(pattern)) return paths def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _to_tf_example(example): feature = { "inputs": _bytes_feature(example.inputs.encode()), "targets": _bytes_feature(example.targets.encode()), } tf_ex = tf.train.Example(features=tf.train.Features(feature=feature)) return tf_ex.SerializeToString() def read_orig_examples(data_paths): """Reads and deserializes JSONLs from files.""" source_files = expand_path_patterns(data_paths) for source_file in source_files: logging.info("Start reading from %s", source_file) with tf.io.gfile.GFile(source_file) as reader: for line in reader: yield json.loads(line) def write_examples(examples, base_path, file_format = "tfr", num_shards = None): """Writes examples to sharded TSV or TFRecord files.""" if not num_shards: # Automatically compute the number of shards num_shards = max(1, len(examples) // 5000) shard_size = len(examples) // num_shards + 1 for i in range(num_shards): filename = "{}.{}-{:05d}-of-{:05d}".format(base_path, file_format, i, num_shards) shard_examples = examples[i * shard_size:(i + 1) * shard_size] logging.info("Writing to %s", filename) if file_format == "tsv": with tf.io.gfile.GFile(filename, "w") as writer: for example in shard_examples: writer.write("{}\t{}\n".format(example.inputs, example.targets)) elif file_format == "tfr": with tf.io.TFRecordWriter(filename) as writer: for example in shard_examples: writer.write(_to_tf_example(example)) else: raise ValueError("Unknown file format: {}".format(file_format)) def create_augmented_examples(orig_examples, converter, split, log_every = 1000): """Creates AugmentedExamples from the raw JSONLs. Args: orig_examples: An Iterable of deserialzied JSONs. converter: A subclass of BaseExampleConverter. split: Split name (used only for logging). log_every: Logging frequency. Returns: a list of AugmentedExamples. """ examples = [] for i, orig_example in enumerate(orig_examples): if i % log_every == 0: logging.info("[%s:%d] Produced %d examples", split, i, len(examples)) converter.verify_exemplars(orig_example) examples.extend(converter.convert(orig_example)) logging.info("[%s] Produced %d examples total.", split, len(examples)) return examples def generate_dataset(orig_train, orig_dev, orig_test, converter, output_dir, seed = 42, log_every = 1000, train_filename = "train", dev_filename = "dev", test_filename = "test", file_format = "tfr"): """Generates and writes retrieval-augmented dataset files. Args: orig_train: Iterable of deserialized JSONs for training data. orig_dev: Iterable of deserialized JSONs for dev data. orig_test: Iterable of deserialized JSONs for test data. converter: A subclass of BaseExampleConverter. output_dir: Output directory. seed: Random seed. log_every: Logging frequency. train_filename: Training data filename prefix. dev_filename: Dev data filename prefix. test_filename: Test data filename prefix. file_format: Output file format. """ random.seed(seed) tf.io.gfile.makedirs(output_dir) converter.stats.clear() examples = create_augmented_examples( orig_train, converter, split="train", log_every=log_every) if examples: # Shuffle the training data. random.shuffle(examples) base_path = os.path.join(output_dir, train_filename) write_examples(examples, base_path, file_format=file_format) logging.info("Train data stats: %s", dict(converter.stats)) else: logging.warn("No train examples generated.") converter.stats.clear() examples = create_augmented_examples( orig_dev, converter, split="dev", log_every=log_every) if examples: # The dev data is not shuffled for easier error analysis. base_path = os.path.join(output_dir, dev_filename) write_examples(examples, base_path, file_format=file_format) logging.info("Dev data stats: %s", dict(converter.stats)) else: logging.warn("No dev examples generated.") converter.stats.clear() examples = create_augmented_examples( orig_test, converter, split="test", log_every=log_every) if examples: # The test data is not shuffled for easier error analysis. base_path = os.path.join(output_dir, test_filename) write_examples(examples, base_path, file_format=file_format) logging.info("Test data stats: %s", dict(converter.stats)) else: logging.warn("No test examples generated.")
StarcoderdataPython
1998486
<reponame>wlbksy/robotics import numpy as np import pytest from numpy.testing import assert_almost_equal, assert_array_almost_equal import robotics as rbt class TestConversions: def test_rotation3D_axis_angle(self): axis_z = np.array([0, 0, 1]) assert_array_almost_equal(np.eye(3), rbt.rotation3D_axis_angle(np.zeros(3))) assert_array_almost_equal( np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]), rbt.rotation3D_axis_angle(axis_z * np.pi), ) assert_array_almost_equal( np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]), rbt.rotation3D_axis_angle(axis_z * np.pi / 2), ) def test_rotation3D_to_axis_angle(self): axis_z = np.array([0, 0, 1]) axis = rbt.rotation3D_to_axis_angle(np.eye(3)) assert_array_almost_equal(axis, np.zeros(3)) axis = rbt.rotation3D_to_axis_angle( np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]) ) assert_array_almost_equal(axis, axis_z * np.pi) axis = rbt.rotation3D_to_axis_angle( np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) ) assert_array_almost_equal(axis, axis_z * np.pi / 2)
StarcoderdataPython
5072878
<filename>database_schema.py from sqlalchemy import UniqueConstraint from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy import Column, Integer, String, Table, Boolean, Text from sqlalchemy import ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class Normalization(Base): # Table to store normalized forms of entities __tablename__ = "normalization" id = Column(Integer, primary_key=True) text = Column(Text) reference_name = Column(Text) entity_type = Column(String(32), default="") reference_source = Column(String(32), default="") class Pair(Base): __tablename__ = 'pairs' id = Column(Integer, primary_key=True) type = Column(String(32), default="") source = Column(String(32), default="") values = Column(String(32), default="") entity1_id = Column(Integer, ForeignKey('entities.id')) entity2_id = Column(Integer, ForeignKey('entities.id')) document_id = Column(Integer, ForeignKey('documents.pmid')) corpus_id = Column(Integer, ForeignKey('corpora.id')) entity1 = relationship("Entity", foreign_keys=[entity1_id]) #, cascade="all, delete, delete-orphan", single_parent=True) entity2 = relationship("Entity", foreign_keys=[entity2_id]) #, cascade="all, delete, delete-orphan", single_parent=True) document = relationship("Document", foreign_keys=[document_id]) corpus = relationship("Corpus", foreign_keys=[corpus_id]) class Entity(Base): __tablename__ = 'entities' id = Column(Integer, primary_key=True) start = Column(Integer) end = Column(Integer) ner = Column(String(32)) type = Column(String(32), default="") text = Column(Text, default="") normalized = Column(Text, default="") sentence_id = Column(Integer, ForeignKey('sentences.id')) corpus_id = Column(Integer, ForeignKey('corpora.id')) start_token_id = Column(Integer, ForeignKey('tokens.id')) end_token_id = Column(Integer, ForeignKey('tokens.id')) __table_args__ = (UniqueConstraint('start', 'end', 'type', 'ner', 'sentence_id', 'corpus_id', name='_entity_annotation'), ) sentence = relationship("Sentence", back_populates="entities") token_start = relationship("Token", foreign_keys=[start_token_id]) token_end = relationship("Token", foreign_keys=[end_token_id]) corpus = relationship("Corpus", back_populates="entities") def __repr__(self): return "<Entity(start='%s', end='%s', text='%s')>" % ( self.start, self.end, self.text) class Token(Base): __tablename__ = 'tokens' id = Column(Integer, primary_key=True) start = Column(Integer) #sentence offset end = Column(Integer) text = Column(Text, default="") order = Column(Integer) pos = Column(String(32), default="") lemma = Column(Text, default="") sentence_id = Column(Integer, ForeignKey('sentences.id')) sentence = relationship("Sentence", back_populates="tokens") #entities_start = relationship("Entity", back_populates="token_start", # cascade="all, delete, delete-orphan", foreign_keys="") #entities_end = relationship("Entity", back_populates="token_end", # cascade="all, delete, delete-orphan") def __repr__(self): return "<Token(start='%s', end='%s', text='%s')>" % ( self.start, self.end, self.text) class Sentence(Base): __tablename__ = 'sentences' id = Column(Integer, primary_key=True) offset = Column(Integer) section = Column(String(10)) text = Column(Text, default="") order = Column(Integer) document_id = Column(Integer, ForeignKey('documents.pmid')) document = relationship("Document", back_populates="sentences") tokens = relationship("Token", order_by=Token.order, back_populates="sentence", cascade="all, delete, delete-orphan") entities = relationship("Entity", order_by=Entity.start, back_populates="sentence", cascade="all, delete, delete-orphan") CorpusDocument = Table('CorpusDocument', Base.metadata, Column('id', Integer, primary_key=True), Column('document_id', Integer, ForeignKey("documents.pmid")), Column('corpus_id', Integer, ForeignKey("corpora.id")) ) class Document(Base): __tablename__ = 'documents' pmid = Column(Integer, primary_key=True) title = Column(Text) abstract = Column(Text) parsed = Column(Boolean, default=0) #corpus_id = Column(Integer, ForeignKey('corpora.id')) corpora = relationship("Corpus", secondary=CorpusDocument, back_populates="documents") #corpus = relationship("Corpus", back_populates="documents") sentences = relationship("Sentence", order_by=Sentence.order, back_populates="document", cascade="all, delete, delete-orphan") pairs = relationship("Pair", back_populates="document", cascade="all, delete, delete-orphan") def __repr__(self): return "<Document(id='%s', title='%s', abstract='%s')>" % ( self.pmid, self.title, self.abstract) class Corpus(Base): __tablename__ = 'corpora' id = Column(Integer, primary_key=True) name = Column(String(32)) description = Column(String(32)) documents = relationship("Document", secondary=CorpusDocument, back_populates="corpora") #documents = relationship("Document", order_by=Document.pmid, back_populates="corpus", # cascade="all, delete, delete-orphan") entities = relationship("Entity", back_populates="corpus") pairs = relationship("Pair", back_populates="corpus") def __repr__(self): return "<Corpus(name='%s')>" % self.name if __name__ == "__main__": with open("config/database.config", 'r') as f: for l in f: if l.startswith("username"): username = l.split("=")[-1].strip() elif l.startswith("password"): password = l.split("=")[-1].strip() #engine = create_engine('sqlite:///database.sqlite', echo=False) engine = create_engine('mysql+pymysql://{}:{}@localhost/immuno?charset=utf8mb4'.format(username, password), echo=True) Base.metadata.drop_all(engine) Base.metadata.create_all(engine)
StarcoderdataPython
3366980
class Assembly: def __init__(self, yaml): self.yaml = yaml def apply(self, ind): pass class Gibson(Assembly): def __set_junction_size(self): self.junction_size = self.yaml["Algorithm"]["assemblies"][ "mooda.assembly.Gibson" ]["junction_size"] def initialise(self): self.__set_junction_size() """ Takes as input all blocks if there is no overlap it makes it """ def apply(self, population): # for each block for ind in population.individuals: for block_index in range(len(ind.blocks[:-1])): next_block = block_index + 1 # if there is no overlap make it if ind.blocks[block_index][1] == ind.blocks[next_block][0]: ind.blocks[block_index][1] = ind.blocks[block_index][1] + self.junction_size
StarcoderdataPython
1970764
<reponame>JianyuTANG/GB-To-UTF8<gh_stars>0 import sys import os origin_name = sys.argv[1] if len(sys.argv) == 3: to_name = sys.argv[2] elif len(sys.argv) == 2: to_name = origin_name else: print("ERROR: wrong arg number") os._exit(0) def write_to_file(data, filename): with open(filename, 'wb') as f: data = data.encode('utf-8') f.write(data) f.close() return print('ERROR: fail to create and write file: ' + filename) with open(origin_name, 'rb') as f: data = f.read() try: data = data.decode('utf-8') print('the original file is utf-8') print('no need to change') os._exit(0) except: pass try: data = data.decode('gb2312') f.close() write_to_file(data, to_name) print('the original encoding is gb2312') print('already changed to UTF-8 to: ' + to_name) os._exit(0) except: pass try: data = data.decode('gbk') f.close() write_to_file(data, to_name) print('the original encoding is gbk') print('already changed to UTF-8 to: ' + to_name) os._exit(0) except: pass try: data = data.decode('gb18030') f.close() write_to_file(data, to_name) print('the original encoding is gb18030') print('already changed to UTF-8 to: ' + to_name) os._exit(0) except: pass print('sorry, transfer failed')
StarcoderdataPython
6409946
#!/usr/bin/python """ @brief Run QuickBot class for Beaglebone Black @author <NAME> (<EMAIL>) @date 02/07/2014 @version: 1.0 @copyright: Copyright (C) 2014, Georgia Tech Research Corporation see the LICENSE file included with this software (see LINENSE file) """ import sys import argparse DESCRIPTION = "" RTYPES = ('quick', 'ultra') def main(options): print "Running XBot" print 'Running XBot Program' print ' Base IP: ', options.ip print ' Robot IP: ', options.rip print ' Robot Type: ', options.rtype if options.rtype == 'quick': import xbots.quickbot qb = xbots.quickbot.QuickBot(options.ip, options.rip) qb.run() elif options.rtype == 'ultra': import xbots.ultrabot qb = xbots.ultrabot.UltraBot(options.ip, options.rip) qb.run() if __name__ == '__main__': parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument( '--ip', '-i', default='192.168.7.1', help="Computer ip (base ip)") parser.add_argument( '--rip', '-r', default='192.168.7.2', help="BBB ip (robot ip)") parser.add_argument( '--rtype', '-t', default='quick', help="Type of robot (%s)" % '|'.join(RTYPES)) options = parser.parse_args() if options.rtype not in RTYPES: print "Chosen type not exists use (%s)" % '|'.join(RTYPES) sys.exit(0) main(options)
StarcoderdataPython
8022031
import pytest from .helpers import utils, speke_element_assertions import xml.etree.ElementTree as ET @pytest.fixture(scope="session") def widevine_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_WIDEVINE, spekev2_url) @pytest.fixture(scope="session") def playready_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_PLAYREADY, spekev2_url) @pytest.fixture(scope="session") def fairplay_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_FAIRPLAY, spekev2_url) @pytest.fixture(scope="session") def widevine_playready_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_WIDEVINE_PLAYREADY, spekev2_url) @pytest.fixture(scope="session") def widevine_fairplay_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_WIDEVINE_FAIRPLAY, spekev2_url) @pytest.fixture(scope="session") def playready_fairplay_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_PLAYREADY_FAIRPLAY, spekev2_url) @pytest.fixture(scope="session") def widevine_playready_fairplay_response(spekev2_url): return utils.send_speke_request(utils.TEST_CASE_1_P_V_1_A_1, utils.PRESETS_WIDEVINE_PLAYREADY_FAIRPLAY, spekev2_url) def test_case_1_widevine(widevine_response): root_cpix = ET.fromstring(widevine_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cenc") speke_element_assertions.validate_drm_system_list_element(root_cpix, 2, 2, 2, 0, 0) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_playready(playready_response): root_cpix = ET.fromstring(playready_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cenc") speke_element_assertions.validate_drm_system_list_element(root_cpix, 2, 2, 0, 2, 0) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_fairplay(fairplay_response): root_cpix = ET.fromstring(fairplay_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cbcs") speke_element_assertions.validate_drm_system_list_element(root_cpix, 2, 2, 0, 0, 2) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_widevine_playready(widevine_playready_response): root_cpix = ET.fromstring(widevine_playready_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cenc") speke_element_assertions.validate_drm_system_list_element(root_cpix, 4, 2, 2, 2, 0) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_widevine_fairplay(widevine_fairplay_response): root_cpix = ET.fromstring(widevine_fairplay_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cbcs") speke_element_assertions.validate_drm_system_list_element(root_cpix, 4, 2, 2, 0, 2) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_playready_fairplay(playready_fairplay_response): root_cpix = ET.fromstring(playready_fairplay_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cbcs") speke_element_assertions.validate_drm_system_list_element(root_cpix, 4, 2, 0, 2, 2) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2) def test_case_1_widevine_playready_fairplay(widevine_playready_fairplay_response): root_cpix = ET.fromstring(widevine_playready_fairplay_response) speke_element_assertions.check_cpix_version(root_cpix) speke_element_assertions.validate_root_element(root_cpix) speke_element_assertions.validate_mandatory_cpix_child_elements(root_cpix) speke_element_assertions.validate_content_key_list_element(root_cpix, 2, "cbcs") speke_element_assertions.validate_drm_system_list_element(root_cpix, 6, 2, 2, 2, 2) speke_element_assertions.validate_content_key_usage_rule_list_element(root_cpix, 2)
StarcoderdataPython
8027776
<reponame>tgodzik/intellij-community from scapy import all as scapy print('TEST SUCEEDED!')
StarcoderdataPython
18565
<filename>src/planet_box_extractor/extractor.py from .geo_utils import boundingBox import time import PIL.Image import urllib.request import mercantile import numpy as np class PlanetBoxExtractor: """ Extract bounding boxes from satellite images using Planet Tiles API @radius: distance from the center of the image to the edge in kilometers @zoom: level of zoom in the Mercantiles @map_id: url-id of the basemap from the Planet Tiles API, can be found in the Planet Explorer @api_key: Planet Tiles API Key base_url: placeholder url of using the Planet Tiles API, containing the API_KEY IMGSIZE: the size of the images from the Planet Tiles API (256 default) locations: clockwise order of the tiles Usage: extractor = PlanetBoxExtractor(radius, zoom, map_id, API_KEY) image = extractor.Process(latitude, longitude) """ def __init__(self, radius, zoom, map_id, api_key): self.radius = radius self.zoom = zoom self.base_url = 'https://tiles.planet.com/basemaps/v1/planet-tiles/' + map_id + '/gmap/{}/{}/{}.png?api_key=' + api_key self.IMGSIZE = 256 self.locations = ['upleft', 'upright', 'downleft', 'downright'] def Download(self, latitude, longitude): """ Method to retrieve Mercartor tiles corresponding to the bounding box around longitude and latitude with radius self.radius Returns a list of 4 items, either the image of a tile or an empty object (None) Parameters ---------- latitude: latitude coordinate of the center of the desired bounding box in degrees longitude: longitude coordinate of the center of the desired bounding box in degrees Returns ------- images: list of PNG images corresponding to the Mercartor tiles """ minLat, minLon, maxLat, maxLon = boundingBox(latitude, longitude, self.radius) tiles = [ mercantile.tile(minLon, maxLat, self.zoom), # upleft mercantile.tile(maxLon, maxLat, self.zoom), # upright mercantile.tile(minLon, minLat, self.zoom), # downleft mercantile.tile(maxLon, minLat, self.zoom), # downright ] urls = [] images = [] for i, location in enumerate(self.locations): tile = tiles[i] url = self.base_url.format(tile.z, tile.x, tile.y) if url in urls: images.append(None) else: urls.append(urls.append(url)) images.append(PIL.Image.open(urllib.request.urlopen(url))) time.sleep(0.2) return images def Stitch(self, images): """ Method to place Mercartor tile images in correct order Parameters ---------- images: list of images of tiles and empty objects (None) for empty tiles Returns ------- img: stitched image with size (self.IMGSIZE * n) x (self.IMGSIZE * m) with n the number of tile rows and m the number of tile columns """ total = [(img is not None) for i, img in enumerate(images)] if sum(total) == 1: padx, pady = 0, 0 img = np.zeros((self.IMGSIZE, self.IMGSIZE, 3), 'uint8') elif sum(total) == 2: if sum(total[:2]) % 2 == 0: # up/down padx, pady = 0, self.IMGSIZE img = np.zeros((self.IMGSIZE, self.IMGSIZE * 2, 3), 'uint8') else: # left/right padx, pady = self.IMGSIZE, 0 img = np.zeros((self.IMGSIZE * 2, self.IMGSIZE, 3), 'uint8') elif sum(total) == 4: padx, pady = self.IMGSIZE, self.IMGSIZE img = np.zeros((self.IMGSIZE * 2, self.IMGSIZE * 2, 3), 'uint8') # for location, image in zip(self.locations, images): if image is None: continue if location == 'upleft': img[:self.IMGSIZE, :self.IMGSIZE] = np.array(image)[:,:,:3] elif location == 'upright': img[:self.IMGSIZE, self.IMGSIZE:] = np.array(image)[:,:,:3] elif location == 'downright': img[self.IMGSIZE:, self.IMGSIZE:] = np.array(image)[:,:,:3] elif location == 'downleft': img[self.IMGSIZE:, :self.IMGSIZE] = np.array(image)[:,:,:3] return img def coord2pixel(self, lon, lat, box): """ Method to convert longitude and latitude to their corresponding pixel location given the bounding box of the Mercartor containing the coordinates Parameters ---------- lon: longitude in degrees lat: latitude in degrees box: bounding box of the Mercartor tile containing the coordinates returned from mercantile.bounds() Returns ------- tuple of 2 pixel locations corresponding to the given longitude and latitude """ return int((lon - box.west)/(box.east - box.west)*self.IMGSIZE), int((lat - box.north)/(box.south - box.north)*self.IMGSIZE) def Bounds(self, latitude, longitude): """ Method to calculate the pixel locations of the bounding box with a radius of self.radius given the center longitude and latitude coordinates Parameters ---------- latitude: latitude coordinate of the center of the bounding box in degrees longitude: longitude coordinate of the center of the bounding box in degrees Returns ------- minY: starting pixel location of the bounding box on the Y-axis maxY: ending pixel location of the bounding box on the Y-axis minX: starting pixel location of the bounding box on the X-axis maxX: ending pixel location of the bounding box on the X-axis """ minLat, minLon, maxLat, maxLon = boundingBox(latitude, longitude, self.radius) minX, minY = self.coord2pixel(minLon, maxLat, mercantile.bounds(mercantile.tile(longitude, latitude, self.zoom))) maxX, maxY = self.coord2pixel(maxLon, minLat, mercantile.bounds(mercantile.tile(longitude, latitude, self.zoom))) if minY < 0: minY += self.IMGSIZE maxY += self.IMGSIZE if minX < 0: minX += self.IMGSIZE maxX += self.IMGSIZE return minY, maxY, minX, maxX def Crop(self, image, minY, maxY, minX, maxX): """ Method to perform the cropping of the stitched image to return the bounding box region Parameters ---------- image: stitched image of the Mercartor tiles minY: starting pixel location of the bounding box on the Y-axis maxY: ending pixel location of the bounding box on the Y-axis minX: starting pixel location of the bounding box on the X-axis maxX: ending pixel location of the bounding box on the X-axis Returns ------- partial image corresponding to the bounding box region """ return image[minY:maxY, minX:maxX] def Process(self, latitude, longitude): """ Method that combines the main steps of the API to extract a bounding box image given a latitude and longitude Parameters ---------- latitude: latitude coordinate of the center of the bounding box in degrees longitude: latitude coordinate of the center of the bounding box in degrees Returns ------- image: partial image corresponding to the bounding box region """ images = self.Download(latitude, longitude) stitched_image = self.Stitch(images) minY, maxY, minX, maxX = self.Bounds(latitude, longitude) image = self.Crop(stitched_image, minY, maxY, minX, maxX) return image if __name__ == '__main__': latitude, longitude = 5, 20 zoom = 15 radius = 0.2 API_KEY = '' map_id = '' extractor = PlanetBoxExtractor(radius, zoom, map_id, API_KEY) image = extractor.Process(latitude, longitude)
StarcoderdataPython
1864584
# Copyright (c) 2011-2014 Berkeley Model United Nations. All rights reserved. # Use of this source code is governed by a BSD License (see LICENSE). import json from django.core.urlresolvers import reverse from django.test import TestCase from django.test.client import Client from huxley.accounts.models import User from huxley.api.tests import (CreateAPITestCase, DestroyAPITestCase, ListAPITestCase, PartialUpdateAPITestCase, RetrieveAPITestCase) from huxley.utils.test import TestSchools, TestUsers class UserDetailGetTestCase(RetrieveAPITestCase): url_name = 'api:user_detail' def test_anonymous_user(self): '''It should reject request from an anonymous user.''' user = TestUsers.new_user() response = self.get_response(user.id) self.assertNotAuthenticated(response) def test_other_user(self): '''It should reject request from another user.''' user1 = TestUsers.new_user(username='user1') user2 = TestUsers.new_user(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(user1.id) self.assertPermissionDenied(response) def test_superuser(self): '''It should return the correct fields for a superuser.''' user1 = TestUsers.new_user(username='user1') user2 = TestUsers.new_superuser(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(user1.id) self.assertEqual(response.data, { 'id': user1.id, 'username': user1.username, 'first_name': user1.first_name, 'last_name': user1.last_name, 'user_type': user1.user_type, 'school': user1.school_id, 'committee': user1.committee_id}) def test_self(self): '''It should return the correct fields for a single user.''' school = TestSchools.new_school() user = school.advisor self.client.login(username=user.username, password='<PASSWORD>') response = self.get_response(user.id) self.assertEqual(response.data, { 'id': user.id, 'username': user.username, 'first_name': user.first_name, 'last_name': user.last_name, 'user_type': user.user_type, 'school': { 'id': school.id, 'registered': school.registered.isoformat(), 'name': school.name, 'address': school.address, 'city': school.city, 'state': school.state, 'zip_code': school.zip_code, 'country': school.country, 'primary_name': school.primary_name, 'primary_gender': school.primary_gender, 'primary_email': school.primary_email, 'primary_phone': school.primary_phone, 'primary_type': school.primary_type, 'secondary_name': school.secondary_name, 'secondary_gender': school.secondary_gender, 'secondary_email': school.secondary_email, 'secondary_phone': school.secondary_phone, 'secondary_type': school.secondary_type, 'program_type': school.program_type, 'times_attended': school.times_attended, 'international': school.international, 'waitlist': school.waitlist, 'beginner_delegates': school.beginner_delegates, 'intermediate_delegates': school.intermediate_delegates, 'advanced_delegates': school.advanced_delegates, 'spanish_speaking_delegates': school.spanish_speaking_delegates, 'country_preferences': school.country_preference_ids, 'prefers_bilingual': school.prefers_bilingual, 'prefers_specialized_regional': school.prefers_specialized_regional, 'prefers_crisis': school.prefers_crisis, 'prefers_alternative': school.prefers_alternative, 'prefers_press_corps': school.prefers_press_corps, 'registration_comments': school.registration_comments, 'fees_owed': float(school.fees_owed), 'fees_paid': float(school.fees_paid), }, 'committee': user.committee_id}) def test_chair(self): '''It should have the correct fields for chairs.''' user = TestUsers.new_user(user_type=User.TYPE_CHAIR, committee_id=4) self.client.login(username='testuser', password='<PASSWORD>') response = self.get_response(user.id) self.assertEqual(response.data, { 'id': user.id, 'username': user.username, 'first_name': user.first_name, 'last_name': user.last_name, 'user_type': user.user_type, 'school': user.school_id, 'committee': user.committee_id}) class UserDetailDeleteTestCase(DestroyAPITestCase): url_name = 'api:user_detail' def setUp(self): self.user = TestUsers.new_user(username='user1', password='<PASSWORD>') def test_anonymous_user(self): '''It should reject the request from an anonymous user.''' response = self.get_response(self.user.id) self.assertNotAuthenticated(response) self.assertTrue(User.objects.filter(id=self.user.id).exists()) def test_other_user(self): '''It should reject the request from another user.''' TestUsers.new_user(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(self.user.id) self.assertPermissionDenied(response) self.assertTrue(User.objects.filter(id=self.user.id).exists()) def test_self(self): '''It should allow a user to delete themself.''' self.client.login(username='user1', password='<PASSWORD>') response = self.get_response(self.user.id) self.assertEqual(response.status_code, 204) self.assertFalse(User.objects.filter(id=self.user.id).exists()) def test_superuser(self): '''It should allow a superuser to delete a user.''' TestUsers.new_superuser(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(self.user.id) self.assertEqual(response.status_code, 204) self.assertFalse(User.objects.filter(id=self.user.id).exists()) class UserDetailPatchTestCase(PartialUpdateAPITestCase): url_name = 'api:user_detail' params = {'first_name': 'first', 'last_name': 'last'} def setUp(self): self.user = TestUsers.new_user(username='user1', password='<PASSWORD>') def test_anonymous_user(self): '''An anonymous user should not be able to change information.''' response = self.get_response(self.user.id, params=self.params) self.assertNotAuthenticated(response) user = User.objects.get(id=self.user.id) self.assertEqual(user.first_name, 'Test') self.assertEqual(user.last_name, 'User') def test_other_user(self): '''Another user should not be able to change information about any other user.''' TestUsers.new_user(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(self.user.id, params=self.params) self.assertPermissionDenied(response) user = User.objects.get(id=self.user.id) self.assertEqual(user.first_name, 'Test') self.assertEqual(user.last_name, 'User') def test_self(self): '''A User should be allowed to change information about himself.''' self.client.login(username='user1', password='<PASSWORD>') response = self.get_response(self.user.id, params=self.params) user = User.objects.get(id=self.user.id) self.assertEqual(response.data['first_name'], user.first_name) self.assertEqual(response.data['last_name'], user.last_name) def test_superuser(self): '''A superuser should be allowed to change information about a user.''' TestUsers.new_superuser(username='user2', password='<PASSWORD>') self.client.login(username='user2', password='<PASSWORD>') response = self.get_response(self.user.id, params=self.params) user = User.objects.get(id=self.user.id) self.assertEqual(response.data['first_name'], user.first_name) self.assertEqual(response.data['last_name'], user.last_name) class UserListGetTestCase(ListAPITestCase): url_name = 'api:user_list' def test_anonymous_user(self): '''It should reject the request from an anonymous user.''' TestUsers.new_user(username='user1') TestUsers.new_user(username='user2') response = self.get_response() self.assertNotAuthenticated(response) def test_user(self): '''It should reject the request from a regular user.''' TestUsers.new_user(username='user1', password='<PASSWORD>') TestUsers.new_user(username='user2') self.client.login(username='user1', password='<PASSWORD>') response = self.get_response() self.assertPermissionDenied(response) def test_superuser(self): '''It should allow a superuser to list all users.''' user1 = TestUsers.new_superuser(username='user1', password='<PASSWORD>') user2 = TestUsers.new_user(username='user2') self.client.login(username='user1', password='<PASSWORD>') response = self.get_response() self.assertEqual(response.data, [ {'id': user1.id, 'username': user1.username, 'first_name': user1.first_name, 'last_name': user1.last_name, 'user_type': user1.user_type, 'school': user1.school_id, 'committee': user1.committee_id}, {'id': user2.id, 'username': user2.username, 'first_name': user2.first_name, 'last_name': user2.last_name, 'user_type': user2.user_type, 'school': user2.school_id, 'committee': user2.committee_id}]) class UserListPostTestCase(CreateAPITestCase): url_name = 'api:user_list' params = {'username': 'Kunal', 'password': 'password', 'first_name': 'Kunal', 'last_name': 'Mehta'} def test_valid(self): params = self.get_params() response = self.get_response(params) user_query = User.objects.filter(id=response.data['id']) self.assertTrue(user_query.exists()) user = User.objects.get(id=response.data['id']) self.assertEqual(response.data, { 'id': user.id, 'username': user.username, 'first_name': user.first_name, 'last_name': user.last_name, 'user_type': User.TYPE_ADVISOR, 'school': user.school_id, 'email': user.email}) def test_empty_username(self): response = self.get_response(params=self.get_params(username='')) self.assertEqual(response.data, { 'username': ['This field is required.']}) def test_taken_username(self): TestUsers.new_user(username='_Kunal', password='<PASSWORD>') response = self.get_response(params=self.get_params(username='_Kunal')) self.assertEqual(response.data, { 'username': ['This username is already taken.']}) def test_invalid_username(self): response = self.get_response(params=self.get_params(username='>Kunal')) self.assertEqual(response.data, { 'username': ['Usernames may contain alphanumerics, underscores, ' 'and/or hyphens only.']}) def test_empty_password(self): response = self.get_response(params=self.get_params(password='')) self.assertEqual(response.data, { 'password': ['<PASSWORD>.']}) def test_invalid_password(self): response = self.get_response(params=self.get_params(password='><PASSWORD>')) self.assertEqual(response.data, { 'password': ['Password contains invalid characters.']}) def test_empty_first_name(self): response = self.get_response(params=self.get_params(first_name='')) self.assertEqual(response.data, { 'first_name': ['This field is required.']}) def test_empty_last_name(self): response = self.get_response(params=self.get_params(last_name='')) self.assertEqual(response.data, { 'last_name': ['This field is required.']}) def test_username_length(self): response = self.get_response(params=self.get_params(username='user')) self.assertEqual(response.data, { 'username': ['Username must be at least 5 characters.']}) def test_password_length(self): response = self.get_response(params=self.get_params(password='<PASSWORD>')) self.assertEqual(response.data, { 'password': ['Password must be at least 6 characters.']}) class CurrentUserTestCase(TestCase): def setUp(self): self.client = Client() self.url = reverse('api:current_user') def get_data(self, url): return json.loads(self.client.get(url).content) def test_login(self): user = TestUsers.new_user(username='lol', password='<PASSWORD>') user2 = TestUsers.new_user(username='bunny', password='<PASSWORD>') credentials = {'username': 'lol', 'password': '<PASSWORD>'} response = self.client.post(self.url, data=json.dumps(credentials), content_type='application/json') self.assertEqual(response.status_code, 201) self.assertEqual(self.client.session['_auth_user_id'], user.id) credentials = {'username': 'bunny', 'password': '<PASSWORD>'} response = self.client.post(self.url, data=json.dumps(credentials), content_type='application/json') self.assertEqual(self.client.session['_auth_user_id'], user.id) data = json.loads(response.content) self.assertEqual(data['detail'], 'Another user is currently logged in.') def test_logout(self): user = TestUsers.new_user(username='lol', password='<PASSWORD>') self.client.login(username='lol', password='<PASSWORD>') self.assertEqual(self.client.session['_auth_user_id'], user.id) response = self.client.delete(self.url) self.assertEqual(response.status_code, 204) self.assertTrue('_auth_user_id' not in self.client.session) def test_get(self): data = self.get_data(self.url) self.assertEqual(len(data.keys()), 1) self.assertEqual(data['detail'], 'Not found') school = TestSchools.new_school() user = school.advisor self.client.login(username=user.username, password='<PASSWORD>') data = self.get_data(self.url) self.assertEqual(len(data.keys()), 7) self.assertEqual(data['id'], user.id) self.assertEqual(data['username'], user.username) self.assertEqual(data['first_name'], user.first_name) self.assertEqual(data['last_name'], user.last_name) self.assertEqual(data['user_type'], User.TYPE_ADVISOR) self.assertEqual(data['school'], { 'id': school.id, 'registered': school.registered.isoformat(), 'name': school.name, 'address': school.address, 'city': school.city, 'state': school.state, 'zip_code': school.zip_code, 'country': school.country, 'primary_name': school.primary_name, 'primary_gender': school.primary_gender, 'primary_email': school.primary_email, 'primary_phone': school.primary_phone, 'primary_type': school.primary_type, 'secondary_name': school.secondary_name, 'secondary_gender': school.secondary_gender, 'secondary_email': school.secondary_email, 'secondary_phone': school.secondary_phone, 'secondary_type': school.secondary_type, 'program_type': school.program_type, 'times_attended': school.times_attended, 'international': school.international, 'waitlist': school.waitlist, 'beginner_delegates': school.beginner_delegates, 'intermediate_delegates': school.intermediate_delegates, 'advanced_delegates': school.advanced_delegates, 'spanish_speaking_delegates': school.spanish_speaking_delegates, 'country_preferences': school.country_preference_ids, 'prefers_bilingual': school.prefers_bilingual, 'prefers_specialized_regional': school.prefers_specialized_regional, 'prefers_crisis': school.prefers_crisis, 'prefers_alternative': school.prefers_alternative, 'prefers_press_corps': school.prefers_press_corps, 'registration_comments': school.registration_comments, 'fees_owed': float(school.fees_owed), 'fees_paid': float(school.fees_paid), })
StarcoderdataPython
3466747
from features.fetch import DataSet from features.output import ExchangesOutput from model.exchanges import ExchangesSolver import numpy as np def solve_all(dataset, verbose=False, with_redistribution=True, output_file = None): exchangesOutput = ExchangesOutput() grids = dataset.list_grids() for _, g in grids.iterrows(): supplier = g['Supply Site Code'] sku = g['SKU'] grid = dataset.select_grid(supplier=supplier, sku=sku) x_opt_dist, x_opt_dep, x_opt_hub = grid.get_xopt() supplier_distances = grid.get_supplier_distances() destination_distances = grid.get_destination_distances() location_codes = grid.get_all_location_codes() x_opt = np.concatenate([x_opt_dist, x_opt_dep, x_opt_hub]) current_stock = grid.get_total_current_stock() if with_redistribution: from_supply, exchanges = ExchangesSolver(grid, x_opt_dist, x_opt_dep, x_opt_hub, supplier_distances, destination_distances).solve() else: exchanges = np.matrix((0, 0)) from_supply = x_opt - current_stock exchangesOutput.add_data(supplier, sku, location_codes, from_supply, exchanges) exchangesOutput.print(output_file) dataset_with_redistribution = DataSet('output/distribution_output_quadprog.csv') dataset_without_redistribution = DataSet('output/no_redistribution.csv') solve_all(dataset_without_redistribution, with_redistribution=False, output_file='output/exchanges_output_no_redistribution.csv') solve_all(dataset_with_redistribution, with_redistribution=True, output_file='output/exchanges_output.csv')
StarcoderdataPython
6441349
import cv2 import numpy as np import matplotlib.pyplot as plt from math import sqrt from skimage.feature import blob_dog, blob_log, blob_doh import imutils import argparse import os import math from classification import training, getLabel SIGNS = ["nouvelle", "STOP", "TURN LEFT", "TURN RIGHT", "DO NOT TURN LEFT", "DO NOT TURN RIGHT", "ONE WAY", "SPEED LIMIT 30", "OTHER", "PLACA JEDIDA", "panneaux de danger ", "Panneaux de fin obligation", "TURN ", "SPEED LIMIT 70", "SPEED LIMIT 90", "SPEED LIMIT 100", "SPEED LIMIT 130", "TRAVEAUX" ] # Clean all previous file def clean_images(): file_list = os.listdir('./') for file_name in file_list: if '.png' in file_name: os.remove(file_name) ### Preprocess image def constrastLimit(image): img_hist_equalized = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb) channels = cv2.split(img_hist_equalized) channels[0] = cv2.equalizeHist(channels[0]) img_hist_equalized = cv2.merge(channels) img_hist_equalized = cv2.cvtColor(img_hist_equalized, cv2.COLOR_YCrCb2BGR) return img_hist_equalized def LaplacianOfGaussian(image): LoG_image = cv2.GaussianBlur(image, (3,3), 0) # paramter gray = cv2.cvtColor( LoG_image, cv2.COLOR_BGR2GRAY) LoG_image = cv2.Laplacian( gray, cv2.CV_8U,3,3,2) # parameter LoG_image = cv2.convertScaleAbs(LoG_image) return LoG_image def binarization(image): thresh = cv2.threshold(image,32,255,cv2.THRESH_BINARY)[1] #thresh = cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2) return thresh def preprocess_image(image): image = constrastLimit(image) image = LaplacianOfGaussian(image) image = binarization(image) return image # Find Signs def removeSmallComponents(image, threshold): #find all your connected components (white blobs in your image) nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8) sizes = stats[1:, -1]; nb_components = nb_components - 1 img2 = np.zeros((output.shape),dtype = np.uint8) #for every component in the image, you keep it only if it's above threshold for i in range(0, nb_components): if sizes[i] >= threshold: img2[output == i + 1] = 255 return img2 def findContour(image): #find contours in the thresholded image cnts = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) cnts = cnts[0] if imutils.is_cv2() else cnts[1] return cnts def contourIsSign(perimeter, centroid, threshold): # perimeter, centroid, threshold # # Compute signature of contour result=[] for p in perimeter: p = p[0] distance = sqrt((p[0] - centroid[0])**2 + (p[1] - centroid[1])**2) result.append(distance) max_value = max(result) signature = [float(dist) / max_value for dist in result ] # Check signature of contour. temp = sum((1 - s) for s in signature) temp = temp / len(signature) if temp < threshold: # is the sign return True, max_value + 2 else: # is not the sign return False, max_value + 2 #crop sign def cropContour(image, center, max_distance): width = image.shape[1] height = image.shape[0] top = max([int(center[0] - max_distance), 0]) bottom = min([int(center[0] + max_distance + 1), height-1]) left = max([int(center[1] - max_distance), 0]) right = min([int(center[1] + max_distance+1), width-1]) print(left, right, top, bottom) return image[left:right, top:bottom] def cropSign(image, coordinate): width = image.shape[1] height = image.shape[0] top = max([int(coordinate[0][1]), 0]) bottom = min([int(coordinate[1][1]), height-1]) left = max([int(coordinate[0][0]), 0]) right = min([int(coordinate[1][0]), width-1]) #print(top,left,bottom,right) return image[top:bottom,left:right] def findLargestSign(image, contours, threshold, distance_theshold): max_distance = 0 coordinate = None sign = None for c in contours: M = cv2.moments(c) if M["m00"] == 0: continue cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) is_sign, distance = contourIsSign(c, [cX, cY], 1-threshold) if is_sign and distance > max_distance and distance > distance_theshold: max_distance = distance coordinate = np.reshape(c, [-1,2]) left, top = np.amin(coordinate, axis=0) right, bottom = np.amax(coordinate, axis = 0) coordinate = [(left-2,top-2),(right+3,bottom+1)] sign = cropSign(image,coordinate) return sign, coordinate def findSigns(image, contours, threshold, distance_theshold): signs = [] coordinates = [] for c in contours: # compute the center of the contour M = cv2.moments(c) if M["m00"] == 0: continue cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) is_sign, max_distance = contourIsSign(c, [cX, cY], 1-threshold) if is_sign and max_distance > distance_theshold: sign = cropContour(image, [cX, cY], max_distance) signs.append(sign) coordinate = np.reshape(c, [-1,2]) top, left = np.amin(coordinate, axis=0) right, bottom = np.amax(coordinate, axis = 0) coordinates.append([(top-2,left-2),(right+1,bottom+1)]) return signs, coordinates def localization(image, min_size_components, similitary_contour_with_circle, model, count, current_sign_type): original_image = image.copy() binary_image = preprocess_image(image) binary_image = removeSmallComponents(binary_image, min_size_components) binary_image = cv2.bitwise_and(binary_image,binary_image, mask=remove_other_color(image)) #binary_image = remove_line(binary_image) cv2.imshow('BINARY IMAGE', binary_image) contours = findContour(binary_image) #signs, coordinates = findSigns(image, contours, similitary_contour_with_circle, 15) sign, coordinate = findLargestSign(original_image, contours, similitary_contour_with_circle, 15) text = "" sign_type = -1 i = 0 if sign is not None: sign_type = getLabel(model, sign) sign_type = sign_type if sign_type <= 17 else 8 text = SIGNS[sign_type] cv2.imwrite(str(count)+'_'+text+'.png', sign) if sign_type > 0 and sign_type != current_sign_type: cv2.rectangle(original_image, coordinate[0],coordinate[1], (0, 255, 0), 1) font = cv2.FONT_HERSHEY_PLAIN cv2.putText(original_image,text,(coordinate[0][0], coordinate[0][1] -15), font, 1,(0,0,255),2,cv2.LINE_4) return coordinate, original_image, sign_type, text def remove_line(img): gray = img.copy() edges = cv2.Canny(gray,50,150,apertureSize = 3) minLineLength = 5 maxLineGap = 3 lines = cv2.HoughLinesP(edges,1,np.pi/180,15,minLineLength,maxLineGap) mask = np.ones(img.shape[:2], dtype="uint8") * 255 if lines is not None: for line in lines: for x1,y1,x2,y2 in line: cv2.line(mask,(x1,y1),(x2,y2),(0,0,0),2) return cv2.bitwise_and(img, img, mask=mask) def remove_other_color(img): frame = cv2.GaussianBlur(img, (3,3), 0) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # define range of blue color in HSV lower_blue = np.array([100,128,0]) upper_blue = np.array([215,255,255]) # Threshold the HSV image to get only blue colors mask_blue = cv2.inRange(hsv, lower_blue, upper_blue) lower_white = np.array([0,0,128], dtype=np.uint8) upper_white = np.array([255,255,255], dtype=np.uint8) # Threshold the HSV image to get only blue colors mask_white = cv2.inRange(hsv, lower_white, upper_white) lower_black = np.array([0,0,0], dtype=np.uint8) upper_black = np.array([170,150,50], dtype=np.uint8) mask_black = cv2.inRange(hsv, lower_black, upper_black) mask_1 = cv2.bitwise_or(mask_blue, mask_white) mask = cv2.bitwise_or(mask_1, mask_black) # Bitwise-AND mask and original image #res = cv2.bitwise_and(frame,frame, mask= mask) return mask def main(args): #Clean previous image clean_images() #Training phase model = training() vidcap = cv2.VideoCapture(args.file_name) fps = vidcap.get(cv2.CAP_PROP_FPS) width = vidcap.get(3) # float height = vidcap.get(4) # float # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') # out = cv2.VideoWriter('output.avi',fourcc, fps , (640,480)) # initialize the termination criteria for cam shift, indicating # a maximum of ten iterations or movement by a least one pixel # along with the bounding box of the ROI termination = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) roiBox = None roiHist = None success = True similitary_contour_with_circle = 0.65 # parameter count = 0 current_sign = None current_text = "" current_size = 0 sign_count = 0 coordinates = [] position = [] file = open("Output.txt", "w") while True: success,frame = vidcap.read() if not success: print("la video est terminée") break width = frame.shape[1] height = frame.shape[0] #frame = cv2.resize(frame, (640,int(height/(width/640)))) frame = cv2.resize(frame, (640,480)) print("Frame:{}".format(count)) # image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) coordinate, image, sign_type, text = localization(frame, args.min_size_components, args.similitary_contour_with_circle, model, count, current_sign) if coordinate is not None: cv2.rectangle(image, coordinate[0],coordinate[1], (255, 255, 255), 1) print("Sign:{}".format(sign_type)) if sign_type > 0 and (not current_sign or sign_type != current_sign): current_sign = sign_type current_text = text top = int(coordinate[0][1]*1.05) left = int(coordinate[0][0]*1.05) bottom = int(coordinate[1][1]*0.95) right = int(coordinate[1][0]*0.95) position = [count, sign_type if sign_type <= 17 else 8, coordinate[0][0], coordinate[0][1], coordinate[1][0], coordinate[1][1]] cv2.rectangle(image, coordinate[0],coordinate[1], (0, 255, 0), 1) font = cv2.FONT_HERSHEY_PLAIN cv2.putText(image,text,(coordinate[0][0], coordinate[0][1] -15), font, 1,(0,0,255),2,cv2.LINE_4) tl = [left, top] br = [right,bottom] print(tl, br) current_size = math.sqrt(math.pow((tl[0]-br[0]),2) + math.pow((tl[1]-br[1]),2)) # grab the ROI for the bounding box and convert it # to the HSV color space roi = frame[tl[1]:br[1], tl[0]:br[0]] roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) #roi = cv2.cvtColor(roi, cv2.COLOR_BGR2LAB) # compute a HSV histogram for the ROI and store the # bounding box roiHist = cv2.calcHist([roi], [0], None, [17], [0, 180]) roiHist = cv2.normalize(roiHist, roiHist, 0, 255, cv2.NORM_MINMAX) roiBox = (tl[0], tl[1], br[0], br[1]) elif current_sign: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) backProj = cv2.calcBackProject([hsv], [0], roiHist, [0, 180], 1) # apply cam shift to the back projection, convert the # points to a bounding box, and then draw them (r, roiBox) = cv2.CamShift(backProj, roiBox, termination) pts = np.int0(cv2.boxPoints(r)) s = pts.sum(axis = 1) tl = pts[np.argmin(s)] br = pts[np.argmax(s)] size = math.sqrt(pow((tl[0]-br[0]),2) +pow((tl[1]-br[1]),2)) print(size) if current_size < 1 or size < 1 or size / current_size > 30 or math.fabs((tl[0]-br[0])/(tl[1]-br[1])) > 2 or math.fabs((tl[0]-br[0])/(tl[1]-br[1])) < 0.5: current_sign = None print("Stop tracking") else: current_size = size if sign_type > 0: top = int(coordinate[0][1]) left = int(coordinate[0][0]) bottom = int(coordinate[1][1]) right = int(coordinate[1][0]) position = [count, sign_type if sign_type <= 17 else 8, left, top, right, bottom] cv2.rectangle(image, coordinate[0],coordinate[1], (0, 255, 0), 1) font = cv2.FONT_HERSHEY_PLAIN cv2.putText(image,text,(coordinate[0][0], coordinate[0][1] -15), font, 1,(0,0,255),2,cv2.LINE_4) elif current_sign: position = [count, sign_type if sign_type <= 17 else 8, tl[0], tl[1], br[0], br[1]] cv2.rectangle(image, (tl[0], tl[1]),(br[0], br[1]), (0, 255, 0), 1) font = cv2.FONT_HERSHEY_PLAIN cv2.putText(image,current_text,(tl[0], tl[1] -15), font, 1,(0,0,255),2,cv2.LINE_4) if current_sign: sign_count += 1 coordinates.append(position) cv2.imshow('Result', image) count = count + 1 #Write to video if cv2.waitKey(1) & 0xFF == ord('q'): break file.write("{}".format(sign_count)) for pos in coordinates: file.write("\n{} {} {} {} {} {}".format(pos[0],pos[1],pos[2],pos[3],pos[4], pos[5])) print("Finish {} frames".format(count)) file.close() return if __name__ == '__main__': parser = argparse.ArgumentParser(description="Command Line") parser.add_argument( '--file_name', default= "S1.mp4", help= "Video to be analyzed" ) parser.add_argument( '--min_size_components', type = int, default= 300, help= "Min size component to be reserved" ) parser.add_argument( '--similitary_contour_with_circle', type= float, default= 0.65, help= "Similitary to a circle" ) args = parser.parse_args() main(args)
StarcoderdataPython
215326
# 游戏统计的信息 import json class GameStats(): def __init__(self, set): self.set = set self.reset_stats() self.game_active = False with open("high_score.json", "r") as h_s: self.high_score = json.load(h_s) """让初始化可以在创建对象后随时发生""" """初始化一次放上面,重复初始化放下面 """ def reset_stats(self): self.ship_life = self.set.ship_life self.score = 0 self.level = 1 """在这里初始化,在set里方便修改,开挂."""
StarcoderdataPython
6503064
# # \file generator.py # # \brief Generates the CUTLASS Library's instances # import enum import os.path import shutil import argparse import platform from library import * from manifest import * ################################################################################################### # def CudaToolkitVersionSatisfies(semantic_ver_string, major, minor, patch = 0): # by default, use the latest CUDA Toolkit version cuda_version = [11, 0, 132] # Update cuda_version based on parsed string if semantic_ver_string != '': for i, x in enumerate([int(x) for x in semantic_ver_string.split('.')]): if i < len(cuda_version): cuda_version[i] = x else: cuda_version.append(x) return cuda_version >= [major, minor, patch] ################################################################################################### ################################################################################################### # def CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, \ alignment_constraints, complex_transforms = None, epilogue_functor = EpilogueFunctor.LinearCombination, \ swizzling_functor = SwizzlingFunctor.Identity8): if complex_transforms is None: complex_transforms = [(ComplexTransform.none, ComplexTransform.none),] element_a, element_b, element_c, element_epilogue = data_type operations = [] # by default, only generate the largest tile and largest alignment if manifest.args.kernels == '': tile_descriptions = [tile_descriptions[0],] alignment_constraints = [alignment_constraints[0],] for layout in layouts: for tile_description in tile_descriptions: for alignment in alignment_constraints: for complex_transform in complex_transforms: alignment_c = min(8, alignment) A = TensorDescription(element_a, layout[0], alignment, complex_transform[0]) B = TensorDescription(element_b, layout[1], alignment, complex_transform[1]) C = TensorDescription(element_c, layout[2], alignment_c) new_operation = GemmOperation(GemmKind.Universal, tile_description.minimum_compute_capability, \ tile_description, A, B, C, element_epilogue, epilogue_functor, swizzling_functor) manifest.append(new_operation) operations.append(new_operation) return operations ########################################################################################################### # ConvolutionOperator support variations # ____________________________________________________________________ # ConvolutionalOperator | Analytic | Optimized # ____________________________________________________________________ # | Fprop | (strided) | (strided) # | Dgrad | (strided, unity*) | (unity) # | Wgrad | (strided) | (strided) # ____________________________________________________________________ # # Note : Operator marked (*) are supported but not generated to keep the instantiated kernel count low ########################################################################################################### # Convolution for 2D operations def CreateConv2dOperator(manifest, layout, tile_descriptions, data_type, alignment, \ conv_kinds = [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad], epilogue_functor = EpilogueFunctor.LinearCombination): element_a, element_b, element_c, element_epilogue = data_type # one exceptional case alignment_c = min(8, alignment) # iterator algorithm (analytic and optimized) iterator_algorithms = [IteratorAlgorithm.Analytic, IteratorAlgorithm.Optimized] # by default, only generate the largest tile size if manifest.args.kernels == '': tile_descriptions = [tile_descriptions[0],] operations = [] for tile in tile_descriptions: for conv_kind in conv_kinds: for iterator_algorithm in iterator_algorithms: A = TensorDescription(element_a, layout[0], alignment) B = TensorDescription(element_b, layout[1], alignment) C = TensorDescription(element_c, layout[2], alignment_c) # unity stride only for Optimized Dgrad if (iterator_algorithm == IteratorAlgorithm.Optimized) and (conv_kind == ConvKind.Dgrad): new_operation = Conv2dOperation(conv_kind, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Unity, epilogue_functor) manifest.append(new_operation) operations.append(new_operation) # strided dgrad is not supported by Optimized Dgrad if (iterator_algorithm == IteratorAlgorithm.Optimized) and (conv_kind == ConvKind.Dgrad): continue # strided support for Fprop (Analytic/Optimized), Dgrad (Analytic), and Wgrad (Analytic) new_operation = Conv2dOperation(conv_kind, iterator_algorithm, tile.minimum_compute_capability, tile,\ A, B, C, element_epilogue, StrideSupport.Strided, epilogue_functor) manifest.append(new_operation) operations.append(new_operation) return operations ################################################################################################### ################################################################################################### def GenerateConv2d_Simt(args): operations = [] layouts = [ (LayoutType.TensorNC4HW4, LayoutType.TensorC4RSK4), ] math_instructions = [ MathInstruction( \ [1, 1, 4], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] dst_layouts = [ LayoutType.TensorNC4HW4, LayoutType.TensorNC32HW32, LayoutType.TensorNHWC, LayoutType.TensorNHWC, LayoutType.TensorNCHW ] dst_types = [ DataType.s8, DataType.s8, DataType.u4, DataType.s4, DataType.f32, ] max_cc = 1024 for math_inst in math_instructions: for layout in layouts: for dst_type, dst_layout in zip(dst_types, dst_layouts): if dst_type == DataType.s4 or dst_type == DataType.u4: min_cc = 75 use_special_optimization = SpecialOptimizeDesc.NoneSpecialOpt else: min_cc = 61 use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity tile_descriptions = [ TileDescription([128, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 32], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 64, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 32, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: if dst_layout == LayoutType.TensorNC32HW32 and tile.threadblock_shape[0] > 32: continue if (dst_layout == LayoutType.TensorNCHW or dst_layout == LayoutType.TensorNHWC) \ and tile.threadblock_shape[0] > 16: continue operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, 32, 32, 32, use_special_optimization) return operations def GenerateConv2d_TensorOp_8816(args): operations = [] layouts = [ (LayoutType.TensorNC32HW32, LayoutType.TensorC32RSK32), ] math_instructions = [ MathInstruction( \ [8, 8, 16], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] dst_layouts = [ LayoutType.TensorNC32HW32, LayoutType.TensorNC4HW4, ] dst_types = [ DataType.s8, DataType.s8, ] use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity min_cc = 75 max_cc = 1024 cuda_major = 10 cuda_minor = 2 for math_inst in math_instructions: for layout in layouts: for dst_type, dst_layout in zip(dst_types, dst_layouts): if dst_layout == LayoutType.TensorNC32HW32: tile_descriptions = [ TileDescription([128, 256, 64], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 128, 64], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), ] operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) else: assert dst_layout == LayoutType.TensorNC4HW4 tile_descriptions = [ TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), ] operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, ImplicitGemmMode.GemmNT, False, cuda_major, cuda_minor) layouts_nhwc = [ (LayoutType.TensorNHWC, LayoutType.TensorNC4HW4, 32), (LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 64), (LayoutType.TensorNHWC, LayoutType.TensorNC16HW16, 128), ] dst_layouts_nhwc = [ LayoutType.TensorNHWC, ] for math_inst in math_instructions: for layout in layouts_nhwc: for dst_layout in dst_layouts_nhwc: dst_type = math_inst.element_b tile_descriptions = [ TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) if tile.threadblock_shape[1] == 16 or tile.threadblock_shape[1] == 32: operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) out_dtypes = [DataType.s4, DataType.u4, DataType.f32] #INT8x8x4 and INT8x8x32 for math_inst in math_instructions: for layout in layouts_nhwc: for dst_layout in dst_layouts_nhwc: for out_dtype in out_dtypes: tile_descriptions = [ TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: dst_align = 4 * DataTypeSize[out_dtype] if tile.threadblock_shape[1] == 16 or out_dtype == DataType.f32 \ else 8 * DataTypeSize[out_dtype] operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) if tile.threadblock_shape[1] == 16 or (tile.threadblock_shape[1] == 32 and out_dtype != DataType.f32): operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) return operations def GenerateConv2d_TensorOp_8832(args): operations = [] layouts = [ (LayoutType.TensorNC64HW64, LayoutType.TensorC64RSK64), ] math_instructions = [ MathInstruction( \ [8, 8, 32], \ DataType.s4, DataType.s4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), \ MathInstruction( \ [8, 8, 32], \ DataType.s4, DataType.u4, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate) ] dst_layouts = [ LayoutType.TensorNC64HW64, ] use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity min_cc = 75 max_cc = 1024 cuda_major = 10 cuda_minor = 2 for math_inst in math_instructions: for layout in layouts: for dst_layout in dst_layouts: dst_type = math_inst.element_b tile_descriptions = [ TileDescription([128, 256, 128], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 128], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 128], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), ] operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) layouts_nhwc = [ (LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 32), (LayoutType.TensorNHWC, LayoutType.TensorNC16HW16, 64), (LayoutType.TensorNHWC, LayoutType.TensorNC32HW32, 128), ] dst_layouts_nhwc = [ LayoutType.TensorNHWC, ] for math_inst in math_instructions: for layout in layouts_nhwc: for dst_layout in dst_layouts_nhwc: dst_type = math_inst.element_b tile_descriptions = [ TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: dst_align = 16 if tile.threadblock_shape[1] == 16 else 32 operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: dst_align = 32 if tile.threadblock_shape[1] == 32 else 64 operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) # INT4x4x8 for math_inst in math_instructions: for layout in layouts_nhwc: for dst_layout in dst_layouts_nhwc: tile_descriptions = [ TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: dst_align = 64 if tile.threadblock_shape[1] == 32 else 128 operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) return operations def GenerateDeconv_Simt(args): operations = [] layouts = [ (LayoutType.TensorNC4HW4, LayoutType.TensorK4RSC4), ] math_instructions = [ MathInstruction( \ [1, 1, 4], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] dst_layouts = [ LayoutType.TensorNC4HW4, ] dst_types = [ DataType.s8, ] use_special_optimization = SpecialOptimizeDesc.DeconvDoubleUpsampling min_cc = 61 max_cc = 1024 for math_inst in math_instructions: for layout in layouts: for dst_type, dst_layout in zip(dst_types, dst_layouts): tile_descriptions = [ TileDescription([32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 128, 16], 2, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), ] operations += GenerateConv2d(ConvKind.Dgrad, tile_descriptions, layout[0], layout[1], dst_layout, dst_type, min_cc, 32, 32, 32, use_special_optimization) return operations def GenerateDeconv_TensorOp_8816(args): operations = [] layouts = [ (LayoutType.TensorNHWC, LayoutType.TensorCK4RS4, 32), (LayoutType.TensorNHWC, LayoutType.TensorCK8RS8, 64), (LayoutType.TensorNHWC, LayoutType.TensorCK16RS16, 128), ] math_instructions = [ MathInstruction( \ [8, 8, 16], \ DataType.s8, DataType.s8, DataType.s32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add_saturate), ] dst_layouts = [ LayoutType.TensorNHWC, ] dst_types = [ DataType.s8, ] use_special_optimization = SpecialOptimizeDesc.DeconvDoubleUpsampling min_cc = 75 max_cc = 1024 cuda_major = 10 cuda_minor = 2 for math_inst in math_instructions: for layout in layouts: for dst_type, dst_layout in zip(dst_types, dst_layouts): tile_descriptions = [ TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), ] for tile in tile_descriptions: dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 operations += GenerateConv2d(ConvKind.Dgrad, [tile], layout[0], layout[1], dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) return operations ################################################################################ # parameters # Edge - for tiles, the edges represent the length of one side # Ratio - the maximum ratio between 2 edges, limits the skinnyness of tiles # MaxEdge - maximum length of each edge # Min/Max - minimum/maximum of the product of edge lengths ################################################################################ warpsPerThreadblockEdge = [1, 2, 4, 8, 16] warpsPerThreadblockRatio = 2 warpsPerThreadblockMax = 16 # NOTE 1x32 and 2x16 warp tile shapes fail validation for ~10% of cases warpShapeEdges = [8, 16, 32, 64, 128, 256] warpShapeRatio = 4 warpShapeMax = 64*64 warpShapeMin = 8*8 threadblockEdgeMax = 256 # char, type bits/elem, max tile, L0 threadblock tiles precisions = { "c" : [ "cutlass::complex<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], "d" : [ "double", 64, 64*64, [ [ 64, 64], [ 32, 32] ] ], "h" : [ "cutlass::half_t", 16, 128*256, [ [256, 128], [ 64, 128], [ 64, 32] ] ], "i" : [ "int", 32, 128*128, [ [128, 64], [ 16, 32] ] ], "s" : [ "float", 32, 128*128, [ [128, 256], [128, 128], [ 64, 64] ] ], "z" : [ "cutlass::complex<double>", 128, 64*64, [ [ 32, 64], [ 16, 32] ] ], } # L1 will have a single kernel for every unique shape # L2 will have everything else def GenerateGemm_Simt(args): ################################################################################ # warps per threadblock ################################################################################ warpsPerThreadblocks = [] for warpsPerThreadblock0 in warpsPerThreadblockEdge: for warpsPerThreadblock1 in warpsPerThreadblockEdge: if warpsPerThreadblock0 / warpsPerThreadblock1 <= warpsPerThreadblockRatio \ and warpsPerThreadblock1 / warpsPerThreadblock0 <= warpsPerThreadblockRatio \ and warpsPerThreadblock0 * warpsPerThreadblock1 <= warpsPerThreadblockMax: warpsPerThreadblocks.append([warpsPerThreadblock0, warpsPerThreadblock1]) ################################################################################ # warp shapes ################################################################################ warpNumThreads = 32 warpShapes = [] for warp0 in warpShapeEdges: for warp1 in warpShapeEdges: if warp0 / warp1 <= warpShapeRatio \ and warp1 / warp0 <= warpShapeRatio \ and warp0 * warp1 <= warpShapeMax \ and warp0*warp1 > warpShapeMin: warpShapes.append([warp0, warp1]) # sgemm precisionType, precisionBits, threadblockMaxElements, threadblockTilesL0 = precisions["s"] layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # nn (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.RowMajor), # nt (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # tn (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), # tt ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 50 max_cc = 1024 operations = [] for math_inst in math_instructions: for layout in layouts: data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] tile_descriptions = [ TileDescription([64, 256, 8], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 64, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 256, 8], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([256, 32, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 64, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 32, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 8, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 16, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), TileDescription([ 16, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), ] for warpsPerThreadblock in warpsPerThreadblocks: for warpShape in warpShapes: warpThreadsM = 0 if warpShape[0] > warpShape[1]: warpThreadsM = 8 else: warpThreadsM = 4 warpThreadsN = warpNumThreads / warpThreadsM # skip shapes with conflicting rectangularity # they are unlikely to be fastest blockG = warpsPerThreadblock[0] > warpsPerThreadblock[1] blockL = warpsPerThreadblock[0] < warpsPerThreadblock[1] warpG = warpShape[0] > warpShape[1] warpL = warpShape[0] < warpShape[1] blockG2 = warpsPerThreadblock[0] > warpsPerThreadblock[1]*2 blockL2 = warpsPerThreadblock[0]*2 < warpsPerThreadblock[1] warpG2 = warpShape[0] > warpShape[1]*2 warpL2 = warpShape[0]*2 < warpShape[1] if blockG2 and warpL: continue if blockL2 and warpG: continue if warpG2 and blockL: continue if warpL2 and blockG: continue # check threadblock ratios and max threadblockTile = [warpShape[0]*warpsPerThreadblock[0], warpShape[1]*warpsPerThreadblock[1]] if threadblockTile[0] * threadblockTile[1] > threadblockMaxElements: continue if threadblockTile[0] > threadblockEdgeMax: continue if threadblockTile[1] > threadblockEdgeMax: continue totalThreads = warpNumThreads*warpsPerThreadblock[0]*warpsPerThreadblock[1] # calculate unroll # ensure that every iteration at least a full load of A,B are done unrollMin = 8 unrollMin0 = totalThreads // threadblockTile[0] unrollMin1 = totalThreads // threadblockTile[1] unroll = max(unrollMin, unrollMin0, unrollMin1) threadTileM = warpShape[0] // warpThreadsM threadTileN = warpShape[1] // warpThreadsN if threadTileM < 2 or threadTileN < 2: continue if threadTileM*threadTileN*precisionBits > 8*8*32: continue # epilogue currently only supports N < WarpNumThreads if threadblockTile[1] < warpNumThreads: continue # limit smem smemBitsA = threadblockTile[0]*unroll*2*precisionBits smemBitsB = threadblockTile[1]*unroll*2*precisionBits smemKBytes = (smemBitsA+smemBitsB)/8/1024 if (smemKBytes > 48): continue tile = TileDescription([threadblockTile[0], threadblockTile[1], unroll], \ 2, \ [threadblockTile[0]//warpShape[0], threadblockTile[1]//warpShape[1], 1], \ math_inst, min_cc, max_cc) def filter(t: TileDescription) -> bool: nonlocal tile return t.threadblock_shape[0] == tile.threadblock_shape[0] and \ t.threadblock_shape[1] == tile.threadblock_shape[1] and \ t.threadblock_shape[2] == tile.threadblock_shape[2] and \ t.warp_count[0] == tile.warp_count[0] and \ t.warp_count[1] == tile.warp_count[1] and \ t.warp_count[2] == tile.warp_count[2] and \ t.stages == tile.stages if not any(t for t in tile_descriptions if filter(t)): continue operations += GeneratesGemm(tile, data_type, layout[0], layout[1], layout[2], min_cc) return operations # def GenerateGemv_Simt(args): threadBlockShape_N = [128, 64, 32] ldgBits_A = [128, 64, 32] ldgBits_B = [128, 64, 32] layouts = [ (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), ] math_instructions = [ MathInstruction( \ [1, 1, 1], \ DataType.f32, DataType.f32, DataType.f32, \ OpcodeClass.Simt, \ MathOperation.multiply_add), ] min_cc = 50 operations = [] for math_inst in math_instructions: for layout in layouts: data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_accumulator, math_inst.element_accumulator, ] for threadblock_shape_n in threadBlockShape_N: for align_a in ldgBits_A: for align_b in ldgBits_B: ldg_elements_a = align_a // DataTypeSize[math_inst.element_a] ldg_elements_b = align_b // DataTypeSize[math_inst.element_b] threadblock_shape_k = (256 * ldg_elements_a) // (threadblock_shape_n // ldg_elements_b) threadblock_shape = [1, threadblock_shape_n, threadblock_shape_k] thread_shape = [1, ldg_elements_b, ldg_elements_a] operations.append(GeneratesGemv(math_inst, \ threadblock_shape, \ thread_shape, \ data_type, \ layout[0], \ layout[1], \ layout[2], \ min_cc, \ align_a, \ align_b)) return operations # def GeneratesGemm_TensorOp_1688(args): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # nn (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.RowMajor), # nt (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # tn (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), # tt ] math_instructions = [ MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [16, 8, 8], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 75 max_cc = 1024 alignment_constraints = [8, 4, 2, #1 ] cuda_major = 10 cuda_minor = 2 operations = [] for math_inst in math_instructions: for layout in layouts: for align in alignment_constraints: tile_descriptions = [ TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ## comment some configuration to reduce compilation time and binary size # TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), # TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), # TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] for tile in tile_descriptions: operations += GeneratesGemm(tile, \ data_type, \ layout[0], \ layout[1], \ layout[2], \ min_cc, \ align * 16, \ align * 16, \ align * 16, \ cuda_major, \ cuda_minor) return operations # def GeneratesGemm_TensorOp_884(args): layouts = [ (LayoutType.ColumnMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # nn (LayoutType.ColumnMajor, LayoutType.RowMajor, LayoutType.RowMajor), # nt (LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.RowMajor), # tn (LayoutType.RowMajor, LayoutType.RowMajor, LayoutType.RowMajor), # tt ] math_instructions = [ MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f32, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), MathInstruction( \ [8, 8, 4], \ DataType.f16, DataType.f16, DataType.f16, \ OpcodeClass.TensorOp, \ MathOperation.multiply_add), ] min_cc = 70 max_cc = 75 alignment_constraints = [8, 4, 2, # 1 ] cuda_major = 10 cuda_minor = 2 operations = [] for math_inst in math_instructions: for layout in layouts: for align in alignment_constraints: tile_descriptions = [ TileDescription([256, 128, 32], 2, [4, 2, 1], math_inst, min_cc, max_cc), TileDescription([128, 256, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), TileDescription([128, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ## comment some configuration to reduce compilation time and binary size # TileDescription([ 64, 128, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), # TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), # TileDescription([ 64, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), ] data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_a, math_inst.element_accumulator, ] for tile in tile_descriptions: operations += GeneratesGemm(tile, \ data_type, \ layout[0], \ layout[1], \ layout[2], \ min_cc, \ align * 16, \ align * 16, \ align * 16, \ cuda_major, \ cuda_minor) return operations # def GenerateConv2dOperations(args): if args.type == "simt": return GenerateConv2d_Simt(args) elif args.type == "tensorop8816": return GenerateConv2d_TensorOp_8816(args) else: assert args.type == "tensorop8832", "operation conv2d only support" \ "simt, tensorop8816 and tensorop8832. (got:{})".format(args.type) return GenerateConv2d_TensorOp_8832(args) def GenerateDeconvOperations(args): if args.type == "simt": return GenerateDeconv_Simt(args) else: assert args.type == "tensorop8816", "operation deconv only support" \ "simt and tensorop8816. (got:{})".format(args.type) return GenerateDeconv_TensorOp_8816(args) def GenerateGemmOperations(args): if args.type == "tensorop884": return GeneratesGemm_TensorOp_884(args) elif args.type == "tensorop1688": return GeneratesGemm_TensorOp_1688(args) else: assert args.type == "simt", "operation gemm only support" \ "simt. (got:{})".format(args.type) return GenerateGemm_Simt(args) def GenerateGemvOperations(args): assert args.type == "simt", "operation gemv only support" \ "simt. (got:{})".format(args.type) return GenerateGemv_Simt(args) ################################################################################################### ################################################################################################### if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generates device kernel registration code for CUTLASS Kernels") parser.add_argument("--operations", type=str, choices=['gemm', 'gemv', 'conv2d', 'deconv'], required=True, help="Specifies the operation to generate (gemm, gemv, conv2d, deconv)") parser.add_argument("output", type=str, help="output directory for CUTLASS kernel files") parser.add_argument("--type", type=str, choices=['simt', 'tensorop8816', 'tensorop8832', 'tensorop884', 'tensorop1688'], default='simt', help="kernel type of CUTLASS kernel generator") gemv_wrapper_path = "src/cuda/matrix_mul/cutlass_matrix_mul_wrapper_batched_gemv_strided.cuinl" short_path = (platform.system() == "Windows" or platform.system().find('NT') >= 0) and ('true'!= os.getenv("CUTLASS_WITH_LONG_PATH", default='False').lower()) args = parser.parse_args() if args.operations == "gemm": operations = GenerateGemmOperations(args) elif args.operations == "gemv": operations = GenerateGemvOperations(args) elif args.operations == "conv2d": operations = GenerateConv2dOperations(args) elif args.operations == "deconv": operations = GenerateDeconvOperations(args) if args.operations == "conv2d" or args.operations == "deconv": for operation in operations: with EmitConvSingleKernelWrapper(args.output, operation, short_path) as emitter: emitter.emit() elif args.operations == "gemm": for operation in operations: with EmitGemmSingleKernelWrapper(args.output, operation, short_path) as emitter: emitter.emit() elif args.operations == "gemv": for operation in operations: with EmitGemvSingleKernelWrapper(args.output, operation, gemv_wrapper_path, short_path) as emitter: emitter.emit() if args.operations != "gemv": GenerateManifest(args, operations, args.output) # ###################################################################################################
StarcoderdataPython
6596871
# Find common tracks. def run(plists, outfile): print(f"Finding common tracks...") track_name_sets = [] # Collect data. for plist in plists: names = set() tracks = plist['Tracks'] for (id, track) in tracks.items(): try: names.add(track['Name']) except: pass track_name_sets.append(names) # Find common tracks. common_tracks = set.intersection(*track_name_sets) # Analyse data. if len(common_tracks) > 0: print(f"Found {len(common_tracks)} common tracks.") else: print("No common tracks found!") return f = open(outfile, "w") for name in common_tracks: # s = "%s\n" % name # f.write(s.encode("UTF-8")) # s = "%s\n" % name f.write(f"{name}\n") f.close() print(f"Common track names saved to {outfile}")
StarcoderdataPython
8092787
<filename>statsmodels/regression/tests/results/results_grunfeld_ols_robust_cluster.py import numpy as np class Bunch(dict): def __init__(self, **kw): dict.__init__(self, kw) self.__dict__ = self for i,att in enumerate(['params', 'bse', 'tvalues', 'pvalues']): self[att] = self.params_table[:,i] est = dict( N_clust = 10, N = 200, df_m = 2, df_r = 9, F = 51.59060716590177, r2 = .8124080178314147, rmse = 94.40840193979599, mss = 7604093.484267689, rss = 1755850.432294737, r2_a = .8105035307027997, ll = -1191.80235741801, ll_0 = -1359.150955647688, rank = 3, cmdline = "regress invest mvalue kstock, vce(cluster company)", title = "Linear regression", marginsok = "XB default", vce = "cluster", depvar = "invest", cmd = "regress", properties = "b V", predict = "regres_p", model = "ols", estat_cmd = "regress_estat", vcetype = "Robust", clustvar = "company", ) params_table = np.array([ .11556215606596, .01589433647768, 7.2706499090564, .00004710548549, .07960666895505, .15151764317688, 9, 2.2621571627982, 0, .23067848754982, .08496711097464, 2.7149150406994, .02380515903536, .03846952885627, .42288744624337, 9, 2.2621571627982, 0, -42.714369016733, 20.425202580078, -2.0912580352272, .06604843284516, -88.919387334862, 3.4906493013959, 9, 2.2621571627982, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00025262993207, -.00065043385106, .20961897960949, -.00065043385106, .00721940994738, -1.2171040967615, .20961897960949, -1.2171040967615, 417.18890043724]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, N_clust = 10, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .8124080178314146, rmse = 93.69766358599176, rss = 1755850.432294737, mss = 7604093.484267682, r2_a = .8105035307027995, F = 51.59060716590192, Fp = .0000117341240941, Fdf1 = 2, Fdf2 = 9, yy = 13620706.07273678, yyc = 9359943.916562419, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -1191.802357418011, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .8124080178314146, r2u = .8710896173136538, clustvar = "company", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on company", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock, cluster(company)", cmd = "ivreg2", model = "ols", depvar = "invest", vcetype = "Robust", vce = "robust cluster", partialsmall = "small", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11556215606596, .01500272788516, 7.7027429245215, 1.331761148e-14, .08615734974119, .14496696239074, np.nan, 1.9599639845401, 0, .23067848754982, .08020079648691, 2.8762618035529, .00402415789383, .07348781490405, .38786916019559, np.nan, 1.9599639845401, 0, -42.714369016733, 19.27943055305, -2.2155410088072, .02672295281194, -80.501358543152, -4.9273794903145, np.nan, 1.9599639845401, 0]).reshape(3,9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .000225081844, -.00057950714469, .1867610305767, -.00057950714469, .00643216775713, -1.0843847053056, .1867610305767, -1.0843847053056, 371.69644244987]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster_large = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, N_g = 10, df_m = 2, df_r = 9, F = 97.97910905239282, r2 = .8124080178314147, rmse = 94.40840193979599, lag = 4, cmd = "xtscc", predict = "xtscc_p", method = "Pooled OLS", depvar = "invest", vcetype = "Drisc/Kraay", title = "Regression with Driscoll-Kraay standard errors", groupvar = "company", properties = "b V", ) params_table = np.array([ .11556215606596, .0134360177573, 8.6009231420662, .00001235433261, .08516777225681, .14595653987512, 9, 2.2621571627982, 0, .23067848754982, .04930800664089, 4.678317037431, .00115494570515, .11913602714384, .3422209479558, 9, 2.2621571627982, 0, -42.714369016733, 12.190347184209, -3.5039501641153, .0066818746948, -70.290850216489, -15.137887816977, 9, 2.2621571627982, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00018052657317, -.00035661054613, -.06728261073866, -.00035661054613, .0024312795189, -.32394785247278, -.06728261073866, -.32394785247278, 148.60456447156]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_nw_groupsum4 = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( df_m = 2, df_r = 197, F = 73.07593045506036, N = 200, lag = 4, rank = 3, title = "Regression with Newey-West standard errors", cmd = "newey", cmdline = "newey invest mvalue kstock, lag(4) force", estat_cmd = "newey_estat", predict = "newey_p", vcetype = "Newey-West", depvar = "invest", properties = "b V", ) params_table = np.array([ .11556215606596, .01142785251475, 10.112324771147, 1.251631065e-19, .0930255277205, .13809878441142, 197, 1.9720790337785, 0, .23067848754982, .06842168281423, 3.3714237660029, .00089998163666, .09574552141602, .36561145368361, 197, 1.9720790337785, 0, -42.714369016733, 16.179042041128, -2.6401049523298, .00895205094219, -74.620718612662, -10.808019420804, 197, 1.9720790337785, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .0001305958131, -.00022910455176, .00889686530849, -.00022910455176, .00468152667913, -.88403667445531, .00889686530849, -.88403667445531, 261.76140136858]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_nw_panel4 = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, df_r = 9, N_clust = 10, N_clust1 = 10, N_clust2 = 20, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .8124080178314146, rmse = 94.40840193979601, rss = 1755850.432294737, mss = 7604093.484267682, r2_a = .8105035307027995, F = 57.99124535923564, Fp = 7.21555935862e-06, Fdf1 = 2, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -1191.802357418011, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .8124080178314146, r2u = .8710896173136538, yyc = 9359943.916562419, yy = 13620706.07273678, Fdf2 = 9, clustvar = "company time", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on company and time", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock, cluster(company time) small", cmd = "ivreg2", model = "ols", depvar = "invest", vcetype = "Robust", clustvar2 = "time", clustvar1 = "company", vce = "robust two-way cluster", partialsmall = "small", small = "small", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11556215606596, .01635175387097, 7.0672636695645, .00005873628221, .07857191892244, .15255239320949, 9, 2.2621571627982, 0, .23067848754982, .07847391274682, 2.9395563375824, .01649863150032, .05315816373679, .40819881136285, 9, 2.2621571627982, 0, -42.714369016733, 19.505607409785, -2.189850750062, .05626393734425, -86.839118533508, 1.4103805000422, 9, 2.2621571627982, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00026737985466, -.00070163493529, .19641438763743, -.00070163493529, .0061581549818, -.99627581152391, .19641438763743, -.99627581152391, 380.46872042467]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster_2groups_small = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, N_clust = 10, N_clust1 = 10, N_clust2 = 20, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .8124080178314146, rmse = 93.69766358599176, rss = 1755850.432294737, mss = 7604093.484267682, r2_a = .8105035307027995, F = 57.99124535923565, Fp = 7.21555935862e-06, Fdf1 = 2, Fdf2 = 9, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -1191.802357418011, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .8124080178314146, r2u = .8710896173136538, yyc = 9359943.916562419, yy = 13620706.07273678, clustvar = "company time", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on company and time", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock, cluster(company time)", cmd = "ivreg2", model = "ols", depvar = "invest", vcetype = "Robust", clustvar2 = "time", clustvar1 = "company", vce = "robust two-way cluster", partialsmall = "small", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11556215606596, .01543448599542, 7.487269488613, 7.032121917e-14, .08531111939505, .14581319273688, np.nan, 1.9599639845401, 0, .23067848754982, .07407184066336, 3.1142534799181, .00184410987255, .08550034758104, .3758566275186, np.nan, 1.9599639845401, 0, -42.714369016733, 18.411420987265, -2.319993065515, .02034125246974, -78.800091055978, -6.6286469774879, np.nan, 1.9599639845401, 0]).reshape(3,9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00023822335794, -.00062512499511, .17499633632219, -.00062512499511, .00548663757926, -.88763669036779, .17499633632219, -.88763669036779, 338.98042277032]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster_2groups_large = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, bw = 5, N_clust = 20, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .8124080178314146, rmse = 93.69766358599176, rss = 1755850.432294737, mss = 7604093.484267682, r2_a = .8105035307027995, F = 92.14467466912147, Fp = 1.66368179227e-10, Fdf1 = 2, Fdf2 = 19, yy = 13620706.07273678, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -1191.802357418011, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .8124080178314146, r2u = .8710896173136538, yyc = 9359943.916562419, clustvar = "year", hacsubtitleV2 = "and kernel-robust to common correlated disturbances (Driscoll-Kraay)", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on year", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock, dkraay(5)", cmd = "ivreg2", model = "ols", depvar = "invest", vcetype = "Robust", vce = "cluster ac bartlett bw=5", partialsmall = "small", ivar = "company", tvar = "year", kernel = "Bartlett", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11556215606596, .0134360177573, 8.6009231420662, 7.907743030e-18, .08922804516602, .14189626696591, np.nan, 1.9599639845401, 0, .23067848754982, .04930800664089, 4.678317037431, 2.892390940e-06, .13403657038422, .32732040471542, np.nan, 1.9599639845401, 0, -42.714369016733, 12.190347184209, -3.5039501641153, .00045841113727, -66.607010456823, -18.821727576643, np.nan, 1.9599639845401, 0]).reshape(3,9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00018052657317, -.00035661054613, -.06728261073866, -.00035661054613, .0024312795189, -.32394785247278, -.06728261073866, -.32394785247278, 148.60456447156]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_nw_groupsum4_ivreg_large = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, bw = 5, df_r = 19, N_clust = 20, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .8124080178314146, rmse = 94.40840193979601, rss = 1755850.432294737, mss = 7604093.484267682, r2_a = .8105035307027995, F = 92.14467466912149, Fp = 1.66368179227e-10, Fdf1 = 2, Fdf2 = 19, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -1191.802357418011, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .8124080178314146, r2u = .8710896173136538, yyc = 9359943.916562419, yy = 13620706.07273678, clustvar = "year", hacsubtitleV2 = "and kernel-robust to common correlated disturbances (Driscoll-Kraay)", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on year", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock, dkraay(5) small", cmd = "ivreg2", model = "ols", depvar = "invest", vcetype = "Robust", vce = "cluster ac bartlett bw=5", partialsmall = "small", small = "small", ivar = "company", tvar = "year", kernel = "Bartlett", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11556215606596, .0138548615926, 8.3409101775303, 8.967911239e-08, .08656359748216, .14456071464977, 19, 2.0930240544083, 0, .23067848754982, .0508450956047, 4.5368876743442, .00022550505646, .12425847940049, .33709849569915, 19, 2.0930240544083, 0, -42.714369016733, 12.570359466158, -3.3980228752988, .00301793225123, -69.02443375196, -16.404304281506, 19, 2.0930240544083, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00019195718975, -.00037919048186, -.07154282413568, -.00037919048186, .00258522374705, -.34445964542925, -.07154282413568, -.34445964542925, 158.01393710842]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_nw_groupsum4_ivreg_small = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) ######################### WLS est = dict( N = 200, df_m = 2, df_r = 197, F = 158.2726503915062, r2 = .7728224625923459, rmse = 35.1783035325949, mss = 829335.6968772264, rss = 243790.0687679817, r2_a = .7705160916541971, ll = -994.3622459900876, ll_0 = -1142.564592396746, rank = 3, cmdline = "regress invest mvalue kstock [aw=1/mvalue], robust", title = "Linear regression", marginsok = "XB default", vce = "robust", depvar = "invest", cmd = "regress", properties = "b V", predict = "regres_p", model = "ols", estat_cmd = "regress_estat", wexp = "= 1/mvalue", wtype = "aweight", vcetype = "Robust", ) params_table = np.array([ .11694307068216, .00768545583365, 15.2161528494, 4.371656843e-35, .10178674436759, .13209939699674, 197, 1.9720790337785, 0, .10410756769914, .00986959606725, 10.548310892334, 6.565731752e-21, .08464394422305, .12357119117523, 197, 1.9720790337785, 0, -9.2723336171089, 2.3458404391932, -3.9526702081656, .00010767530575, -13.898516363832, -4.6461508703863, 197, 1.9720790337785, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00005906623137, 6.805470065e-06, -.01210153268743, 6.805470065e-06, .00009740892653, -.01511046663892, -.01210153268743, -.01511046663892, 5.502967366154]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_hc1_wls_small = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N_clust = 10, N = 200, df_m = 2, df_r = 9, F = 22.90591346432732, r2 = .7728224625923459, rmse = 35.1783035325949, mss = 829335.6968772264, rss = 243790.0687679817, r2_a = .7705160916541971, ll = -994.3622459900876, ll_0 = -1142.564592396746, rank = 3, cmdline = "regress invest mvalue kstock[aw=1/mvalue], vce(cluster company)", title = "Linear regression", marginsok = "XB default", vce = "cluster", depvar = "invest", cmd = "regress", properties = "b V", predict = "regres_p", model = "ols", estat_cmd = "regress_estat", wexp = "= 1/mvalue", wtype = "aweight", vcetype = "Robust", clustvar = "company", ) params_table = np.array([ .11694307068216, .02609630113434, 4.4812124936848, .00152974827456, .05790913614858, .17597700521575, 9, 2.2621571627982, 0, .10410756769914, .02285882773869, 4.5543703679489, .00137730504553, .05239730679689, .15581782860139, 9, 2.2621571627982, 0, -9.2723336171089, 5.7204731422962, -1.6209032690934, .13948922172294, -22.212942910549, 3.6682756763312, 9, 2.2621571627982, 0]).reshape(3,9) params_table_colnames = 'b se t pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00068101693289, -.00006496077364, -.08926939086077, -.00006496077364, .00052252600559, -.0697116307149, -.08926939086077, -.0697116307149, 32.723812971732]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster_wls_small = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( N = 200, inexog_ct = 2, exexog_ct = 0, endog_ct = 0, partial_ct = 0, N_clust = 10, df_m = 2, sdofminus = 0, dofminus = 0, r2 = .772822462592346, rmse = 34.91346937558495, rss = 243790.0687679817, mss = 829335.6968772268, r2_a = .7705160916541972, F = 22.9059134643273, Fp = .000294548654088, Fdf1 = 2, Fdf2 = 9, yy = 1401938.856802022, yyc = 1073125.765645209, partialcons = 0, cons = 1, jdf = 0, j = 0, ll = -994.3622459900874, rankV = 3, rankS = 3, rankxx = 3, rankzz = 3, r2c = .772822462592346, r2u = .8261050632949187, clustvar = "company", hacsubtitleV = "Statistics robust to heteroskedasticity and clustering on company", hacsubtitleB = "Estimates efficient for homoskedasticity only", title = "OLS estimation", predict = "ivreg2_p", version = "03.1.07", cmdline = "ivreg2 invest mvalue kstock [aw=1/mvalue], cluster(company)", cmd = "ivreg2", wtype = "aweight", wexp = "=1/mvalue", model = "ols", depvar = "invest", vcetype = "Robust", vce = "robust cluster", partialsmall = "small", inexog = "mvalue kstock", insts = "mvalue kstock", properties = "b V", ) params_table = np.array([ .11694307068216, .02463240320082, 4.7475298990826, 2.059159576e-06, .06866444755588, .16522169380844, np.nan, 1.9599639845401, 0, .10410756769914, .02157653909108, 4.8250355286218, 1.399783125e-06, .06181832816961, .14639680722867, np.nan, 1.9599639845401, 0, -9.2723336171089, 5.3995775192484, -1.7172331694572, .08593657730569, -19.855311086568, 1.31064385235, np.nan, 1.9599639845401, 0]).reshape(3,9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = 'mvalue kstock _cons'.split() cov = np.array([ .00060675528745, -.00005787711139, -.07953498994782, -.00005787711139, .00046554703915, -.06210991017966, -.07953498994782, -.06210991017966, 29.155437386372]).reshape(3,3) cov_colnames = 'mvalue kstock _cons'.split() cov_rownames = 'mvalue kstock _cons'.split() results_cluster_wls_large = Bunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est )
StarcoderdataPython
4858389
<gh_stars>1-10 num1 = 11 num2 = 22 num3 = 33333333 num3 = 333 num4 = 4444
StarcoderdataPython
11243112
<gh_stars>10-100 import matplotlib.pyplot as plt import geneview as gv df = gv.utils.load_dataset("gwas") gv.qqplot(df.loc[:, "P"]) plt.tight_layout() plt.show()
StarcoderdataPython
4828363
from fastapi import Response from fastapi.routing import APIRouter import hashlib import os from bootstrap import db, CONFIG import time from util import * from pydantic import BaseModel from starlette.status import * from tinydb import Query, where import secrets router = APIRouter(prefix="/login") @router.get("/init") async def init_login(): srv_bits = hashlib.sha256(os.urandom(16)).hexdigest() uuid = hashlib.sha256(os.urandom(8)).hexdigest() db.connections.insert( { "uuid": uuid, "srv_bits": srv_bits, "timestamp": time.time(), "type": "instantiating", } ) db.connections.remove(where("timestamp") < (time.time() - 10)) return {"uuid": uuid, "bits": srv_bits} class LoginModel(BaseModel): username: str password_hash: str cli_bits: str uuid: str @router.post("/") async def login(model: LoginModel, response: Response): if not model.username in CONFIG["server"]["users"].keys(): response.status_code = HTTP_404_NOT_FOUND return error(404, f"Error: user {model.username} not in userbank.") documents: list[dict] = db.connections.search( Query().fragment({"type": "instantiating", "uuid": model.uuid}) ) if len(documents) == 0: response.status_code = HTTP_404_NOT_FOUND return error(404, f"Error: uuid {model.uuid} has not yet been instantiated.") doc = documents[0] if doc["timestamp"] + 5 < time.time(): response.status_code = HTTP_403_FORBIDDEN return error( 403, f"Error: uuid {model.uuid} has past the instantiation deadline." ) if ( model.password_hash == hashlib.sha256( (doc["srv_bits"] + CONFIG["server"]["users"][model.username]["password"] + model.cli_bits).encode("utf-8") ).hexdigest() ): uuid = hashlib.sha256(os.urandom(32)).hexdigest() db.connections.remove(where("uuid") == model.uuid) db.connections.remove(where("username") == model.username) db.connections.insert({ "username": model.username, "uuid": uuid, "type": "connection" }) return { "uuid": uuid } else: response.status_code = HTTP_403_FORBIDDEN return error( 403, f"Incorrect password." )
StarcoderdataPython
3349582
<gh_stars>0 from aocd import submit #-------------------------------Run once!--------------------- # get data from aocd #import os #os.system('del day7.txt') #os.system('aocd 7 2020 >> day7.txt') #-------------------------------------------------------------- def unique_colors(target_bag, d, lines, seen): count = 0 for line in lines: this_bag, other_bags = line.split(" contain ") for bag in other_bags.split(", "): if target_bag in bag: seen.add(this_bag) seen |= unique_colors(this_bag[:-1], d, lines, seen) count += 1 return seen # find three values that sum to 2020 and print their product def number_of(stack, d, lines, count): total = 0 while len(stack) > 0: find = stack.pop() if "shiny gold bag" not in find: print(find, total, int(find.split()[0])) total += int(find.split()[0]) for line in lines: this_bag, other_bags = line.split(" contain ") if ' '.join(find.strip('.').strip('s').strip().split()[1:]) in this_bag: n = 1 if "shiny gold bag" not in find: n = int(find.split()[0]) for bag in other_bags.split(", "): if "no other" in bag: continue #print(bag) count += int(bag.split()[0]) * n stack.append(f"{int(bag.split()[0]) * n} {' '.join(bag.split()[1:])}") print(stack) return total # ---- simple cubic O(n^3) time complexity / constant O(1) space complexity algorithm ---- def solve(lines): d = dict() for line in lines: this_bag, other_bags = line.split(" contain ") d[this_bag] = [bag for bag in other_bags.split(", ")] return number_of(["shiny gold bag"], d, lines, 0) return len(unique_colors("shiny gold bag", d, lines, set())) if __name__ == '__main__': # read in input (get_data() returns string) lines = [line.strip() for line in open('day7.txt')] #submit(sol1(i)) #submit(sol1(i), part="a", day=2, year=2020) print(solve(lines)) #submit(solve(lines))
StarcoderdataPython
6663123
<reponame>Comcast/Fred-Framework from ovsdb_client import OVSDBConnection import variables as names import sys import argparse def main(argv): ap = argparse.ArgumentParser() ap.add_argument("-t", "--table_name", type=str, required=False, help="FSM table name to be updated") ap.add_argument("-q", "--update_query", type=str, required=True, help="Update query to run on the FSM table") args = ap.parse_args() ovsdb_client = OVSDBConnection(names.__OVSDB_IP__, names.__OVSDB_PORT__) ovsdb_client.update_fsm_table(args.update_query) if __name__ == "__main__": sys.exit(main(sys.argv))
StarcoderdataPython
3545660
<filename>teddix-common/teddix/TeddixHPUX.py #!/usr/bin/env python # import os import re import sys import time import psutil import platform import subprocess # Syslog handler import TeddixLogger # Config parser import TeddixConfigFile class TeddixHPUX: # Get installed packages def getpkgs(self): return packages # Get partitions def getpartitions(self): return disks # Get network interfaces def getnics(self): return nics # Get mac address def getmac(self,nic): return '' # Get ipv4 address def getip(self,nic): return ips # Get dnsservers def getdns(self): return dns # Get routes def getroutes(self): return routes # Get groups def getgroups(self): return groups # Get users def getusers(self): return users # Get procs def getprocs(self): return procs
StarcoderdataPython
6529519
<reponame>sqoor/SeqGenSQL-ui from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField, TextAreaField from wtforms.validators import DataRequired from markupsafe import Markup class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) host = StringField('Host/Server', validators=[DataRequired()]) db = StringField('Database', validators=[DataRequired()]) remember_me = BooleanField('Remember Me') submit = SubmitField('Sign In') class ConnectForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) server = StringField('Host/Server', validators=[DataRequired()]) db = StringField('Database', validators=[DataRequired()]) submit = SubmitField('Connect') class ConvertForm(FlaskForm): text = TextAreaField('Text', render_kw={"rows": 20, "cols": 60}) view_sql = SubmitField('View SQL') execute_sql = SubmitField('Execute SQL')
StarcoderdataPython
8037504
from django.db import models class HashSha(models.Model): frag1 = models.CharField(max_length=254) frag2 = models.CharField(max_length=254) frag3 = models.CharField(max_length=130) frag4 = models.CharField(max_length=4) frag5 = models.CharField(max_length=2) resource = models.OneToOneField( "Resource", on_delete=models.CASCADE )
StarcoderdataPython
6610940
import os import socket import zmq import constants class RTPPacketUDPSender: def __init__(self, ip, port=9529): self.ip = ip self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) print("video RTP packet UDP sender created, pid = %d, target = %s:%d" % (os.getpid(), self.ip, self.port)) def emit(self, rtp_pkt): # rtp_pkt should be a bytes-like object self.sock.sendto(rtp_pkt, (self.ip, self.port)) def release(self): self.sock.close() print("video RTP packet UDP sender released, pid = %d" % os.getpid()) class RTPPacketTCPSender: def __init__(self, ip, port=9530): self.ip = ip self.port = port self.zmq_context = zmq.Context.instance() self._connect_socket() print("video RTP packet TCP sender created, pid = %d, target = %s:%d" % (os.getpid(), self.ip, self.port)) def _connect_socket(self): self.zmq_socket = self.zmq_context.socket(zmq.REQ) self.zmq_socket.setsockopt(zmq.RCVTIMEO, constants.get_request_rely_timeout()) # milliseconds # set option before connect self.zmq_socket.connect("tcp://%s:%d" % (self.ip, self.port)) def _reset_my_socket(self): self.zmq_socket.close() self._connect_socket() def emit(self, rtp_pkt): self.zmq_socket.send(rtp_pkt, copy=False) try: reply = self.zmq_socket.recv() # receive the reply message return reply except zmq.Again: # timeout print("timeout, did not receive RTP packet sending reply") self._reset_my_socket() return None def release(self): self.zmq_socket.close() print("video RTP packet TCP sender released, pid = %d, target = %s:%d" % (os.getpid(), self.ip, self.port))
StarcoderdataPython
1993308
<filename>desktop/core/src/desktop/lib/test_runners.py #!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import threading from django.conf import settings from django.core.management.base import BaseCommand from django.test.signals import template_rendered from django_nose.runner import NoseTestSuiteRunner, translate_option from mako import runtime from mako.template import Template __all__ = ['HueTestRunner'] # Capturing the mako context is not thread safe, so we wrap rendering in a mutex. _MAKO_LOCK = threading.RLock() def _instrumented_test_render(self, *args, **data): """ An instrumented Template render method, providing a signal that can be intercepted by the test system Client """ with _MAKO_LOCK: def mako_callable_(context, *args, **kwargs): template_rendered.send(sender=self, template=self, context=context) return self.original_callable_[-1](context, *args, **kwargs) if hasattr(self, 'original_callable_'): self.original_callable_.append(self.callable_) else: self.original_callable_ = [self.callable_] self.callable_ = mako_callable_ try: response = runtime._render(self, self.original_callable_[-1], args, data) finally: self.callable_ = self.original_callable_.pop() return response class HueTestRunner(NoseTestSuiteRunner): __test__ = False def setup_test_environment(self, **kwargs): super(HueTestRunner, self).setup_test_environment(**kwargs) Template.original_render = Template.render Template.render = _instrumented_test_render def teardown_test_environment(self, **kwargs): super(HueTestRunner, self).teardown_test_environment(**kwargs) Template.render = Template.original_render del Template.original_render def run_tests(self, test_labels, *args): nose_argv = (['nosetests'] + list(test_labels)) if args: nose_argv.extend(args) if hasattr(settings, 'NOSE_ARGS'): extended_nose_args = settings.NOSE_ARGS # Remove coverage packages option from settings.NOSE_ARGS if explicitly mentioned as test command-line argument. # This will help as an option to report coverage for specific packages only if required. for nose_arg in nose_argv: if nose_arg.startswith('--cover-package'): extended_nose_args = [] for arg in settings.NOSE_ARGS: if not arg.startswith('--cover-package'): extended_nose_args.append(arg) nose_argv.extend(extended_nose_args) # Skip over 'manage.py test' and any arguments handled by django. django_opts = ['--noinput', '--liveserver', '-p', '--pattern'] #for opt in BaseCommand.option_list: # django_opts.extend(opt._long_opts) # django_opts.extend(opt._short_opts) nose_argv.extend(translate_option(opt) for opt in sys.argv[1:] if opt.startswith('-') and not any(opt.startswith(d) for d in django_opts)) # if --nose-verbosity was omitted, pass Django verbosity to nose if ('--verbosity' not in nose_argv and not any(opt.startswith('--verbosity=') for opt in nose_argv)): nose_argv.append('--verbosity=%s' % str(self.verbosity)) if self.verbosity >= 1: print(' '.join(nose_argv)) result = self.run_suite(nose_argv) # suite_result expects the suite as the first argument. Fake it. return self.suite_result({}, result)
StarcoderdataPython
8015718
import logging from qolsys.exceptions import QolsysGwConfigIncomplete from qolsys.exceptions import QolsysGwConfigError LOGGER = logging.getLogger(__name__) class QolsysGatewayConfig(object): _SENTINEL = object() _DEFAULT_CONFIG = { 'panel_host': _SENTINEL, 'panel_port': None, 'panel_mac': None, 'panel_token': _<PASSWORD>, 'panel_user_code': None, 'panel_unique_id': 'qolsys_panel', 'panel_device_name': 'Qolsys Panel', 'arm_away_exit_delay': None, 'mqtt_namespace': 'mqtt', 'mqtt_retain': True, 'discovery_topic': 'homeassistant', 'control_topic': '{discovery_topic}/alarm_control_panel/{panel_unique_id}/set', 'event_topic': 'qolsys/{panel_unique_id}/event', 'user_control_token': None, 'ha_check_user_code': True, 'ha_user_code': None, 'code_arm_required': False, 'code_disarm_required': False, 'code_trigger_required': False, 'default_trigger_command': None, 'default_sensor_device_class': 'safety', } def __init__(self, args=None, check=True): self._override_config = {} if args: self.load(args) if check: self.check() def load(self, args): for k, v in args.items(): if k in self._DEFAULT_CONFIG: self._override_config[k] = v def check(self): errors = 0 for k in self._DEFAULT_CONFIG.keys(): if self.get(k) is self._SENTINEL: LOGGER.error(f"Missing mandatory configuration key '{k}'") errors += 1 if errors > 0: raise QolsysGwConfigIncomplete if self.get('panel_user_code') is None: if self.get('ha_user_code'): raise QolsysGwConfigError( "Cannot use 'ha_user_code' if "\ "'panel_user_code' is not set") for k in ['code_arm_required', 'code_trigger_required']: if self.get(k): raise QolsysGwConfigError( f"Cannot use '{k}' if no disarm code is set, as the "\ "Qolsys Panel does not offer a built-in way to check "\ "for the code on ARM or TRIGGER actions.") # Without a configured disarm code, we cannot have home assistant # checking it for us self._override_config['ha_check_user_code'] = False # Without a configured disarm code, we will use the one provided # in home assistant to try and disarm the alarm self._override_config['code_disarm_required'] = True trig_cmd = self.get('default_trigger_command') if trig_cmd: trig_cmd = trig_cmd.upper() valid_trigger = [ 'TRIGGER', 'TRIGGER_AUXILIARY', 'TRIGGER_FIRE', 'TRIGGER_POLICE', ] if not trig_cmd in valid_trigger: raise QolsysGwConfigError( f"Invalid trigger command '{trig_cmd}'; must be one of "\ f"{', '.join(valid_trigger)}") self._override_config['default_trigger_command'] = trig_cmd # Apply a template to the control and event topics if the unique id # is part of the requested topics for k in ('control_topic', 'event_topic'): v = self.get(k) if v: self._override_config[k] = v.format( panel_unique_id=self.get('panel_unique_id') or 'qolsys', discovery_topic=self.get('discovery_topic')) def get(self, name): value = self._override_config.get(name, self._SENTINEL) if value is self._SENTINEL: value = self._DEFAULT_CONFIG.get(name, self._SENTINEL) return value def __getattr__(self, name): value = self.get(name) if value is self._SENTINEL: raise AttributeError return value
StarcoderdataPython
6659023
############################################################ ### Forked from https://github.com/cmhcbb/attackbox ############################################################ from __future__ import absolute_import, division, print_function import numpy as np class HSJA(object): def __init__(self,model,constraint=2,num_iterations=40,gamma=1.0,stepsize_search='geometric_progression',max_num_evals=1e4,init_num_evals=100, verbose=True): self.model = model self.constraint = constraint self.num_iterations = num_iterations self.gamma = gamma self.stepsize_search = stepsize_search self.max_num_evals = max_num_evals self.init_num_evals = init_num_evals self.verbose = verbose def hsja(self,input_xi,label_or_target,initial_xi,TARGETED): if (self.model.predict_label(input_xi) != label_or_target): print("Fail to classify the image. No need to attack.") return (False, None) # Set parameters # original_label = np.argmax(self.model.predict_label(input_xi)) d = int(np.prod(input_xi.shape)) # Set binary search threshold. if self.constraint == 2: theta = self.gamma / (np.sqrt(d) * d) else: theta = self.gamma / (d ** 2) # Initialize. perturbed = self.initialize(input_xi, label_or_target, initial_xi, TARGETED) if perturbed is None: print("Fail to find initial adversarial image.") return (False, None) # Project the initialization to the boundary. perturbed, dist_post_update = self.binary_search_batch(input_xi, np.expand_dims(perturbed, 0), label_or_target, theta, TARGETED) dist = self.compute_distance(perturbed, input_xi) for j in np.arange(self.num_iterations): #params['cur_iter'] = j + 1 # Choose delta. if j==1: delta = 0.1 * (self.model.bounds[1] - self.model.bounds[0]) else: if self.constraint == 2: delta = np.sqrt(d) * theta * dist_post_update elif self.constraint == np.inf: delta = d * theta * dist_post_update # Choose number of evaluations. num_evals = int(self.init_num_evals * np.sqrt(j+1)) num_evals = int(min([num_evals, self.max_num_evals])) # approximate gradient. gradf = self.approximate_gradient(perturbed, label_or_target, num_evals, delta, TARGETED) if self.constraint == np.inf: update = np.sign(gradf) else: update = gradf # search step size. if self.stepsize_search == 'geometric_progression': # find step size. epsilon = self.geometric_progression_for_stepsize(perturbed, label_or_target, update, dist, j+1, TARGETED) # Update the sample. perturbed = self.clip_image(perturbed + epsilon * update, self.model.bounds[0], self.model.bounds[1]) # Binary search to return to the boundary. perturbed, dist_post_update = self.binary_search_batch(input_xi, perturbed[None], label_or_target, theta, TARGETED) elif params['stepsize_search'] == 'grid_search': # Grid search for stepsize. epsilons = np.logspace(-4, 0, num=20, endpoint = True) * dist epsilons_shape = [20] + len(input_xi.shape) * [1] perturbeds = perturbed + epsilons.reshape(epsilons_shape) * update perturbeds = self.clip_image(perturbeds, self.model.bounds[0], self.model.bounds[1]) idx_perturbed = self.decision_function(perturbeds, label_or_target, TARGETED) if np.sum(idx_perturbed) > 0: # Select the perturbation that yields the minimum distance # after binary search. perturbed, dist_post_update = self.binary_search_batch(input_xi, perturbeds[idx_perturbed], label_or_target, theta, TARGETED) # compute new distance. dist = self.compute_distance(perturbed, input_xi) if self.verbose: print('iteration: {:d}, distance {:.4E}'.format(j+1, dist)) return (True, perturbed) def decision_function(self, images, label, TARGETED): """ Decision function output 1 on the desired side of the boundary, 0 otherwise. """ # images = torch.from_numpy(images).float().cuda() assert images is not None la = self.model.predict_label(images) #print(la,label) # la = la.cpu().numpy() if TARGETED: return (la==label) else: return (la!=label) def clip_image(self, image, clip_min, clip_max): # Clip an image, or an image batch, with upper and lower threshold. return np.minimum(np.maximum(clip_min, image), clip_max) def compute_distance(self, x_ori, x_pert): # Compute the distance between two images. if self.constraint == 2: return np.linalg.norm(x_ori - x_pert) elif self.constraint == np.inf: return np.max(abs(x_ori - x_pert)) def approximate_gradient(self, sample, label_or_target, num_evals, delta, TARGETED): # Generate random vectors. noise_shape = [num_evals] + list(sample.shape) if self.constraint == 2: rv = np.random.randn(*noise_shape) elif self.constraint == np.inf: rv = np.random.uniform(low = -1, high = 1, size = noise_shape) rv = rv / np.sqrt(np.sum(rv ** 2, axis = (1), keepdims = True)) perturbed = sample + delta * rv perturbed = self.clip_image(perturbed, self.model.bounds[0], self.model.bounds[1]) rv = (perturbed - sample) / delta # query the model. decisions = self.decision_function(perturbed, label_or_target, TARGETED) decision_shape = [len(decisions)] + [1] * len(sample.shape) fval = 2 * decisions.astype(float).reshape(decision_shape) - 1.0 # Baseline subtraction (when fval differs) if np.mean(fval) == 1.0: # label changes. gradf = np.mean(rv, axis = 0) elif np.mean(fval) == -1.0: # label not change. gradf = - np.mean(rv, axis = 0) else: fval -= np.mean(fval) gradf = np.mean(fval * rv, axis = 0) # Get the gradient direction. gradf = gradf / np.linalg.norm(gradf) return gradf def project(self, original_image, perturbed_images, alphas): # alphas_shape = [1] * len(original_image.shape) # alphas = alphas.reshape(alphas_shape) assert len(original_image.shape) == 1 assert len(perturbed_images.shape) == 2 if self.constraint == 2: #print(alphas.shape,original_image.shape, perturbed_images.shape) return (1-alphas) * original_image + alphas * perturbed_images elif self.constraint == np.inf: out_images = self.clip_image( perturbed_images, original_image - alphas, original_image + alphas ) return out_images else: raise Exception(f"Unsupported constraint {self.constraint}") def binary_search_batch(self, original_image, perturbed_images, label_or_target, theta, TARGETED): """ Binary search to approach the boundar. """ assert len(original_image.shape) == 1 assert len(perturbed_images.shape) == 2 # Compute distance between each of perturbed image and original image. dists_post_update = np.array([ self.compute_distance( original_image, perturbed_image ) for perturbed_image in perturbed_images]) #print(dists_post_update) # Choose upper thresholds in binary searchs based on constraint. if self.constraint == np.inf: highs = dists_post_update # Stopping criteria. thresholds = np.minimum(dists_post_update * theta, theta) else: highs = np.ones(len(perturbed_images)) thresholds = theta lows = np.zeros(len(perturbed_images)) # Call recursive function. while np.max((highs - lows) / thresholds) > 1: # projection to mids. mids = (highs + lows) / 2.0 mid_images = self.project(original_image, perturbed_images, mids) # print(mid_images.shape) # Update highs and lows based on model decisions. decisions = self.decision_function(mid_images, label_or_target, TARGETED) lows = np.where(decisions == 0, mids, lows) highs = np.where(decisions == 1, mids, highs) out_images = self.project(original_image, perturbed_images, highs) # Compute distance of the output image to select the best choice. # (only used when stepsize_search is grid_search.) dists = np.array([ self.compute_distance( original_image, out_image ) for out_image in out_images]) idx = np.argmin(dists) dist = dists_post_update[idx] out_image = out_images[idx] return out_image, dist def initialize(self, input_xi, label_or_target, initial_xi, TARGETED): """ Efficient Implementation of BlendedUniformNoiseAttack in Foolbox. """ success = 0 num_evals = 0 if initial_xi is None: # Find a misclassified random noise. while num_evals < 1e4: random_noise = np.random.uniform(*self.model.bounds, size = input_xi.shape) #print(random_noise[None].shape) success = self.decision_function(random_noise, label_or_target, TARGETED) self.model.num_queries += 1 if success: break if not success: print("Initialization failed! ") return None # Binary search to minimize l2 distance to original image. low = 0.0 high = 1.0 while high - low > 0.001: mid = (high + low) / 2.0 blended = (1 - mid) * input_xi + mid * random_noise success = self.decision_function(blended, label_or_target, TARGETED) if success: high = mid else: low = mid initialization = (1 - high) * input_xi + high * random_noise else: initialization = initial_xi return initialization def geometric_progression_for_stepsize(self, x, label_or_target, update, dist, j, TARGETED): """ Geometric progression to search for stepsize. Keep decreasing stepsize by half until reaching the desired side of the boundary, """ epsilon = dist / np.sqrt(j) def phi(epsilon): new = x + epsilon * update success = self.decision_function(new, label_or_target, TARGETED) return success while not phi(epsilon): epsilon /= 2.0 return epsilon def __call__(self, input_xi, label_or_target, initial_xi=None, target=None, TARGETED=False): # input_xi = input_xi.cpu().numpy() # label_or_target = label_or_target.cpu().numpy() adv = self.hsja(input_xi, label_or_target, initial_xi, TARGETED) # adv = torch.from_numpy(adv).float().cuda() return adv
StarcoderdataPython
6591050
import sys from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker import argparse from app.db import Document import os def parseargs(): parser = argparse.ArgumentParser() parser.add_argument('-d', '--database', type=str, required=True, help="Database.") parser.add_argument('-i', '--document-id', type=str, required=True, help="Id of document.") args = parser.parse_args() return args def main(): args = parseargs() database_url = 'sqlite:///' + args.database engine = create_engine(database_url, convert_unicode=True, connect_args={'check_same_thread': False}) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) document = db_session.query(Document).filter(Document.id == args.document_id).first() for image in document.images: extension = os.path.splitext(image.filename)[1] print(image.filename, "{}{}".format(image.id, extension)) if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
1781334
<gh_stars>1-10 from __future__ import annotations from numpy.typing import ArrayLike from sklearn.linear_model import LinearRegression from .regression_model import RegressionModel class LinearModel(RegressionModel): def __init__(self): self._lin_regressor: LinearRegression | None = None def learn(self, x_train: ArrayLike, y_train: ArrayLike): lin_regressor = LinearRegression() lin_regressor.fit(x_train, y_train) self._lin_regressor = lin_regressor def predict(self, x_test: ArrayLike) -> ArrayLike: lin_regressor = self._lin_regressor return lin_regressor.predict(x_test)
StarcoderdataPython
5131894
import tensorflow as tf from tf_transformers.core import LegacyLayer, LegacyModel from tf_transformers.utils import tf_utils class Similarity_Model_Pretraining(LegacyLayer): def __init__( self, encoder, projection_dimension, decoder=None, is_training=True, use_dropout=False, initializer="glorot_uniform", siamese=True, **kwargs, ): super(Similarity_Model_Pretraining, self).__init__( is_training=is_training, use_dropout=use_dropout, name=encoder.name, **kwargs ) self.is_training = is_training if siamese: self.encoder = encoder self.decoder = encoder else: if decoder is None: raise ValueError("When siamese = False, decoder has to be provided. Provided decoder = None.") self.encoder = encoder self.decoder = decoder self.linear_projection = tf.keras.layers.Dense( units=projection_dimension, activation=None, kernel_initializer=initializer, name="linear_projection", ) # As per CLIP paper self.logits_scale = tf.Variable(tf.math.log(1 / 0.07), name='logits_scale') def call(self, inputs): """Call""" if self.is_training: original_inputs = {k.replace("original_", ""): v for k, v in inputs.items() if k.startswith("original_")} corrupted_inputs = {k.replace("corrupted_", ""): v for k, v in inputs.items() if k.startswith("corrupted_")} original_outputs = self.encoder(original_inputs) corrupted_outputs = self.decoder(corrupted_inputs) if 'cls_output' not in original_outputs: original_outputs['cls_output'] = tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( original_outputs['token_embeddings'] ) if 'cls_output' not in corrupted_outputs: corrupted_outputs['cls_output'] = tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( corrupted_outputs['token_embeddings'] ) original_sentence_embedding = self.linear_projection(original_outputs['cls_output']) corrupted_sentence_embedding = self.linear_projection(corrupted_outputs['cls_output']) original_sentence_embedding_normalized = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=1))( original_sentence_embedding ) corrupted_sentence_embedding_normalized = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=1))( corrupted_sentence_embedding ) logits = tf.matmul( original_sentence_embedding_normalized, corrupted_sentence_embedding_normalized, transpose_b=True ) # Clamp logits to a max of tf.math.log(100) = 4.6051702 as per CLIP model logits_scale = tf.math.exp(self.logits_scale) logits_scale = tf.clip_by_value( logits_scale, clip_value_min=tf.math.log(1 / 0.07), clip_value_max=4.6051752 ) logits = tf.cast(logits_scale, dtype=tf_utils.get_dtype()) * logits corrupted_outputs['logits'] = logits corrupted_outputs['original_sentence_embedding_normalized'] = original_sentence_embedding_normalized corrupted_outputs['corrupted_sentence_embedding_normalized'] = corrupted_sentence_embedding_normalized return corrupted_outputs else: first_inputs = {k.replace("first_", ""): v for k, v in inputs.items() if k.startswith("first_")} second_inputs = {k.replace("second_", ""): v for k, v in inputs.items() if k.startswith("second_")} first_outputs = self.encoder(first_inputs) second_outputs = self.decoder(second_inputs) if 'cls_output' not in first_outputs: first_outputs['cls_output'] = tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( first_outputs['token_embeddings'] ) if 'cls_output' not in second_outputs: second_outputs['cls_output'] = tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( second_outputs['token_embeddings'] ) first_sentence_embedding = self.linear_projection(first_outputs['cls_output']) second_sentence_embedding = self.linear_projection(second_outputs['cls_output']) first_sentence_embedding_normalized = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=1))( first_sentence_embedding ) second_sentence_embedding_normalized = tf.keras.layers.Lambda(lambda x: tf.nn.l2_normalize(x, axis=1))( second_sentence_embedding ) logits = tf.matmul( first_sentence_embedding_normalized, second_sentence_embedding_normalized, transpose_b=True ) # Clamp logits to a max of tf.math.log(100) = 4.6051702 as per CLIP model logits_scale = tf.math.exp(self.logits_scale) # no need to clamp at testing # self.logits_scale = tf.clip_by_value(self.logits_scale, clip_value_min=tf.math.log(1/0.07), clip_value_max=4.6051752) logits = tf.cast(logits_scale, dtype=tf_utils.get_dtype()) * logits outputs = {} outputs['first_sentence_embedding_normalized'] = first_sentence_embedding_normalized outputs['second_entence_embedding_normalized'] = second_sentence_embedding_normalized outputs['logits'] = logits return outputs def get_model(self): if self.is_training: inputs = {} # Assume encoder and decoder have same input types for k, v in self.encoder.input.items(): inputs["original_" + k] = v for k, v in self.encoder.input.items(): inputs["corrupted_" + k] = tf.keras.layers.Input( shape=v.shape[1:], batch_size=v.shape[0], dtype=v.dtype, name=v.name.split(":")[0] + "_2" ) else: inputs = {} # Assume encoder and decoder have same input types for k, v in self.encoder.input.items(): inputs["first_" + k] = v for k, v in self.encoder.input.items(): inputs["second_" + k] = tf.keras.layers.Input( shape=v.shape[1:], batch_size=v.shape[0], dtype=v.dtype, name=v.name.split(":")[0] + "_3" ) layer_output = self(inputs) model = LegacyModel(inputs=inputs, outputs=layer_output, name="similarity_model") try: model.model_config = self.encoder._config_dict except: model.model_config = self.encoder.model_config return model
StarcoderdataPython
6486984
<reponame>mariajmolina/hysplit_applications<filename>alaska_storms/run_hysplit_ens.py import pandas as pd import datetime import numpy as np import argparse import math from pysplit.trajectory_generator import generate_bulktraj ############################################################################ ############################################################################ parser = argparse.ArgumentParser(description='Calculating hysplit trajs.') parser.add_argument("--climate", choices=["hist", "pgw"], required=True, type=str, help="This is the hist or pgw choice.") parser.add_argument("--month", required=True, type=int, help="Storm month for trajectory calculation.") parser.add_argument("--ens", required=True, type=int, help="Ensemble number.") args=parser.parse_args() which_climate=args.climate which_month=args.month ens_number=args.ens ############################################################################ ############################################################################ work_help1=np.hstack([np.array([0 for i in range(36)]), np.array([1 for i in range(36)]), np.array([2 for i in range(36)]), np.array([3 for i in range(36)]), np.array([4 for i in range(36)]), np.array([5 for i in range(36)]), np.array([6 for i in range(36)]), np.array([7 for i in range(36)]), np.array([8 for i in range(36)]), np.array([9 for i in range(36)]) ]) work_help2=np.hstack([np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]), np.array([i+1 for i in range(36)]) ]) which_working=f"work{work_help2[ens_number]}_{work_help1[ens_number]}" ############################################################################ ############################################################################ csv_file=pd.read_csv(f'/glade/work/bpoujol/Moisture_tracking/trajectory_information_{which_climate}.csv') dates=[] for datetime_string in csv_file['TIME (UTC)'].values: dates.append(datetime.datetime.strptime(datetime_string, '%Y-%m-%d_%H:%M:%S')) ready_dates=pd.to_datetime(np.array(dates)) csv_file['YEAR']=ready_dates.year csv_file['MONTH']=ready_dates.month csv_file['DAY']=ready_dates.day csv_file['HOUR']=ready_dates.hour csv_file=csv_file[csv_file['MONTH']==which_month] ############################################################################ ############################################################################ def ens_create(ens_num, lat, lon): """Extract the ensemble member's lat and lon coordinates. """ ens_help=np.hstack([np.array([i for i in range(49)]), np.array([i for i in range(49)]), np.array([i for i in range(49)]), np.array([i for i in range(49)]), np.array([i for i in range(49)]), np.array([i for i in range(49)]), np.array([i for i in range(49)]) ]) ens_num=ens_help[ens_num] if ens_num==0: return compute_displacement(lat, lon) if ens_num==1: return compute_displacement(lat, lon, dist=1, bear=90) if ens_num==2: return compute_displacement(lat, lon, dist=2, bear=90) if ens_num==3: return compute_displacement(lat, lon, dist=3, bear=90) if ens_num==4: return compute_displacement(lat, lon, dist=1, bear=270) if ens_num==5: return compute_displacement(lat, lon, dist=2, bear=270) if ens_num==6: return compute_displacement(lat, lon, dist=3, bear=270) if ens_num==7: return compute_displacement(lat, lon, dist=1, bear=180) if ens_num==8: return compute_displacement(lat, lon, dist=2, bear=180) if ens_num==9: return compute_displacement(lat, lon, dist=3, bear=180) if ens_num==10: return compute_displacement(lat, lon, dist=1, bear=0) if ens_num==11: return compute_displacement(lat, lon, dist=2, bear=0) if ens_num==12: return compute_displacement(lat, lon, dist=3, bear=0) if ens_num==13: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==14: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==15: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==16: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==17: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==18: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==19: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==20: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==21: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==22: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==23: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==24: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=270) if ens_num==25: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==26: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==27: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=270) if ens_num==28: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==29: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==30: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=0) return compute_displacement(newlat, newlon, dist=3, bear=270) if ens_num==31: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==32: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==33: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==34: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==35: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==36: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==37: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=90) if ens_num==38: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=90) if ens_num==39: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=90) if ens_num==40: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==41: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==42: newlat, newlon=compute_displacement(lat, lon, dist=1, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=270) if ens_num==43: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==44: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==45: newlat, newlon=compute_displacement(lat, lon, dist=2, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=270) if ens_num==46: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=1, bear=270) if ens_num==47: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=2, bear=270) if ens_num==48: newlat, newlon=compute_displacement(lat, lon, dist=3, bear=180) return compute_displacement(newlat, newlon, dist=3, bear=270) ############################################################################ ############################################################################ def compute_displacement(lat, lon, dist=None, bear=None): """Compute the latitude and longitude for the respective ensemble member. """ if not dist: return lat, lon if dist: R = 6378.1 #Radius of the Earth (km) brng = math.radians(bear) #Bearing is 90 degrees converted to radians. d = dist #Distance in km lat1 = math.radians(lat) #Current lat point converted to radians lon1 = math.radians(lon) #Current long point converted to radians lat2 = math.asin( math.sin(lat1)*math.cos(d/R) + math.cos(lat1)*math.sin(d/R)*math.cos(brng)) lon2 = lon1 + math.atan2(math.sin(brng)*math.sin(d/R)*math.cos(lat1), math.cos(d/R)-math.sin(lat1)*math.sin(lat2)) lat2 = math.degrees(lat2) lon2 = math.degrees(lon2) return lat2, lon2 ############################################################################ ############################################################################ def height_generator(ens_num, altitude): """Generate the height for the respective ensemble member. """ fraction=np.hstack([np.array([1 for i in range(49)]), np.array([0.95 for i in range(49)]), np.array([0.9 for i in range(49)]), np.array([0.85 for i in range(49)]), np.array([0.8 for i in range(49)]), np.array([0.75 for i in range(49)]), np.array([0.7 for i in range(49)]) ]) return altitude*fraction[ens_num] ############################################################################ ############################################################################ #where is hysplit working folder? working_dir = f'/glade/scratch/molina/hysplit/trunk/{which_working}' #where is arl format meteo data? meteo_dir = f'/glade/scratch/molina/basile/{which_climate}' #where is hysplit model executable? hysplit_dir=r'/glade/scratch/molina/hysplit/trunk/exec/hyts_std' #where to put trajs? output_dir=f'/glade/scratch/molina/basile/{which_climate}_traj/' ############################################################################ ############################################################################ runtime = -240 basename = [] years = [] months = [] hours = [] location = [] altitudes = [] for i in range(len(csv_file)): print(i) basename = 'trajid'+str(csv_file.iloc[i][0])+'_subregion'+str(csv_file.iloc[i][2])+'_'+'ens'+str(ens_number)+'_' years = [csv_file.iloc[i][8]] months = [csv_file.iloc[i][9]] hours = [csv_file.iloc[i][11]] location = ens_create(ens_num=ens_number, lat=csv_file.iloc[i][4], lon=csv_file.iloc[i][5]) altitudes = [height_generator(ens_num=ens_number, altitude=csv_file.iloc[i][6])] day1 = (csv_file.iloc[i][10]-1) day2 = csv_file.iloc[i][10] generate_bulktraj(basename=basename, hysplit_working=working_dir, output_dir=output_dir, meteo_dir=meteo_dir, years=years, months=months, hours=hours, altitudes=altitudes, coordinates=location, run=runtime, meteoyr_2digits=False, outputyr_2digits=False, monthslice=slice(day1, day2, 1), meteo_bookends=([1] , [1]), get_reverse=False, get_clipped=False, hysplit=hysplit_dir) ############################################################################ ############################################################################ ############################################################################
StarcoderdataPython
11215006
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import dataclasses import gzip import json from dataclasses import dataclass, Field, MISSING from typing import Any, cast, Dict, IO, Optional, Tuple, Type, TypeVar, Union import numpy as np from pytorch3d.common.datatypes import get_args, get_origin _X = TypeVar("_X") TF3 = Tuple[float, float, float] @dataclass class ImageAnnotation: # path to jpg file, relative w.r.t. dataset_root path: str # H x W size: Tuple[int, int] # TODO: rename size_hw? @dataclass class DepthAnnotation: # path to png file, relative w.r.t. dataset_root, storing `depth / scale_adjustment` path: str # a factor to convert png values to actual depth: `depth = png * scale_adjustment` scale_adjustment: float # path to png file, relative w.r.t. dataset_root, storing binary `depth` mask mask_path: Optional[str] @dataclass class MaskAnnotation: # path to png file storing (Prob(fg | pixel) * 255) path: str # (soft) number of pixels in the mask; sum(Prob(fg | pixel)) mass: Optional[float] = None @dataclass class ViewpointAnnotation: # In right-multiply (PyTorch3D) format. X_cam = X_world @ R + T R: Tuple[TF3, TF3, TF3] T: TF3 focal_length: Tuple[float, float] principal_point: Tuple[float, float] intrinsics_format: str = "ndc_norm_image_bounds" # Defines the co-ordinate system where focal_length and principal_point live. # Possible values: ndc_isotropic | ndc_norm_image_bounds (default) # ndc_norm_image_bounds: legacy PyTorch3D NDC format, where image boundaries # correspond to [-1, 1] x [-1, 1], and the scale along x and y may differ # ndc_isotropic: PyTorch3D 0.5+ NDC convention where the shorter side has # the range [-1, 1], and the longer one has the range [-s, s]; s >= 1, # where s is the aspect ratio. The scale is same along x and y. @dataclass class FrameAnnotation: """A dataclass used to load annotations from json.""" # can be used to join with `SequenceAnnotation` sequence_name: str # 0-based, continuous frame number within sequence frame_number: int # timestamp in seconds from the video start frame_timestamp: float image: ImageAnnotation depth: Optional[DepthAnnotation] = None mask: Optional[MaskAnnotation] = None viewpoint: Optional[ViewpointAnnotation] = None meta: Optional[Dict[str, Any]] = None @dataclass class PointCloudAnnotation: # path to ply file with points only, relative w.r.t. dataset_root path: str # the bigger the better quality_score: float n_points: Optional[int] @dataclass class VideoAnnotation: # path to the original video file, relative w.r.t. dataset_root path: str # length of the video in seconds length: float @dataclass class SequenceAnnotation: sequence_name: str category: str video: Optional[VideoAnnotation] = None point_cloud: Optional[PointCloudAnnotation] = None # the bigger the better viewpoint_quality_score: Optional[float] = None def dump_dataclass(obj: Any, f: IO, binary: bool = False) -> None: """ Args: f: Either a path to a file, or a file opened for writing. obj: A @dataclass or collection hierarchy including dataclasses. binary: Set to True if `f` is a file handle, else False. """ if binary: f.write(json.dumps(_asdict_rec(obj)).encode("utf8")) else: json.dump(_asdict_rec(obj), f) def load_dataclass(f: IO, cls: Type[_X], binary: bool = False) -> _X: """ Loads to a @dataclass or collection hierarchy including dataclasses from a json recursively. Call it like load_dataclass(f, typing.List[FrameAnnotationAnnotation]). raises KeyError if json has keys not mapping to the dataclass fields. Args: f: Either a path to a file, or a file opened for writing. cls: The class of the loaded dataclass. binary: Set to True if `f` is a file handle, else False. """ if binary: asdict = json.loads(f.read().decode("utf8")) else: asdict = json.load(f) if isinstance(asdict, list): # in the list case, run a faster "vectorized" version cls = get_args(cls)[0] res = list(_dataclass_list_from_dict_list(asdict, cls)) else: res = _dataclass_from_dict(asdict, cls) return res def _dataclass_list_from_dict_list(dlist, typeannot): """ Vectorised version of `_dataclass_from_dict`. The output should be equivalent to `[_dataclass_from_dict(d, typeannot) for d in dlist]`. Args: dlist: list of objects to convert. typeannot: type of each of those objects. Returns: iterator or list over converted objects of the same length as `dlist`. Raises: ValueError: it assumes the objects have None's in consistent places across objects, otherwise it would ignore some values. This generally holds for auto-generated annotations, but otherwise use `_dataclass_from_dict`. """ cls = get_origin(typeannot) or typeannot if typeannot is Any: return dlist if all(obj is None for obj in dlist): # 1st recursion base: all None nodes return dlist if any(obj is None for obj in dlist): # filter out Nones and recurse on the resulting list idx_notnone = [(i, obj) for i, obj in enumerate(dlist) if obj is not None] idx, notnone = zip(*idx_notnone) converted = _dataclass_list_from_dict_list(notnone, typeannot) res = [None] * len(dlist) for i, obj in zip(idx, converted): res[i] = obj return res is_optional, contained_type = _resolve_optional(typeannot) if is_optional: return _dataclass_list_from_dict_list(dlist, contained_type) # otherwise, we dispatch by the type of the provided annotation to convert to if issubclass(cls, tuple) and hasattr(cls, "_fields"): # namedtuple # For namedtuple, call the function recursively on the lists of corresponding keys types = cls._field_types.values() dlist_T = zip(*dlist) res_T = [ _dataclass_list_from_dict_list(key_list, tp) for key_list, tp in zip(dlist_T, types) ] return [cls(*converted_as_tuple) for converted_as_tuple in zip(*res_T)] elif issubclass(cls, (list, tuple)): # For list/tuple, call the function recursively on the lists of corresponding positions types = get_args(typeannot) if len(types) == 1: # probably List; replicate for all items types = types * len(dlist[0]) dlist_T = zip(*dlist) res_T = ( _dataclass_list_from_dict_list(pos_list, tp) for pos_list, tp in zip(dlist_T, types) ) if issubclass(cls, tuple): return list(zip(*res_T)) else: return [cls(converted_as_tuple) for converted_as_tuple in zip(*res_T)] elif issubclass(cls, dict): # For the dictionary, call the function recursively on concatenated keys and vertices key_t, val_t = get_args(typeannot) all_keys_res = _dataclass_list_from_dict_list( [k for obj in dlist for k in obj.keys()], key_t ) all_vals_res = _dataclass_list_from_dict_list( [k for obj in dlist for k in obj.values()], val_t ) indices = np.cumsum([len(obj) for obj in dlist]) assert indices[-1] == len(all_keys_res) keys = np.split(list(all_keys_res), indices[:-1]) vals = np.split(list(all_vals_res), indices[:-1]) return [cls(zip(*k, v)) for k, v in zip(keys, vals)] elif not dataclasses.is_dataclass(typeannot): return dlist # dataclass node: 2nd recursion base; call the function recursively on the lists # of the corresponding fields assert dataclasses.is_dataclass(cls) fieldtypes = { f.name: (_unwrap_type(f.type), _get_dataclass_field_default(f)) for f in dataclasses.fields(typeannot) } # NOTE the default object is shared here key_lists = ( _dataclass_list_from_dict_list([obj.get(k, default) for obj in dlist], type_) for k, (type_, default) in fieldtypes.items() ) transposed = zip(*key_lists) return [cls(*vals_as_tuple) for vals_as_tuple in transposed] def _dataclass_from_dict(d, typeannot): if d is None or typeannot is Any: return d is_optional, contained_type = _resolve_optional(typeannot) if is_optional: # an Optional not set to None, just use the contents of the Optional. return _dataclass_from_dict(d, contained_type) cls = get_origin(typeannot) or typeannot if issubclass(cls, tuple) and hasattr(cls, "_fields"): # namedtuple types = cls._field_types.values() return cls(*[_dataclass_from_dict(v, tp) for v, tp in zip(d, types)]) elif issubclass(cls, (list, tuple)): types = get_args(typeannot) if len(types) == 1: # probably List; replicate for all items types = types * len(d) return cls(_dataclass_from_dict(v, tp) for v, tp in zip(d, types)) elif issubclass(cls, dict): key_t, val_t = get_args(typeannot) return cls( (_dataclass_from_dict(k, key_t), _dataclass_from_dict(v, val_t)) for k, v in d.items() ) elif not dataclasses.is_dataclass(typeannot): return d assert dataclasses.is_dataclass(cls) fieldtypes = {f.name: _unwrap_type(f.type) for f in dataclasses.fields(typeannot)} return cls(**{k: _dataclass_from_dict(v, fieldtypes[k]) for k, v in d.items()}) def _unwrap_type(tp): # strips Optional wrapper, if any if get_origin(tp) is Union: args = get_args(tp) if len(args) == 2 and any(a is type(None) for a in args): # noqa: E721 # this is typing.Optional return args[0] if args[1] is type(None) else args[1] # noqa: E721 return tp def _get_dataclass_field_default(field: Field) -> Any: if field.default_factory is not MISSING: # pyre-fixme[29]: `Union[dataclasses._MISSING_TYPE, # dataclasses._DefaultFactory[typing.Any]]` is not a function. return field.default_factory() elif field.default is not MISSING: return field.default else: return None def _asdict_rec(obj): return dataclasses._asdict_inner(obj, dict) def dump_dataclass_jgzip(outfile: str, obj: Any) -> None: """ Dumps obj to a gzipped json outfile. Args: obj: A @dataclass or collection hiererchy including dataclasses. outfile: The path to the output file. """ with gzip.GzipFile(outfile, "wb") as f: dump_dataclass(obj, cast(IO, f), binary=True) def load_dataclass_jgzip(outfile, cls): """ Loads a dataclass from a gzipped json outfile. Args: outfile: The path to the loaded file. cls: The type annotation of the loaded dataclass. Returns: loaded_dataclass: The loaded dataclass. """ with gzip.GzipFile(outfile, "rb") as f: return load_dataclass(cast(IO, f), cls, binary=True) def _resolve_optional(type_: Any) -> Tuple[bool, Any]: """Check whether `type_` is equivalent to `typing.Optional[T]` for some T.""" if get_origin(type_) is Union: args = get_args(type_) if len(args) == 2 and args[1] == type(None): # noqa E721 return True, args[0] if type_ is Any: return True, Any return False, type_
StarcoderdataPython
4941423
import requests import json def login(useremail, userpassword): url = "http://127.0.0.1:8000/api/login" payload = {'username': useremail, 'password': <PASSWORD>} files = [ ] headers = { 'Cookie': 'csrftoken=<KEY>; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request( "POST", url, headers=headers, data=payload, files=files) return response.json() # print(response.text) #login("<EMAIL>", "123") def getexp_fromqueue(token): """ """ auth_token = "Token " + token url = "http://127.0.0.1:8000/api/experiments/queue" payload = {} headers = { 'Authorization': auth_token, # 'Cookie': 'csrftoken=<KEY>; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request("GET", url, headers=headers, data=payload) # returns KeyError: 'experimentId' if no experiment is in Queue return response.json() # print(response.text) def poststatus_running(token, experimentId): """ """ auth_token = "Token " + token url = f"http://127.0.0.1:8000/api/experiments/{experimentId}" payload = {'status': 'RUNNING'} files = [ ] headers = { 'Authorization': auth_token, 'Cookie': 'csrftoken=a6IwyqS4I5vjwcNAT5Tm70PuiK7AFjcDVPHbyZy3I189V7eX5iK2m0AwJQoYyVUb; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request( "PATCH", url, headers=headers, data=payload, files=files) # print(response.text) # post_running() def post_result(token, result): """ """ auth_token = "Token " + token url = "http://127.0.0.1:8000/api/results" payload = result # payload = json.dumps({ # "totalCounts": "50000", # "numberOfDetectors": "4", # "singlePhotonRate": "1500.00", # "totalTime": "3", # "experiment": "68c64b96-73ed-4184-9ac1-c2d3bab0e068", # "experimentData": { # "countratePerDetector": { # "d1": "123", # "d2": "123", # "d3": "456", # "d4": "123", # "d5": "123", # "d6": "456", # "d7": "123", # "d8": "123" # }, # "encodedQubitMeasurements": { # "c00": "0.123", # "c10": "0.123", # "c01": "0.56", # "c11": "0.34" # } # } # }) headers = { 'Authorization': auth_token, 'Content-Type': 'application/json', 'Cookie': 'csrftoken=<KEY>3I189V7eX5iK2m0AwJQoYyVUb; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) # post_result() def poststatus_done(token, experimentId): """ """ auth_token = "Token " + token url = f"http://127.0.0.1:8000/api/experiments/{experimentId}" payload = {'status': 'DONE'} files = [ ] headers = { 'Authorization': auth_token, 'Cookie': 'csrftoken=<KEY>; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request( "PATCH", url, headers=headers, data=payload, files=files) print(response.text) def poststatus_failed(token, experimentId): """ """ url = f"http://127.0.0.1:8000/api/experiments/{experimentId}" payload = {'status': 'FAILED'} files = [ ] headers = { 'Authorization': token, 'Cookie': 'csrftoken=<KEY>; sessionid=5g4v77efjv0r99nziiourrzqocruyasl' } response = requests.request( "PATCH", url, headers=headers, data=payload, files=files) print(response.text)
StarcoderdataPython
4873292
from ..core import Entity as L10nEntity, Structure class LOL(Structure): def add(self, element): if element is not None: self.add_element(element) def add_element(self, element, pos=None): """ overwrite silme.core.L10nObject.add_element """ if element == None: return 0 t = type(element).__name__[0] if t == 's' or t == 'u': # s - str, u - unicode return self.add_string(element, pos) elif t == 'E': # E - Entity return self.add_entity(element, pos) elif t == 'C': # C - Comment return self.add_comment(element, pos) else: self.append(element) class WS(): def __init__(self, content): self.content = content class Group(): def __init__(self): self.structure = [] def add(self, entry): self.structure.append(entry) class Entity(L10nEntity): def __init__(self, id, value=None): L10nEntity.__init__(self, id) self.kvplist = [] if isinstance(value, unicode): self._value['default'] = String(value) else: self._value['default'] = None def get_value(self, fallback=None): return self._value[self.default_code] class Comment(): def __init__(self, content=None): self.content = content class Expression(): pass class Index(): def __init__(self): self.expression = None class Hash(): def __init__(self): self.key_value_pairs = {} class Expander(): pass class Macro(): def __init__(self): self.structure=[] class Operator(str): pass class KeyValuePair(): def __init__(self, key=None, value=None): self.key = key self.value = value self.ws = [] def add(self, value): if isinstance(self.value, list): self.value.append(value) elif self.value is not None: self.value = [self.value, value] else: self.value = value class OperatorExpression(list): pass class ConditionalExpression(OperatorExpression): pass class OrExpression(OperatorExpression): pass class AndExpression(OperatorExpression): pass class EqualityExpression(OperatorExpression): pass class RelationalExpression(OperatorExpression): pass class AdditiveExpression(OperatorExpression): pass class MultiplicativeExpression(OperatorExpression): pass class UnaryExpression(OperatorExpression): pass class BraceExpression(list): pass class MacroCall(): def __init__(self): self.structure=[] class Idref(list): pass
StarcoderdataPython
6438488
from setuptools import setup, find_packages setup( packages=find_packages(exclude=['tests', 'tests.*']), )
StarcoderdataPython
242116
# Copyright 2020 SAS Project Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""ESC Impact Simulator. For evaluation of the impact of ESC protection into CBSD transmit power. It uses the IAP reference implementation to assess how much power reduction is required on each CBSD in the network. Inputs: - Some JSON FADs file defining the ESC networks. - A CBSD deployment model. It can be either: + a JSON file defining the CBSD deployment model. For example one can use any NTIA model that was generated for DPA neighborhood studies, found in: https://github.com/Wireless-Innovation-Forum/Spectrum-Access-System/tree/master/data/research/deployment_models + The default NTIA nationwide deployment model (if no file specified): this one is defined in the 2 CSV files NationWide_CatA, NationWide_CatB found in the same data directory as above. Output: - A figure showing the impact of ESC protection on CBSDs power. - A CSV file showing every CBSD with requested/obtained power. Example Usage: # Run the simulation for a list of grants, on all sensors of 2 ESC FADS. python run_esc_impact.py --cbsd_file data/West14_reg_grant.json.zip \ --esc_fads esc1_fad.json,esc2_fad.json # Run the simulation for a list of grants, on selected sensors of 2 ESC FADS: # + only the sensors whose name contains `W12` and `W13` string. # + also output one CSV per sensor containing all impacted CBSD. python run_esc_impact.py --cbsd_file data/West14_reg_grant.json.zip \ --esc_fads esc1_fad.json,esc2_fad.json \ --sensors W12,W13 \ --output_csv """ import argparse import json import glob import cartopy.crs as ccrs import csv import matplotlib.pyplot as plt import numpy as np import shapely.geometry as sgeo import iap_patch from deploy_model import deploy from reference_models.iap import iap from reference_models.geo import vincenty from reference_models.tools import entities from reference_models.tools import sim_utils #---------------------------------------- # Setup the command line arguments parser = argparse.ArgumentParser(description='ESC Impact Simulator') # - Generic config. parser.add_argument('--cbsd_file', type=str, default='', help='CBSD deployment file (JSON).') parser.add_argument('--esc_fads', type=str, default='', help='The ESC FADs file (JSON) separated by a comma.') parser.add_argument('--per_sensor', action='store_true', help='If set, no ESC aggregation.') parser.add_argument('--output_csv', action='store_true', help='If set, output CSV per sensor of all impacted CBSD.') parser.add_argument('--sectorized_catb', action='store_true', help='If set, modelize CatB as multi sector.') parser.set_defaults(sectorized_catb=False) parser.add_argument('--sensors', type=str, default='', help='Sensors to analyse (prefix).') options = parser.parse_args() #-------------------------------------------------- # The simulation def esc_impact_sim(cbsd_reg_grant, esc_fads, sensor_filters=None, per_sensor_mode=False, do_csv_output=False, force_catb_omni=True): """ESC impact simulation. Performs simulation on given input (CBSD and ESC), creates resulting plots and output CSV file. Args: cbsd_reg_grant: The CBSD file (JSON) in 'reg_grant' format. esc_fads: A list of ESC FAD data (JSON). sensor_filters: List of string for filtering sensor (ex: W13, google, ..). per_sensor_mode: If set, computes impact stats per sensor. No plots or CSV output is done. do_csv_output: If set, output """ # Read the grants: if cbsd_reg_grant: # .. from 'reg_grant' file grants, _ = sim_utils.ReadTestHarnessConfigFile(cbsd_reg_grant) else: # .. from the default nation wide deployment model print('Using NTIA NationWide deployment model') cbsds = deploy.ReadNationWideDeploymentModel(force_omni=force_catb_omni) grants = entities.ConvertToCbsdGrantInfo(cbsds, 3550, 3560) # Reads the ESC sensors from all FADs. sensors = [] for fad in esc_fads: sensors.extend(json.load(open(fad))['recordData']) # Filter the ESCs to simulate. if sensor_filters: filt_sensors = [] for sensor in sensors: for token in sensor_filters: if token in sensor['id']: filt_sensors.append(sensor) break sensors = filt_sensors if not sensors: print('Simulation cancelled - No sensor name containing one of %s' % sensor_filters) return print('ESCs included in the simulation:') print([sensor['id'] for sensor in sensors]) # Run IAP simulation. if not per_sensor_mode: for sensor in sensors: esc_allowed_interference = iap.performIapForEsc(sensor, grants, []) impacted_grants = [grant for grant in grants if max(grant.iap_eirp) - min(grant.iap_eirp) > 0] print('Number of impacted CBSDs: %d' % len(impacted_grants)) else: # Special mode for getting # impacted grants per sensor independently. for sensor in sensors: # Clear iap_eirp before simulation of each ESC for grant in grants: grant.iap_eirp.clear() grant.iap_eirp.add(grant.max_eirp) esc_allowed_interference = iap.performIapForEsc(sensor, grants, []) impacted_grants = [grant for grant in grants if max(grant.iap_eirp) - min(grant.iap_eirp) > 0] print('Number of CBSDs impacted by %s: %d' % (sensor['id'], len(impacted_grants))) return # Output the CSV. if do_csv_output: for sensor in sensors: sensor_loc = (sensor['installationParam']['latitude'], sensor['installationParam']['longitude']) neighbor_grants = [] sensor_name = sensor['id'].split('/') for idx, grant in enumerate(grants): dist_km, _, _ = vincenty.GeodesicDistanceBearing( grant.latitude, grant.longitude, sensor_loc[0], sensor_loc[1]) if ((grant.cbsd_category == 'A' and dist_km <= 40) or (grant.cbsd_category == 'B' and dist_km <= 80)): neighbor_grants.append( [sensor_name[1], sensor_name[2], idx, grant.cbsd_category, grant.indoor_deployment, grant.height_agl, dist_km, grant.antenna_gain, grant.max_eirp + 10, min(grant.iap_eirp) + 10]) file_name = sensor_name[2] + '_neighbors.csv' with open(file_name, 'w') as f: writer = csv.writer(f) writer.writerow( ['ESC Network', 'ESC Sensor','CBSD ID','CBSD Category','Indoor CBSD', 'CBSD AGL','Distance to ESC (km)','CBSD Antenna Gain (dBi)', 'Max EIRP (dBm/10MHz)','Actual EIRP (dBm/10MHz)']) writer.writerows(neighbor_grants) # Retrieve the delta EIRP for plots and stats. delta_eirp = [] for grant in grants: delta_eirp.append(max(grant.iap_eirp) - min(grant.iap_eirp)) # Create figure with simple projection. fig = plt.figure(figsize=(10,10)) subplot = 111 ax = fig.add_subplot(subplot, projection=ccrs.PlateCarree()) # Finds the bounding box (all CBSDs). box_margin = 0.1 # about 10km box = sgeo.box(*sgeo.MultiPoint( [(grant.longitude, grant.latitude) for grant in grants]).bounds) box = box.buffer(box_margin) # Plot geometries. ax.axis([box.bounds[0], box.bounds[2], box.bounds[1], box.bounds[3]]) ax.coastlines() ax.stock_img() # class1: no power reduction class1_grants = [grant for grant in grants if max(grant.iap_eirp) == min(grant.iap_eirp)] class1_locations = ([grant.longitude for grant in class1_grants], [grant.latitude for grant in class1_grants]) ax.scatter(*class1_locations, c='g', marker='1', s=50, label='0 dB power reduction: %d' % len(class1_grants) ) # class2: less than 10 dB power reduction class2_grants = [grant for grant in grants if (max(grant.iap_eirp) > min(grant.iap_eirp) and max(grant.iap_eirp)-min(grant.iap_eirp) < 10)] class2_locations = ([grant.longitude for grant in class2_grants], [grant.latitude for grant in class2_grants]) ax.scatter(*class2_locations, c='b', marker='1', s=50, label='<10 dB power reduction: %d' % len(class2_grants) ) # class3: 10 dB or more power reduction class3_grants = [grant for grant in grants if max(grant.iap_eirp) - min(grant.iap_eirp) >= 10] class3_locations = ([grant.longitude for grant in class3_grants], [grant.latitude for grant in class3_grants]) ax.scatter(*class3_locations, c='r', marker='1', s=50, label='>=10 dB power reduction: %d' % len(class3_grants) ) ax.legend(loc=0) ax.set_title('ESC Protection') # Print histogram of power reduction power_reduction = [max(grant.iap_eirp) - min(grant.iap_eirp) for grant in grants] plt.figure() plt.hist(power_reduction, bins=np.arange(0.1, 50, 1)) plt.xlabel('CBSD power reduction') plt.ylabel('# of CBSDs') plt.grid() #---------------------------------------------------------------- # Script main runner if __name__ == '__main__': esc_fads = options.esc_fads.split(',') sensor_filters = options.sensors.split(',') esc_impact_sim(options.cbsd_file, esc_fads, sensor_filters, options.per_sensor, options.output_csv, force_catb_omni=not options.sectorized_catb) plt.show(block=True)
StarcoderdataPython
1657694
from src.utils.utils import open_json_file, open_html_file, open_csv_file # noqa
StarcoderdataPython
3429048
import arcade from constants import * class MainHand(arcade.Sprite): def __init__(self, filename, icon_image, player, stats, scale=HELMET_SCALE): super().__init__(filename, scale) self.filename = filename self.icon_image = icon_image self.player = player self.stats = stats def update(self): if self.player.alive: self.center_x = self.player.center_x self.center_y = self.player.center_y else: self.kill() class OffHand(arcade.Sprite): def __init__(self, filename, icon_image, player, stats, scale=HELMET_SCALE): super().__init__(filename, scale) self.filename = filename self.icon_image = icon_image self.player = player self.stats = stats def update(self): if self.player.alive: self.center_x = self.player.center_x self.center_y = self.player.center_y else: self.kill()
StarcoderdataPython
6583189
<reponame>vla3089/adventofcode<gh_stars>0 #!/usr/bin/env python score = 0 nesting_level = 0 is_garbage_mode = False garbage_count = 0 skip_next = False def process_in_garbage_mode(c): global score global nesting_level global is_garbage_mode global skip_next global garbage_count if skip_next: skip_next = False else: if c == '!': skip_next = True elif c == '>': is_garbage_mode = False else: garbage_count += 1 def process_in_group_mode(c): global score global nesting_level global is_garbage_mode global skip_next if c == '{': nesting_level += 1 score += nesting_level elif c == '}': nesting_level -= 1 elif c == '<': is_garbage_mode = True def process_ch(c): global is_garbage_mode if is_garbage_mode: process_in_garbage_mode(c) else: process_in_group_mode(c) with open('input_9.txt', 'r') as f: while True: c = f.read(1) if c: process_ch(c) else: break print score print garbage_count
StarcoderdataPython
8176971
from setuptools import setup, find_packages setup( name='vtkrishn', version='0.1.0', description='Simple Project', url='https://github.com/vtkrishn/pythonHelper', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=['Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7' ], entry_points={ 'console_scripts': [ 'vtkrishn=vtkrishn:main', ], }, )
StarcoderdataPython
1927922
<filename>features/steps/check_if_contains_schema_version.py from behave import then from pgmigrate import _is_initialized @then("database contains schema_version") @then('database contains schema_version in schema "{schema}"') def step_impl(context, schema='public'): cur = context.conn.cursor() assert _is_initialized(schema, cur), 'Non-empty db should be initialized'
StarcoderdataPython
9678246
<gh_stars>0 import nextcord from .constant import ARBITRE_ID, CIVFR_GUILD_ID from util.exception import ALEDException def is_arbitre(member : nextcord.Member, client=None): if member.guild is None: if client is None: raise ALEDException("Client not given for checking if the member is Arbitre") member = client.get_guild(CIVFR_GUILD_ID) return ARBITRE_ID in [role.id for role in member.roles] def is_civfr_guild_or_mp(channel): return channel.guild.id == CIVFR_GUILD_ID or isinstance(channel, nextcord.DMChannel)
StarcoderdataPython
11275453
''' Author: Jecosine Date: 2021-01-22 05:43:45 LastEditTime: 2021-01-22 05:44:02 LastEditors: Jecosine Description: Test ''' s = """- Creational - AbstractFactory - Builder - FactoryMethod - Prototype - Singleton - Structural - AdapterBridge - Composite - Decorator - Facade - Flyweight - Proxy - Behavioral - ResponsibilityChain - Command - Interpreter - Iterator - Mediator - Memento - Observer - State - Strategy - TemplateMethod - Visitor""" l = s.split("\n") template = {"name": None, "children": []} root = copy.deepcopy(template) parent = root current = [] for i in l: parent["children"] = current x = copy.deepcopy(template) x["name"] = i.strip().split("-")[-1].strip() if i[0] == " ": current.append(x) else: root["children"].append(x) parent = x current = []
StarcoderdataPython
11242529
from .reqmethods import Req, Arrange class Account(Req, Arrange): slug = 'account' def __init__(self, token): self.setToken(token) def account(self): data = self.get(self.slug) if 'id' in data: return data return self.arrangeData(data)
StarcoderdataPython
3344637
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2009, <NAME>'. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """psutil is a cross-platform library for retrieving information on running processes and system utilization (CPU, memory, disks, network) in Python. """ from __future__ import division __author__ = "<NAME>'" __version__ = "2.1.2" version_info = tuple([int(num) for num in __version__.split('.')]) __all__ = [ # exceptions "Error", "NoSuchProcess", "AccessDenied", "TimeoutExpired", # constants "version_info", "__version__", "STATUS_RUNNING", "STATUS_IDLE", "STATUS_SLEEPING", "STATUS_DISK_SLEEP", "STATUS_STOPPED", "STATUS_TRACING_STOP", "STATUS_ZOMBIE", "STATUS_DEAD", "STATUS_WAKING", "STATUS_LOCKED", "STATUS_WAITING", "STATUS_LOCKED", "CONN_ESTABLISHED", "CONN_SYN_SENT", "CONN_SYN_RECV", "CONN_FIN_WAIT1", "CONN_FIN_WAIT2", "CONN_TIME_WAIT", "CONN_CLOSE", "CONN_CLOSE_WAIT", "CONN_LAST_ACK", "CONN_LISTEN", "CONN_CLOSING", "CONN_NONE", # classes "Process", "Popen", # functions "pid_exists", "pids", "process_iter", "wait_procs", # proc "virtual_memory", "swap_memory", # memory "cpu_times", "cpu_percent", "cpu_times_percent", "cpu_count", # cpu "net_io_counters", "net_connections", # network "disk_io_counters", "disk_partitions", "disk_usage", # disk "users", "boot_time", # others ] import sys import os import time import signal import warnings import errno import subprocess try: import pwd except ImportError: pwd = None from psutil._common import memoize from psutil._compat import property, callable, long, defaultdict from psutil._compat import (wraps as _wraps, PY3 as _PY3) from psutil._common import (deprecated_method as _deprecated_method, deprecated as _deprecated, sdiskio as _nt_sys_diskio, snetio as _nt_sys_netio) from psutil._common import (STATUS_RUNNING, # NOQA STATUS_SLEEPING, STATUS_DISK_SLEEP, STATUS_STOPPED, STATUS_TRACING_STOP, STATUS_ZOMBIE, STATUS_DEAD, STATUS_WAKING, STATUS_LOCKED, STATUS_IDLE, # bsd STATUS_WAITING, # bsd STATUS_LOCKED) # bsd from psutil._common import (CONN_ESTABLISHED, CONN_SYN_SENT, CONN_SYN_RECV, CONN_FIN_WAIT1, CONN_FIN_WAIT2, CONN_TIME_WAIT, CONN_CLOSE, CONN_CLOSE_WAIT, CONN_LAST_ACK, CONN_LISTEN, CONN_CLOSING, CONN_NONE) if sys.platform.startswith("linux"): import psutil._pslinux as _psplatform from psutil._pslinux import (phymem_buffers, # NOQA cached_phymem) from psutil._pslinux import (IOPRIO_CLASS_NONE, # NOQA IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE) # Linux >= 2.6.36 if _psplatform.HAS_PRLIMIT: from _psutil_linux import (RLIM_INFINITY, # NOQA RLIMIT_AS, RLIMIT_CORE, RLIMIT_CPU, RLIMIT_DATA, RLIMIT_FSIZE, RLIMIT_LOCKS, RLIMIT_MEMLOCK, RLIMIT_NOFILE, RLIMIT_NPROC, RLIMIT_RSS, RLIMIT_STACK) # Kinda ugly but considerably faster than using hasattr() and # setattr() against the module object (we are at import time: # speed matters). import _psutil_linux try: RLIMIT_MSGQUEUE = _psutil_linux.RLIMIT_MSGQUEUE except AttributeError: pass try: RLIMIT_NICE = _psutil_linux.RLIMIT_NICE except AttributeError: pass try: RLIMIT_RTPRIO = _psutil_linux.RLIMIT_RTPRIO except AttributeError: pass try: RLIMIT_RTTIME = _psutil_linux.RLIMIT_RTTIME except AttributeError: pass try: RLIMIT_SIGPENDING = _psutil_linux.RLIMIT_SIGPENDING except AttributeError: pass del _psutil_linux elif sys.platform.startswith("win32"): import psutil._pswindows as _psplatform from _psutil_windows import (ABOVE_NORMAL_PRIORITY_CLASS, # NOQA BELOW_NORMAL_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, REALTIME_PRIORITY_CLASS) from psutil._pswindows import CONN_DELETE_TCB # NOQA elif sys.platform.startswith("darwin"): import psutil._psosx as _psplatform elif sys.platform.startswith("freebsd"): import psutil._psbsd as _psplatform elif sys.platform.startswith("sunos"): import psutil._pssunos as _psplatform from psutil._pssunos import (CONN_IDLE, # NOQA CONN_BOUND) else: raise NotImplementedError('platform %s is not supported' % sys.platform) __all__.extend(_psplatform.__extra__all__) _TOTAL_PHYMEM = None _POSIX = os.name == 'posix' _WINDOWS = os.name == 'nt' _timer = getattr(time, 'monotonic', time.time) # ===================================================================== # --- exceptions # ===================================================================== class Error(Exception): """Base exception class. All other psutil exceptions inherit from this one. """ class NoSuchProcess(Error): """Exception raised when a process with a certain PID doesn't or no longer exists (zombie). """ def __init__(self, pid, name=None, msg=None): Error.__init__(self) self.pid = pid self.name = name self.msg = msg if msg is None: if name: details = "(pid=%s, name=%s)" % (self.pid, repr(self.name)) else: details = "(pid=%s)" % self.pid self.msg = "process no longer exists " + details def __str__(self): return self.msg class AccessDenied(Error): """Exception raised when permission to perform an action is denied.""" def __init__(self, pid=None, name=None, msg=None): Error.__init__(self) self.pid = pid self.name = name self.msg = msg if msg is None: if (pid is not None) and (name is not None): self.msg = "(pid=%s, name=%s)" % (pid, repr(name)) elif (pid is not None): self.msg = "(pid=%s)" % self.pid else: self.msg = "" def __str__(self): return self.msg class TimeoutExpired(Error): """Raised on Process.wait(timeout) if timeout expires and process is still alive. """ def __init__(self, seconds, pid=None, name=None): Error.__init__(self) self.seconds = seconds self.pid = pid self.name = name self.msg = "timeout after %s seconds" % seconds if (pid is not None) and (name is not None): self.msg += " (pid=%s, name=%s)" % (pid, repr(name)) elif (pid is not None): self.msg += " (pid=%s)" % self.pid def __str__(self): return self.msg # push exception classes into platform specific module namespace _psplatform.NoSuchProcess = NoSuchProcess _psplatform.AccessDenied = AccessDenied _psplatform.TimeoutExpired = TimeoutExpired # ===================================================================== # --- Process class # ===================================================================== def _assert_pid_not_reused(fun): """Decorator which raises NoSuchProcess in case a process is no longer running or its PID has been reused. """ @_wraps(fun) def wrapper(self, *args, **kwargs): if not self.is_running(): raise NoSuchProcess(self.pid, self._name) return fun(self, *args, **kwargs) return wrapper class Process(object): """Represents an OS process with the given PID. If PID is omitted current process PID (os.getpid()) is used. Raise NoSuchProcess if PID does not exist. Note that most of the methods of this class do not make sure the PID of the process being queried has been reused over time. That means you might end up retrieving an information referring to another process in case the original one this instance refers to is gone in the meantime. The only exceptions for which process identity is pre-emptively checked and guaranteed are: - parent() - children() - nice() (set) - ionice() (set) - rlimit() (set) - cpu_affinity (set) - suspend() - resume() - send_signal() - terminate() - kill() To prevent this problem for all other methods you can: - use is_running() before querying the process - if you're continuously iterating over a set of Process instances use process_iter() which pre-emptively checks process identity for every yielded instance """ def __init__(self, pid=None): self._init(pid) def _init(self, pid, _ignore_nsp=False): if pid is None: pid = os.getpid() else: if not _PY3 and not isinstance(pid, (int, long)): raise TypeError('pid must be an integer (got %r)' % pid) if pid < 0: raise ValueError('pid must be a positive integer (got %s)' % pid) self._pid = pid self._name = None self._exe = None self._create_time = None self._gone = False self._hash = None # used for caching on Windows only (on POSIX ppid may change) self._ppid = None # platform-specific modules define an _psplatform.Process # implementation class self._proc = _psplatform.Process(pid) self._last_sys_cpu_times = None self._last_proc_cpu_times = None # cache creation time for later use in is_running() method try: self.create_time() except AccessDenied: # we should never get here as AFAIK we're able to get # process creation time on all platforms even as a # limited user pass except NoSuchProcess: if not _ignore_nsp: msg = 'no process found with pid %s' % pid raise NoSuchProcess(pid, None, msg) else: self._gone = True # This pair is supposed to indentify a Process instance # univocally over time (the PID alone is not enough as # it might refer to a process whose PID has been reused). # This will be used later in __eq__() and is_running(). self._ident = (self.pid, self._create_time) def __str__(self): try: pid = self.pid name = repr(self.name()) except NoSuchProcess: details = "(pid=%s (terminated))" % self.pid except AccessDenied: details = "(pid=%s)" % (self.pid) else: details = "(pid=%s, name=%s)" % (pid, name) return "%s.%s%s" % (self.__class__.__module__, self.__class__.__name__, details) def __repr__(self): return "<%s at %s>" % (self.__str__(), id(self)) def __eq__(self, other): # Test for equality with another Process object based # on PID and creation time. if not isinstance(other, Process): return NotImplemented return self._ident == other._ident def __ne__(self, other): return not self == other def __hash__(self): if self._hash is None: self._hash = hash(self._ident) return self._hash # --- utility methods def as_dict(self, attrs=[], ad_value=None): """Utility method returning process information as a hashable dictionary. If 'attrs' is specified it must be a list of strings reflecting available Process class' attribute names (e.g. ['cpu_times', 'name']) else all public (read only) attributes are assumed. 'ad_value' is the value which gets assigned in case AccessDenied exception is raised when retrieving that particular process information. """ excluded_names = set( ['send_signal', 'suspend', 'resume', 'terminate', 'kill', 'wait', 'is_running', 'as_dict', 'parent', 'children', 'rlimit']) retdict = dict() ls = set(attrs or [x for x in dir(self) if not x.startswith('get')]) for name in ls: if name.startswith('_'): continue if name.startswith('set_'): continue if name.startswith('get_'): msg = "%s() is deprecated; use %s() instead" % (name, name[4:]) warnings.warn(msg, category=DeprecationWarning, stacklevel=2) name = name[4:] if name in ls: continue if name == 'getcwd': msg = "getcwd() is deprecated; use cwd() instead" warnings.warn(msg, category=DeprecationWarning, stacklevel=2) name = 'cwd' if name in ls: continue if name in excluded_names: continue try: attr = getattr(self, name) if callable(attr): ret = attr() else: ret = attr except AccessDenied: ret = ad_value except NotImplementedError: # in case of not implemented functionality (may happen # on old or exotic systems) we want to crash only if # the user explicitly asked for that particular attr if attrs: raise continue retdict[name] = ret return retdict def parent(self): """Return the parent process as a Process object pre-emptively checking whether PID has been reused. If no parent is known return None. """ ppid = self.ppid() if ppid is not None: try: parent = Process(ppid) if parent.create_time() <= self.create_time(): return parent # ...else ppid has been reused by another process except NoSuchProcess: pass def is_running(self): """Return whether this process is running. It also checks if PID has been reused by another process in which case return False. """ if self._gone: return False try: # Checking if PID is alive is not enough as the PID might # have been reused by another process: we also want to # check process identity. # Process identity / uniqueness over time is greanted by # (PID + creation time) and that is verified in __eq__. return self == Process(self.pid) except NoSuchProcess: self._gone = True return False # --- actual API @property def pid(self): """The process PID.""" return self._pid def ppid(self): """The process parent PID. On Windows the return value is cached after first call. """ # On POSIX we don't want to cache the ppid as it may unexpectedly # change to 1 (init) in case this process turns into a zombie: # https://github.com/giampaolo/psutil/issues/321 # http://stackoverflow.com/questions/356722/ # XXX should we check creation time here rather than in # Process.parent()? if _POSIX: return self._proc.ppid() else: if self._ppid is None: self._ppid = self._proc.ppid() return self._ppid def name(self): """The process name. The return value is cached after first call.""" if self._name is None: name = self._proc.name() if _POSIX and len(name) >= 15: # On UNIX the name gets truncated to the first 15 characters. # If it matches the first part of the cmdline we return that # one instead because it's usually more explicative. # Examples are "gnome-keyring-d" vs. "gnome-keyring-daemon". try: cmdline = self.cmdline() except AccessDenied: pass else: if cmdline: extended_name = os.path.basename(cmdline[0]) if extended_name.startswith(name): name = extended_name self._proc._name = name self._name = name return self._name def exe(self): """The process executable as an absolute path. May also be an empty string. The return value is cached after first call. """ def guess_it(fallback): # try to guess exe from cmdline[0] in absence of a native # exe representation cmdline = self.cmdline() if cmdline and hasattr(os, 'access') and hasattr(os, 'X_OK'): exe = cmdline[0] # the possible exe # Attempt to guess only in case of an absolute path. # It is not safe otherwise as the process might have # changed cwd. if (os.path.isabs(exe) and os.path.isfile(exe) and os.access(exe, os.X_OK)): return exe if isinstance(fallback, AccessDenied): raise fallback return fallback if self._exe is None: try: exe = self._proc.exe() except AccessDenied: err = sys.exc_info()[1] return guess_it(fallback=err) else: if not exe: # underlying implementation can legitimately return an # empty string; if that's the case we don't want to # raise AD while guessing from the cmdline try: exe = guess_it(fallback=exe) except AccessDenied: pass self._exe = exe return self._exe def cmdline(self): """The command line this process has been called with.""" return self._proc.cmdline() def status(self): """The process current status as a STATUS_* constant.""" return self._proc.status() def username(self): """The name of the user that owns the process. On UNIX this is calculated by using *real* process uid. """ if _POSIX: if pwd is None: # might happen if python was installed from sources raise ImportError( "requires pwd module shipped with standard python") return pwd.getpwuid(self.uids().real).pw_name else: return self._proc.username() def create_time(self): """The process creation time as a floating point number expressed in seconds since the epoch, in UTC. The return value is cached after first call. """ if self._create_time is None: self._create_time = self._proc.create_time() return self._create_time def cwd(self): """Process current working directory as an absolute path.""" return self._proc.cwd() def nice(self, value=None): """Get or set process niceness (priority).""" if value is None: return self._proc.nice_get() else: if not self.is_running(): raise NoSuchProcess(self.pid, self._name) self._proc.nice_set(value) if _POSIX: def uids(self): """Return process UIDs as a (real, effective, saved) namedtuple. """ return self._proc.uids() def gids(self): """Return process GIDs as a (real, effective, saved) namedtuple. """ return self._proc.gids() def terminal(self): """The terminal associated with this process, if any, else None. """ return self._proc.terminal() def num_fds(self): """Return the number of file descriptors opened by this process (POSIX only). """ return self._proc.num_fds() # Linux, BSD and Windows only if hasattr(_psplatform.Process, "io_counters"): def io_counters(self): """Return process I/O statistics as a (read_count, write_count, read_bytes, write_bytes) namedtuple. Those are the number of read/write calls performed and the amount of bytes read and written by the process. """ return self._proc.io_counters() # Linux and Windows >= Vista only if hasattr(_psplatform.Process, "ionice_get"): def ionice(self, ioclass=None, value=None): """Get or set process I/O niceness (priority). On Linux 'ioclass' is one of the IOPRIO_CLASS_* constants. 'value' is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. On Windows only 'ioclass' is used and it can be set to 2 (normal), 1 (low) or 0 (very low). Available on Linux and Windows > Vista only. """ if ioclass is None: if value is not None: raise ValueError("'ioclass' must be specified") return self._proc.ionice_get() else: return self._proc.ionice_set(ioclass, value) # Linux only if hasattr(_psplatform.Process, "rlimit"): def rlimit(self, resource, limits=None): """Get or set process resource limits as a (soft, hard) tuple. 'resource' is one of the RLIMIT_* constants. 'limits' is supposed to be a (soft, hard) tuple. See "man prlimit" for further info. Available on Linux only. """ if limits is None: return self._proc.rlimit(resource) else: return self._proc.rlimit(resource, limits) # Windows and Linux only if hasattr(_psplatform.Process, "cpu_affinity_get"): def cpu_affinity(self, cpus=None): """Get or set process CPU affinity. If specified 'cpus' must be a list of CPUs for which you want to set the affinity (e.g. [0, 1]). """ if cpus is None: return self._proc.cpu_affinity_get() else: self._proc.cpu_affinity_set(cpus) if _WINDOWS: def num_handles(self): """Return the number of handles opened by this process (Windows only). """ return self._proc.num_handles() def num_ctx_switches(self): """Return the number of voluntary and involuntary context switches performed by this process. """ return self._proc.num_ctx_switches() def num_threads(self): """Return the number of threads used by this process.""" return self._proc.num_threads() def threads(self): """Return threads opened by process as a list of (id, user_time, system_time) namedtuples representing thread id and thread CPU times (user/system). """ return self._proc.threads() @_assert_pid_not_reused def children(self, recursive=False): """Return the children of this process as a list of Process instances, pre-emptively checking whether PID has been reused. If recursive is True return all the parent descendants. Example (A == this process): A ─┐ │ ├─ B (child) ─┐ │ └─ X (grandchild) ─┐ │ └─ Y (great grandchild) ├─ C (child) └─ D (child) >>> import psutil >>> p = psutil.Process() >>> p.children() B, C, D >>> p.children(recursive=True) B, X, Y, C, D Note that in the example above if process X disappears process Y won't be listed as the reference to process A is lost. """ if hasattr(_psplatform, 'ppid_map'): # Windows only: obtain a {pid:ppid, ...} dict for all running # processes in one shot (faster). ppid_map = _psplatform.ppid_map() else: ppid_map = None ret = [] if not recursive: if ppid_map is None: # 'slow' version, common to all platforms except Windows for p in process_iter(): try: if p.ppid() == self.pid: # if child happens to be older than its parent # (self) it means child's PID has been reused if self.create_time() <= p.create_time(): ret.append(p) except NoSuchProcess: pass else: # Windows only (faster) for pid, ppid in ppid_map.items(): if ppid == self.pid: try: child = Process(pid) # if child happens to be older than its parent # (self) it means child's PID has been reused if self.create_time() <= child.create_time(): ret.append(child) except NoSuchProcess: pass else: # construct a dict where 'values' are all the processes # having 'key' as their parent table = defaultdict(list) if ppid_map is None: for p in process_iter(): try: table[p.ppid()].append(p) except NoSuchProcess: pass else: for pid, ppid in ppid_map.items(): try: p = Process(pid) table[ppid].append(p) except NoSuchProcess: pass # At this point we have a mapping table where table[self.pid] # are the current process' children. # Below, we look for all descendants recursively, similarly # to a recursive function call. checkpids = [self.pid] for pid in checkpids: for child in table[pid]: try: # if child happens to be older than its parent # (self) it means child's PID has been reused intime = self.create_time() <= child.create_time() except NoSuchProcess: pass else: if intime: ret.append(child) if child.pid not in checkpids: checkpids.append(child.pid) return ret def cpu_percent(self, interval=None): """Return a float representing the current process CPU utilization as a percentage. When interval is 0.0 or None (default) compares process times to system CPU times elapsed since last call, returning immediately (non-blocking). That means that the first time this is called it will return a meaningful 0.0 value. When interval is > 0.0 compares process times to system CPU times elapsed before and after the interval (blocking). In this case is recommended for accuracy that this function be called with at least 0.1 seconds between calls. Examples: >>> import psutil >>> p = psutil.Process(os.getpid()) >>> # blocking >>> p.cpu_percent(interval=1) 2.0 >>> # non-blocking (percentage since last call) >>> p.cpu_percent(interval=None) 2.9 >>> """ blocking = interval is not None and interval > 0.0 num_cpus = cpu_count() if _POSIX: timer = lambda: _timer() * num_cpus else: timer = lambda: sum(cpu_times()) if blocking: st1 = timer() pt1 = self._proc.cpu_times() time.sleep(interval) st2 = timer() pt2 = self._proc.cpu_times() else: st1 = self._last_sys_cpu_times pt1 = self._last_proc_cpu_times st2 = timer() pt2 = self._proc.cpu_times() if st1 is None or pt1 is None: self._last_sys_cpu_times = st2 self._last_proc_cpu_times = pt2 return 0.0 delta_proc = (pt2.user - pt1.user) + (pt2.system - pt1.system) delta_time = st2 - st1 # reset values for next call in case of interval == None self._last_sys_cpu_times = st2 self._last_proc_cpu_times = pt2 try: # The utilization split between all CPUs. # Note: a percentage > 100 is legitimate as it can result # from a process with multiple threads running on different # CPU cores, see: # http://stackoverflow.com/questions/1032357 # https://github.com/giampaolo/psutil/issues/474 overall_percent = ((delta_proc / delta_time) * 100) * num_cpus except ZeroDivisionError: # interval was too low return 0.0 else: return round(overall_percent, 1) def cpu_times(self): """Return a (user, system) namedtuple representing the accumulated process time, in seconds. This is the same as os.times() but per-process. """ return self._proc.cpu_times() def memory_info(self): """Return a tuple representing RSS (Resident Set Size) and VMS (Virtual Memory Size) in bytes. On UNIX RSS and VMS are the same values shown by 'ps'. On Windows RSS and VMS refer to "Mem Usage" and "VM Size" columns of taskmgr.exe. """ return self._proc.memory_info() def memory_info_ex(self): """Return a namedtuple with variable fields depending on the platform representing extended memory information about this process. All numbers are expressed in bytes. """ return self._proc.memory_info_ex() def memory_percent(self): """Compare physical system memory to process resident memory (RSS) and calculate process memory utilization as a percentage. """ rss = self._proc.memory_info()[0] # use cached value if available total_phymem = _TOTAL_PHYMEM or virtual_memory().total try: return (rss / float(total_phymem)) * 100 except ZeroDivisionError: return 0.0 def memory_maps(self, grouped=True): """Return process' mapped memory regions as a list of nameduples whose fields are variable depending on the platform. If 'grouped' is True the mapped regions with the same 'path' are grouped together and the different memory fields are summed. If 'grouped' is False every mapped region is shown as a single entity and the namedtuple will also include the mapped region's address space ('addr') and permission set ('perms'). """ it = self._proc.memory_maps() if grouped: d = {} for tupl in it: path = tupl[2] nums = tupl[3:] try: d[path] = map(lambda x, y: x + y, d[path], nums) except KeyError: d[path] = nums nt = _psplatform.pmmap_grouped return [nt(path, *d[path]) for path in d] # NOQA else: nt = _psplatform.pmmap_ext return [nt(*x) for x in it] def open_files(self): """Return files opened by process as a list of (path, fd) namedtuples including the absolute file name and file descriptor number. """ return self._proc.open_files() def connections(self, kind='inet'): """Return connections opened by process as a list of (fd, family, type, laddr, raddr, status) namedtuples. The 'kind' parameter filters for connections that match the following criteria: Kind Value Connections using inet IPv4 and IPv6 inet4 IPv4 inet6 IPv6 tcp TCP tcp4 TCP over IPv4 tcp6 TCP over IPv6 udp UDP udp4 UDP over IPv4 udp6 UDP over IPv6 unix UNIX socket (both UDP and TCP protocols) all the sum of all the possible families and protocols """ return self._proc.connections(kind) if _POSIX: def _send_signal(self, sig): try: os.kill(self.pid, sig) except OSError: err = sys.exc_info()[1] if err.errno == errno.ESRCH: self._gone = True raise NoSuchProcess(self.pid, self._name) if err.errno == errno.EPERM: raise AccessDenied(self.pid, self._name) raise @_assert_pid_not_reused def send_signal(self, sig): """Send a signal to process pre-emptively checking whether PID has been reused (see signal module constants) . On Windows only SIGTERM is valid and is treated as an alias for kill(). """ if _POSIX: self._send_signal(sig) else: if sig == signal.SIGTERM: self._proc.kill() else: raise ValueError("only SIGTERM is supported on Windows") @_assert_pid_not_reused def suspend(self): """Suspend process execution with SIGSTOP pre-emptively checking whether PID has been reused. On Windows this has the effect ot suspending all process threads. """ if _POSIX: self._send_signal(signal.SIGSTOP) else: self._proc.suspend() @_assert_pid_not_reused def resume(self): """Resume process execution with SIGCONT pre-emptively checking whether PID has been reused. On Windows this has the effect of resuming all process threads. """ if _POSIX: self._send_signal(signal.SIGCONT) else: self._proc.resume() @_assert_pid_not_reused def terminate(self): """Terminate the process with SIGTERM pre-emptively checking whether PID has been reused. On Windows this is an alias for kill(). """ if _POSIX: self._send_signal(signal.SIGTERM) else: self._proc.kill() @_assert_pid_not_reused def kill(self): """Kill the current process with SIGKILL pre-emptively checking whether PID has been reused. """ if _POSIX: self._send_signal(signal.SIGKILL) else: self._proc.kill() def wait(self, timeout=None): """Wait for process to terminate and, if process is a children of os.getpid(), also return its exit code, else None. If the process is already terminated immediately return None instead of raising NoSuchProcess. If timeout (in seconds) is specified and process is still alive raise TimeoutExpired. To wait for multiple Process(es) use psutil.wait_procs(). """ if timeout is not None and not timeout >= 0: raise ValueError("timeout must be a positive integer") return self._proc.wait(timeout) # --- deprecated APIs _locals = set(locals()) @_deprecated_method(replacement='children') def get_children(self): pass @_deprecated_method(replacement='connections') def get_connections(self): pass if "cpu_affinity" in _locals: @_deprecated_method(replacement='cpu_affinity') def get_cpu_affinity(self): pass @_deprecated_method(replacement='cpu_affinity') def set_cpu_affinity(self, cpus): pass @_deprecated_method(replacement='cpu_percent') def get_cpu_percent(self): pass @_deprecated_method(replacement='cpu_times') def get_cpu_times(self): pass @_deprecated_method(replacement='cwd') def getcwd(self): pass @_deprecated_method(replacement='memory_info_ex') def get_ext_memory_info(self): pass if "io_counters" in _locals: @_deprecated_method(replacement='io_counters') def get_io_counters(self): pass if "ionice" in _locals: @_deprecated_method(replacement='ionice') def get_ionice(self): pass @_deprecated_method(replacement='ionice') def set_ionice(self, ioclass, value=None): pass @_deprecated_method(replacement='memory_info') def get_memory_info(self): pass @_deprecated_method(replacement='memory_maps') def get_memory_maps(self): pass @_deprecated_method(replacement='memory_percent') def get_memory_percent(self): pass @_deprecated_method(replacement='nice') def get_nice(self): pass @_deprecated_method(replacement='num_ctx_switches') def get_num_ctx_switches(self): pass if 'num_fds' in _locals: @_deprecated_method(replacement='num_fds') def get_num_fds(self): pass if 'num_handles' in _locals: @_deprecated_method(replacement='num_handles') def get_num_handles(self): pass @_deprecated_method(replacement='num_threads') def get_num_threads(self): pass @_deprecated_method(replacement='open_files') def get_open_files(self): pass if "rlimit" in _locals: @_deprecated_method(replacement='rlimit') def get_rlimit(self): pass @_deprecated_method(replacement='rlimit') def set_rlimit(self, resource, limits): pass @_deprecated_method(replacement='threads') def get_threads(self): pass @_deprecated_method(replacement='nice') def set_nice(self, value): pass del _locals # ===================================================================== # --- Popen class # ===================================================================== class Popen(Process): """A more convenient interface to stdlib subprocess module. It starts a sub process and deals with it exactly as when using subprocess.Popen class but in addition also provides all the properties and methods of psutil.Process class as a unified interface: >>> import psutil >>> from subprocess import PIPE >>> p = psutil.Popen(["python", "-c", "print 'hi'"], stdout=PIPE) >>> p.name() 'python' >>> p.uids() user(real=1000, effective=1000, saved=1000) >>> p.username() 'giampaolo' >>> p.communicate() ('hi\n', None) >>> p.terminate() >>> p.wait(timeout=2) 0 >>> For method names common to both classes such as kill(), terminate() and wait(), psutil.Process implementation takes precedence. Unlike subprocess.Popen this class pre-emptively checks wheter PID has been reused on send_signal(), terminate() and kill() so that you don't accidentally terminate another process, fixing http://bugs.python.org/issue6973. For a complete documentation refer to: http://docs.python.org/library/subprocess.html """ def __init__(self, *args, **kwargs): # Explicitly avoid to raise NoSuchProcess in case the process # spawned by subprocess.Popen terminates too quickly, see: # https://github.com/giampaolo/psutil/issues/193 self.__subproc = subprocess.Popen(*args, **kwargs) self._init(self.__subproc.pid, _ignore_nsp=True) def __dir__(self): return sorted(set(dir(Popen) + dir(subprocess.Popen))) def __getattribute__(self, name): try: return object.__getattribute__(self, name) except AttributeError: try: return object.__getattribute__(self.__subproc, name) except AttributeError: raise AttributeError("%s instance has no attribute '%s'" % (self.__class__.__name__, name)) def wait(self, timeout=None): if self.__subproc.returncode is not None: return self.__subproc.returncode ret = super(Popen, self).wait(timeout) self.__subproc.returncode = ret return ret # ===================================================================== # --- system processes related functions # ===================================================================== def pids(): """Return a list of current running PIDs.""" return _psplatform.pids() def pid_exists(pid): """Return True if given PID exists in the current process list. This is faster than doing "pid in psutil.pids()" and should be preferred. """ if pid < 0: return False elif pid == 0 and _POSIX: # On POSIX we use os.kill() to determine PID existence. # According to "man 2 kill" PID 0 has a special meaning # though: it refers to <<every process in the process # group of the calling process>> and that is not we want # to do here. return pid in pids() else: return _psplatform.pid_exists(pid) _pmap = {} def process_iter(): """Return a generator yielding a Process instance for all running processes. Every new Process instance is only created once and then cached into an internal table which is updated every time this is used. Cached Process instances are checked for identity so that you're safe in case a PID has been reused by another process, in which case the cached instance is updated. The sorting order in which processes are yielded is based on their PIDs. """ def add(pid): proc = Process(pid) _pmap[proc.pid] = proc return proc def remove(pid): _pmap.pop(pid, None) a = set(pids()) b = set(_pmap.keys()) new_pids = a - b gone_pids = b - a for pid in gone_pids: remove(pid) for pid, proc in sorted(list(_pmap.items()) + list(dict.fromkeys(new_pids).items())): try: if proc is None: # new process yield add(pid) else: # use is_running() to check whether PID has been reused by # another process in which case yield a new Process instance if proc.is_running(): yield proc else: yield add(pid) except NoSuchProcess: remove(pid) except AccessDenied: # Process creation time can't be determined hence there's # no way to tell whether the pid of the cached process # has been reused. Just return the cached version. yield proc def wait_procs(procs, timeout=None, callback=None): """Convenience function which waits for a list of processes to terminate. Return a (gone, alive) tuple indicating which processes are gone and which ones are still alive. The gone ones will have a new 'returncode' attribute indicating process exit status (may be None). 'callback' is a function which gets called every time a process terminates (a Process instance is passed as callback argument). Function will return as soon as all processes terminate or when timeout occurs. Typical use case is: - send SIGTERM to a list of processes - give them some time to terminate - send SIGKILL to those ones which are still alive Example: >>> def on_terminate(proc): ... print("process {} terminated".format(proc)) ... >>> for p in procs: ... p.terminate() ... >>> gone, alive = wait_procs(procs, timeout=3, callback=on_terminate) >>> for p in alive: ... p.kill() """ def check_gone(proc, timeout): try: returncode = proc.wait(timeout=timeout) except TimeoutExpired: pass else: if returncode is not None or not proc.is_running(): proc.returncode = returncode gone.add(proc) if callback is not None: callback(proc) if timeout is not None and not timeout >= 0: msg = "timeout must be a positive integer, got %s" % timeout raise ValueError(msg) gone = set() alive = set(procs) if callback is not None and not callable(callback): raise TypeError("callback %r is not a callable" % callable) if timeout is not None: deadline = _timer() + timeout while alive: if timeout is not None and timeout <= 0: break for proc in alive: # Make sure that every complete iteration (all processes) # will last max 1 sec. # We do this because we don't want to wait too long on a # single process: in case it terminates too late other # processes may disappear in the meantime and their PID # reused. max_timeout = 1.0 / len(alive) if timeout is not None: timeout = min((deadline - _timer()), max_timeout) if timeout <= 0: break check_gone(proc, timeout) else: check_gone(proc, max_timeout) alive = alive - gone if alive: # Last attempt over processes survived so far. # timeout == 0 won't make this function wait any further. for proc in alive: check_gone(proc, 0) alive = alive - gone return (list(gone), list(alive)) # ===================================================================== # --- CPU related functions # ===================================================================== @memoize def cpu_count(logical=True): """Return the number of logical CPUs in the system (same as os.cpu_count() in Python 3.4). If logical is False return the number of physical cores only (hyper thread CPUs are excluded). Return None if undetermined. The return value is cached after first call. If desired cache can be cleared like this: >>> psutil.cpu_count.cache_clear() """ if logical: return _psplatform.cpu_count_logical() else: return _psplatform.cpu_count_physical() def cpu_times(percpu=False): """Return system-wide CPU times as a namedtuple. Every CPU time represents the seconds the CPU has spent in the given mode. The namedtuple's fields availability varies depending on the platform: - user - system - idle - nice (UNIX) - iowait (Linux) - irq (Linux, FreeBSD) - softirq (Linux) - steal (Linux >= 2.6.11) - guest (Linux >= 2.6.24) - guest_nice (Linux >= 3.2.0) When percpu is True return a list of nameduples for each CPU. First element of the list refers to first CPU, second element to second CPU and so on. The order of the list is consistent across calls. """ if not percpu: return _psplatform.cpu_times() else: return _psplatform.per_cpu_times() _last_cpu_times = cpu_times() _last_per_cpu_times = cpu_times(percpu=True) def cpu_percent(interval=None, percpu=False): """Return a float representing the current system-wide CPU utilization as a percentage. When interval is > 0.0 compares system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None compares system CPU times elapsed since last call or module import, returning immediately (non blocking). That means the first time this is called it will return a meaningless 0.0 value which you should ignore. In this case is recommended for accuracy that this function be called with at least 0.1 seconds between calls. When percpu is True returns a list of floats representing the utilization as a percentage for each CPU. First element of the list refers to first CPU, second element to second CPU and so on. The order of the list is consistent across calls. Examples: >>> # blocking, system-wide >>> psutil.cpu_percent(interval=1) 2.0 >>> >>> # blocking, per-cpu >>> psutil.cpu_percent(interval=1, percpu=True) [2.0, 1.0] >>> >>> # non-blocking (percentage since last call) >>> psutil.cpu_percent(interval=None) 2.9 >>> """ global _last_cpu_times global _last_per_cpu_times blocking = interval is not None and interval > 0.0 def calculate(t1, t2): t1_all = sum(t1) t1_busy = t1_all - t1.idle t2_all = sum(t2) t2_busy = t2_all - t2.idle # this usually indicates a float precision issue if t2_busy <= t1_busy: return 0.0 busy_delta = t2_busy - t1_busy all_delta = t2_all - t1_all busy_perc = (busy_delta / all_delta) * 100 return round(busy_perc, 1) # system-wide usage if not percpu: if blocking: t1 = cpu_times() time.sleep(interval) else: t1 = _last_cpu_times _last_cpu_times = cpu_times() return calculate(t1, _last_cpu_times) # per-cpu usage else: ret = [] if blocking: tot1 = cpu_times(percpu=True) time.sleep(interval) else: tot1 = _last_per_cpu_times _last_per_cpu_times = cpu_times(percpu=True) for t1, t2 in zip(tot1, _last_per_cpu_times): ret.append(calculate(t1, t2)) return ret # Use separate global vars for cpu_times_percent() so that it's # independent from cpu_percent() and they can both be used within # the same program. _last_cpu_times_2 = _last_cpu_times _last_per_cpu_times_2 = _last_per_cpu_times def cpu_times_percent(interval=None, percpu=False): """Same as cpu_percent() but provides utilization percentages for each specific CPU time as is returned by cpu_times(). For instance, on Linux we'll get: >>> cpu_times_percent() cpupercent(user=4.8, nice=0.0, system=4.8, idle=90.5, iowait=0.0, irq=0.0, softirq=0.0, steal=0.0, guest=0.0, guest_nice=0.0) >>> interval and percpu arguments have the same meaning as in cpu_percent(). """ global _last_cpu_times_2 global _last_per_cpu_times_2 blocking = interval is not None and interval > 0.0 def calculate(t1, t2): nums = [] all_delta = sum(t2) - sum(t1) for field in t1._fields: field_delta = getattr(t2, field) - getattr(t1, field) try: field_perc = (100 * field_delta) / all_delta except ZeroDivisionError: field_perc = 0.0 field_perc = round(field_perc, 1) if _WINDOWS: # XXX # Work around: # https://github.com/giampaolo/psutil/issues/392 # CPU times are always supposed to increase over time # or at least remain the same and that's because time # cannot go backwards. # Surprisingly sometimes this might not be the case on # Windows where 'system' CPU time can be smaller # compared to the previous call, resulting in corrupted # percentages (< 0 or > 100). # I really don't know what to do about that except # forcing the value to 0 or 100. if field_perc > 100.0: field_perc = 100.0 elif field_perc < 0.0: field_perc = 0.0 nums.append(field_perc) return _psplatform.scputimes(*nums) # system-wide usage if not percpu: if blocking: t1 = cpu_times() time.sleep(interval) else: t1 = _last_cpu_times_2 _last_cpu_times_2 = cpu_times() return calculate(t1, _last_cpu_times_2) # per-cpu usage else: ret = [] if blocking: tot1 = cpu_times(percpu=True) time.sleep(interval) else: tot1 = _last_per_cpu_times_2 _last_per_cpu_times_2 = cpu_times(percpu=True) for t1, t2 in zip(tot1, _last_per_cpu_times_2): ret.append(calculate(t1, t2)) return ret # ===================================================================== # --- system memory related functions # ===================================================================== def virtual_memory(): """Return statistics about system memory usage as a namedtuple including the following fields, expressed in bytes: - total: total physical memory available. - available: the actual amount of available memory that can be given instantly to processes that request more memory in bytes; this is calculated by summing different memory values depending on the platform (e.g. free + buffers + cached on Linux) and it is supposed to be used to monitor actual memory usage in a cross platform fashion. - percent: the percentage usage calculated as (total - available) / total * 100 - used: memory used, calculated differently depending on the platform and designed for informational purposes only: OSX: active + inactive + wired BSD: active + wired + cached LINUX: total - free - free: memory not being used at all (zeroed) that is readily available; note that this doesn't reflect the actual memory available (use 'available' instead) Platform-specific fields: - active (UNIX): memory currently in use or very recently used, and so it is in RAM. - inactive (UNIX): memory that is marked as not used. - buffers (BSD, Linux): cache for things like file system metadata. - cached (BSD, OSX): cache for various things. - wired (OSX, BSD): memory that is marked to always stay in RAM. It is never moved to disk. - shared (BSD): memory that may be simultaneously accessed by multiple processes. The sum of 'used' and 'available' does not necessarily equal total. On Windows 'available' and 'free' are the same. """ global _TOTAL_PHYMEM ret = _psplatform.virtual_memory() # cached for later use in Process.memory_percent() _TOTAL_PHYMEM = ret.total return ret def swap_memory(): """Return system swap memory statistics as a namedtuple including the following fields: - total: total swap memory in bytes - used: used swap memory in bytes - free: free swap memory in bytes - percent: the percentage usage - sin: no. of bytes the system has swapped in from disk (cumulative) - sout: no. of bytes the system has swapped out from disk (cumulative) 'sin' and 'sout' on Windows are meaningless and always set to 0. """ return _psplatform.swap_memory() # ===================================================================== # --- disks/paritions related functions # ===================================================================== def disk_usage(path): """Return disk usage statistics about the given path as a namedtuple including total, used and free space expressed in bytes plus the percentage usage. """ return _psplatform.disk_usage(path) def disk_partitions(all=False): """Return mounted partitions as a list of (device, mountpoint, fstype, opts) namedtuple. 'opts' field is a raw string separated by commas indicating mount options which may vary depending on the platform. If "all" parameter is False return physical devices only and ignore all others. """ return _psplatform.disk_partitions(all) def disk_io_counters(perdisk=False): """Return system disk I/O statistics as a namedtuple including the following fields: - read_count: number of reads - write_count: number of writes - read_bytes: number of bytes read - write_bytes: number of bytes written - read_time: time spent reading from disk (in milliseconds) - write_time: time spent writing to disk (in milliseconds) If perdisk is True return the same information for every physical disk installed on the system as a dictionary with partition names as the keys and the namedutuple described above as the values. On recent Windows versions 'diskperf -y' command may need to be executed first otherwise this function won't find any disk. """ rawdict = _psplatform.disk_io_counters() if not rawdict: raise RuntimeError("couldn't find any physical disk") if perdisk: for disk, fields in rawdict.items(): rawdict[disk] = _nt_sys_diskio(*fields) return rawdict else: return _nt_sys_diskio(*[sum(x) for x in zip(*rawdict.values())]) # ===================================================================== # --- network related functions # ===================================================================== def net_io_counters(pernic=False): """Return network I/O statistics as a namedtuple including the following fields: - bytes_sent: number of bytes sent - bytes_recv: number of bytes received - packets_sent: number of packets sent - packets_recv: number of packets received - errin: total number of errors while receiving - errout: total number of errors while sending - dropin: total number of incoming packets which were dropped - dropout: total number of outgoing packets which were dropped (always 0 on OSX and BSD) If pernic is True return the same information for every network interface installed on the system as a dictionary with network interface names as the keys and the namedtuple described above as the values. """ rawdict = _psplatform.net_io_counters() if not rawdict: raise RuntimeError("couldn't find any network interface") if pernic: for nic, fields in rawdict.items(): rawdict[nic] = _nt_sys_netio(*fields) return rawdict else: return _nt_sys_netio(*[sum(x) for x in zip(*rawdict.values())]) def net_connections(kind='inet'): """Return system-wide connections as a list of (fd, family, type, laddr, raddr, status, pid) namedtuples. In case of limited privileges 'fd' and 'pid' may be set to -1 and None respectively. The 'kind' parameter filters for connections that fit the following criteria: Kind Value Connections using inet IPv4 and IPv6 inet4 IPv4 inet6 IPv6 tcp TCP tcp4 TCP over IPv4 tcp6 TCP over IPv6 udp UDP udp4 UDP over IPv4 udp6 UDP over IPv6 unix UNIX socket (both UDP and TCP protocols) all the sum of all the possible families and protocols """ return _psplatform.net_connections(kind) # ===================================================================== # --- other system related functions # ===================================================================== def boot_time(): """Return the system boot time expressed in seconds since the epoch. This is also available as psutil.BOOT_TIME. """ # Note: we are not caching this because it is subject to # system clock updates. return _psplatform.boot_time() def users(): """Return users currently connected on the system as a list of namedtuples including the following fields. - user: the name of the user - terminal: the tty or pseudo-tty associated with the user, if any. - host: the host name associated with the entry, if any. - started: the creation time as a floating point number expressed in seconds since the epoch. """ return _psplatform.users() # ===================================================================== # --- deprecated functions # ===================================================================== @_deprecated(replacement="psutil.pids()") def get_pid_list(): return pids() @_deprecated(replacement="list(process_iter())") def get_process_list(): return list(process_iter()) @_deprecated(replacement="psutil.users()") def get_users(): return users() @_deprecated(replacement="psutil.virtual_memory()") def phymem_usage(): """Return the amount of total, used and free physical memory on the system in bytes plus the percentage usage. Deprecated; use psutil.virtual_memory() instead. """ return virtual_memory() @_deprecated(replacement="psutil.swap_memory()") def virtmem_usage(): return swap_memory() @_deprecated(replacement="psutil.phymem_usage().free") def avail_phymem(): return phymem_usage().free @_deprecated(replacement="psutil.phymem_usage().used") def used_phymem(): return phymem_usage().used @_deprecated(replacement="psutil.virtmem_usage().total") def total_virtmem(): return virtmem_usage().total @_deprecated(replacement="psutil.virtmem_usage().used") def used_virtmem(): return virtmem_usage().used @_deprecated(replacement="psutil.virtmem_usage().free") def avail_virtmem(): return virtmem_usage().free @_deprecated(replacement="psutil.net_io_counters()") def network_io_counters(pernic=False): return net_io_counters(pernic) def test(): """List info of all currently running processes emulating ps aux output. """ import datetime from psutil._compat import print_ today_day = datetime.date.today() templ = "%-10s %5s %4s %4s %7s %7s %-13s %5s %7s %s" attrs = ['pid', 'cpu_percent', 'memory_percent', 'name', 'cpu_times', 'create_time', 'memory_info'] if _POSIX: attrs.append('uids') attrs.append('terminal') print_(templ % ("USER", "PID", "%CPU", "%MEM", "VSZ", "RSS", "TTY", "START", "TIME", "COMMAND")) for p in process_iter(): try: pinfo = p.as_dict(attrs, ad_value='') except NoSuchProcess: pass else: if pinfo['create_time']: ctime = datetime.datetime.fromtimestamp(pinfo['create_time']) if ctime.date() == today_day: ctime = ctime.strftime("%H:%M") else: ctime = ctime.strftime("%b%d") else: ctime = '' cputime = time.strftime("%M:%S", time.localtime(sum(pinfo['cpu_times']))) try: user = p.username() except KeyError: if _POSIX: if pinfo['uids']: user = str(pinfo['uids'].real) else: user = '' else: raise except Error: user = '' if _WINDOWS and '\\' in user: user = user.split('\\')[1] vms = pinfo['memory_info'] and \ int(pinfo['memory_info'].vms / 1024) or '?' rss = pinfo['memory_info'] and \ int(pinfo['memory_info'].rss / 1024) or '?' memp = pinfo['memory_percent'] and \ round(pinfo['memory_percent'], 1) or '?' print_(templ % (user[:10], pinfo['pid'], pinfo['cpu_percent'], memp, vms, rss, pinfo.get('terminal', '') or '?', ctime, cputime, pinfo['name'].strip() or '?')) def _replace_module(): """Dirty hack to replace the module object in order to access deprecated module constants, see: http://www.dr-josiah.com/2013/12/properties-on-python-modules.html """ class ModuleWrapper(object): def __repr__(self): return repr(self._module) __str__ = __repr__ @property def NUM_CPUS(self): msg = "NUM_CPUS constant is deprecated; use cpu_count() instead" warnings.warn(msg, category=DeprecationWarning, stacklevel=2) return cpu_count() @property def BOOT_TIME(self): msg = "BOOT_TIME constant is deprecated; use boot_time() instead" warnings.warn(msg, category=DeprecationWarning, stacklevel=2) return boot_time() @property def TOTAL_PHYMEM(self): msg = "TOTAL_PHYMEM constant is deprecated; " \ "use virtual_memory().total instead" warnings.warn(msg, category=DeprecationWarning, stacklevel=2) return virtual_memory().total mod = ModuleWrapper() mod.__dict__ = globals() mod._module = sys.modules[__name__] sys.modules[__name__] = mod _replace_module() del property, memoize, division, _replace_module if sys.version_info < (3, 0): del num if __name__ == "__main__": test()
StarcoderdataPython
1795123
<reponame>icemac/icemac.ab.importer<filename>src/icemac/ab/importer/browser/wizard/tests/test_reader.py from icemac.addressbook.interfaces import IPhoneNumber import zope.component.hooks def test_reader__ReaderSettings__1(address_book, browser, ImportFileFactory): """It has an empty import file readers list on empty import file.""" ImportFileFactory(address_book, u'empty.csv', ['']) browser.login('mgr') browser.open(browser.IMPORTER_FILE_IMPORT_URL) # There is no import file reader, as the CSV reader expects a first line # containing the field names: assert [] == browser.getControl('Import file format').displayOptions def test_reader__ReaderSettings__2(address_book, browser, ImportFileFactory): """It allows to import multiple addresses and numbers.""" ImportFileFactory(address_book, u'multi.csv', [ 'last_name,1st_phone,2nd_phone,3rd_phone', 'One,112,110,108', 'Two,,116116,', 'Three,1111,,2222', 'Four,,,']) browser.login('mgr') browser.open(browser.IMPORTER_FILE_IMPORT_URL) assert '1' == browser.getControl('person sub-entities').value browser.getControl('person sub-entities').value = '3' browser.getControl('Next').click() assert browser.IMPORTER_IMPORT_MAP_URL == browser.url browser.getControl('last name').displayValue = [ 'last_name (One, Two, Three)'] browser.getControl('number', index=0).displayValue = [ '1st_phone (112, 1111)'] browser.getControl('number', index=1).displayValue = [ '2nd_phone (110, 116116)'] browser.getControl('number', index=2).displayValue = [ '3rd_phone (108, 2222)'] browser.getControl('Next').click() # The review step shows the import result, the first phone number is the # default one: assert browser.IMPORTER_IMPORT_REVIEW_URL == browser.url assert [ 'first name', 'last name', 'birth date', 'keywords', 'notes', 'address prefix', 'street', 'city', 'zip', 'country', 'address prefix', 'street', 'city', 'zip', 'country', 'address prefix', 'street', 'city', 'zip', 'country', 'number', 'number', 'number', 'e-mail address', 'e-mail address', 'e-mail address', 'URL', 'URL', 'URL', 'One', 'DE', '112', '110', '108', 'Two', 'DE', '116116', 'Three', 'DE', '1111', '2222', 'Four', 'DE'] == browser.etree.xpath('//th/text() | //td//text()') # After completing the import the imported data can be inspected: browser.getControl('Next').click() assert browser.IMPORTER_IMPORT_COMPLETE_URL == browser.url browser.getControl('Complete').click() assert browser.IMPORTER_OVERVIEW_URL == browser.url zope.component.hooks.setSite(address_book) # The first phone number is the main one and it is displayed as the main # phone number in the form below, too: p1 = address_book['Person'] assert u'One' == p1.get_name() assert '112' == p1.default_phone_number.number assert (['112', '110', '108'] == [x.number for x in p1.values() if IPhoneNumber.providedBy(x)]) # When there is no first one an empty main number is created: p2 = address_book['Person-2'] assert u'Two' == p2.get_name() assert None is p2.default_phone_number.number assert ([None, '116116'] == [x.number for x in p2.values() if IPhoneNumber.providedBy(x)]) # Empty non-main phone numbers are not created, so the missing 2nd number # is left out and the third one gets the one and only non-main phone # number: p3 = address_book['Person-3'] assert u'Three' == p3.get_name() assert '1111' == p3.default_phone_number.number assert (['1111', '2222'] == [x.number for x in p3.values() if IPhoneNumber.providedBy(x)]) # But there must be a default number which is always created: p4 = address_book['Person-4'] assert u'Four' == p4.get_name() assert None is p4.default_phone_number.number assert ([None] == [x.number for x in p4.values() if IPhoneNumber.providedBy(x)])
StarcoderdataPython
6427710
from pprint import pprint points = [ (10, 41, 23), (22, 30, 29), (11, 42, 5), (20, 32, 4), (12, 40, 12), (21, 36, 23) ] print('points', points)
StarcoderdataPython
5040953
<reponame>BDI-ENIB/hermin-I<gh_stars>1-10 #import python Module import os import os.path import csv import time import shutil #import Dolmen Module import Windows import Widgets import Graph import Config import Sensors import Error count=0 # current line in CSV state_communication=False #if True => start decoding def currentTime(): # return the current time return str(time.strftime('%H.' '%M.' '%S')) def currentDate(): # return the current date return str(time.strftime('%Y_' '%m_' '%d_')) def decodingCSV(): #open and decoding CSV file global count #import csv filename = open(Config.CSV, 'r', encoding='latin1') reader = csv.reader(filename, delimiter=';') lines = [line for line in reader] #import list of CSV lines filename.close() # add and find the CSV line to decode if lines==[] and count==0: #if CSV is empty return if (len(lines)>count): if lines[count]==['stop']: state_set_communication(Config.start_button,Config.stop_button,False,Config.currentMode,Config.figure.file,False) #find time for j in range(0,len(lines[count])-1): if str(lines[count][j])=='0' and str(lines[count][j+1])=='time (s)': # time sensor detected if str(lines[count][j+2])!="": # if time data not empty for sensor in Config.sensors_list_set_time: sensor.x.append(float(lines[count][j+2])) #decoding current line for each sensors for sensor in Config.sensors: sensor.decoding(lines[count]) #verifing if all sensors has been treated for sensor in Config.sensors: sensor.verifing() #update line count+=1 else: return def fileExist(fileToTest): # detect if file in folder exist try: with open(fileToTest,'r',encoding='latin1') as filename: return True #file exist except: #no file Config.Log.InfoSaveLog("warning",str(fileToTest + "not exist")) return False # return error file no found def updateOffline(i,start_button,stop_button): # decoding csv and updating graph in Offline mode global state_communication if(state_communication==True and fileExist(Config.figure.file)==True): #if you click on the start button of fire_interface windows and csv name exist decodingCSV() # decoding csv if(state_communication==True and fileExist(Config.figure.file)==True): for sensor in Config.sensors: sensor.graph.animate()# update graph else : #if no CSV file if fileExist(Config.figure.file)==False : Windows.messageShowwarning("Open Filename", "Corrupted CSV file or not found") Config.Log.InfoSaveLog("info",'Corrupted CSV file or not found') def updateOnline(i,start_button,stop_button): # decoding csv and updating graph in Online mode global state_communication if(state_communication==True ): #if you click on the start button of fire_interface windows and csv name exist decodingCSV() # decoding csv for sensor in Config.sensors: sensor.graph.animate()# update graph else :#if no CSV file if fileExist(Config.figure.file)==False : Windows.messageShowwarning("Open Filename", "Corrupted CSV file or not found") Config.Log.InfoSaveLog("info",'Corrupted CSV file or not found') def initFigure(): #init and reset graph global count,state_communication #disable communication state_communication = False #reset current line in CSV count=0 #reset CSV file os.remove(Config.CSV) filename = open(Config.CSV, 'w') filename.close() #init each graphe for sensor in Config.sensors: sensor.graph.initGraph() def report_Function(): #report generation global state_communication,save if (state_communication == False): # if decoding is stopped #check if is save folder exist if not os.path.exists(Config.SAVE_REPORT_FOLDER): Config.Log.InfoSaveLog("error",str(Config.SAVE_REPORT_FOLDER + " folder not found => creation")) os.makedirs(Config.SAVE_REPORT_FOLDER) if not os.path.exists(Config.SAVE_REPORT_FOLDER + '/'+ str(Config.NAME_SAVE_FOLDER)): Config.Log.InfoSaveLog("error",str(Config.NAME_SAVE_FOLDER + " folder not found => creation")) os.makedirs(Config.SAVE_REPORT_FOLDER + '/'+ str(Config.NAME_SAVE_FOLDER)) #save report shutil.copy(Config.figure.file,Config.SAVE_REPORT_FOLDER + '/'+ str(Config.NAME_SAVE_FOLDER) + '/' ) shutil.copy(Config.CSV,Config.SAVE_REPORT_FOLDER + '/'+ str(Config.NAME_SAVE_FOLDER) + '/' ) #copy csv file in save report folder Config.figure.saveFig(Config.SAVE_REPORT_FOLDER,Config.NAME_SAVE_FOLDER,Config.NAME_SAVE_FIGURE) #save figure in save report folder Windows.messageShowinfo("Report generation","Report generation successfully created.") #print and save in log Config.Log.InfoSaveLog("info",str("report generation in " + Config.SAVE_REPORT_FOLDER + "/" + Config.NAME_SAVE_FOLDER)) print("report generation in " + Config.SAVE_REPORT_FOLDER + "/" + Config.NAME_SAVE_FOLDER) else : # if decoding is not stopped #print and save in log Windows.messageShowwarning("Report generation warning","Warning : please stop the data receive before to generate the report.") Config.Log.InfoSaveLog("info",str("trying to generate report before stopping decoding")) def state_set_communication(start_button,stop_button,state,currentMode,frame,askToStop): # mode => true :ask to and start stop decoding, False : start and stop with no ask global state_communication #if the user click on the start button if(state==True): #initFigure() #enable decoding state_communication=True Config.Log.InfoSaveLog("info",'start decoding') #communication with c++ config=open(Config.CONFIG_TXT, "w") config.write("true") config.write("\n") config.write(str(currentMode)) config.write("\n") config.write(frame) config.close() #set button start ans stop state #disable start button start_button.disable() #enable stop button stop_button.enable() #if the user click on the stop button elif(state==False): #check if ask stop decoding if true ask confirmation if askToStop== True: if (Windows.messageAskyesno("End of data receive", "Do you want to stop the data receive ?")): Config.Log.InfoSaveLog("info",'stop decoding') #enable stop button start_button.disable() #disable stop button stop_button.disable() print("stop decoding") #disable decoding state_communication=False #communication with c++ config=open(Config.CONFIG_TXT, "w") config.write("false") config.write("\n") config.write(str(currentMode)) if askToStop == True: Windows.messageShowinfo("","Don't forget to gererate\nreport if you want") if askToStop==False : print("end CSV file") Config.Log.InfoSaveLog("info","end CSV file") #disable start button start_button.disable() #disable stop button stop_button.disable() Windows.messageShowinfo("","End CSV file\nDon't forget to gererate\nreport if you want") def add_sensor_save_Function(add_sensor_interface,sensor_add_name): save_condition = True if(sensor_add_name.getEntry()==""): #if no name given Config.Log.InfoSaveLog("warning",'add new sensor : no name given') Windows.messageShowerror("Name error","Please enter the sensor's name") save_condition=False #check that the sensor does not already exist if(os.path.isfile(sensor_add_name.getEntry().lower() + ".hpp") or os.path.isfile(sensor_add_name.getEntry().lower() + ".cpp")): Config.Log.InfoSaveLog("warning",str('sensor name ' + sensor_add_name.getEntry().lower() +' already exit')) Windows.messageShowerror("Name error",sensor_add_name.getEntry().lower() + " sensor already exist. Please change the sensor's name") save_condition=False #if no error, create the hpp and the cpp if(save_condition==True): # Creation of sensor.hpp hpp = open(sensor_add_name.getEntry().lower() + ".hpp", "x") hpp.write("#ifndef DOLMEN_"+ sensor_add_name.getEntry().upper() +"_HPP") hpp.write("\n#define DOLMEN_" + sensor_add_name.getEntry().upper() +"_HPP 1") hpp.write("\n") hpp.write("\n#include <string>") hpp.write('\n#include "sensor.hpp"') hpp.write("\n") hpp.write("\nnamespace dolmen") hpp.write("\n{") hpp.write("\n class " + sensor_add_name.getEntry().capitalize() + " : public Sensor") hpp.write("\n {") hpp.write("\n public :") hpp.write("\n " + sensor_add_name.getEntry().capitalize() + " (int id, std::string name);") hpp.write("\n") hpp.write("\n void decoding(const std::string data) override;") hpp.write("\n") hpp.write("\n std::string getColumnIdentifiers() override") hpp.write("\n {") hpp.write("\n return " + '"' + sensor_add_name.getEntry().capitalize() + '"'+ ";") hpp.write("\n }") hpp.write("\n") hpp.write("\n int getNbAttr() override") hpp.write("\n {") hpp.write("\n return 3;") hpp.write("\n }") hpp.write("\n };") hpp.write("\n}") hpp.write("\n") hpp.write("\n#endif") hpp.close() # Creation of sensor.cpp cpp = open(sensor_add_name.getEntry().lower() + ".cpp", "x") cpp.write('#include "' + sensor_add_name.getEntry().lower() + '.hpp"') cpp.write("\n") cpp.write("\nnamespace dolmen") cpp.write("\n{") cpp.write("\n " + sensor_add_name.getEntry().capitalize() + "::" + sensor_add_name.getEntry().capitalize() + " (int id, std::string name):Sensor{id,name}{}") cpp.write("\n") cpp.write("\n void " + sensor_add_name.getEntry().capitalize() +"::decoding(const std::string data)") cpp.write("\n {") cpp.write("\n //insert here the decoding method of your sensor, you can check others sensors to see how we created the previous ones") cpp.write("\n }") cpp.write("\n} /* dolmen */") cpp.close() #print save in log and return Config.Log.InfoSaveLog("info",str(' sensor ' + str(sensor_add_name.getEntry()).lower() +" generated")) Windows.messageShowinfo("Sensor generation",sensor_add_name.getEntry().lower() + """ sensor generation successfully created. Do not forget to complete the decoding function of this class in the c++ code. \nfor the python code add a sensor in Config.py and eventually create a graph to display it""") #return in sensors management windows Config.sensors_management_Function(add_sensor_interface)
StarcoderdataPython
239419
<filename>ServidorSenha/ServidorSenha.py<gh_stars>1-10 # -*- coding: utf-8 -*- #!/usr/bin/env python3 """ Servidor de Senha Módulo com classe senha. """ from pymongo import MongoClient from hmac import compare_digest as comparador import crypt from xmlrpc.server import SimpleXMLRPCServer import xmlrpc.client import socket class ServidorSenha(object): """docstring for ServidorSenha.""" def __init__(self): #ip e porta do banco de dados com senha self.client= MongoClient('localhost',27017) #banco de dados da aplicação self.db=self.client.zeus #colecao onde as senhas estão armazenadas self.colecao=self.db.senhas self.on="online" def get_colecao(): return self.senha_auth def login(self,usuario,senha): """Valida nome e usuário para login""" dados=self.colecao.find_one({"login":usuario}) print("chegou aqui") if(dados is None): print("Usuário não encontrado") return False,False else: senha=crypt.crypt(senha,dados['senha']) if(comparador(senha,dados['senha'])): print("usuário logado") return True,dados['root'] else: #senha ou usuário invalido print("erro no login") return False,False #comparador(dados.senha) def novo_usuario(self,usuario,senha,root): """Cria e insere um usuário no banco""" if("True" in root): estado=1 else: estado="" dados={"login":usuario,"senha":crypt.crypt(senha),"root":bool(estado)} try: self.colecao.insert_one(dados) #sucesso ao criar um usuário. return True except Exception as e: print("erro ao criar o usuário") print(e) return False def on(self): return "Estou acessível" #porta onde o mesmo está sendo executado porta=8000 #instancia a classe de senha #SenhaAuth= ServidorSenha() #Chama de procedimendo remoto RPC #ip="172.18.1.34" ip="127.0.0.1" server= SimpleXMLRPCServer((ip,porta)) print("Servidor de senha executando na porta",porta) print("O ip definido está como: ",ip) #registra a instância do Servidor de senha para RPC server.register_instance(ServidorSenha()) #deixa o servidor de senha em loop server.serve_forever() # #senha.login("magno","<PASSWORD>") # senha.cria_usuario("zeus","4<PASSWORD>","1") # #senha.valida_senha("zeus","<PASSWORD>")
StarcoderdataPython
1997433
<filename>tests/components/rfxtrx/test_init.py """The tests for the Rfxtrx component.""" from unittest.mock import call from homeassistant.components.rfxtrx import DOMAIN from homeassistant.components.rfxtrx.const import EVENT_RFXTRX_EVENT from homeassistant.core import callback from homeassistant.helpers.device_registry import ( DeviceRegistry, async_get_registry as async_get_device_registry, ) from homeassistant.setup import async_setup_component from tests.common import MockConfigEntry from tests.components.rfxtrx.conftest import create_rfx_test_cfg async def test_valid_config(hass): """Test configuration.""" assert await async_setup_component( hass, "rfxtrx", { "rfxtrx": { "device": "/dev/serial/by-id/usb" + "-RFXCOM_RFXtrx433_A1Y0NJGR-if00-port0", } }, ) async def test_valid_config2(hass): """Test configuration.""" assert await async_setup_component( hass, "rfxtrx", { "rfxtrx": { "device": "/dev/serial/by-id/usb" + "-RFXCOM_RFXtrx433_A1Y0NJGR-if00-port0", "debug": True, } }, ) async def test_invalid_config(hass): """Test configuration.""" assert not await async_setup_component(hass, "rfxtrx", {"rfxtrx": {}}) assert not await async_setup_component( hass, "rfxtrx", { "rfxtrx": { "device": "/dev/serial/by-id/usb" + "-RFXCOM_RFXtrx433_A1Y0NJGR-if00-port0", "invalid_key": True, } }, ) async def test_fire_event(hass, rfxtrx): """Test fire event.""" entry_data = create_rfx_test_cfg( device="/dev/serial/by-id/usb-RFXCOM_RFXtrx433_A1Y0NJGR-if00-port0", automatic_add=True, devices={ "0b1100cd0213c7f210010f51": {"fire_event": True}, "0716000100900970": {"fire_event": True}, }, ) mock_entry = MockConfigEntry(domain="rfxtrx", unique_id=DOMAIN, data=entry_data) mock_entry.add_to_hass(hass) await hass.config_entries.async_setup(mock_entry.entry_id) await hass.async_block_till_done() await hass.async_start() device_registry: DeviceRegistry = await async_get_device_registry(hass) calls = [] @callback def record_event(event): """Add recorded event to set.""" assert event.event_type == "rfxtrx_event" calls.append(event.data) hass.bus.async_listen(EVENT_RFXTRX_EVENT, record_event) await rfxtrx.signal("0b1100cd0213c7f210010f51") await rfxtrx.signal("0716000100900970") device_id_1 = device_registry.async_get_device( identifiers={("rfxtrx", "11", "0", "213c7f2:16")} ) assert device_id_1 device_id_2 = device_registry.async_get_device( identifiers={("rfxtrx", "16", "0", "00:90")} ) assert device_id_2 assert calls == [ { "packet_type": 17, "sub_type": 0, "type_string": "AC", "id_string": "213c7f2:16", "data": "0b1100cd0213c7f210010f51", "values": {"Command": "On", "Rssi numeric": 5}, "device_id": device_id_1.id, }, { "packet_type": 22, "sub_type": 0, "type_string": "Byron SX", "id_string": "00:90", "data": "0716000100900970", "values": {"Command": "Chime", "Rssi numeric": 7, "Sound": 9}, "device_id": device_id_2.id, }, ] async def test_send(hass, rfxtrx): """Test configuration.""" entry_data = create_rfx_test_cfg(device="/dev/null", devices={}) mock_entry = MockConfigEntry(domain="rfxtrx", unique_id=DOMAIN, data=entry_data) mock_entry.add_to_hass(hass) await hass.config_entries.async_setup(mock_entry.entry_id) await hass.async_block_till_done() await hass.services.async_call( "rfxtrx", "send", {"event": "0a520802060101ff0f0269"}, blocking=True ) assert rfxtrx.transport.send.mock_calls == [ call(bytearray(b"\x0a\x52\x08\x02\x06\x01\x01\xff\x0f\x02\x69")) ]
StarcoderdataPython
6512284
# <NAME>'s Solution: class Solution(object): def arrayPairSum(self, nums): """ :type nums: List[int] :rtype: int """ if not nums or len(nums) == 0: return 0 nums.sort() sum = 0 for i in range(0,len(nums)-1,2): sum += min(nums[i],nums[i+1]) return sum # Xidong's Solution: class Solution(object): def arrayPairSum(self, nums): """ :type nums: List[int] :rtype: int """ nums.sort() return sum(nums[0::2])
StarcoderdataPython
11328733
<filename>share_file/__init__.py # -*- coding: utf-8 -*- import threading from os import path from mimetypes import types_map from urllib import request from urllib.error import URLError from urllib.parse import quote from fman import ( DirectoryPaneCommand, show_alert, show_status_message, clear_status_message, YES, NO, ) __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.1" __maintainer__ = "<NAME>" template = "ShareFile\n\n{0}\n\n{1}" class ShareFile(DirectoryPaneCommand): def __call__(self): filepath = self.pane.get_file_under_cursor() if not filepath: return filepath = filepath.replace('file://', '') filename = path.basename(filepath) if not path.isfile(filepath): msg = "ShareFile: '{0}' is not a file, please select a file.".format(filename) show_status_message(msg, timeout_secs=3) return msg = template.format("Share file '{0}'?".format(filename), "") response = show_alert(msg, buttons=NO|YES, default_button=YES) if response == YES: # upload in separate thread so we don't block UI, especially when # uploading large (MB) files. t = UploadThread(1, filepath, filename) t.start() class UploadThread(threading.Thread): def __init__(self, tid, filepath, filename): threading.Thread.__init__(self) self.thread_id = tid self.filepath = filepath self.filename = quote(filename) def run(self): _, ext = path.splitext(self.filename) try: mime_type = types_map[ext] except KeyError: mime_type = "application/octet-stream" with open(self.filepath, 'rb') as f: data = f.read() headers = { "Accept" : "*/*", "Accept-Encoding" : "gzip,deflate", "Accept-Language" : "en-US,en;q=0.8", "Connection" : "keep-alive", "Content-Length" : len(data), "Content-Type" : mime_type, "Host" : "transfer.sh", "Origin" : "https://transfer.sh", "Referer" : "https://transfer.sh/", "User-Agent" : "Mozilla/5.0", "X_FILENAME" : self.filename } url = "https://transfer.sh/" + self.filename req = request.Request(url, data=data, headers=headers, method="PUT") try: show_status_message("ShareFile: uploading file...") with request.urlopen(req, timeout=10) as resp: if resp.status == 200: body = resp.read() share_link = body.decode('utf-8').strip('\n') msg = template.format(share_link, "") else: msg = template.format("Could not upload file", str(resp.status) + " " + resp.reason) clear_status_message() show_alert(msg) except URLError as e: msg = template.format(e.reason, "") show_alert(msg)
StarcoderdataPython
11293852
""" Framework-specific classes/functions/objects that rely on the `ply` framework. """ from . import lex, yacc import traceback __all__ = [ "lex", "yacc", "start_console", ] def _check_lexer_interface(x): if not hasattr(x, 'token'): return False if not hasattr(x.token, '__call__'): return False if not hasattr(x, 'input'): return False if not hasattr(x.input, '__call__'): return False return True def _check_parser_interface(x): return hasattr(x, 'parse') and hasattr(x.parse, '__call__') def _lexer_process(lexer, text): ret = [] lexer.input(text) while True: t = lexer.token() if t is None: return ret # *MUST* print and append the tokens in a loop, # so that output is in sync with the processing of input. # This is a requirement for console responsiveness print t ret.append(t) def _parser_process(parser, *args, **kwargs): # NOTE # Interestingly, if the parser is a plier LRParser already bound to a # lexer, calling the parse method with another lexer would quietly # override the existing binding. ret = parser.parse(*args, **kwargs) print ret return ret def start_console(lp, prompt=None, is_lexer=None): """ Interactive console for tokenizing/parsing. Given a lexer/parser, start an interactive console to print debug information while tokenizing/parsing the input. Return the last tokenized/parsed result when the console is exited by EOF (<Ctrl-d> on a blank line for UNIX-like systems, and <Ctrl-z> for Windows). If the 'is_lexer' argument is True, the first argument is treated as a lexer; if it is False, then the first argument is treated as a parser. In both cases, the object is checked for the minimal interface to satisfy the use as lexer/parser. For an object to be a parser, it must have a callable attribute 'parse'; for it to be a lexer, it must have a callable attribute 'input', and a callable attribute 'token'. This is based on the minimal interface used by `ply.yacc`, as documented in: http://www.dabeaz.com/ply/ply.html Section '4.20 Miscellaneous Issues' If 'is_lexer' is None, then the use of the first argument is automatically determined. It is first checked for the minimal parser interface. If it does not satisfy the minimal parser interface, it is then checked for the minimal lexer interface. If both checks failed, an exception is raised. """ if is_lexer is None: if _check_parser_interface(lp): is_lexer = False elif _check_lexer_interface(lp): is_lexer = True else: # neither minimal interfaces are satisfied raise Exception( "Neither of the minimal interfaces for parser nor lexer " "could be satisfied by the first argument.") elif is_lexer is False: if not _check_parser_interface(lp): raise Exception( "The first argument does not satisfy " "the minimal interface for parser.") elif is_lexer is True: if not _check_lexer_interface(lp): raise Exception( "The first argument does not satisfy " "the minimal interface for lexer.") else: raise Exception( "The value of 'is_lexer', {}, is not recognized. " "Use True, False, or None to treat the object as " "lexer, parser, or automatically determined.".format(is_lexer)) process = _lexer_process if is_lexer else _parser_process prompt = prompt or ('LEX > ' if is_lexer else 'PARSE > ') ret = None while True: try: s = raw_input(prompt) except EOFError as eof: return ret try: ret = process(lp, s) except Exception as e: traceback.print_exc() print e ret = None continue
StarcoderdataPython
3434431
<reponame>litxio/ptghci-engine from pygments import highlight from pygments.lexers.haskell import HaskellLexer from pygments.formatters import Terminal256Formatter from pygments.styles import get_style_by_name def hl(s, config, style_name=None): if style_name: style = get_style_by_name(style_name) else: style = get_style_by_name(config.style) # Don't try to highlight if the string already has escape sequences if '\033[' in s: return s else: # Sometimes highlight adds an extra newline, so we remove it return highlight(s, HaskellLexer(), Terminal256Formatter(style=style)).strip()
StarcoderdataPython
8162030
import difflib import filecmp from dataclasses import dataclass from pathlib import Path from typing import List @dataclass class ComparisonResult: diffs: List[str] class FileComparator: def compare(self, file1: Path, file2: Path) -> ComparisonResult: equal = filecmp.cmp(str(file1), str(file2)) if equal: return ComparisonResult([]) content1 = file1.read_text(encoding='utf-8').split("\n") content2 = file2.read_text(encoding='utf-8').split("\n") diffs = difflib.unified_diff(content1, content2) return ComparisonResult([*diffs])
StarcoderdataPython
346403
<reponame>lim0606/pytorch-ardae-vae import torch import torch.autograd from torch.autograd import Function import torch.nn.functional as F ''' https://pytorch.org/docs/stable/notes/extending.html ''' class AuxLossForGradFunction(Function): # Note that both forward and backward are @staticmethods @staticmethod def forward(ctx, input, grad): ctx.save_for_backward(input, grad.detach()) return torch.sum(torch.zeros_like(input)) # This function has only a single output, so it gets only one gradient @staticmethod def backward(ctx, grad_output): # This is a pattern that is very convenient - at the top of backward # unpack saved_tensors and initialize all gradients w.r.t. inputs to # None. Thanks to the fact that additional trailing Nones are # ignored, the return statement is simple even when the function has # optional inputs. input, grad = ctx.saved_tensors grad_input = grad_grad = None # These needs_input_grad checks are optional and there only to # improve efficiency. If you want to make your code simpler, you can # skip them. Returning gradients for inputs that don't require it is # not an error. if ctx.needs_input_grad[0]: grad_input = grad return grad_input, grad_grad aux_loss_for_grad = AuxLossForGradFunction.apply ''' test ''' #import ipdb if __name__ == '__main__': batch_size = 10 input_dim = 20 input = torch.randn(batch_size, input_dim, dtype=torch.double, requires_grad=True) grad = torch.randn(batch_size, input_dim, dtype=torch.double, requires_grad=False) target = torch.randn(batch_size, input_dim, dtype=torch.double) #loss = F.mse_loss(input, target) #loss.backward() #ipdb.set_trace() loss = aux_loss_for_grad(input, grad) loss.backward() #ipdb.set_trace() print(input.grad) print(grad) print(torch.allclose(input.grad, grad))
StarcoderdataPython
178688
<gh_stars>0 from django.conf.urls import patterns, include, url from account import views urlpatterns = patterns('', url(r'^register/$', views.register, name='register'), url(r'^login/$', views.login, name='login'), url(r'^logout/$', views.user_logout, name='user_logout'), )
StarcoderdataPython
11363307
""" Test on images split into directories. This assumes we've split our videos into frames and moved them to their respective folders and trained our model. Based on: https://keras.io/preprocessing/image/ and https://keras.io/applications/ """ from train_custom_cnn import get_model from tensorflow.keras.optimizers import SGD from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Model from tensorflow.keras.layers import Flatten, concatenate, Lambda, Input, Dropout, Dense, MaxPooling2D, Conv2D from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping, CSVLogger from tensorflow.keras.utils import plot_model import tensorflow as tf from data import DataSet import time import os.path data = DataSet() # Helper: Save the model. checkpointer = ModelCheckpoint( filepath=os.path.join('data', 'checkpoints', 'inception.{epoch:03d}-{accuracy:.2f}.hdf5'), verbose=1, save_best_only=True) # Helper: Stop when we stop learning. early_stopper = EarlyStopping(patience=10) # Helper: TensorBoard tensorboard = TensorBoard(log_dir=os.path.join('data', 'logs')) # Helper: Save results. timestamp = time.time() csv_logger = CSVLogger(os.path.join('data', 'logs', 'InceptionV3' + '-' + 'training-' + \ str(timestamp) + '.log')) def crop_center(img): cropx = 89 cropy = 89 y, x, z = img.shape startx = x//2-(cropx//2) starty = y//2-(cropy//2) return img[starty:starty+cropy, startx:startx+cropx]-96 def subtract_mean(img): return img-96 def get_test_generator(): context_datagen = ImageDataGenerator() fovea_datagen = ImageDataGenerator( preprocessing_function=crop_center) context_generator = context_datagen.flow_from_directory( os.path.join('data', 'test'), target_size=(89, 89), batch_size=32, classes=data.classes, class_mode='categorical', interpolation='bilinear') fovea_generator = fovea_datagen.flow_from_directory( os.path.join('data', 'test'), target_size=(89, 89), batch_size=32, classes=data.classes, class_mode='categorical') while True: f = fovea_generator.next() c = context_generator.next() yield [f[0], c[0]], f[1] def test_model(model, test_generator, nb_steps, callbacks=[]): # train_generator, validation_generator = generators model.evaluate( test_generator, verbose=1, steps=nb_steps, callbacks=callbacks) return model def main(weights_file): model = get_model() print(model.summary()) test_generator = get_test_generator() # if weights_file is None: # print("Loading network from ImageNet weights.") # # Get and train the top layers. # model = freeze_all_but_top(model) # model = train_model(model, 10, generators) # else: print("Loading saved model: %s." % weights_file) model.load_weights(weights_file) callbacks = [checkpointer, tensorboard, csv_logger] model = test_model(model, test_generator, 100) if __name__ == '__main__': weights_file = 'data/checkpoints/SF_MultiRes.1233-0.79.hdf5' main(weights_file)
StarcoderdataPython