id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
95329
<reponame>Melimet/DAP2020 #!/usr/bin/python3 import unittest from tmc import points from tmc.utils import load, get_out coefficient_of_determination = load('src.coefficient_of_determination', 'coefficient_of_determination') class CoefficientOfDetermination(unittest.TestCase): @points('p05-12.1') def test_all_features(self): scores = coefficient_of_determination() self.assertAlmostEqual(scores[0], 1.0, msg="Incorrect coefficient of determination!") @points('p05-12.2') def test_individual_features(self): scores = coefficient_of_determination() sums=[0.0258828579115,0.0968186306153,0.0881564161891,0.868276772892] for i in range(1,5): self.assertAlmostEqual(sums[i-1], sum(scores[i:i+2]), msg="Incorrect individual coefficients of determination!") if __name__ == '__main__': unittest.main()
StarcoderdataPython
3265141
<reponame>ASMlover/study #!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (c) 2020 ASMlover. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list ofconditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materialsprovided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import random import socket import time def on_boring(conn:socket.socket, msg:str) -> None: for _ in range(5): conn.send(msg.encode()) time.sleep(random.random()) conn.send(b"I'm boring, I'm quit!") def main(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as acceptor: acceptor.bind(("0.0.0.0", 5555)) acceptor.listen() while True: conn, _ = acceptor.accept() with conn: on_boring(conn, "boring!") if __name__ == '__main__': try: main() except KeyboardInterrupt: print("boring server finished") except Exception as e: print(e)
StarcoderdataPython
124429
from sports.nba.nba_team import NBA_Team class PhoenixSuns(NBA_Team): """ NBA Golden State Warriors Static Information """ full_name = "<NAME>" name = "Suns" team_id = 1610612756 def __init__(self): """ """ super().__init__()
StarcoderdataPython
3255579
class OperatorUtils(): @classmethod def apply_assignment_op(cls, left, op, right): if op == "=": return right elif op == "*=": return left * right elif op == "/=": return left / right elif op == "%=": return left % right elif op == "+=": return left + right elif op == "-=": return left - right elif op == "<<=": return left << right elif op == ">>=": return left >> right elif op == "^=": return left ^ right elif op == "|=": return left | right elif op == "&=": return left & right
StarcoderdataPython
1610338
"""Rational quadratic kernel.""" from typing import Optional import numpy as np import probnum.utils as _utils from probnum.typing import IntArgType, ScalarArgType from ._kernel import IsotropicMixin, Kernel class RatQuad(Kernel, IsotropicMixin): r"""Rational quadratic kernel. Covariance function defined by .. math:: :nowrap: \begin{equation} k(x_0, x_1) = \left( 1 + \frac{\lVert x_0 - x_1 \rVert_2^2}{2 \alpha l^2} \right)^{-\alpha}, \end{equation} where :math:`\alpha > 0`. For :math:`\alpha \rightarrow \infty` the rational quadratic kernel converges to the :class:`~probnum.kernels.ExpQuad` kernel. Parameters ---------- input_dim : Input dimension of the kernel. lengthscale : Lengthscale :math:`l` of the kernel. Describes the input scale on which the process varies. alpha : Scale mixture :math:`\alpha`. Positive constant determining the weighting between different lengthscales. See Also -------- ExpQuad : Exponentiated Quadratic / RBF kernel. Examples -------- >>> import numpy as np >>> from probnum.kernels import RatQuad >>> K = RatQuad(input_dim=1, lengthscale=0.1, alpha=3) >>> xs = np.linspace(0, 1, 3)[:, None] >>> K(xs[:, None, :], xs[None, :, :]) array([[1.00000000e+00, 7.25051190e-03, 1.81357765e-04], [7.25051190e-03, 1.00000000e+00, 7.25051190e-03], [1.81357765e-04, 7.25051190e-03, 1.00000000e+00]]) """ def __init__( self, input_dim: IntArgType, lengthscale: ScalarArgType = 1.0, alpha: ScalarArgType = 1.0, ): self.lengthscale = _utils.as_numpy_scalar(lengthscale) self.alpha = _utils.as_numpy_scalar(alpha) if not self.alpha > 0: raise ValueError(f"Scale mixture alpha={self.alpha} must be positive.") super().__init__(input_dim=input_dim) def _evaluate(self, x0: np.ndarray, x1: Optional[np.ndarray] = None) -> np.ndarray: if x1 is None: return np.ones_like(x0[..., 0]) return ( 1.0 + ( self._squared_euclidean_distances(x0, x1) / (2.0 * self.alpha * self.lengthscale ** 2) ) ) ** -self.alpha
StarcoderdataPython
75341
<filename>conekt/flask_blast/__init__.py from .blast import BlastThread
StarcoderdataPython
3354636
# Generated by Django 3.0.4 on 2021-03-07 01:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0013_auto_20210307_0125'), ] operations = [ migrations.AddField( model_name='post', name='class_in', field=models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, to='api.Class'), preserve_default=False, ), migrations.AddField( model_name='post', name='viewed', field=models.ManyToManyField(blank=True, related_name='posts_visited', to=settings.AUTH_USER_MODEL), ), ]
StarcoderdataPython
23190
<filename>src/python_module_setup.py from distutils.core import setup, Extension import os #os.environ['USE_CUDA'] = '1' #os.environ['USE_BLAS'] = '1' #os.environ['USE_OPENMP'] = '1' cuda_obj = [] cuda_extra = [] cuda_include = [] cuda_macro = [(None, None)] blas_obj = [] blas_extra = [] blas_include = [] blas_macro = [(None, None)] open_mp_extra = [] if(os.environ.get('USE_CUDA') != None): print("USE_CUDA") cuda_obj = ['cuda/cuda_main.o', 'cuda/cuda_conv_layer.o', 'cuda/cuda_dense_layer.o', 'cuda/cuda_pool_layer.o', 'cuda/cuda_activ_functions.o'] cuda_include = ['/usr/local/cuda-11.3/include'] cuda_extra = ['-L/usr/local/cuda-11.3/lib64', '-lcudart', '-lcublas'] cuda_macro = [('CUDA','1'), ('CUDA_THREADS_PER_BLOCKS', '256')] if(os.environ.get('USE_BLAS') != None): print("USE_BLAS") blas_obj = ['blas/blas_dense_layer.o', 'blas/blas_conv_layer.o'] blas_include = ['/opt/OpenBLAS/include'] blas_extra = ['-lopenblas', '-L/opt/OpenBLAS/lib'] blas_macro = [('BLAS', '1')] if(os.environ.get('USE_OPENMP') != None): print("USE_OPENMP") open_mp_extra = ['-fopenmp'] #Re-add naiv: 'naiv/naiv_dense_layer.o', 'naiv/naiv_conv_layer.o', 'naiv/naiv_pool_layer.o' setup(name = 'CIANNA', version = '0.9', ext_modules = [Extension('CIANNA', ['python_module.c'], extra_objects=['conv_layer.o', 'dense_layer.o', 'pool_layer.o', 'activ_functions.o', 'initializers.o', 'vars.o', 'auxil.o', 'naiv/naiv_dense_layer.o', 'naiv/naiv_conv_layer.o', 'naiv/naiv_pool_layer.o'] + cuda_obj + blas_obj, include_dirs= cuda_include + blas_include, extra_link_args=['-O3 -std=c99'] + cuda_extra + blas_extra + open_mp_extra, define_macros=[('MAX_LAYERS_NB', '100'), ('MAX_NETWORKS_NB','10')] + cuda_macro + blas_macro)])
StarcoderdataPython
1725759
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 将Omicron中与性能相关比较密切的函数抽取到这个模块。以便将来进行加速。 TODO: 部分函数之前已使用numba加速,但因numba与OS的兼容性问题取消。需要随时保持跟踪。 """ import logging import numpy as np from deprecated import deprecated logger = logging.getLogger(__name__) @deprecated(version="1.1") def index(arr, item): # pragma: no cover for idx, val in np.ndenumerate(arr): if val == item: return idx # If no item was found return None, other return types might be a problem due to # numba's type inference. return -1 @deprecated(version="1.1") def index_sorted(arr, item): # pragma: no cover pos = np.searchsorted(arr, item) if arr[pos] == item: return pos else: return -1 @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved into omicron.core.numpy_extensions module", ) def count_between(arr, start, end): """计算数组中,`start`元素与`end`元素之间共有多少个元素 要求arr必须是已排序。计算结果会包含区间边界点。 Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> count_between(arr, 20050104, 20050111) 6 >>> count_between(arr, 20050104, 20050109) 4 """ pos_start = np.searchsorted(arr, start, side="right") pos_end = np.searchsorted(arr, end, side="right") counter = pos_end - pos_start + 1 if start < arr[0]: counter -= 1 if end > arr[-1]: counter -= 1 return counter @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved to omicron.core.numpy_extensions module", ) def shift(arr, start, offset): """在numpy数组arr中,找到start(或者最接近的一个),取offset对应的元素。 要求`arr`已排序。`offset`为正,表明向后移位;`offset`为负,表明向前移位 Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> shift(arr, 20050104, 1) 20050105 >>> shift(arr, 20050105, -1) 20050104 >>> # 起始点已右越界,且向右shift,返回起始点 >>> shift(arr, 20050120, 1) 20050120 Args: arr : 已排序的数组 start : numpy可接受的数据类型 offset (int): [description] Returns: 移位后得到的元素值 """ pos = np.searchsorted(arr, start, side="right") if pos + offset - 1 >= len(arr): return start else: return arr[pos + offset - 1] @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved to omicron.core.timeframe module", ) def minute_frames_floor(ticks, moment): """ 对于分钟级的frame,返回它们与frame刻度向下对齐后的frame及日期进位。如果需要对齐到上一个交易 日,则进位为-1,否则为0. Examples: >>> ticks = [600, 630, 660, 690, 810, 840, 870, 900] >>> minute_frames_floor(ticks, 545) (900, -1) >>> minute_frames_floor(ticks, 600) (600, 0) >>> minute_frames_floor(ticks, 605) (600, 0) >>> minute_frames_floor(ticks, 899) (870, 0) >>> minute_frames_floor(ticks, 900) (900, 0) >>> minute_frames_floor(ticks, 905) (900, 0) Args: ticks (np.array or list): frames刻度 moment (int): 整数表示的分钟数,比如900表示15:00 Returns: tuple, the first is the new moment, the second is carry-on """ if moment < ticks[0]: return ticks[-1], -1 # ’right' 相当于 ticks <= m index = np.searchsorted(ticks, moment, side="right") return ticks[index - 1], 0 @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved to omicron.core.numpy_extensions module", ) def floor(arr, item): """ 在数据arr中,找到小于等于item的那一个值。如果item小于所有arr元素的值,返回arr[0];如果item 大于所有arr元素的值,返回arr[-1] 与`minute_frames_floor`不同的是,本函数不做回绕与进位. Examples: >>> a = [3, 6, 9] >>> floor(a, -1) 3 >>> floor(a, 9) 9 >>> floor(a, 10) 9 >>> floor(a, 4) 3 >>> floor(a,10) 9 Args: arr: item: Returns: """ if item < arr[0]: return arr[0] index = np.searchsorted(arr, item, side="right") return arr[index - 1] @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved to omicron.core.numpy_extensions module", ) def join_by_left(key, r1, r2, mask=True): """左连接 `r1`, `r2` by `key` 如果`r1`中存在`r2`中没有的行,则该行对应的`r2`中的那些字段的取值将使用`fill`来填充。如果 same as numpy.lib.recfunctions.join_by(key, r1, r2, jointype='leftouter'), but allows r1 have duplicat keys [Reference: stackoverflow](https://stackoverflow.com/a/53261882/13395693) Examples: >>> # to join the following >>> # [[ 1, 2], >>> # [ 1, 3], x [[1, 5], >>> # [ 2, 3]] [4, 7]] >>> # only first two rows in left will be joined >>> r1 = np.array([(1, 2), (1,3), (2,3)], dtype=[('seq', 'i4'), ('score', 'i4')]) >>> r2 = np.array([(1, 5), (4,7)], dtype=[('seq', 'i4'), ('age', 'i4')]) >>> joined = join_by_left('seq', r1, r2) >>> print(joined) [(1, 2, 5) (1, 3, 5) (2, 3, --)] >>> print(joined.dtype) (numpy.record, [('seq', '<i4'), ('score', '<i4'), ('age', '<i4')]) >>> joined[2][2] masked >>> joined.tolist()[2][2] == None True Args: key : join关键字 r1 : 数据集1 r2 : 数据集2 fill : 对匹配不上的cell进行填充时使用的值 Returns: a numpy array """ # figure out the dtype of the result array descr1 = r1.dtype.descr descr2 = [d for d in r2.dtype.descr if d[0] not in r1.dtype.names] descrm = descr1 + descr2 # figure out the fields we'll need from each array f1 = [d[0] for d in descr1] f2 = [d[0] for d in descr2] # cache the number of columns in f1 ncol1 = len(f1) # get a dict of the rows of r2 grouped by key rows2 = {} for row2 in r2: rows2.setdefault(row2[key], []).append(row2) # figure out how many rows will be in the result nrowm = 0 for k1 in r1[key]: if k1 in rows2: nrowm += len(rows2[k1]) else: nrowm += 1 # allocate the return array # ret = np.full((nrowm, ), fill, dtype=descrm) _ret = np.recarray(nrowm, dtype=descrm) if mask: ret = np.ma.array(_ret, mask=True) else: ret = _ret # merge the data into the return array i = 0 for row1 in r1: if row1[key] in rows2: for row2 in rows2[row1[key]]: ret[i] = tuple(row1[f1]) + tuple(row2[f2]) i += 1 else: for j in range(ncol1): ret[i][j] = row1[j] i += 1 return ret @deprecated( category=PendingDeprecationWarning, version="1.1", reason="this will be moved to omicron.core.numpy_extensions module", ) def numpy_append_fields(base, names, data, dtypes): """给现有的数组`base`增加新的字段 实现了`numpy.lib.recfunctions.rec_append_fields`的功能。因为`rec_append_fields`不能处 理`data`元素的类型为Object的情况 Example: >>> # 新增单个字段 >>> import numpy >>> old = np.array([i for i in range(3)], dtype=[('col1', '<f4')]) >>> new_list = [2 * i for i in range(3)] >>> res = numpy_append_fields(old, 'new_col', new_list, [('new_col', '<f4')]) >>> print(res) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0.) (1., 2.) (2., 4.)] >>> # 新增多个字段 >>> data = [res['col1'].tolist(), res['new_col'].tolist()] >>> print(numpy_append_fields(old, ('col3', 'col4'), data, [('col3', '<f4'), ('col4', '<f4')])) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0., 0.) (1., 1., 2.) (2., 2., 4.)] Args: base ([numpy.array]): 基础数组 name ([type]): 新增字段的名字,可以是字符串(单字段的情况),也可以是字符串列表 data (list): 增加的字段的数据,list类型 dtypes ([type]): 新增字段的dtype """ if isinstance(names, str): names = [ names, ] data = [ data, ] result = np.empty(base.shape, dtype=base.dtype.descr + dtypes) for col in base.dtype.names: result[col] = base[col] for i in range(len(names)): result[names[i]] = data[i] return result
StarcoderdataPython
123905
<gh_stars>10-100 """Algorithms for STRIPS learning that start from the most general operators, then specialize them based on the data.""" import itertools from typing import Dict, List, Set from predicators.src import utils from predicators.src.nsrt_learning.strips_learning import BaseSTRIPSLearner from predicators.src.settings import CFG from predicators.src.structs import ParameterizedOption, \ PartialNSRTAndDatastore, Segment, STRIPSOperator class GeneralToSpecificSTRIPSLearner(BaseSTRIPSLearner): """Base class for a general-to-specific STRIPS learner.""" def _initialize_general_pnad_for_option( self, parameterized_option: ParameterizedOption ) -> PartialNSRTAndDatastore: """Create the most general PNAD for the given option.""" # Create the parameters, which are determined solely from the option # types, since the most general operator has no add/delete effects. parameters = utils.create_new_variables(parameterized_option.types) option_spec = (parameterized_option, parameters) # In the most general operator, the side predicates contain ALL # predicates. side_predicates = self._predicates.copy() # There are no add effects or delete effects. The preconditions # are initialized to be trivial. They will be recomputed next. op = STRIPSOperator(parameterized_option.name, parameters, set(), set(), set(), side_predicates) pnad = PartialNSRTAndDatastore(op, [], option_spec) # Recompute datastore. This simply clusters by option, since the # side predicates contain all predicates, and effects are trivial. self._recompute_datastores_from_segments([pnad]) # Determine the initial preconditions via a lifted intersection. preconditions = self._induce_preconditions_via_intersection(pnad) pnad.op = pnad.op.copy_with(preconditions=preconditions) return pnad class BackchainingSTRIPSLearner(GeneralToSpecificSTRIPSLearner): """Learn STRIPS operators by backchaining.""" def _learn(self) -> List[PartialNSRTAndDatastore]: # Initialize the most general PNADs by merging self._initial_pnads. # As a result, we will have one very general PNAD per option. param_opt_to_general_pnad = {} param_opt_to_nec_pnads: Dict[ParameterizedOption, List[PartialNSRTAndDatastore]] = {} # Extract all parameterized options from the data. parameterized_options = set() for ll_traj, seg_traj in zip(self._trajectories, self._segmented_trajs): if not ll_traj.is_demo: continue for segment in seg_traj: parameterized_options.add(segment.get_option().parent) # Set up the param_opt_to_general_pnad and param_opt_to_nec_pnads # dictionaries. for param_opt in parameterized_options: pnad = self._initialize_general_pnad_for_option(param_opt) param_opt_to_general_pnad[param_opt] = pnad param_opt_to_nec_pnads[param_opt] = [] self._assert_all_data_in_exactly_one_datastore( list(param_opt_to_general_pnad.values())) prev_itr_ops: Set[STRIPSOperator] = set() # We loop until the harmless PNADs induced by our procedure # converge to a fixed point (i.e, they don't change after two # subsequent iterations). while True: # Run multiple passes of backchaining over the data until # convergence to a fixed point. Note that this process creates # operators with only parameters, preconditions, and add effects. self._backchain_multipass(param_opt_to_nec_pnads, param_opt_to_general_pnad) # Induce delete effects, side predicates and potentially # keep effects. self._induce_delete_side_keep(param_opt_to_nec_pnads) # Harmlessness should now hold, but it's slow to check. if CFG.backchaining_check_intermediate_harmlessness: assert self._check_harmlessness( self._get_uniquely_named_nec_pnads(param_opt_to_nec_pnads)) # Recompute datastores and preconditions for all PNADs. # Filter out PNADs that don't have datastores. cur_itr_pnads_unfiltered = [ pnad for pnads in param_opt_to_nec_pnads.values() for pnad in pnads ] self._recompute_datastores_from_segments(cur_itr_pnads_unfiltered) cur_itr_pnads_filtered = [] for pnad in cur_itr_pnads_unfiltered: if len(pnad.datastore) > 0: new_pre = self._induce_preconditions_via_intersection(pnad) # NOTE: this implicitly changes param_opt_to_nec_pnads # as well, since we're directly modifying the PNAD objects. pnad.op = pnad.op.copy_with(preconditions=new_pre) cur_itr_pnads_filtered.append(pnad) else: param_opt_to_nec_pnads[pnad.option_spec[0]].remove(pnad) del cur_itr_pnads_unfiltered # should be unused after this # Check if the PNAD set has converged. If so, break. if {pnad.op for pnad in cur_itr_pnads_filtered} == prev_itr_ops: break prev_itr_ops = {pnad.op for pnad in cur_itr_pnads_filtered} # Assign a unique name to each PNAD. final_pnads = self._get_uniquely_named_nec_pnads( param_opt_to_nec_pnads) # Assert data has been correctly partitioned amongst PNADs. self._assert_all_data_in_exactly_one_datastore(final_pnads) return final_pnads def _backchain_multipass( self, param_opt_to_nec_pnads: Dict[ParameterizedOption, List[PartialNSRTAndDatastore]], param_opt_to_general_pnad: Dict[ParameterizedOption, PartialNSRTAndDatastore] ) -> None: """Take multiple passes through the demonstrations, running self._backchain_one_pass() each time. Keep going until the PNADs reach a fixed point. Note that this process creates operators with only parameters, preconditions, and add effects. """ while True: # Before each pass, clear the poss_keep_effects # of all the PNADs. We do this because we only want the # poss_keep_effects of the final pass, where the PNADs did # not change. However, we cannot simply clear the # pnad.seg_to_keep_effects_sub because some of these # substitutions might be necessary if this happens to be # a PNAD that already has keep effects. Thus, we call a # method that handles this correctly. for pnads in param_opt_to_nec_pnads.values(): for pnad in pnads: pnad.poss_keep_effects.clear() self._clear_unnecessary_keep_effs_sub(pnad) # Run one pass of backchaining. nec_pnad_set_changed = self._backchain_one_pass( param_opt_to_nec_pnads, param_opt_to_general_pnad) if not nec_pnad_set_changed: break def _backchain_one_pass( self, param_opt_to_nec_pnads: Dict[ParameterizedOption, List[PartialNSRTAndDatastore]], param_opt_to_general_pnad: Dict[ParameterizedOption, PartialNSRTAndDatastore] ) -> bool: """Take one pass through the demonstrations in the given order. Go through each one from the end back to the start, making the PNADs more specific whenever needed. Return whether any PNAD was changed. """ # Reset all segments' necessary_add_effects so that they aren't # accidentally used from a previous iteration of backchaining. self._reset_all_segment_add_effs() nec_pnad_set_changed = False for ll_traj, seg_traj in zip(self._trajectories, self._segmented_trajs): if not ll_traj.is_demo: continue traj_goal = self._train_tasks[ll_traj.train_task_idx].goal atoms_seq = utils.segment_trajectory_to_atoms_sequence(seg_traj) assert traj_goal.issubset(atoms_seq[-1]) # This variable, necessary_image, gets updated as we # backchain. It always holds the set of ground atoms that # are necessary for the remainder of the plan to reach the # goal. At the start, necessary_image is simply the goal. necessary_image = set(traj_goal) for t in range(len(atoms_seq) - 2, -1, -1): segment = seg_traj[t] option = segment.get_option() # Find the necessary PNADs associated with this option. If # there are none, then use the general PNAD associated with # this option. (But make sure to use a copy of it, because we # don't want the general PNAD to get mutated when we mutate # necessary PNADs!) if len(param_opt_to_nec_pnads[option.parent]) == 0: general_pnad = param_opt_to_general_pnad[option.parent] pnads_for_option = [ PartialNSRTAndDatastore(general_pnad.op, list(general_pnad.datastore), general_pnad.option_spec) ] else: pnads_for_option = param_opt_to_nec_pnads[option.parent] # Compute the ground atoms that must be added on this timestep. # They must be a subset of the current PNAD's add effects. necessary_add_effects = necessary_image - atoms_seq[t] assert necessary_add_effects.issubset(segment.add_effects) # Update the segment's necessary_add_effects. segment.necessary_add_effects = necessary_add_effects # We start by checking if any of the PNADs associated with the # demonstrated option are able to match this transition. objects = set(segment.states[0]) pnad, var_to_obj = self._find_best_matching_pnad_and_sub( segment, objects, pnads_for_option) if pnad is not None: assert var_to_obj is not None obj_to_var = {v: k for k, v in var_to_obj.items()} assert len(var_to_obj) == len(obj_to_var) ground_op = pnad.op.ground( tuple(var_to_obj[var] for var in pnad.op.parameters)) if len(param_opt_to_nec_pnads[option.parent]) == 0: param_opt_to_nec_pnads[option.parent].append(pnad) # If we weren't able to find a substitution (i.e, the above # _find_best_matching call didn't yield a PNAD), we need to # spawn a new PNAD from the most general PNAD to cover # these necessary add effects. else: nec_pnad_set_changed = True pnad = self._spawn_new_pnad( param_opt_to_general_pnad[option.parent], segment) param_opt_to_nec_pnads[option.parent].append(pnad) # Recompute datastores for ALL PNADs associated with this # option. We need to do this because the new PNAD may now # be a better match for some transition that we previously # matched to another PNAD. self._recompute_datastores_from_segments( param_opt_to_nec_pnads[option.parent]) # Recompute all preconditions, now that we have recomputed # the datastores. While doing this, keep track of any # PNADs that get empty datastores. pnads_to_remove = [] for nec_pnad in param_opt_to_nec_pnads[option.parent]: if len(nec_pnad.datastore) > 0: pre = self._induce_preconditions_via_intersection( nec_pnad) nec_pnad.op = nec_pnad.op.copy_with( preconditions=pre) else: pnads_to_remove.append(nec_pnad) # Remove PNADs that are no longer necessary because they # have no data in their datastores. for rem_pnad in pnads_to_remove: param_opt_to_nec_pnads[option.parent].remove(rem_pnad) # After all this, the unification call that failed earlier # (leading us into the current else statement) should work. best_score_pnad, var_to_obj = \ self._find_best_matching_pnad_and_sub( segment, objects, param_opt_to_nec_pnads[option.parent]) assert var_to_obj is not None assert best_score_pnad == pnad obj_to_var = {v: k for k, v in var_to_obj.items()} assert len(var_to_obj) == len(obj_to_var) ground_op = pnad.op.ground( tuple(var_to_obj[var] for var in pnad.op.parameters)) # Every atom in the necessary_image that wasn't in the # ground_op's add effects is a possible keep effect. This # may add new variables, whose mappings for this segment # we keep track of in the seg_to_keep_effects_sub dict. for atom in necessary_image - ground_op.add_effects: keep_eff_sub = {} for obj in atom.objects: if obj in obj_to_var: continue new_var = utils.create_new_variables( [obj.type], obj_to_var.values())[0] obj_to_var[obj] = new_var keep_eff_sub[new_var] = obj pnad.poss_keep_effects.add(atom.lift(obj_to_var)) if segment not in pnad.seg_to_keep_effects_sub: pnad.seg_to_keep_effects_sub[segment] = {} pnad.seg_to_keep_effects_sub[segment].update(keep_eff_sub) # Update necessary_image for this timestep. It no longer # needs to include the ground add effects of this PNAD, but # must now include its ground preconditions. necessary_image -= { a.ground(var_to_obj) for a in pnad.op.add_effects } necessary_image |= { a.ground(var_to_obj) for a in pnad.op.preconditions } return nec_pnad_set_changed def _induce_delete_side_keep( self, param_opt_to_nec_pnads: Dict[ParameterizedOption, List[PartialNSRTAndDatastore]] ) -> None: """Given the current PNADs where add effects and preconditions are correct, learn the remaining components: delete effects, side predicates, and keep_effects. Note that this may require spawning new PNADs with keep effects. """ for option, nec_pnad_list in sorted(param_opt_to_nec_pnads.items(), key=str): pnads_with_keep_effects = set() for pnad in nec_pnad_list: self._compute_pnad_delete_effects(pnad) self._compute_pnad_side_predicates(pnad) pnads_with_keep_effects |= self._get_pnads_with_keep_effects( pnad) param_opt_to_nec_pnads[option].extend( list(pnads_with_keep_effects)) def _reset_all_segment_add_effs(self) -> None: """Reset all segments' necessary_add_effects to None.""" for ll_traj, seg_traj in zip(self._trajectories, self._segmented_trajs): if not ll_traj.is_demo: continue for segment in seg_traj: segment.necessary_add_effects = None @staticmethod def _clear_unnecessary_keep_effs_sub( pnad: PartialNSRTAndDatastore) -> None: """Clear unnecessary substitution values from the PNAD's seg_to_keep_effects_sub_dict. A substitution is unnecessary if it concerns a variable that isn't in the PNAD's op parameters. """ for segment, keep_eff_sub in pnad.seg_to_keep_effects_sub.items(): new_keep_eff_sub_dict = {} for var, obj in keep_eff_sub.items(): if var in pnad.op.parameters: new_keep_eff_sub_dict[var] = obj pnad.seg_to_keep_effects_sub[segment] = new_keep_eff_sub_dict @staticmethod def _get_uniquely_named_nec_pnads( param_opt_to_nec_pnads: Dict[ParameterizedOption, List[PartialNSRTAndDatastore]] ) -> List[PartialNSRTAndDatastore]: """Given the param_opt_to_nec_pnads dict, return a list of PNADs that have unique names and can be used for planning.""" uniquely_named_nec_pnads: List[PartialNSRTAndDatastore] = [] for pnad_list in sorted(param_opt_to_nec_pnads.values(), key=str): for i, pnad in enumerate(pnad_list): new_op = pnad.op.copy_with(name=(pnad.op.name + str(i))) new_pnad = PartialNSRTAndDatastore(new_op, list(pnad.datastore), pnad.option_spec) uniquely_named_nec_pnads.append(new_pnad) return uniquely_named_nec_pnads @classmethod def get_name(cls) -> str: return "backchaining" def _spawn_new_pnad(self, pnad: PartialNSRTAndDatastore, segment: Segment) -> PartialNSRTAndDatastore: """Given a general PNAD and some segment with necessary add effects that the PNAD must achieve, create a new PNAD ("spawn" from the most general one) so that it has the necessary add effects contained in the given segment. Returns the newly constructed PNAD, without modifying the original. """ # Assert that the segment contains necessary_add_effects. necessary_add_effects = segment.necessary_add_effects assert necessary_add_effects is not None # Assert that this really is a general PNAD. assert len(pnad.op.add_effects) == 0, \ "Can't spawn from non-general PNAD" # Get an arbitrary grounding of the PNAD's operator whose # preconditions hold in segment.init_atoms. objects = set(segment.states[0]) _, var_to_obj = self._find_best_matching_pnad_and_sub( segment, objects, [pnad], check_only_preconditions=True) # Assert that such a grounding exists - this must be the case # since we only ever call this method with the most general # PNAD for the option. assert var_to_obj is not None obj_to_var = {v: k for k, v in var_to_obj.items()} assert len(var_to_obj) == len(obj_to_var) # Before we can lift the necessary_add_effects, we need to add new # entries to obj_to_var, since necessary_add_effects may # contain objects that were not in the ground operator's # parameters. all_objs = {o for eff in necessary_add_effects for o in eff.objects} missing_objs = sorted(all_objs - set(obj_to_var)) new_vars = utils.create_new_variables([o.type for o in missing_objs], existing_vars=pnad.op.parameters) obj_to_var.update(dict(zip(missing_objs, new_vars))) # Finally, we can lift necessary_add_effects. updated_params = sorted(obj_to_var.values()) updated_add_effects = { a.lift(obj_to_var) for a in necessary_add_effects } # Create a new PNAD with the given parameters and add effects. Set # the preconditions to be trivial. They will be recomputed later. new_pnad_op = pnad.op.copy_with(parameters=updated_params, preconditions=set(), add_effects=updated_add_effects) new_pnad = PartialNSRTAndDatastore(new_pnad_op, [], pnad.option_spec) # Note: we don't need to copy anything related to keep effects into # new_pnad here, because we only care about keep effects on the final # iteration of backchaining, where this function is never called. return new_pnad @staticmethod def _compute_pnad_delete_effects(pnad: PartialNSRTAndDatastore) -> None: """Update the given PNAD to change the delete effects to ones obtained by unioning all lifted images in the datastore. IMPORTANT NOTE: We want to do a union here because the most general delete effects are the ones that capture _any possible_ deletion that occurred in a training transition. (This is contrast to preconditions, where we want to take an intersection over our training transitions.) However, we do not allow creating new variables when we create these delete effects. Instead, we filter out delete effects that include new variables. Therefore, even though it may seem on the surface like this procedure will cause all delete effects in the data to be modeled accurately, this is not actually true. """ delete_effects = set() for segment, var_to_obj in pnad.datastore: obj_to_var = {o: v for v, o in var_to_obj.items()} atoms = { atom for atom in segment.delete_effects if all(o in obj_to_var for o in atom.objects) } lifted_atoms = {atom.lift(obj_to_var) for atom in atoms} delete_effects |= lifted_atoms pnad.op = pnad.op.copy_with(delete_effects=delete_effects) @staticmethod def _compute_pnad_side_predicates(pnad: PartialNSRTAndDatastore) -> None: """Update the given PNAD to change the side predicates to ones that include every unmodeled add or delete effect seen in the data.""" # First, strip out any existing side predicates so that the call # to apply_operator() cannot use them, which would defeat the purpose. pnad.op = pnad.op.copy_with(side_predicates=set()) side_predicates = set() for (segment, var_to_obj) in pnad.datastore: objs = tuple(var_to_obj[param] for param in pnad.op.parameters) ground_op = pnad.op.ground(objs) next_atoms = utils.apply_operator(ground_op, segment.init_atoms) for atom in segment.final_atoms - next_atoms: side_predicates.add(atom.predicate) for atom in next_atoms - segment.final_atoms: side_predicates.add(atom.predicate) pnad.op = pnad.op.copy_with(side_predicates=side_predicates) @staticmethod def _get_pnads_with_keep_effects( pnad: PartialNSRTAndDatastore) -> Set[PartialNSRTAndDatastore]: """Return a new set of PNADs that include keep effects into the given PNAD.""" # The keep effects that we want are the subset of possible keep # effects which are not already in the PNAD's add effects, and # whose predicates were determined to be side predicates. keep_effects = { eff for eff in pnad.poss_keep_effects if eff not in pnad.op.add_effects and eff.predicate in pnad.op.side_predicates } new_pnads_with_keep_effects = set() # Given these keep effects, we need to create a combinatorial number of # PNADs, one for each unique combination of keep effects. Moreover, we # need to ensure that they are named differently from each other. Some # of these PNADs will be filtered out later if they are not useful to # cover any datapoints. for r in range(1, len(keep_effects) + 1): for keep_effects_subset in itertools.combinations(keep_effects, r): # These keep effects (keep_effects_subset) could involve new # variables, which we need to add to the PNAD parameters. params_set = set(pnad.op.parameters) for eff in keep_effects_subset: for var in eff.variables: params_set.add(var) parameters = sorted(params_set) # The keep effects go into both the PNAD preconditions and the # PNAD add effects. preconditions = pnad.op.preconditions | set( keep_effects_subset) add_effects = pnad.op.add_effects | set(keep_effects_subset) # Create the new PNAD. new_pnad_op = pnad.op.copy_with(parameters=parameters, preconditions=preconditions, add_effects=add_effects) new_pnad = PartialNSRTAndDatastore(new_pnad_op, [], pnad.option_spec) # Remember to copy seg_to_keep_effects_sub into the new_pnad! new_pnad.seg_to_keep_effects_sub = pnad.seg_to_keep_effects_sub new_pnads_with_keep_effects.add(new_pnad) return new_pnads_with_keep_effects def _assert_all_data_in_exactly_one_datastore( self, pnads: List[PartialNSRTAndDatastore]) -> None: """Assert that every demo datapoint appears in exactly one datastore among the given PNADs' datastores.""" all_segs_in_data_lst = [ seg for pnad in pnads for seg, _ in pnad.datastore ] all_segs_in_data = set(all_segs_in_data_lst) assert len(all_segs_in_data_lst) == len(all_segs_in_data) for ll_traj, seg_traj in zip(self._trajectories, self._segmented_trajs): if not ll_traj.is_demo: # ignore non-demo data continue for segment in seg_traj: assert segment in all_segs_in_data
StarcoderdataPython
3320448
from PIL import Image from PIL import ImageFilter import utils.logger as logger #from utils.rotate import rotate from config import * from typing import Tuple, List import sys i = 0 def crop_image(image, area:Tuple) -> object: ''' Uses PIL to crop an image, given its area. Input: image - PIL opened image Area - Coordinates in tuple (xmin, ymax, xmax, ymin) format ''' img1 = Image.open(image) img = img1.crop(area) basewidth = 200 wpercent = (basewidth/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) cropped_image = img.resize((basewidth,hsize), Image.ANTIALIAS) global i if i>3: i=0 cropped_image.save("croppedimage/r" + str(i) + ".jpg", "JPEG",dpi=(300,300)) i += 1 return cropped_image def locate_asset(self, image, classifier, lines="") -> List: ''' Determines where an asset is in the picture, returning a set of coordinates, for the top left, top right, bottom left, and bottom right of the tag Returns: [(area, image)] Area is the coordinates of the bounding box Image is the image, opened by PIL.''' cropped_images = [] #print(lines) for line in str(lines).split('\n'): if "sign" in line: continue if "photo" in line: continue #print(line) if "left_x" in line: #if 'photo' or 'sign' in line: # Extract the nameplate info #print(line) area = classifier.extract_info(line) # Open image cropped_images.append((area, crop_image(image, area))) if cropped_images == []: logger.bad("No label found in image.") else: logger.good("Found " + str(len(cropped_images)) + " label(s) in image.") return cropped_images
StarcoderdataPython
3263143
#Exercício Python 012: Faça um algoritmo que leia o preço de um produto e mostre seu novo preço, com 5% de desconto. price = float(input('Enter product price: ')) discount = price * 0.05 new_price = price - discount print('New product price is: %.2f' %new_price)
StarcoderdataPython
3265156
<filename>src/fnc/sequences.py<gh_stars>100-1000 """ Functions that operate on sequences. Most of these functions return generators so that they will be more efficient at processing large datasets. All generator functions will have a ``Yields`` section in their docstring to easily identify them as generators. Otherwise, functions that return concrete values with have a ``Returns`` section instead. """ from collections import Counter, deque from functools import partial import itertools from operator import not_ import fnc from .helpers import Container, iscollection, isgenerator _filter = filter _map = map def chunk(size, seq): """ Split elements of `seq` into chunks with length `size` and yield each chunk. Examples: >>> list(chunk(2, [1, 2, 3, 4, 5])) [[1, 2], [3, 4], [5]] Args: seq (Iterable): Iterable to chunk. size (int, optional): Chunk size. Defaults to ``1``. Yields: list: Chunked groups. """ if not isinstance(size, int) or size <= 0: # pragma: no cover raise ValueError("size must be an integer greater than zero") group = [] for item in seq: if len(group) >= size: yield group group = [] group.append(item) if group: yield group def compact(seq): """ Exclude elements from `seq` that are falsey. Examples: >>> list(compact(['', 1, 0, True, False, None])) [1, True] Args: seq (Iterable): Iterable to compact. Yields: Elements that are truthy. """ for item in seq: if item: yield item def concat(*seqs): """ Concatenates zero or more iterables into a single iterable. Examples: >>> list(concat([1, 2], [3, 4], [[5], [6]])) [1, 2, 3, 4, [5], [6]] Args: *seqs (Iterable): Iterables to concatenate. Yields: Each element from all iterables. """ return itertools.chain.from_iterable(seqs) def countby(iteratee, seq): """ Return a ``dict`` composed of keys generated from the results of running each element of `seq` through the `iteratee`. Examples: >>> result = countby(None, [1, 2, 1, 2, 3, 4]) >>> result == {1: 2, 2: 2, 3: 1, 4: 1} True >>> result = countby(lambda x: x.lower(), ['a', 'A', 'B', 'b']) >>> result == {'a': 2, 'b': 2} True >>> result = countby('a', [{'a': 'x'}, {'a': 'x'}, {'a': 'y'}]) >>> result == {'x': 2, 'y': 1} True Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: dict """ return dict(Counter(map(iteratee, seq))) def difference(seq, *seqs): """ Yields elements from `seq` that are not in `seqs`. Note: This function is like ``set.difference()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(difference([1, 2, 3], [1], [2])) [3] >>> list(difference([1, 4, 2, 3, 5, 0], [1], [2, 0])) [4, 3, 5] >>> list(difference([1, 3, 4, 1, 2, 4], [1, 4])) [3, 2] Args: seq (Iterable): Iterable to compute difference against. *seqs (Iterable): Other iterables to compare with. Yields: Each element in `seq` that doesn't appear in `seqs`. """ yield from differenceby(None, seq, *seqs) def differenceby(iteratee, seq, *seqs): """ Like :func:`difference` except that an `iteratee` is used to modify each element in the sequences. The modified values are then used for comparison. Note: This function is like ``set.difference()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(differenceby('a', [{'a': 1}, {'a': 2}, {'a': 3}], [{'a': 1}], [{'a': 2}])) [{'a': 3}] >>> list(differenceby(lambda x: x % 4, [1, 4, 2, 3, 5, 0], [1], [2, 0])) [3] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to compute difference against. *seqs (Iterable): Other iterables to compare with. Yields: Each element in `seq` that doesn't appear in `seqs`. """ if not seqs: yield from unionby(iteratee, seq) return if iteratee is not None: iteratee = fnc.iteratee(iteratee) yielded = Container() # Concat sequences into a single sequence and map iteratee to each item so that the # computed value only needs to be done once for each item since that is what we'll # compare to below. We'll store these values into a iterable in case any of the # sequences are a generator/iterator that would get exhausted if we tried to iterate # over it more than once. others = Container(map(iteratee, concat(*seqs))) for item in seq: if iteratee is not None: value = iteratee(item) else: value = item if value in yielded or value in others: continue yield item yielded.add(value) def duplicates(seq, *seqs): """ Yields unique elements from sequences that are repeated one or more times. Note: The order of yielded elements depends on when the second duplicated element is found and not when the element first appeared. Examples: >>> list(duplicates([0, 1, 3, 2, 3, 1])) [3, 1] >>> list(duplicates([0, 1], [3, 2], [3, 1])) [3, 1] Args: seq (Iterable): Iterable to check for duplicates. *seqs (Iterable): Other iterables to compare with. Yields: Duplicated elements. """ yield from duplicatesby(None, seq, *seqs) def duplicatesby(iteratee, seq, *seqs): """ Like :func:`duplicates` except that an `iteratee` is used to modify each element in the sequences. The modified values are then used for comparison. Examples: >>> list(duplicatesby('a', [{'a':1}, {'a':3}, {'a':2}, {'a':3}, {'a':1}])) [{'a': 3}, {'a': 1}] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to check for duplicates *seqs (Iterable): Other iterables to compare with. Yields: Each element in `seq` that doesn't appear in `seqs`. """ if iteratee is not None: iteratee = fnc.iteratee(iteratee) seen = Container() yielded = Container() for item in itertools.chain(seq, *seqs): if iteratee is not None: value = iteratee(item) else: value = item if value not in seen: seen.add(value) continue if value not in yielded: yield item yielded.add(value) def filter(iteratee, seq): """ Filter `seq` by `iteratee`, yielding only the elements that the iteratee returns truthy for. Note: This function is like the builtin ``filter`` except it converts `iteratee` into a fnc-style predicate. Examples: >>> result = filter({'a': 1}, [{'a': 1}, {'b': 2}, {'a': 1, 'b': 3}]) >>> list(result) == [{'a': 1}, {'a': 1, 'b': 3}] True >>> list(filter(lambda x: x >= 3, [1, 2, 3, 4])) [3, 4] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to filter. Yields: Filtered elements. """ return _filter(fnc.iteratee(iteratee), seq) def find(iteratee, seq): """ Iterates over elements of `seq`, returning the first element that the iteratee returns truthy for. Examples: >>> find(lambda x: x >= 3, [1, 2, 3, 4]) 3 >>> find(lambda x: x >= 5, [1, 2, 3, 4]) is None True >>> find({'a': 1}, [{'a': 1}, {'b': 2}, {'a': 1, 'b': 2}]) {'a': 1} >>> result = find({'a': 1}, [{'b': 2}, {'a': 1, 'b': 2}, {'a': 1}]) >>> result == {'a': 1, 'b': 2} True Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: First element found or ``None``. """ for item in filter(iteratee, seq): return item def findindex(iteratee, seq): """ Return the index of the element in `seq` that returns ``True`` for `iteratee`. If no match is found, ``-1`` is returned. Examples: >>> findindex(lambda x: x >= 3, [1, 2, 3, 4]) 2 >>> findindex(lambda x: x > 4, [1, 2, 3, 4]) -1 Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to process. Returns: int: Index of found item or ``-1`` if not found. """ iteratee = fnc.iteratee(iteratee) return next((i for i, value in enumerate(seq) if iteratee(value)), -1) def findlast(iteratee, seq): """ This function is like :func:`find` except it iterates over elements of `seq` from right to left. Examples: >>> findlast(lambda x: x >= 3, [1, 2, 3, 4]) 4 >>> findlast(lambda x: x >= 5, [1, 2, 3, 4]) is None True >>> result = findlast({'a': 1}, [{'a': 1}, {'b': 2}, {'a': 1, 'b': 2}]) >>> result == {'a': 1, 'b': 2} True Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: Last element found or ``None``. """ return find(iteratee, reversed(seq)) def findlastindex(iteratee, seq): """ Return the index of the element in `seq` that returns ``True`` for `iteratee`. If no match is found, ``-1`` is returned. Examples: >>> findlastindex(lambda x: x >= 3, [1, 2, 3, 4]) 3 >>> findlastindex(lambda x: x > 4, [1, 2, 3, 4]) -1 Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to process. Returns: int: Index of found item or ``-1`` if not found. """ iteratee = fnc.iteratee(iteratee) return next((i for i, value in reversed(tuple(enumerate(seq))) if iteratee(value)), -1) def flatten(*seqs): """ Flatten iterables a single level deep. Examples: >>> list(flatten([[1], [2, [3]], [[4]]])) [1, 2, [3], [4]] >>> list(flatten([[1], [2, [3]], [[4]]], [5, [6, 7]])) [1, 2, [3], [4], 5, 6, 7] Args: *seqs (Iterables): Iterables to flatten. Yields: Eelements from the flattened iterable. """ for item in itertools.chain.from_iterable(seqs): if iscollection(item): yield from item else: yield item def flattendeep(*seqs): """ Recursively flatten iterables. Examples: >>> list(flattendeep([[1], [2, [3]], [[4]]])) [1, 2, 3, 4] >>> list(flattendeep([[1], [2, [3]], [[4]]], [5, [6, 7]])) [1, 2, 3, 4, 5, 6, 7] >>> list(flattendeep([[1], [2, [3]], [[4]]], [5, [[[[6, [[[7]]]]]]]])) [1, 2, 3, 4, 5, 6, 7] Args: *seqs (Iterables): Iterables to flatten. Yields: Flattened elements. """ for item in itertools.chain.from_iterable(seqs): if iscollection(item): yield from flattendeep(item) else: yield item def groupall(iteratees, seq): """ This function is like :func:`groupby` except it supports nested grouping by multiple iteratees. If only a single iteratee is given, it is like calling :func:`groupby`. Examples: >>> result = groupall( ... ['shape', 'qty'], ... [ ... {'shape': 'square', 'color': 'red', 'qty': 5}, ... {'shape': 'square', 'color': 'blue', 'qty': 10}, ... {'shape': 'square', 'color': 'orange', 'qty': 5}, ... {'shape': 'circle', 'color': 'yellow', 'qty': 5}, ... {'shape': 'circle', 'color': 'pink', 'qty': 10}, ... {'shape': 'oval', 'color': 'purple', 'qty': 5} ... ] ... ) >>> expected = { ... 'square': { ... 5: [ ... {'shape': 'square', 'color': 'red', 'qty': 5}, ... {'shape': 'square', 'color': 'orange', 'qty': 5} ... ], ... 10: [{'shape': 'square', 'color': 'blue', 'qty': 10}] ... }, ... 'circle': { ... 5: [{'shape': 'circle', 'color': 'yellow', 'qty': 5}], ... 10: [{'shape': 'circle', 'color': 'pink', 'qty': 10}] ... }, ... 'oval': { ... 5: [{'shape': 'oval', 'color': 'purple', 'qty': 5}] ... } ... } >>> result == expected True Args: iteratees (Iterable): Iteratees to group by. seq (Iterable): Iterable to iterate over. Returns: dict: Results of recursively grouping by all `iteratees`. """ if not iteratees: return seq head, *rest = iteratees return fnc.mapvalues(partial(groupall, rest), groupby(head, seq)) def groupby(iteratee, seq): """ Return a ``dict`` composed of keys generated from the results of running each element of `seq` through the `iteratee`. Examples: >>> result = groupby('a', [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]) >>> result == {1: [{'a': 1, 'b': 2}], 3: [{'a': 3, 'b': 4}]} True >>> result = groupby({'a': 1}, [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]) >>> result == {False: [{'a': 3, 'b': 4}], True: [{'a': 1, 'b': 2}]} True Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: dict: Results of grouping by `iteratee`. """ result = {} iteratee = fnc.iteratee(iteratee) for item in seq: result.setdefault(iteratee(item), []).append(item) return result def intercalate(value, seq): """ Insert `value` between each element in `seq` and concatenate the results. Examples: >>> list(intercalate('x', [1, [2], [3], 4])) [1, 'x', 2, 'x', 3, 'x', 4] >>> list(intercalate(', ', ['Lorem', 'ipsum', 'dolor'])) ['Lorem', ', ', 'ipsum', ', ', 'dolor'] >>> ''.join(intercalate(', ', ['Lorem', 'ipsum', 'dolor'])) 'Lorem, ipsum, dolor' >>> list(intercalate([0,0,0], [[1,2,3],[4,5,6],[7,8,9]])) [1, 2, 3, 0, 0, 0, 4, 5, 6, 0, 0, 0, 7, 8, 9] Args: value (object): Element to insert. seq (Iterable): Iterable to intercalate. Yields: Elements of the intercalated iterable. """ return flatten(intersperse(value, seq)) def interleave(*seqs): """ Merge multiple iterables into a single iterable by inserting the next element from each iterable by sequential round-robin. Examples: >>> list(interleave([1, 2, 3], [4, 5, 6], [7, 8, 9])) [1, 4, 7, 2, 5, 8, 3, 6, 9] Args: *seqs (Iterable): Iterables to interleave. Yields: Elements of the interleaved iterable. """ queue = deque(iter(seq) for seq in seqs) while queue: seq = queue.popleft() try: yield next(seq) except StopIteration: pass else: queue.append(seq) def intersection(seq, *seqs): """ Computes the intersection of all the passed-in iterables. Note: This function is like ``set.intersection()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(intersection([1, 2, 3], [1, 2, 3, 4, 5], [2, 3])) [2, 3] >>> list(intersection([1, 2, 3])) [1, 2, 3] Args: seq (Iterable): Iterable to compute intersection against. *seqs (Iterable): Other iterables to compare with. Yields: Elements that itersect. """ yield from intersectionby(None, seq, *seqs) def intersectionby(iteratee, seq, *seqs): """ Like :func:`intersection` except that an `iteratee` is used to modify each element in the sequences. The modified values are then used for comparison. Note: This function is like ``set.intersection()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(intersectionby( ... 'a', ... [{'a': 1}, {'a': 2}, {'a': 3}], ... [{'a': 1}, {'a': 2}, {'a': 3}, {'a': 4}, {'a': 5}], ... [{'a': 2}, {'a': 3}] ... )) [{'a': 2}, {'a': 3}] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to compute intersection against. *seqs (Iterable): Other iterables to compare with. Yields: Elements that intersect. """ if not seqs: yield from unionby(iteratee, seq) return if iteratee is not None: iteratee = fnc.iteratee(iteratee) yielded = Container() # Map iteratee to each item in each other sequence and compute intersection of those # values to reduce number of times iteratee is called. The resulting sequence will # be an intersection of computed values which will be used to compare to the primary # sequence. We'll store these values into a iterable in case any of the sequences # are a generator/iterator that would get exhausted if we tried to iterate over it # more than once. others = Container(intersection(*(map(iteratee, other) for other in seqs))) for item in seq: if iteratee is not None: value = iteratee(item) else: value = item if value in yielded: continue if value in others: yield item yielded.add(value) def intersperse(value, seq): """ Insert a separating element between each element in `seq`. Examples: >>> list(intersperse('x', [1, [2], [3], 4])) [1, 'x', [2], 'x', [3], 'x', 4] Args: value (object): Element to insert. seq (Iterable): Iterable to intersperse. Yields: Elements of the interspersed iterable. """ seq = iter(seq) try: yield next(seq) except StopIteration: return for item in seq: yield value yield item def keyby(iteratee, seq): """ Return a ``dict`` composed of keys generated from the results of running each element of `seq` through the `iteratee`. Examples: >>> results = keyby('a', [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]) >>> results == {1: {'a': 1, 'b': 2}, 3: {'a': 3, 'b': 4}} True Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: dict: Results of indexing by `iteratee`. """ iteratee = fnc.iteratee(iteratee) return {iteratee(value): value for value in seq} def map(iteratee, *seqs): """ Map `iteratee` to each element of iterable and yield the results. If additional iterable arguments are passed, `iteratee` must take that many arguments and is applied to the items from all iterables in parallel. Note: This function is like the builtin ``map`` except it converts `iteratee` into a fnc-style predicate. Examples: >>> list(map(str, [1, 2, 3, 4])) ['1', '2', '3', '4'] >>> list(map('a', [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}, {'a': 5, 'b': 6}])) [1, 3, 5] >>> list(map('0.1', [[[0, 1]], [[2, 3]], [[4, 5]]])) [1, 3, 5] >>> list(map('a.b', [{'a': {'b': 1}}, {'a': {'b': 2}}])) [1, 2] >>> list(map('a.b[1]', [{'a': {'b': [0, 1]}}, {'a': {'b': [2, 3]}}])) [1, 3] Args: iteratee (object): Iteratee applied per iteration. *seqs (Iterable): Iterables to map. Yields: Mapped elements. """ return _map(fnc.iteratee(iteratee), *seqs) def mapcat(iteratee, *seqs): """ Map an `iteratee` to each element of each iterable in `seqs` and concatenate the results into a single iterable. Examples: >>> list(mapcat(lambda x: list(range(x)), range(4))) [0, 0, 1, 0, 1, 2] Args: iteratee (object): Iteratee to apply to each element. *seqs (Iterable): Iterable to map and concatenate. Yields: Elements resulting from concat + map operations. """ return concat(*map(iteratee, *seqs)) def mapflat(iteratee, *seqs): """ Map an `iteratee` to each element of each iterable in `seqs` and flatten the results. Examples: >>> list(mapflat(lambda n: [[n, n]], [1, 2])) [[1, 1], [2, 2]] Args: iteratee (object): Iteratee applied per iteration. *seqs (Iterable): Iterables to iterate over. Yields: Elements result from flatten + map operations. """ return flatten(map(iteratee, *seqs)) def mapflatdeep(iteratee, *seqs): """ Map an `iteratee` to each element of each iterable in `seqs` and recurisvely flatten the results. Examples: >>> list(mapflatdeep(lambda n: [[n, n]], [1, 2])) [1, 1, 2, 2] Args: iteratee (object): Iteratee applied per iteration. *seqs (Iterable): Iterables to iterate over. Yields: Elements result from recursive flatten + map operations. """ return flattendeep(map(iteratee, *seqs)) def partition(iteratee, seq): """ Return a ``tuple`` of 2 lists containing elements from `seq` split into two groups where the first group contains all elements the `iteratee` returned truthy for and the second group containing the falsey elements. Examples: >>> partition(lambda x: x % 2, [1, 2, 3, 4]) ([1, 3], [2, 4]) Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Returns: tuple[list] """ iteratee = fnc.iteratee(iteratee) successes = [] failures = [] for item in seq: if iteratee(item): successes.append(item) else: failures.append(item) return successes, failures def reject(iteratee, seq): """ The opposite of :func:`filter` this function yields the elements of `seq` that the `iteratee` returns falsey for. Examples: >>> list(reject(lambda x: x >= 3, [1, 2, 3, 4])) [1, 2] >>> list(reject('a', [{'a': 0}, {'a': 1}, {'a': 2}])) [{'a': 0}] >>> list(reject({'a': 1}, [{'a': 0}, {'a': 1}, {'a': 2}])) [{'a': 0}, {'a': 2}] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to iterate over. Yields: Rejected elements. """ iteratee = fnc.iteratee(iteratee) return filter(fnc.compose(iteratee, not_), seq) def union(seq, *seqs): """ Computes the union of the passed-in iterables (sometimes referred to as ``unique``). Note: This function is like ``set.union()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(union([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> list(union([1, 2, 3], [2, 3, 4], [3, 4, 5])) [1, 2, 3, 4, 5] Args: seq (Iterable): Iterable to compute union against. *seqs (Iterable): Other iterables to compare with. Yields: Each unique element from all iterables. """ yield from unionby(None, seq, *seqs) def unionby(iteratee, seq, *seqs): """ Like :func:`union` except that an `iteratee` is used to modify each element in the sequences. The modified values are then used for comparison. Note: This function is like ``set.union()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Examples: >>> list(unionby( ... 'a', ... [{'a': 1}, {'a': 2}, {'a': 3}, {'a': 1}, {'a': 2}, {'a': 3}] ... )) [{'a': 1}, {'a': 2}, {'a': 3}] Args: iteratee (object): Iteratee applied per iteration. seq (Iterable): Iterable to compute union against. *seqs (Iterable): Other iterables to compare with. Yields: Each unique element from all iterables. """ if iteratee is not None: iteratee = fnc.iteratee(iteratee) seen = Container() for item in itertools.chain(seq, *seqs): if iteratee is not None: value = iteratee(item) else: value = item if value not in seen: yield item seen.add(value) def unzip(seq): """ The inverse of the builtin ``zip`` function, this method transposes groups of elements into new groups composed of elements from each group at their corresponding indexes. Examples: >>> list(unzip([(1, 4, 7), (2, 5, 8), (3, 6, 9)])) [(1, 2, 3), (4, 5, 6), (7, 8, 9)] >>> list(unzip(unzip([(1, 4, 7), (2, 5, 8), (3, 6, 9)]))) [(1, 4, 7), (2, 5, 8), (3, 6, 9)] Args: seq (Iterable): Iterable to unzip. Yields: tuple: Each transposed group. """ return zip(*seq) def without(values, seq): """ Exclude elements in `seq` that are in `values`. Examples: >>> list(without([2, 4], [1, 2, 3, 2, 4, 4, 3])) [1, 3, 3] Args: values (mixed): Values to remove. seq (Iterable): List to filter. Yields: Elements not in `values`. """ for item in seq: if item not in values: yield item def xor(seq, *seqs): """ Computes the symmetric difference of the provided iterables where the elements are only in one of the iteralbes. Note: This function is like ``set.symmetric_difference()`` except it works with both hashable and unhashable values and preserves the ordering of the original iterables. Warning: While this function returns a generator object, internally it will create intermediate non-generator iterables which may or may not be a performance concern depending on the sizes of the inputs. Examples: >>> list(xor([1, 3, 4], [1, 2, 4], [2])) [3] Args: seq (Iterable): Iterable to compute symmetric difference against. *seqs (Iterable): Other iterables to compare with. Yields: Elements from the symmetric difference. """ if not seqs: yield from seq return head, *rest = seqs if isgenerator(seq): seq = tuple(seq) if isgenerator(head): head = tuple(head) a = union(seq, head) b = tuple(intersection(seq, head)) d = difference(a, b) yield from xor(d, *rest)
StarcoderdataPython
1695285
from ttracker.model.items.match import MatchResult class Player: def __init__(self, content): self.user_id = content['userId'] self.player_name = content['playerName'] self.system_seat_id = content['systemSeatId'] self.team_id = content['teamId'] def __repr__(self): return f'<{self.__class__.__name__}>' def __str__(self): return f'<{self.player_name}>' class GameRoomConfig: def __init__(self, content): self.event_id = content['eventId'] self.reserved_players = self.get_reserved_players(content) self.match_id = content['matchId'] @staticmethod def get_reserved_players(content): if content.get('reservedPlayers'): return [Player(player) for player in content['reservedPlayers']] def __repr__(self): return f'<{self.__class__.__name__}>' def __str__(self): return f'<{self.match_id}>' class MatchGameRoomStateChangedEvent: def __init__(self, content): self.transaction_id = content['transactionId'] self.timestamp = content['timestamp'] game_room_info = content['matchGameRoomStateChangedEvent'][ 'gameRoomInfo'] self.game_room_config = GameRoomConfig( game_room_info['gameRoomConfig']) self.state_type = game_room_info['stateType'] self.final_match_result = MatchResult( game_room_info.get('finalMatchResult', None)) def __repr__(self): return f'<{self.__class__.__name__}>' def __str__(self): return f'<{self.event_id}>'
StarcoderdataPython
3265142
from tracker.app import app as application
StarcoderdataPython
1720739
<gh_stars>0 import vk_api import datetime import colorama from colorama import Fore colorama.init() editnumber = [('0', '0⃣'), ('1', '1⃣'), ('2', '2⃣'), ('3', '3⃣'), ('4', '4⃣'), ('5', '5⃣'), ('6', '6⃣'), ('7', '7⃣'), ('8', '8⃣'), ('9', '9⃣')] ballnumber = [('0', ''), ('1', '❶'), ('2', '❷'), ('3', '❸'), ('4', '❹'), ('5', '❺'), ('6', '❻'), ('7', '❼'), ('8', '❽'), ('9', '❾')] holeballnumber = [('0', ''), ('1', '➀'), ('2', '➁'), ('3', '➂'), ('4', '➃'), ('5', '➄'), ('6', '➅'), ('7', '➆'), ('8', '➇'), ('9', '➈')] class status(object): """docstring for status""" def __init__(self, token, decor=0, debug=0, online = 0, friends = 0): super(status, self).__init__() self.decor = decor if token != '' and debug == 0: self.token = True self.debug = 0 else: self.token = False self.debug = 1 self.online = online self.friends = friends vk = vk_api.VkApi(token=token) self.vk = vk # аккаунт name = vk.method('account.getProfileInfo') self.first_name = name['first_name'] self.last_name = name['last_name'] self.screen_name = name['screen_name'] # ваши подписчики self.followerson = len(vk.method('users.getFollowers', {'count': '1000'})["items"]) self.friendsonline = len(vk.method('friends.getOnline')) self.bannedon = vk.method('account.getBanned', {'count': '200'})["count"] # ваши диалоги self.unreadmessageon = vk.method('account.getCounters', {'filter': 'messages'})['messages'] # статистика вашего аккаунта self.avalikes = vk.method('photos.get', {'album_id': 'profile', 'rev': 1, 'extended': 1, 'count': 1})["items"][0]["likes"]["count"] self.giftscounton = vk.method('gifts.get', {'count': '200'})["count"] # дата и время t = datetime.datetime.now() self.time = t.strftime("%H:%M") def date(self): t = datetime.datetime.now() return f'[{Fore.CYAN}{t}{Fore.RESET}]' def get_status(self, title): if self.decor == 1: for old, new in editnumber: title = title.replace(old, new) if self.decor == 2: for old, new in ballnumber: title = title.replace(old, new) if self.decor == 3: for old, new in holeballnumber: title = title.replace(old, new) try: if (len(title)< 140): if self.debug == 0: self.vk.method("status.set", {"text": title}) #отправка запроса на установку статуса print(f'\n{self.date()} <@{self.screen_name}> {Fore.GREEN}{title} {Fore.YELLOW}{self.token} {Fore.MAGENTA}{self.debug} {Fore.CYAN}{self.online} {Fore.BLUE}{self.friends}{Fore.RESET}') if self.debug == 1: print(f'{self.date()} <@{self.screen_name}> {Fore.GREEN}{title} {Fore.YELLOW}{self.token} {Fore.MAGENTA}{self.debug} {Fore.CYAN}{self.online} {Fore.BLUE}{self.friends}{Fore.RESET}') print(f"| {len(title)} / 140 символов") else: print(f'\n{self.date()} | статус @{self.screen_name} не может быть установлен из-за превышения лимита длинны в 140 символов') print(f'{len(title)} / 140 символов') except Exception as e: print(f'e: {Fore.YELLOW}{e}{Fore.RESET}') if self.online == 1: self.vk.method("account.setOnline") #отправляет запрос на установку статуса "Онлайн" на 5 минут else: self.vk.method("account.setOffline") # отправляет запрос на установку статуса "Оффлайн" каждые 5 минут #Удаление входящих заявок в друзья if self.friends == 1: self.vk.method("friends.deleteAllRequests") #удаляет все входящие заявки в друзья
StarcoderdataPython
76335
<filename>LiveFeedback/CentralLinePhantom1.py import os import keras import sys import time import numpy as np from keras.models import Sequential from keras.layers import Activation, GlobalAveragePooling2D from keras.layers.core import Dense, Dropout, Flatten from keras.optimizers import Adam, SGD from keras.metrics import categorical_crossentropy from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import * from keras.utils import Sequence import cv2 import matplotlib.pyplot as plt from pyIGTLink import pyIGTLink # Parameters image_size = 128 # Check command line arguments if len(sys.argv) < 2: print("Usage: {} WEIGHTS_FILE".format(sys.argv[0])) sys.exit() weights_file_name = sys.argv[1] print("Loading weights from: {}".format(weights_file_name)) # Building the model. Should be the same as the weights to be loaded. model = Sequential() model.add(Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(image_size, image_size, 1))) model.add(Conv2D(32, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(.2)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(.2)) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(.4)) model.add(Dense(2, activation='sigmoid')) model.load_weights(weights_file_name) print("Server starting...") client = pyIGTLink.PyIGTLinkClient(host="127.0.0.1") client.start() print("Server running...") try: image_squeezed = np.zeros([image_size, image_size]).astype(np.uint8) image_padded = np.zeros([1, image_size, image_size, 1]).astype(np.uint8) image_input = np.zeros([1, image_size, image_size, 1]).astype(np.uint8) cv2.circle(image_input[0,:,:,0], (10,10), 15, 255, 5) cv2.imshow("image", image_input[0,:,:,0]) cv2.waitKey(10) while True: messages = client.get_latest_messages() if len(messages) > 0: for message in messages: if message._type == "IMAGE": image = message._image image = np.flip(image, 1) image_squeezed = np.squeeze(image) image_padded[0,:,:,0] = cv2.resize(image_squeezed, (image_size, image_size)).astype(np.uint8) image_input = image_padded / 255.0 prediction = model.predict(image_input).tolist() print("Predicted center line: " + str(prediction[0])) cx = int(image_size*prediction[0][0]) cy = int(image_size*prediction[0][1]) cv2.circle(image_input[0,:,:,0], (cx, cy), 2, 255, thickness=1) cv2.imshow("image", image_input[0,:,:,0]) cv2.waitKey(10) client.send_message(pyIGTLink.StringMessage(str(prediction[0]), device_name=message._device_name+"Predicted")) time.sleep(0.1) except KeyboardInterrupt: pass client.stop()
StarcoderdataPython
3328103
<reponame>shiburizu/concerto-direct #core from winpty import PtyProcess #pywinpty import os, sys, time, re, threading, logging from functools import partial from datetime import datetime logging.basicConfig(filename='concerto.log', encoding='utf-8', level=logging.DEBUG) # Pyinstaller path helper def resource_path(relative_path): try: base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".") return os.path.join(base_path, relative_path) #Kivy core import kivy from kivy.config import Config Config.set('graphics', 'width', '600') Config.set('graphics', 'height', '400') Config.set('graphics', 'resizable', False) Config.set( "kivy", "default_font", [ "Tex Gyre", resource_path("texgyreheros-bolditalic.otf"), ], ) Config.set('input', 'mouse', 'mouse,multitouch_on_demand') Config.set('kivy','window_icon','concertoicon.ico') from kivy.app import App from kivy.lang import Builder from kivy.resources import resource_add_path, resource_find #Kivy widgets from kivy.properties import ObjectProperty from kivy.uix.screenmanager import Screen, ScreenManager from kivy.uix.gridlayout import GridLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.stacklayout import StackLayout from kivy.uix.label import Label from kivy.uix.textinput import TextInput from kivy.uix.button import Button from kivy.uix.popup import Popup from kivy.uix.modalview import ModalView from kivy.clock import Clock #clean caster output of ANSI escape codes ansi_escape = re.compile(r'(\x9B|\x1B\[)[0-?]*[ -\/]*[@-~]') class loghelper(): dateTimeObj = datetime.now() timestampStr = 'Concerto_' + dateTimeObj.strftime("%d-%b-%Y-%H-%M-%S") + '.txt' def write(self,s): with open(self.timestampStr,'a') as log: log.write(s) logger = loghelper() class Caster(): adr = None #current game IP playing = False #TODO True when Netplaying rf = -1 #user rollback frames df = -1 #user delay frames rs = -1 #suggested rollback frames ds = -1 #suggested delay frames p1 = None #TODO p1 side name p2 = None #TODO p2 side name aproc = None #active caster #n = [i for i in re.findall('[0-9]+',' '.join(scon)) if int(i) < 15] def isValidRead(self,scon): if "rollback:" in scon: sconlst = scon.split() rbn = 0 for r in reversed(sconlst): if r != 'rollback:': rbn += 1 elif r == 'rollback:': break if rbn > 0: rblst = re.sub("[^0-9]", "",''.join(sconlst[-rbn:])) if len(rblst) > 0: #only checking if a number exists, not using rblst anywhere p = re.findall('\d+\.\d+',scon) for m in p: if m in sconlst: sconlst.remove(m) n = [i for i in re.findall('[0-9]+',' '.join(sconlst)) if int(i) < 15] if len(n) >= 2: logger.write('\nrblst: %s\n' % rblst) logger.write('\nn: %s\n' % n) logger.write('\nVALID READ:\n%s\n' % scon.split()) return n return False def host(self,sc): #sc is active screen to trigger frame delay select proc = PtyProcess.spawn('cccaster.v3.0.exe -n 0') self.aproc = proc logger.write('\n== Host ==\n') while proc.isalive(): ip = re.findall(r'\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}:\d{,5}',proc.read()) #find IP and port combo for host if ip != []: self.adr = str(ip[0]) break logger.write('IP: %s\n' % self.adr) curCon = "" lastCon = "" con = "" while proc.isalive(): curCon = ansi_escape.sub('',str(proc.read())) con += lastCon + curCon if self.playing == False and self.rs == -1 and self.ds == -1: n = self.isValidRead(con) if n != False: logger.write('\n=================================\n') logger.write(str(con.split())) self.ds = int(n[-2]) - int(n[-1]) self.rs = int(n[-1]) r = [] namecheck = False #try to read names from caster output for x in reversed(con.split()): if namecheck == False and x == "connected": namecheck = True elif namecheck == True and x == '*': break elif namecheck == True and x.replace('*','') != '': r.insert(0,x) p = re.findall('\d+\.\d+',con) #find all floats in caster output and use the last one [-1] to make sure we get caster text sc.frameset(' '.join(r),n[-2],p[-1]) while True: #todo optimize frameset stutter by making this a thread if self.rf != -1 and self.df != -1: proc.write('\x08') #two backspace keys for edge case of >9 frames proc.write('\x08') proc.write(str(self.rf)) proc.write('\x0D') time.sleep(0.1) #slight delay to let caster refresh screen proc.write('\x08') proc.write('\x08') proc.write(str(self.df)) proc.write('\x0D') self.playing = True #set netplaying to avoid more reads break else: if lastCon != curCon: lastCon = curCon continue def join(self,ip,sc,*args): proc = PtyProcess.spawn('cccaster.v3.0.exe -n %s' % ip) self.aproc = proc curCon = "" lastCon = "" con = "" logger.write('\n== Join %s ==\n' % ip) while proc.isalive(): curCon = ansi_escape.sub('',str(proc.read())) con += lastCon + curCon if self.playing == False and self.rs == -1 and self.ds == -1: n = self.isValidRead(con) if n != False: logger.write('\n=================================\n') logger.write(str(con.split())) self.ds = int(n[-2]) - int(n[-1]) self.rs = int(n[-1]) r = [] namecheck = False #try to read names from caster output for x in con.split(): if x == "to" and namecheck == False: namecheck = True elif x == '*' and namecheck == True: break elif namecheck == True and x.replace('*','') != '': r.append(x) p = re.findall('\d+\.\d+',con) #find all floats in caster output and use the last one [-1] to make sure we get caster text sc.frameset(' '.join(r),n[-2],p[-1]) while True: if self.rf != -1 and self.df != -1: proc.write('\x08') proc.write('\x08') proc.write(str(self.rf)) proc.write('\x0D') time.sleep(0.1) proc.write('\x08') proc.write('\x08') proc.write(str(self.df)) proc.write('\x0D') self.playing = True break else: if lastCon != curCon: lastCon = curCon continue def watch(self,ip,*args): proc = PtyProcess.spawn('cccaster.v3.0.exe -n -s %s' % ip) self.aproc = proc curCon = "" lastCon = "" con = "" logger.write('\n== Watch %s ==\n' % ip) while proc.isalive(): curCon = ansi_escape.sub('',str(proc.read())) con += lastCon + curCon if "fast-forward)" in con: logger.write('\n=================================\n') logger.write(str(con.split())) proc.write('1') #start spectating, find names after r = [] for x in reversed(con.split()): if x == '*' and len(r) > 0: if r[0] == "Spectating": break elif x != '*' and x.replace('*','') != '': r.insert(0,x) CApp.DirectScreen.activePop.modalTxt.text = ' '.join(r) #replace connecting text with match name in caster break else: if lastCon != curCon: lastCon = curCon continue def training(self): proc = PtyProcess.spawn('cccaster.v3.0.exe') self.aproc = proc while proc.isalive(): if "Offline" in proc.read(): proc.write('4') #4 is offline time.sleep(0.1) proc.write('1') break def local(self): proc = PtyProcess.spawn('cccaster.v3.0.exe') self.aproc = proc while proc.isalive(): if "Offline" in proc.read(): proc.write('4') time.sleep(0.1) proc.write('2') break def tournament(self): proc = PtyProcess.spawn('cccaster.v3.0.exe') self.aproc = proc while proc.isalive(): if "Offline" in proc.read(): proc.write('4') time.sleep(0.1) proc.write('4') break def replays(self): proc = PtyProcess.spawn('cccaster.v3.0.exe') self.aproc = proc while proc.isalive(): if "Offline" in proc.read(): proc.write('4') time.sleep(0.1) proc.write('5') break class GameModal(ModalView): modalTxt = ObjectProperty(None) closeBtn = ObjectProperty(None) class FrameModal(ModalView): frameTxt = ObjectProperty(None) r_input = ObjectProperty(None) d_input = ObjectProperty(None) startBtn = ObjectProperty(None) closeBtn = ObjectProperty(None) class DirectScreen(Screen): userIP = ObjectProperty(None) #IP input field activePop = None #active popup on the screen def host(self, *args): caster = threading.Thread(target=CApp.game.host,args=[self],daemon=True) caster.start() while True: if CApp.game.adr is not None: popup = GameModal() popup.modalTxt.text = 'Hosting to IP: %s\nAddress copied to clipboard.' % CApp.game.adr popup.closeBtn.text = 'Stop Hosting' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() break def join(self, *args): caster = threading.Thread(target=CApp.game.join,args=[self.userIP.text,self],daemon=True) caster.start() popup = GameModal() popup.modalTxt.text = 'Connecting to IP: %s' % self.userIP.text popup.closeBtn.text = 'Stop Playing' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() def frameset(self,name,delay,ping): fpopup = FrameModal() fpopup.frameTxt.text = 'Connected to: %s\nPing: %s Network Delay: %s, Suggested: Rollback %s, Delay %s' % (name, ping, delay, CApp.game.rs, CApp.game.ds) fpopup.r_input.text = str(CApp.game.rs) fpopup.d_input.text = str(CApp.game.ds) fpopup.startBtn.bind(on_release=partial(self.confirm,p=fpopup,r=fpopup.r_input,d=fpopup.d_input,n=name)) fpopup.closeBtn.bind(on_release=partial(self.dismiss,t=CApp.game.aproc,p=fpopup)) fpopup.open() def confirm(self,obj,r,d,p,n,*args): CApp.game.rf = int(r.text) CApp.game.df = int(d.text) CApp.DirectScreen.activePop.modalTxt.text += "\nConnected to: %s" % n p.dismiss() def training(self, *args): caster = threading.Thread(target=CApp.game.training,daemon=True) caster.start() popup = GameModal() popup.modalTxt.text = 'Training mode started.' popup.closeBtn.text = 'Close game' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() def replays(self, *args): caster = threading.Thread(target=CApp.game.replays,daemon=True) caster.start() popup = GameModal() popup.modalTxt.text = 'Replay Theater started.' popup.closeBtn.text = 'Close game' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() def local(self, *args): caster = threading.Thread(target=CApp.game.local,daemon=True) caster.start() popup = GameModal() popup.modalTxt.text = 'Local VS started.' popup.closeBtn.text = 'Close game' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() def tournament(self, *args): caster = threading.Thread(target=CApp.game.tournament,daemon=True) caster.start() popup = GameModal() popup.modalTxt.text = 'Tournament Local VS started.' popup.closeBtn.text = 'Close game' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) self.activePop = popup popup.open() def watch(self, *args): popup = GameModal() self.activePop = popup caster = threading.Thread(target=CApp.game.watch,args=[self.userIP.text],daemon=True) caster.start() popup.modalTxt.text = 'Watching IP: %s' % self.userIP.text popup.closeBtn.text = 'Close game' popup.closeBtn.bind(on_release=partial(self.dismiss,t=caster,p=popup)) popup.open() #TODO prevent players from dismissing caster until MBAA is open to avoid locking issues def dismiss(self,obj,t,p,*args): CApp.game.adr = None CApp.game.rs = -1 CApp.game.ds = -1 CApp.game.rf = -1 CApp.game.df = -1 os.system('start /min taskkill /f /im cccaster.v3.0.exe') del(t) p.dismiss() if self.activePop != None: self.activePop.dismiss() self.activePop = None CApp.game.aproc = None CApp.game.playing = False class Concerto(App): def __init__(self,c,**kwargs): super(Concerto, self).__init__(**kwargs) self.sm = ScreenManager() self.game = c #expects Caster object def build(self): self.DirectScreen = DirectScreen() self.sm.add_widget(self.DirectScreen) self.DirectScreen.ids.background.source = resource_path("bg.png") return self.sm def checkPop(self,*args): while True: if self.game.aproc != None: if self.game.aproc.isalive(): pass else: self.DirectScreen.activePop.dismiss() self.DirectScreen.activePop = None CApp.game.aproc = None CApp.game.playing = False CApp.game.adr = None CApp.game.rs = -1 CApp.game.ds = -1 CApp.game.rf = -1 CApp.game.df = -1 os.system('start /min taskkill /f /im cccaster.v3.0.exe') time.sleep(0.5) #checks for netplaying every 1 second by polling isalive() from game.aproc CApp = Concerto(Caster()) if __name__ == '__main__': Builder.load_file(resource_path("Concerto.kv")) #concerto.kv defines UI netwatch = threading.Thread(target=CApp.checkPop,daemon=True) #netplay watchdog netwatch.start() CApp.run()
StarcoderdataPython
3222602
import datetime import typing from typing_extensions import TypeGuard from .. import spec from .. import exceptions from . import timelength_units def detect_timelength_representation( timelength: spec.Timelength, ) -> spec.TimelengthRepresentation: """return str name of Timelength representation""" if is_timelength_seconds(timelength): return 'TimelengthSeconds' elif is_timelength_seconds_precise(timelength): return 'TimelengthSecondsPrecise' elif is_timelength_label(timelength): return 'TimelengthLabel' elif is_timelength_clock(timelength): return 'TimelengthClock' elif is_timelength_phrase(timelength): return 'TimelengthPhrase' elif is_timelength_clock_phrase(timelength): return 'TimelengthClockPhrase' elif is_timelength_timedelta(timelength): return 'TimelengthTimedelta' else: raise exceptions.RepresentationDetectionException( 'could not determine Timelength representation: ' + str(timelength) ) def is_timelength(timelength: typing.Any) -> TypeGuard[spec.Timelength]: """return bool of whether input is Timelength""" try: detect_timelength_representation(timelength) return True except exceptions.RepresentationDetectionException: return False def is_timelength_seconds( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthSeconds]: """return bool of whether input is TimelengthSeconds""" return isinstance(timelength, int) def is_timelength_seconds_precise( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthSecondsPrecise]: """return bool of whether input is TimelengthSecondsPrecise""" return isinstance(timelength, float) def is_timelength_label( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthLabel]: """return bool of whether input is TimelengthLabel""" if not isinstance(timelength, str) or len(timelength) < 2: return False try: int(timelength[:-1]) letter = timelength[-1] return letter.isalnum() except ValueError: return False def is_timelength_clock( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthClock]: """return bool of whether input is TimelengthClock""" if not isinstance(timelength, str): return False numbers = timelength.split(':') try: for number in numbers[:-1]: int(number) float(numbers[-1]) return True except ValueError: return False def is_timelength_phrase( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthPhrase]: """return bool of whether input is TimelengthPhrase""" if not isinstance(timelength, str): return False unit_names_to_labels = timelength_units.get_unit_labels() pieces = timelength.split(', ') try: for piece in pieces: amount, unit_name = piece.split(' ') float(amount) if unit_name not in unit_names_to_labels: return False return True except Exception: return False def is_timelength_clock_phrase( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthClockPhrase]: """return bool of whether input is TimelengthClockPhrase""" if not isinstance(timelength, str): return False pieces = timelength.split(', ') if ':' in pieces[-1]: clock = pieces[-1] if not is_timelength_clock(clock): return False phrase = ', '.join(pieces[:-1]) else: phrase = ', '.join(pieces) return is_timelength_phrase(phrase) def is_timelength_timedelta( timelength: typing.Any, ) -> TypeGuard[spec.TimelengthTimedelta]: """return bool of whether input is TimelengthTimedelta""" return isinstance(timelength, datetime.timedelta)
StarcoderdataPython
3270854
<filename>openprescribing/pipeline/management/commands/org_codes.py from io import BytesIO import requests from zipfile import ZipFile import datetime import os from django.conf import settings from django.core.management import BaseCommand """Practice and CCG metadata, keyed by code. Similar data, pertaining to specific points in time, is also found in the files downloaded to `data/raw_data/T<datestamp>ADDR+BNFT.CSV`. We prefer data from these files to the `ADDR+BNFT` versions, but the data we download here is only available as current data; this means we would lack address information for historic data points if we only relied on these org files. This data is therefore worth updating every month. """ class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument("--ccg", action="store_true") parser.add_argument("--practice", action="store_true") parser.add_argument("--postcode", action="store_true") parser.add_argument("--region", action="store_true") parser.add_argument("--pcn", action="store_true") def handle(self, *args, **kwargs): self.verbose = kwargs["verbosity"] > 1 if kwargs["practice"]: self.fetch_and_extract_zipped_file("epraccur", "practice_details") if kwargs["ccg"]: self.fetch_and_extract_zipped_file("eccg", "ccg_details") if kwargs["postcode"]: self.fetch_and_extract_zipped_file("gridall", "nhs_postcode_file") if kwargs["region"]: self.fetch_and_extract_zipped_file("eauth", "region_details") if kwargs["pcn"]: self.fetch_and_extract_zipped_file("epcn", "pcn_details") def fetch_and_extract_zipped_file(self, base_filename, dest_dirname): """Grab a zipfile from a url, and extract a single file from it.""" zip_filename = base_filename + ".zip" if base_filename == "epcn": url = "https://nhs-prod.global.ssl.fastly.net/binaries/content/assets/website-assets/services/ods/data-downloads-other-nhs-organisations/epcn-.zip" filename = "ePCN.xlsx" else: url = "https://files.digital.nhs.uk/assets/ods/current/" + zip_filename filename = base_filename + ".csv" buf = BytesIO() buf.write(requests.get(url).content) buf.flush() zipfile = ZipFile(buf) dest_dir = os.path.join( settings.PIPELINE_DATA_BASEDIR, dest_dirname, datetime.datetime.today().strftime("%Y_%m"), ) zipfile.extract(filename, dest_dir)
StarcoderdataPython
141861
<reponame>tonnkie/USC-Second-hand-Group # coding:utf-8 import re def emoji_print(rawstring): flag = True while flag: start = rawstring.find('<span') end = rawstring.find('></span>') if start < 0 or end < 0: flag = False break emojistr = rawstring[start : end + 8] try: emojicode = re.search(' emoji(.+?)\"', emojistr).group(1) emoji = chr(int(emojicode, 16)) except: emoji = "" rawstring = rawstring.replace(emojistr, emoji) return rawstring s = u'【买】<span class="emoji emoji1f604"></span>过滤掉了' print emoji_print(s)
StarcoderdataPython
3257332
<filename>run.py import itertools import json import random import sys import time import networkx as nx import eon if hasattr(time, 'process_time_ns'): process_time = time.process_time_ns else: process_time = time.process_time def run(algorithm, seed, weight='distance', log=1): if algorithm == 'filtered': dijkstra = eon.dijkstra_filtered elif algorithm == 'generic': dijkstra = eon.dijkstra_generic else: raise ValueError slot_bw = 1 max_m = 4 print('seed', 'nodes', 'topo_num', 'edges', 'units', 'mean_demand', 'n', 'bad', 'cum_demand', 'cum_util', 'src', 'dst', 'demand', 'paths', 'path_len', 'cu_start', 'elapsed') for mean_demand_fraction in [10, 20]: for nodes in range(25, 525, 25): for topo_num in range(0, 10): for units in range(100, 1100, 100): mean_demand = units // mean_demand_fraction rng_demand = random.Random(seed) rng_path_choice = random.Random(seed) topo_name = 'gabriel/%s/%s' % (nodes, topo_num) g = nx.node_link_graph(json.load(open('topo_lib/%s.json' % topo_name))) if not isinstance(g, nx.DiGraph): g = g.to_directed() edges = 0 for edge in g.edges.values(): edge['au'] = (1 << units) - 1 edge['cost'] = 1 edges += 1 demands_keys = [] demands_values = [] if 'demands' in g.graph: for src, demands in g.graph['demands'].items(): for dst, demand in demands.items(): demands_keys.append((src, dst)) demands_values.append(demand) if not demands_keys: demands_keys = [pair for pair in itertools.permutations(g, 2)] n = 0 bad = 0 cum_time = 0 cum_demand = 0 cum_util = 0 reach_1 = 0 for line in open('topo_lib/%s.tex' % topo_name): if 'Max. length of disjoint shortest paths' in line: sp_length = float(line.split()[-1]) reach_1 = max(reach_1, sp_length * 1.5) reach_m = reach_1 / 2 ** (max_m - 1) while True: if demands_values: src, dst = rng_demand.choices(demands_keys, demands_values)[0] else: src, dst = rng_demand.choice(demands_keys) demand = rng_demand.randint(1, mean_demand * 2 - 1) start_time = process_time() paths = dijkstra(g, {src}, dst, demand, units, slot_bw, reach_m, max_m, weight=weight) elapsed = process_time() - start_time if isinstance(elapsed, float): elapsed = int(elapsed * 1000000000) if paths[1]: cu_start, cu_end, path = rng_path_choice.choice(sorted(paths[1])) cu_set = ((1 << demand) - 1) << cu_start if log > 2: print((cu_start, cu_start + demand), path) for u, v, key in path: # noinspection PyProtectedMember g._succ[u][v][key]['au'] ^= cu_set else: cu_start, path = 0, [] if log: print(seed, nodes, topo_num, edges, units, mean_demand, n, bad, cum_demand, cum_util, src, dst, demand, len(paths), len(path), cu_start, elapsed) n += 1 cum_time += elapsed if path: cum_demand += demand cum_util += demand * len(path) else: bad += 1 if cum_util / (edges * units) > 0.6: break if log == 0: print(seed, nodes, topo_num, edges, units, mean_demand, n, bad, cum_demand, cum_util / (edges * units), '-', '-', '-', '-', '-', '-', cum_time) # exit() if __name__ == '__main__': run(sys.argv[1], int(sys.argv[2]))
StarcoderdataPython
1695264
#!/usr/bin/python # -*- coding: utf-8 -*- # This example demonstrates the use of Convolution1D for text classification. # 利用1D-CNN模型对IMDB影评倾向分类 # Output after 5 epochs on CPU(i5-7500)/GPU(1050Ti): ~0.8773 from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras.datasets import imdb max_features = 5000 # vocab大小 maxlen = 400 # 每条样本数据长度 batch_size = 32 # min-batch size embedding_dims = 50 # 词向量维度 filters = 250 # 1D-CNN卷积核的数目(即输出的维度) kernel_size = 3 # 整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度 hidden_dims = 250 # 隐藏层神经元数量 epochs = 5 # 循环次数 # 数据集来源IMDB影评,共50000条影评,标记正面/负面两种评价 # 每条数据被编码为一条索引序列(索引数字越小,代表单词出现次数越多) # num_words: 选取的每条数据里的索引值不能超过num_words print('========== 1.Loading data...') (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) print('----- train sequences', len(x_train)) print('----- test sequences', len(x_test)) # 对每条词索引组成的数据进行长度对齐,去掉数据前面或后面多余的单词;长度不够插入0 print('========== 2.Pad sequences (samples x time)') x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) print('----- x_train shape:', x_train.shape) print('----- x_test shape:', x_test.shape) # 搭建神经网络模型 print('========== 3.Build model...') model = Sequential() # input_dim=max_features单词表大小,output_dim=embedding_dims=50为词向量维度,input_length=maxlen每条样本数据长度 model.add(Embedding(max_features, embedding_dims, input_length=maxlen)) # 输出(*,400,50) model.add(Dropout(0.2)) # 1维卷积层,卷积输出维度为filters,卷积步长为strides model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)) # 输出(*,398,250) # 对于时间信号的全局最大池化 model.add(GlobalMaxPooling1D()) # 输出(*,250) model.add(Dense(hidden_dims)) # 输出(*,250) model.add(Dropout(0.2)) model.add(Activation('relu')) model.add(Dense(1)) model.add(Activation('sigmoid')) # 神经网络编译/训练/测试集测试性能 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))
StarcoderdataPython
1660041
from sko.GA import GA def demo_func(x): x1, x2, x3 = x return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2 ga = GA(func=demo_func, lb=[-1, -10, -5], ub=[2, 10, 2], max_iter=500) best_x, best_y = ga.fit()
StarcoderdataPython
3206616
from datetime import time import time as t from heatmiserV3.devices import Master, Device from heatmiserV3.config import Config import logging import logging.config from heatmiserV3.protocol_manager import ProtocolManager def main(): log_config = Config.LOG_CONFIG logging.config.dictConfig(log_config) logger = logging.getLogger(__name__) master = Master(Config.MASTER_IRQ_ADDRESS) location = Config.MASTER_LOCATION['location'] if Config.MASTER_LOCATION['type'].casefold() == 'ip'.casefold(): master.connect_ip(location) elif Config.MASTER_LOCATION['type'].casefold() == 'device'.casefold(): master.connect_device(location) else: raise ValueError("Unrecognized value for Config.MASTER_LOCATION.type, try ip or device", Config.MASTER_LOCATION[ 'type']) tm1 = Device("tm1", "Boat Timer", 0) protocol = ProtocolManager().get_protocol("tm1") # # sync time always # logger.info("Syncing time") # dow_time = ProtocolManager.get_dow_time() # response = master.update_field(tm1, "Current time", dow_time) # logger.info("Time synced, response={}".format(ProtocolManager().to_hex_str(response))) # t.sleep(1) # logger.info("Updating weekday schedule") # timer_block = ProtocolManager().get_timer_block( # [[time(hour=5, minute=8), time(hour=11, minute=17)], [time(hour=19), time(hour=21, minute=9)]]) # response = master.update_field(tm1, "Weekday", timer_block) # logger.info("Updated weekday schedule, response={}".format(ProtocolManager().to_hex_str(response))) # # t.sleep(1) # master.update_field(tm1, "On/Off", 1) #master.update_field(tm1, "Current timer state", 2) #1=on 2=off # response = master.send_request_all(tm1) parsed_response = protocol.parse_response(response) print("parsed response:") for k, v in sorted(parsed_response.items()): print(k, v) master.close_connection() if __name__ == '__main__': main()
StarcoderdataPython
1703437
<reponame>cyphermaster/beholder #!/usr/bin/python2.7 # -*- coding: utf8 -*- """ Copyright [2014,2015] [beholder developers] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import redis import argparse import bz2 import Queue import sys import os import time import ConfigParser from termcolor import colored from threading import Thread REDIS_TIMEOUT = 120 class Rainbow: def __init__(self, cmdln_args, redis_servers, redis_timeout): self.args = cmdln_args self.redis_timeout = redis_timeout self.redis_servers = redis_servers # Shared queue to store query results from Redis self.output_queue = Queue.Queue() def run(self): if self.args.available: self.redis_get_all_keys() else: self.redis_get_specific_key(self.args.file) def formated_output(self, now, hostname, redis_ts, mtime_ts, line): """Colored output of a Redis entry plus metadata""" redis_ts_str = time.strftime('%H:%M', time.localtime(int(redis_ts))) mtime_ts_str = time.strftime('%Y-%m-%dT%H:%M', time.localtime(int(mtime_ts))) if self.args.color: hostname = colored(hostname, 'cyan') diff = now - float(redis_ts) if diff < 600: redis_ts_str = colored(redis_ts_str, 'green') elif diff > 3600: redis_ts_str = colored(redis_ts_str, 'red') else: redis_ts_str = colored(redis_ts_str, 'yellow') mtime_ts_str = colored(mtime_ts_str, 'blue') line = colored(line, 'white', 'on_grey') print "%s (%s/%s) %s" % (hostname, redis_ts_str, mtime_ts_str, line) def redis_query(self, redis_server, method, key): """ Query a Redis server (within a thread) and write results to the shared queue""" print "Querying_redis_server %s" % redis_server r = redis.Redis(host=redis_server, port=6379) if method == "GET": # Fetch all keys matching the requested pattern items = r.keys('*#%s' % key) for item in items: result = r.get(item) if result: # Split the key name, which format is <hostname>#<file> try: hostname, key = item.split('#') except ValueError: print "Warning - Skipping key with invalid \ format: %s" % item continue self.output_queue.put((hostname, result)) elif method == "KEYS": # Fetch all available keys items = r.keys('*') for item in items: # Split the key name, which format is <hostname>#<file> try: hostname, key = item.split('#') except ValueError: print "Warning - Skipping key with invalid \ format: %s" % item continue self.output_queue.put(key) else: print "Not supported. You're doing it wrong." def redis_get_all_keys(self): """ Fetch available keys from all Redis servers""" threads = [] for redis_server in self.redis_servers: worker = Thread(target=self.redis_query, args=(redis_server, 'KEYS', '',)) worker.start() threads.append(worker) for t in threads: t.join(REDIS_TIMEOUT) self.display_redis_all_keys() def display_redis_all_keys(self): """ Print a nicely formatted summary of all keys found on all the Redis servers """ uniq_files = {} while not self.output_queue.empty(): i = self.output_queue.get() self.output_queue.task_done() if i in uniq_files: uniq_files[i] += 1 else: uniq_files[i] = 1 if self.args.color: for k in sorted(uniq_files): # 13 here because of color escape characters \033[xx(x) print "%13s %s" % (colored(uniq_files[k], 'blue'), colored(k, 'cyan')) else: for k in sorted(uniq_files): print "%5s %s" % (uniq_files[k], k) def display_redis_specific_key(self): """ Display contents of a specific key through all the Redis servers""" # Actual timestamp of Redis query now = time.time() while not self.output_queue.empty(): (hostname, result) = self.output_queue.get() self.output_queue.task_done() # Here we split our custom Redis value format: # <base64_encoded_data> <epoch_redis> <epoch_mtime> <file_checksum> fields = result.split(' ') base64_data = fields[0] try: epoch_redis = fields[1] epoch_mtime = fields[2] file_md5 = fields[3] except IndexError: epoch_redis = 0 epoch_mtime = 0 file_md5 = "no_signature" try: c = bz2.decompress(base64_data.decode("base64")) except: c = "<error while decompressing bz2 data" if self.args.signature: self.formated_output(now, hostname, epoch_redis, epoch_mtime, file_md5) else: for line in c.split('\n'): self.formated_output(now, hostname, epoch_redis, epoch_mtime, line) def redis_get_specific_key(self, key): """ Fetch contents of a specific key over all the Redis servers""" threads = [] for redis_server in self.redis_servers: worker = Thread(target=self.redis_query, args=(redis_server, 'GET', key,)) worker.start() threads.append(worker) for t in threads: t.join(REDIS_TIMEOUT) keys_found = self.output_queue.qsize() self.display_redis_specific_key() print "### Keys found: %s ###" % keys_found if keys_found == 0: print 'try the -ac switch for a list of all available keys' def autogen_conf(f): config.add_section('query_servers') config.set('query_servers', 'hostnames', 'redis1.example.org, \ redis2.example.org') config.write(open(f, 'w')) print("Created an empty config file at %s." % f) print("Please modify it & re-run this command.") sys.exit(1) def test_default_conf(f): if redis_servers[0] == 'redis1.example.org': print("Please set your own redis instance in %s file \ and re-run this command." % f) sys.exit(1) if __name__ == '__main__': parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group() group.add_argument("-f", "--file", help="File to query") group.add_argument("-a", "--available", help="Show available files", action='store_true') parser.add_argument("-c", "--color", help="Colorize output", action='store_true') parser.add_argument("-s", "--signature", help="MD5 of file", action='store_true') parser.add_argument("-C", "--conffile", help="Configuration file to Use") args = parser.parse_args() config = ConfigParser.RawConfigParser() if args.conffile: conffile = args.conffile else: conffile = os.path.abspath(os.path.expanduser('~/.rainbow.cf')) if not os.path.exists(conffile): autogen_conf(conffile) config.read(conffile) redis_servers = config.get('query_servers', 'hostnames').split(',') test_default_conf(conffile) rb = Rainbow(args, redis_servers, REDIS_TIMEOUT) rb.run()
StarcoderdataPython
1605870
<gh_stars>0 a,b = map(int, input().split()) if (b % a == 0) or (a % b == 0): print("Sao Multiplos") else: print("Nao sao Multiplos")
StarcoderdataPython
4815472
<reponame>Elec5616/prophessor<filename>phabricator/api.py import subprocess import json from local_settings import PHAB_API_ADDRESS, PHAB_API_TOKEN phab_api_templates = { "remove_user_from_project": { "method": "project.edit", "data": "api.token=" + PHAB_API_TOKEN + "&transactions[0][type]=members.remove&transactions[0][value][0]=%s&objectIdentifier=%s", "args": ("user_phid", "group_phid") }, "add_user_to_project": { "method": "project.edit", "data": "api.token=" + PHAB_API_TOKEN + "&transactions[0][type]=members.add&transactions[0][value][0]=%s&objectIdentifier=%s", "args": ("user_phid", "group_phid") }, "make_project_subproject": { "method": "project.edit", "data": "api.token=" + PHAB_API_TOKEN + "&transactions[0][type]=parent&transactions[0][value]=%s&objectIdentifier=%s", "args": ("parent_phid", "child_phid") }, "get_project_details": { "method": "project.query", "data": "api.token=" + PHAB_API_TOKEN + "&phids[]=%s", "args": ("group_name") }, "create_project": { "method": "project.create", "data": "api.token=" + PHAB_API_TOKEN + "&name=%s&icon=%s&color=%s%s", "args": ("name", "icon", "color", "members[]=%s") }, "phid_lookup": { "method": "phid.lookup", "data": "api.token=" + PHAB_API_TOKEN + "&%s", "args": ("name[]=%s",) }, "create_repository": { "method": "repository.create", "data": "api.token=" + PHAB_API_TOKEN + "&name=%s&callsign=%s&uri=%s&vcs=%s", "args": ("name", "callsign", "uri", "vcs") }, "create_raw_diff": { "method": "differential.createrawdiff", "data": "api.token=" + PHAB_API_TOKEN + "&diff=%s&viewPolicy=%s", "args": ("diff", "view_policy") }, } class Call(): def raw(self, method, data_string): # print("API CALL: %s -- %s" % (method, data_string)) return subprocess.check_output(["curl", "-s", PHAB_API_ADDRESS + "/api/" + method, "-d", data_string]) def template(self, template_name, args): response = json.loads(self.raw(phab_api_templates[template_name]["method"], phab_api_templates[template_name]["data"] % args).decode("ascii")) if response["error_code"]: raise Exception("Call to API Template %s resulted in an error code: %s (%s)" % ( template_name, str(response["error_code"]), response["error_info"])) return response["result"] api_call = Call()
StarcoderdataPython
3248685
<filename>tests/conftest.py from asyncio import get_event_loop import pytest @pytest.fixture def event_loop(): return get_event_loop()
StarcoderdataPython
1605738
<reponame>agaldemas/ngsi-timeseries-api """ Data structures and operations to manage work queues. Notice these data structures and operations abstract away the underlying RQ implementation so clients don't have to depend on the RQ API. """ from enum import Enum from typing import Callable, Iterable, List, Optional from pydantic import BaseModel from rq.job import Job, JobStatus from wq.core.task import WorkQ, _tasklet_from_rq_job, RqExcMan from wq.core.rqutils import RqJobId, find_job_ids, find_failed_job_ids, \ find_successful_job_ids, find_pending_job_ids, load_jobs, delete_jobs, \ starts_with_matcher, count_jobs, count_pending_jobs, count_failed_jobs, \ count_successful_jobs class TaskStatus(Enum): """ Enumerate the states a task can be in. """ PENDING = 'pending' """ A task is in the pending state from the time it gets enqueued to the time it gets executed for the last time, i.e. until it gets retried for the last time if previous runs failed. """ SUCCEEDED = 'succeeded' """ A task is in the succeeded state if it ran to completion successfully. """ FAILED = 'failed' """ A task is in the failed state if it failed permanently, i.e. there was an error on every configured retry. """ UNKNOWN = 'unknown' """ A task is in the unknown state if its actual state (pending, succeeded, or failed) couldn't be determined. This can happen momentarily as the task is moved from state to state because transitions aren't atomic. """ def _task_status_from_job_status(s: JobStatus) -> TaskStatus: if s in (JobStatus.QUEUED, JobStatus.STARTED, JobStatus.DEFERRED, JobStatus.SCHEDULED): return TaskStatus.PENDING if s == JobStatus.FINISHED: return TaskStatus.SUCCEEDED if s == JobStatus.FAILED: return TaskStatus.FAILED return TaskStatus.UNKNOWN class TaskRuntimeInfo(BaseModel): """ Runtime info about the task such as its work queue ID and status. """ task_id: str task_type: str status: TaskStatus retries_left: Optional[int] errors: List[str] = [] class TaskInfo(BaseModel): """ Aggregate of task runtime info and input, i.e. the data the task got as input for processing. """ runtime: TaskRuntimeInfo input: BaseModel def _task_info_from_rq_job(j: Job) -> TaskInfo: tasklet = _tasklet_from_rq_job(j) status = _task_status_from_job_status(j.get_status()) errors = [repr(e) for e in RqExcMan.list_exceptions(j)] return TaskInfo( runtime=TaskRuntimeInfo( task_id=tasklet.task_id().id_repr(), task_type=str(type(tasklet)), status=status, retries_left=j.retries_left, errors=errors ), input=tasklet.task_input() ) class QMan: """ Operations to manage a given work queue. """ def __init__(self, q: WorkQ): self._q = q self._pending_jid_finder = lambda m: find_pending_job_ids(q, m) self._successful_jid_finder = lambda m: find_successful_job_ids(q, m) self._failed_jid_finder = lambda m: find_failed_job_ids(q, m) @staticmethod def _load(jid_finder: Callable[[str], Iterable[RqJobId]], task_id_prefix: str) -> Iterable[TaskInfo]: matcher = starts_with_matcher(task_id_prefix) job_ids = jid_finder(matcher) js = load_jobs(job_ids) for j in js: yield _task_info_from_rq_job(j) @staticmethod def _count_tasks(jid_finder: Callable[[str], Iterable[RqJobId]], task_id_prefix: str) \ -> int: matcher = starts_with_matcher(task_id_prefix) job_ids = jid_finder(matcher) return len(list(job_ids)) @staticmethod def load_tasks(task_id_prefix: str) -> Iterable[TaskInfo]: """ Load all the tasks with an ID having the same prefix as the input. Stream data, i.e. don't load all tasks in memory but fetch them on demand as the consumer iterates the result set. :param task_id_prefix: the task ID prefix to match. :return: a generator to iterate the matching tasks. """ return QMan._load(find_job_ids, task_id_prefix) @staticmethod def load_tasks_runtime_info(task_id_prefix: str) \ -> Iterable[TaskRuntimeInfo]: """ Same as ``load_tasks`` but only return task runtime info without inputs. """ for t in QMan.load_tasks(task_id_prefix): yield t.runtime @staticmethod def delete_tasks(task_id_prefix: str): """ Delete all the tasks with an ID having the same prefix as the input. :param task_id_prefix: the task ID prefix to match. """ matcher = starts_with_matcher(task_id_prefix) job_ids = find_job_ids(matcher) delete_jobs(job_ids) def count_all_tasks(self, task_id_prefix: Optional[str]) -> int: """ Count all the tasks with an ID having the same prefix as the input if given, otherwise return the total number of tasks linked to the work queue. :param task_id_prefix: the task ID prefix to match. :return: the number of matching tasks. """ if task_id_prefix is None: return count_jobs(self._q) return self._count_tasks(find_job_ids, task_id_prefix) def count_pending_tasks(self, task_id_prefix: Optional[str]) -> int: """ Count all the pending tasks with an ID having the same prefix as the input if given, otherwise return the total number of tasks linked to the work queue that are in the pending state. :param task_id_prefix: the task ID prefix to match. :return: the number of matching tasks. """ if task_id_prefix is None: return count_pending_jobs(self._q) return self._count_tasks(self._pending_jid_finder, task_id_prefix) def count_successful_tasks(self, task_id_prefix: Optional[str]) -> int: """ Count all the tasks with an ID having the same prefix as the input that executed successfully, i.e. tasks in the succeeded state. If the input is ``None``, count all tasks in the succeeded state that are linked to the queue. :param task_id_prefix: the task ID prefix to match. :return: the number of matching tasks. """ if task_id_prefix is None: return count_successful_jobs(self._q) return self._count_tasks(self._successful_jid_finder, task_id_prefix) def count_failed_tasks(self, task_id_prefix: Optional[str]) -> int: """ Count all the failed tasks with an ID having the same prefix as the input if given, otherwise return the total number of tasks linked to the work queue that are in the failed state. :param task_id_prefix: the task ID prefix to match. :return: the number of matching tasks. """ if task_id_prefix is None: return count_failed_jobs(self._q) return self._count_tasks(self._failed_jid_finder, task_id_prefix) def load_pending_tasks(self, task_id_prefix: str) -> Iterable[TaskInfo]: """ Load all the pending tasks with an ID having the same prefix as the input. Stream data, i.e. don't load all tasks in memory but fetch them on demand as the consumer iterates the result set. :param task_id_prefix: the task ID prefix to match. :return: a generator to iterate the matching tasks. """ return self._load(self._pending_jid_finder, task_id_prefix) def load_successful_tasks(self, task_id_prefix: str) -> Iterable[TaskInfo]: """ Load all the tasks with an ID having the same prefix as the input that executed successfully, i.e. tasks in the succeeded state. Stream data, i.e. don't load all tasks in memory but fetch them on demand as the consumer iterates the result set. :param task_id_prefix: the task ID prefix to match. :return: a generator to iterate the matching tasks. """ return self._load(self._successful_jid_finder, task_id_prefix) def load_failed_tasks(self, task_id_prefix: str) -> Iterable[TaskInfo]: """ Load all the failed tasks with an ID having the same prefix as the input. Stream data, i.e. don't load all tasks in memory but fetch them on demand as the consumer iterates the result set. :param task_id_prefix: the task ID prefix to match. :return: a generator to iterate the matching tasks. """ return self._load(self._failed_jid_finder, task_id_prefix)
StarcoderdataPython
117289
#!/usr/bin/env python3 import os import pathlib import re import subprocess import sys from typing import List def main(): os.chdir(str(get_toplevel_dir())) check_unstaged_changes() files = get_tracked_files() check_go_source(files) make('build') make('test') make('test-large') def check_go_source(files: List[pathlib.Path]): go_files = [f for f in files if f.match('*.go')] if not go_files: return check_gofmt(go_files) check_golint('./...') # TODO: change govet path to ./... when openapi-generator is removed check_govet('./internal/go/...') def check_gofmt(go_files: List[pathlib.Path]): unformatted_files = gofmt(go_files) if unformatted_files: print(" Go files must be formatted with gofmt. Please run:") for unformatted_file in unformatted_files: print(" gofmt -s -w {}".format(unformatted_file)) sys.exit(1) def check_golint(go_files: str): warnings = golint(go_files) # TODO: remove filter when openapi-generator is removed def ignore(w): for p in ['logger\.go', 'model_.+\.go', 'routers\.go']: if re.search(p, w): return True return False warnings = [w for w in warnings if not ignore(w)] if warnings: print(" Go files must pass golint. Please fix:") for warning in warnings: print(" {}".format(warning)) sys.exit(1) def check_govet(package: str): warnings = govet(package) if warnings: print(" Go files must pass go vet. Please fix:") for warning in warnings: print(" {}".format(warning)) sys.exit(1) def check_unstaged_changes(): unstaged_changes = get_unstaged_changes() if unstaged_changes: print("Cannot push with unstaged changes:") for unstaged_change in unstaged_changes: print(" {}".format(unstaged_change)) print("Please run either:") print(" git add -A && git commit") print(" git stash -k -u") sys.exit(1) def get_tracked_files() -> List[pathlib.Path]: result = subprocess.run( ['git', 'ls-tree', '-r', 'HEAD', '--name-only'], check=True, stdout=subprocess.PIPE) files = result.stdout.decode('utf-8').rstrip('\n').splitlines() return [pathlib.Path(f) for f in files] def get_toplevel_dir() -> pathlib.Path: result = subprocess.run( ['git', 'rev-parse', '--show-toplevel'], check=True, stdout=subprocess.PIPE) return pathlib.Path(result.stdout.decode('utf-8').rstrip('\n')) def get_unstaged_changes() -> List[str]: result = subprocess.run( ['git', 'status', '--porcelain'], check=True, stdout=subprocess.PIPE) statuses = result.stdout.decode('utf-8').rstrip('\n') matches = re.findall(r"^((.D|.M|\?\?).+)$", statuses, re.MULTILINE) return [m[0] for m in matches] def gofmt(files: List[pathlib.Path]) -> List[str]: print("gofmt") files_arg = [str(f) for f in files] result = subprocess.run( ['gofmt', '-l', '-s'] + files_arg, check=True, stdout=subprocess.PIPE) return result.stdout.decode('utf-8').rstrip('\n').splitlines() def golint(files: str) -> List[str]: print("golint") result = subprocess.run( ['golint', files], check=True, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) return result.stdout.decode('utf-8').rstrip('\n').splitlines() def govet(package: str) -> List[str]: print("go vet") result = subprocess.run( ['go', 'vet', package], stderr=subprocess.STDOUT, stdout=subprocess.PIPE) return result.stdout.decode('utf-8').rstrip('\n').rstrip("exit status 1").splitlines() def make(command: str): print("make {}".format(command)) result = subprocess.run( ['make', command], stderr=subprocess.STDOUT, stdout=subprocess.PIPE) if result.returncode != 0: print("make {} failed:".format(command)) print(result.stdout.decode('utf-8').rstrip('\n')) sys.exit(1) main()
StarcoderdataPython
163764
<filename>dynn/activations.py #!/usr/bin/env python3 """ Activation functions ==================== Common activation functions for neural networks. Most of those are wrappers around standard dynet operations (eg. ``rectify`` -> ``relu``) """ import dynet as dy def identity(x): """The identity function :math:`y=x` Args: x (:py:class:`dynet.Expression`): Input expression Returns: :py:class:`dynet.Expression`: :math:`x` """ return x def tanh(x): """The hyperbolic tangent function :math:`y=\\tanh(x)` Args: x (:py:class:`dynet.Expression`): Input expression Returns: :py:class:`dynet.Expression`: :math:`\\tanh(x)` """ return dy.tanh(x) def sigmoid(x): """The sigmoid function :math:`y=\\frac{1}{1+e^{-x}}` Args: x (:py:class:`dynet.Expression`): Input expression Returns: :py:class:`dynet.Expression`: :math:`\\frac{1}{1+e^{-x}}` """ return dy.logistic(x) def relu(x): """The REctified Linear Unit :math:`y=\max(0,x)` Args: x (:py:class:`dynet.Expression`): Input expression Returns: :py:class:`dynet.Expression`: :math:`\max(0,x)` """ return dy.rectify(x)
StarcoderdataPython
1773770
<gh_stars>0 # Promote all symbols from submodules to the top-level package (TODO is this bad practice?) from .api import * from .core import * from .kubernetes import * from .settings import * from .slo import *
StarcoderdataPython
1782253
# -*- coding: utf-8 -*- from scipy import sparse as spspa from scipy.sparse import linalg as spspalinalg from time import time from root.config.main import cOmm, rAnk, mAster_rank from tools.linear_algebra.data_structures.global_matrix.main import LocallyFullVector def ___scipy_sparse_linalg_v0___(A, b, COD=None): """ :param A: :param b: :param COD: clean old data? :return: Return a tuple of 5 outputs: 1. (LocallyFullVector) results -- The result vector. 2. (0) info -- The info which provides convergence information: * 0 : successful exit * >0 : convergence to tolerance not achieved, number of iterations * -1 : divergence 3. (0) beta -- The residual. 4. (0) ITER -- The number of outer iterations. 5. (str) message """ cOmm.barrier() t0 = time() # ... if COD is None: COD = True A = A.do.gather_M_to_core(core=mAster_rank, clean_local=COD) b = b.do.gather_V_to_core(core=mAster_rank, clean_local=COD) if rAnk == mAster_rank: shape = A.shape[0] assert shape == b.shape[0], f"A:{A.shape} does not match b{b.shape}." x = spspalinalg.spsolve(A, b) x = spspa.csr_matrix(x).T else: x = None x = cOmm.bcast(x, root=mAster_rank) x = LocallyFullVector(x) t3 = time() message = f'scipy_sparse_linalg_v0_direct = [SYSTEM-SHAPE: {A.shape}] >>> costs {int((t3-t0)*100)/100}s.' return x, 0, 0, 0, message
StarcoderdataPython
186654
# Generated with Iteration # from enum import Enum from enum import auto class Iteration(Enum): """""" COLUMN = auto() GRID = auto() def label(self): if self == Iteration.COLUMN: return "Column" if self == Iteration.GRID: return "Grid"
StarcoderdataPython
3324372
from rdflib import XSD, Literal class TestTokenDatatype: def test1(self): lit2 = Literal("\two\nw", datatype=XSD.normalizedString) lit = Literal("\two\nw", datatype=XSD.string) assert str(lit) != str(lit2) def test2(self): lit = Literal("\tBeing a Doctor Is\n\ta Full-Time Job\r", datatype=XSD.token) st = Literal("Being a Doctor Is a Full-Time Job", datatype=XSD.string) assert Literal.eq(st, lit) is False assert str(lit) == str(st) def test3(self): lit = Literal(" hey\nthere ", datatype=XSD.token).n3() assert lit == '"hey there"^^<http://www.w3.org/2001/XMLSchema#token>' def test4(self): lit = Literal("hey\nthere\ta tab\rcarriage return", datatype=XSD.token) expected = Literal("""hey there a tab carriage return""", datatype=XSD.string) assert str(lit) == str(expected) def test_whitespace_is_collapsed_and_trailing_whitespace_is_stripped(self): lit = Literal( "\n hey - white space is collapsed for xsd:token and preceding and trailing whitespace is stripped ", datatype=XSD.token, ) expected = Literal( "hey - white space is collapsed for xsd:token and preceding and trailing whitespace is stripped", datatype=XSD.string, ) assert str(lit) == str(expected)
StarcoderdataPython
3282507
# coding: utf-8 __author__ = 'cleardusk' import sys sys.path.append('..') import cv2 import numpy as np import os.path as osp from Sim3DR import rasterize, rasterize_adv from _3DDFA_V2.utils.functions import plot_image from _3DDFA_V2.utils.io import _load, _dump from _3DDFA_V2.utils.tddfa_util import _to_ctype make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn) def calc_ncc_code(): from bfm import bfm # formula: ncc_d = ( u_d - min(u_d) ) / ( max(u_d) - min(u_d) ), d = {r, g, b} u = bfm.u u = u.reshape(3, -1, order='F') for i in range(3): u[i] = (u[i] - u[i].min()) / (u[i].max() - u[i].min()) _dump('../configs/ncc_code.npy', u) def pncc(img, ver_lst, tri, show_flag=False, wfp=None, with_bg_flag=True): ncc_code = _load(make_abs_path('../configs/ncc_code.npy')) if with_bg_flag: overlap = img.copy() else: overlap = np.zeros_like(img) # rendering pncc for ver_ in ver_lst: ver = _to_ctype(ver_.T) # transpose #(3, 38365) ncc_code _, _,ref_triangles,buffer= rasterize_adv(ver, tri, ncc_code.T, bg=overlap, alpha=0.5) # m x 3 buffer=buffer-0.1 # print(np.sum(ref_triangles<0)) # print(ver[:,2]) overlap, used_area,ref_triangles,buffer= rasterize_adv(ver, tri, ncc_code.T, bg=overlap, alpha=0.5,buffer=buffer) # m x 3 print(np.sum(ref_triangles>0)) #(112, 112, 3) #print(np.shape(used_area)) overlap=overlap.astype(np.uint8) #print(np.sum(used_area>0)/3) if wfp is not None: cv2.imwrite(wfp, overlap) print(f'Save visualization result to {wfp}') if show_flag: plot_image(overlap) return overlap def main(): # `configs/ncc_code.npy` is generated by `calc_nnc_code` function # calc_ncc_code() pass if __name__ == '__main__': main()
StarcoderdataPython
3203640
# This algorithm search the way to move disk from one tower to another with just one rule. # You can't put a big disk over a small one. # # Input: height, initTower, middleTower, finalTower # Output: initTower, middleTower, finalTower # we put this to prove we sent from the initTower to the finalTower every disk def hanoi(height): initTower = [i if i > 0 else i for i in range(height,0,-1)] finalTower = []*height middleTower = []*height def hanoiAux(height, initTower, middleTower, finalTower): if height > 0: hanoiAux(height - 1, initTower, finalTower, middleTower) finalTower.append(initTower.pop()) hanoiAux(height - 1, middleTower, initTower, finalTower) return initTower, middleTower, finalTower return hanoiAux(height,initTower,middleTower,finalTower)
StarcoderdataPython
182336
<filename>src/local_run.py __author__ = 'david' from davesite.app.factory import create_app app = create_app() app.run("", 8080)
StarcoderdataPython
1745900
<reponame>kingformatty/E2E-NLG-Project import os import logging import numpy as np import torch import torch.nn as nn from components.utils.visualize import plot_train_progress, plot_lcurve from components.data.common import cuda_if_gpu from torch.autograd import Variable from components.trainer import BaseTrainer logger = logging.getLogger('experiment') class E2EMLPTrainer(BaseTrainer): def set_train_criterion(self, vocab_size, pad_id, nos_option): """ NMT Criterion from: https://github.com/OpenNMT/OpenNMT-py/blob/master/onmt/Loss.py :return: """ weight = torch.ones(vocab_size) weight[pad_id] = 0 # self.criterion = nn.NLLLoss(weight, size_average=True) self.criterion = nn.NLLLoss(weight, reduction="mean") if self.use_cuda: self.criterion = self.criterion.cuda() def train_step(self, model, datum): datum = [cuda_if_gpu(Variable(torch.LongTensor(t)).transpose(0, 1)) for t in datum] # [SL x B, TL x B] logits = model.forward(datum) # TL x B x TV loss_var = self.calc_loss(logits, datum, model.nos_option) # have to compute log_logits, since using NLL loss return loss_var def calc_loss(self, logits, datum, nos_option): batch_y_var = datum[1] vocab_size = logits.size()[-1] logits = logits.contiguous().view(-1, vocab_size) if nos_option == 2: nos_num = (batch_y_var == 41).sum(dim = 0) nos_input = nos_num + vocab_size - 7 targets = torch.cat([nos_input.unsqueeze(0), batch_y_var], dim=0).contiguous().view(-1,1).squeeze(1) loss = self.criterion(logits, targets) else: targets = batch_y_var.contiguous().view(-1,1).squeeze(1) loss = self.criterion(logits, targets) return loss def plot_lcurve(self): fig_fname = os.path.join(self.model_dir, "lcurve.pdf") title = self.config['modeltype'] plot_lcurve(self.train_losses, self.dev_losses, img_title=title, save_path=fig_fname, show=False) def plot_training_results(self): losses = np.asarray([self.train_losses, self.dev_losses]).transpose() plot_train_progress(scores=(losses, self.bleu_scores, self.nist_scores, self.cider_scores, self.rouge_scores, self.meteor_scores), names=self.get_plot_names(), img_title=self.config['modeltype'], save_path=os.path.join(self.model_dir, "lcurve_scores.pdf"), show=False) def get_plot_names(self): return [['TrainLoss', 'DevLoss'], 'BLEU', 'NIST', 'CIDEr', 'ROUGE_L', 'METEOR'] component = E2EMLPTrainer
StarcoderdataPython
190889
<gh_stars>0 from urllib import request class Request: def __init__(self, url): self.url = url class Client: def __init__(self, req): self.req = req def get(self): source = request.urlopen(self.req.url) data = source.read() return data
StarcoderdataPython
138988
<gh_stars>0 import os from setuptools import setup import crudbuilder # Allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name='django-crudbuilder', version=crudbuilder.VERSION, packages=['crudbuilder'], include_package_data=True, license='BSD License', description='A simple Django CRUD builder', url='https://github.com/asifpy/django-crudbuilder', author='<NAME>', author_email='<EMAIL>', long_description=read('README.md'), install_requires=[ 'django_tables2', ], classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', # example license 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.9', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content' ] )
StarcoderdataPython
99266
import sys, configparser from math import floor from fractions import Fraction from .matrixOp import frange from collections import OrderedDict # NOTE File path starts where main.py executes config = configparser.ConfigParser() filePath = 'config.ini' # Reads config file and returns variables # TODO enforce input types here def readConfig(typ='DEFAULT'): global config config.read(filePath) configType = config[typ] return typ, OrderedDict([('LambdaStartValue',float(configType['LambdaStartValue'])), ('LambdaEndValue',float(configType['LambdaEndValue'])), ('LambdaIncrValue',float(configType['LambdaIncrValue'])), ('CSVFile',configType['CSVFile']), ('Labels',configType['Labels']), ('OneHot',configType['OneHot']), ('Skip',configType['Skip']), ('RandomSeed',int(configType['randomSeed'])), ('SampleSize',float(configType['SampleSize'])), ('RatioTrainData',float(-1 if configType['RatioTrainData'] == '' else Fraction(configType['RatioTrainData']))), ('RatioValidData',float(-1 if configType['RatioValidData'] == '' else Fraction(configType['RatioValidData']))), ('Mode',int(configType['Mode'])), ('Models',configType['Models']), ('LogFile',configType['LogFile'])]) # sets the configuration variables for the run # Input: User input string of the configuration name # Output: OrderedDict of config variables def setConfig(): return readConfig(sys.argv[1])
StarcoderdataPython
3391494
import numpy as np import matplotlib.pyplot as plt import pandas as pd from context import bbfsa #read csv file spectra = pd.read_csv('./tests/workflow/input/700cow.csv', delimiter=',', names= ['wn', 'ab']) # cristallinity index s = bbfsa.slice(spectra,700,400) #slice for baseline b = bbfsa.baseline(s) #baseline s2 = bbfsa.slice(b,620,530) #slice for peak picking pp = bbfsa.peakpickMin (s2) #needs test if 2 values pn = bbfsa.peakpickMin (s2) #needs test if 1 value #nearest peak NV = pp['ab'].where (pp['a'].abs(500)==min(pp['a'].abs(500))) print (NV) plotmeX = s2.wn plotmeY = s2.ab plt.plot(plotmeX, plotmeY) plt.plot(pp.wn, pp.ab,'ro') plt.xlim(max(plotmeX)+100, min(plotmeX)-100) plt.ylim(min(plotmeY), max(plotmeY)+0.1) #plt.show()
StarcoderdataPython
1747627
from machine import Pin import utime button = Pin(16, Pin.IN, Pin.PULL_UP) while True: b1 = button.value() if not b1: print('Button pressed!') utime.sleep(0.5)
StarcoderdataPython
5689
<gh_stars>0 from __future__ import absolute_import import six from sentry.utils.safe import get_path, trim from sentry.utils.strings import truncatechars from .base import BaseEvent def get_crash_location(exception, platform=None): default = None for frame in reversed(get_path(exception, 'stacktrace', 'frames', filter=True) or ()): fn = frame.get('filename') or frame.get('abs_path') if fn: func = frame.get('function') if func is not None: from sentry.interfaces.stacktrace import trim_function_name func = trim_function_name(func, frame.get('platform') or platform) if frame.get('in_app'): return fn, func if default is None: default = fn, func return default class ErrorEvent(BaseEvent): key = 'error' def has_metadata(self, data): exception = get_path(data, 'exception', 'values', -1) return exception and any(v is not None for v in six.itervalues(exception)) def get_metadata(self, data): exception = get_path(data, 'exception', 'values', -1) if not exception: return {} loc = get_crash_location(exception, data.get('platform')) rv = { 'value': trim(get_path(exception, 'value', default=''), 1024), } # If the exception mechanism indicates a synthetic exception we do not # want to record the type and value into the metadata. if not get_path(exception, 'mechanism', 'synthetic'): rv['type'] = trim(get_path(exception, 'type', default='Error'), 128) # Attach crash location if available if loc is not None: fn, func = loc if fn: rv['filename'] = fn if func: rv['function'] = func return rv def get_title(self, metadata): ty = metadata.get('type') if ty is None: return metadata.get('function') or '<unknown>' if not metadata.get('value'): return ty return u'{}: {}'.format( ty, truncatechars(metadata['value'].splitlines()[0], 100), ) def get_location(self, metadata): return metadata.get('filename')
StarcoderdataPython
194791
<reponame>cgarciae/tf-interface #!/usr/bin/env python # -*- coding: utf-8 -*- # __coconut_hash__ = 0xaa0f5a8b # Compiled with Coconut version 1.2.3-post_dev1 [Colonel] # Coconut Header: -------------------------------------------------------- from __future__ import print_function, absolute_import, unicode_literals, division import sys as _coconut_sys, os.path as _coconut_os_path _coconut_file_path = _coconut_os_path.dirname(_coconut_os_path.abspath(__file__)) _coconut_sys.path.insert(0, _coconut_file_path) from __coconut__ import _coconut, _coconut_MatchError, _coconut_tail_call, _coconut_tco, _coconut_igetitem, _coconut_compose, _coconut_pipe, _coconut_starpipe, _coconut_backpipe, _coconut_backstarpipe, _coconut_bool_and, _coconut_bool_or, _coconut_minus, _coconut_map, _coconut_partial from __coconut__ import * _coconut_sys.path.remove(_coconut_file_path) # Compiled Coconut: ------------------------------------------------------
StarcoderdataPython
3227639
# Licensed Materials - Property of IBM # Copyright IBM Corp. 2017 import unittest import sys import itertools import time import os from streamsx.topology.topology import * from streamsx.topology.tester import Tester from streamsx.topology import schema import streamsx.topology.context import streamsx.spl.op as op class TestPending(unittest.TestCase): _multiprocess_can_split_ = True """ Test pending connections. """ def setUp(self): Tester.setup_distributed(self) def test_simple_map(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = [ e + "PC" for e in data ] topo = Topology() pending = PendingStream(topo) ap = pending.stream.map(lambda s : s + "PC") self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_simple_filter(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = ['A3'] topo = Topology() pending = PendingStream(topo) ap = pending.stream.filter(lambda s : s.startswith('A')) ap = ap.filter(lambda s : s.endswith('3')) self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_fan_in_out(self): """Test pending connection fan in/out. """ data1 = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] data2 = ['X','Y', 'Z', 'Q', 'T', 'X'] all_data = data1 + data2 expected_pc = [ e + "PC" for e in all_data ] expected_cp = [ "CP" + e for e in all_data ] expected_su = [ "SU" + e + "US" for e in all_data ] topo = Topology() pending = PendingStream(topo) apc = pending.stream.map(lambda s : s + "PC") acp = pending.stream.map(lambda s : 'CP' + s) self.assertFalse(pending.is_complete()) s1 = topo.source(data1) s2 = topo.source(data2) su = s1.union({s2}) asu = su.map(lambda s : 'SU' + s + 'US') pending.complete(su) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(apc, expected_pc, ordered=False) tester.contents(acp, expected_cp, ordered=False) tester.contents(asu, expected_su, ordered=False) tester.test(self.test_ctxtype, self.test_config) def test_feedback_loop(self): topo = Topology() data = ['A','B', 'A', 'A', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] expected = ['B', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] s = topo.source(data) s = s.filter(lambda t : time.sleep(1) or True).as_string(); feedback = PendingStream(topo) df = op.Invoke(topo, 'spl.utility::DynamicFilter', inputs = [s, feedback.stream], schemas= [schema.CommonSchema.String]) df.params['key'] = df.attribute(s, 'string') df.params['addKey'] = df.attribute(feedback.stream, 'string') delayed_out = op.Map('spl.utility::Delay', df.outputs[0], params={'delay': 0.05}).stream x = delayed_out.filter(lambda s : s == 'X').map(lambda s : 'A').as_string() i = topo.source(['B', 'X', 'C', 'D', 'E']).as_string() x = x.union({i}) feedback.complete(x) result = delayed_out result.print() #streamsx.topology.context.submit('TOOLKIT', topo) tester = Tester(topo) tester.contents(result, expected) tester.test(self.test_ctxtype, self.test_config) class TestSasPending(TestPending): def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=True) class TestPendingCompileOnly(unittest.TestCase): @unittest.skipIf("STREAMS_INSTALL" not in os.environ, "STREAMS_INSTALL not set") def test_pure_loop(self): topo = Topology() feedback = PendingStream(topo) df = op.Map('spl.utility::Custom', feedback.stream, schema=schema.CommonSchema.String) delayed_out = op.Map('spl.utility::Delay', df.stream, params={'delay': 0.05}).stream feedback.complete(delayed_out) sr = streamsx.topology.context.submit('BUNDLE', topo) self.assertEqual(0, sr['return_code']) os.remove(sr.bundlePath)
StarcoderdataPython
152418
<filename>server/athenian/api/models/web/pull_request_event.py from athenian.api.models.web.base_model_ import Enum, Model class PullRequestEvent(Model, metaclass=Enum): """PR's modelled lifecycle events.""" CREATED = "created" COMMITTED = "committed" REVIEW_REQUESTED = "review_requested" REVIEWED = "reviewed" APPROVED = "approved" CHANGES_REQUESTED = "changes_requested" MERGED = "merged" RELEASED = "released" REJECTED = "rejected" DEPLOYED = "deployed"
StarcoderdataPython
4818088
<reponame>tao-shen/FedGraph import torch.nn as nn from dgl.nn.pytorch import GraphConv import torch.nn.functional as F import dgl.function as f class MLP(nn.Module): def __init__(self, in_feats, n_hidden, num_classes, n_layers, dropout): super(MLP, self).__init__() self.activation = F.relu self.layers = nn.ModuleList() self.layers.append(nn.Linear(in_feats, n_hidden)) for i in range(n_layers - 1): self.layers.append(nn.Linear(n_hidden, n_hidden)) self.layers.append(nn.Linear(n_hidden, num_classes)) self.dropout = nn.Dropout(p=dropout) def forward(self, none, h): for i, layer in enumerate(self.layers): if i != 0: h = self.dropout(h) h = self.activation(layer(h)) return h class DotProductPredictor(nn.Module): def forward(self, graph, h): # h contains the node representations computed from the GNN defined # in the node classification section (Section 5.1). with graph.local_scope(): graph.ndata['h'] = h graph.apply_edges(f.u_dot_v('h', 'h', 'score')) return graph.edata['score'] class GCN(nn.Module): def __init__(self, in_feats, n_hidden, num_classes, n_layers, dropout): super(GCN, self).__init__() # self.g = g self.layers = nn.ModuleList() self.activation = F.relu # input layer self.layers.append( GraphConv(in_feats, n_hidden, activation=self.activation, allow_zero_in_degree=True)) # hidden layers for i in range(n_layers - 1): self.layers.append( GraphConv(n_hidden, n_hidden, activation=self.activation, allow_zero_in_degree=True)) # output layer self.layers.append(GraphConv(n_hidden, num_classes, allow_zero_in_degree=True)) self.dropout = nn.Dropout(p=dropout) def forward(self, g, features): h = features for i, layer in enumerate(self.layers): if i != 0: h = self.dropout(h) h = layer(g, h) return h
StarcoderdataPython
1786691
<reponame>fengjixuchui/androguard import hashlib import os import sys import collections from androguard.core.analysis.analysis import Analysis from androguard.core.bytecodes.dvm import DalvikVMFormat, DalvikOdexVMFormat from androguard.core.bytecodes.apk import APK from androguard.decompiler.decompiler import DecompilerDAD from androguard.core import androconf import pickle import logging import datetime log = logging.getLogger("androguard.session") def Save(session, filename=None): """ save your session to use it later. Returns the filename of the written file. If not filename is given, a file named `androguard_session_<DATE>.ag` will be created in the current working directory. `<DATE>` is a timestamp with the following format: `%Y-%m-%d_%H%M%S`. This function will overwrite existing files without asking. If the file could not written, None is returned. example:: s = session.Session() session.Save(s, "msession.ag") :param session: A Session object to save :param filename: output filename to save the session :type filename: string """ if not filename: filename = "androguard_session_{:%Y-%m-%d_%H%M%S}.ag".format(datetime.datetime.now()) if os.path.isfile(filename): log.warning("{} already exists, overwriting!") # Setting the recursion limit according to the documentation: # https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled # # Some larger APKs require a high recursion limit. # Tested to be above 35000 for some files, setting to 50k to be sure. # You might want to set this even higher if you encounter problems reclimit = sys.getrecursionlimit() sys.setrecursionlimit(50000) saved = False try: with open(filename, "wb") as fd: pickle.dump(session, fd) saved = True except RecursionError: log.exception("Recursion Limit hit while saving. " "Current Recursion limit: {}. " "Please report this error!".format(sys.getrecursionlimit())) # Remove partially written file os.unlink(filename) sys.setrecursionlimit(reclimit) return filename if saved else None def Load(filename): """ load your session! example:: s = session.Load("mysession.ag") :param filename: the filename where the session has been saved :type filename: string :rtype: the elements of your session :) """ with open(filename, "rb") as fd: return pickle.load(fd) class Session: """ A Session is able to store multiple APK, DEX or ODEX files and can be pickled to disk in order to resume work later. The main function used in Sessions is probably :meth:`add`, which adds files to the session and performs analysis on them. Afterwards, the files can be gathered using methods such as :meth:`get_objects_apk`, :meth:`get_objects_dex` or :meth:`get_classes`. example:: s = Session() digest = s.add("some.apk") print("SHA256 of the file: {}".format(digest)) a, d, dx = s.get_objects_apk("some.apk", digest) print(a.get_package()) # Reset the Session for a fresh set of files s.reset() digest2 = s.add("classes.dex") print("SHA256 of the file: {}".format(digest2)) for h, d, dx in s.get_objects_dex(): print("SHA256 of the DEX file: {}".format(h)) """ def __init__(self, export_ipython=False): """ Create a new Session object :param export_ipython: set to True in order to create attributes for the use in iPython """ self._setup_objects() self.export_ipython = export_ipython def save(self, filename=None): """ Save the current session, see also :func:`~androguard.session.Save`. """ return Save(self, filename) def _setup_objects(self): self.analyzed_files = collections.defaultdict(list) self.analyzed_digest = dict() self.analyzed_apk = dict() # Stores Analysis Objects # needs to be ordered to return the outermost element when searching for # classes self.analyzed_vms = collections.OrderedDict() # Dict of digest and DalvikVMFormat/DalvikOdexFormat # Actually not needed, as we have Analysis objects which store the DEX # files as well, but we do not remove it here for legacy reasons self.analyzed_dex = dict() def reset(self): """ Reset the current session, delete all added files. """ self._setup_objects() def isOpen(self): """ Test if any file was analyzed in this session :return: `True` if any file was analyzed, `False` otherwise """ return len(self.analyzed_digest) > 0 def show(self): """ Print information to stdout about the current session. Gets all APKs, all DEX files and all Analysis objects. """ print("APKs in Session: {}".format(len(self.analyzed_apk))) for d, a in self.analyzed_apk.items(): print("\t{}: {}".format(d, a)) print("DEXs in Session: {}".format(len(self.analyzed_dex))) for d, dex in self.analyzed_dex.items(): print("\t{}: {}".format(d, dex)) print("Analysis in Session: {}".format(len(self.analyzed_vms))) for d, a in self.analyzed_vms.items(): print("\t{}: {}".format(d, a)) def addAPK(self, filename, data): """ Add an APK file to the Session and run analysis on it. :param filename: (file)name of APK file :param data: binary data of the APK file :return: a tuple of SHA256 Checksum and APK Object """ digest = hashlib.sha256(data).hexdigest() log.debug("add APK:%s" % digest) apk = APK(data, True) self.analyzed_apk[digest] = [apk] self.analyzed_files[filename].append(digest) self.analyzed_digest[digest] = filename dx = Analysis() self.analyzed_vms[digest] = dx for dex in apk.get_all_dex(): # we throw away the output... FIXME? self.addDEX(filename, dex, dx, postpone_xref=True) # Postponed dx.create_xref() log.debug("added APK:%s" % digest) return digest, apk def addDEX(self, filename, data, dx=None, postpone_xref=False): """ Add a DEX file to the Session and run analysis. :param filename: the (file)name of the DEX file :param data: binary data of the dex file :param dx: an existing Analysis Object (optional) :param postpone_xref: True if no xref shall be created, and will be called manually :return: A tuple of SHA256 Hash, DalvikVMFormat Object and Analysis object """ digest = hashlib.sha256(data).hexdigest() log.debug("add DEX:%s" % digest) log.debug("Parsing format ...") d = DalvikVMFormat(data) log.debug("added DEX:%s" % digest) self.analyzed_files[filename].append(digest) self.analyzed_digest[digest] = filename self.analyzed_dex[digest] = d if dx is None: dx = Analysis() dx.add(d) if not postpone_xref: dx.create_xref() # TODO: If multidex: this will called many times per dex, even if already set for d in dx.vms: # TODO: allow different decompiler here! d.set_decompiler(DecompilerDAD(d, dx)) d.set_vmanalysis(dx) self.analyzed_vms[digest] = dx if self.export_ipython: log.debug("Exporting in ipython") d.create_python_export() return digest, d, dx def addDEY(self, filename, data, dx=None): """ Add an ODEX file to the session and run the analysis """ digest = hashlib.sha256(data).hexdigest() log.debug("add DEY:%s" % digest) d = DalvikOdexVMFormat(data) log.debug("added DEY:%s" % digest) self.analyzed_files[filename].append(digest) self.analyzed_digest[digest] = filename self.analyzed_dex[digest] = d if self.export_ipython: d.create_python_export() if dx is None: dx = Analysis() dx.add(d) dx.create_xref() for d in dx.vms: # TODO: allow different decompiler here! d.set_decompiler(DecompilerDAD(d, dx)) d.set_vmanalysis(dx) self.analyzed_vms[digest] = dx return digest, d, dx def add(self, filename, raw_data=None, dx=None): """ Generic method to add a file to the session. This is the main method to use when adding files to a Session! If an APK file is supplied, all DEX files are analyzed too. For DEX and ODEX files, only this file is analyzed (what else should be analyzed). Returns the SHA256 of the analyzed file. :param filename: filename to load :param raw_data: bytes of the file, or None to load the file from filename :param dx: An already exiting :class:`~androguard.core.analysis.analysis.Analysis` object :return: the sha256 of the file or None on failure """ if not raw_data: log.debug("Loading file from '{}'".format(filename)) with open(filename, "rb") as fp: raw_data = fp.read() ret = androconf.is_android_raw(raw_data) log.debug("Found filetype: '{}'".format(ret)) if not ret: return None if ret == "APK": digest, _ = self.addAPK(filename, raw_data) elif ret == "DEX": digest, _, _ = self.addDEX(filename, raw_data, dx) elif ret == "DEY": digest, _, _ = self.addDEY(filename, raw_data, dx) else: return None return digest def get_classes(self): """ Returns all Java Classes from the DEX objects as an array of DEX files. """ for idx, digest in enumerate(self.analyzed_vms): dx = self.analyzed_vms[digest] for vm in dx.vms: filename = self.analyzed_digest[digest] yield idx, filename, digest, vm.get_classes() def get_analysis(self, current_class): """ Returns the :class:`~androguard.core.analysis.analysis.Analysis` object which contains the `current_class`. :param current_class: The class to search for :type current_class: androguard.core.bytecodes.dvm.ClassDefItem :rtype: androguard.core.analysis.analysis.Analysis """ for digest in self.analyzed_vms: dx = self.analyzed_vms[digest] if dx.is_class_present(current_class.get_name()): return dx return None def get_format(self, current_class): """ Returns the :class:`~androguard.core.bytecodes.dvm.DalvikVMFormat` of a given :class:`~androguard.core.bytecodes.dvm.ClassDefItem`. :param current_class: A ClassDefItem """ return current_class.CM.vm def get_filename_by_class(self, current_class): """ Returns the filename of the DEX file where the class is in. Returns the first filename this class was present. For example, if you analyzed an APK, this should return the filename of the APK and not of the DEX file. :param current_class: ClassDefItem :returns: None if class was not found or the filename """ for digest, dx in self.analyzed_vms.items(): if dx.is_class_present(current_class.get_name()): return self.analyzed_digest[digest] return None def get_digest_by_class(self, current_class): """ Return the SHA256 hash of the object containing the ClassDefItem Returns the first digest this class was present. For example, if you analyzed an APK, this should return the digest of the APK and not of the DEX file. """ for digest, dx in self.analyzed_vms.items(): if dx.is_class_present(current_class.get_name()): return digest return None def get_strings(self): """ Yields all StringAnalysis for all unique Analysis objects """ seen = [] for digest, dx in self.analyzed_vms.items(): if dx in seen: continue seen.append(dx) yield digest, self.analyzed_digest[digest], dx.get_strings_analysis() def get_nb_strings(self): """ Return the total number of strings in all Analysis objects """ nb = 0 seen = [] for digest, dx in self.analyzed_vms.items(): if dx in seen: continue seen.append(dx) nb += len(dx.get_strings_analysis()) return nb def get_all_apks(self): """ Yields a list of tuples of SHA256 hash of the APK and APK objects of all analyzed APKs in the Session. """ for digest, a in self.analyzed_apk.items(): yield digest, a def get_objects_apk(self, filename=None, digest=None): """ Returns APK, DalvikVMFormat and Analysis of a specified APK. You must specify either `filename` or `digest`. It is possible to use both, but in this case only `digest` is used. example:: s = Session() digest = s.add("some.apk") a, d, dx = s.get_objects_apk(digest=digest) example:: s = Session() filename = "some.apk" digest = s.add(filename) a, d, dx = s.get_objects_apk(filename=filename) :param filename: the filename of the APK file, only used of digest is None :param digest: the sha256 hash, as returned by :meth:`add` for the APK :returns: a tuple of (APK, [DalvikVMFormat], Analysis) """ if not filename and not digest: raise ValueError("Must give at least filename or digest!") if digest is None: digests = self.analyzed_files.get(filename) # Negate to reduce tree if not digests: return None, None, None digest = digests[0] a = self.analyzed_apk[digest][0] dx = self.analyzed_vms[digest] return a, dx.vms, dx def get_objects_dex(self): """ Yields all dex objects inclduing their Analysis objects :returns: tuple of (sha256, DalvikVMFormat, Analysis) """ # TODO: there is no variant like get_objects_apk for digest, d in self.analyzed_dex.items(): yield digest, d, self.analyzed_vms[digest]
StarcoderdataPython
1607661
<gh_stars>100-1000 from __future__ import absolute_import import logging import numpy as np from .import utils from .import sampling from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer from sklearn.model_selection import StratifiedShuffleSplit logger = logging.getLogger(__name__) class Dataset(object): def __init__(self, inputs, labels, test_indices=None, **kwargs): """Encapsulates all pieces of data to run an experiment. This is basically a bag of items that makes it easy to serialize and deserialize everything as a unit. Args: inputs: The raw model inputs. This can be set to None if you dont want to serialize this value when you save the dataset. labels: The raw output labels. test_indices: The optional test indices to use. Ideally, this should be generated one time and reused across experiments to make results comparable. `generate_test_indices` can be used generate first time indices. **kwargs: Additional key value items to store. """ self.X = np.array(inputs) self.y = np.array(labels) for key, value in kwargs.items(): setattr(self, key, value) self._test_indices = None self._train_indices = None self.test_indices = test_indices self.is_multi_label = isinstance(labels[0], (set, list, tuple)) self.label_encoder = MultiLabelBinarizer() if self.is_multi_label else LabelBinarizer() self.y = self.label_encoder.fit_transform(self.y).flatten() def update_test_indices(self, test_size=0.1): """Updates `test_indices` property with indices of `test_size` proportion. Args: test_size: The test proportion in [0, 1] (Default value: 0.1) """ if self.is_multi_label: self._train_indices, self._test_indices = sampling.multi_label_train_test_split(self.y, test_size) else: sss = StratifiedShuffleSplit(n_splits=1, test_size=test_size) self._train_indices, self._test_indices = next(sss.split(self.X, self.y)) def save(self, file_path): """Serializes this dataset to a file. Args: file_path: The file path to use. """ utils.dump(self, file_path) def train_val_split(self, split_ratio=0.1): """Generates train and validation sets from the training indices. Args: split_ratio: The split proportion in [0, 1] (Default value: 0.1) Returns: The stratified train and val subsets. Multi-label outputs are handled as well. """ if self.is_multi_label: train_indices, val_indices = sampling.multi_label_train_test_split(self.y, split_ratio) else: sss = StratifiedShuffleSplit(n_splits=1, test_size=split_ratio) train_indices, val_indices = next(sss.split(self.X, self.y)) return self.X[train_indices], self.X[val_indices], self.y[train_indices], self.y[val_indices] @staticmethod def load(file_path): """Loads the dataset from a file. Args: file_path: The file path to use. Returns: The `Dataset` instance. """ return utils.load(file_path) @property def test_indices(self): return self._test_indices @test_indices.setter def test_indices(self, test_indices): if test_indices is None: self._train_indices = np.arange(0, len(self.y)) else: self._test_indices = test_indices self._train_indices = np.setdiff1d(np.arange(0, len(self.y)), self.test_indices) @property def train_indices(self): return self._train_indices @property def labels(self): return self.label_encoder.classes_ @property def num_classes(self): if len(self.y.shape) == 1: return 1 else: return len(self.labels)
StarcoderdataPython
3209885
# -*- coding: utf-8 -*- from six import text_type from typing import Union from zerver.lib.test_classes import WebhookTestCase class BitbucketHookTests(WebhookTestCase): STREAM_NAME = 'bitbucket' URL_TEMPLATE = "/api/v1/external/bitbucket?payload={payload}&stream={stream}" FIXTURE_DIR_NAME = 'bitbucket' EXPECTED_SUBJECT = u"Repository name" EXPECTED_SUBJECT_BRANCH_EVENTS = u"Repository name / master" def test_bitbucket_on_push_event(self): # type: () -> None fixture_name = 'push' self.url = self.build_url(fixture_name) commit_info = u'* [25f93d2](https://bitbucket.org/kolaszek/repository-name/commits/25f93d22b719e2d678a7ad5ee0ef0d1fcdf39c12): c' expected_message = u"kolaszek pushed to branch master\n\n{}".format(commit_info) self.send_and_test_stream_message(fixture_name, self.EXPECTED_SUBJECT_BRANCH_EVENTS, expected_message, **self.api_auth(self.TEST_USER_EMAIL)) def test_bitbucket_on_push_commits_above_limit_event(self): # type: () -> None fixture_name = 'push_commits_above_limit' self.url = self.build_url(fixture_name) commit_info = u'* [25f93d2](https://bitbucket.org/kolaszek/repository-name/commits/25f93d22b719e2d678a7ad5ee0ef0d1fcdf39c12): c\n' expected_message = u"kolaszek pushed to branch master\n\n{}[and 40 more commit(s)]".format(commit_info * 10) self.send_and_test_stream_message(fixture_name, self.EXPECTED_SUBJECT_BRANCH_EVENTS, expected_message, **self.api_auth(self.TEST_USER_EMAIL)) def test_bitbucket_on_force_push_event(self): # type: () -> None fixture_name = 'force_push' self.url = self.build_url(fixture_name) expected_message = u"kolaszek [force pushed](https://bitbucket.org/kolaszek/repository-name)" self.send_and_test_stream_message(fixture_name, self.EXPECTED_SUBJECT, expected_message, **self.api_auth(self.TEST_USER_EMAIL)) def get_body(self, fixture_name): # type: (text_type) -> Union[text_type, Dict[str, text_type]] return {} def get_payload(self, fixture_name): # type: (text_type) -> Union[text_type, Dict[str, text_type]] return self.fixture_data(self.FIXTURE_DIR_NAME, fixture_name) def build_webhook_url(self): # type: () -> text_type return '' def build_url(self, fixture_name): # type: (text_type) -> text_type return self.URL_TEMPLATE.format(payload=self.get_payload(fixture_name), stream=self.STREAM_NAME)
StarcoderdataPython
1612278
<gh_stars>1-10 import logging logging.basicConfig(filename='test_deleteme.log', filemode='w', level=logging.DEBUG) """ Acquire data for training a Machine-Learning algorithm """ import pandas as pd from .ArXivTrainingData import ArXivTrainingData from .CrossRefTrainingData import CrossRefTrainingData from .TrainingRow import TrainingRow from .config import Config as config from .CleanTrainingData import CleanTrainingData import os import sys import logging logger = logging.getLogger(__name__) class TrainingData(): """ Given that we have CrossRef and ArXiv API data, combine to make a training dataset. """ def knit_training_dataframe(self, arx_training_data, cr_training_data): training_data = [] logger.info('ArXiv training data, shape:{}'.format(arx_training_data.shape)) logger.info('CrossRef training data, length {}'.format(len(cr_training_data))) # now splice the arxiv data AND the CrossRef search results # into 1 dataframe k=0 for i,row in arx_training_data.iterrows(): # doi = row['doi'] pid = row['id'] works_records = cr_training_data.get(pid,None) if works_records!=None: query_article = dict(row) for works_record in works_records: # print('DETAILS:',details) # print('Match article:',match_article) training_row = TrainingRow(works_record=works_record, query_article=query_article ).to_dict() training_data.append(training_row) k+=1 if k>0 and k%1000==0: logger.info(f'{k} rows of data knitted together.') return pd.DataFrame(training_data) def load_gen_training_df(self): if os.path.exists(config.training_dataloc): df = pd.read_csv(config.training_dataloc, error_bad_lines=False) #, dtype=str) logger.debug('Training data found. Shape:{}'.format(df.shape)) else: logger.debug('Training data not found. Generating from available data.') df = self.gen_training_df() df.to_csv(config.training_dataloc, index=False, encoding = 'utf-8-sig') return df def load_gen_clean_training_df(self): if os.path.exists(config.clean_training_dataloc): df = pd.read_csv(config.clean_training_dataloc, error_bad_lines=False) #, dtype=str) logger.debug('Clean training data found. Shape:{}'.format(df.shape)) else: logger.debug('Clean training data not found. Generating from available data.') df = self.load_gen_training_df() df = CleanTrainingData(df).clean_df df.to_csv(config.clean_training_dataloc, index=False, encoding = 'utf-8-sig') logger.debug('Clean training data shape:{}'.format(df.shape)) return df def gen_training_df(self): logger.info('Acquiring ArXiv data.') arx_training_data = ArXivTrainingData().oai_to_df() # print('Acquiring CrossRef training data') logger.info('Acquiring CrossRef training data') cr_training_data = CrossRefTrainingData().build_json_training_data(arx_training_data) logger.info('Done.') return self.knit_training_dataframe(arx_training_data, cr_training_data)
StarcoderdataPython
4809123
# Generated by Django 3.2.4 on 2021-08-12 23:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('museum_site', '0066_rename_patron_level_profile_patronage'), ] operations = [ migrations.AlterField( model_name='profile', name='bkzzt_topics', field=models.TextField(blank=True, editable=False, max_length=2000), ), migrations.AlterField( model_name='profile', name='closer_look_nominations', field=models.TextField(blank=True, editable=False, max_length=2000), ), migrations.AlterField( model_name='profile', name='closer_look_selections', field=models.TextField(blank=True, editable=False, max_length=2000), ), migrations.AlterField( model_name='profile', name='guest_stream_selections', field=models.TextField(blank=True, editable=False, max_length=2000), ), migrations.AlterField( model_name='profile', name='stream_poll_nominations', field=models.TextField(blank=True, max_length=2000), ), migrations.AlterField( model_name='profile', name='stream_selections', field=models.TextField(blank=True, editable=False, max_length=2000), ), ]
StarcoderdataPython
1692767
# Generated by Django 3.1.2 on 2020-11-04 08:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bills', '0007_auto_20201104_0251'), ] operations = [ migrations.AddField( model_name='storeunion', name='is_credit_union', field=models.BooleanField(db_column='isCreditUnion', default=False), ), ]
StarcoderdataPython
1672920
<filename>src/sage/rings/padics/padic_extension_leaves.py """ p-Adic Extension Leaves The final classes for extensions of Zp and Qp (ie classes that are not just designed to be inherited from). AUTHORS: - <NAME> """ #***************************************************************************** # Copyright (C) 2008 <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # http://www.gnu.org/licenses/ #***************************************************************************** from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import Zmod from .pow_computer_ext import PowComputer_ext_maker from .pow_computer_flint import PowComputer_flint_maker from sage.libs.ntl.ntl_ZZ_pX import ntl_ZZ_pX from .unramified_extension_generic import UnramifiedExtensionGeneric from .eisenstein_extension_generic import EisensteinExtensionGeneric #from padic_general_extension_generic import pAdicGeneralExtensionGeneric from .generic_nodes import pAdicCappedRelativeRingGeneric, \ pAdicCappedRelativeFieldGeneric, \ pAdicCappedAbsoluteRingGeneric, \ pAdicFixedModRingGeneric, \ pAdicFloatingPointRingGeneric, \ pAdicFloatingPointFieldGeneric #from unramified_extension_absolute_element import UnramifiedExtensionAbsoluteElement #from unramified_extension_capped_relative_element import UnramifiedExtensionCappedRelativeElement #from unramified_extension_lazy_element import UnramifiedExtensionRelaxedElement #from eisenstein_extension_absolute_element import EisensteinExtensionAbsoluteElement #from eisenstein_extension_capped_relative_element import EisensteinExtensionCappedRelativeElement #from eisenstein_extension_lazy_element import EisensteinExtensionRelaxedElement #from padic_general_extension_absolute_element import pAdicGeneralExtensionAbsoluteElement #from padic_general_extension_capped_relative_element import pAdicGeneralExtensionCappedRelativeElement #from padic_general_extension_lazy_element import pAdicGeneralExtensionRelaxedElement from .padic_ZZ_pX_FM_element import pAdicZZpXFMElement from .padic_ZZ_pX_CR_element import pAdicZZpXCRElement from .padic_ZZ_pX_CA_element import pAdicZZpXCAElement from .qadic_flint_CR import qAdicCappedRelativeElement from .qadic_flint_CA import qAdicCappedAbsoluteElement from .qadic_flint_FM import qAdicFixedModElement from .qadic_flint_FP import qAdicFloatingPointElement def _make_integral_poly(exact_modulus, p, prec): """ Convert a defining polynomial into one with integral coefficients. INPUT: - ``exact_modulus`` -- a univariate polynomial - ``p`` -- a prime - ``prec`` -- the precision EXAMPLES:: sage: from sage.rings.padics.padic_extension_leaves import _make_integral_poly sage: R.<x> = QQ[] sage: f = _make_integral_poly(x^2 - 2, 5, 3); f x^2 - 2 sage: f.parent() Univariate Polynomial Ring in x over Integer Ring sage: f = _make_integral_poly(x^2 - 2/7, 5, 3); f x^2 + 89 sage: f.parent() Univariate Polynomial Ring in x over Integer Ring """ try: return exact_modulus.change_ring(ZZ) except TypeError: return exact_modulus.change_ring(Zmod(p**prec)).change_ring(ZZ) class UnramifiedExtensionRingCappedRelative(UnramifiedExtensionGeneric, pAdicCappedRelativeRingGeneric): """ TESTS:: sage: R.<a> = ZqCR(27,10000) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): """ A capped relative representation of Zq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in a `p`-adic ring. - ``poly`` -- t polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = ZqCR(27,10000); R #indirect doctest 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 sage: R.<a> = ZqCR(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 """ self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec) if prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, False, ntl_poly, "small", "u") else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, False, ntl_poly, "big", "u") element_class = pAdicZZpXCRElement else: Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = min(prec, 30) self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='capped-rel') element_class = qAdicCappedRelativeElement UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class) if implementation != 'NTL': from .qadic_flint_CR import pAdicCoercion_ZZ_CR, pAdicConvert_QQ_CR self.register_coercion(pAdicCoercion_ZZ_CR(self)) self.register_conversion(pAdicConvert_QQ_CR(self)) class UnramifiedExtensionFieldCappedRelative(UnramifiedExtensionGeneric, pAdicCappedRelativeFieldGeneric): """ TESTS:: sage: R.<a> = QqCR(27,10000) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): r""" A representation of Qq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with rational coefficients, for example, while ``poly`` has coefficients in a `p`-adic field. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = Qq(27,10000); R #indirect doctest 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 sage: R.<a> = Qq(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 """ # Currently doesn't support polynomials with non-integral coefficients self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec) if prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, True, ntl_poly, "small", "u") else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, True, ntl_poly, "big", "u") element_class = pAdicZZpXCRElement else: Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = min(prec, 30) self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, True, Zpoly, prec_type='capped-rel') element_class = qAdicCappedRelativeElement UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class) if implementation != 'NTL': from .qadic_flint_CR import pAdicCoercion_ZZ_CR, pAdicCoercion_QQ_CR self.register_coercion(pAdicCoercion_ZZ_CR(self)) self.register_coercion(pAdicCoercion_QQ_CR(self)) def _coerce_map_from_(self, R): r""" Return a coercion from ``R`` into this ring or ``True`` if the default conversion map can be used to perform a coercion. EXAMPLES:: sage: R.<a> = QqCR(27) sage: R.coerce_map_from(ZqCR(27,names='a')) # indirect doctest Ring morphism: From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 sage: R.coerce_map_from(ZqCA(27,names='a')) # indirect doctest Ring morphism: From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 """ if isinstance(R, UnramifiedExtensionRingCappedRelative) and R.fraction_field() is self: from sage.rings.padics.qadic_flint_CR import pAdicCoercion_CR_frac_field return pAdicCoercion_CR_frac_field(R, self) if isinstance(R, UnramifiedExtensionRingCappedAbsolute) and R.fraction_field() is self: from sage.rings.padics.qadic_flint_CA import pAdicCoercion_CA_frac_field return pAdicCoercion_CA_frac_field(R, self) return super(UnramifiedExtensionFieldCappedRelative, self)._coerce_map_from_(R) class UnramifiedExtensionRingCappedAbsolute(UnramifiedExtensionGeneric, pAdicCappedAbsoluteRingGeneric): """ TESTS:: sage: R.<a> = ZqCA(27,10000) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): """ A capped absolute representation of Zq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while poly has coefficients in a `p`-adic ring. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- A dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = ZqCA(27,10000); R #indirect doctest 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 sage: R.<a> = ZqCA(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 """ # Currently doesn't support polynomials with non-integral coefficients self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec) if prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, True, ntl_poly, "small", "u") else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, True, ntl_poly, "big", "u") element_class = pAdicZZpXCAElement else: Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = min(prec, 30) self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='capped-abs') element_class = qAdicCappedAbsoluteElement UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class) if implementation != 'NTL': from .qadic_flint_CA import pAdicCoercion_ZZ_CA, pAdicConvert_QQ_CA self.register_coercion(pAdicCoercion_ZZ_CA(self)) self.register_conversion(pAdicConvert_QQ_CA(self)) class UnramifiedExtensionRingFixedMod(UnramifiedExtensionGeneric, pAdicFixedModRingGeneric): """ TESTS:: sage: R.<a> = ZqFM(27,10000) sage: TestSuite(R).run(skip='_test_log',max_runs=4) # long time """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): """ A fixed modulus representation of Zq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in a `p`-adic field. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = ZqFM(27,10000); R #indirect doctest 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 sage: R.<a> = ZqFM(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 """ self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec) self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), max(min(prec - 1, 30), 1), prec, prec, False, ntl_poly, "FM", "u") element_class = pAdicZZpXFMElement else: Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = 0 # prevents caching self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='fixed-mod') element_class = qAdicFixedModElement UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class) if implementation != 'NTL': from .qadic_flint_FM import pAdicCoercion_ZZ_FM, pAdicConvert_QQ_FM self.register_coercion(pAdicCoercion_ZZ_FM(self)) self.register_conversion(pAdicConvert_QQ_FM(self)) #def coerce_map_explicit(self, S): # from sage.rings.padics.morphism import Morphism_ZZ_UnrFM, Morphism_ZpFM_UnrFM # if S is ZZ: # return Morphism_ZZ_UnrFM(self) # elif isinstance(S, pAdicRingFixedMod) and S.prime() == self.prime(): # return Morphism_ZpFM_UnrFM(S, self) # return None class UnramifiedExtensionRingFloatingPoint(UnramifiedExtensionGeneric, pAdicFloatingPointRingGeneric): """ TESTS:: sage: R.<a> = ZqFP(27,10000); R == loads(dumps(R)) True """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): """ A floating point representation of Zq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in Zp. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = ZqFP(27,10000); R #indirect doctest 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 sage: R.<a> = ZqFP(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 TESTS: Check that :trac:`23228` has been resolved:: sage: a % R.prime() a """ self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': raise NotImplementedError Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = min(prec, 30) self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='floating-point') UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, qAdicFloatingPointElement) from .qadic_flint_FP import pAdicCoercion_ZZ_FP, pAdicConvert_QQ_FP self.register_coercion(pAdicCoercion_ZZ_FP(self)) self.register_conversion(pAdicConvert_QQ_FP(self)) class UnramifiedExtensionFieldFloatingPoint(UnramifiedExtensionGeneric, pAdicFloatingPointFieldGeneric): """ TESTS:: sage: R.<a> = QqFP(27,10000); R == loads(dumps(R)) True """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT'): """ A representation of Qq. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with rational coefficients, for example, while ``poly`` has coefficients in a `p`-adic field. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R.<a> = QqFP(27,10000); R #indirect doctest 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 sage: R.<a> = Qq(next_prime(10^30)^3, 3); R.prime() 1000000000000000000000000000057 """ # Currently doesn't support polynomials with non-integral coefficients self._shift_seed = None self._exact_modulus = exact_modulus self._implementation = implementation if implementation == 'NTL': raise NotImplementedError Zpoly = _make_integral_poly(exact_modulus, poly.base_ring().prime(), prec) cache_limit = min(prec, 30) self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, True, Zpoly, prec_type='floating-point') UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, qAdicFloatingPointElement) from .qadic_flint_FP import pAdicCoercion_ZZ_FP, pAdicCoercion_QQ_FP self.register_coercion(pAdicCoercion_ZZ_FP(self)) self.register_coercion(pAdicCoercion_QQ_FP(self)) def _coerce_map_from_(self, R): r""" Return a coercion from ``R`` into this ring or ``True`` if the default conversion map can be used to perform a coercion. EXAMPLES:: sage: R.<a> = QqFP(27) sage: R.coerce_map_from(ZqFP(27,names='a')) # indirect doctest Ring morphism: From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1 """ if isinstance(R, UnramifiedExtensionRingFloatingPoint) and R.fraction_field() is self: from sage.rings.padics.qadic_flint_FP import pAdicCoercion_FP_frac_field return pAdicCoercion_FP_frac_field(R, self) return super(UnramifiedExtensionFieldFloatingPoint, self)._coerce_map_from_(R) class EisensteinExtensionRingCappedRelative(EisensteinExtensionGeneric, pAdicCappedRelativeRingGeneric): """ TESTS:: sage: R = Zp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL'): """ A capped relative representation of an eisenstein extension of Zp. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in a `p`-adic ring. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R = Zp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f); W #indirect doctest 3-adic Eisenstein Extension Ring in w defined by x^3 + 9*x - 3 sage: W.precision_cap() 30000 sage: R.<p> = Zp(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p sage: W.<w> = R.ext(f); W.prime() 1000000000000000000000000000057 sage: W.precision_cap() 9 """ unram_prec = (prec + poly.degree() - 1) // poly.degree() ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec) shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec) if unram_prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), unram_prec, unram_prec, prec, False, ntl_poly, "small", "e", shift_poly) else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, unram_prec, prec, False, ntl_poly, "big", "e", shift_poly) self._shift_seed = shift_seed self._exact_modulus = exact_modulus self._implementation = implementation EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement) class EisensteinExtensionFieldCappedRelative(EisensteinExtensionGeneric, pAdicCappedRelativeFieldGeneric): """ TESTS:: sage: R = Qp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL'): """ A capped relative representation of an eisenstein extension of Qp. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with rational coefficients, for example, while ``poly`` has coefficients in a `p`-adic field. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R = Qp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f); W #indirect doctest 3-adic Eisenstein Extension Field in w defined by x^3 + 9*x - 3 sage: W.precision_cap() 30000 sage: R.<p> = Qp(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p sage: W.<w> = R.ext(f); W.prime() 1000000000000000000000000000057 sage: W.precision_cap() 9 """ # Currently doesn't support polynomials with non-integral coefficients unram_prec = (prec + poly.degree() - 1) // poly.degree() ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec) shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec) if unram_prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), unram_prec, unram_prec, prec, True, ntl_poly, "small", "e", shift_poly) else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, unram_prec, prec, True, ntl_poly, "big", "e", shift_poly) self._shift_seed = shift_seed self._exact_modulus = exact_modulus self._implementation = implementation EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement) class EisensteinExtensionRingCappedAbsolute(EisensteinExtensionGeneric, pAdicCappedAbsoluteRingGeneric): """ TESTS:: sage: R = ZpCA(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation): """ A capped absolute representation of an eisenstein extension of Zp. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in a `p`-adic ring. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R = ZpCA(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f); W 3-adic Eisenstein Extension Ring in w defined by x^3 + 9*x - 3 sage: W.precision_cap() 30000 sage: R.<p> = ZpCA(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p sage: W.<w> = R.ext(f); W.prime() 1000000000000000000000000000057 sage: W.precision_cap() 9 """ unram_prec = (prec + poly.degree() - 1) // poly.degree() ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec) shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec) if unram_prec <= 30: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), unram_prec, unram_prec, prec, False, ntl_poly, "small", "e", shift_poly) else: self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, unram_prec, prec, False, ntl_poly, "big", "e", shift_poly) self._shift_seed = shift_seed self._exact_modulus = exact_modulus self._implementation = implementation EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCAElement) class EisensteinExtensionRingFixedMod(EisensteinExtensionGeneric, pAdicFixedModRingGeneric): """ TESTS:: sage: R = ZpFM(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f) sage: TestSuite(R).run(skip='_test_log',max_runs=4) """ def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL'): """ A fixed modulus representation of an eisenstein extension of Zp. INPUT: - ``exact_modulus`` -- the original polynomial defining the extension. This could be a polynomial with integer coefficients, for example, while ``poly`` has coefficients in a `p`-adic ring. - ``poly`` -- the polynomial with coefficients in :meth:`base_ring` defining this extension - ``prec`` -- the precision cap of this ring - ``print_mode`` -- a dictionary of print options - ``shift_seed`` -- unused - ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)`` EXAMPLES:: sage: R = ZpFM(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3 sage: W.<w> = R.ext(f); W #indirect doctest 3-adic Eisenstein Extension Ring in w defined by x^3 + 9*x - 3 sage: W.precision_cap() 30000 sage: R.<p> = ZpFM(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p sage: W.<w> = R.ext(f); W.prime() 1000000000000000000000000000057 sage: W.precision_cap() 9 """ unram_prec = (prec + poly.degree() - 1) // poly.degree() ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec) shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec) #print poly.base_ring().prime(), prec, poly.degree(), ntl_poly # deal with prec not a multiple of e better. self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), max(min(unram_prec - 1, 30), 1), unram_prec, prec, False, ntl_poly, "FM", "e", shift_poly) self._shift_seed = shift_seed self._exact_modulus = exact_modulus self._implementation = implementation EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXFMElement) def fraction_field(self): """ Eisenstein extensions with fixed modulus do not support fraction fields. EXAMPLES:: sage: S.<x> = ZZ[] sage: R.<a> = ZpFM(5).extension(x^2 - 5) sage: R.fraction_field() Traceback (most recent call last): ... TypeError: This implementation of the p-adic ring does not support fields of fractions. """ raise TypeError("This implementation of the p-adic ring does not support fields of fractions.") #def coerce_map_explicit(self, S): # from sage.rings.padics.morphism import Morphism_ZZ_EisFM, Morphism_ZpFM_EisFM # if S is ZZ: # return Morphism_ZZ_EisFM(self) # elif isinstance(S, pAdicRingFixedMod) and S.prime() == self.prime(): # return Morphism_ZpFM_EisFM(S, self) # return None
StarcoderdataPython
1618228
<filename>test/integration/ggrc/converters/test_import_assessment_templates.py # Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # pylint: disable=maybe-no-member """Test Assessment Template import.""" from collections import OrderedDict from ggrc import models from ggrc.converters import errors from ggrc.utils import errors as common_errors from integration.ggrc import TestCase from integration.ggrc.models import factories class TestAssessmentTemplatesImport(TestCase): """Assessment Template import tests.""" def setUp(self): """Set up for Assessment Template test cases.""" super(TestAssessmentTemplatesImport, self).setUp() self.client.get("/login") def test_valid_import(self): """Test valid import.""" response = self.import_file("assessment_template_no_warnings.csv") expected_messages = { "Assessment Template": { "rows": 4, "updated": 0, "created": 4, } } self._check_csv_response(response, expected_messages) people = {p.email: p.id for p in models.Person.query.all()} template = models.AssessmentTemplate.query \ .filter(models.AssessmentTemplate.slug == "T-2") \ .first() self.assertEqual( template.default_people["verifiers"], [people["<EMAIL>"], people["<EMAIL>"]], ) def test_modify_over_import(self): """Test import modifies Assessment Template and does not fail.""" self.import_file("assessment_template_no_warnings.csv") slug = "T-1" response = self.import_data(OrderedDict([ ("object_type", "Assessment_Template"), ("Code*", slug), ("Audit*", "Audit"), ("Title", "Title"), ("Object Under Assessment", 'Control'), ])) template = models.AssessmentTemplate.query \ .filter(models.AssessmentTemplate.slug == slug) \ .first() self._check_csv_response(response, {}) self.assertEqual(template.default_people['verifiers'], 'Auditors') self.assertEqual(template.default_people['assignees'], 'Admin') def test_modify_persons_over_import(self): """Test import modifies Assessment Template and does not fail.""" self.import_file("assessment_template_no_warnings.csv") slug = "T-1" response = self.import_data(OrderedDict([ ("object_type", "Assessment_Template"), ("Code*", slug), ("Audit*", "Audit"), ("Title", "Title"), ("Object Under Assessment", 'Control'), ("Default Verifiers", "Secondary Contacts") ])) template = models.AssessmentTemplate.query \ .filter(models.AssessmentTemplate.slug == slug) \ .first() self._check_csv_response(response, {}) self.assertEqual(template.default_people['verifiers'], "Secondary Contacts") def test_invalid_import(self): """Test invalid import.""" data = "assessment_template_with_warnings_and_errors.csv" response = self.import_file(data, safe=False) expected_messages = { "Assessment Template": { "rows": 5, "updated": 0, "created": 4, "row_warnings": { errors.UNKNOWN_USER_WARNING.format( line=12, column_name="Default Verifiers", email="<EMAIL>", ), errors.UNKNOWN_USER_WARNING.format( line=12, column_name="Default Verifiers", email="<EMAIL>" ), }, "row_errors": { errors.ERROR_TEMPLATE.format( line=15, message=common_errors.DUPLICATE_RESERVED_NAME.format( attr_name="ASSESSMENT PROCEDURE" ), ) }, } } self._check_csv_response(response, expected_messages) def test_duplicated_gcad_import(self): """Test import of LCAD with same name as GCAD.""" cad_title = "Test GCA" with factories.single_commit(): factories.CustomAttributeDefinitionFactory( definition_type="assessment", title=cad_title, ) audit = factories.AuditFactory() response = self.import_data(OrderedDict([ ("object_type", "Assessment_Template"), ("Code*", ""), ("Audit*", audit.slug), ("Default Assignees", "<EMAIL>"), ("Default Verifiers", "<EMAIL>"), ("Title", "Title"), ("Object Under Assessment", "Control"), ("Custom Attributes", "Text, {}".format(cad_title)), ])) expected_messages = { "Assessment Template": { "rows": 1, "updated": 0, "created": 0, "row_warnings": set(), "row_errors": { errors.ERROR_TEMPLATE.format( line=3, message=common_errors.DUPLICATE_GCAD_NAME.format( attr_name=cad_title ), ) }, } } self._check_csv_response(response, expected_messages) def test_duplicated_acr_import(self): """Test import of LCAD with same name as GCAD.""" acr_name = "Test ACR" with factories.single_commit(): factories.AccessControlRoleFactory( object_type="Assessment", name=acr_name, ) audit = factories.AuditFactory() response = self.import_data(OrderedDict([ ("object_type", "Assessment_Template"), ("Code*", ""), ("Audit*", audit.slug), ("Default Assignees", "<EMAIL>"), ("Default Verifiers", "<EMAIL>"), ("Title", "Title"), ("Object Under Assessment", "Control"), ("Custom Attributes", "Text, {}".format(acr_name)), ])) expected_messages = { "Assessment Template": { "rows": 1, "updated": 0, "created": 0, "row_warnings": set(), "row_errors": { errors.ERROR_TEMPLATE.format( line=3, message=common_errors.DUPLICATE_CUSTOM_ROLE.format( role_name=acr_name ), ) }, } } self._check_csv_response(response, expected_messages)
StarcoderdataPython
3219319
<reponame>Minkov/python-oop-2021-02<filename>interators_generators/iterators.py ll = [1, 2, 3, 4, 5] for x in ll: print(x) print([[x + 1] for x in ll]) ll_iter_1 = iter(ll) ll_iter_2 = iter(ll) print(ll_iter_1) # print(f'Iter1: {next(ll_iter_1)}') # print(f'Iter1: {next(ll_iter_1)}') # print(f'Iter1: {next(ll_iter_1)}') # print(f'Iter1: {next(ll_iter_1)}') # print(f'Iter2: {next(ll_iter_2)}') # # print(f'Iter1: {next(ll_iter_1)}') while True: try: print(next(ll_iter_1)) except StopIteration: break
StarcoderdataPython
1799010
<reponame>SilvaneiMartins/api_user_python_flask from flask.json import JSONEncoder class USERS(object): new_id = 1 def __init__(self, name, email, password): self.name = name self.email = email self.password = password self.id = USERS.new_id USERS.new_id += 1 class USERSEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, USERS): return obj.__dict__ return super( USERSEncoder, self ).default(obj)
StarcoderdataPython
3350010
#!/usr/bin/env python3 import argparse as arp import os import sys ##### PARSING COMMAND LINE ARGUMENTS ##### prs = arp.ArgumentParser() prs.add_argument('sp_data_path', type = str, help = 'path of spatial data') prs.add_argument('cuda_device', type = str, help = "index of cuda device ID or cpu") prs.add_argument('-m', '--model_path', default = "model/", type = str, help = 'path to regression model') prs.add_argument('-o','--out_dir', default = os.getcwd() , type = str, help = 'model and proportions output directory') prs.add_argument('-e', '--epochs', default=2500, type = int, help = "number of epochs to fit the model") args = prs.parse_args() cuda_device = args.cuda_device sp_data_path = args.sp_data_path output_folder = args.out_dir assert (cuda_device.isdigit() or cuda_device == "cpu"), "invalid device input" print("Parameters\n==========") print("Training epochs: {}".format(args.epochs)) print("==========") ##### MAIN PART ##### if cuda_device.isdigit(): os.environ["CUDA_VISIBLE_DEVICES"]=cuda_device import scanpy as sc import numpy as np from scvi.model import CondSCVI, DestVI import matplotlib as mpl import matplotlib.pyplot as plt mpl.use('Agg') # silence scanpy that prints a lot of warnings import warnings warnings.filterwarnings('ignore') print("Reading in spatial data from " + sp_data_path + "...") st_adata = sc.read_h5ad(sp_data_path) st_adata.layers["counts"] = st_adata.X.copy() print("Reading in the sc model...") sc_model = CondSCVI.load(args.model_path) if st_adata.shape[1] != sc_model.adata.shape[1]: print("The number of genes do not match. Subsetting spatial data...") st_adata = st_adata[:, st_adata.var_names.isin(sc_model.adata.var_names)].copy() # Prepare anndata print("Setting up spatial model...") DestVI.setup_anndata(st_adata, layer="counts") # Set up model st_model = DestVI.from_rna_model(st_adata, sc_model) st_model.view_anndata_setup() st_model.train(max_epochs=args.epochs) # Save training figure st_model.history["elbo_train"].iloc[5:].plot() plt.savefig("train.png") # Export proportion file st_model.get_proportions().to_csv(os.path.join(output_folder, 'proportions.tsv'), sep="\t")
StarcoderdataPython
3289045
from auto_yolo import envs readme = "Testing air variational autoencoder with math." distributions = None durations = dict() n_digits = 2 largest_digit = n_digits * 9 n_classes = largest_digit + 1 config = dict( n_train=16000, min_digits=n_digits, max_digits=n_digits, max_time_steps=n_digits, run_all_time_steps=True, largest_digit=largest_digit, n_classes=n_classes) envs.run_experiment( "test_math", config, readme, alg="air_2stage_math", task="arithmetic", durations=durations, distributions=distributions )
StarcoderdataPython
3212936
"""Handles for Broden-like datasets. The original Broad and Densely Labeled Dataset (Broden_) was introduced in [Bau2017]_ as a combination of several existing semantic segmentation and classification datasets on overlapping image sets. For more details on Broden and its encoding see :py:class:`BrodenHandle`. .. note:: The original Broden dataset is not required for usage of this code. Used datasets just must use a format as is used by the Broden dataset. .. _Broden: https://github.com/CSAILVision/NetDissect-Lite/blob/master/script/dlbroden.sh .. [Bau2017] <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. 2017. “Network Dissection: Quantifying Interpretability of Deep Visual Representations.” In Proc. 2017 IEEE Conf. Comput. Vision and Pattern Recognition, 3319–3327. Honolulu, HI, USA: IEEE Computer Society. https://doi.org/10.1109/CVPR.2017.354. """ # Copyright (c) 2020 Continental Automotive GmbH import os from typing import NamedTuple, Optional, Dict, Tuple, List, Sequence, Union, \ Set, Any, Callable import PIL.Image import numpy as np import pandas as pd import torch import torchvision as tv from tqdm import tqdm from .. import transforms as trafo from ..base import BaseDataset class BrodenLabel(NamedTuple): """Information needed to load the annotation of a Broden label.""" name: str """The (unique) name of the label in the annotations.""" number: int """The label ID.""" category: str """The category from which to select samples for the label""" class BrodenHandle(BaseDataset): """Handle to collect a sub-dataset of a dataset following Broden format. .. note:: The original Broden dataset is not required for usage of this handle. Used datasets just must use a format as is used by the Broden dataset. In the following, the format specifics relevant for the datasets that can be handled are explained, using the original Broden Dataset as role model. *(No code from the original datasets was used.)* **About the Original Broden Dataset** The Broden dataset is the broad and densely labeled dataset initially prepared for the paper `Network Dissection <http://arxiv.org/abs/1704.05796>`_. It is a combination of the following datasets: - `ADE (scene, object, part) <https://groups.csail.mit.edu/vision/datasets/ADE20K/>`_ - `Pascal-Context (object) <https://cs.stanford.edu/~roozbeh/pascal-context/>`_ - `Pascal-Part (part) <http://roozbehm.info/pascal-parts/pascal-parts.html>`_ - `OpenSurfaces (material) <http://opensurfaces.cs.cornell.edu/>`_ - `DTD (texture) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_ - and a generated color dataset, with 11 human selected colors The original Broden data features both pixel-level semantic segmentation annotations (for categories see :py:attr:`SEG_CATS`), and image-level classification annotations (for categories see :py:attr:`CLS_CATS`). The :py:attr:`annotations` attribute stores the raw annotation information as :py:class:`pandas.DataFrame` as it is loaded from the index file (see :py:attr:`INDEX_CSV_FILE`) within the :py:attr:`~hybrid_learning.datasets.base.BaseDataset.dataset_root`. For the format of the annotations see :py:attr:`annotations` directly. .. note:: To create sub-sets, one can also provide the annotations information on init. **Default Output Format** The :py:meth:`~hybrid_learning.datasets.base.BaseDataset.getitem` method yields tuples of input image and a dictionary ``{label_name: annotation}`` containing the annotations for all specified labels. For the exact output format of the annotations have a look at the :py:meth:`getitem` doc. By default, for classification, the annotation is ``bool``, and for segmentation, it is a :py:class:`numpy.ndarray` binary mask for the label. If the label information is missing for the selected item, ``None`` is returned instead. This output is transformed by :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms` before yielding it as output of :py:meth:`~hybrid_learning.datasets.base.BaseDataset.__getitem__`. .. note:: - To collect a single custom label/merged annotations from the Broden dataset, refer to the :py:meth:`custom_label` builder. - To modify the internal annotations table after init, use :py:meth:`prune` or directly modify :py:attr:`annotations`. """ CAT_SEP = ">>" """Separator string if the category is specified for a label. Then the format is ``"{label}{sep}{category}"``.""" LABEL_CSV_FILE: str = "label.csv" """Path to the file containing meta-information about the labels, relative to a dataset root. For details on the encoding see :py:meth:`label_info_for`.""" INDEX_CSV_FILE: str = "index.csv" """Path to the file containing the annotation information, relative to a dataset root. For the encoding see the documentation of this class.""" IMAGES_ROOT: str = "images" """Root directory for annotated image files. Relative to the :py:attr:`~hybrid_learning.datasets.base.BaseDataset.dataset_root`. Annotations can be found in :py:attr:`INDEX_CSV_FILE`. """ SEG_CATS = ('object', 'part', 'color', 'material') """Categories that provide segmentation data.""" CLS_CATS = ('scene', 'texture') """Categories that provide classification data.""" def __init__(self, labels: Sequence[BrodenLabel], dataset_root: str, annotations: pd.DataFrame = None, prune_na: bool = True, prune_na_rule: str = 'all', broden_split: Optional[str] = None, max_num_samples: Optional[int] = None, shuffle: bool = False, **dataset_args): """Init. For further arguments see the details in :py:meth:`standard_prune`. .. warning:: Currently, no labels with duplicate names are allowed. Therefore, a label may only occur for one category. :param labels: list of labels to collect for each sample. :param dataset_root: the path to the root directory holding the annotation files and the images/ directory with the images and segmentations :param annotations: optional initializer for :py:attr:`annotations`, which is by default loaded from :py:const:`INDEX_CSV_FILE`; use to create sub-sets :param dataset_args: arguments to :py:class:`~hybrid_learning.datasets.base.BaseDataset`. """ if annotations is not None and len(annotations) <= 0: raise ValueError("Empty annotations!") if len(labels) == 0: raise ValueError("Empty labels!") self._default_transforms = self.datum_to_tens """The default transformation will return tensors.""" super(BrodenHandle, self).__init__(dataset_root=dataset_root, **dataset_args) self.annotations: pd.DataFrame = annotations \ if annotations is not None \ else self.load_annotations_table(self.dataset_root) """The actual annotation (meta-)information. The columns used here are described below. .. rubric:: Preliminary Remarks - All file-paths are relative to :py:attr:`~hybrid_learning.datasets.base.BaseDataset.dataset_root` ``/images``. - Several files or class labels may be given, separated by semi-colon. - A mask for a category is an RGB-image encoding segmentation masks for all different labels of that category. For the encoding see :py:meth:`process_seg_mask`. - An annotation may have labels in different categories (i.e. entries in these category columns). If annotation information for a category is missing, this column is ``None``. .. rubric:: The Columns The following columns are used here: - *image*: The file-path to the original image file of this annotation - *split*: The dataset split for which this annotation was used (``train`` or ``val``) - category columns: - *color*: color mask file-path - *object*: object mask file-path (semantic object segmentation) - *part*: part mask file-path (same as object masks, only parts belong to a super-object) - *material*: material mask file-path - *scene*: label number of the depicted scene - *texture*: texture label numbers """ if len(self) == 0: raise RuntimeError("Loaded annotations information is empty!") label_infos: pd.DataFrame = pd.read_csv( os.path.join(self.dataset_root, self.LABEL_CSV_FILE)) self.labels: List[BrodenLabel] = \ [self.parse_label(label_spec, label_infos) for label_spec in labels] """The labels to load the values for in each line of the Broden annotations.""" # Check for duplicate labels: for label in self.labels: duplicates: List[BrodenLabel] = [lab for lab in self.labels if lab.name == label.name] if self.labels.count(label) > 1: raise ValueError( "Duplicate label names for labels {}".format(duplicates)) # Prune annotations self.standard_prune(max_num_samples=max_num_samples, prune_na=prune_na, prune_na_rule=prune_na_rule, broden_split=broden_split, shuffle=shuffle) def standard_prune(self, max_num_samples: Optional[int] = None, prune_na: bool = True, prune_na_rule: str = 'all', broden_split: Optional[str] = None, shuffle: bool = False) -> 'BrodenHandle': """Apply the specified standard pruning operations. Pruning is applied to the :py:attr:`annotations` table. :param prune_na: whether to prune all entries (rows) from the :py:attr:`annotations` table in which ``'all'`` or ``'any'`` of the covered label categories are ``NaN`` (see also ``prune_rule``) :param prune_na_rule: if ``prune_na`` is ``True``, rule by which to select candidates for pruning: - ``'all'``: all categories occurring in the specified labels must be ``NaN`` - ``'any'``: any must be ``NaN`` :param broden_split: the original dataset had a fix split into training and validation data; choose the corresponding original split (see also :py:attr:`annotations`, where the split meta-information is stored in) :param max_num_samples: the maximum number of samples to select; if set to ``None``, no restriction is applied :param shuffle: whether to shuffle the dataset (before restricting to ``max_num_samples``) :return: self """ # region Value checks if broden_split is not None and broden_split not in ('train', 'val'): raise ValueError(("broden_split must be one of ('train', 'val'), " "but was: {}").format(broden_split)) if prune_na and prune_na_rule not in ('all', 'any'): raise ValueError(("prune_na_rule must be one of ('all', 'any'), " "but was {}").format(prune_na_rule)) # endregion # Prune NaN values if prune_na: na_selector = \ self.annotations[{la.category for la in self.labels}].isna() if prune_na_rule == 'all': na_selector = na_selector.all(axis=1) else: na_selector = na_selector.any(axis=1) self.annotations: pd.DataFrame = self.annotations.loc[~na_selector] # Restrict to the selected split if broden_split is not None: self.annotations = \ self.annotations.loc[self.annotations['split'] == broden_split] # Restrict to the selected number of samples (and shuffle) if max_num_samples is None or max_num_samples <= 0 or \ max_num_samples > len(self.annotations): max_num_samples = len(self.annotations) if shuffle: self.annotations = self.annotations.sample(n=max_num_samples ).reset_index(drop=True) self.annotations = self.annotations.iloc[:max_num_samples] # Final sanity check if len(self) == 0: raise RuntimeError("Annotations information is now empty after " "standard pruning!") return self @classmethod def load_annotations_table(cls, dataset_root: str, index_file: str = None) -> pd.DataFrame: """Load the annotation information from the ``index_file`` under ``dataset_root``. For simplicity of parsing, all category and the ``"image"`` column are parsed to string. :param dataset_root: the root directory under which to find the index file :param index_file: the file name / relative path under ``dataset_root`` of the index CSV file to load the annotations from; defaults to :py:attr:`INDEX_CSV_FILE` :return: annotations table with correct types of the category columns """ index_file = index_file or cls.INDEX_CSV_FILE return pd.read_csv(os.path.join(dataset_root, index_file), dtype={col: str for col in [*cls.CLS_CATS, *cls.SEG_CATS, "image"]}) def parse_label(self, label_spec: Union[str, BrodenLabel], label_infos: pd.DataFrame, ) -> BrodenLabel: """Given a label specifier, parse it to a :py:class:`BrodenLabel` given ``label_infos``. :param label_spec: the label specifier to turn into a :py:class:`BrodenLabel` :param label_infos: the meta-information about all Broden labels; contains the information about available labels :return: the :py:class:`BrodenLabel` instance with information of the ``label_spec`` """ # Already in correct format: if isinstance(label_spec, BrodenLabel): return label_spec category: Optional[str] = None # region collect category information from label_spec if available if self.CAT_SEP not in label_spec: label_name: str = label_spec elif label_spec.split(self.CAT_SEP) == 2: label_name, category = label_spec.split(self.CAT_SEP) else: raise ValueError( ("Wrong label format of label specifier {}: expected exactly 1 " "occurrence of {}").format(label_spec, self.CAT_SEP)) # endregion # select category label_info: pd.Series = self.label_info_for(label_name, label_infos) categories: Dict[str, int] = self._to_cat_info(label_info['category']) category: str = category or list(categories.keys())[0] # region validate category if category not in categories: raise ValueError(("Category {} not available for labels {}; " "choose one of {}" ).format(category, self.labels, categories)) if category not in [*self.SEG_CATS, *self.CLS_CATS]: raise ValueError("Label {} has invalid category {}; allowed: {}" .format(label_spec, category, [*self.SEG_CATS, *self.CLS_CATS])) if category not in self.annotations.columns: raise ValueError(("Category {} of label {} not available in " "annotations; found cols: {}" ).format(category, label_spec, self.annotations.columns)) # endregion return BrodenLabel(name=label_name, number=label_info.number, category=category) @staticmethod def label_info_for(label_name: str, label_infos: pd.DataFrame) -> pd.Series: """Obtain information for label given by name from label information. A label may have samples in different categories. The output features the following information (compare Broden README): :number: the label ID (used for annotation in the segmentation masks) :name: the trivial unique name :category: the categories the labels have samples in, specified as semi-colon separated list of entries in ``{'color', 'object', 'material', 'part', 'scene', 'texture'}``, each entry followed by the total amount of samples for the label for that category; use :py:meth:`_to_cat_info` to process those :frequency: total number of images having that label over all categories :coverage: the mean(?) pixels per image :syns: synonyms :param label_name: the name of the label :param label_infos: the meta-information on all Broden labels as can by default be loaded from :py:const:`LABEL_CSV_FILE`. :returns: :py:class:`pandas.Series` with above fields filled :raises: :py:exc:`ValueError` if the label is not unique or cannot be found """ label_info = label_infos[label_infos['name'] == label_name] if len(label_info) < 1: raise ValueError("Label {} not found".format(label_name)) if len(label_info) > 1: raise ValueError("Label {} ambiguous: {} occurrences" .format(label_name, len(label_info))) label_info = label_info.iloc[0] return label_info @staticmethod def _to_cat_info(cat_info_str: str): """Transform category info str of cat1(freq1);cat2(freq2);... to a dict. :meta public: """ cats_freq: List[Tuple[str, ...]] = [tuple(cf.split('(')) for cf in cat_info_str.split(';')] for cat_freq in (cf for cf in cats_freq if not len(cf) == 2): raise ValueError(("Unknown format for category: {} (full category" "info: {})").format('('.join(cat_freq), cat_info_str)) return {c: f.rstrip(')') for c, f in cats_freq} def __len__(self): return len(self.annotations) def getitem(self, i: int) -> Tuple[PIL.Image.Image, Dict[str, Union[bool, np.ndarray]]]: """Provide tuple of input image and dictionary with annotations for all labels. (See :py:attr:`labels`). Used for :py:meth:`~hybrid_learning.datasets.base.BaseDataset.__getitem__`. The output format is a tuple of ``(input_image, {label_name: annotation})``. The return type is as follows: The input image is an RGB image as :py:class:`~PIL.Image.Image`; For the annotations dictionary holds: - Each label from :py:attr:`labels` is considered, and the annotation for a label is - for classification: a ``bool`` value - for segmentation: a binary mask as :py:class:`numpy.ndarray` - In case the label is not available, its value in the annotations dict is ``None``. is a tuple of the input :py:class:`~PIL.Image.Image` and the annotations dict. :return: tuple of input image and annotations dict """ img: PIL.Image.Image = PIL.Image.open(self.image_filepath(i)) anns: Dict[str, Union[bool, np.ndarray]] = self.load_anns(i) return img, anns def load_anns(self, i: int) -> Dict[str, Union[bool, np.ndarray]]: """Load all annotation information for row ``i``. Information is retrieved from :py:attr:`annotations`. For details on the output format see :py:meth:`load_ann`.""" loaded_rgb_masks = {} raw_ann_row: pd.Series = self.annotations.iloc[i] anns: Dict[str, Union[bool, np.ndarray]] = { label.name: self.load_ann(label, raw_ann_row=raw_ann_row, loaded_rgb_masks=loaded_rgb_masks) for label in self.labels } return anns @staticmethod def datum_to_tens(img: PIL.Image.Image, anns: Dict[bool, np.ndarray] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """This transformation will convert an output tuple of image, label dict to a tensor. For the input format see :py:meth:`getitem`. Any ``None`` entries in the annotations dictionary will remain ``None``. """ img_t = tv.transforms.ToTensor()(img) # pylint: disable=no-member anns_t = {k: (torch.as_tensor(a, dtype=torch.float) if a is not None else None) for k, a in anns.items()} # pylint: enable=no-member return img_t, anns_t def image_filepath(self, i: int) -> str: """Get the path to the image file for row ``i``. Information is retrieved from :py:attr:`annotations`.""" return os.path.join(self.dataset_root, self.IMAGES_ROOT, self.annotations.iloc[i]['image']) def load_ann(self, label: BrodenLabel, i: Optional[int] = None, raw_ann_row: pd.Series = None, loaded_rgb_masks: Dict[str, List[PIL.Image.Image]] = None ) -> Optional[Union[bool, np.ndarray]]: """Load the annotation information for ``label`` at row ``i``. Information is retrieved from :py:attr:`annotations`. If the annotation information is missing for the given label category, return ``None``. .. note:: If ``loaded_rgb_masks`` is given, this function has the side effect of updating this dict with newly loaded masks! This is used to speed up loading of several labels from the same mask. :param label: the label to restrict the annotation to :param i: the index of the row in the annotations information :py:attr:`annotations` which holds the information for this single annotation of interest :param raw_ann_row: optionally directly hand over the row of interest instead of providing its index (see ``i``) :param loaded_rgb_masks: RGB segmentation masks loaded so far (for speed-up); gets updated with any newly loaded masks :return: One of - ``None`` if category information is missing, - the binary segmentation mask for the label in case of a segmentation category, - the boolean truth value whether the label holds for the image in case of a classification category """ if i is None and raw_ann_row is None: raise ValueError("Either index i or the annotation row raw_ann_row" " must be given but both were None") if loaded_rgb_masks is None: loaded_rgb_masks: Dict[str, List[PIL.Image.Image]] = {} if raw_ann_row is None: raw_ann_row: pd.Series = self.annotations.iloc[i] raw_ann: Union[str, float] = raw_ann_row[label.category] # Missing annotation: return None if pd.isnull(raw_ann): return None raw_anns: List[str] = raw_ann.split(';') # raw_anns is list of file paths: if label.category in self.SEG_CATS: # RGB masks with label information encoded in red and green channel if label.category not in loaded_rgb_masks: # Update loaded mask list with newly loaded mask loaded_rgb_masks[label.category] = [ PIL.Image.open( os.path.join(self.dataset_root, self.IMAGES_ROOT, fp)) for fp in raw_anns] ann = self.process_seg_mask(label, loaded_rgb_masks[label.category]) return ann if label.category in self.CLS_CATS: # raw_anns is list of classification label numbers return str(label.number) in raw_anns raise ValueError("Unknown category for label {}; known ones: {}" .format(label, [*self.SEG_CATS, *self.CLS_CATS])) def process_seg_mask(self, label: BrodenLabel, rgb_masks: List[PIL.Image.Image]) -> np.ndarray: """Collect the binary segmentation mask for ``label`` from given relative file paths. Pixels belonging to the given ``label`` are 1, others 0. :param label: the label to look for (:py:attr:`~BrodenLabel.number` needed) :param rgb_masks: a list of RGB masks with label information encoded in red and green channel; for details on encoding see :py:meth:`to_seg_mask` :return: binary segmentation mask for ``label`` merged from the segmentation masks at given file paths :raises: :py:exc:`ValueError` for invalid label category """ if len(rgb_masks) == 0: raise ValueError("Empty relative file path list rel_fp!") # Convert to binary masks only for self.label: masks_np = [self.to_seg_mask(ext_mask, label_num=label.number) for ext_mask in rgb_masks] # Add up masks return (np.sum(masks_np, axis=0) > 0) \ if len(masks_np) > 1 else masks_np[0] @staticmethod def to_seg_mask(seg: PIL.Image.Image, label_num: int) -> np.ndarray: """Given a Broden RGB segmentation, reduce it to a binary mask for ``label_num``. Broden segmentations are saved as RGB images, where the the label number of a pixel is ``(256 * green + red)`` with ``red`` the red channel value of the pixel, and ``green`` its green channel value. A label number of ``0`` means background. The label number is the ``'number'`` field from :py:attr:`label_info_for` respectively the :py:attr:`BrodenLabel.number` attribute. One can either specify a single label number as ``int``, or an iterable of label numbers. :param seg: the original RGB segmentation mask encoded as described above :param label_num: the label number to restrict the mask to :return: union of binary segmentation masks for given label numbers """ # noinspection PyTypeChecker seg_np = np.array(seg) red, green = seg_np[..., 0], seg_np[..., 1] binary_seg_np = (256 * green + red) == label_num return binary_seg_np def prune(self, condition: Callable[[Tuple[Any, Any]], bool], by_target: bool = False, show_progress_bar: bool = False) -> 'BrodenHandle': """Prune all items that fulfill ``condition`` from this dataset. For this, :py:attr:`annotations` is modified accordingly. :param condition: callable that accepts the output of :py:meth:`~hybrid_learning.datasets.base.BaseDataset.__getitem__` and returns a ``bool`` stating whether this item is to be pruned :param show_progress_bar: whether to show a progress bar while collecting the selector for ``condition`` :param by_target: only load the target annotations of each item (the :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms` are applied with dummy input) and apply ``condition`` to the target; asserts that transforms yields a tuple of ``(input, target)``; this is useful to avoid the costly loading of input images if they do not contribute to the transformations or the ``condition``. :return: this instance (with modified :py:attr:`annotations`) """ selector: np.ndarray = self._selector_for( condition, show_progress_bar=show_progress_bar, by_target=by_target) self.annotations = self.annotations[~selector] return self def balance(self, condition: Callable[[Tuple[Any, Any]], bool], proportion: float = 0.5, by_target: bool = False, show_progress_bar: bool = False) -> 'BrodenHandle': """Restrict this dataset to a subset with an exact ``proportion`` fulfilling ``condition``. For this, :py:attr:`annotations` is modified accordingly. After splitting the dataset by ``condition``, the half which is too large to fulfill ``proportion`` is reduced by random sub-sampling, determining the final size of the dataset. If there is only one class in the dataset, only shuffling is applied. :param condition: callable that accepts the output of :py:meth:`~hybrid_learning.datasets.base.BaseDataset.__getitem__` and returns a ``bool`` stating whether this item belongs to the first split :param proportion: the aimed-for proportion of the first split on the final dataset :param show_progress_bar: whether to show a progress bar while collecting the selector for ``condition`` :param by_target: only load the target annotations of each item (the :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms` are applied with dummy input) and apply ``condition`` to the target; asserts that transforms yields a tuple of ``(input, target)``; this is useful to avoid the costly loading of input images if they do not contribute to the transformations or the ``condition``. :return: self """ selector: np.ndarray = self._selector_for( condition, by_target=by_target, show_progress_bar=show_progress_bar) # Reduce positives pos: pd.DataFrame = self.annotations.loc[selector] if len(pos) / len(self.annotations) > proportion: to_reduce: pd.DataFrame = pos to_keep: pd.DataFrame = self.annotations.loc[~selector] prop_to_keep: float = 1 - proportion # Reduce negatives else: to_reduce: pd.DataFrame = self.annotations.loc[~selector] to_keep: pd.DataFrame = pos prop_to_keep: float = proportion # Is there only one class in the dataset? if np.allclose(prop_to_keep, 0): return self.shuffle() # Calc the final amounts of samples for each slice num_to_keep: int = len(to_keep) num_all: int = int(num_to_keep / prop_to_keep) num_to_reduce: int = max(1, num_all - num_to_keep) # Subsample, shuffle: self.annotations: pd.DataFrame = pd.concat( [to_reduce.sample(n=num_to_reduce), to_keep.sample(n=num_to_keep)], ignore_index=True) self.shuffle() return self def _selector_for(self, condition: Callable[[Tuple[Any, Any]], bool], show_progress_bar: bool = False, by_target: bool = False) -> np.ndarray: """Provide ``bool`` list matching indices of this dataset for which ``condition`` holds. Optionally show a progress bar while processing the data. :param by_target: only load target (transforms is applied with dummy input) and apply condition to target; asserts that transforms yields a tuple of ``(input, target)`` """ if by_target: dummy_img: PIL.Image.Image = PIL.Image.open(self.image_filepath(0)) load_fn: Callable[[int], Any] = \ (lambda i: self.transforms(dummy_img, self.load_anns(i))[1]) else: load_fn: Callable[[int], Any] = lambda i: self[i] selector: List[bool] = [] iterator = range(len(self)) if show_progress_bar: iterator = tqdm(iterator, desc="Iterating " + self.__class__.__name__) for i in iterator: selector.append(condition(load_fn(i))) return np.array(selector, dtype=bool) def shuffle(self) -> 'BrodenHandle': """Shuffle the held annotations and return self.""" self.annotations = self.annotations.sample(frac=1 ).reset_index(drop=True) return self @classmethod def custom_label(cls, dataset_root: str, label: str, prune_empty: Union[bool, str] = True, balance_pos_to: Optional[float] = None, verbose: bool = False, **init_args): # pylint: disable=line-too-long """Return a :py:class:`BrodenHandle` instance with output restricted to single ``label``. The transformations in :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms` will be chosen such that :py:meth:`~hybrid_learning.datasets.base.BaseDataset.__getitem__` outputs a tuple of ``(input_image, annotation)`` where - ``input_image`` is encoded as :py:class:`torch.Tensor` - ``annotation`` is a :py:class:`torch.Tensor` holding either the binary mask for the specified label or the bool classification value. The label may either be a label as would be specified in :py:class:`__init__ <BrodenHandle>` or a string representation of a :py:class:`~hybrid_learning.datasets.transforms.dict_transforms.Merge` operation. :param dataset_root: the ``dataset_root`` parameter for init of the :py:class:`BrodenHandle` :param label: the label to restrict to; may either be a valid string label name, a valid :py:class:`BrodenLabel`, or a valid string representation of a :py:class:`~hybrid_learning.datasets.transforms.dict_transforms.Merge` operation the :py:class:`~hybrid_learning.datasets.transforms.dict_transforms.Merge.all_in_keys` of which are all valid string label names; :param init_args: further init arguments to the :py:class:`BrodenHandle` :param balance_pos_to: if a value given, balance the resulting :py:class:`BrodenHandle` instance such that the proportion of the ``True`` entries is this value; only use for classification examples :param prune_empty: whether to prune empty entries (``None`` values and empty masks) using :py:meth:`prune` :param verbose: show progress bars :return: :py:class:`BrodenHandle` instance for ``dataset_root`` with :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms` and :py:class:`~BrodenHandle.labels` selected such that the output of :py:meth:`getitem` is transformed to the format specified above """ # pylint: enable=line-too-long # region Value checks if "labels" in init_args: raise ValueError(("init_args must not contain labels key, " "but were {}").format(init_args)) # endregion merge_op: Optional[trafo.Merge] = None # Merge op before flatten # region Parse the label (and collect Merge operation if necessary): # collect: labels, merge_op, final_key (=the final key to which to # restrict the dict) if isinstance(label, BrodenLabel): labels: List[BrodenLabel] = [label] final_key: str = label.name elif isinstance(label, trafo.Merge): merge_op: trafo.Merge = label labels: Set[str] = merge_op.all_in_keys final_key: str = merge_op.out_key elif isinstance(label, str): # Can be parsed to merge operation? parsed_label: Union[str, trafo.Merge] = trafo.Merge.parse(label) if isinstance(parsed_label, str): labels: List[str] = [label] final_key: str = label else: merge_op: trafo.Merge = parsed_label labels: Set[str] = merge_op.all_in_keys final_key: str = merge_op.out_key else: raise ValueError("label {} has unknown format {}" .format(label, type(label))) assert final_key != "" assert len(labels) > 0 # endregion # region Collect the transformation trafos: List[trafo.TupleTransforms] = [] trafos += [trafo.OnTarget(merge_op), trafo.OnTarget(trafo.RestrictDict([final_key]))] \ if merge_op else [] trafos += [cls.datum_to_tens, trafo.OnTarget(trafo.FlattenDict(final_key))] user_defined_trafo = init_args.pop('transforms', None) # endregion broden_inst = cls(dataset_root=dataset_root, labels=labels, **init_args) # specify separately for IDE type inference: broden_inst.transforms = trafo.Compose(trafos) if prune_empty: broden_inst.prune( lambda a: a is None or (a.dim() > 0 and a.sum() == 0), by_target=True, show_progress_bar=verbose) if balance_pos_to is not None: broden_inst.balance(lambda a: a, proportion=balance_pos_to, by_target=True, show_progress_bar=verbose) # Append the user-defined transforms # (after pruning, since this requires control over the output format!) if user_defined_trafo is not None: broden_inst.transforms.append(user_defined_trafo) return broden_inst
StarcoderdataPython
19460
<reponame>ceshine/pytorch-helper-bot """ Finetuning BERT using DeepSpeed's ZeRO-Offload """ import json import dataclasses from pathlib import Path from functools import partial import nlp import torch import typer import deepspeed import numpy as np from transformers import BertTokenizerFast from transformers import BertForSequenceClassification from sklearn.model_selection import train_test_split from pytorch_helper_bot import ( DeepSpeedBot, MovingAverageStatsTrackerCallback, CheckpointCallback, LearningRateSchedulerCallback, MultiStageScheduler, Top1Accuracy, LinearLR, CosineAnnealingScheduler ) CACHE_DIR = Path("cache/") CACHE_DIR.mkdir(exist_ok=True) APP = typer.Typer() class SST2Dataset(torch.utils.data.Dataset): def __init__(self, entries_dict): super().__init__() self.entries_dict = entries_dict def __len__(self): return len(self.entries_dict["label"]) def __getitem__(self, idx): return ( self.entries_dict["input_ids"][idx], self.entries_dict["attention_mask"][idx], self.entries_dict["token_type_ids"][idx], self.entries_dict["label"][idx] ) @dataclasses.dataclass class SST2Bot(DeepSpeedBot): log_dir = CACHE_DIR / "logs" def __post_init__(self): super().__post_init__() self.loss_format = "%.6f" @staticmethod def extract_prediction(output): return output[0] class Object(object): pass def convert_to_features(tokenizer, example_batch): # Tokenize contexts and questions (as pairs of inputs) encodings = tokenizer.batch_encode_plus( example_batch['sentence'], padding='max_length', max_length=64, truncation=True) return encodings @APP.command( context_settings={"allow_extra_args": True, "ignore_unknown_options": True} ) def main(arch="bert-base-uncased", config="gpu.json"): # Reference: # # * https://github.com/huggingface/nlp/blob/master/notebooks/Overview.ipynb with open(config) as fin: config_params = json.load(fin) dataset = nlp.load_dataset('glue', "sst2") print(set([x['label'] for x in dataset["train"]])) tokenizer = BertTokenizerFast.from_pretrained(arch) # Format our dataset to outputs torch.Tensor to train a pytorch model columns = ['input_ids', 'token_type_ids', 'attention_mask', "label"] for subset in ("train", "validation"): dataset[subset] = dataset[subset].map( partial(convert_to_features, tokenizer), batched=True) dataset[subset].set_format(type='torch', columns=columns) print(tokenizer.decode(dataset['train'][6]["input_ids"].numpy())) print(dataset['train'][0]["attention_mask"]) valid_idx, test_idx = train_test_split( list(range(len(dataset["validation"]))), test_size=0.5, random_state=42) train_dict = { "input_ids": dataset['train']["input_ids"], "attention_mask": dataset['train']["attention_mask"], "token_type_ids": dataset['train']["token_type_ids"], "label": dataset['train']["label"] } valid_dict = { "input_ids": dataset['validation']["input_ids"][valid_idx], "attention_mask": dataset['validation']["attention_mask"][valid_idx], "token_type_ids": dataset['validation']["token_type_ids"][valid_idx], "label": dataset['validation']["label"][valid_idx] } test_dict = { "input_ids": dataset['validation']["input_ids"][test_idx], "attention_mask": dataset['validation']["attention_mask"][test_idx], "token_type_ids": dataset['validation']["token_type_ids"][test_idx], "label": dataset['validation']["label"][test_idx] } # Instantiate a PyTorch Dataloader around our dataset train_loader = torch.utils.data.DataLoader( SST2Dataset(train_dict), batch_size=config_params["train_batch_size"], shuffle=True) valid_loader = torch.utils.data.DataLoader( SST2Dataset(valid_dict), batch_size=config_params["train_batch_size"], drop_last=False) test_loader = torch.utils.data.DataLoader( SST2Dataset(test_dict), batch_size=config_params["train_batch_size"], drop_last=False) model = BertForSequenceClassification.from_pretrained(arch) # torch.nn.init.kaiming_normal_(model.classifier.weight) # torch.nn.init.constant_(model.classifier.bias, 0) # torch.nn.init.kaiming_normal_(model.bert.pooler.dense.weight) # torch.nn.init.constant_(model.bert.pooler.dense.bias, 0); args = Object() setattr(args, "local_rank", 0) setattr(args, "deepspeed_config", config) if config[:3] == "cpu": if "optimizer" in config_params: model, optimizer, _, _ = deepspeed.initialize( args=args, model=model, model_parameters=model.parameters() ) else: from deepspeed.ops.adam import DeepSpeedCPUAdam optimizer = DeepSpeedCPUAdam(model.parameters(), lr=2e-5) model, optimizer, _, _ = deepspeed.initialize( args=args, model=model, model_parameters=model.parameters(), optimizer=optimizer ) else: model, optimizer, _, _ = deepspeed.initialize( args=args, model=model, model_parameters=model.parameters() # optimizer=optimizer ) total_steps = len(train_loader) * 3 # checkpoints = CheckpointCallback( # keep_n_checkpoints=1, # checkpoint_dir=CACHE_DIR / "model_cache/", # monitor_metric="accuracy" # ) lr_durations = [ int(total_steps*0.2), int(np.ceil(total_steps*0.8)) ] break_points = [0] + list(np.cumsum(lr_durations))[:-1] callbacks = [ MovingAverageStatsTrackerCallback( avg_window=len(train_loader) // 8, log_interval=len(train_loader) // 10 ), LearningRateSchedulerCallback( MultiStageScheduler( [ LinearLR(optimizer, 0.01, lr_durations[0]), CosineAnnealingScheduler(optimizer, lr_durations[1]) ], start_at_epochs=break_points ) ), # checkpoints ] bot = SST2Bot( model=model, train_loader=train_loader, valid_loader=valid_loader, clip_grad=10., optimizer=optimizer, echo=True, criterion=torch.nn.CrossEntropyLoss(), callbacks=callbacks, pbar=False, use_tensorboard=False, # use_amp=APEX_AVAILABLE, metrics=(Top1Accuracy(),) ) print(total_steps) bot.train( total_steps=total_steps, checkpoint_interval=len(train_loader) // 2 ) # bot.load_model(checkpoints.best_performers[0][1]) # checkpoints.remove_checkpoints(keep=0) # TARGET_DIR = CACHE_DIR / "sst2_bert_uncased" # TARGET_DIR.mkdir(exist_ok=True) # bot.model.save_pretrained(TARGET_DIR) bot.eval(valid_loader) bot.eval(test_loader) if __name__ == "__main__": APP()
StarcoderdataPython
1778542
#!/usr/bin/env python # Author: <NAME> # License: Open Source based, so open source distribution. import sys import pdfkit from barcode import Code128 from barcode.writer import ImageWriter BARCODE_OPTIONS = { 'font_size': 12, 'text_distance': 2.0 } PDF_OPTIONS = { 'page-size': 'A4', 'margin-top': '0.75in', 'margin-right': '0.75in', 'margin-bottom': '0.75in', 'margin-left': '0.75in', } def main(): if len(sys.argv) >= 2: ns = str(sys.argv[1]) # Generación del código de barras with open('imgs/barcode.png', 'wb') as f: Code128(ns, writer=ImageWriter()).write(f, options=BARCODE_OPTIONS) # Generación el pdf desde el template pdfkit.from_file('template.html', "etiquetas/" + ns + ".pdf", options=PDF_OPTIONS) if __name__ == '__main__': main()
StarcoderdataPython
93330
<reponame>mindsolve/pySymProxy import logging import logging.config import logging.handlers import json import os def findConfigFile(candidates): for location in candidates: if os.path.isfile(location): return location return candidates[-1] def findConfigValue(rootDict, name, required = False, default = None): curElement = rootDict elements = name.split(".") for element in elements: curElement = curElement.get(element) if (curElement == None): break if (curElement == None): if (required): raise Exception("Configuration value missing: " + name) curElement = default return curElement class Config: def __init__(self, configFile): # Load configuration information self._configFile = configFile with open(configFile) as data_file: self._configData = json.load(data_file) logging.config.dictConfig(self.loggingConfig()) def configFile(self): return self._configFile def name(self): return self.findConfigValue("identity.name") def host(self): return self.findConfigValue("identity.host") def administrator(self): return self.findConfigValue("identity.administrator") def sympath(self): return self.findConfigValue("identity.default_sympath") def servers(self): return self.findConfigValue("servers") def cacheLocation(self): return self.findConfigValue("general.cacheLocation") def blacklist(self): return self.findConfigValue("general.blacklist") def loggingConfig(self): return self.findConfigValue("logging", required=False, default={}) def extractLogFiles(self, logger, logfiles): for handler in logger.handlers: if isinstance(handler, logging.FileHandler): logfiles.append(handler.baseFilename) if isinstance(handler, logging.handlers.RotatingFileHandler): for x in range(0, handler.backupCount): logfiles.append(handler.baseFilename + "." + str(x)) def logfiles(self): logfiles = [] for loggerName in logging.Logger.manager.loggerDict: logger = logging.getLogger(loggerName) self.extractLogFiles(logger, logfiles) self.extractLogFiles(logger.root, logfiles) logfiles = list(set(logfiles)) logfiles = [f for f in logfiles if os.path.exists(f)] logfiles.sort() return logfiles def findConfigValue(self, name, required=True, default=None): return findConfigValue(self._configData, name, required, default)
StarcoderdataPython
102430
from django.contrib import admin from django.urls import path, include urlpatterns = [ path('', include('frontend.urls')), # home page react path('', include('leads.urls')), # leads page api path('', include('accounts.urls')), # accounts page api ]
StarcoderdataPython
1683761
import os import nbformat from textwrap import dedent from .preprocessor import Preprocessor from ..utils import ( is_grade, is_solution, is_description, get_task_info, get_valid_name, get_points) class AddTaskHeader(Preprocessor): def get_header(self, idx, points): header = nbformat.v4.new_markdown_cell() header.metadata['nbgrader'] = { 'grade_id': 'taskheader_{}'.format(idx), 'locked': True, 'solution': False, 'grade': False, 'task': False, 'schema_version': 3 } header.source = dedent(""" --- # Task {} **[{} Point(s)]** """.format(idx, points)) return header def get_sub_header(self, idx, sub_idx, points): header = nbformat.v4.new_markdown_cell() header.metadata['nbgrader'] = { 'grade_id': 'taskheader_{}_{}'.format(idx, sub_idx), 'locked': True, 'solution': False, 'grade': False, 'task': False, 'schema_version': 3 } header.source = dedent(""" ## Task {}.{} **[{} Point(s)]** """.format(idx, sub_idx, points)) return header def add_headers(self, nb, idx): total_points = sum([get_points(cell) for cell in nb.cells]) task = get_task_info(nb) if len(task['subtasks']) < 1: return nb new_cells = [] header = self.get_header(idx, total_points) new_cells.append(header) if 'header' in task: new_cells.append(nb.cells[task['header']]) if len(task['subtasks']) == 1: new_cells.extend([nb.cells[i] for i in task['subtasks'][0]]) if 'other' in task: new_cells.extend([nb.cells[i] for i in task['other']]) nb.cells = new_cells return nb if len(task['subtasks']) > 1: for sub_idx, subtask in enumerate(task['subtasks']): points = sum([get_points(nb.cells[i]) for i in subtask]) new_cells.append(self.get_sub_header(idx, sub_idx+1, points)) new_cells.extend([nb.cells[i] for i in subtask]) if 'other' in task: new_cells.extend([nb.cells[i] for i in task['other']]) nb.cells = new_cells return nb def preprocess(self, resources): if not resources['exercise_options']['task-headers']: return idx = 0 for task in resources['tasks']: task_path = os.path.join( resources['tmp_dir'], 'tasks', task ) notebooks = [file for file in os.listdir(task_path) \ if file.endswith('.ipynb')] for nb_file in notebooks: idx += 1 task_nb = nbformat.read(os.path.join(task_path, nb_file), as_version=4) task_nb = self.add_headers(task_nb, idx) nbformat.write(task_nb, os.path.join(task_path, nb_file))
StarcoderdataPython
1614329
<gh_stars>0 from numba.core import dispatcher, compiler from numba.core.registry import cpu_target, dispatcher_registry import numba_dppy.config as dppy_config class DpplOffloadDispatcher(dispatcher.Dispatcher): targetdescr = cpu_target def __init__(self, py_func, locals={}, targetoptions={}, impl_kind='direct', pipeline_class=compiler.Compiler): if dppy_config.dppy_present: from numba_dppy.compiler import DPPLCompiler targetoptions['parallel'] = True dispatcher.Dispatcher.__init__(self, py_func, locals=locals, targetoptions=targetoptions, impl_kind=impl_kind, pipeline_class=DPPLCompiler) else: print("---------------------------------------------------------------------") print("WARNING : DPPL pipeline ignored. Ensure OpenCL drivers are installed.") print("---------------------------------------------------------------------") dispatcher.Dispatcher.__init__(self, py_func, locals=locals, targetoptions=targetoptions, impl_kind=impl_kind, pipeline_class=pipeline_class) dispatcher_registry['__dppl_offload_gpu__'] = DpplOffloadDispatcher dispatcher_registry['__dppl_offload_cpu__'] = DpplOffloadDispatcher
StarcoderdataPython
3299489
<reponame>jerinka/Redis_OpenCV import redis import cv2 import numpy as np import time import io import uuid r = redis.StrictRedis.from_url('redis://') img_path ="redis.png" uid = str(uuid.uuid1()) img1 = cv2.imread(img_path, 1) retval, buffer = cv2.imencode('.png', img1,[cv2.IMWRITE_PNG_COMPRESSION, 0]) img1_bytes = np.array(buffer).tostring() # Write into redis server r.set(uid, img1_bytes) # Reading Redis img1_bytes_ = r.get(uid) # Decoding CV2+Redis decoded = cv2.imdecode(np.frombuffer(img1_bytes_, np.uint8), 1) cv2.imwrite("cv2_redis.png", decoded)
StarcoderdataPython
149830
<gh_stars>1-10 import os import numpy as np from taskinit import tb def cpxx2yy(tb_in=[]): if not tb_in: print('tb_in not provided. Abort...') if type(tb_in) is str: tb_in = [tb_in] tb.open(tb_in[0] + '/SPECTRAL_WINDOW', nomodify=False) nspw = tb.nrows() tb.close() for ctb in tb_in: tb.open(ctb, nomodify=False) for s in range(nspw): subt = tb.query("DATA_DESC_ID==" + str(s)) model_d = subt.getcol('MODEL_DATA') # cp xx to yy model_d[1] = model_d[0] subt.putcol('MODEL_DATA', model_d) subt.close() tb.close() def concat(tb_in=[], tb_out=None): if not tb_in: print('tb_in not provided. Abort...') if os.path.exists(tb_out): os.system('rm -r ' + tb_out) # os.system('cp -r '+tb_in[0]+' '+tb_out) os.system('cp -r ' + tb_in[0] + ' ' + tb_out) tb.open(tb_out + '/SPECTRAL_WINDOW', nomodify=True) nspw = tb.nrows() tb.close() tim = [] fld = [] spw = [] ant1 = [] ant2 = [] intv = [] scan = [] obid = [] cpar = [] para = [] flag = [] snr = [] # wght=[] for ctb in tb_in: tb.open(ctb, nomodify=True) cols = tb.colnames() tim0 = tb.getcol(cols[0]) if len(tim0) == 0: continue else: tim.append(tb.getcol(cols[0])) fld.append(tb.getcol(cols[1])) spw.append(tb.getcol(cols[2])) ant1.append(tb.getcol(cols[3])) ant2.append(tb.getcol(cols[4])) intv.append(tb.getcol(cols[5])) scan.append(tb.getcol(cols[6])) obid.append(tb.getcol(cols[7])) cpar.append(tb.getcol(cols[8])) para.append(tb.getcol(cols[9])) flag.append(tb.getcol(cols[10])) snr.append(tb.getcol(cols[11])) # wght.append(tb.getcol(cols[12])) tb.close() if len(tim) == 0: print('tables have no data. Return') return -1 else: tim = np.concatenate(tim) fld = np.concatenate(fld) spw = np.concatenate(spw) ant1 = np.concatenate(ant1) ant2 = np.concatenate(ant2) intv = np.concatenate(intv) scan = np.concatenate(scan) obid = np.concatenate(obid) cpar = np.concatenate(cpar, axis=2) para = np.concatenate(para, axis=2) flag = np.concatenate(flag, axis=2) snr = np.concatenate(snr, axis=2) # wght=np.concatenate(wght) tb.open(tb_out, nomodify=False) nrows = tb.nrows() nrows_new = len(tim) tb.addrows(nrows_new - nrows) tb.putcol(cols[0], tim) tb.putcol(cols[1], fld) tb.putcol(cols[2], spw) tb.putcol(cols[3], ant1) tb.putcol(cols[4], ant2) tb.putcol(cols[5], intv) tb.putcol(cols[6], scan) tb.putcol(cols[7], obid) tb.putcol(cols[8], cpar) tb.putcol(cols[9], para) tb.putcol(cols[10], flag) tb.putcol(cols[11], snr) tb.close() return tb_out
StarcoderdataPython
4839786
<reponame>mrTavas/owasp-fstm-auto import sys import logging import os import json import binascii from pwn import * import random # Unicorn imports # require unicorn moudle from unicorn import * from unicorn.arm_const import * from unicorn.arm64_const import * from unicorn.x86_const import * from unicorn.mips_const import * # custom module import from hook.hook_loader import * from fuzz.fuzz_loader import * from crash.crash_loader import * # Name of the index file CONTEXT_JSON = "_index.json" UNICORN_PAGE_SIZE = 0x1000 MAX_ALLOWABLE_SEG_SIZE = 1024 * 1024 * 1024 ALIGN_PAGE_DOWN = lambda x: x & ~(UNICORN_PAGE_SIZE - 1) ALIGN_PAGE_UP = lambda x: (x + UNICORN_PAGE_SIZE - 1) & ~(UNICORN_PAGE_SIZE-1) LITTLE2BIG = lambda num : int( num.decode('hex')[::-1].encode('hex') , 16) COMPILE_GCC = 1 COMPILE_MSVC = 2 BASE = 0x0400000 class Firmcorn( Uc ): # Firmcorn object inherit from Uc object ''' Firmcorn-object is main object of our Firmcorn Framework ''' def __init__(self ,compiler = COMPILE_GCC , enable_debug = True): self.enable_debug = enable_debug self.trace_start_addr = 0 self.trace_end_addr = 0 self.dbg_addr_list = [] self.skip_func_list = None self.unresolved_funcs = None self.fuzztarget = None self.compiler = compiler self.instrs = [] def load_context(self , context_dir , binary , libc): self.context_dir = context_dir self.elf = ELF(binary) self.libc = ELF(libc) self.got = self.elf.got self.get_arch_info() Uc.__init__(self, self.uc_arch, self.uc_mode + self.uc_endian) def rand_seed(self , seed_len): sa = [] for i in range(seed_len): sa.append( chr(random.randint(0,255))) return ''.join(sa) def _load_context(self): """ load context and binary actual """ self.get_arch_info() context_json = os.path.join( self.context_dir, CONTEXT_JSON) if not os.path.isfile(context_json): raise Exception("Contex json not found") context_json_file = open(context_json , "r") context = json.load(context_json_file) # load _index.json context_json_file.close() regs_map = self.get_regs_by_arch(self.arch) regs = context['regs'] self.init_class() self.get_common_regs() # endian to uc_endian if self.endian == "big": self.uc_endian = UC_MODE_BIG_ENDIAN else: self.uc_endian = UC_MODE_LITTLE_ENDIAN # init uc object Uc.__init__(self, self.uc_arch, self.uc_mode + self.uc_endian) # setup registers if not self.set_reg(regs , regs_map): raise Exception("Error in setup registers") # setup segment segments_list = context['segments'] # if not self.set_memory(segments_list): raise Exception("Error in setup memory") # init got self.init_got() self.rebased_got() def get_arch_info(self): """ get uc_arch , uc_mode , endian """ context_json = os.path.join( self.context_dir, CONTEXT_JSON) if not os.path.isfile(context_json): raise Exception("Contex json not found") # load context from json context_json_file = open(context_json , "r") context = json.load(context_json_file) # load _index.json context_json_file.close() self.arch = context['arch']['arch'] self.endian = context['arch']['endian'] # arch to uc_arch if self.arch == "x64": self.uc_arch = UC_ARCH_X86 self.uc_mode = UC_MODE_64 elif self.arch == "x86": self.uc_arch = UC_ARCH_X86 self.uc_mode = UC_MODE_32 elif self.arch == "mips": self.uc_arch = UC_ARCH_MIPS self.uc_mode = UC_MODE_32 elif self.arch == "arm": self.uc_arch = UC_ARCH_ARM self.uc_mode = UC_MODE_32 else: raise Exception("Error arch") # endian to uc_endian if self.endian == "big": self.uc_endian = UC_MODE_BIG_ENDIAN else: self.uc_endian = UC_MODE_LITTLE_ENDIAN def load_library(self , libc): self.libc = ELF(libc) def init_got(self , enable_debug = True): """ read GOT table entries in memory """ print "=====================Init GOT Table Start========================" print self.got.items() self.mem_got = dict() for name , addr in self.got.items(): _addr = str(self.mem_read(addr , self.size)).encode("hex") if self.endian == "little": _addr = LITTLE2BIG(_addr) else: _addr = int(_addr , 16) self.mem_got.update({ _addr : name}) print "Name : {:<40} Addr : {:<10} Value: {:<10}".format( name, hex(addr) , hex(_addr)) print "======================Init GOT Table End=========================" def rebased_got(self): """ reload GOT table entries """ self.rebase_got = dict() print "====================Rebase GOT Table Start=======================" for addr , name in self.mem_got.items(): if int(addr) & 0xff000000 != 0: dl_resolve_addr = addr dl_resolve_name = name break print self.libc libc_base = dl_resolve_addr - self.libc.symbols[dl_resolve_name] print "libc_base : {}".format(hex(libc_base)) for addr , name in self.mem_got.items(): if self.libc.symbols.has_key(name): self.rebase_got.update( { name : libc_base + self.libc.symbols[name] }) print "Name : {:<40} Rebase addr : {}".format(name , hex(libc_base + self.libc.symbols[name]) ) #raw_input() print "=====================Rebase GOT Table End========================" def dbg_hook_code(mu, address, size, user_data): print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size)) def debug_moudle(self , start_addr , end_addr): """ debug """ dbg_mu = Uc(UC_ARCH_MIPS, UC_MODE_MIPS32 + UC_MODE_BIG_ENDIAN) dbg_mu.hook_add(UC_HOOK_CODE, self.dbg_hook_code) dbg_mu.emu_start(start_addr ) def set_reg(self , regs, regs_map , debug_func = True ): self.enable_debug = debug_func # setup register for register , value in regs.iteritems(): if self.enable_debug and value is not None: print "Reg {0} start_address = {1}".format(register, hex(value)) pass if not regs_map.has_key(register.lower()): if self.enable_debug: print "Skip Reg:{0}".format(register) else: # ====copy from unicorn loader.py===== # reg_write_retry = True try: self.reg_write(regs_map[register.lower()], value) reg_write_retry = False except Exception as e: if self.enable_debug: print "ERROR writing register: {}, value: {} -- {}".format(register, value, repr(e)) if reg_write_retry: if self.enable_debug: print "Trying to parse value ({}) as hex string".format(value) try: self.reg_write(regs_map[register.lower()], int(value, 16)) except Exception as e: if self.enable_debug: print "ERROR writing hex string register: {}, value: {} -- {}".format(register, value, repr(e)) return True def set_memory(self , segments_list , debug_func = True ): """ setup memory need 2 steps 1. mu.mem_map 2. mu.mem_write before mem_map, must check it's not already mapped copy from __map_segments """ self.enable_debug = debug_func for segment in segments_list: seg_name = segment['name'] seg_start = segment['start'] seg_end = segment['end'] perms = \ (UC_PROT_READ if segment['permissions']['r'] == True else 0) | \ (UC_PROT_WRITE if segment['permissions']['w'] == True else 0) | \ (UC_PROT_EXEC if segment['permissions']['x'] == True else 0) if self.enable_debug: print "Handling segment {}".format(seg_name) """ before map memory , do some check there are 3 cases: ======= 1 ======= +----------------------------+ <-----+ mem_start | | | +----------------------+<----+ seg_start | | | | | | | | | +----------------------+<----+ seg_end | | +----------------------------+ <-----+ mem_end for this case, shoud't map memory ======= 2 ======= +-----------------------------+<-----+ mem_start | | | | +------------------------------<----+ seg_start | | | | | | +------------------------------<-----+ mem_end=tmp |-----------------------------| |--------------------------------------------->map area |-----------------------------| +------------------------------<----+ seg_end ======= 3 ======= +------------------------------<----+ seg_start |-----------------------------| |--------------------------------------------->map area |-----------------------------| +------------------------------<-----+ mem_start=tmp | | | | | | +------------------------------<----+ seg_end | | | | | | +-----------------------------+<-----+ mem_end """ found = False overlap_start = False overlap_end = False tmp = 0 for (mem_start, mem_end, mem_perm) in self.mem_regions(): mem_end = mem_end + 1 if seg_start >= mem_start and seg_end < mem_end: found = True break if seg_start >= mem_start and seg_start < mem_end: overlap_start = True tmp = mem_end break if seg_end >= mem_start and seg_end < mem_end: overlap_end = True tmp = mem_start break # Map memory into the address space if it is of an acceptable size. if (seg_end - seg_start) > MAX_ALLOWABLE_SEG_SIZE: if self.enable_debug: print "Skipping segment (LARGER THAN {0}) from {1:016x} - {2:016x} with perm={3}: {4}".format(MAX_ALLOWABLE_SEG_SIZE, seg_start, seg_end, perms, name) continue elif not found: # Make sure it's not already mapped if overlap_start: # Partial overlap (start) case 3 self.map_segment(seg_name, tmp, seg_end - tmp, perms) elif overlap_end: # Patrial overlap (end) case 2 self.map_segment(seg_name, seg_start, tmp - seg_start, perms) else: # Not found self.map_segment(seg_name, seg_start, seg_end - seg_start, perms) else: if self.enable_debug: print "Segment {} already mapped. Moving on.".format(seg_name) # Load the content (*.bin) # directly copy from unicorn_loader.py if 'content_file' in segment and len(segment['content_file']) > 0: content_file_path = os.path.join(self.context_dir, segment['content_file']) if not os.path.isfile(content_file_path): raise Exception("Unable to find segment content file. Expected it to be at {}".format(content_file_path)) if self.enable_debug: print "Loading content for segment {} from {}".format(seg_name, segment['content_file']) content_file = open(content_file_path, 'rb') compressed_content = content_file.read() content_file.close() self.mem_write(seg_start, zlib.decompress(compressed_content)) else: if self.enable_debug: print("No content found for segment {0} @ {1:016x}".format(seg_name, seg_start)) self.mem_write(seg_start, '\x00' * (seg_end - seg_start)) return True def map_segment(self , name, address, size, perms , debug_func = True ): self.enable_debug = debug_func map_start = address map_end = address + size # page alingn map_start_align = ALIGN_PAGE_DOWN(map_start) map_end_align = ALIGN_PAGE_UP(map_end) if self.enable_debug: print " segment name: {}".format(name) print " segment start: {0:016x} -> {1:016x}".format(map_start, map_start_align) print " segment end: {0:016x} -> {1:016x}".format(map_end, map_end_align) if map_start_align < map_end_align: self.mem_map(map_start_align , map_end_align - map_start_align , perms) # map memory # pass def func_skip(self , skip_list = None): self.skip_func_list = skip_list def set_trace(self , trace_start_addr , trace_end_addr , debug_func=True): self.trace_start_addr = trace_start_addr self.trace_end_addr = trace_end_addr def _set_trace(self , uc , address , size , user_data): if address >= self.trace_start_addr and address <=self.trace_end_addr: # print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(address, size)) print "{} ".format(hex(address)) , instr = self.mem_read(address, size) # context.arch = 'i386' context.endian = str(self.endian) # context.os = 'linux' # context.word_size = 32 # print ("0x%x %s" % (address - BASE , disasm(instr)) ) if self.arch == "x86": print "{}".format( disasm(instr , arch="{}".format("i386"))) elif self.arch == "x64": print "{}".format( disasm(instr , arch="{}".format("amd64"))) elif self.arch == "mips": print "{}".format( disasm(instr , arch="{}".format("mips"))) elif self.arch == "arm": print "{}".format( disasm(instr , arch="{}".format("arm"))) else: raise Exception("arch not found") def show_debug_info(self , dbg_addr_list): self.dbg_addr_list = dbg_addr_list def _show_debug_info(self, uc , address , size , user_data ): """ show registers and memory info when debug """ if address in self.dbg_addr_list: self.show_reg_value() self.show_memory_layout() def show_reg_value(self): context_json = os.path.join( self.context_dir, CONTEXT_JSON) if not os.path.isfile(context_json): raise Exception("Contex json not found") # load context from json context_json_file = open(context_json , "r") context = json.load(context_json_file) # load _index.json context_json_file.close() regs_map = self.get_regs_by_arch(self.arch) regs = context['regs'] # show registers value print("=========================Registers Value=========================") for register , value in regs.iteritems(): try: print("Reg {} --> {:<51} {}".format(register.lower() ,hex(self.reg_read(regs_map[register.lower()])), "||")) except Exception as e: # print "ERROR writing register: {}, value: {} -- {}".format(register, value, repr(e)) pass print("=================================================================") def show_memory_layout(self): print("=========================Memory Layout===========================") # show stack memory for i in range(6): # reg_sp = self.reg_read(self.REG_SP , size) #stack_addr = reg_sp + 0x14 + 4*i # print self.size stack_addr = 0x7fffffffd870 - 8*i mem_cont = self.mem_read(stack_addr, self.size) print("{} --> {:<41} {}".format( hex(stack_addr) ,str(mem_cont).encode("hex") , "||")) print("=================================================================") def show_instrs(self): """ print crash location instruction """ print "=========================Instructions==========================" for instr in self.instrs[:-50:-1]: print('>>> Tracing instruction at 0x%x, instruction size = 0x%x' %(instr, self.size)) print "===============================================================" def log_instrs(self , uc , address , size , user_data): self.instrs.append(address) def add_func(self , func_list = None): self.unresolved_funcs = func_list def add_fuzz(self, fuzzTarget): """ add a fuzz targrt object """ self.fuzztarget = fuzzTarget def start_find(self , start_address , end_address): print " ______ _____ _____ __ __ _____ ____ _____ _ _ " print " | ____|_ _| __ \| \/ |/ ____/ __ \| __ \| \ | | " print " | |__ | | | |__) | \ / | | | | | | |__) | \| | " print " | __| | | | _ /| |\/| | | | | | | _ /| . ` | " print " | | _| |_| | \ \| | | | |___| |__| | | \ \| |\ | " print " |_| |_____|_| \_\_| |_|\_____\____/|_| \_\_| \_| " print " " # uc_result = self.emu_start(start_address , end_address) self.unresolved_funcs = [] rounds = 0 while True: self._load_context() #raw_input() """ some hook function """ #raw_input() last_round_list_len = len(self.unresolved_funcs) if self.skip_func_list is not None: self.hook_add(UC_HOOK_CODE , self.hookcode._func_skip) if self.dbg_addr_list is not None: self.hook_add(UC_HOOK_CODE, self._show_debug_info) if self.trace_start_addr!=0 and self.trace_end_addr!=0: self.hook_add(UC_HOOK_CODE , self._set_trace) if self.unresolved_funcs is not None: self.hook_add(UC_HOOK_CODE , self.hookcode.hook_unresolved_func) self.hook_add(UC_HOOK_CODE , self.log_instrs) self.hook_add(UC_HOOK_CODE , self.hookcode.hookauto.record_last_func) self.hook_add( UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED , self.hookcode.hookauto.find_unresolved_func) try: uc_result = self.emu_start(start_address , end_address) except UcError as e: print "next round" print "Round : {}".format(rounds) rounds += 1 print "find all unresolved funcs : {}".format(self.unresolved_funcs) # raw_input() # raw_input() if len(self.unresolved_funcs) == last_round_list_len: print self.unresolved_funcs print "End Find!" break def start_run(self , start_address , end_address): self.start_find(start_address , end_address) print "=================End Find=================" print "start run!" # raw_input() rounds = 0 while True: self._load_context() if self.fuzztarget is not None: self.fuzztarget.init(self) self.hook_add(UC_HOOK_CODE , self.fuzztarget.find_magic_num) if self.skip_func_list is not None: self.hook_add(UC_HOOK_CODE , self.hookcode._func_skip) if self.dbg_addr_list is not None: self.hook_add(UC_HOOK_CODE, self._show_debug_info) if self.trace_start_addr!=0 and self.trace_end_addr!=0: self.hook_add(UC_HOOK_CODE , self._set_trace) if self.got is not None: # self.hook_add(UC_HOOK_CODE , self.hookcode.func_alt_auto_libc) pass if self.unresolved_funcs is not None: self.hook_add(UC_HOOK_CODE , self.hookcode.hook_unresolved_func) # self.hook_add( UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED , self.crash.mem_crash_check) # self.hook_add(UC_ERR_FETCH_UNMAPPED , self.crash.crash_check_dbg) self.hook_add(UC_HOOK_CODE , self.log_instrs) # try: # uc_result = self.emu_start(start_address , end_address) # except UcError as e: # # if e.errno == UC_ERR_READ_UNMAPPED: # print(" \033[1;31;40m !!! about to bail due to bad fetch... here's the data at PC: {} \033[0m ".format( binascii.hexlify(self.mem_read(self.reg_read(self.REG_PC), self.size))) ) # # print(binascii.hexlify(self.mem_read(self.reg_read(self.REG_PC), self.size))) # self.show_instrs() import datetime oldtime=datetime.datetime.now() try: uc_result = self.emu_start(start_address , end_address) except UcError as e: print e.errno if e.errno == UC_ERR_FETCH_UNMAPPED: print " \033[1;31;40m !!! Find Crash !!! \033[0m " self.crash.crash_log() break newtime=datetime.datetime.now() print "time : {}".format( (newtime-oldtime).microseconds ) print "Round : {}".format(rounds) rounds += 1 # raw_input() def init_class(self): """ import other classes """ self.hookcode = HookLoader(self) self.crash = CrashLoader(self) def get_regs_by_arch(self , arch): if arch == "arm64le" or arch == "arm64be": arch = "arm64" elif arch == "armle" or arch == "armbe" or "thumb" in arch: arch = "arm" elif arch == "mipsel": arch = "mips" registers = { "x64" : { "rax": UC_X86_REG_RAX, "rbx": UC_X86_REG_RBX, "rcx": UC_X86_REG_RCX, "rdx": UC_X86_REG_RDX, "rsi": UC_X86_REG_RSI, "rdi": UC_X86_REG_RDI, "rbp": UC_X86_REG_RBP, "rsp": UC_X86_REG_RSP, "r8": UC_X86_REG_R8, "r9": UC_X86_REG_R9, "r10": UC_X86_REG_R10, "r11": UC_X86_REG_R11, "r12": UC_X86_REG_R12, "r13": UC_X86_REG_R13, "r14": UC_X86_REG_R14, "r15": UC_X86_REG_R15, "rip": UC_X86_REG_RIP, "rsp": UC_X86_REG_RSP, "efl": UC_X86_REG_EFLAGS, "cs": UC_X86_REG_CS, "ds": UC_X86_REG_DS, "es": UC_X86_REG_ES, "fs": UC_X86_REG_FS, "gs": UC_X86_REG_GS, "ss": UC_X86_REG_SS, }, "x86" : { "dil": UC_X86_REG_DIL, "ip": UC_X86_REG_IP , "fs": UC_X86_REG_FS , "eip": UC_X86_REG_EIP, "bh": UC_X86_REG_BH , "edi": UC_X86_REG_EDI, "ah": UC_X86_REG_AH , "al": UC_X86_REG_AL , "cs": UC_X86_REG_CS , "cx": UC_X86_REG_CX , "eax": UC_X86_REG_EAX, "di": UC_X86_REG_DI , "ebp": UC_X86_REG_EBP, "edx": UC_X86_REG_EDX, "ebx": UC_X86_REG_EBX, "cl": UC_X86_REG_CL , "ecx": UC_X86_REG_ECX, "ch": UC_X86_REG_CH , "bp": UC_X86_REG_BP , "dl": UC_X86_REG_DL , "esp": UC_X86_REG_ESP, "eiz": UC_X86_REG_EIZ, "fpsw": UC_X86_REG_FPSW, "bpl": UC_X86_REG_BPL, "dh": UC_X86_REG_DH , "gs": UC_X86_REG_GS , "ax": UC_X86_REG_AX , "eflags": UC_X86_REG_EFLAGS, "ds": UC_X86_REG_DS , "es": UC_X86_REG_ES , "bx": UC_X86_REG_BX , "dx": UC_X86_REG_DX , "bl": UC_X86_REG_BL , "esi": UC_X86_REG_ESI }, "arm" : { "r0": UC_ARM_REG_R0, "r1": UC_ARM_REG_R1, "r2": UC_ARM_REG_R2, "r3": UC_ARM_REG_R3, "r4": UC_ARM_REG_R4, "r5": UC_ARM_REG_R5, "r6": UC_ARM_REG_R6, "r7": UC_ARM_REG_R7, "r8": UC_ARM_REG_R8, "r9": UC_ARM_REG_R9, "r10": UC_ARM_REG_R10, "r11": UC_ARM_REG_R11, "r12": UC_ARM_REG_R12, "pc": UC_ARM_REG_PC, "sp": UC_ARM_REG_SP, "lr": UC_ARM_REG_LR, "cpsr": UC_ARM_REG_CPSR }, "arm64" : { "x0": UC_ARM64_REG_X0, "x1": UC_ARM64_REG_X1, "x2": UC_ARM64_REG_X2, "x3": UC_ARM64_REG_X3, "x4": UC_ARM64_REG_X4, "x5": UC_ARM64_REG_X5, "x6": UC_ARM64_REG_X6, "x7": UC_ARM64_REG_X7, "x8": UC_ARM64_REG_X8, "x9": UC_ARM64_REG_X9, "x10": UC_ARM64_REG_X10, "x11": UC_ARM64_REG_X11, "x12": UC_ARM64_REG_X12, "x13": UC_ARM64_REG_X13, "x14": UC_ARM64_REG_X14, "x15": UC_ARM64_REG_X15, "x16": UC_ARM64_REG_X16, "x17": UC_ARM64_REG_X17, "x18": UC_ARM64_REG_X18, "x19": UC_ARM64_REG_X19, "x20": UC_ARM64_REG_X20, "x21": UC_ARM64_REG_X21, "x22": UC_ARM64_REG_X22, "x23": UC_ARM64_REG_X23, "x24": UC_ARM64_REG_X24, "x25": UC_ARM64_REG_X25, "x26": UC_ARM64_REG_X26, "x27": UC_ARM64_REG_X27, "x28": UC_ARM64_REG_X28, "pc": UC_ARM64_REG_PC, "sp": UC_ARM64_REG_SP, "fp": UC_ARM64_REG_FP, "lr": UC_ARM64_REG_LR, "nzcv": UC_ARM64_REG_NZCV, "cpsr": UC_ARM_REG_CPSR, }, "mips" : { "0" : UC_MIPS_REG_ZERO, "at": UC_MIPS_REG_AT, "v0": UC_MIPS_REG_V0, "v1": UC_MIPS_REG_V1, "a0": UC_MIPS_REG_A0, "a1": UC_MIPS_REG_A1, "a2": UC_MIPS_REG_A2, "a3": UC_MIPS_REG_A3, "t0": UC_MIPS_REG_T0, "t1": UC_MIPS_REG_T1, "t2": UC_MIPS_REG_T2, "t3": UC_MIPS_REG_T3, "t4": UC_MIPS_REG_T4, "t5": UC_MIPS_REG_T5, "t6": UC_MIPS_REG_T6, "t7": UC_MIPS_REG_T7, "t8": UC_MIPS_REG_T8, "t9": UC_MIPS_REG_T9, "s0": UC_MIPS_REG_S0, "s1": UC_MIPS_REG_S1, "s2": UC_MIPS_REG_S2, "s3": UC_MIPS_REG_S3, "s4": UC_MIPS_REG_S4, "s5": UC_MIPS_REG_S5, "s6": UC_MIPS_REG_S6, "s7": UC_MIPS_REG_S7, "s8": UC_MIPS_REG_S8, "k0": UC_MIPS_REG_K0, "k1": UC_MIPS_REG_K1, "gp": UC_MIPS_REG_GP, "pc": UC_MIPS_REG_PC, "sp": UC_MIPS_REG_SP, "fp": UC_MIPS_REG_FP, "ra": UC_MIPS_REG_RA, "hi": UC_MIPS_REG_HI, "lo": UC_MIPS_REG_LO } } return registers[arch] def get_common_regs(self): """ get some common register REG_PC: IP REG_SP: stack pointer REG_RA: return address (just like arm $lr and mips $ra) REG_ARGS: args REG_RES: return value arch to uc_arch """ if self.uc_arch == UC_ARCH_X86: if self.uc_mode == UC_MODE_16: self.size = 2 self.pack_fmt = '<H' self.REG_PC = UC_X86_REG_IP self.REG_SP = UC_X86_REG_SP self.REG_RA = 0 self.REG_RES = UC_X86_REG_AX self.REG_ARGS = [] elif self.uc_mode == UC_MODE_32: self.size = 4 self.pack_fmt = '<I' self.REG_PC = UC_X86_REG_EIP self.REG_SP = UC_X86_REG_ESP self.REG_RA = 0 self.REG_RES = UC_X86_REG_EAX self.REG_ARGS = [] elif self.uc_mode == UC_MODE_64: self.size = 8 self.pack_fmt = '<Q' self.REG_PC = UC_X86_REG_RIP self.REG_SP = UC_X86_REG_RSP self.REG_RA = 0 self.REG_RES = UC_X86_REG_RAX if self.compiler == COMPILE_GCC: self.REG_ARGS = [UC_X86_REG_RDI, UC_X86_REG_RSI, UC_X86_REG_RDX, UC_X86_REG_RCX, UC_X86_REG_R8, UC_X86_REG_R9] # print "test" elif self.compiler == COMPILE_MSVC: self.REG_ARGS = [UC_X86_REG_RCX, UC_X86_REG_RDX, UC_X86_REG_R8, UC_X86_REG_R9] elif self.uc_arch == UC_ARCH_ARM: if self.uc_mode == UC_MODE_ARM: self.size = 4 self.pack_fmt = '<I' elif self.uc_mode == UC_MODE_THUMB: self.size = 2 self.pack_fmt = '<H' self.REG_PC = UC_ARM_REG_PC self.REG_SP = UC_ARM_REG_SP self.REG_RA = UC_ARM_REG_LR self.REG_RES = UC_ARM_REG_R0 self.REG_ARGS = [UC_ARM_REG_R0, UC_ARM_REG_R1, UC_ARM_REG_R2, UC_ARM_REG_R3] elif self.uc_arch == UC_ARCH_ARM64: self.size = 8 self.pack_fmt = '<Q' self.REG_PC = UC_ARM64_REG_PC self.REG_SP = UC_ARM64_REG_SP self.REG_RA = UC_ARM64_REG_LR self.REG_RES = UC_ARM64_REG_X0 self.REG_ARGS = [UC_ARM64_REG_X0, UC_ARM64_REG_X1, UC_ARM64_REG_X2, UC_ARM64_REG_X3, UC_ARM64_REG_X4, UC_ARM64_REG_X5, UC_ARM64_REG_X6, UC_ARM64_REG_X7] elif self.uc_arch == UC_ARCH_MIPS: self.size = 4 self.pack_fmt = "<I" self.REG_PC = UC_MIPS_REG_PC self.REG_SP = UC_MIPS_REG_SP self.REG_RA = UC_MIPS_REG_RA self.REG_RES = [UC_MIPS_REG_V0, UC_MIPS_REG_V1,UC_MIPS_REG_V1] self.REG_ARGS = [UC_MIPS_REG_A0, UC_MIPS_REG_A1, UC_MIPS_REG_A2, UC_MIPS_REG_A3]
StarcoderdataPython
3242012
from django import forms class PlaceholderForm(forms.Form): """ A base form for automatically adding placeholder text. Forms that extend this form will by default have all text, password, and date input widgets display placeholder text equal to their label. This can be overridden per form field by simply specifying a different placeholder attribute. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for field_name in self.fields: field = self.fields.get(field_name) if field: if type(field.widget) in (forms.TextInput, forms.PasswordInput, forms.EmailInput, forms.DateInput): field.widget.attrs.update( { 'placeholder': field.widget.attrs.get('placeholder', field.label or field_name) } ) class PlaceholderFormMixin(object): """ A form mixin for automatically adding placeholder text. Forms that use this mixin will by default have all text, password, and date input widgets display placeholder text equal to their label. This can be overridden per form field by simply specifying a different placeholder attribute. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for field_name in self.fields: field = self.fields.get(field_name) if field: if type(field.widget) in (forms.TextInput, forms.PasswordInput, forms.EmailInput, forms.DateInput): field.widget.attrs.update( { 'placeholder': field.widget.attrs.get('placeholder', field.label or field_name) } ) _bootstrap_formgroup = """ <div class="form-group %(css_classes)s"> <div class="input-group"> %(label)s %(field)s%(help_text)s </div> </div> """ class BootstrapFormMixin(object): """ A form mixin to generate Bootstrap input-groups """ def as_inputgroup(self): "Returns this form rendered as Bootstrap input-groups." for field_name in self.fields: field = self.fields.get(field_name) if field: field.widget.attrs.update( { 'class': field.widget.attrs.get('class', '') + ' form-control' } ) bf = self[field_name] bf.label_tag = self.style_label_tag(bf.label_tag) return self._html_output( normal_row=_bootstrap_formgroup, error_row='%s', row_ender='</div>', help_text_html=' <span class="helptext">%s</span>', errors_on_separate_row=True) def style_label_tag(self, label_tag): def inner(contents=None, attrs=None, label_suffix=None): attrs = attrs or {} if 'class' in attrs: attrs['class'] += ' input-group-addon' else: attrs['class'] = 'input-group-addon' return label_tag(contents, attrs, label_suffix) return inner
StarcoderdataPython
119933
## bisenetv2 cfg = dict( model_type='bisenetv2', num_aux_heads=4, lr_start = 5e-2, weight_decay=5e-4, warmup_iters = 1000, max_iter = 150000, im_root='./datasets/coco', train_im_anns='./datasets/coco/train.txt', val_im_anns='./datasets/coco/val.txt', scales=[0.5, 1.5], cropsize=[512, 512], ims_per_gpu=8, use_fp16=True, use_sync_bn=False, respth='./res', )
StarcoderdataPython
1661238
from django.conf.urls import url from project import views urlpatterns = [ url(r'^urlinfo/', views.urlinfo), url(r'^urlinfoselect/', views.urlinfoselect), url(r'^baseinfo/', views.baseinfo), url(r'^getproname/', views.getproname), url(r'^getmodelname/', views.getmodelname), ]
StarcoderdataPython
106245
import argparse import asyncio import logging from pathlib import Path from dvdp.ha_433 import HA433Light from dvdp.recorder_433 import RECORDINGS_DIR, get_recordings from dvdp.ha_mqtt.client import MQTTClient def main(): logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG, ) parser = argparse.ArgumentParser( 'Allow Home assistant to control 433 devices over MQTT.', formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( 'brokerip', help=f'IP of broker.', type=str ) parser.add_argument( '--name', '-n', help=f'Name of client.', default='devices_433', type=str ) parser.add_argument( '--username', '-u', help='Username to use when connecting to MQTT broker.', type=str, ) parser.add_argument( '--password', '-p', help='Password to use when connecting to MQTT broker.', type=str, ) parser.add_argument( '--pin', default=14, help='BCM pin on rasberry pi used for transmission', type=int, ) parser.add_argument( '--recordings', '-r', help='Directory containing recordings.', type=Path, default=RECORDINGS_DIR, ) args = parser.parse_args() broker_ip = args.brokerip client_name = args.name pin = args.pin source_dir = args.recordings recordings = get_recordings(source_dir) username = args.username password = args.password mqtt_client = MQTTClient(broker_ip, client_name, username, password) devices = [ HA433Light(name, mqtt_client, pin, source_dir) for name in recordings.keys() ] loop = asyncio.get_event_loop() tasks = [ loop.create_task(device.start()) for device in devices ] loop.run_until_complete( asyncio.gather( *tasks, ) ) if __name__ == '__main__': main()
StarcoderdataPython
75043
<filename>deprecated/db_functions.py # This script stores common database operations import sys import MySQLdb global DEBUG DEBUG = 1 global c, conn conn = MySQLdb.connect(host="localhost", \ user="root", \ passwd="<PASSWORD>", \ db='twins') # use correct db c = conn.cursor() conn.autocommit(True) # get all package name # global packages def get_packages(): sql = "SELECT package FROM apps ORDER BY package" try: c.execute(sql) if DEBUG == 1: print "SUCCESS !!! " + sql except: print "Something wrong" + sql sys.exit(1) packages = [] for p in c.fetchall(): packages.append(p[0]) if DEBUG == 1: print "Found " + str(len(packages)) + " packages." return packages def get_filenames(): sql = "SELECT filename FROM apps ORDER BY package" try: c.execute(sql) if DEBUG == 1: print "SUCCESS !!! " + sql except: print "Something wrong" + sql sys.exit(1) filenames = [] for p in c.fetchall(): filenames.append(p[0]) if DEBUG == 1: print "Found " + str(len(filenames)) + " filenames." return filenames def package2filename(): sql = "SELECT package, filename FROM apps ORDER BY package" try: c.execute(sql) if DEBUG == 1: print "SUCCESS !!! " + sql except: print "Something wrong" + sql sys.exit(1) p2f = {} for p in c.fetchall(): p2f[p[0]]=p[1] return p2f def filename2package(): sql = "SELECT package, filename FROM apps ORDER BY package" try: c.execute(sql) if DEBUG == 1: print "SUCCESS !!! " + sql except: print "Something wrong" + sql sys.exit(1) f2p = {} for f in c.fetchall(): f2p[f[1]]=f[0] return f2p
StarcoderdataPython
115856
import gym import tensorflow as tf from rl.agent import util class A3CModel(tf.keras.Model): def __init__(self, env): super().__init__() self.action_is_continuous, self.action_size, self.action_low, self.action_high = util.parse_env( env ) # Policy (actor) layer self.policy_dense1 = tf.keras.layers.Dense(32, activation="relu") if self.action_is_continuous: # According to A3C paper, they use a linear and softplus layer for # continuous output to emulate mu and sigma^2 (mean and variance) # of a normal distribution. To make things simple, I'll emulate # standard deviation sigma instead of sigma^2. This should be # interesting... self.policy_output1 = tf.keras.layers.Dense( self.action_size, activation="tanh" ) self.policy_output2 = tf.keras.layers.Dense( self.action_size, activation="softplus" ) else: self.policy_output1 = tf.keras.layers.Dense(self.action_size) # Value layers self.value_dense1 = tf.keras.layers.Dense(32, activation="relu") self.value_output = tf.keras.layers.Dense(1) def call(self, inputs): # Forward pass on the two paths on the network with tf.variable_scope("value_scope"): v1 = self.value_dense1(inputs) values = self.value_output(v1) with tf.variable_scope("actor_scope"): x = self.policy_dense1(inputs) logits1 = self.policy_output1(x) if self.action_is_continuous: logits2 = self.policy_output2(x) return (logits1, logits2), values return logits1, values
StarcoderdataPython
1629935
<filename>src/umassstembot/coronavirus.py from bs4 import BeautifulSoup import overlay as over import dateutil.parser import dateutil.utils import discord import requests import os import tempfile FINNHUB_CORONA_TOKEN = os.environ.get('FINNHUB_API_TOKEN_5') us_areas = {'AL': ['Alabama', '4903185'], 'AK': ['Alaska', '731545'], 'AZ': ['Arizona', '7278717'], 'AR': ['Arkansas', '3017804'], 'CA': ['California', '39512223'], 'CO': ['Colorado', '5758736'], 'CT': ['Connecticut', '3565278'], 'DE': ['Delaware', '973764'], 'FL': ['Florida', '21477737'], 'GA': ['Georgia', '10617423'], 'HI': ['Hawaii', '1415872'], 'ID': ['Idaho', '1787065'], 'IL': ['Illinois', '12671821'], 'IN': ['Indiana', '6732219'], 'IA': ['Iowa', '3155070'], 'KS': ['Kansas', '2913314'], 'KY': ['Kentucky', '4467673'], 'LA': ['Louisiana', '4648794'], 'ME': ['Maine', '1344212'], 'MD': ['Maryland', '6045680'], 'MA': ['Massachusetts', '6892503'], 'MI': ['Michigan', '9986857'], 'MN': ['Minnesota', '5639632'], 'MS': ['Mississippi', '2976149'], 'MO': ['Missouri', '6137428'], 'MT': ['Montana', '1068778'], 'NE': ['Nebraska', '1934408'], 'NV': ['Nevada', '3080156'], 'NH': ['New Hampshire', '1359711'], 'NJ': ['New Jersey', '8882190'], 'NM': ['New Mexico', '2096829'], 'NY': ['New York', '19453561'], 'NC': ['North Carolina', '10488084'], 'ND': ['North Dakota', '762062'], 'OH': ['Ohio', '11689100'], 'OK': ['Oklahoma', '3956971'], 'OR': ['Oregon', '4217737'], 'PA': ['Pennsylvania', '12801989'], 'RI': ['Rhode Island', '1059361'], 'SC': ['South Carolina', '5148714'], 'SD': ['South Dakota', '884659'], 'TN': ['Tennessee', '6829174'], 'TX': ['Texas', '28995881'], 'UT': ['Utah', '3205958'], 'VT': ['Vermont', '623989'], 'VA': ['Virginia', '8535519'], 'WA': ['Washington', '7614893'], 'WV': ['West Virginia', '1792147'], 'WI': ['Wisconsin', '5822434'], 'WY': ['Wyoming', '578759'], 'DC': ['District of Columbia', '705749'] } UMASS_CASE_EPOCH = dateutil.parser.parse("2020-08-14 00:00:00") async def coronavirus(ctx, sort_by_percentage): """Generate coronavirus statistics Args: - ctx: context that the command occured use this to access the message and other attributes - sort_by_percentage: true when we want to sort by percentage infected, false when we want to sort by # of cases - args: optional, if state is passed in return the states cases and deaths, if nothing then return the top 15 """ if sort_by_percentage: argument = ctx.message.content[7:].strip().strip('\"') # after '$covidp' remove spaces else: argument = ctx.message.content[6:].strip().strip('\"') # after '$covid' remove spaces try: data = requests.get('https://finnhub.io/api/v1/covid19/us?&token=' + FINNHUB_CORONA_TOKEN).json() except: print(requests.get('https://finnhub.io/api/v1/covid19/us?&token=' + FINNHUB_CORONA_TOKEN)) await ctx.channel.send(embed=discord.Embed( description="API limit reached, please wait before running the command again.", color=discord.Color.red())) return only_states_data = [block for block in data if block['state'] in get_states()] if len(argument) < 1: embed = discord.Embed(title='Coronavirus Statistics', color=discord.Color.teal()) i = 1 case_count = 0 pop_count = 0 death_count = 0 for state in sorted(only_states_data, key=lambda state: state['case'] if not sort_by_percentage else (state['case']/get_pop(state['state'].strip())), reverse=True): # iterate through the state blocks sorted by case number case_count += state['case'] death_count += state['death'] pop_count += get_pop(state['state'].strip()) if i < 16: state_name, cases_output, deaths_output = build_top_corona_output(state) embed.add_field( name = str(i) + '. ' + state_name + '\n', value = 'Cases: ' + cases_output + 'Deaths: ' + deaths_output, inline=True) i += 1 embed.description = '-------= U.S Totals =-------\n' \ 'Cases: {:,d} '.format(case_count) + '(' + str(round((case_count/pop_count) * 100, 4)) + '%)' + '\n' \ 'Deaths: {:,d} '.format(death_count) + '(' + str(round((death_count/pop_count) * 100, 4)) + '%)' await ctx.send(embed=embed) else: try: state = us_areas[argument.upper()][0] population = int(us_areas[argument.upper()][1]) except: state = capitalize_all_words(argument) if get_abbrev(state) == '': await ctx.channel.send(embed=discord.Embed( description="Invalid state, make sure you use the full name not the abbreviation", color=discord.Color.red())) return population = get_pop(state) description = '' for block in only_states_data: if str(block['state']).strip() == state: pop_percentage = round((block['case']/population) * 100, 4) description = 'Cases: ' + '{:,d}'.format(block['case']) description += '\nInfected Percentage: ' + str(pop_percentage) + '%' description += '\nDeaths: ' + '{:,d}'.format(block['death']) description += '\nFatality Rate: ' + '{:,.2f}%'.format((block['death']/block['case']) * 100) break embed = discord.Embed( title=state + ' Coronavirus Statistics', description=description, color=discord.Color.teal()) await ctx.send(embed=embed) def get_states(): """Returns a list of U.S states """ states = [] for abbrev, value in us_areas.items(): states.append(value[0]) return states def get_abbrev(state): """Returns the abbreviation of the passed in state Args: - state: state in which to get the abbreviation """ abbrev_list = [key for key, value in us_areas.items() if state in value] return abbrev_list[0] if len(abbrev_list) > 0 else '' def get_pop(state): """Returns the population of the passed in state Args: - state: state in which to get the population """ abbrev = get_abbrev(state) return int(us_areas[abbrev][1]) if abbrev != '' else -1 def capitalize_all_words(str): """Capitalizes all words in the string Args: - str: passed in string to be capitalized """ string_list = str.split() output = '' for string in string_list: output += string.capitalize() + ' ' output = output[:-1] return output def build_top_corona_output(state): """Returns the outputs needed for the top coronavirus embed Args: - state: state in which to get the statistics """ pop = get_pop(state['state'].strip()) cases_perc = state['case']/pop * 100 fatal_perc = state['death']/state['case'] * 100 # calculate fatality rate cases_output = '{:,d}'.format(state['case']) + ' ({:,.2f}%)'.format(cases_perc) + '\n' # format integers with commas deaths_output = '{:,d}'.format(state['death']) + ' ({:,.2f}%)'.format(fatal_perc) return state['state'], cases_output, deaths_output async def umass_coronavirus(ctx): """Generate UMass-specific coronavirus statistics Args: - ctx: context that the command occured use this to access the message and other attributes """ try: data = requests.get('https://www.umass.edu/coronavirus/confirmed-cases-covid-19-umass-amherst').text except: print(requests.get('https://www.umass.edu/coronavirus/confirmed-cases-covid-19-umass-amherst')) await ctx.channel.send(embed=discord.Embed( description="Could not access reporting page, please wait before running the command again.", color=discord.Color.red())) return total_cases = 0 most_recent_report = None most_recent_count = None soup = BeautifulSoup(data, 'html.parser') for accordion in soup.select(".field-group-accordion-wrapper"): date = accordion.select(".field--name-node-title")[0].get_text().strip() date = dateutil.parser.parse(date) case_count = accordion.select(".field--name-field__of-reported-cases")[0] \ .select(".field__item")[0] \ .get_text() case_count = int(case_count) if date >= UMASS_CASE_EPOCH: if most_recent_report is None or date > most_recent_report: most_recent_report = date most_recent_count = case_count total_cases += case_count embed = discord.Embed(title='UMass Coronavirus Statistics', color=discord.Color.teal()) embed.description = "{} cases since {}".format(total_cases, UMASS_CASE_EPOCH.strftime("%Y-%m-%d")) + \ "\n" + \ "Most recent report: {} case(s) on {}.".format(most_recent_count, most_recent_report.strftime("%Y-%m-%d")) await ctx.send(embed=embed) async with ctx.typing(): with tempfile.TemporaryDirectory() as tmp: path = os.path.join(tmp, 'days_elapsed.png') image = over.draw_outbreak_sign((dateutil.utils.today() - most_recent_report).days) image.save(path) await ctx.send(file=discord.File(path))
StarcoderdataPython
3217494
<reponame>bogdanvuk/pygears from pygears import alternative, TypeMatchError, gear from pygears.typing import Union from pygears.lib import fmap as common_fmap from pygears.lib.mux import mux from pygears.lib.demux import demux_ctrl from pygears.lib.ccat import ccat from pygears.lib.shred import shred def unionmap_check(dtype, f, mapping): if not issubclass(dtype, Union): return False try: num_f = len(f) except TypeError: raise TypeMatchError( f'Union fmap argument "f" needs to be a sequence, received {f}') if mapping is None: num_types = len(list(dtype.types)) else: num_types = max(mapping.values()) + 1 if num_types != num_f: raise TypeMatchError( 'Number of union types different from the number of fmap functions' ) return True @alternative(common_fmap) @gear(enablement=b'unionmap_check(din, f, mapping)') def unionmap(din, *, f, fdemux=demux_ctrl, fmux=mux, balance=None, mapping=None, use_dflt=True): if mapping: fdemux = fdemux(mapping=mapping) fmux = fmux(mapping=mapping) demux_dout = din | fdemux ctrl = demux_dout[0] branches = demux_dout[1:] dout = [] for i, fd in enumerate(f): if fd is None: if balance is None: dout.append(branches[i]) else: dout.append(branches[i] | balance) else: dout.append(fd(branches[i])) if dout[-1] is None or isinstance(dout[-1], tuple): ret = 'none' if dout[-1] is None else f'{len(dout[-1])} outputs' raise TypeMatchError( f'Gear "{fd}" passed to the unionmap should have a single output, but returned {ret}' ) # Situation where there is a default branch because of mapping if len(branches) == len(dout) + 1 and mapping is not None: if use_dflt: dout.append(branches[-1]) else: branches[-1] | shred elif len(branches) > len(dout): raise Exception if balance is not None: ctrl = ctrl | balance if len(dout) == 1: return ccat(*dout, ctrl) | Union else: return fmux(ctrl, *dout)
StarcoderdataPython
31013
# from django.db.models.signals import post_save # from django.dispatch import receiver # from onadata.apps.logger.models import XForm # # from onadata.apps.fsforms.models import FieldSightXF # # # @receiver(post_save, sender=XForm) # def save_to_fieldsight_form(sender, instance, **kwargs): # FieldSightXF.objects.create(xf=instance)
StarcoderdataPython
1752026
from django.conf.urls.defaults import * urlpatterns = patterns('', url(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\w{1,2})/(?P<object_id>\d+)/$', view = 'basic.bookmarks.views.bookmark_detail', name = 'bookmark_detail', ), url(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\w{1,2})/$', view = 'basic.bookmarks.views.bookmark_archive_day', name = 'bookmark_archive_day', ), url(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/$', view = 'basic.bookmarks.views.bookmark_archive_month', name = 'bookmark_archive_month', ), url(r'^(?P<year>\d{4})/$', view = 'basic.bookmarks.views.bookmark_archive_year', name = 'bookmark_archive_year', ), url(r'^$', view = 'basic.bookmarks.views.bookmark_index', name = 'bookmark_index', ), )
StarcoderdataPython
167459
<reponame>ufkapano/planegeometry #!/usr/bin/python import unittest from fractions import Fraction from planegeometry.structures.points import Point from planegeometry.structures.segments import Segment from planegeometry.algorithms.bentleyottmann2 import BentleyOttmann class TestBentleyOttmann(unittest.TestCase): def setUp(self): self.segments1 = [] self.segments1.append(Segment(3, -4, 15, -13)) self.segments1.append(Segment(17, -7, 25, 6)) self.segments1.append(Segment(20, 3, 24, -2)) self.segments1.append(Segment(5, -9, 8, -4)) self.segments1.append(Segment(14, 3, 27, 10)) self.segments1.append(Segment(-16, 2, -12, -3)) self.segments1.append(Segment(-9, 5, -4, -9)) self.segments1.append(Segment(-19, -10, -10, 10)) self.segments1.append(Segment(-5, 5, -1, 7)) self.segments1.append(Segment(4, 15, 11, -3)) self.segments1.append(Segment(-3, 9, -2, 5)) self.segments1.append(Segment(2, 4, 6, 13)) self.segments2 = [] self.segments2.append(Segment(9, 11, 0, 2)) self.segments2.append(Segment(4, 0, 11, 7)) self.segments2.append(Segment(10, 2, 1, 11)) self.segments2.append(Segment(2, 6, 7, 1)) self.segments3 = [] self.segments3.append(Segment(-10, 2, -2, 5)) self.segments3.append(Segment(2, -2, 13, 4)) self.segments4 = [] self.segments4.append(Segment(-10, 10, 20, 3)) self.segments4.append(Segment(-9, 4, -2, 3)) self.segments4.append(Segment(-3, 2, 17, 7)) self.segments4.append(Segment(3, 5, 6, 2)) self.segments4.append(Segment(-6, 6, 7, 13)) self.segments4.append(Segment(-15, 7, 5, 8)) def test_run(self): points1 = [Point(Fraction(-1808, 125), Fraction(2, 25)), Point(Fraction(-7, 3), Fraction(19, 3)), Point(Fraction(722, 135), Fraction(173, 15)), Point(Fraction(187, 29), Fraction(-191, 29)), Point(Fraction(501, 23), Fraction(71, 92))] self.assertEqual(BentleyOttmann(self.segments1).run(), points1) points2 = [Point(3, 5), Point(5, 7), Point(6, 2), Point(8, 4)] self.assertEqual(BentleyOttmann(self.segments2).run(), points2) self.assertEqual(BentleyOttmann(self.segments3).run(), []) points4 = [Point(Fraction(-385, 127), Fraction(965, 127)), Point(Fraction(-610, 301), Fraction(350, 43)), Point(Fraction(-5, 17), Fraction(263, 34)), Point(Fraction(21, 5), Fraction(19, 5)), Point(Fraction(295, 29), Fraction(307, 58))] self.assertEqual(BentleyOttmann(self.segments4).run(), points4) def tearDown(self): pass if __name__ == "__main__": unittest.main() # EOF
StarcoderdataPython
1602556
import os from contextlib import contextmanager @contextmanager def cwd(path): old_path = os.getcwd() os.chdir(path() if callable(path) else path) try: yield finally: os.chdir(old_path) def in_dir(path): def decorator(fn): def wrapper(*args, **kwargs): with cwd(path): return fn(*args, **kwargs) return wrapper return decorator def preserve_cwd(func=None): def decorator(fn): def wrapper(*args, **kwargs): with cwd(os.getcwd()): return fn(*args, **kwargs) return wrapper if callable(func): return decorator(func) else: return decorator
StarcoderdataPython
3236717
import random # because we'll need this ha, ha, ha # the vocabulary could just be a single list but I've organized more-or-less # in case I want to try a few grammaticaly rules later: people = [ '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', 'Jaybez', '<NAME>', 'mar lady', 'mar mate', 'ar yuth', 'mayun', 'these do-gooders', 'may un mar lady', 'me Dad', 'me Mum', '<NAME>', 'er upstairs', 'Slash from Guns \'n Roses', ] places = [ 'up Fegg Hayes', 'on Silverdale', 'up Anley duck', 'up Almerend', 'dayn Castle', 'up Albermarl reowd', 'in Fenton', 'me caravan in North Wayulz', 'Jamage Industriul Estate', 'on the A34', 'on the dee reowd', 'along the A500', 'Anley Museum', 'dayn the pub', 'dayn the club', 'dayn the tayn', 'dayn pit', 'me kayne-slice', 'dayn Westport Lake', 'up Unity House', 'up Potteries Shopping Center', 'dayn Fezzie Park', 'up at Victoria Orrl', 'up Auger\'s Bonk', 'bin up Neck End', 'over Porthill Bonk', 'over Adeley way, lark', 'Pot Banks', 'the colliery', 'Jamland', 'th\'appy-clappy', ] put_downs = [ 'are anna gorra clew', 'dooin me-yed in', 'conner stand im', 'conner stand er', 'yer wonner fight', 'oh yer startin', 'gerrin on me nerves', 'serves thee sen rayt', 'yull catch yer deather cold', 'rayt mard you are', 'yull get chin-cough', 'oh av yerd im', 'dead sad you are' ] greetings = [ 'ay up duck.', 'oow reet.', 'ay up mar mate.', 'oow at.', 'say thee!', ] beverages = [ 'a pint o Bass', 'a pint o Mayuld', 'a seowuderanlime', 'a brew', 'a birrer Kaynesul Pop', 'four tins of Steller', ] cuisine = [ 'oatcake', 'cheesey oatcake', 'bacon cheese oatcake', 'dead nice oatcakes', 'mmmmm, oatcakes', 'sausage, bacon and cheese oatcake', 'dead nice Balti tharriz', 'chayz butty', 'amunchayz butty', 'bacon bap', 'packeet o sult un vineeger crisps playz, duck.', ] stop_words = [ 'may', 'lark', 'ast', 'dunner', 'dunnerafter', 'yer woh', 'conner', 'anner', 'reet', 'onner', 'onneravvin', 'worrabite', 'bostid', 'abite', 'thee sen', 'me sen', 'a saggermaker\'s bottom knocker', 'ruddy', 'ruddy great', 'dirty great', 'fer', 'me duck', 'worrabite', ] verbs = [ 'gowin', 'avvin', 'ramblin ter me sen', 'ramblin on and on', 'gerrin', 'sez', 'put th\'binz ite', 'put ke\'ul on duck', 'graggin', 'werritin', 'shermozzlin', 'lozerkin', 'fang owd', 'purrer dayn!', 'purrim dayn!', 'get theesen', 'gowin wom', 'slopin off', ] questions = [ 'ast tha thote abite snappin?', 'ast tha got thee buz fair', 'av yer gorra neow meowbiyul', 'ast tha gorra wotch', 'ast tha got thee specs?', 'worrer yer doin neow?', ] institutions = [ 'Potteries Motor Traction', 'Scragg\'s Coaches', 'Stoke Poly', 'the Mitch', 'Stoke City', 'the Vale', 'on Radio Stoke', 'Signul', 'up the Crem', 'in the Creowun', 'deowun the Roe-Buck', 'in the Vine', 'the Snayd Arms', 'the Rigger', 'up Shelton Bar', 'in th\'Sen-nul', 'E.R.F', 'Foden\'s', 'Caudwell Communications', 'at Rists', '<NAME>\'s Teapots', 'Spode\'s', 'Wedgewood\'s', 'the Adams family of potters', ] random_statements = [ 'cost kick a bo againt a wo an then it eet wi thee yed till eet bosses', 'ar anner gorra peowund!', 'thars anuther thray peowund up the wall', 'ar well, thars wun less day ter live', 'ahm swealterin', 'ahm frayzin ar ahm', 'conner get meeyed reowund eet ar conner', 'werretin on abite sommert', 'any reowd', 'pick up thee muskeet', 'it\'s black over Bill\'s Mother\'s', 'saves yer mauwlin with eet any reowd', ] # the corpus is really just a list of the above lists: corpus = [people, places, put_downs, greetings, beverages, cuisine, stop_words, verbs, questions, institutions, random_statements] # oh yeah, this is tricky to explain: sentence_endings = ( '.', '. ', '?', '? ', '!', '! ') # : def capitalize(line): """Capitalize the first char in a string string.capitalize messes up deliberate upper cases in the strings so here's a dedicated function. Args: line (str): The string to capitalize Returns: str: The capitalized string """ return line[0].upper() + line[1:len(line)] def generate_paragraph(): """Generate a paragraph of North Staffordshire Gibberish Args: None Returns: str: A paragraph of North Staffordshire Gibberish """ text = '' sentence_word_count = 0 for i in range(0, random.randint(20, 40)): # chose a random section from the corpus section = random.choice(corpus) # chose a random string from the section word = random.choice(section) # if the paragraph so far ends with a completed sentence then # the new selection needs to be capitalized: if text == '' or text.endswith(sentence_endings): word = capitalize(word) # now it can be appeneded to the paragraph text += word # reset the counter if we just finished a sentence: if text.endswith(sentence_endings): sentence_word_count = 0 else: # otherwise increment it: sentence_word_count += 1 # if there are more than 5 "words" (keeping in mind a word # can actually contain several words) then reset the counter: if sentence_word_count > 6: sentence_word_count = 0 # And if the sentence is complete just add a space if text.endswith(sentence_endings): text += ' ' else: # otherwise give it a full-stop: text += '. ' else: # if the sentence isn't yet 5 words increment the counter # and add a space text += ' ' sentence_word_count += 1 # when the paragraph is complete make sure it has a proper punctuation # at the end before returning: if text.endswith(sentence_endings): return text.strip() else: return text.strip() + '.' def generate_potters(): """Generate a list of 3 paragraphs of North Staffordshire Gibberish Args: None Returns: list(str): A list of strings, each containing a paragraph """ paragraphs = [] for i in range(0, 3): paragraphs.append(generate_paragraph()) return paragraphs
StarcoderdataPython
1604131
<gh_stars>0 import numpy.testing as npt from numpy import (absolute, all, arange, array, cos, linspace, log, sin) from ..nearshockapproximator import (NearShockApproximator, NearShockFifthOrderApproximator) class TestNearShockApproximator: def test__two_points_away_from_shock__should_give_fifth_order(self): r = 2.0 powers = arange(4, 8) n_list = r**powers + 1 error_list = [] for n in n_list: x, dx = linspace(0, 1.2, num=n, retstep=True) y = sin(x) approx = NearShockApproximator(dx) result = approx.approximate_two_points_away_from_shock(y) desired = cos(x[-3]) error = absolute(result - desired) error_list.append(error) errors = array(error_list) observed_orders = log(errors[0:-1] / errors[1:]) / log(r) min_order = 4.90 npt.assert_(all(observed_orders >= min_order)) def test__one_point_away_from_shock__should_give_fourth_order(self): r = 2.0 powers = arange(2, 7) n_list = 10.0 * r**powers error_list = [] for n in n_list: x, dx = linspace(0, 1.2, num=n, retstep=True) y = sin(x) approx = NearShockApproximator(dx) result = approx.approximate_one_point_away_from_shock(y) desired = cos(x[-2]) error = absolute(result - desired) error_list.append(error) errors = array(error_list) observed_orders = log(errors[0:-1] / errors[1:]) / log(r) min_order = 3.90 npt.assert_(all(observed_orders >= min_order)) def test__on_shock__should_give_fifth_order(self): r = 2.0 powers = arange(2, 6) n_list = 10.0 * r**powers error_list = [] for n in n_list: x, dx = linspace(0, 1.2, num=n, retstep=True) y = sin(x) approx = NearShockApproximator(dx) result = approx.approximate_on_shock(y) desired = cos(x[-1]) error = absolute(result - desired) error_list.append(error) errors = array(error_list) observed_orders = log(errors[0:-1] / errors[1:]) / log(r) min_order = 4.95 npt.assert_(all(observed_orders >= min_order)) class TestNearShockFifthOrderApproximator: def test__one_point_away_from_shock__should_give_fifth_order(self): r = 2.0 powers = arange(0, 5) n_list = 10.0 * r**powers error_list = [] for n in n_list: x, dx = linspace(0, 1.2, num=n, retstep=True) y = sin(x) approx = NearShockFifthOrderApproximator(dx) result = approx.approximate_one_point_away_from_shock(y) desired = cos(x[-2]) error = absolute(result - desired) error_list.append(error) errors = array(error_list) observed_orders = log(errors[0:-1] / errors[1:]) / log(r) min_order = 5.0 npt.assert_(all(observed_orders >= min_order))
StarcoderdataPython
3342864
# This file is Copyright 2009, 2010 <NAME>. # # This file is part of the Python-on-a-Chip program. # Python-on-a-Chip is free software: you can redistribute it and/or modify # it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE Version 2.1. # # Python-on-a-Chip is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # A copy of the GNU LESSER GENERAL PUBLIC LICENSE Version 2.1 # is seen in the file COPYING in this directory. ## @file # @copybrief sizeof ## @package sizeof # @brief Provides PyMite's sizeof module. # # <b>USAGE</b> # # \code sizeof.sizeof(obj) \endcode # # Prints the size of the given object. If obj is an integer from 0..31, # the size of the object type represented by that integer will be returned. """__NATIVE__ #include "pm.h" """ def sizeof(obj): """__NATIVE__ pPmObj_t pobj; pPmObj_t psize; int32_t n; PmReturn_t retval = PM_RET_OK; int32_t static size[] = { sizeof(PmObj_t), /* None type */ sizeof(PmInt_t), sizeof(PmFloat_t), sizeof(PmString_t), sizeof(PmTuple_t), sizeof(PmCo_t), sizeof(PmFunc_t), /* Module Obj uses func struct */ sizeof(PmClass_t), sizeof(PmFunc_t), sizeof(PmClass_t), /* Class instance */ 0, /* CIM */ 0, /* NIM */ sizeof(PmCo_t), /* NOB */ sizeof(PmThread_t), sizeof(PmClass_t), /* Exception instance */ sizeof(PmBoolean_t), sizeof(PmCodeImgObj_t), sizeof(PmList_t), sizeof(PmDict_t), 0, 0, 0, 0, 0, 0, sizeof(PmFrame_t), sizeof(PmBlock_t), sizeof(Segment_t), sizeof(Seglist_t), sizeof(PmSeqIter_t), sizeof(PmNativeFrame_t), }; /* If wrong number of args, raise TypeError */ if (NATIVE_GET_NUM_ARGS() != 1) { PM_RAISE(retval, PM_RET_EX_TYPE); return retval; } pobj = NATIVE_GET_LOCAL(0); if (OBJ_GET_TYPE(pobj) == OBJ_TYPE_INT) { n = ((pPmInt_t)pobj)->val; if ((n >= 0) && (n < 32)) { /* Return the size of the type represented by the integer */ retval = int_new(size[n], &psize); } else { /* Return the size of an integer object */ retval = int_new(OBJ_GET_SIZE(pobj), &psize); } } else { /* Return the size of the given non-integer object */ retval = int_new(OBJ_GET_SIZE(pobj), &psize); } NATIVE_SET_TOS(psize); return retval; """ pass def print_sizes(): types = ( 'NON', 'INT', 'FLT', 'STR', 'TUP', 'COB', 'MOD', 'CLO', 'FXN', 'CLI', 'CIM', 'NIM', 'NOB', 'THR', 0, 'BOL', 'CIO', 'LST', 'DIC', 0, 0, 0, 0, 0, 0, 'FRM', 'BLK', 'SEG', 'SGL', 'SQI', 'NFM', 0, ) for i in range(32): if types[i] != 0: print "sizeof(", types[i], ") = ", sizeof(i) #:mode=c:
StarcoderdataPython
1700750
from mldp.steps.transformers.base_transformer import BaseTransformer from mldp.utils.helpers.validation import validate_field_names from mldp.utils.helpers.nlp.sequences import compute_windows from mldp.steps.transformers.nlp.helpers import create_new_field_name from mlutils.helpers.general import listify import numpy as np class WindowSlider(BaseTransformer): """ Runs a rolling slider over a sequence. Creates a separate field for each field to which the slider was applied. Assumes 2D data, namely batch_size x sequences, where sequences can be of different sizes. """ def __init__(self, field_names, window_size=5, step_size=1, only_full_windows=False, new_window_field_name_suffix='window', **kwargs): """ :param field_names: str or list of str (str) corresponding to fields which should be slided over. :param window_size: self-explanatory. :param step_size: self-explanatory. :param only_full_windows: if set to True guarantees that all windows will be of the same size. :param new_window_field_name_suffix: suffix for all newly created fields. """ try: validate_field_names(field_names) except Exception as e: raise e super(WindowSlider, self).__init__(**kwargs) self.field_names = listify(field_names) self.window_size = window_size self.step_size = step_size self.only_full_windows = only_full_windows self.new_windw_fn_suffix = new_window_field_name_suffix def _transform(self, data_chunk): for fn in self.field_names: field_vals = data_chunk[fn] tmp = np.empty(len(field_vals), dtype='object') for i, el in enumerate(field_vals): window_elms = compute_windows(el, window_size=self.window_size, step_size=self.step_size, only_full_windows=self.only_full_windows) tmp[i] = window_elms new_fn = create_new_field_name(fn, suffix=self.new_windw_fn_suffix) data_chunk[new_fn] = tmp return data_chunk
StarcoderdataPython
99496
# -*- coding: utf-8 -*- """ Created on Thu Mar 31 12:44:45 2022 @author: Danie DEPRICATED FILE DO NOT USE Old biolerplate work for when stage 3 classification was just going to be selecting a set of representative points create by ModelsA B and C. Has terrible accuracy and should absolutley not be used. """ import tensorflow as tf import numpy as np import matplotlib as plt import os import csv from test_iterator import TestIterator import pandas as pd import plotly.express as px import plotly from tqdm import tqdm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from sklearn import svm import random def getLabel(base_dir, csvf, test_image): label = 0 with open(os.path.join(base_dir, csvf), "r") as f: reader = csv.reader(f) for row in reader: if row[0] == test_image+".JPG" or row[0] == test_image+".JPEG": label = row[1] break return label if __name__=="__main__": base_dir = "E:\\Coding\\Dataset" test_dir = "images_test" label_csv = "test_labels.csv" networkA = 'network_A_1' networkB = 'network_B_1' networkC = 'network_C_1' base_dir = "E:\\Coding\\Dataset" batch_size = 32 csvf = "test_labels.csv" svc = svm.SVC() totdf = pd.DataFrame() if os.path.exists(os.path.join(os.getcwd(),networkA+'_best_weights.h5')): modelA = tf.keras.models.load_model(networkA+'_best_weights.h5') if os.path.exists(os.path.join(os.getcwd(),networkB+'_best_weights.h5')): modelB = tf.keras.models.load_model(networkB+'_best_weights.h5') if os.path.exists(os.path.join(os.getcwd(),networkC+'_best_weights.h5')): modelC = tf.keras.models.load_model(networkC+'_best_weights.h5') file_list = os.listdir(os.path.join(base_dir, "Test")) random.shuffle(file_list) for index, folder in tqdm(enumerate(file_list)): if index > 10: break image_dir = os.path.join(base_dir, "Test", folder) predictionsDict = {"File": [], "x": [], "y": [], "z": [], "label": []} label = getLabel(base_dir, csvf, folder) testIter = TestIterator(batch_size, label, image_dir, return_name=True) for i in range(len(testIter)): x, y, name = testIter.__getitem__(0) predictionsA = np.array(modelA(x, training=False)) predictionsB = np.array(modelB(x, training=False)) predictionsC = np.array(modelC(x, training=False)) for idx, pred in enumerate(zip(predictionsA, predictionsB, predictionsC, y)): # if pred[0] >= 0.3 or pred[1] >= 0.3 or pred[2] >= 0.3: predictionsDict["File"].append(name[idx]) predictionsDict["x"].append(pred[0]) predictionsDict["y"].append(pred[1]) predictionsDict["z"].append(pred[2]) predictionsDict["label"].append(pred[3]) df=pd.DataFrame(data=predictionsDict) if((df.max().drop('File') > 0.5).any()): df.drop(df[(df.x < 0.5) & (df.y < 0.5) & (df.z < 0.5)].index, inplace=True) df = df.head(n=4) else: df.drop(df[(df.x > 0.5) & (df.y > 0.5) & (df.z > 0.5)].index, inplace=True) df = df.head(n=4) totdf = totdf.append(df) fig = plt.figure(figsize=(12, 9)) ax = Axes3D(fig) Y = [value.item() for value in totdf['y'].to_numpy()] X = [value.item() for value in totdf['x'].to_numpy()] Z = [value.item() for value in totdf['z'].to_numpy()] label = totdf['label'].tolist() coords = list(zip(X,Y,Z)) svc.fit(coords, label) ax.scatter(X, Y, Z) plt.show()
StarcoderdataPython
1767807
<gh_stars>1-10 from . import node import json import copy class Edge : """ Edge ====== A simple edge, embedding a `id_a`, a `id_b` and a `modality`. """ def __init__(self, id_edge: str, a: node.Node, b: node.Node, modality: str = "1", directed: bool = False): """ Nodes are given instead of just their `id`, so we can ensure each id correspond to an actual node, even if we only store their id in the struct """ self.id = str(id_edge) self.id_a = str(a.id) self.id_b = str(b.id) self.modality = str(modality) self.directed = directed self.meta = {} self.data = {} def __str__(self): return self.__repr__() def __repr__(self): return json.dumps(self.__dict__, indent=4, sort_keys=True) def __copy__(self): return copy.deepcopy(self) def other_end(self, id_base): if self.id_a == id_base : return self.id_b elif self.id_b == id_base : return self.id_a else : return None def replace_end(self, id_old:str, id_new) -> bool: if self.id_a == id_old : self.id_a = id_new return True elif self.id_b == id_old : self.id_b = id_new return True else : return False
StarcoderdataPython
3334621
<reponame>objectnf/training-code<filename>Lead-to-New-Language/Python/tool - pyinstaller/basic - syntaxSugar01.py a = 10; b = 5 # 单行定义多个变量 c = [a, b][a < b] # 将a、b中的小值赋值给c # 若 a < b 为 True, 取 [a, b][1]; 若 a < b 为 False, 取 [a, b][0] print("c = " + str(c)) # 也可以写成如下形式: c = a if a < b else b del c # 清除变量 sum = 1 for i in range(2, 100): for j in range(2, i): if i % j == 0: break # 当配对的for正常执行完毕时执行else内的代码;break跳出循环时则不执行 else: sum += i print("0 ~ 100内的素数之和为:" + str(sum)) # 函数接受字典和列表作为参数 list_arg = [1, 2, 3, 4, 5] dict_arg = {"name": "小明", "age": "12"} def print_args(*args, **kwargs): # 使用*和**注明形参类型 print(args) print(kwargs) print_args(*list_arg, **dict_arg) # 列表推导 list_a = [1, 4, 5, 3, 8, 10, 2] # 这是一个列表 # 做一些操作,比如想要拿出所有的偶数元素组成一个新的列表 # 可以用如下写法 list_b = [i for i in list_a if i % 2 == 0] # 对list_a中的每一个元素,若该元素模2为0则设置该元素 print("list_b is " + str(list_b)) # 同理用于元组、集合、字典 # lambda表达式 # 是不是很像Wolfram # 冒号前面是参数,后面是语句 f = lambda x: x+1 print("f(12): " + str(f(12))) # 如此可以方便的排序列表,比如不管正负按绝对值排序 list_c = [15, -8, 12, 23, -7, -14, 4, 0, -3, -9, 2] list_c.sort(key = lambda x: abs(x)) print("list_c is " + str(list_c)) # 链式调用 # 当返回的数据结构一致时可以这样用 class Number(): def __init__(self, val): self.number = val def add(self): self.number += 1 return self def minus(self): self.number -= 2 return self num_tmp = Number(10) print(num_tmp.add().minus().add().add().add().add().minus().add().number)
StarcoderdataPython
3363240
from basetestcase import FormTestCase from _test_app.forms import MyForm, MyBaseFormSet, MyFormSet from _test_app.models import MyModel class FormTestCaseTest(FormTestCase): def form(self, *args, **kwargs): form = MyForm(*args, **kwargs) return form def test_field_rendered(self): self.form_field_test( 'my_field', help_text='This is help text.', label='My Field:', widget_attrs={'maxlength': '255'} ) def test_MyFormSet(self): formset = MyFormSet() self.formset_test( baseformset=MyBaseFormSet, field_data={'my_field': 'My Field'}, form=MyForm, formset=MyFormSet, )
StarcoderdataPython
4816670
<filename>run.py<gh_stars>1-10 from kernel_matrix_benchmarks.main import main from multiprocessing import freeze_support if __name__ == "__main__": # Freeze_support is a Windows-only function that ensures compatibility # with a ".py -> .exe" packaging method. On Linux, this has zero consequences. freeze_support() # The actual code: main()
StarcoderdataPython
110693
<reponame>etianen/py.sh<gh_stars>1-10 class StyleMapping: def __init__(self, opts): self._opts = opts def __getitem__(self, key): return getattr(self._opts, "style_{}".format(key), "").encode().decode("unicode_escape") def apply_styles(opts, command): return command.format_map(StyleMapping(opts))
StarcoderdataPython
143920
<reponame>archerckk/PyTest<gh_stars>0 ''' 1.能使用随机数 2.用户猜对了提示信息 3.用户猜错能显示用户猜大了还是猜小了 4.机会一共只有3次 5.用户用完三次机会或者猜对了游戏结束 ''' import random target=random.randint(1,10) times=3 while times!=0: tmp=input('请输入你要猜的数字:') while not tmp.isdigit(): tmp=input('你的输入有误,请重新输入:') guess=int(tmp) times-=1 if target==guess: print('好牛叉,这就猜对了') break else: if guess>target: print('你猜的数字大了') elif guess<target: print('你猜的数字小了') if times>0: print('你还有%d次机会'%times) else: print('你的3次机会已经用完') print('游戏结束')
StarcoderdataPython
1744766
#!/usr/bin/env python # -*- coding:utf-8 -*- from queue import Queue def coroutine(func): def start(*args, **kwargs): rc = func(*args, **kwargs) rc.next() return rc return start @coroutine def threaded(target): messages = Queue() # message queue def run_target(): while True: item = messages.get() # A threads loop forever.pulling items out of # the message queue and sending to the # target if item is GeneratorExit: # handle close so that threads shuts down correctly target.close() return else: target.send(item) Thread(target=run_target).start() try: while True: item = yield # receive items and pass them into the # threads (via the queue) messages.put(item) except GeneratorExit: messages.put(GeneratorExit) def main(): pass if __name__ == '__main__': main()
StarcoderdataPython
1744234
<filename>flask_cognito.py from collections import OrderedDict from functools import wraps from flask import _request_ctx_stack, current_app, jsonify, request from werkzeug.local import LocalProxy from cognitojwt import CognitoJWTException, decode as cognito_jwt_decode from jose.exceptions import JWTError import logging log = logging.getLogger(__name__) CONFIG_DEFAULTS = { 'COGNITO_CHECK_TOKEN_EXPIRATION': True, 'COGNITO_JWT_HEADER_NAME': 'Authorization', 'COGNITO_JWT_HEADER_PREFIX': 'Bearer', } # user from pool current_cognito_jwt = LocalProxy(lambda: getattr(_request_ctx_stack.top, 'cogauth_cognito_jwt', None)) # unused - could be a way to add mapping of cognito user to application user current_user = LocalProxy(lambda: getattr(_request_ctx_stack.top, 'cogauth_current_user', None)) # access initialized cognito extension _cog = LocalProxy(lambda: current_app.extensions['cognito_auth']) class CognitoAuthError(Exception): def __init__(self, error, description, status_code=401, headers=None): self.error = error self.description = description self.status_code = status_code self.headers = headers def __repr__(self): return f'CognitoAuthError: {self.error}' def __str__(self): return f'{self.error} - {self.description}' class CognitoAuth(object): identity_callback = None def __init__(self, app=None, identity_handler=None): self.app = app if app is not None: self.init_app(app, identity_handler=identity_handler) def init_app(self, app, identity_handler=None): for k, v in CONFIG_DEFAULTS.items(): app.config.setdefault(k, v) # required configuration self.region = self._get_required_config(app, 'COGNITO_REGION') self.userpool_id = self._get_required_config(app, 'COGNITO_USERPOOL_ID') self.jwt_header_name = self._get_required_config(app, 'COGNITO_JWT_HEADER_NAME') self.jwt_header_prefix = self._get_required_config(app, 'COGNITO_JWT_HEADER_PREFIX') self.identity_callback = identity_handler # optional configuration self.check_expiration = app.config.get('COGNITO_CHECK_TOKEN_EXPIRATION', True) self.app_client_id = app.config.get('COGNITO_APP_CLIENT_ID') # save for localproxy app.extensions['cognito_auth'] = self # handle CognitoJWTExceptions # TODO: make customizable app.errorhandler(CognitoAuthError)(self._cognito_auth_error_handler) def _get_required_config(self, app, config_name): val = app.config.get(config_name) if not val: raise Exception(f"{config_name} not found in app configuration but it is required.") return val def identity_handler(self, callback): if self.identity_callback is not None: raise Exception( f"Trying to override existing identity_handler on CognitoAuth. You should only set this once.") self.identity_callback = callback return callback def get_token(self): """Get token from request.""" auth_header_name = _cog.jwt_header_name auth_header_prefix = _cog.jwt_header_prefix # get token value from header auth_header_value = request.headers.get(auth_header_name) if not auth_header_value: # no auth header found return None parts = auth_header_value.split() if not auth_header_prefix: if len(parts) > 1: raise CognitoAuthError('Invalid Cognito JWT Header', 'Token contains spaces') return auth_header_value if parts[0].lower() != auth_header_prefix.lower(): raise CognitoAuthError('Invalid Cognito JWT header', f'Unsupported authorization type. Header prefix "{parts[0].lower()}" does not match "{auth_header_prefix.lower()}"') elif len(parts) == 1: raise CognitoAuthError('Invalid Cognito JWT header', 'Token missing') elif len(parts) > 2: raise CognitoAuthError('Invalid Cognito JWT header', 'Token contains spaces') return parts[1] def get_user(self, jwt_payload): """Get application user identity from Cognito JWT payload.""" if not self.identity_callback: return None return self.identity_callback(jwt_payload) def _cognito_auth_error_handler(self, error): log.info('Authentication Failure', exc_info=error) return jsonify(OrderedDict([ ('error', error.error), ('description', error.description), ])), error.status_code, error.headers def decode_token(self, token): """Decode token.""" try: return cognito_jwt_decode( token=token, region=self.region, app_client_id=self.app_client_id, userpool_id=self.userpool_id, testmode=not self.check_expiration, ) except (ValueError, JWTError): raise CognitoJWTException('Malformed Authentication Token') def cognito_auth_required(fn): """View decorator that requires a valid Cognito JWT token to be present in the request.""" @wraps(fn) def decorator(*args, **kwargs): _cognito_auth_required() return fn(*args, **kwargs) return decorator def cognito_check_groups(groups: list): def decorator(function): def wrapper(*args, **kwargs): _cognito_check_groups(groups) return function(*args, **kwargs) return wrapper return decorator ## This adds an alias to the above function to resolve issue #16 cognito_group_permissions = cognito_check_groups def _cognito_check_groups(groups: list): """ Does the actual work of verifying the user group to restrict access to some resources. :param groups a list with the name of the groups of Cognito Identity Pool :raise an exception if there is no group """ if 'cognito:groups' not in current_cognito_jwt or current_cognito_jwt['cognito:groups'] is None: raise CognitoAuthError('Not Authorized', 'User doesn\'t have access to this resource', status_code=403) if all([i not in current_cognito_jwt['cognito:groups'] for i in groups]): raise CognitoAuthError('Not Authorized', 'User doesn\'t have access to this resource', status_code=403) def _cognito_auth_required(): """Does the actual work of verifying the Cognito JWT data in the current request. This is done automatically for you by `cognito_jwt_required()` but you could call it manually. Doing so would be useful in the context of optional JWT access in your APIs. """ token = _cog.get_token() if token is None: auth_header_name = _cog.jwt_header_name auth_header_prefix = _cog.jwt_header_prefix raise CognitoAuthError('Authorization Required', f'Request does not contain a well-formed access token in the "{auth_header_name}" header beginning with "{auth_header_prefix}"') try: # check if token is signed by userpool payload = _cog.decode_token(token=token) except CognitoJWTException as e: log.info('Authentication Failure', exc_info=e) raise CognitoAuthError('Invalid Cognito Authentication Token', str(e)) from e _request_ctx_stack.top.cogauth_cognito_jwt = payload _request_ctx_stack.top.cogauth_current_user = _cog.get_user(payload)
StarcoderdataPython
3367463
from __future__ import print_function from __future__ import division from future import standard_library standard_library.install_aliases() #from builtins import str from builtins import range from quantities.quantity import Quantity from quantities import mV, nA import sciunit from sciunit import Test,Score try: from sciunit import ObservationError except: from sciunit.errors import ObservationError import hippounit.capabilities as cap from sciunit.utils import assert_dimensionless# Converters. from sciunit.scores import BooleanScore,ZScore # Scores. try: import numpy except: print("NumPy not loaded.") #import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt #from neuron import h import collections import efel import os import multiprocessing import multiprocessing.pool import functools import math from scipy import stats import json from hippounit import plottools import collections try: import pickle as pickle except: import pickle import gzip try: import copy_reg except: import copyreg from types import MethodType from quantities import mV, nA, ms, V, s from hippounit import scores def _pickle_method(method): func_name = method.__func__.__name__ obj = method.__self__ cls = method.__self__.__class__ return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__get__(obj, cls) try: copy_reg.pickle(MethodType, _pickle_method, _unpickle_method) except: copyreg.pickle(MethodType, _pickle_method, _unpickle_method) class PSPAttenuationTest(Test): """ Tests how much synaptic potential attenuates from the dendrite (different distances) to the soma. Parameters ---------- config : dict dictionary loaded from a JSON file, containing the parameters of the simulation observation : dict dictionary loaded from a JSON file, containing the experimental mean and std values for the features to be tested force_run : boolean If True and the pickle files containing the model's response to the simulation exists, the simulation won't be run again, traces are loaded from the pickle file base_directory : str Results will be saved here show_plot : boolean If False, plots are not displayed but still saved save_all : boolean If False, only the JSON files containing the absolute feature values, the feature error scores and the final scores, and a log file are saved, but the figures and pickle files are not. num_of_dend_locations : int Number of randomly selected dendritic locations to be tested random_seed: int random seed for random dendritic location selection trunk_origin : list first element : name of the section from which the trunk originates, second element : position on section (E.g. ['soma[5]', 1]). If not set by the user, the end of the default soma section is used. """ def __init__(self, config = {}, observation = {}, name="PSP attenuation test" , force_run=False, base_directory= None, show_plot=True, num_of_dend_locations = 15, random_seed = 1, save_all = True, trunk_origin = None): observation = self.format_data(observation) Test.__init__(self,observation,name) self.required_capabilities += (cap.ProvidesRandomDendriticLocations, cap.ReceivesEPSCstim) self.force_run = force_run self.show_plot = show_plot self.save_all = save_all self.base_directory = base_directory self.path_temp_data = None #added later, because model name is needed self.path_figs = None self.path_results = None self.trunk_origin = trunk_origin self.logFile = None self.test_log_filename = 'test_log.txt' self.npool = multiprocessing.cpu_count() - 1 self.config = config self.num_of_dend_locations = num_of_dend_locations self.random_seed = random_seed description = "Tests how much synaptic potential attenuates from the dendrite (different distances) to the soma." score_type = scores.ZScore_PSPAttenuation def format_data(self, observation): for key, val in list(observation.items()): try: observation[key] = float(val) except Exception as e: quantity_parts = val.split(" ") number = float(quantity_parts[0]) units = " ".join(quantity_parts[1:]) observation[key] = Quantity(number, units) return observation def run_stimulus(self, model, locations_weights, tau1, tau2): dend, xloc, weight = locations_weights traces = {} if self.base_directory: self.path_temp_data = self.base_directory + 'temp_data/' + 'PSP_attenuation/' + model.name + '/' else: self.path_temp_data= model.base_directory + 'temp_data/' + 'PSP_attenuation/' try: if not os.path.exists(self.path_temp_data) and self.save_all: os.makedirs(self.path_temp_data) except OSError as e: if e.errno != 17: raise pass file_name = self.path_temp_data + 'stimulus_at_' + dend+ '(' + str(xloc) + ')_weight_' + str(weight) + '.p' if self.force_run or (os.path.isfile(file_name) is False): print("input at: " + dend + "(" + str(xloc) + ") with weight: " + str(weight)) t, v, v_dend = model.run_EPSC_stim_get_vm([dend, xloc], weight, tau1, tau2) if self.save_all: pickle.dump([t, v, v_dend], gzip.GzipFile(file_name, "wb")) else: t, v, v_dend = pickle.load(gzip.GzipFile(file_name, "rb")) traces[dend, xloc] = [t, v, v_dend] # dictionary, the key is the dendritic location return traces def calculate_weights(self, traces_no_input, EPSC_amp): locations_weights = [] for key, value in traces_no_input.items(): s = int(len(value[2])*0.9) Vm = numpy.mean(value[2][s:]) #calculate mean at the last 10% of the trace, measured at the dendrite weight = - EPSC_amp/Vm locations_weights.append([key[0], key[1], weight]) return locations_weights def analyse_traces(self, model, traces_dict_no_input, traces_dict, locations_distances): if self.base_directory: self.path_figs = self.base_directory + 'figs/' + 'PSP_attenuation/' + model.name + '/' else: self.path_figs = model.base_directory + 'figs/' + 'PSP_attenuation/' try: if not os.path.exists(self.path_figs) and self.save_all: os.makedirs(self.path_figs) except OSError as e: if e.errno != 17: raise pass attenuation_values = {} EPSP_amp_values = {} ''' num_of_subplots = len(traces_dict.keys()) nrows = int(numpy.ceil(numpy.sqrt(num_of_subplots))) ncols = int(numpy.ceil(numpy.sqrt(num_of_subplots))) i=0 ''' dend_depols = {} soma_depols = {} for key, value in traces_dict.items(): if not numpy.array_equal(traces_dict[key][0], traces_dict_no_input[key][0]): #if the time vectors are not equal, the traces are resampled with fixed time step dt = 0.025 time_vector = numpy.arange(traces_dict[key][0][0], traces_dict[key][0][-1], dt) #from the first to the last element of the original time vector interp_trace_soma = numpy.interp(time_vector, traces_dict[key][0], traces_dict[key][1]) interp_trace_soma_no_input = numpy.interp(time_vector, traces_dict_no_input[key][0], traces_dict_no_input[key][1]) interp_trace_dend = numpy.interp(time_vector, traces_dict[key][0], traces_dict[key][2]) interp_trace_dend_no_input = numpy.interp(time_vector, traces_dict_no_input[key][0], traces_dict_no_input[key][2]) dend_depol = interp_trace_dend - interp_trace_dend_no_input soma_depol = interp_trace_soma - interp_trace_soma_no_input dend_depols[key] = dend_depol soma_depols[key] = soma_depol print("Voltage traces are resampled using linear interpolation") else: dend_depol = traces_dict[key][2] - traces_dict_no_input[key][2] soma_depol = traces_dict[key][1] - traces_dict_no_input[key][1] dend_depols[key] = dend_depol soma_depols[key] = soma_depol time_vector = traces_dict[key][0] max_dend_depol = max(dend_depol) max_soma_depol = max(soma_depol) attenuation = max_soma_depol / max_dend_depol attenuation_values[key] = attenuation EPSP_amp_values[key] = {'soma' : max_soma_depol, 'dendrite' : max_dend_depol} ''' plt.figure() #plt.subplot(nrows, ncols , i+1) plt.plot(traces_dict[key][0], soma_depol, label='SOMA') plt.plot(traces_dict[key][0], dend_depol, label=key[0]+'('+str(key[1])+')') plt.legend(loc = 0) #i+=1 ''' #sorted_locations_distances = collections.OrderedDict(sorted(locations_distances.items(), key=lambda x: x[1])) # keys are the dendritic locations, values are they distances from soma """ Plotting the traces""" distances = self.config['target_distances'] tolerance = self.config['tolerance'] for dist in distances: d = {key:value for (key,value) in list(locations_distances.items()) if value >= dist - tolerance and value <= dist + tolerance } sorted_d = collections.OrderedDict(sorted(list(d.items()), key=lambda x: x[1])) # keys are the dendritic locations, values are they distances from soma columns = 2 width_ratios=[1]*columns frames = len(list(d.keys())) if int(numpy.ceil(frames/float(columns))) < 5: rows = 5 else: rows = int(numpy.ceil(frames/float(columns))) height_ratios=[1]*rows #axs=[] fig = plt.figure(figsize = (210/25.4, 297/25.4)) gs = matplotlib.gridspec.GridSpec(rows, columns, height_ratios=height_ratios, width_ratios=width_ratios) gs.update(top=0.92, bottom=0.04, left=0.07, right=0.97, hspace=0.75, wspace=0.3) #fig, axes = plt.subplots(nrows=int(round(len(traces_results)/2.0)), ncols=2) #fig.tight_layout() fig.suptitle('Input at ' + str(dist) + '$\pm$' + str(tolerance) + ' um from soma') i=0 ax = None # needed to be inicialized, because for some distances we may won't have a figure : 'ax' referenced before assignment error for key, value in sorted_d.items(): label_added = False #dend_depol = traces_dict[key][2] - traces_dict_no_input[key][2] #soma_depol = traces_dict[key][1] - traces_dict_no_input[key][1] #plt.subplot(gs[i]) ax = fig.add_subplot(gs[i]) if not label_added: plt.plot(time_vector, soma_depols[key] , label='SOMA') plt.plot(time_vector, dend_depols[key], label='dendrite') label_added = True else: plt.plot(time_vector, soma_depols[key]) plt.plot(time_vector, dend_depols[key]) plt.title(key[0]+'('+str("%.2f" % key[1])+') ' + str("%.2f" % locations_distances[key]) + ' um') plt.xlabel("ms") plt.ylabel("mV") i+=1 # next subplot #lgd=plt.legend(bbox_to_anchor=(1.0, 1.0), loc = 'upper left') if ax: handles, labels = ax.get_legend_handles_labels() lgd = fig.legend(handles, labels, loc = 'upper right') if self.save_all: plt.savefig(self.path_figs + 'traces_input_around_' + str(dist)+ '_um' + '.pdf', dpi=600, bbox_inches='tight') #print attenuation_values return attenuation_values, EPSP_amp_values def calcs_and_plots(self, model, attenuation_values, locations_distances, EPSP_amp_values): if self.base_directory: self.path_figs = self.base_directory + 'figs/' + 'PSP_attenuation/' + model.name + '/' else: self.path_figs = model.base_directory + 'figs/' + 'PSP_attenuation/' try: if not os.path.exists(self.path_figs) and self.save_all: os.makedirs(self.path_figs) except OSError as e: if e.errno != 17: raise pass print("The figures are saved in the directory: ", self.path_figs) distances = self.config['target_distances'] tolerance = self.config['tolerance'] observation = self.observation obs_means = [] obs_stds = [] PSP_attenuation_features = {} PSP_attenuation_mean_features = {} EPSP_amps = {} """ Plot EPSP amplitudes on soma and dendrite""" plt.figure() i=0 # not to have legend for all the dots for key, value in EPSP_amp_values.items(): EPSP_amps[key] = {'EPSP_amp_soma' : value['soma'], 'EPSP_amp_dendrite' : value['dendrite'], 'distance' : locations_distances[key]} if i==0: plt.plot(locations_distances[key], value['dendrite'], label = 'dendrite', color= 'black', marker='^', linestyle='none' ) plt.plot(locations_distances[key], value['soma'], label = 'soma', color= 'black', marker='o', linestyle='none' ) i += 1 else: plt.plot(locations_distances[key], value['soma'], color= 'black', marker='o', linestyle='none' ) plt.plot(locations_distances[key], value['dendrite'], color= 'black', marker='^', linestyle='none' ) plt.xlabel('Synapse distance from soma (um)') plt.ylabel('Peak amplitude (mV)') plt.title('EPSPs') lgd = plt.legend(bbox_to_anchor=(1.0, 1.0), loc = 'upper left') if self.save_all: plt.savefig(self.path_figs + 'EPSP_amplitudes'+ '.pdf', dpi=800, bbox_extra_artists=(lgd,), bbox_inches='tight') """Plot attenuation values""" for dist in distances: obs_means.append(observation['mean_attenuation_soma/dend_'+str(dist)+'_um']) obs_stds.append(observation['std_attenuation_soma/dend_'+str(dist)+'_um']) plt.figure() for key, value in attenuation_values.items(): PSP_attenuation_features[key] = {'attenuation_soma/dendrite' : value, 'distance' : locations_distances[key]} plt.plot(locations_distances[key], value, label = key[0]+'('+str(key[1])+') at '+ str(locations_distances[key]) + ' um', marker='o', linestyle='none' ) plt.errorbar(distances, obs_means, yerr = obs_stds, label = 'experiment', marker='o', linestyle='none', color='r') plt.xlabel('Distance from soma (um)') plt.ylabel('Attenuation soma/dendrite') plt.title('PSP attenuation') lgd = plt.legend(bbox_to_anchor=(1.0, 1.0), loc = 'upper left') if self.save_all: plt.savefig(self.path_figs + 'PSP_attenuation'+ '.pdf', dpi=800, bbox_extra_artists=(lgd,), bbox_inches='tight') """ Calculate and plot the mean of attenuation values""" label_added = False plt.figure() for dist in distances: att = numpy.array([]) for key, value in locations_distances.items(): if value >= dist - tolerance and value < dist + tolerance: att = numpy.append(att, attenuation_values[key]) mean_att = numpy.mean(att) std_att = numpy.std(att) PSP_attenuation_mean_features['mean_attenuation_soma/dend_'+str(dist)+'_um']={'mean': float(mean_att), 'std' : float(std_att)} if not label_added: plt.errorbar(dist, mean_att, yerr = std_att, marker='o', linestyle='none', color = 'b', label=model.name) label_added = True else: plt.errorbar(dist, mean_att, yerr = std_att, marker='o', linestyle='none', color = 'b') plt.errorbar(distances, obs_means, yerr = obs_stds, label = 'experiment', marker='o', linestyle='none', color='r') plt.xlabel('Distance from soma (um)') plt.ylabel('Mean attenuation soma/dendrite') plt.title(' Mean PSP attenuation') lgd = plt.legend(bbox_to_anchor=(1.0, 1.0), loc = 'upper left') if self.save_all: plt.savefig(self.path_figs + 'mean_PSP_attenuation'+ '.pdf', dpi=800, bbox_extra_artists=(lgd,), bbox_inches='tight') #print PSP_attenuation_features return PSP_attenuation_features, PSP_attenuation_mean_features, EPSP_amps """ observation contains ratio numbers, have no unit""" ''' def validate_observation(self, observation): for key, value in observation.iteritems(): try: assert type(observation[key]) is Quantity except Exception as e: raise ObservationError(("Observation must be of the form " "{'mean':float*mV,'std':float*mV}")) ''' def generate_prediction(self, model, verbose=False): """Implementation of sciunit.Test.generate_prediction.""" efel.reset() if self.base_directory: self.path_results = self.base_directory + 'results/' + 'PSP_attenuation/' + model.name + '/' else: self.path_results = model.base_directory + 'results/' + 'PSP_attenuation/' try: if not os.path.exists(self.path_results): os.makedirs(self.path_results) except OSError as e: if e.errno != 17: raise pass distances = self.config['target_distances'] tolerance = self.config['tolerance'] dist_range = [min(distances) - tolerance, max(distances) + tolerance] tau1 = self.config['tau_rise'] tau2 = self.config['tau_decay'] EPSC_amp = self.config['EPSC_amplitude'] locations, locations_distances = model.get_random_locations_multiproc(self.num_of_dend_locations, self.random_seed, dist_range, self.trunk_origin) # number of random locations , seed #print dend_locations, actual_distances print('Dendritic locations to be tested (with their actual distances):', locations_distances) weight = 0.0 locations_weights = [] for locs in locations: locs.append(weight) locations_weights.append(locs) #print locations_weights """ run model without an input""" pool = multiprocessing.Pool(self.npool, maxtasksperchild=1) run_stimulus_ = functools.partial(self.run_stimulus, model, tau1 = tau1, tau2 = tau2) traces_no_input = pool.map(run_stimulus_, locations_weights, chunksize=1) pool.terminate() pool.join() del pool traces_dict_no_input = dict(list(i.items())[0] for i in traces_no_input) # merge list of dicts into single dict locations_weights = self.calculate_weights(traces_dict_no_input, EPSC_amp) """run model with inputs""" pool = multiprocessing.Pool(self.npool, maxtasksperchild=1) run_stimulus_ = functools.partial(self.run_stimulus, model, tau1 = tau1, tau2 = tau2) traces = pool.map(run_stimulus_, locations_weights, chunksize=1) pool.terminate() pool.join() del pool traces_dict = dict(list(i.items())[0] for i in traces) # merge list of dicts into single dict filepath = self.path_results + self.test_log_filename self.logFile = open(filepath, 'w') # if it is opened before multiprocessing, the multiporeccing won't work under python3 self.logFile.write('Dendritic locations to be tested (with their actual distances):\n'+ str(locations_distances)+'\n') self.logFile.write("---------------------------------------------------------------------------------------------------\n") #plt.close('all') #needed to avoid overlapping of saved images when the test is run on multiple models in a for loop plt.close('all') #needed to avoid overlapping of saved images when the test is run on multiple models attenuation_values, EPSP_amp_values = self.analyse_traces(model, traces_dict_no_input, traces_dict, locations_distances) PSP_attenuation_model_features, PSP_attenuation_mean_model_features, EPSP_amps = self.calcs_and_plots(model, attenuation_values, locations_distances, EPSP_amp_values) prediction = PSP_attenuation_mean_model_features ''' for key, value in traces_dict.items(): plt.figure() plt.plot(value[0], value[1], label='SOMA') plt.plot(value[0], value[2], label=key[0]+'('+str(key[1])+')') plt.legend(loc = 0) ''' PSP_attenuation_model_features_json = {} for key, value in PSP_attenuation_model_features.items(): PSP_attenuation_model_features_json[str(key)]=value file_name_features = self.path_results + 'PSP_attenuation_model_features.json' json.dump(PSP_attenuation_model_features_json, open(file_name_features, "w"), indent=4) EPSP_amps_json = {} for key, value in EPSP_amps.items(): EPSP_amps_json[str(key)]=value file_name_EPSP_amps = self.path_results + 'EPSP_amps.json' json.dump(EPSP_amps_json, open(file_name_EPSP_amps, "w"), indent=4) if self.save_all: file_name_features_p = self.path_results + 'PSP_attenuation_model_features.p' pickle.dump(PSP_attenuation_model_features, gzip.GzipFile(file_name_features_p, "wb")) file_name_EPSP_amps_p = self.path_results + 'EPSP_amps.p' pickle.dump(EPSP_amps, gzip.GzipFile(file_name_EPSP_amps_p, "wb")) file_name_mean_features = self.path_results + 'PSP_attenuation_mean_model_features.json' json.dump(prediction, open(file_name_mean_features, "w"), indent=4) efel.reset() return prediction def compute_score(self, observation, prediction, verbose=False): """Implementation of sciunit.Test.score_prediction.""" distances = self.config['target_distances'] score_avg, errors= scores.ZScore_PSPAttenuation.compute(observation,prediction, distances) file_name=self.path_results+'PSP_attenuation_errors.json' json.dump(errors, open(file_name, "w"), indent=4) keys = [] values = [] plt.figure() for key, value in errors.items(): keys.append(key) values.append(value) y=list(range(len(keys))) y.reverse() plt.plot(values, y, 'o') plt.yticks(y, keys) plt.title('PSP attenuation errors') if self.save_all: plt.savefig(self.path_figs + 'PSP_attenuation_errors'+ '.pdf', bbox_inches='tight') if self.show_plot: plt.show() score_json= {'score' : score_avg} file_name_score = self.path_results + 'PSP_att_final_score.json' json.dump(score_json, open(file_name_score, "w"), indent=4) score=scores.ZScore_PSPAttenuation(score_avg) self.logFile.write(str(score)+'\n') self.logFile.write("---------------------------------------------------------------------------------------------------\n") self.logFile.close() self.logFile = self.path_results + self.test_log_filename return score def bind_score(self, score, model, observation, prediction): score.related_data["figures"] = [self.path_figs + 'PSP_attenuation.pdf', self.path_figs + 'mean_PSP_attenuation.pdf', self.path_figs + 'PSP_attenuation_errors.pdf', self.path_results + 'PSP_attenuation_model_features.json', self.path_results + 'PSP_attenuation_mean_model_features.json', self.path_results + 'PSP_attenuation_errors.json', self.path_results + 'PSP_att_final_score.json', self.path_results + self.test_log_filename] score.related_data["results"] = [self.path_results + 'PSP_attenuation_model_features.json', self.path_results + 'PSP_attenuation_mean_model_features.json', self.path_results + 'PSP_attenuation_errors.json', self.path_results + 'PSP_attenuation_model_features.p', self.path_results + 'PSP_att_final_score.json'] return score
StarcoderdataPython
3284042
<filename>tests/multi_process/zeromq_queue.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the the zeromq queue.""" import unittest from plaso.lib import errors from plaso.multi_process import zeromq_queue from tests import test_lib as shared_test_lib class ZeroMQPullBindQueue(zeromq_queue.ZeroMQPullQueue): """A Plaso queue backed by a ZeroMQ PULL socket that binds to a port. This queue may only be used to pop items, not to push. """ SOCKET_CONNECTION_TYPE = zeromq_queue.ZeroMQQueue.SOCKET_CONNECTION_BIND class ZeroMQPushConnectQueue(zeromq_queue.ZeroMQPushQueue): """A Plaso queue backed by a ZeroMQ PUSH socket that connects to a port. This queue may only be used to push items, not to pop. """ SOCKET_CONNECTION_TYPE = zeromq_queue.ZeroMQQueue.SOCKET_CONNECTION_CONNECT class ZeroMQRequestBindQueue(zeromq_queue.ZeroMQRequestQueue): """A Plaso queue backed by a ZeroMQ REQ socket that binds to a port. This queue may only be used to pop items, not to push. """ SOCKET_CONNECTION_TYPE = zeromq_queue.ZeroMQQueue.SOCKET_CONNECTION_BIND class ZeroMQBufferedReplyConnectQueue(zeromq_queue.ZeroMQBufferedReplyQueue): """A Plaso queue backed by a ZeroMQ REP socket that connects to a port. This queue may only be used to pop items, not to push. """ SOCKET_CONNECTION_TYPE = zeromq_queue.ZeroMQQueue.SOCKET_CONNECTION_CONNECT class ZeroMQQueuesTest(shared_test_lib.BaseTestCase): """Tests for ZeroMQ queues.""" # pylint: disable=protected-access _QUEUE_CLASSES = frozenset([ zeromq_queue.ZeroMQPushBindQueue, ZeroMQPullBindQueue, ZeroMQRequestBindQueue]) def _testItemTransferred(self, push_queue, pop_queue): """Tests than item can be transferred between two queues.""" item = 'This is an item going from {0:s} to {1:s}.'.format( push_queue.name, pop_queue.name) push_queue.PushItem(item) popped_item = pop_queue.PopItem() self.assertEqual(item, popped_item) def testBufferedReplyQueue(self): """Tests for the buffered reply queue.""" test_queue = zeromq_queue.ZeroMQBufferedReplyBindQueue( name='bufferedreply_bind', delay_open=False, linger_seconds=1) test_queue.PushItem('This is a test item.') test_queue.Close(abort=True) with self.assertRaises(errors.QueueAlreadyClosed): test_queue.PushItem('This shouldn\'t work') def testPushPullQueues(self): """Tests than an item can be transferred between push and pull queues.""" push_queue = zeromq_queue.ZeroMQPushBindQueue( name='pushpull_pushbind', delay_open=False, linger_seconds=1) pull_queue = zeromq_queue.ZeroMQPullConnectQueue( name='pushpull_pullconnect', delay_open=False, port=push_queue.port, linger_seconds=1) self._testItemTransferred(push_queue, pull_queue) push_queue.Close() pull_queue.Close() pull_queue = ZeroMQPullBindQueue( name='pushpull_pullbind', delay_open=False, linger_seconds=1) push_queue = ZeroMQPushConnectQueue( name='pushpull_pushconnect', delay_open=False, port=pull_queue.port, linger_seconds=1) self._testItemTransferred(push_queue, pull_queue) push_queue.Close() pull_queue.Close() def testQueueStart(self): """Tests that delayed creation of ZeroMQ sockets occurs correctly.""" for queue_class in self._QUEUE_CLASSES: queue_name = 'queuestart_{0:s}'.format(queue_class.__name__) test_queue = queue_class( name=queue_name, delay_open=True, linger_seconds=1) message = '{0:s} socket already exists.'.format(queue_name) self.assertIsNone(test_queue._zmq_socket, message) test_queue.Open() self.assertIsNotNone(test_queue._zmq_socket) test_queue.Close() def testRequestAndBufferedReplyQueues(self): """Tests REQ and buffered REP queue pairs.""" reply_queue = zeromq_queue.ZeroMQBufferedReplyBindQueue( name='requestbufferedreply_replybind', delay_open=False, linger_seconds=1) request_queue = zeromq_queue.ZeroMQRequestConnectQueue( name='requestbufferedreply_requestconnect', delay_open=False, port=reply_queue.port, linger_seconds=1) self._testItemTransferred(reply_queue, request_queue) reply_queue.Close() request_queue.Close() request_queue = ZeroMQRequestBindQueue( name='requestbufferedreply_requestbind', delay_open=False, linger_seconds=1) reply_queue = ZeroMQBufferedReplyConnectQueue( name='requestbufferedreply_replyconnect', delay_open=False, port=request_queue.port, linger_seconds=0) self._testItemTransferred(reply_queue, request_queue) reply_queue.Close() request_queue.Close() def testEmptyBufferedQueues(self): """Tests the Empty method for buffered queues.""" queue = zeromq_queue.ZeroMQBufferedReplyBindQueue( name='requestbufferedreply_replybind', delay_open=False, linger_seconds=1, buffer_max_size=3, timeout_seconds=2, buffer_timeout_seconds=1) try: while True: queue.PushItem('item', block=False) except errors.QueueFull: # Queue is now full pass with self.assertRaises(errors.QueueFull): queue.PushItem('item', block=False) queue.Empty() # We should now be able to push another item without an exception. queue.PushItem('item') queue.Empty() queue.Close() def testSocketCreation(self): """Tests that ZeroMQ sockets are created when a new queue is created.""" for queue_class in self._QUEUE_CLASSES: queue_name = 'socket_creation_{0:s}'.format(queue_class.__name__) test_queue = queue_class( name=queue_name, delay_open=False, linger_seconds=1) self.assertIsNotNone(test_queue._zmq_socket) test_queue.Close() if __name__ == '__main__': unittest.main()
StarcoderdataPython
4838102
<reponame>bencarlisle15/AlexaControlledSamsungTV<filename>tvconfig.py<gh_stars>1-10 device_name = "Pi" #What shows up under devices in alexasmarttv.tk. not that important unless you have multiple devices (not tvs) on your account volume_step_size = 5 #how much your tv volume should go up by when you say 'Alexa, turn up the volume on my tv' tvs = [ { 'host': "xxx.xxx.xxx.xxx", #ip address of tv 'tv_model' : "xxxxxxxxx", #9 digit tv model located on the back of your tv 'tv_mac_address': "xx:xx:xx:xx:xx", #mac address of your tv 'tv_name' : 'TV', #leave as TV to refrence this by just 'TV'. ex: 'Alexa, turn on the TV'. Change to eg:'Kitchen TV' if you want to say 'Alexa turn on the kitchen TV', You cannot have multiple tvs have the same name 'prefer_HD': True, #if you say 'change the channel to ESPN', always attempt to use the HD channel number' } ]
StarcoderdataPython