id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3352908
import csv import time import numpy as np import torch from torch import nn from common.eval_test import evaluate def arch_search_valid(model, train_data, test_data, corrupt_func, optimizer, lr_scheduler, clip_value=1., batchsize=16, lam=2, valid_rate=0.5, gpu_id=0, period=None, out_model='out_model.model', log_file='log.csv'): if period is None: period = {'max_ite': 200000, 'save': 4000, 'verbose_ite': 100} start = time.time() if gpu_id >= 0: model = model.cuda(gpu_id) loss_func = nn.MSELoss() # Data loader valid_size = int(valid_rate * len(train_data)) print('#(train / valid / test) = (%d, %d, %d)' % (len(train_data) - valid_size, valid_size, len(test_data))) inds = list(range(len(train_data))) np.random.shuffle(inds) train_loader = torch.utils.data.DataLoader(train_data, batchsize, sampler=torch.utils.data.SubsetRandomSampler(inds[:-valid_size])) valid_loader = torch.utils.data.DataLoader(train_data, batchsize, sampler=torch.utils.data.SubsetRandomSampler(inds[-valid_size:])) # log header with open(log_file, 'w') as fp: writer = csv.writer(fp, lineterminator='\n') header_list = ['epoch', 'iteration', 'train_time', 'lr', 'train_loss', 'valid_loss', 'test_MSE', 'test_PSNR', 'test_SSIM', 'model_params'] header_list += model.asng.log_header(theta_log=True) writer.writerow(header_list) train_time = train_loss = valid_loss = 0. epoch = ite = n = 0 losses = np.zeros(lam) while ite < period['max_ite']: epoch += 1 for train_batch, valid_batch in zip(train_loader, valid_loader): ite_start = time.time() ite += 1 # ---------- One iteration of the training loop ---------- model.train() lr_scheduler.step() X, _ = train_batch Xv, _ = valid_batch if gpu_id >= 0: X = X.cuda(gpu_id) Xv = Xv.cuda(gpu_id) optimizer.zero_grad() # Clear gradient loss_mean = 0. # Sampling c_cat, c_int = model.asng.sampling(lam) # Update weights for i in range(lam): # Calculate the prediction of the network Y = model(c_cat[i], c_int[i], corrupt_func(X)) loss = loss_func(Y, X) # Calculate the MSE loss loss_mean += loss / lam train_loss += loss.item() loss_mean.backward() # Calculate the gradient del loss_mean nn.utils.clip_grad_norm_(model.parameters(), clip_value) # Gradient clipping optimizer.step() # Update the trainable parameters # Sampling c_cat, c_int = model.asng.sampling(lam) # Update theta with torch.no_grad(): for i in range(lam): Y = model(c_cat[i], c_int[i], corrupt_func(Xv)) loss = loss_func(Y, Xv).item() valid_loss += loss losses[i] = loss model.p_model_update([c_cat, c_int], losses) n += lam train_time += time.time() - ite_start # --------------------- until here --------------------- is_save = ite % period['save'] == 0 if ite % period['verbose_ite'] == 0 or is_save or ite == period['max_ite'] or ite == 1: # Display the training loss print('epoch:{} iteration:{} elapse_time:{:.04f} lr:{:e} cur_train_loss:{:.04f} cur_valid_loss:{:.04f} ' 'delta:{} theta_cat_converge:{:.04f}' .format(epoch, ite, (time.time() - start) / 60, lr_scheduler.get_lr()[0], train_loss / n, valid_loss / n, model.asng.delta, model.asng.theta_cat.max(axis=1).mean())) # Check the test loss if is_save or ite == period['max_ite']: # Testing test_res = evaluate(model, test_data, corrupt_func, gpu_id=gpu_id, batchsize=batchsize) max_params = np.sum(np.prod(param.size()) for param in model.parameters()) model_params = model.get_params_mle() print('test_MSE:{:.04f} test_PSNR:{:.04f} test_SSIM:{:.04f} param_num:{} param_ratio:{:.04f} active_num:{}'. format(test_res['MLE_MSE'], test_res['MLE_PSNR'], test_res['MLE_SSIM'], model_params, model_params / max_params, int(model.is_active.sum()))) print(model.mle_network_string(sep=' ') + '\n') # Save log with open(log_file, 'a') as fp: writer = csv.writer(fp, lineterminator='\n') log_list = [epoch, ite, train_time, lr_scheduler.get_lr()[0], train_loss / n, valid_loss / n, test_res['MLE_MSE'], test_res['MLE_PSNR'], test_res['MLE_SSIM'], model_params] log_list += model.asng.log(theta_log=True) writer.writerow(log_list) train_loss = valid_loss = 0. n = 0 if ite >= period['max_ite']: break # Save model if out_model is not None: torch.save(model.state_dict(), out_model) return model, train_time def train(model, train_data, test_data, corrupt_func, optimizer, lr_scheduler, clip_value=1., batchsize=16, gpu_id=0, period=None, out_model='out_model.model', log_file='log.csv'): if period is None: period = {'max_ite': 200000, 'save': 4000, 'verbose_ite': 100} start = time.time() if gpu_id >= 0: model = model.cuda(gpu_id) loss_func = nn.MSELoss() # Data loader train_loader = torch.utils.data.DataLoader(train_data, batchsize, shuffle=True, drop_last=False) # log header with open(log_file, 'w') as fp: writer = csv.writer(fp, lineterminator='\n') header_list = ['epoch', 'iteration', 'train_time', 'lr', 'train_loss', 'test_MSE', 'test_PSNR', 'test_SSIM', 'model_params'] writer.writerow(header_list) train_time = train_loss = 0. epoch = ite = n = 0 while ite < period['max_ite']: epoch += 1 for X, _ in train_loader: ite_start = time.time() ite += 1 # ---------- One iteration of the training loop ---------- model.train() lr_scheduler.step() if gpu_id >= 0: X = X.cuda(gpu_id) optimizer.zero_grad() # Clear gradient # Calculate the prediction of the network Y = model.forward_mle(corrupt_func(X)) loss = loss_func(Y, X) # Calculate the MSE loss train_loss += loss.item() n += 1 loss.backward() # Calculate the gradient nn.utils.clip_grad_norm_(model.parameters(), clip_value) # Gradient clipping optimizer.step() # Update the trainable parameters train_time += time.time() - ite_start # --------------------- until here --------------------- is_save = ite % period['save'] == 0 if ite % period['verbose_ite'] == 0 or is_save or ite == period['max_ite'] or ite == 1: # Display the training loss print('epoch:{} iteration:{} elapse_time:{:.04f} lr:{:e} cur_loss:{:.04f}' .format(epoch, ite, (time.time() - start) / 60, lr_scheduler.get_lr()[0], loss)) # Check the test loss if is_save or ite == period['max_ite']: # Testing test_res = evaluate(model, test_data, corrupt_func, gpu_id=gpu_id, batchsize=batchsize) model_params = model.get_params_mle() print('test_MSE:{:.04f} test_PSNR:{:.04f} test_SSIM:{:.04f} param_num:{} active_num:{}'. format(test_res['MLE_MSE'], test_res['MLE_PSNR'], test_res['MLE_SSIM'], model_params, int(model.is_active.sum()))) print(model.mle_network_string(sep=' ') + '\n') # Save log with open(log_file, 'a') as fp: writer = csv.writer(fp, lineterminator='\n') log_list = [epoch, ite, train_time, lr_scheduler.get_lr()[0], train_loss / n, test_res['MLE_MSE'], test_res['MLE_PSNR'], test_res['MLE_SSIM'], model_params] writer.writerow(log_list) train_loss = 0. n = 0 if ite >= period['max_ite']: break # Save model if out_model is not None: torch.save(model.state_dict(), out_model) return model, train_time
StarcoderdataPython
3357465
"""Pipeline code to run alignments and prepare BAM files. This works as part of the lane/flowcell process step of the pipeline. """ from collections import namedtuple import os import toolz as tz from bcbio import bam, utils from bcbio.bam import cram from bcbio.ngsalign import (bowtie, bwa, tophat, bowtie2, novoalign, snap, star) # Define a next-generation sequencing tool to plugin: # align_fn -- runs an aligner and generates SAM output # galaxy_loc_file -- name of a Galaxy location file to retrieve # the genome index location # bam_align_fn -- runs an aligner on a BAM file # remap_index_fn -- Function that will take the location provided # from galaxy_loc_file and find the actual location of the index file. # This is useful for indexes that don't have an associated location file # but are stored in the same directory structure. NgsTool = namedtuple("NgsTool", ["align_fn", "bam_align_fn", "galaxy_loc_file", "remap_index_fn"]) BASE_LOCATION_FILE = "sam_fa_indices.loc" TOOLS = { "bowtie": NgsTool(bowtie.align, None, bowtie.galaxy_location_file, None), "bowtie2": NgsTool(bowtie2.align, None, bowtie2.galaxy_location_file, bowtie2.remap_index_fn), "bwa": NgsTool(bwa.align_pipe, bwa.align_bam, bwa.galaxy_location_file, None), "novoalign": NgsTool(novoalign.align_pipe, novoalign.align_bam, novoalign.galaxy_location_file, novoalign.remap_index_fn), "tophat": NgsTool(tophat.align, None, bowtie2.galaxy_location_file, bowtie2.remap_index_fn), "samtools": NgsTool(None, None, BASE_LOCATION_FILE, None), "snap": NgsTool(snap.align, snap.align_bam, snap.galaxy_location_file, snap.remap_index_fn), "star": NgsTool(star.align, None, None, star.remap_index_fn), "tophat2": NgsTool(tophat.align, None, bowtie2.galaxy_location_file, bowtie2.remap_index_fn)} metadata = {"support_bam": [k for k, v in TOOLS.iteritems() if v.bam_align_fn is not None]} def align_to_sort_bam(fastq1, fastq2, aligner, data): """Align to the named genome build, returning a sorted BAM file. """ names = data["rgnames"] align_dir_parts = [data["dirs"]["work"], "align", names["sample"]] if data.get("disambiguate"): align_dir_parts.append(data["disambiguate"]["genome_build"]) align_dir = utils.safe_makedir(apply(os.path.join, align_dir_parts)) aligner_indexes = os.path.commonprefix(tz.get_in(("reference", aligner, "indexes"), data)) if aligner_indexes.endswith("."): aligner_indexes = aligner_indexes[:-1] ref_file = tz.get_in(("reference", "fasta", "base"), data) if fastq1.endswith(".bam"): data = _align_from_bam(fastq1, aligner, aligner_indexes, ref_file, names, align_dir, data) else: data = _align_from_fastq(fastq1, fastq2, aligner, aligner_indexes, ref_file, names, align_dir, data) if data["work_bam"] and utils.file_exists(data["work_bam"]): bam.index(data["work_bam"], data["config"]) for extra in ["-sr", "-disc"]: extra_bam = utils.append_stem(data['work_bam'], extra) if utils.file_exists(extra_bam): bam.index(extra_bam, data["config"]) return data def _align_from_bam(fastq1, aligner, align_ref, sam_ref, names, align_dir, data): assert not data.get("align_split"), "Do not handle split alignments with BAM yet" config = data["config"] qual_bin_method = config["algorithm"].get("quality_bin") if (qual_bin_method == "prealignment" or (isinstance(qual_bin_method, list) and "prealignment" in qual_bin_method)): out_dir = utils.safe_makedir(os.path.join(align_dir, "qualbin")) fastq1 = cram.illumina_qual_bin(fastq1, sam_ref, out_dir, config) align_fn = TOOLS[aligner].bam_align_fn if align_fn is None: raise NotImplementedError("Do not yet support BAM alignment with %s" % aligner) out = align_fn(fastq1, align_ref, names, align_dir, data) if isinstance(out, dict): assert "work_bam" in out return out else: data["work_bam"] = out return data def _align_from_fastq(fastq1, fastq2, aligner, align_ref, sam_ref, names, align_dir, data): """Align from fastq inputs, producing sorted BAM output. """ config = data["config"] align_fn = TOOLS[aligner].align_fn out = align_fn(fastq1, fastq2, align_ref, names, align_dir, data) # handle align functions that update the main data dictionary in place if isinstance(out, dict): assert "work_bam" in out return out # handle output of raw SAM files that need to be converted to BAM else: work_bam = bam.sam_to_bam(out, config) data["work_bam"] = bam.sort(work_bam, config) return data
StarcoderdataPython
1786696
#!/usr/bin/env python # -*- coding: utf-8 -*- # import needed libraries import glob import hashlib import logging.config import os import os.path import pickle from rdflib import Graph, Namespace, BNode, Literal, URIRef # type: ignore from rdflib.namespace import RDF, RDFS, OWL # type: ignore from tqdm import tqdm # type: ignore from typing import Any, Dict, IO, List, Optional, Tuple, Union from pkt_kg.utils import * # set global attributes obo = Namespace('http://purl.obolibrary.org/obo/') pkt = Namespace('https://github.com/callahantiff/PheKnowLator/pkt/') pkt_bnode = Namespace('https://github.com/callahantiff/PheKnowLator/pkt/bnode/') # logging log_dir, log, log_config = 'builds/logs', 'pkt_build_log.log', glob.glob('**/logging.ini', recursive=True) try: if not os.path.exists(log_dir): os.mkdir(log_dir) except FileNotFoundError: log_dir, log_config = '../builds/logs', glob.glob('../builds/logging.ini', recursive=True) if not os.path.exists(log_dir): os.mkdir(log_dir) logger = logging.getLogger(__name__) logging.config.fileConfig(log_config[0], disable_existing_loggers=False, defaults={'log_file': log_dir + '/' + log}) class KGConstructionApproach(object): """Class stores different methods that can be used to construct knowledge graph edges. Two Construction Approaches: (1) Instance-based: Adds edge data that is not from an ontology by connecting each non-ontology data node to an instances of existing ontology class node; (2) Subclass-based: Adds edge data that is not from an ontology by connecting each non-ontology data node to an existing ontology class node. Attributes: write_location: A string pointing to the 'resources' directory. Raises: TypeError: If graph is not an rdflib.graph object. TypeError: If edge_info and edge_dict are not dictionary objects. ValueError: If graph, edge_info, edge_dict, or subclass_dict files are empty. OSError: If there is no subclass_dict file in the resources/construction_approach directory. """ def __init__(self, write_location: str) -> None: self.subclass_dict: Dict = dict() self.subclass_error: Dict = dict() # WRITE LOCATION if write_location is None: log_str = 'write_location must contain a valid filepath.'; logger.error('ValueError: ' + log_str) raise ValueError(log_str) else: self.write_location = write_location # LOADING SUBCLASS DICTIONARY file_name = self.write_location + '/construction_*/*.pkl' if len(glob.glob(file_name)) == 0: log_str = 'subclass_construction_map.pkl does not exist!'; logger.error('OSError: ' + log_str) raise OSError(log_str) elif os.stat(glob.glob(file_name)[0]).st_size == 0: log_str = 'The input file: {} is empty'.format(glob.glob(file_name)[0]) logger.error('TypeError: ' + log_str); raise TypeError(log_str) else: with open(glob.glob(file_name)[0], 'rb') as filepath: # type: IO[Any] self.subclass_dict = pickle.load(filepath, encoding='bytes') def maps_node_to_class(self, edge_type: str, entity: str) -> Optional[List]: """Takes an entity and checks whether or not it exists in a dictionary of subclass content, such that keys are non-class entity identifiers (e.g. Reactome identifiers) and values are sets of ontology class identifiers mapped to that non-class entity. For example: {'R-HSA-5601843': {'PW_0000001'}, 'R-HSA-77584': {'PW_0000001', 'GO_0008334'}} The motivation for verifying whether a non-ontology node identifier is not in the subclass_map is to try and catch errors in the edge sources used to generate the edges. For example, there were genes taken from CTD that were tagged in the downloaded data as being human, that were not actually human and the way that we caught that error was by checking against the identifiers included in the subclass_map dict. Args: edge_type: A string containing the edge_type (e.g. "gene-pathway"). entity: A string containing a node identifier (e.g. "R-HSA-5601843"). Returns: None if the non-class entity is not in the subclass_dict, otherwise a list of mappings between the non-class entity node is returned. """ if entity not in self.subclass_dict.keys(): if self.subclass_error and edge_type in self.subclass_error.keys(): if entity not in self.subclass_error[edge_type]: self.subclass_error[edge_type] += [entity] else: self.subclass_error[edge_type] = [entity] subclass_map = None else: subclass_map = self.subclass_dict[entity] return subclass_map @staticmethod def subclass_core_constructor(node1: URIRef, node2: URIRef, relation: URIRef, inv_relation: URIRef) -> Tuple: """Core subclass-based edge construction method. Constructs a single edge between to ontology classes as well as verifies if the user wants an inverse edge created and if so, then this edge is also added to the knowledge graph. Note that a Bnode is used for subclass construction versus the UUID hash + pkt namespace that is used for instance-based construction. Note. We explicitly type each node and each relation/inverse relation. This may seem redundant, but it is needed in order to ensure consistency between the data after applying the OWL API to reformat the data. Args: node1: A URIRef or BNode object containing a subject node. node2: A URIRef or BNode object containing a object node. relation: A URIRef object containing an owl:ObjectProperty. inv_relation: A string containing an inverse relation identifier (i.e. RO_0002200) or None (i.e. indicating no inverse relation). Returns: A list of tuples representing new edges to add to the knowledge graph. """ rel_core = n3(node1) + n3(relation) + n3(node2) u1 = URIRef(pkt + 'N' + hashlib.md5(rel_core.encode()).hexdigest()) u2 = URIRef(pkt_bnode + 'N' + hashlib.md5((rel_core + n3(OWL.Restriction)).encode()).hexdigest()) new_edge_inverse_rel: Tuple = tuple() new_edge_rel_only: Tuple = ((node1, RDF.type, OWL.Class), (u1, RDFS.subClassOf, node1), (u1, RDF.type, OWL.Class), (u1, RDFS.subClassOf, u2), (u2, RDF.type, OWL.Restriction), (u2, OWL.someValuesFrom, node2), (node2, RDF.type, OWL.Class), (u2, OWL.onProperty, relation), (relation, RDF.type, OWL.ObjectProperty)) if inv_relation: inv_rel_core = n3(node2) + n3(inv_relation) + n3(node1) u3 = URIRef(pkt + 'N' + hashlib.md5(inv_rel_core.encode()).hexdigest()) u4 = URIRef(pkt_bnode + 'N' + hashlib.md5((inv_rel_core + n3(OWL.Restriction)).encode()).hexdigest()) new_edge_inverse_rel = ((node2, RDF.type, OWL.Class), (u3, RDFS.subClassOf, node2), (u3, RDF.type, OWL.Class), (u3, RDFS.subClassOf, u4), (u4, RDF.type, OWL.Restriction), (u4, OWL.someValuesFrom, node1), (node1, RDF.type, OWL.Class), (u4, OWL.onProperty, inv_relation), (inv_relation, RDF.type, OWL.ObjectProperty)) return new_edge_rel_only + new_edge_inverse_rel def subclass_constructor(self, edge_info: Dict, edge_type: str) -> List: """Adds edges for the subclass construction approach. Assumption: All ontology class nodes use the obo namespace. Note. We explicitly type each node as a owl:Class and each relation/inverse relation as a owl:ObjectProperty. This may seem redundant, but it is needed in order to ensure consistency between the data after applying the OWL API to reformat the data. Args: edge_info: A dict of information needed to add edge to graph, for example: {'n1': 'class', 'n2': 'class','rel': 'RO_0002606', 'inv_rel': 'RO_0002615', 'uri': ['https://www.ncbi.nlm.nih.gov/gene/', 'http://purl.obolibrary.org/obo/'], 'edges': ['CHEBI_81395', 'DOID_12858']} edge_type: A string containing the name of the edge_type (e.g. "gene-disease", "chemical-gene"). Returns: edges: A set of tuples containing new edges to add to the knowledge graph. """ res = finds_node_type(edge_info); uri1, uri2 = edge_info['uri']; edges: List = [] rel = URIRef(obo + edge_info['rel']) irel = URIRef(obo + edge_info['inv_rel']) if edge_info['inv_rel'] is not None else None if res['cls1'] and res['cls2']: # class-class edges edges = list(self.subclass_core_constructor(URIRef(res['cls1']), URIRef(res['cls2']), rel, irel)) elif res['cls1'] and res['ent1']: # entity-class/class-entity edges x = res['ent1'].replace(uri2, '') if edge_info['n1'] == 'class' else res['ent1'].replace(uri1, '') mapped_node = self.maps_node_to_class(edge_type, x) if mapped_node: # get entity mappings to current classes from subclass_construction_map edges = [x for y in [((URIRef(res['ent1']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) for i in mapped_node] for x in y] ent_order = ['cls1', 'ent1'] if edge_info['n1'] == 'class' else ['ent1', 'cls1'] # determine node order edges += self.subclass_core_constructor(URIRef(res[ent_order[0]]), URIRef(res[ent_order[1]]), rel, irel) else: # entity-entity edges mapped_node1 = self.maps_node_to_class(edge_type, res['ent1'].replace(uri1, '')) mapped_node2 = self.maps_node_to_class(edge_type, res['ent2'].replace(uri2, '')) if mapped_node1 and mapped_node2: # get entity mappings to current classes from subclass_construction_map edges += [x for y in [((URIRef(res['ent1']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) for i in mapped_node1] for x in y] edges += [x for y in [((URIRef(res['ent2']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) for i in mapped_node2] for x in y] edges += self.subclass_core_constructor(URIRef(res['ent1']), URIRef(res['ent2']), rel, irel) return edges @staticmethod def instance_core_constructor(node1: URIRef, node2: URIRef, relation: URIRef, inv_relation: URIRef) -> Tuple: """Core instance-based edge construction method. Constructs a single edge between two ontology classes as well as verifies if the user wants an inverse edge created and if so, then this edge is also added to the knowledge graph. Note. We explicitly type each node and each relation/inverse relation. This may seem redundant, but it is needed in order to ensure consistency between the data after applying the OWL API to reformat the data. Args: node1: A URIRef or BNode object containing a subject node. node2: A URIRef or BNode object containing a object node. relation: A URIRef object containing an owl:ObjectProperty. inv_relation: A string containing the identifier for an inverse relation (i.e. RO_0002200) or None (i.e. indicator of no inverse relation). Returns: A list of tuples representing new edges to add to the knowledge graph. """ # select hash relation - if rel and inv rel take first in alphabetical order else use rel rels = sorted([relation, inv_relation])[0] if inv_relation is not None else [relation][0] rel_core = n3(node1) + n3(rels) + n3(node2) u1 = URIRef(pkt + 'N' + hashlib.md5((rel_core + 'subject').encode()).hexdigest()) u2 = URIRef(pkt + 'N' + hashlib.md5((rel_core + 'object').encode()).hexdigest()) new_edge_inverse_rel: Tuple = tuple() new_edge_rel_only: Tuple = ((u1, RDF.type, node1), (u1, RDF.type, OWL.NamedIndividual), (u2, RDF.type, node2), (u2, RDF.type, OWL.NamedIndividual), (u1, relation, u2), (relation, RDF.type, OWL.ObjectProperty)) if inv_relation: new_edge_inverse_rel = ((u2, inv_relation, u1), (inv_relation, RDF.type, OWL.ObjectProperty)) return new_edge_rel_only + new_edge_inverse_rel def instance_constructor(self, edge_info: Dict, edge_type: str) -> List: """Adds edges for the instance construction approach. Assumption: All ontology class nodes use the obo namespace. Args: edge_info: A dict of information needed to add edge to graph, for example: {'n1': 'class', 'n2': 'class','rel': 'RO_0002606', 'inv_rel': 'RO_0002615', 'uri': ['https://www.ncbi.nlm.nih.gov/gene/', 'http://purl.obolibrary.org/obo/'], 'edges': ['CHEBI_81395', 'DOID_12858']} edge_type: A string containing the name of the edge_type (e.g. "gene-disease", "chemical-gene"). Returns: edges: A set of tuples containing new edges to add to the knowledge graph. """ res = finds_node_type(edge_info); uri1, uri2 = edge_info['uri']; edges: List = [] rel = URIRef(obo + edge_info['rel']) irel = URIRef(obo + edge_info['inv_rel']) if edge_info['inv_rel'] is not None else None if res['cls1'] and res['cls2']: # class-class edges edges = list(self.instance_core_constructor(URIRef(res['cls1']), URIRef(res['cls2']), rel, irel)) elif res['cls1'] and res['ent1']: # class-entity/entity-class edges x = res['ent1'].replace(uri2, '') if edge_info['n1'] == 'class' else res['ent1'].replace(uri1, '') mapped_node = self.maps_node_to_class(edge_type, x) if mapped_node: # get entity mappings to current classes from subclass_construction_map edges = [x for y in [((URIRef(res['ent1']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) + ((URIRef(res['ent1']), RDF.type, OWL.Class),) for i in mapped_node] for x in y] ent_order = ['cls1', 'ent1'] if edge_info['n1'] == 'class' else ['ent1', 'cls1'] # determine node order edges += self.instance_core_constructor(URIRef(res[ent_order[0]]), URIRef(res[ent_order[1]]), rel, irel) else: # entity-entity edges mapped_node1 = self.maps_node_to_class(edge_type, res['ent1'].replace(uri1, '')) mapped_node2 = self.maps_node_to_class(edge_type, res['ent2'].replace(uri2, '')) if mapped_node1 and mapped_node2: # get entity mappings to current classes from subclass_construction_map edges += [x for y in [((URIRef(res['ent1']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) + ((URIRef(res['ent1']), RDF.type, OWL.Class),) for i in mapped_node1] for x in y] edges += [x for y in [((URIRef(res['ent2']), RDFS.subClassOf, URIRef(obo + i)),) + ((URIRef(obo + i), RDF.type, OWL.Class),) + ((URIRef(res['ent2']), RDF.type, OWL.Class),) for i in mapped_node2] for x in y] edges += self.instance_core_constructor(URIRef(res['ent1']), URIRef(res['ent2']), rel, irel) return edges
StarcoderdataPython
3239848
<filename>src/decks/migrations/0007_auto_20200804_2018.py # Generated by Django 3.0.8 on 2020-08-04 20:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('decks', '0006_auto_20200804_1827'), ] operations = [ migrations.AlterField( model_name='deck', name='publish_status', field=models.CharField(choices=[('x', 'Private'), ('f', 'Followers Only'), ('o', 'Everyone')], default='x', max_length=1), ), ]
StarcoderdataPython
44871
<filename>crop_video.py<gh_stars>10-100 import cv2 import numpy as np ''' Loads two videos and generates an interface to crop these to equal length and being synced in time. Specify: path1: path to first video path2: path to second video vidname: name of the instance to be created ''' path1 = "videos_original\out_a_full.mp4" path2 = "videos_original\out_b_full.mp4" vidname = 'outside' cap1 = cv2.VideoCapture(path1) nbr_frames1 = int(cap1.get(cv2.CAP_PROP_FRAME_COUNT))-1 cap2 = cv2.VideoCapture(path2) nbr_frames2 = int(cap2.get(cv2.CAP_PROP_FRAME_COUNT))-1 _, f1 = cap1.read() _, f2 = cap2.read() height,width,channels = f1.shape # Find a starting point while True: f = np.hstack((f1, f2)) f = cv2.resize(f, (0, 0), fx=0.5, fy=0.5) cv2.imshow('',f) k = cv2.waitKey(0) & 0xFF if k==49: # 1 is pressed _, f1 = cap1.read() nbr_frames1 -= 1 elif k==50: # 2 is pressed _, f2 = cap2.read() nbr_frames2 -= 1 else: break # Create and save two equally long clips clip1 = cv2.VideoWriter('videos/' + vidname + '1.mp4',cv2.VideoWriter_fourcc(*'mp4v'), 30.0, (width,height)) clip2 = cv2.VideoWriter('videos/' + vidname + '2.mp4',cv2.VideoWriter_fourcc(*'mp4v'), 30.0, (width,height)) for i in range(min([nbr_frames1, nbr_frames2])): _, f1 = cap1.read() _, f2 = cap2.read() clip1.write(f1) clip2.write(f2) clip1.release() clip2.release() cap1.release() cap2.release() cv2.destroyAllWindows()
StarcoderdataPython
3222165
from django import forms from .models import Image, Profile, Comment class NewImageForm(forms.ModelForm): class Meta: model = Image exclude = ['user', 'post_date', 'liker', 'profile'] class NewProfileForm(forms.ModelForm): class Meta: model = Profile exclude = ['user', 'followers', 'following'] class CommentForm(forms.ModelForm): class Meta: model = Comment exclude = ['user', 'image']
StarcoderdataPython
4834989
import warnings from pathlib import Path from threading import RLock from typing import Union import dask.dataframe as dd from cachetools import LRUCache, cached from cbgen import bgen_file, bgen_metafile from cbgen.typing import Partition from dask.delayed import delayed from pandas import DataFrame from ._environment import BGEN_READER_CACHE_HOME from ._file import ( assert_file_exist, assert_file_readable, is_file_writable, path_to_filename, ) def create_metafile( bgen_filepath: Union[str, Path], metafile_filepath: Union[str, Path], verbose: bool = True, ): """ Create variants metadata file. Variants metadata file helps speed up subsequent reads of the associated bgen file. Parameters ---------- bgen_filepath : str Bgen file path. metafile_file : str Metafile file path. verbose : bool ``True`` to show progress; ``False`` otherwise. Examples -------- .. doctest:: >>> import os >>> from bgen_reader import create_metafile, example_filepath >>> >>> filepath = example_filepath("example.32bits.bgen") >>> metafile_filepath = filepath.with_suffix(".metafile") >>> >>> try: ... create_metafile(filepath, metafile_filepath, verbose=False) ... finally: ... if metafile_filepath.exists(): ... os.remove(metafile_filepath) """ bgen_filepath = Path(bgen_filepath) metafile_filepath = Path(metafile_filepath) assert_file_exist(bgen_filepath) assert_file_readable(bgen_filepath) if metafile_filepath.exists(): raise ValueError(f"File {metafile_filepath} already exists.") with bgen_file(bgen_filepath) as bgen: bgen.create_metafile(metafile_filepath, verbose) _metafile_nowrite_dir = """\ You don't have permission to write `{filepath}`. This might prevent speeding-up the reading process in future runs. """ def infer_metafile_filepath(bgen_filepath: Path, suffix: str = ".metafile") -> Path: """ Infer metafile filepath. The resulting file name will the file name of ``bgen_filepath`` with the appended ``suffix``. The root directory of the resulting filepath will be the directory of ``bgen_filepath`` if the user has appropriate permissions. It falls back to the directory BGEN_READER_CACHE_HOME / "metafile" if necessary. """ metafile = bgen_filepath.with_suffix(bgen_filepath.suffix + suffix) if metafile.exists(): try: assert_file_readable(metafile) return metafile except RuntimeError as e: warnings.warn(str(e), UserWarning) return BGEN_READER_CACHE_HOME / "metafile" / path_to_filename(metafile) else: if is_file_writable(metafile): return metafile warnings.warn(_metafile_nowrite_dir.format(filepath=metafile), UserWarning) return BGEN_READER_CACHE_HOME / "metafile" / path_to_filename(metafile) def create_variants(filepath: Path, nvariants: int, npartitions: int, part_size: int): dfs = [] index_base = 0 divisions = [] for i in range(npartitions): divisions.append(index_base) d = delayed(_read_partition)(filepath, i) dfs.append(d) index_base += part_size divisions.append(nvariants - 1) meta = [ ("id", str), ("rsid", str), ("chrom", str), ("pos", int), ("nalleles", int), ("allele_ids", str), ("vaddr", int), ] df = dd.from_delayed(dfs, meta=dd.utils.make_meta(meta), divisions=divisions) return df cache = LRUCache(maxsize=3) lock = RLock() @cached(cache, lock=lock) def _read_partition(filepath: Path, partition: int) -> DataFrame: with bgen_metafile(filepath) as mf: part: Partition = mf.read_partition(partition) v = part.variants data = { "id": v.id.astype(str), "rsid": v.rsid.astype(str), "chrom": v.chromosome.astype(str), "pos": v.position.astype(int), "nalleles": v.nalleles.astype(int), "allele_ids": v.allele_ids.astype(str), "vaddr": v.offset.astype(int), } df = DataFrame(data) return df[["id", "rsid", "chrom", "pos", "nalleles", "allele_ids", "vaddr"]]
StarcoderdataPython
4822478
""" 2015-2016 <NAME> <EMAIL> """ import random import numpy as np import matplotlib.pyplot as plt from dataset.data_utils import get_cifar10_data from classifiers import Softmax plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' if __name__ == "__main__": X_train, y_train, X_val, y_val, X_test, y_test = get_cifar10_data() results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 5e-7] regularization_strengths = [5e4, 1e8] def accuracy(ethalon, pred): return np.average(ethalon == pred) ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ """ best_val = 0. for rate in np.linspace(learning_rates[0], learning_rates[1], 3): for reg_str in np.linspace(regularization_strengths[0], regularization_strengths[1], 3): print('rate: {}, reg: {}'.format(rate, reg_str)) sm = Softmax() sm.train(X_train, y_train, rate, reg_str) pred_train, pred_test = None, None pred_train = sm.predict(X_train) pred_val = sm.predict(X_val) if best_val < accuracy(y_val, pred_val): best_val = accuracy(y_val, pred_val) results[(rate, reg_str)] = (accuracy(y_train, pred_train), accuracy(y_val, pred_val)) """ ################################################################################ # END OF YOUR CODE # ################################################################################ """ # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print 'lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy) print 'best validation accuracy achieved during cross-validation: %f' % best_val """ rate = 5e-7 reg_str = 5e4 print('rate: {}, reg: {}'.format(rate, reg_str)) sm = Softmax() sm.train(X_train, y_train, rate, reg_str) pred_train, pred_test = None, None pred_train = sm.predict(X_train) pred_val = sm.predict(X_val) print('train acc: {}, val acc: {}'.format(accuracy(y_train, pred_train), accuracy(y_val, pred_val)))
StarcoderdataPython
98054
<reponame>Snewmy/swordie<gh_stars>1-10 # Knight Stronghold: Secret Grove # Quest: Rescue Neinhart from net.swordie.ms.enums import WeatherEffNoticeType KNIGHT_DISTRICT_4 = 271030400 WATCHMAN = 8610016 ENEMY_SPAWNS = [(635, 208), (159, 208), (59, 208), (-313, 208)] sm.showWeatherNotice("Defeat all the monsters surrounding Neinheart to rescue him!", WeatherEffNoticeType.SnowySnowAndSprinkledFlowerAndSoapBubbles, 10000) sm.setInstanceTime(600, KNIGHT_DISTRICT_4, 3) for coords in ENEMY_SPAWNS: for z in range(3): sm.spawnMob(WATCHMAN, coords[0] + z, coords[1], False) # we add z so they dont spawn all clumped together
StarcoderdataPython
1666137
#!/usr/bin/python #-!- coding: utf-8 -!- """ This is WiFi Car control class. """ import pigpio,thread,time import RPi.GPIO as GPIO class WifiCar: distance=None # The distance measure approximate 10 times every second. PG=None # pigpio object. LED_RED_PIN=12 LED_BLUE_PIN=16 LED_GREEN_PIN=20 SERVO_POWER_PIN=13 SERVO_UPDOWN_PIN=5 SERVO_LEFTRIGHT_PIN=6 SERVO_CENTER=(1500,1620) # Left/Right, Up/Down center SERVO_RANGE=((700,-700),(300,-600)) # servo move range. L298N_INPUT1_PIN=27 L298N_INPUT2_PIN=22 L298N_INPUT3_PIN=23 L298N_INPUT4_PIN=24 L298N_ENABLEA_PIN=18 L298N_ENABLEB_PIN=25 ULTRASONIC_TRIG_PIN=4 ULTRASONIC_ECHO_PIN=17 def __init__(self, address=None ): if address: self.PG=pigpio.pi( address ) else: self.PG=pigpio.pi() # set L298N state. self.PG.set_PWM_dutycycle( self.L298N_ENABLEA_PIN, 0 ) self.PG.set_PWM_frequency( self.L298N_ENABLEA_PIN, 400) self.PG.set_PWM_range( self.L298N_ENABLEA_PIN, 1000 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEB_PIN, 0 ) self.PG.set_PWM_frequency( self.L298N_ENABLEB_PIN, 400) self.PG.set_PWM_range( self.L298N_ENABLEB_PIN, 1000 ) self.forward(0) # GPIO for ultrasonic distance measure. GPIO.setmode(GPIO.BCM) GPIO.setup(self.ULTRASONIC_TRIG_PIN, GPIO.OUT) GPIO.setup(self.ULTRASONIC_ECHO_PIN, GPIO.IN) GPIO.output(self.ULTRASONIC_TRIG_PIN, GPIO.HIGH) # Read distance front of car every 0.1 seconds. thread.start_new_thread( self.check_distance, () ) daemon_running=True # Mark of thread running. def __del__(self): self.close() def feed_dog(self ,pin ): '''Use a virtual GPIO pin as dog. ''' self.PG.write( pin,not self.PG.read(pin) ) def check_distance(self ): run_counter=0 counter_max=5; while self.daemon_running: if not self.ultrasonic_lock.locked(): self.ultrasonic_distance() # flash green led as distance mark. When long than 2 meter, flash very slow. nearer than faster. if not self.distance or self.distance>150: counter_max=12 elif self.distance>60: counter_max=6 elif self.distance>30: counter_max=4 elif self.distance>15: counter_max=2 # If car is forwarding. then slow down the car. # self.slowdown() else: counter_max=1 # If car is forwarding. stop the car. self.stop(forward=True) if run_counter==0: self.led('green',True) else: self.led('green',False) run_counter+=1 if run_counter>=counter_max: run_counter=0 time.sleep(0.1) def reset(self ): # power on servo and set it to the center. self.PG.set_servo_pulsewidth( self.SERVO_LEFTRIGHT_PIN, self.SERVO_CENTER[0] ) self.PG.set_servo_pulsewidth( self.SERVO_UPDOWN_PIN, self.SERVO_CENTER[1] ) self.PG.write(self.SERVO_POWER_PIN, 0) # power on servo. self.forward(0)# stop the car. self.led('red',False) self.led('blue',False) self.led('green',False) def led(self, color, light=True): ''' color is one of 'red','blue','green' ''' if color and 'red'==color.lower(): self.PG.write( self.LED_RED_PIN, not light ) if color and 'blue'==color.lower(): self.PG.write( self.LED_BLUE_PIN, not light ) if color and 'green'==color.lower(): self.PG.write( self.LED_GREEN_PIN, not light ) def inverse_led(self, color): ''' Change the LED light on or off ''' if color and 'red'==color.lower(): self.PG.write( self.LED_RED_PIN, not self.PG.read( self.LED_RED_PIN ) ) if color and 'blue'==color.lower(): self.PG.write( self.LED_BLUE_PIN, not self.PG.read( self.LED_BLUE_PIN ) ) if color and 'green'==color.lower(): self.PG.write( self.LED_GREEN_PIN, not self.PG.read( self.LED_GREEN_PIN ) ) # A thread lock for single run of ultrasonic. ultrasonic_lock=thread.allocate_lock() def ultrasonic_distance(self ): ''' Return distance in centimetre. ''' self.ultrasonic_lock.acquire() GPIO.output( self.ULTRASONIC_TRIG_PIN, GPIO.LOW ) # High pulse 10uS time.sleep( 0.00001 ) GPIO.output( self.ULTRASONIC_TRIG_PIN, GPIO.HIGH ) start=time.time();stop=None; i=0 # Wait echo raise up. while GPIO.input( self.ULTRASONIC_ECHO_PIN )==0 and i<100:start=time.time();i+=1 # wait echo falling down. max 1500 about 6 meter, out of sensor range. while GPIO.input( self.ULTRASONIC_ECHO_PIN )==1 and i<1500:stop=time.time();i+=1 if stop and i<1500: # Too far self.distance=(stop-start)*34000/2; # There is not temperature calibration. else: self.distance=None self.ultrasonic_lock.release() return self.distance def left_wheel(self, speed): if speed>1000:speed=1000 if speed<-1000:speed=-1000 if speed==0: self.PG.write( self.L298N_INPUT3_PIN, 0 ) self.PG.write( self.L298N_INPUT4_PIN, 0 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEB_PIN, 1000 ) elif speed>0: self.PG.write( self.L298N_INPUT3_PIN, 0 ) self.PG.write( self.L298N_INPUT4_PIN, 1 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEB_PIN, abs(speed) ) else: self.PG.write( self.L298N_INPUT3_PIN, 1 ) self.PG.write( self.L298N_INPUT4_PIN, 0 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEB_PIN, abs(speed) ) def right_wheel(self, speed): if speed>1000:speed=1000 if speed<-1000:speed=-1000 if speed==0: self.PG.write( self.L298N_INPUT1_PIN, 0 ) self.PG.write( self.L298N_INPUT2_PIN, 0 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEA_PIN, 1000 ) elif speed>0: self.PG.write( self.L298N_INPUT1_PIN, 0 ) self.PG.write( self.L298N_INPUT2_PIN, 1 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEA_PIN, abs(speed) ) else: self.PG.write( self.L298N_INPUT1_PIN, 1 ) self.PG.write( self.L298N_INPUT2_PIN, 0 ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEA_PIN, abs(speed) ) def is_forwarding(self ): l=self.PG.get_PWM_dutycycle( self.L298N_ENABLEA_PIN ) r=self.PG.get_PWM_dutycycle( self.L298N_ENABLEB_PIN ) if self.PG.read( self.L298N_INPUT3_PIN )==1 and self.PG.read( self.L298N_INPUT4_PIN )==0: l=-l # left move backward if self.PG.read( self.L298N_INPUT1_PIN )==1 and self.PG.read( self.L298N_INPUT1_PIN )==0: r=-r # right move backward return l+r>0 def slowdown(self ): du=self.PG.get_PWM_dutycycle( self.L298N_ENABLEB_PIN ) self.PG.set_PWM_dutycycle( self.L298N_ENABLEB_PIN, du*0.5 ) def forward(self, speed=350, direction=0 ): # from -1000~1000. 0 mean stop. ''' Move car forward. ''' if speed<=0 or self.distance>30: self.left_wheel ( speed+direction ) self.right_wheel( speed-direction ) else: # Before hit something. slow down or stop. if self.distance<15: speed=0 self.stop() elif self.distance<30: speed*=(self.distance-15)/15 if speed<0:speed=0 self.left_wheel ( speed+direction ) self.right_wheel( speed-direction ) def stop(self, forward=False ): if forward: if self.is_forwarding(): self.stop() else: self.left_wheel(0) self.right_wheel(0) def backward(self, speed=350 ): # from -1000~1000 self.forward(-speed) def rotate(self, degree ): """ Rotate the car in degree """ pass def servo_horizontal(self, hor ): ''' hor from -1000 to 1000 ''' if hor<-1000: hor=-1000 if hor> 1000: hor= 1000 if hor==0: self.PG.set_servo_pulsewidth( self.SERVO_LEFTRIGHT_PIN, self.SERVO_CENTER[0] ) elif hor>0: self.PG.set_servo_pulsewidth( self.SERVO_LEFTRIGHT_PIN, self.SERVO_CENTER[0]+int(self.SERVO_RANGE[0][1]*float(hor)/1000) ) else: self.PG.set_servo_pulsewidth( self.SERVO_LEFTRIGHT_PIN, self.SERVO_CENTER[0]-int(self.SERVO_RANGE[0][0]*float(hor)/1000) ) def servo_vertical(self, ver ): if ver<-1000: ver=-1000 if ver> 1000: ver= 1000 if ver==0: self.PG.set_servo_pulsewidth( self.SERVO_UPDOWN_PIN, self.SERVO_CENTER[1] ) elif ver>0: self.PG.set_servo_pulsewidth( self.SERVO_UPDOWN_PIN, self.SERVO_CENTER[1]+int(self.SERVO_RANGE[1][1]*float(ver)/1000) ) else: self.PG.set_servo_pulsewidth( self.SERVO_UPDOWN_PIN, self.SERVO_CENTER[1]-int(self.SERVO_RANGE[1][0]*float(ver)/1000) ) gpio_cleaned=False def close(self ): self.daemon_running=False if not self.gpio_cleaned: self.gpio_cleaned=True self.ultrasonic_lock.acquire() GPIO.cleanup() self.ultrasonic_lock.release()
StarcoderdataPython
150203
<gh_stars>0 # Copyright 2012-2015 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import socket from requestbuilder import Arg, MutuallyExclusiveArgList from requestbuilder.exceptions import ArgumentError from euca2ools.commands.ec2 import EC2Request, parse_ports class _ModifySecurityGroupRule(EC2Request): """ The basis for security group-editing commands """ ARGS = [Arg('group', metavar='GROUP', route_to=None, help='name or ID of the security group to modify (required)'), Arg('--egress', action='store_true', route_to=None, help='''[VPC only] manage an egress rule, which controls traffic leaving the group'''), Arg('-P', '--protocol', dest='IpPermissions.1.IpProtocol', metavar='PROTOCOL', default='tcp', help='''the protocol to affect (Non-VPC: tcp, udp, icmp) (VPC only: tcp, udp, icmp, -1/all, other protocol numbers) (default: tcp)'''), Arg('-p', '--port-range', dest='port_range', metavar='RANGE', route_to=None, help='''range of ports (specified as "from-to") or a single port number (required for tcp and udp)'''), Arg('-t', '--icmp-type-code', dest='icmp_type_code', metavar='TYPE:CODE', route_to=None, help='''ICMP type and code (specified as "type:code") (required for icmp)'''), MutuallyExclusiveArgList( Arg('-s', '--cidr', metavar='CIDR', dest='IpPermissions.1.IpRanges.1.CidrIp', help='''IP range (default: 0.0.0.0/0)'''), # ^ default is added by main() Arg('-o', dest='target_group', metavar='GROUP', route_to=None, help='''[Non-VPC only] name of a security group with which to affect network communication''')), Arg('-u', metavar='ACCOUNT', dest='IpPermissions.1.Groups.1.UserId', help='''ID of the account that owns the security group specified with -o''')] def process_cli_args(self): self.process_port_cli_args() # noinspection PyExceptionInherit def configure(self): EC2Request.configure(self) if (self.args['group'].startswith('sg-') and len(self.args['group']) == 11): # The check could probably be a little better, but meh. Fix if # needed. self.params['GroupId'] = self.args['group'] else: if self.args['egress']: raise ArgumentError('egress rules must use group IDs, not ' 'names') self.params['GroupName'] = self.args['group'] target_group = self.args.get('target_group') if target_group is not None: if target_group.startswith('sg-') and len(target_group) == 11: # Same note as above self.params['IpPermissions.1.Groups.1.GroupId'] = target_group else: if self.args['egress']: raise ArgumentError('argument -o: egress rules must use ' 'group IDs, not names') self.params['IpPermissions.1.Groups.1.GroupName'] = target_group protocol = self.args.get('IpPermissions.1.IpProtocol') if str(protocol).lower() in ('icmp', 'tcp', 'udp', '1', '6', '17'): from_port, to_port = parse_ports( protocol, self.args.get('port_range'), self.args.get('icmp_type_code')) self.params['IpPermissions.1.FromPort'] = from_port self.params['IpPermissions.1.ToPort'] = to_port elif str(protocol).lower() in ('all', '-1'): self.params['IpPermissions.1.IpProtocol'] = -1 elif not str(protocol).isdigit(): try: self.params['IpPermissions.1.IpProtocol'] = \ socket.getprotobyname(protocol) except socket.error: raise ArgumentError('argument -P: no such protocol: {0}' .format(protocol)) if (not self.args.get('IpPermissions.1.IpRanges.1.GroupName') and not self.args.get('IpPermissions.1.IpRanges.1.CidrIp')): # Default rule target is the entire Internet self.params['IpPermissions.1.IpRanges.1.CidrIp'] = '0.0.0.0/0' if (self.params.get('IpPermissions.1.Groups.1.GroupName') and not self.args.get('IpPermissions.1.Groups.1.UserId')): raise ArgumentError('argument -u is required when -o names a ' 'security group by name') def print_result(self, _): print self.tabify(['GROUP', self.args.get('group')]) perm_str = ['PERMISSION', self.args.get('group'), 'ALLOWS', self.params.get('IpPermissions.1.IpProtocol'), self.params.get('IpPermissions.1.FromPort'), self.params.get('IpPermissions.1.ToPort')] if self.params.get('IpPermissions.1.Groups.1.UserId'): perm_str.append('USER') perm_str.append(self.params.get('IpPermissions.1.Groups.1.UserId')) if self.params.get('IpPermissions.1.Groups.1.GroupName'): perm_str.append('NAME') perm_str.append(self.params.get( 'IpPermissions.1.Groups.1.GroupName')) if self.params.get('IpPermissions.1.Groups.1.GroupId'): perm_str.append('ID') perm_str.append(self.params.get( 'IpPermissions.1.Groups.1.GroupId')) if self.params.get('IpPermissions.1.IpRanges.1.CidrIp'): perm_str.extend(['FROM', 'CIDR']) perm_str.append(self.params.get( 'IpPermissions.1.IpRanges.1.CidrIp')) print self.tabify(perm_str) class AuthorizeSecurityGroupRule(_ModifySecurityGroupRule): DESCRIPTION = 'Add a rule to a security group that allows traffic to pass' @property def action(self): if self.args['egress']: return 'AuthorizeSecurityGroupEgress' else: return 'AuthorizeSecurityGroupIngress' class RevokeSecurityGroupRule(_ModifySecurityGroupRule): DESCRIPTION = 'Remove a rule from a security group' @property def action(self): if self.args['egress']: return 'RevokeSecurityGroupEgress' else: return 'RevokeSecurityGroupIngress'
StarcoderdataPython
29383
import pytest import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.parametrize('name', [ ('nodejs'), ]) def test_packages_are_installed(host, name): package = host.package(name) assert package.is_installed @pytest.mark.parametrize('path,user,group', [ ('/usr/bin/node', 'root', 'root'), ('/usr/bin/ncu', 'root', 'root'), ('/usr/bin/yarn', 'root', 'root'), ]) def test_binaries_are_installed(host, path, user, group): binary = host.file(path) assert binary.exists assert binary.is_file assert binary.user == user assert binary.group == group
StarcoderdataPython
4832298
from tornado_jinja2 import Jinja2Loader import unittest import jinja2 class LoaderTest(unittest.TestCase): templates_path = 'test/templates/' def setUp(self): self.jinja2_env = jinja2.Environment( loader=jinja2.FileSystemLoader(self.templates_path)) self.loader = Jinja2Loader(self.jinja2_env) self.template_obj = self.loader.load('page.html') def test_load_template(self): self.assertIsInstance(self.template_obj, jinja2.Template) def test_generete_html(self): html_code = self.template_obj.generate(name='hi') self.assertIn('hi', html_code) def test_get_jinja2_environment(self): self.assertIs(self.loader.jinja2_environment, self.loader._jinja2_env) self.assertIs(self.loader.jinja2_environment, self.template_obj.environment) def test_set_jinja2_environment(self): env = jinja2.Environment() env.loader = jinja2.FileSystemLoader(self.templates_path) self.loader.jinja2_environment = env template_obj2 = self.loader.load('page.html') self.assertIs(template_obj2.environment, env) def test_cached_jinja2_environment(self): template_obj2 = self.loader.load('page.html') self.assertIs(self.template_obj.environment, template_obj2.environment) def test_check_jinja2_environment(self): self.loader.jinja2_environment = None self.assertRaises(TypeError, self.loader.load, 'page.html') class LoaderLegacyTest(LoaderTest): def setUp(self): self.loader = Jinja2Loader(self.templates_path) self.template_obj = self.loader.load('page.html') if __name__ == '__main__': unittest.main()
StarcoderdataPython
156588
<gh_stars>1-10 from torch.utils.model_zoo import load_url from .model import Model model_urls = { "dfl": "https://github.com/zheniu/stochastic-cslr-ckpt/raw/main/dfl.pth", "sfl": "https://github.com/zheniu/stochastic-cslr-ckpt/raw/main/sfl.pth", } def load_model(use_sfl=True, pretrained=True): model = Model( vocab_size=1232, dim=512, max_num_states=5 if use_sfl else 2, use_sfl=use_sfl, ) if pretrained: model.load_state_dict(load_url(model_urls["sfl" if use_sfl else "dfl"])) return model
StarcoderdataPython
1635923
<gh_stars>1-10 """FezHat 1.1 tools.""" import smbus from RPi import GPIO class Pins(object): """Store the address of the sensors.""" SWITCH_LEFT = 18 SWITCH_RIGHT = 22 ANALOG_1 = 1 ANALOG_2 = 2 ANALOG_3 = 3 ANALOG_6 = 6 ANALOG_7 = 7 LED = 24 class Fezhat(object): """Access to most sensors on the Fez Hat board.""" def __init__(self, bus_id, address): """Access the bus on the board.""" self._bus_id = bus_id self._address = address self._bus = smbus.SMBus(bus_id) GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(Pins.LED, GPIO.OUT) GPIO.setup(Pins.SWITCH_LEFT, GPIO.IN) GPIO.setup(Pins.SWITCH_RIGHT, GPIO.IN) def read(self, channel): """Read data on the channel.""" chn_adr = 0b10000100 | ((channel / 2) if (channel % 2 == 0) else ((channel / 2) + 4)) << 4 self._bus.write_byte(self._address, chn_adr) return self._bus.read_byte(self._address) @property def temperature(self): """Get temperature in Celsius.""" return (((3300 / 255) * self.read(4)) - 400) / 19.5 @property def light(self): """Get light sensor value 0.0-1.0.""" return self.read(5) / 255.0 @property def buttons(self): """Check which button is pressed.""" switch_0 = GPIO.input(Pins.SWITCH_LEFT) == GPIO.LOW switch_1 = GPIO.input(Pins.SWITCH_RIGHT) == GPIO.LOW if switch_0 and switch_1: return 3 elif switch_0: return 1 elif switch_1: return 2 elif not switch_0 and not switch_1: return 0 else: raise Exception('Something went wrong with the buttons.') def led(self, state): """Change the state of the LED.""" if not state in (0, 1): raise Exception('LED can only be set to 1 or 0.') if state == 1: GPIO.output(Pins.LED, GPIO.HIGH) else: GPIO.output(Pins.LED, GPIO.LOW)
StarcoderdataPython
1780409
<gh_stars>0 #!/usr/bin/env python import os, base64, tempfile, io from os import path from setuptools import setup, Command from distutils.command.build_scripts import build_scripts from setuptools.dist import Distribution as _Distribution LONG=""" Versioneer is a tool to automatically update version strings (in setup.py and the conventional 'from PROJECT import _version' pattern) by asking your version-control system about the current tree. """ # as nice as it'd be to versioneer ourselves, that sounds messy. VERSION = "0.16+dev" def ver(s): return s.replace("@VERSIONEER-VERSION@", VERSION) def get(fn, add_ver=False, unquote=False, do_strip=False, do_readme=False): with open(fn) as f: text = f.read() # If we're in Python <3 and have a separate Unicode type, we would've # read a non-unicode string. Else, all strings will be unicode strings. try: __builtins__.unicode except AttributeError: pass else: text = text.decode('ASCII') if add_ver: text = ver(text) if unquote: text = text.replace("%", "%%") if do_strip: lines = [line for line in text.split("\n") if not line.endswith("# --STRIP DURING BUILD")] text = "\n".join(lines) if do_readme: text = text.replace("@README@", get("README.md")) return text def u(s): # so u("foo") yields unicode on all of py2.6/py2.7/py3.2/py3.3 return s.encode("ascii").decode("ascii") def get_vcs_list(): project_path = path.join(path.abspath(path.dirname(__file__)), 'src') return [filename for filename in os.listdir(project_path) if path.isdir(path.join(project_path, filename))] def generate_long_version_py(VCS): s = io.StringIO() s.write(get("src/%s/long_header.py" % VCS, add_ver=True, do_strip=True)) for piece in ["src/subprocess_helper.py", "src/from_parentdir.py", "src/%s/from_keywords.py" % VCS, "src/%s/from_vcs.py" % VCS, "src/render.py", "src/%s/long_get_versions.py" % VCS]: s.write(get(piece, unquote=True, do_strip=True)) return s.getvalue() def generate_versioneer_py(): s = io.StringIO() s.write(get("src/header.py", add_ver=True, do_readme=True)) s.write(get("src/subprocess_helper.py", do_strip=True)) for VCS in get_vcs_list(): s.write(u("LONG_VERSION_PY['%s'] = '''\n" % VCS)) s.write(generate_long_version_py(VCS)) s.write(u("'''\n")) s.write(get("src/%s/from_keywords.py" % VCS, do_strip=True)) s.write(get("src/%s/from_vcs.py" % VCS, do_strip=True)) s.write(get("src/%s/install.py" % VCS, do_strip=True)) s.write(get("src/from_parentdir.py", do_strip=True)) s.write(get("src/from_file.py", add_ver=True, do_strip=True)) s.write(get("src/render.py", do_strip=True)) s.write(get("src/get_versions.py", do_strip=True)) s.write(get("src/cmdclass.py", do_strip=True)) s.write(get("src/setupfunc.py", do_strip=True)) return s.getvalue().encode("utf-8") class make_versioneer(Command): description = "create standalone versioneer.py" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): with open("versioneer.py", "w") as f: f.write(generate_versioneer_py().decode("utf8")) return 0 class make_long_version_py_git(Command): description = "create standalone _version.py (for git)" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): assert os.path.exists("versioneer.py") long_version = generate_long_version_py("git") with open("git_version.py", "w") as f: f.write(long_version % {"DOLLAR": "$", "STYLE": "pep440", "TAG_PREFIX": "tag-", "PARENTDIR_PREFIX": "parentdir_prefix", "VERSIONFILE_SOURCE": "versionfile_source", }) return 0 class my_build_scripts(build_scripts): def run(self): v = generate_versioneer_py() v_b64 = base64.b64encode(v).decode("ascii") lines = [v_b64[i:i+60] for i in range(0, len(v_b64), 60)] v_b64 = "\n".join(lines)+"\n" with open("src/installer.py") as f: s = f.read() s = ver(s.replace("@VERSIONEER-INSTALLER@", v_b64)) tempdir = tempfile.mkdtemp() installer = os.path.join(tempdir, "versioneer") with open(installer, "w") as f: f.write(s) self.scripts = [installer] rc = build_scripts.run(self) os.unlink(installer) os.rmdir(tempdir) return rc # python's distutils treats module-less packages as binary-specific (not # "pure"), so "setup.py bdist_wheel" creates binary-specific wheels. Override # this so we get cross-platform wheels instead. More info at: # https://bitbucket.org/pypa/wheel/issue/116/packages-with-only-filesdata_files-get class Distribution(_Distribution): def is_pure(self): return True setup( name = "versioneer", license = "public domain", version = VERSION, description = "Easy VCS-based management of project version strings", author = "<NAME>", author_email = "<EMAIL>", url = "https://github.com/warner/python-versioneer", # "fake" is replaced with versioneer-installer in build_scripts. We need # a non-empty list to provoke "setup.py build" into making scripts, # otherwise it skips that step. scripts = ["fake"], long_description = LONG, distclass=Distribution, cmdclass = { "build_scripts": my_build_scripts, "make_versioneer": make_versioneer, "make_long_version_py_git": make_long_version_py_git, }, classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", ], )
StarcoderdataPython
3227519
import sys from pyautocad import Autocad from win32com import client import math import os import psutil # filepath = "E:\work\软件\软件\图档\8GBY112_C.dwg" filepath = sys.argv[1] def getAllPid(): pid_dict={} pids = psutil.pids() for pid in pids: p = psutil.Process(pid) pid_dict[pid]=p.name() return pid_dict # def kill(pid): # try: # kill_pid = os.kill(pid, signal.SIGABRT) # print '已杀死pid为%s的进程, 返回值是:%s' % (pid, kill_pid) # except Exception as e: # print '没有如此进程!!!' if __name__ == "__main__": print (sys.argv) f = open("E:\\aa.txt", mode = 'a+') f.write(str(sys.argv)) # wincad = client.Dispatch("AutoCAD.Application") cadWorker = Autocad(create_if_not_exists=True) print(filepath) cadWorker.Application.Documents.Open(filepath) # cadWorker.ActiveDocument.SaveAs("E:\work\软件\软件\图档\8GBY112_d.dwg", 60) # dic = getAllPid() # os.system("taskkill /F /IM acad.exe")
StarcoderdataPython
3262063
<gh_stars>0 class Equipment: ID = 0 def __init__(self, name): self.name = name Equipment.ID += 1 self.id = Equipment.ID def __repr__(self): return f"Equipment <{self.id}> {self.name}" @staticmethod def get_next_id(): return Equipment.ID + 1
StarcoderdataPython
1656168
import struct class APP_ID: APP_CS_LOGIN = 0xB0 APP_SC_LOGIN_OK = 0xA0 APP_SC_LOGIN_NOK = 0xA1 app_cs_structs = { APP_ID.APP_CS_LOGIN : 'sBs', # username, hashed?, password } app_sc_structs = { APP_ID.APP_SC_LOGIN_OK : '', # token APP_ID.APP_SC_LOGIN_NOK : '', } class ID: #generic constants HON_CHAT_PORT = 11031 HON_PROTOCOL_VERSION = 64 # 0x3F (WAS 63 BEFORE) HON_STATUS_OFFLINE = 0 HON_STATUS_ONLINE = 3 HON_STATUS_INLOBBY = 4 HON_STATUS_INGAME = 5 HON_FLAGS_PREPURCHASED =0x40 HON_FLAGS_CHAT_NONE =0x00 HON_FLAGS_CHAT_OFFICER =0x01 HON_FLAGS_CHAT_LEADER =0x02 HON_FLAGS_CHAT_ADMINISTRATOR =0x03 HON_FLAGS_CHAT_STAFF =0x04 #- Client -> Server HON_CS_PONG = 0x2A01 HON_CS_CHANNEL_MSG = 0x03 HON_CS_WHISPER = 0x08 HON_CS_AUTH_INFO = 0x0C00 HON_CS_BUDDY_ADD_NOTIFY = 0x0D HON_CS_JOIN_GAME = 0x10 HON_CS_CLAN_MESSAGE = 0x13 HON_CS_PM = 0x1C HON_CS_JOIN_CHANNEL = 0x1E HON_CS_WHISPER_BUDDIES = 0x20 HON_CS_LEAVE_CHANNEL = 0x22 HON_CS_USER_INFO = 0x2A HON_CS_UPDATE_TOPIC = 0x30 HON_CS_CHANNEL_KICK = 0x31 HON_CS_CHANNEL_BAN = 0x32 HON_CS_CHANNEL_UNBAN = 0x33 HON_CS_CHANNEL_SILENCE_USER = 0x38 HON_CS_CHANNEL_PROMOTE = 0x3A HON_CS_CHANNEL_DEMOTE = 0x3B HON_CS_CHANNEL_AUTH_ENABLE = 0x3E HON_CS_CHANNEL_AUTH_DISABLE = 0x3F HON_CS_CHANNEL_AUTH_ADD = 0x40 HON_CS_CHANNEL_AUTH_DELETE = 0x41 HON_CS_CHANNEL_AUTH_LIST = 0x42 HON_CS_CHANNEL_SET_PASSWORD = <PASSWORD> HON_CS_JOIN_CHANNEL_PASSWORD = <PASSWORD> HON_CS_CLAN_ADD_MEMBER = 0x47 HON_CS_CLAN_REMOVE_MEMBER = 0x17 HON_CS_CHANNEL_EMOTE = 0x65 HON_CS_CHANNEL_ROLL = 0x64 HON_CS_BUDDY_ACCEPT = 0xB3 HON_CS_START_MM_GROUP = 0x0C0A HON_CS_INVITE_TO_MM = 0x0C0D HON_CS_KICK_FROM_MM = 0x0D00 HON_CS_GLOBAL_MESSAGE = 0x39 #- Server -> Client HON_SC_AUTH_ACCEPTED = 0x1c00 HON_SC_PING = 0x2A00 HON_SC_CHANNEL_MSG = 0x03 HON_SC_CHANGED_CHANNEL = 0x04 HON_SC_JOINED_CHANNEL = 0x05 HON_SC_LEFT_CHANNEL = 0x06 HON_SC_WHISPER = 0x08 HON_SC_WHISPER_FAILED = 0x09 HON_SC_INITIAL_STATUS = 0x0B HON_SC_UPDATE_STATUS = 0xC HON_SC_CLAN_MESSAGE = 0x13 HON_SC_LOOKING_FOR_CLAN = 0x18 HON_SC_PM = 0x1C HON_SC_PM_FAILED = 0x1D HON_SC_WHISPER_BUDDIES = 0x20 HON_SC_MAX_CHANNELS = 0x21 HON_SC_USER_INFO_NO_EXIST = 0x2B HON_SC_USER_INFO_OFFLINE = 0x2C HON_SC_USER_INFO_ONLINE = 0x2D HON_SC_USER_INFO_IN_GAME = 0x2E HON_SC_CHANNEL_UPDATE = 0x2F HON_SC_UPDATE_TOPIC = 0x30 HON_SC_CHANNEL_KICK = 0x31 HON_SC_CHANNEL_BAN = 0x32 HON_SC_CHANNEL_UNBAN = 0x33 HON_SC_CHANNEL_BANNED = 0x34 HON_SC_CHANNEL_SILENCED = 0x35 HON_SC_CHANNEL_SILENCE_LIFTED = 0x36 HON_SC_CHANNEL_SILENCE_PLACED = 0x37 HON_SC_GLOBAL_MESSAGE = 0x39 HON_SC_CHANNEL_PROMOTE = 0x3A HON_SC_CHANNEL_DEMOTE = 0x3B HON_SC_CHANNEL_AUTH_ENABLE = 0x3E HON_SC_CHANNEL_AUTH_DISABLE = 0x3F HON_SC_CHANNEL_AUTH_ADD = 0x40 HON_SC_CHANNEL_AUTH_DELETE = 0x41 HON_SC_CHANNEL_AUTH_LIST = 0x42 HON_SC_CHANNEL_PASSWORD_CHANGED = 0x43 HON_SC_CHANNEL_ADD_AUTH_FAIL = 0x44 HON_SC_CHANNEL_DEL_AUTH_FAIL = 0x45 HON_SC_JOIN_CHANNEL_PASSWORD = 0x46 HON_SC_CLAN_MEMBER_ADDED = 0x4E #not sure about that HON_SC_CLAN_MEMBER_CHANGE = 0x50 HON_SC_NAME_CHANGE = 0x5A HON_SC_CHANNEL_EMOTE = 0x65 HON_SC_CHANNEL_ROLL = 0x64 HON_SC_TOTAL_ONLINE = 0x68 HON_SC_REQUEST_NOTIFICATION = 0xB2 HON_SC_NOTIFICATION = 0xB4 HON_SC_TMM_GROUP_JOIN = 0xC0E HON_SC_TMM_GROUP_CHANGE = 0xD03 FILTER=''.join([(len(repr(chr(x)))==3) and chr(x) or '.' for x in range(256)]) def dump(src, length=16): N=0; result='' while src: s,src = src[:length],src[length:] hexa = ' '.join(["%02X"%ord(x) for x in s]) s = s.translate(FILTER) result += "%04X %-*s %s\n" % (N, length*3, hexa, s) N+=length return result chat_packets = [ID.HON_SC_PM,ID.HON_SC_WHISPER,ID.HON_SC_CHANNEL_MSG,ID.HON_SC_CHANNEL_ROLL,ID.HON_SC_CHANNEL_EMOTE] cs_structs = { ID.HON_CS_AUTH_INFO : 'IsssIIsBBBBBss', ID.HON_CS_PONG : '', ID.HON_CS_JOIN_CHANNEL : 's', ID.HON_CS_PM : 'ss', ID.HON_CS_WHISPER : 'ss', ID.HON_CS_CHANNEL_MSG : 'sI', ID.HON_CS_CHANNEL_EMOTE : 'sI', ID.HON_CS_CHANNEL_ROLL : 'sI', ID.HON_CS_JOIN_CHANNEL : 's', ID.HON_CS_LEAVE_CHANNEL : 's', ID.HON_CS_USER_INFO : 's', ID.HON_CS_START_MM_GROUP : 'sHsssH', ID.HON_CS_INVITE_TO_MM : 's', ID.HON_CS_CHANNEL_KICK : 'II', ID.HON_CS_CHANNEL_BAN : 'Is', ID.HON_CS_CHANNEL_UNBAN : 'Is', ID.HON_CS_CHANNEL_SILENCE_USER : 'IsI', ID.HON_CS_UPDATE_TOPIC : 'Is', ID.HON_CS_CHANNEL_AUTH_ENABLE : 'I', ID.HON_CS_CHANNEL_AUTH_DISABLE : 'I', ID.HON_CS_CHANNEL_AUTH_ADD : 'Is', ID.HON_CS_CHANNEL_AUTH_DELETE : 'Is', ID.HON_CS_CHANNEL_PROMOTE : 'II', ID.HON_CS_CHANNEL_DEMOTE : 'II', ID.HON_CS_CLAN_ADD_MEMBER : 's', ID.HON_CS_CLAN_MESSAGE : 's', ID.HON_CS_GLOBAL_MESSAGE : 's', ID.HON_CS_CLAN_REMOVE_MEMBER : 'I', ID.HON_CS_KICK_FROM_MM : 'B', } sc_structs = { ID.HON_SC_PING : '', ID.HON_SC_PM : None, # parse_pm, ID.HON_SC_WHISPER : 'ss', ID.HON_SC_CHANNEL_MSG : 'IIs', ID.HON_SC_CHANNEL_EMOTE : 'IIs', ID.HON_SC_CHANNEL_ROLL : 'IIs', ID.HON_SC_CHANGED_CHANNEL : None, # parse_channel_join, ID.HON_SC_INITIAL_STATUS : None, # parse_initiall_statuses, ID.HON_SC_UPDATE_STATUS : None, # parse_user_status, ID.HON_SC_JOINED_CHANNEL : 'IsIBBsss', #chat_id,nick,id,status,flags,chatsymbol,shield,icon ID.HON_SC_CLAN_MEMBER_ADDED : 'I', ID.HON_SC_CLAN_MEMBER_CHANGE : 'IBI', #whom,wat,who (theli, promoted to officer, by visions) ID.HON_SC_NAME_CHANGE : 'Is', ID.HON_SC_CLAN_MESSAGE : 'Is', ID.HON_SC_LEFT_CHANNEL : 'II', ID.HON_SC_TOTAL_ONLINE : 'Is', ID.HON_SC_USER_INFO_NO_EXIST : 's', ID.HON_SC_USER_INFO_OFFLINE : 'ss', ID.HON_SC_USER_INFO_IN_GAME : 'sss', ID.HON_SC_CHANNEL_PROMOTE : 'III', ID.HON_SC_CHANNEL_DEMOTE : 'III' } def recv_packet(sock): print "RECV" length = sock.recv(2); length = struct.unpack('H', length)[0] packet = sock.recv(length) print dump(packet) return packet def app_send_client(sock, *args): packet = app_pack_client(*args) print "SEND" sock.sendall(struct.pack('<H', len(packet))) sock.sendall(packet) print dump(packet) def app_send_srv(sock, *args): packet = app_pack_srv(*args) print "SEND" sock.sendall(struct.pack('<H', len(packet))) sock.sendall(packet) print dump(packet) def app_pack_srv(packet_id, *args): return pack_common(app_sc_structs, packet_id, *args) def app_pack_client(packet_id, *args): return pack_common(app_cs_structs, packet_id, *args) def pack_common(s, packet_id, *args): args = list(args) fmt = list(s[packet_id]) for i, f in enumerate(fmt): if f == 's': #print (args[i].__class__.__name__) if isinstance(args[i], unicode): args[i] = args[i].encode('utf-8') fmt[i] = '{0}s'.format(1 + len(args[i])) fmt = ''.join(fmt) packet = struct.pack('<H' + fmt, packet_id, *args) return packet def pack(packet_id, *args): args = list(args) fmt = list(cs_structs[packet_id]) for i, f in enumerate(fmt): if f == 's': #print (args[i].__class__.__name__) if isinstance(args[i], unicode): args[i] = args[i].encode('utf-8') fmt[i] = '{0}s'.format(1 + len(args[i])) fmt = ''.join(fmt) packet = struct.pack('<H' + fmt, packet_id, *args) return packet def parse_part(data,fmt): res = [] for f in fmt: if f == 's': i = data.index('\0') res.append(data[:i].decode("utf-8")) #print res data = data[i+1:] else: f = '<' + f i = struct.calcsize(f) res.append(struct.unpack(f,data[:i])[0]) data = data[i:] return res,data def parse_packet(data): packet_id,data = parse_part(data,'H') packet_id = packet_id[0] origin = [packet_id,None,None] if packet_id in sc_structs: if hasattr(sc_structs[packet_id],'__call__'): return sc_structs[packet_id](packet_id,data) fmt = list(sc_structs[packet_id]) res,data = parse_part(data,fmt) data = res if packet_id in chat_packets: origin[1] = data[0] if packet_id in [ID.HON_SC_CHANNEL_MSG,ID.HON_SC_CHANNEL_EMOTE,ID.HON_SC_CHANNEL_ROLL]: origin[2] = data[1] data = data[2] else: data = data[1] #else: #print 'unknown packet' #print(origin) #print(dump(data)) #except:pass return origin,data
StarcoderdataPython
3380428
<gh_stars>10-100 from signalflowgrapher.commands.command_handler import Command from signalflowgrapher.model.model import ObservableGraph, CurvedBranch class ChangeBranchWeightCommand(Command): def __init__(self, branch: CurvedBranch, weight: str, graph: ObservableGraph): self.__branch = branch self.__old_weight = branch.weight self.__new_weight = weight self.__graph = graph def undo(self): self.__graph.set_branch_weight(self.__branch, self.__old_weight) def redo(self): self.__graph.set_branch_weight(self.__branch, self.__new_weight)
StarcoderdataPython
193709
<gh_stars>1-10 import unittest import mock import requests import responses from kerlescan import inventory_service_interface from kerlescan.exceptions import ItemNotReturned, ServiceError from drift import app from . import fixtures class InventoryServiceTests(unittest.TestCase): def setUp(self): test_connexion_app = app.create_app() test_flask_app = test_connexion_app.app self.client = test_flask_app.test_client() self.mock_logger = mock.Mock() self.mock_counters = { "systems_compared_no_sysprofile": mock.MagicMock(), "inventory_service_requests": mock.MagicMock(), "inventory_service_exceptions": mock.MagicMock(), } def _create_response_for_systems(self, service_hostname, system_uuids): url_template = "http://%s/api/inventory/v1/hosts/%s" responses.add( responses.GET, url_template % (service_hostname, system_uuids), body=fixtures.FETCH_SYSTEMS_INV_SVC, status=requests.codes.ok, content_type="application/json", ) def _create_response_for_system_tags(self, service_hostname, system_uuids): url_template = "http://%s/api/inventory/v1/hosts/%s/tags" responses.add( responses.GET, url_template % (service_hostname, system_uuids), body=fixtures.FETCH_SYSTEM_TAGS, status=requests.codes.ok, content_type="application/json", ) def _create_response_for_system_profiles(self, service_hostname, system_uuids): url_template = "http://%s/api/inventory/v1/hosts/%s/system_profile" responses.add( responses.GET, url_template % (service_hostname, system_uuids), body=fixtures.FETCH_SYSTEM_PROFILES_INV_SVC, status=requests.codes.ok, content_type="application/json", ) def _create_500_response_for_systems(self, service_hostname, system_uuids): url_template = "http://%s/api/inventory/v1/hosts/%s" responses.add( responses.GET, url_template % (service_hostname, system_uuids), body="I am error", status=requests.codes.INTERNAL_SERVER_ERROR, content_type="application/json", ) def _create_500_response_for_system_profiles(self, service_hostname, system_uuids): url_template = "http://%s/api/inventory/v1/hosts/%s/system_profile" responses.add( responses.GET, url_template % (service_hostname, system_uuids), body="I am error", status=requests.codes.INTERNAL_SERVER_ERROR, content_type="application/json", ) @responses.activate def test_fetch_systems_with_profiles(self): systems_to_fetch = [ "243926fa-262f-11e9-a632-c85b761454fa", "264fb5b2-262f-11e9-9b12-c85b761454fa", ] self._create_response_for_systems( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) self._create_response_for_system_profiles( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) self._create_response_for_system_tags( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) systems = inventory_service_interface.fetch_systems_with_profiles( systems_to_fetch, "my-auth-key", self.mock_logger, self.mock_counters ) found_system_ids = {system["id"] for system in systems} self.assertSetEqual(found_system_ids, set(systems_to_fetch)) @responses.activate def test_fetch_systems_missing_system(self): systems_to_fetch = [ "243926fa-262f-11e9-a632-c85b761454fa", "264fb5b2-262f-11e9-9b12-c85b761454fa", "269a3da8-262f-11e9-8ee5-c85b761454fa", ] self._create_response_for_systems( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) self._create_response_for_system_profiles( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) self._create_response_for_system_tags( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) with self.assertRaises(ItemNotReturned) as cm: inventory_service_interface.fetch_systems_with_profiles( systems_to_fetch, "my-auth-key", self.mock_logger, self.mock_counters ) self.assertEqual( cm.exception.message, "ids [269a3da8-262f-11e9-8ee5-c85b761454fa] not available to display", ) @responses.activate def test_fetch_systems_backend_service_error(self): systems_to_fetch = [ "243926fa-262f-11e9-a632-c85b761454fa", "264fb5b2-262f-11e9-9b12-c85b761454fa", "269a3da8-262f-11e9-8ee5-c85b761454fa", ] self._create_500_response_for_systems( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) self._create_500_response_for_system_profiles( "inventory_svc_url_is_not_set", ",".join(systems_to_fetch) ) with self.assertRaises(ServiceError) as cm: inventory_service_interface.fetch_systems_with_profiles( systems_to_fetch, "my-auth-key", self.mock_logger, self.mock_counters ) self.assertEqual(cm.exception.message, "Error received from backend service")
StarcoderdataPython
3379031
<gh_stars>1-10 """conf URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from common.views import SidebarView from django.conf import settings # from drf_spectacular.views import SpectacularAPIView, SpectacularRedocView, SpectacularSwaggerView from django.conf.urls.static import static from django.contrib import admin from django.conf.urls import url from django.urls import include, path, re_path from django.views.generic import TemplateView from drf_yasg.views import get_schema_view from drf_yasg import openapi from rest_framework import permissions SchemaView = get_schema_view( openapi.Info( title="Progress Tracker API", default_version="1.0.0", description="Tracks the progress of past interns", # terms_of_service="https://www.google.com/policies/terms/", # contact=openapi.Contact(email="<EMAIL>"), # license=openapi.License(name="BSD License"), ), public=True, permission_classes=(permissions.AllowAny,), ) urlpatterns = [ path("admin/", admin.site.urls), path("api/v1/", include("common.urls")), path("api/v1/", include("syncapp.urls")), path("api/v1/", include("deals.urls")), path("api/v1/", include("prospect.urls")), path("api/v1/", include("email_template.urls")), # path("api/v1/api-auth/", include("rest_framework.urls")), path("sidebar", SidebarView.as_view(), name="sidebar"), # DOCUMENTATION # path('api/v1/schema/', SpectacularAPIView.as_view(), name='schema'), # path('api/v1/swagger-docs/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'), # path('api/v1/redoc/', SpectacularRedocView.as_view(url_name='schema'), name='redoc'), ] # urlpatterns += static("zuri-root-config.js", document_root="react-spa/dist/zuri-root-config.js") # urlpatterns += static("/static/zuri-zuri-plugin-company-sales-prospects.js", document_root="react-spa/epictetus/dist/zuri-zuri-plugin-company-sales-prospects.js") urlpatterns += [ url( r"^swagger(?P<format>\.json|\.yaml)$", SchemaView.without_ui(cache_timeout=0), name="schema-json", ), url( r"^api/v1/docs/$", SchemaView.with_ui("swagger", cache_timeout=0), name="schema-swagger-ui", ), url( r"^redoc/$", SchemaView.with_ui("redoc", cache_timeout=0), name="schema-redoc" ), ] urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += [re_path(r"^.*", TemplateView.as_view(template_name="index.html"))]
StarcoderdataPython
3218274
<reponame>pl8787/textnet-release #-*-coding:utf8-*- import copy, os from gen_conf_file import * from dataset_cfg import * def gen_gate_bilstm(d_mem, init, lr, dataset): # print "ORC: left & right lstm share parameters" is_share = False net = {} # dataset = 'tb_fine' # dataset = 'mr' if dataset == 'mr': net['cross_validation'] = 10 ds = DatasetCfg(dataset) g_filler = gen_uniform_filter_setting(init) zero_filler = gen_zero_filter_setting() # g_updater = gen_adadelta_setting() g_updater = gen_adagrad_setting(lr = lr, l2 = 0., batch_size = ds.train_batch_size) g_layer_setting = {} g_layer_setting['no_bias'] = True g_layer_setting['w_filler'] = g_filler g_layer_setting['u_filler'] = g_filler g_layer_setting['b_filler'] = zero_filler g_layer_setting['w_updater'] = g_updater g_layer_setting['u_updater'] = g_updater g_layer_setting['b_updater'] = g_updater net['net_name'] = 'gate_bilstm' net['need_reshape'] = True net_cfg_train, net_cfg_valid, net_cfg_test = {}, {}, {} net['net_config'] = [net_cfg_train, net_cfg_valid, net_cfg_test] net_cfg_train["tag"] = "Train" net_cfg_train["max_iters"] = (ds.n_train * 10)/ ds.train_batch_size net_cfg_train["display_interval"] = (ds.n_train/ds.train_batch_size)/300 net_cfg_train["out_nodes"] = ['acc'] net_cfg_valid["tag"] = "Valid" net_cfg_valid["max_iters"] = int(ds.n_valid/ds.valid_batch_size) net_cfg_valid["display_interval"] = (ds.n_train/ds.train_batch_size)/3 net_cfg_valid["out_nodes"] = ['acc'] net_cfg_test["tag"] = "Test" net_cfg_test["max_iters"] = int(ds.n_test/ds.test_batch_size) net_cfg_test["display_interval"] = (ds.n_train/ds.train_batch_size)/3 net_cfg_test["out_nodes"] = ['acc'] layers = [] net['layers'] = layers layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['y', 'x'] layer['layer_name'] = 'train_data' layer['layer_type'] = 72 layer['tag'] = ['Train'] setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['batch_size'] = ds.train_batch_size setting['data_file'] = ds.train_data_file setting['max_doc_len'] = ds.max_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['y', 'x'] layer['layer_name'] = 'valid_data' layer['layer_type'] = 72 layer['tag'] = ['Valid'] setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['batch_size'] = ds.valid_batch_size setting['data_file'] = ds.valid_data_file setting['max_doc_len'] = ds.max_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = [] layer['top_nodes'] = ['y', 'x'] layer['layer_name'] = 'test_data' layer['layer_type'] = 72 layer['tag'] = ['Test'] setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['batch_size'] = ds.test_batch_size setting['data_file'] = ds.test_data_file setting['max_doc_len'] = ds.max_doc_len layer = {} layers.append(layer) layer['bottom_nodes'] = ['x'] layer['top_nodes'] = ['word_rep_seq'] layer['layer_name'] = 'embedding' layer['layer_type'] = 21 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['embedding_file'] = ds.embedding_file setting['feat_size'] = ds.d_word_rep setting['word_count'] = ds.vocab_size layer = {} layers.append(layer) layer['bottom_nodes'] = ['word_rep_seq'] layer['top_nodes'] = ['l_lstm_seq'] layer['layer_name'] = 'l_lstm' layer['layer_type'] = 24 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['d_mem'] = d_mem setting['reverse'] = False layer = {} layers.append(layer) layer['bottom_nodes'] = ['word_rep_seq'] layer['top_nodes'] = ['r_lstm_seq'] layer['layer_name'] = 'r_lstm' layer['layer_type'] = 24 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['d_mem'] = d_mem setting['reverse'] = True if is_share: print "ORC: share parameters." share_setting_w = {} share_setting_w['param_id'] = 0 share_setting_w['source_layer_name'] = 'l_lstm' share_setting_w['source_param_id'] = 0 share_setting_u = {} share_setting_u['param_id'] = 1 share_setting_u['source_layer_name'] = 'l_lstm' share_setting_u['source_param_id'] = 1 share_setting_b = {} share_setting_b['param_id'] = 2 share_setting_b['source_layer_name'] = 'l_lstm' share_setting_b['source_param_id'] = 2 setting['share'] = [share_setting_w, share_setting_u, share_setting_b] layer = {} layers.append(layer) layer['bottom_nodes'] = ['l_lstm_seq', 'r_lstm_seq'] layer['top_nodes'] = ['bi_lstm_seq'] layer['layer_name'] = 'concat' layer['layer_type'] = 18 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['bottom_node_num'] = 2 setting['concat_dim_index'] = 3 layer = {} layers.append(layer) layer['bottom_nodes'] = ['bi_lstm_seq'] layer['top_nodes'] = ['drop_rep'] layer['layer_name'] = 'dropout' layer['layer_type'] = 13 setting = {'rate':ds.dp_rate} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['drop_rep'] layer['top_nodes'] = ['pos_score'] layer['layer_name'] = 'dim_reduction_for_softmax' layer['layer_type'] = 28 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['num_hidden'] = ds.num_class layer = {} layers.append(layer) layer['bottom_nodes'] = ['pos_score'] layer['top_nodes'] = ['pos_prob'] layer['layer_name'] = 'softmax_func' layer['layer_type'] = 37 # softmax_func setting = {"axis":3} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['drop_rep'] layer['top_nodes'] = ['pos_weight_score'] layer['layer_name'] = 'dim_reduction_for_weight' layer['layer_type'] = 28 setting = copy.deepcopy(g_layer_setting) layer['setting'] = setting setting['num_hidden'] = 1 layer = {} layers.append(layer) layer['bottom_nodes'] = ['pos_weight_score'] layer['top_nodes'] = ['pos_weight_prob'] layer['layer_name'] = 'weight_softmax' layer['layer_type'] = 38 # softmax_func_var_len setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['pos_weight_prob', 'pos_prob'] layer['top_nodes'] = ['pos_prob_reweight'] layer['layer_name'] = 'weight_product' layer['layer_type'] = 35 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['pos_prob_reweight'] layer['top_nodes'] = ['final_prob'] layer['layer_name'] = 'sum' layer['layer_type'] = 39 setting = {"axis":2} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['final_prob', 'y'] layer['top_nodes'] = ['loss'] layer['layer_name'] = 'cross_entropy' layer['layer_type'] = 57 setting = {} layer['setting'] = setting layer = {} layers.append(layer) layer['bottom_nodes'] = ['final_prob', 'y'] layer['top_nodes'] = ['acc'] layer['layer_name'] = 'accuracy' layer['layer_type'] = 56 setting = {'topk':1} layer['setting'] = setting return net for dataset in ['tb_binary']: for d_mem in [50]: idx = 0 for init in [0.03]: # for lr in [0.3, 0.1, 0.03, 0.01, 0.003, 0.001]: for lr in [0.001]: net = gen_gate_bilstm(d_mem = d_mem, init = init, lr =lr, dataset=dataset) net['log'] = 'log.bilstm.max.{0}.d{1}.{2}'.format(dataset, str(d_mem), str(idx)) # gen_conf_file(net, '/home/wsx/exp/tb/log/run.3/bilstm.max.tb_fine.model.' + str(idx)) gen_conf_file(net, '/home/wsx/exp/gate/lstm/run.10/model.bilstm.gate.{0}.d{1}.{2}'.format(dataset, str(d_mem), str(idx))) idx += 1 # os.system("../bin/textnet ../bin/conv_lstm_simulation.model > ../bin/simulation/neg.gen.train.{0}".format(d_mem))
StarcoderdataPython
1778921
from enum import Enum import tkinter as tk from ..translator import Translator from ..resources import get_resource_path from ..updater.SimpleSemVer import SimpleSemVer class UpdateType(Enum): App = 0 Skills = 1 AppLanguage = 2 SkillCorrections = 3 class AskUpdate(tk.Toplevel): def __init__( self, parent, _: Translator, update_type: UpdateType, local: SimpleSemVer, remote: SimpleSemVer, ): super().__init__(parent) self._ = _ self.title(_("new-version")) try: icon = get_resource_path("ICON") self.iconbitmap(icon) except: pass self.answer = False self.message = self.build_message(update_type, local, remote, self._) self.lang_lbl = tk.Label(self, text=self.message) self.yes_btn = tk.Button(self, text=_("yes"), command=self.yes) self.no_btn = tk.Button(self, text=_("no"), command=self.no) self.lang_lbl.grid(row=0, columnspan=2) self.yes_btn.grid(row=1, column=0, sticky="e") self.no_btn.grid(row=1, column=1, sticky="w") def build_message(self, update_type, local, remote, _): return _( { UpdateType.App: "new-app-update", UpdateType.Skills: "new-skill-update", UpdateType.AppLanguage: "new-app-language-update", UpdateType.SkillCorrections: "new-skill-correction-update", }[update_type] ).format(local, remote) def yes(self): self.answer = True self.destroy() def no(self): self.answer = False self.destroy()
StarcoderdataPython
1738986
<gh_stars>1-10 # -*- coding: utf-8 -*- # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ibm_cloud_sdk_core.authenticators.no_auth_authenticator import NoAuthAuthenticator import inspect import json import pytest import re import requests import responses from ibm_cloud_networking_services.zone_rate_limits_v1 import * crn = 'testString' zone_identifier = 'testString' service = ZoneRateLimitsV1( authenticator=NoAuthAuthenticator(), crn=crn, zone_identifier=zone_identifier ) base_url = 'https://api.cis.cloud.ibm.com' service.set_service_url(base_url) ############################################################################## # Start of Service: ZoneRateLimits ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for list_all_zone_rate_limits #----------------------------------------------------------------------------- class TestListAllZoneRateLimits(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # list_all_zone_rate_limits() #-------------------------------------------------------- @responses.activate def test_list_all_zone_rate_limits_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": [{"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}], "result_info": {"page": 1, "per_page": 10, "count": 1, "total_count": 1}}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values page = 38 per_page = 5 # Invoke method response = service.list_all_zone_rate_limits( page=page, per_page=per_page, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate query params query_string = responses.calls[0].request.url.split('?',1)[1] query_string = requests.utils.unquote(query_string) assert 'page={}'.format(page) in query_string assert 'per_page={}'.format(per_page) in query_string #-------------------------------------------------------- # test_list_all_zone_rate_limits_required_params() #-------------------------------------------------------- @responses.activate def test_list_all_zone_rate_limits_required_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": [{"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}], "result_info": {"page": 1, "per_page": 10, "count": 1, "total_count": 1}}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.list_all_zone_rate_limits() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_list_all_zone_rate_limits_value_error() #-------------------------------------------------------- @responses.activate def test_list_all_zone_rate_limits_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": [{"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}], "result_info": {"page": 1, "per_page": 10, "count": 1, "total_count": 1}}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Pass in all but one required param and check for a ValueError req_param_dict = { } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.list_all_zone_rate_limits(**req_copy) #----------------------------------------------------------------------------- # Test Class for create_zone_rate_limits #----------------------------------------------------------------------------- class TestCreateZoneRateLimits(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # create_zone_rate_limits() #-------------------------------------------------------- @responses.activate def test_create_zone_rate_limits_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.POST, url, body=mock_response, content_type='application/json', status=200) # Construct a dict representation of a RatelimitInputActionResponse model ratelimit_input_action_response_model = {} ratelimit_input_action_response_model['content_type'] = 'text/plain' ratelimit_input_action_response_model['body'] = 'This request has been rate-limited.' # Construct a dict representation of a RatelimitInputAction model ratelimit_input_action_model = {} ratelimit_input_action_model['mode'] = 'simulate' ratelimit_input_action_model['timeout'] = 60 ratelimit_input_action_model['response'] = ratelimit_input_action_response_model # Construct a dict representation of a RatelimitInputMatchResponseHeadersItem model ratelimit_input_match_response_headers_item_model = {} ratelimit_input_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_input_match_response_headers_item_model['op'] = 'ne' ratelimit_input_match_response_headers_item_model['value'] = 'HIT' # Construct a dict representation of a RatelimitInputMatchRequest model ratelimit_input_match_request_model = {} ratelimit_input_match_request_model['methods'] = ['GET'] ratelimit_input_match_request_model['schemes'] = ['HTTP'] ratelimit_input_match_request_model['url'] = '*.example.org/path*' # Construct a dict representation of a RatelimitInputMatchResponse model ratelimit_input_match_response_model = {} ratelimit_input_match_response_model['status'] = [403] ratelimit_input_match_response_model['headers'] = [ratelimit_input_match_response_headers_item_model] ratelimit_input_match_response_model['origin_traffic'] = False # Construct a dict representation of a RatelimitInputMatch model ratelimit_input_match_model = {} ratelimit_input_match_model['request'] = ratelimit_input_match_request_model ratelimit_input_match_model['response'] = ratelimit_input_match_response_model # Construct a dict representation of a RatelimitInputBypassItem model ratelimit_input_bypass_item_model = {} ratelimit_input_bypass_item_model['name'] = 'url' ratelimit_input_bypass_item_model['value'] = 'api.example.com/*' # Construct a dict representation of a RatelimitInputCorrelate model ratelimit_input_correlate_model = {} ratelimit_input_correlate_model['by'] = 'nat' # Set up parameter values threshold = 1000 period = 60 action = ratelimit_input_action_model match = ratelimit_input_match_model disabled = False description = 'Prevent multiple login failures to mitigate brute force attacks' bypass = [ratelimit_input_bypass_item_model] correlate = ratelimit_input_correlate_model # Invoke method response = service.create_zone_rate_limits( threshold=threshold, period=period, action=action, match=match, disabled=disabled, description=description, bypass=bypass, correlate=correlate, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate body params req_body = json.loads(str(responses.calls[0].request.body, 'utf-8')) assert req_body['threshold'] == 1000 assert req_body['period'] == 60 assert req_body['action'] == ratelimit_input_action_model assert req_body['match'] == ratelimit_input_match_model assert req_body['disabled'] == False assert req_body['description'] == 'Prevent multiple login failures to mitigate brute force attacks' assert req_body['bypass'] == [ratelimit_input_bypass_item_model] assert req_body['correlate'] == ratelimit_input_correlate_model #-------------------------------------------------------- # test_create_zone_rate_limits_required_params() #-------------------------------------------------------- @responses.activate def test_create_zone_rate_limits_required_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.POST, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.create_zone_rate_limits() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_create_zone_rate_limits_value_error() #-------------------------------------------------------- @responses.activate def test_create_zone_rate_limits_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.POST, url, body=mock_response, content_type='application/json', status=200) # Pass in all but one required param and check for a ValueError req_param_dict = { } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.create_zone_rate_limits(**req_copy) #----------------------------------------------------------------------------- # Test Class for delete_zone_rate_limit #----------------------------------------------------------------------------- class TestDeleteZoneRateLimit(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # delete_zone_rate_limit() #-------------------------------------------------------- @responses.activate def test_delete_zone_rate_limit_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "f1aba936b94213e5b8dca0c0dbf1f9cc"}}' responses.add(responses.DELETE, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Invoke method response = service.delete_zone_rate_limit( rate_limit_identifier, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_delete_zone_rate_limit_value_error() #-------------------------------------------------------- @responses.activate def test_delete_zone_rate_limit_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "f1aba936b94213e5b8dca0c0dbf1f9cc"}}' responses.add(responses.DELETE, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "rate_limit_identifier": rate_limit_identifier, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.delete_zone_rate_limit(**req_copy) #----------------------------------------------------------------------------- # Test Class for get_rate_limit #----------------------------------------------------------------------------- class TestGetRateLimit(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # get_rate_limit() #-------------------------------------------------------- @responses.activate def test_get_rate_limit_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Invoke method response = service.get_rate_limit( rate_limit_identifier, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_get_rate_limit_value_error() #-------------------------------------------------------- @responses.activate def test_get_rate_limit_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "rate_limit_identifier": rate_limit_identifier, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.get_rate_limit(**req_copy) #----------------------------------------------------------------------------- # Test Class for update_rate_limit #----------------------------------------------------------------------------- class TestUpdateRateLimit(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # update_rate_limit() #-------------------------------------------------------- @responses.activate def test_update_rate_limit_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.PUT, url, body=mock_response, content_type='application/json', status=200) # Construct a dict representation of a RatelimitInputActionResponse model ratelimit_input_action_response_model = {} ratelimit_input_action_response_model['content_type'] = 'text/plain' ratelimit_input_action_response_model['body'] = 'This request has been rate-limited.' # Construct a dict representation of a RatelimitInputAction model ratelimit_input_action_model = {} ratelimit_input_action_model['mode'] = 'simulate' ratelimit_input_action_model['timeout'] = 60 ratelimit_input_action_model['response'] = ratelimit_input_action_response_model # Construct a dict representation of a RatelimitInputMatchResponseHeadersItem model ratelimit_input_match_response_headers_item_model = {} ratelimit_input_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_input_match_response_headers_item_model['op'] = 'ne' ratelimit_input_match_response_headers_item_model['value'] = 'HIT' # Construct a dict representation of a RatelimitInputMatchRequest model ratelimit_input_match_request_model = {} ratelimit_input_match_request_model['methods'] = ['GET'] ratelimit_input_match_request_model['schemes'] = ['HTTP'] ratelimit_input_match_request_model['url'] = '*.example.org/path*' # Construct a dict representation of a RatelimitInputMatchResponse model ratelimit_input_match_response_model = {} ratelimit_input_match_response_model['status'] = [403] ratelimit_input_match_response_model['headers'] = [ratelimit_input_match_response_headers_item_model] ratelimit_input_match_response_model['origin_traffic'] = False # Construct a dict representation of a RatelimitInputMatch model ratelimit_input_match_model = {} ratelimit_input_match_model['request'] = ratelimit_input_match_request_model ratelimit_input_match_model['response'] = ratelimit_input_match_response_model # Construct a dict representation of a RatelimitInputBypassItem model ratelimit_input_bypass_item_model = {} ratelimit_input_bypass_item_model['name'] = 'url' ratelimit_input_bypass_item_model['value'] = 'api.example.com/*' # Construct a dict representation of a RatelimitInputCorrelate model ratelimit_input_correlate_model = {} ratelimit_input_correlate_model['by'] = 'nat' # Set up parameter values rate_limit_identifier = 'testString' threshold = 1000 period = 60 action = ratelimit_input_action_model match = ratelimit_input_match_model disabled = False description = 'Prevent multiple login failures to mitigate brute force attacks' bypass = [ratelimit_input_bypass_item_model] correlate = ratelimit_input_correlate_model # Invoke method response = service.update_rate_limit( rate_limit_identifier, threshold=threshold, period=period, action=action, match=match, disabled=disabled, description=description, bypass=bypass, correlate=correlate, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate body params req_body = json.loads(str(responses.calls[0].request.body, 'utf-8')) assert req_body['threshold'] == 1000 assert req_body['period'] == 60 assert req_body['action'] == ratelimit_input_action_model assert req_body['match'] == ratelimit_input_match_model assert req_body['disabled'] == False assert req_body['description'] == 'Prevent multiple login failures to mitigate brute force attacks' assert req_body['bypass'] == [ratelimit_input_bypass_item_model] assert req_body['correlate'] == ratelimit_input_correlate_model #-------------------------------------------------------- # test_update_rate_limit_required_params() #-------------------------------------------------------- @responses.activate def test_update_rate_limit_required_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.PUT, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Invoke method response = service.update_rate_limit( rate_limit_identifier, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_update_rate_limit_value_error() #-------------------------------------------------------- @responses.activate def test_update_rate_limit_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/rate_limits/testString') mock_response = '{"success": true, "errors": [["[]"]], "messages": [["[]"]], "result": {"id": "92f17202ed8bd63d69a66b86a49a8f6b", "disabled": false, "description": "Prevent multiple login failures to mitigate brute force attacks", "bypass": [{"name": "url", "value": "example.com/*"}], "threshold": 1000, "period": 60, "correlate": {"by": "nat"}, "action": {"mode": "simulate", "timeout": 60, "response": {"content_type": "text/plain", "body": "This request has been rate-limited."}}, "match": {"request": {"methods": ["_ALL_"], "schemes": ["_ALL_"], "url": "*.example.org/path*"}, "response": {"status": [403], "headers": [{"name": "Cf-Cache-Status", "op": "ne", "value": "HIT"}], "origin_traffic": false}}}}' responses.add(responses.PUT, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values rate_limit_identifier = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "rate_limit_identifier": rate_limit_identifier, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.update_rate_limit(**req_copy) # endregion ############################################################################## # End of Service: ZoneRateLimits ############################################################################## ############################################################################## # Start of Model Tests ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for DeleteRateLimitRespResult #----------------------------------------------------------------------------- class TestDeleteRateLimitRespResult(): #-------------------------------------------------------- # Test serialization/deserialization for DeleteRateLimitRespResult #-------------------------------------------------------- def test_delete_rate_limit_resp_result_serialization(self): # Construct a json representation of a DeleteRateLimitRespResult model delete_rate_limit_resp_result_model_json = {} delete_rate_limit_resp_result_model_json['id'] = 'f1aba936b94213e5b8dca0c0dbf1f9cc' # Construct a model instance of DeleteRateLimitRespResult by calling from_dict on the json representation delete_rate_limit_resp_result_model = DeleteRateLimitRespResult.from_dict(delete_rate_limit_resp_result_model_json) assert delete_rate_limit_resp_result_model != False # Construct a model instance of DeleteRateLimitRespResult by calling from_dict on the json representation delete_rate_limit_resp_result_model_dict = DeleteRateLimitRespResult.from_dict(delete_rate_limit_resp_result_model_json).__dict__ delete_rate_limit_resp_result_model2 = DeleteRateLimitRespResult(**delete_rate_limit_resp_result_model_dict) # Verify the model instances are equivalent assert delete_rate_limit_resp_result_model == delete_rate_limit_resp_result_model2 # Convert model instance back to dict and verify no loss of data delete_rate_limit_resp_result_model_json2 = delete_rate_limit_resp_result_model.to_dict() assert delete_rate_limit_resp_result_model_json2 == delete_rate_limit_resp_result_model_json #----------------------------------------------------------------------------- # Test Class for ListRatelimitRespResultInfo #----------------------------------------------------------------------------- class TestListRatelimitRespResultInfo(): #-------------------------------------------------------- # Test serialization/deserialization for ListRatelimitRespResultInfo #-------------------------------------------------------- def test_list_ratelimit_resp_result_info_serialization(self): # Construct a json representation of a ListRatelimitRespResultInfo model list_ratelimit_resp_result_info_model_json = {} list_ratelimit_resp_result_info_model_json['page'] = 1 list_ratelimit_resp_result_info_model_json['per_page'] = 10 list_ratelimit_resp_result_info_model_json['count'] = 1 list_ratelimit_resp_result_info_model_json['total_count'] = 1 # Construct a model instance of ListRatelimitRespResultInfo by calling from_dict on the json representation list_ratelimit_resp_result_info_model = ListRatelimitRespResultInfo.from_dict(list_ratelimit_resp_result_info_model_json) assert list_ratelimit_resp_result_info_model != False # Construct a model instance of ListRatelimitRespResultInfo by calling from_dict on the json representation list_ratelimit_resp_result_info_model_dict = ListRatelimitRespResultInfo.from_dict(list_ratelimit_resp_result_info_model_json).__dict__ list_ratelimit_resp_result_info_model2 = ListRatelimitRespResultInfo(**list_ratelimit_resp_result_info_model_dict) # Verify the model instances are equivalent assert list_ratelimit_resp_result_info_model == list_ratelimit_resp_result_info_model2 # Convert model instance back to dict and verify no loss of data list_ratelimit_resp_result_info_model_json2 = list_ratelimit_resp_result_info_model.to_dict() assert list_ratelimit_resp_result_info_model_json2 == list_ratelimit_resp_result_info_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputAction #----------------------------------------------------------------------------- class TestRatelimitInputAction(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputAction #-------------------------------------------------------- def test_ratelimit_input_action_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_input_action_response_model = {} # RatelimitInputActionResponse ratelimit_input_action_response_model['content_type'] = 'text/plain' ratelimit_input_action_response_model['body'] = 'This request has been rate-limited.' # Construct a json representation of a RatelimitInputAction model ratelimit_input_action_model_json = {} ratelimit_input_action_model_json['mode'] = 'simulate' ratelimit_input_action_model_json['timeout'] = 60 ratelimit_input_action_model_json['response'] = ratelimit_input_action_response_model # Construct a model instance of RatelimitInputAction by calling from_dict on the json representation ratelimit_input_action_model = RatelimitInputAction.from_dict(ratelimit_input_action_model_json) assert ratelimit_input_action_model != False # Construct a model instance of RatelimitInputAction by calling from_dict on the json representation ratelimit_input_action_model_dict = RatelimitInputAction.from_dict(ratelimit_input_action_model_json).__dict__ ratelimit_input_action_model2 = RatelimitInputAction(**ratelimit_input_action_model_dict) # Verify the model instances are equivalent assert ratelimit_input_action_model == ratelimit_input_action_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_action_model_json2 = ratelimit_input_action_model.to_dict() assert ratelimit_input_action_model_json2 == ratelimit_input_action_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputActionResponse #----------------------------------------------------------------------------- class TestRatelimitInputActionResponse(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputActionResponse #-------------------------------------------------------- def test_ratelimit_input_action_response_serialization(self): # Construct a json representation of a RatelimitInputActionResponse model ratelimit_input_action_response_model_json = {} ratelimit_input_action_response_model_json['content_type'] = 'text/plain' ratelimit_input_action_response_model_json['body'] = 'This request has been rate-limited.' # Construct a model instance of RatelimitInputActionResponse by calling from_dict on the json representation ratelimit_input_action_response_model = RatelimitInputActionResponse.from_dict(ratelimit_input_action_response_model_json) assert ratelimit_input_action_response_model != False # Construct a model instance of RatelimitInputActionResponse by calling from_dict on the json representation ratelimit_input_action_response_model_dict = RatelimitInputActionResponse.from_dict(ratelimit_input_action_response_model_json).__dict__ ratelimit_input_action_response_model2 = RatelimitInputActionResponse(**ratelimit_input_action_response_model_dict) # Verify the model instances are equivalent assert ratelimit_input_action_response_model == ratelimit_input_action_response_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_action_response_model_json2 = ratelimit_input_action_response_model.to_dict() assert ratelimit_input_action_response_model_json2 == ratelimit_input_action_response_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputBypassItem #----------------------------------------------------------------------------- class TestRatelimitInputBypassItem(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputBypassItem #-------------------------------------------------------- def test_ratelimit_input_bypass_item_serialization(self): # Construct a json representation of a RatelimitInputBypassItem model ratelimit_input_bypass_item_model_json = {} ratelimit_input_bypass_item_model_json['name'] = 'url' ratelimit_input_bypass_item_model_json['value'] = 'api.example.com/*' # Construct a model instance of RatelimitInputBypassItem by calling from_dict on the json representation ratelimit_input_bypass_item_model = RatelimitInputBypassItem.from_dict(ratelimit_input_bypass_item_model_json) assert ratelimit_input_bypass_item_model != False # Construct a model instance of RatelimitInputBypassItem by calling from_dict on the json representation ratelimit_input_bypass_item_model_dict = RatelimitInputBypassItem.from_dict(ratelimit_input_bypass_item_model_json).__dict__ ratelimit_input_bypass_item_model2 = RatelimitInputBypassItem(**ratelimit_input_bypass_item_model_dict) # Verify the model instances are equivalent assert ratelimit_input_bypass_item_model == ratelimit_input_bypass_item_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_bypass_item_model_json2 = ratelimit_input_bypass_item_model.to_dict() assert ratelimit_input_bypass_item_model_json2 == ratelimit_input_bypass_item_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputCorrelate #----------------------------------------------------------------------------- class TestRatelimitInputCorrelate(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputCorrelate #-------------------------------------------------------- def test_ratelimit_input_correlate_serialization(self): # Construct a json representation of a RatelimitInputCorrelate model ratelimit_input_correlate_model_json = {} ratelimit_input_correlate_model_json['by'] = 'nat' # Construct a model instance of RatelimitInputCorrelate by calling from_dict on the json representation ratelimit_input_correlate_model = RatelimitInputCorrelate.from_dict(ratelimit_input_correlate_model_json) assert ratelimit_input_correlate_model != False # Construct a model instance of RatelimitInputCorrelate by calling from_dict on the json representation ratelimit_input_correlate_model_dict = RatelimitInputCorrelate.from_dict(ratelimit_input_correlate_model_json).__dict__ ratelimit_input_correlate_model2 = RatelimitInputCorrelate(**ratelimit_input_correlate_model_dict) # Verify the model instances are equivalent assert ratelimit_input_correlate_model == ratelimit_input_correlate_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_correlate_model_json2 = ratelimit_input_correlate_model.to_dict() assert ratelimit_input_correlate_model_json2 == ratelimit_input_correlate_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputMatch #----------------------------------------------------------------------------- class TestRatelimitInputMatch(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputMatch #-------------------------------------------------------- def test_ratelimit_input_match_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_input_match_response_headers_item_model = {} # RatelimitInputMatchResponseHeadersItem ratelimit_input_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_input_match_response_headers_item_model['op'] = 'ne' ratelimit_input_match_response_headers_item_model['value'] = 'HIT' ratelimit_input_match_request_model = {} # RatelimitInputMatchRequest ratelimit_input_match_request_model['methods'] = ['GET'] ratelimit_input_match_request_model['schemes'] = ['HTTP'] ratelimit_input_match_request_model['url'] = '*.example.org/path*' ratelimit_input_match_response_model = {} # RatelimitInputMatchResponse ratelimit_input_match_response_model['status'] = [403] ratelimit_input_match_response_model['headers'] = [ratelimit_input_match_response_headers_item_model] ratelimit_input_match_response_model['origin_traffic'] = False # Construct a json representation of a RatelimitInputMatch model ratelimit_input_match_model_json = {} ratelimit_input_match_model_json['request'] = ratelimit_input_match_request_model ratelimit_input_match_model_json['response'] = ratelimit_input_match_response_model # Construct a model instance of RatelimitInputMatch by calling from_dict on the json representation ratelimit_input_match_model = RatelimitInputMatch.from_dict(ratelimit_input_match_model_json) assert ratelimit_input_match_model != False # Construct a model instance of RatelimitInputMatch by calling from_dict on the json representation ratelimit_input_match_model_dict = RatelimitInputMatch.from_dict(ratelimit_input_match_model_json).__dict__ ratelimit_input_match_model2 = RatelimitInputMatch(**ratelimit_input_match_model_dict) # Verify the model instances are equivalent assert ratelimit_input_match_model == ratelimit_input_match_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_match_model_json2 = ratelimit_input_match_model.to_dict() assert ratelimit_input_match_model_json2 == ratelimit_input_match_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputMatchRequest #----------------------------------------------------------------------------- class TestRatelimitInputMatchRequest(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputMatchRequest #-------------------------------------------------------- def test_ratelimit_input_match_request_serialization(self): # Construct a json representation of a RatelimitInputMatchRequest model ratelimit_input_match_request_model_json = {} ratelimit_input_match_request_model_json['methods'] = ['GET'] ratelimit_input_match_request_model_json['schemes'] = ['HTTP'] ratelimit_input_match_request_model_json['url'] = '*.example.org/path*' # Construct a model instance of RatelimitInputMatchRequest by calling from_dict on the json representation ratelimit_input_match_request_model = RatelimitInputMatchRequest.from_dict(ratelimit_input_match_request_model_json) assert ratelimit_input_match_request_model != False # Construct a model instance of RatelimitInputMatchRequest by calling from_dict on the json representation ratelimit_input_match_request_model_dict = RatelimitInputMatchRequest.from_dict(ratelimit_input_match_request_model_json).__dict__ ratelimit_input_match_request_model2 = RatelimitInputMatchRequest(**ratelimit_input_match_request_model_dict) # Verify the model instances are equivalent assert ratelimit_input_match_request_model == ratelimit_input_match_request_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_match_request_model_json2 = ratelimit_input_match_request_model.to_dict() assert ratelimit_input_match_request_model_json2 == ratelimit_input_match_request_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputMatchResponse #----------------------------------------------------------------------------- class TestRatelimitInputMatchResponse(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputMatchResponse #-------------------------------------------------------- def test_ratelimit_input_match_response_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_input_match_response_headers_item_model = {} # RatelimitInputMatchResponseHeadersItem ratelimit_input_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_input_match_response_headers_item_model['op'] = 'ne' ratelimit_input_match_response_headers_item_model['value'] = 'HIT' # Construct a json representation of a RatelimitInputMatchResponse model ratelimit_input_match_response_model_json = {} ratelimit_input_match_response_model_json['status'] = [403] ratelimit_input_match_response_model_json['headers'] = [ratelimit_input_match_response_headers_item_model] ratelimit_input_match_response_model_json['origin_traffic'] = False # Construct a model instance of RatelimitInputMatchResponse by calling from_dict on the json representation ratelimit_input_match_response_model = RatelimitInputMatchResponse.from_dict(ratelimit_input_match_response_model_json) assert ratelimit_input_match_response_model != False # Construct a model instance of RatelimitInputMatchResponse by calling from_dict on the json representation ratelimit_input_match_response_model_dict = RatelimitInputMatchResponse.from_dict(ratelimit_input_match_response_model_json).__dict__ ratelimit_input_match_response_model2 = RatelimitInputMatchResponse(**ratelimit_input_match_response_model_dict) # Verify the model instances are equivalent assert ratelimit_input_match_response_model == ratelimit_input_match_response_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_match_response_model_json2 = ratelimit_input_match_response_model.to_dict() assert ratelimit_input_match_response_model_json2 == ratelimit_input_match_response_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitInputMatchResponseHeadersItem #----------------------------------------------------------------------------- class TestRatelimitInputMatchResponseHeadersItem(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitInputMatchResponseHeadersItem #-------------------------------------------------------- def test_ratelimit_input_match_response_headers_item_serialization(self): # Construct a json representation of a RatelimitInputMatchResponseHeadersItem model ratelimit_input_match_response_headers_item_model_json = {} ratelimit_input_match_response_headers_item_model_json['name'] = 'Cf-Cache-Status' ratelimit_input_match_response_headers_item_model_json['op'] = 'ne' ratelimit_input_match_response_headers_item_model_json['value'] = 'HIT' # Construct a model instance of RatelimitInputMatchResponseHeadersItem by calling from_dict on the json representation ratelimit_input_match_response_headers_item_model = RatelimitInputMatchResponseHeadersItem.from_dict(ratelimit_input_match_response_headers_item_model_json) assert ratelimit_input_match_response_headers_item_model != False # Construct a model instance of RatelimitInputMatchResponseHeadersItem by calling from_dict on the json representation ratelimit_input_match_response_headers_item_model_dict = RatelimitInputMatchResponseHeadersItem.from_dict(ratelimit_input_match_response_headers_item_model_json).__dict__ ratelimit_input_match_response_headers_item_model2 = RatelimitInputMatchResponseHeadersItem(**ratelimit_input_match_response_headers_item_model_dict) # Verify the model instances are equivalent assert ratelimit_input_match_response_headers_item_model == ratelimit_input_match_response_headers_item_model2 # Convert model instance back to dict and verify no loss of data ratelimit_input_match_response_headers_item_model_json2 = ratelimit_input_match_response_headers_item_model.to_dict() assert ratelimit_input_match_response_headers_item_model_json2 == ratelimit_input_match_response_headers_item_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectAction #----------------------------------------------------------------------------- class TestRatelimitObjectAction(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectAction #-------------------------------------------------------- def test_ratelimit_object_action_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_action_response_model = {} # RatelimitObjectActionResponse ratelimit_object_action_response_model['content_type'] = 'text/plain' ratelimit_object_action_response_model['body'] = 'This request has been rate-limited.' # Construct a json representation of a RatelimitObjectAction model ratelimit_object_action_model_json = {} ratelimit_object_action_model_json['mode'] = 'simulate' ratelimit_object_action_model_json['timeout'] = 60 ratelimit_object_action_model_json['response'] = ratelimit_object_action_response_model # Construct a model instance of RatelimitObjectAction by calling from_dict on the json representation ratelimit_object_action_model = RatelimitObjectAction.from_dict(ratelimit_object_action_model_json) assert ratelimit_object_action_model != False # Construct a model instance of RatelimitObjectAction by calling from_dict on the json representation ratelimit_object_action_model_dict = RatelimitObjectAction.from_dict(ratelimit_object_action_model_json).__dict__ ratelimit_object_action_model2 = RatelimitObjectAction(**ratelimit_object_action_model_dict) # Verify the model instances are equivalent assert ratelimit_object_action_model == ratelimit_object_action_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_action_model_json2 = ratelimit_object_action_model.to_dict() assert ratelimit_object_action_model_json2 == ratelimit_object_action_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectActionResponse #----------------------------------------------------------------------------- class TestRatelimitObjectActionResponse(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectActionResponse #-------------------------------------------------------- def test_ratelimit_object_action_response_serialization(self): # Construct a json representation of a RatelimitObjectActionResponse model ratelimit_object_action_response_model_json = {} ratelimit_object_action_response_model_json['content_type'] = 'text/plain' ratelimit_object_action_response_model_json['body'] = 'This request has been rate-limited.' # Construct a model instance of RatelimitObjectActionResponse by calling from_dict on the json representation ratelimit_object_action_response_model = RatelimitObjectActionResponse.from_dict(ratelimit_object_action_response_model_json) assert ratelimit_object_action_response_model != False # Construct a model instance of RatelimitObjectActionResponse by calling from_dict on the json representation ratelimit_object_action_response_model_dict = RatelimitObjectActionResponse.from_dict(ratelimit_object_action_response_model_json).__dict__ ratelimit_object_action_response_model2 = RatelimitObjectActionResponse(**ratelimit_object_action_response_model_dict) # Verify the model instances are equivalent assert ratelimit_object_action_response_model == ratelimit_object_action_response_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_action_response_model_json2 = ratelimit_object_action_response_model.to_dict() assert ratelimit_object_action_response_model_json2 == ratelimit_object_action_response_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectBypassItem #----------------------------------------------------------------------------- class TestRatelimitObjectBypassItem(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectBypassItem #-------------------------------------------------------- def test_ratelimit_object_bypass_item_serialization(self): # Construct a json representation of a RatelimitObjectBypassItem model ratelimit_object_bypass_item_model_json = {} ratelimit_object_bypass_item_model_json['name'] = 'url' ratelimit_object_bypass_item_model_json['value'] = 'example.com/*' # Construct a model instance of RatelimitObjectBypassItem by calling from_dict on the json representation ratelimit_object_bypass_item_model = RatelimitObjectBypassItem.from_dict(ratelimit_object_bypass_item_model_json) assert ratelimit_object_bypass_item_model != False # Construct a model instance of RatelimitObjectBypassItem by calling from_dict on the json representation ratelimit_object_bypass_item_model_dict = RatelimitObjectBypassItem.from_dict(ratelimit_object_bypass_item_model_json).__dict__ ratelimit_object_bypass_item_model2 = RatelimitObjectBypassItem(**ratelimit_object_bypass_item_model_dict) # Verify the model instances are equivalent assert ratelimit_object_bypass_item_model == ratelimit_object_bypass_item_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_bypass_item_model_json2 = ratelimit_object_bypass_item_model.to_dict() assert ratelimit_object_bypass_item_model_json2 == ratelimit_object_bypass_item_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectCorrelate #----------------------------------------------------------------------------- class TestRatelimitObjectCorrelate(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectCorrelate #-------------------------------------------------------- def test_ratelimit_object_correlate_serialization(self): # Construct a json representation of a RatelimitObjectCorrelate model ratelimit_object_correlate_model_json = {} ratelimit_object_correlate_model_json['by'] = 'nat' # Construct a model instance of RatelimitObjectCorrelate by calling from_dict on the json representation ratelimit_object_correlate_model = RatelimitObjectCorrelate.from_dict(ratelimit_object_correlate_model_json) assert ratelimit_object_correlate_model != False # Construct a model instance of RatelimitObjectCorrelate by calling from_dict on the json representation ratelimit_object_correlate_model_dict = RatelimitObjectCorrelate.from_dict(ratelimit_object_correlate_model_json).__dict__ ratelimit_object_correlate_model2 = RatelimitObjectCorrelate(**ratelimit_object_correlate_model_dict) # Verify the model instances are equivalent assert ratelimit_object_correlate_model == ratelimit_object_correlate_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_correlate_model_json2 = ratelimit_object_correlate_model.to_dict() assert ratelimit_object_correlate_model_json2 == ratelimit_object_correlate_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectMatch #----------------------------------------------------------------------------- class TestRatelimitObjectMatch(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectMatch #-------------------------------------------------------- def test_ratelimit_object_match_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_match_response_headers_item_model = {} # RatelimitObjectMatchResponseHeadersItem ratelimit_object_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model['op'] = 'ne' ratelimit_object_match_response_headers_item_model['value'] = 'HIT' ratelimit_object_match_request_model = {} # RatelimitObjectMatchRequest ratelimit_object_match_request_model['methods'] = ['_ALL_'] ratelimit_object_match_request_model['schemes'] = ['_ALL_'] ratelimit_object_match_request_model['url'] = '*.example.org/path*' ratelimit_object_match_response_model = {} # RatelimitObjectMatchResponse ratelimit_object_match_response_model['status'] = [403] ratelimit_object_match_response_model['headers'] = [ratelimit_object_match_response_headers_item_model] ratelimit_object_match_response_model['origin_traffic'] = False # Construct a json representation of a RatelimitObjectMatch model ratelimit_object_match_model_json = {} ratelimit_object_match_model_json['request'] = ratelimit_object_match_request_model ratelimit_object_match_model_json['response'] = ratelimit_object_match_response_model # Construct a model instance of RatelimitObjectMatch by calling from_dict on the json representation ratelimit_object_match_model = RatelimitObjectMatch.from_dict(ratelimit_object_match_model_json) assert ratelimit_object_match_model != False # Construct a model instance of RatelimitObjectMatch by calling from_dict on the json representation ratelimit_object_match_model_dict = RatelimitObjectMatch.from_dict(ratelimit_object_match_model_json).__dict__ ratelimit_object_match_model2 = RatelimitObjectMatch(**ratelimit_object_match_model_dict) # Verify the model instances are equivalent assert ratelimit_object_match_model == ratelimit_object_match_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_match_model_json2 = ratelimit_object_match_model.to_dict() assert ratelimit_object_match_model_json2 == ratelimit_object_match_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectMatchRequest #----------------------------------------------------------------------------- class TestRatelimitObjectMatchRequest(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectMatchRequest #-------------------------------------------------------- def test_ratelimit_object_match_request_serialization(self): # Construct a json representation of a RatelimitObjectMatchRequest model ratelimit_object_match_request_model_json = {} ratelimit_object_match_request_model_json['methods'] = ['_ALL_'] ratelimit_object_match_request_model_json['schemes'] = ['_ALL_'] ratelimit_object_match_request_model_json['url'] = '*.example.org/path*' # Construct a model instance of RatelimitObjectMatchRequest by calling from_dict on the json representation ratelimit_object_match_request_model = RatelimitObjectMatchRequest.from_dict(ratelimit_object_match_request_model_json) assert ratelimit_object_match_request_model != False # Construct a model instance of RatelimitObjectMatchRequest by calling from_dict on the json representation ratelimit_object_match_request_model_dict = RatelimitObjectMatchRequest.from_dict(ratelimit_object_match_request_model_json).__dict__ ratelimit_object_match_request_model2 = RatelimitObjectMatchRequest(**ratelimit_object_match_request_model_dict) # Verify the model instances are equivalent assert ratelimit_object_match_request_model == ratelimit_object_match_request_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_match_request_model_json2 = ratelimit_object_match_request_model.to_dict() assert ratelimit_object_match_request_model_json2 == ratelimit_object_match_request_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectMatchResponse #----------------------------------------------------------------------------- class TestRatelimitObjectMatchResponse(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectMatchResponse #-------------------------------------------------------- def test_ratelimit_object_match_response_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_match_response_headers_item_model = {} # RatelimitObjectMatchResponseHeadersItem ratelimit_object_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model['op'] = 'ne' ratelimit_object_match_response_headers_item_model['value'] = 'HIT' # Construct a json representation of a RatelimitObjectMatchResponse model ratelimit_object_match_response_model_json = {} ratelimit_object_match_response_model_json['status'] = [403] ratelimit_object_match_response_model_json['headers'] = [ratelimit_object_match_response_headers_item_model] ratelimit_object_match_response_model_json['origin_traffic'] = False # Construct a model instance of RatelimitObjectMatchResponse by calling from_dict on the json representation ratelimit_object_match_response_model = RatelimitObjectMatchResponse.from_dict(ratelimit_object_match_response_model_json) assert ratelimit_object_match_response_model != False # Construct a model instance of RatelimitObjectMatchResponse by calling from_dict on the json representation ratelimit_object_match_response_model_dict = RatelimitObjectMatchResponse.from_dict(ratelimit_object_match_response_model_json).__dict__ ratelimit_object_match_response_model2 = RatelimitObjectMatchResponse(**ratelimit_object_match_response_model_dict) # Verify the model instances are equivalent assert ratelimit_object_match_response_model == ratelimit_object_match_response_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_match_response_model_json2 = ratelimit_object_match_response_model.to_dict() assert ratelimit_object_match_response_model_json2 == ratelimit_object_match_response_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObjectMatchResponseHeadersItem #----------------------------------------------------------------------------- class TestRatelimitObjectMatchResponseHeadersItem(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObjectMatchResponseHeadersItem #-------------------------------------------------------- def test_ratelimit_object_match_response_headers_item_serialization(self): # Construct a json representation of a RatelimitObjectMatchResponseHeadersItem model ratelimit_object_match_response_headers_item_model_json = {} ratelimit_object_match_response_headers_item_model_json['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model_json['op'] = 'ne' ratelimit_object_match_response_headers_item_model_json['value'] = 'HIT' # Construct a model instance of RatelimitObjectMatchResponseHeadersItem by calling from_dict on the json representation ratelimit_object_match_response_headers_item_model = RatelimitObjectMatchResponseHeadersItem.from_dict(ratelimit_object_match_response_headers_item_model_json) assert ratelimit_object_match_response_headers_item_model != False # Construct a model instance of RatelimitObjectMatchResponseHeadersItem by calling from_dict on the json representation ratelimit_object_match_response_headers_item_model_dict = RatelimitObjectMatchResponseHeadersItem.from_dict(ratelimit_object_match_response_headers_item_model_json).__dict__ ratelimit_object_match_response_headers_item_model2 = RatelimitObjectMatchResponseHeadersItem(**ratelimit_object_match_response_headers_item_model_dict) # Verify the model instances are equivalent assert ratelimit_object_match_response_headers_item_model == ratelimit_object_match_response_headers_item_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_match_response_headers_item_model_json2 = ratelimit_object_match_response_headers_item_model.to_dict() assert ratelimit_object_match_response_headers_item_model_json2 == ratelimit_object_match_response_headers_item_model_json #----------------------------------------------------------------------------- # Test Class for DeleteRateLimitResp #----------------------------------------------------------------------------- class TestDeleteRateLimitResp(): #-------------------------------------------------------- # Test serialization/deserialization for DeleteRateLimitResp #-------------------------------------------------------- def test_delete_rate_limit_resp_serialization(self): # Construct dict forms of any model objects needed in order to build this model. delete_rate_limit_resp_result_model = {} # DeleteRateLimitRespResult delete_rate_limit_resp_result_model['id'] = 'f1aba936b94213e5b8dca0c0dbf1f9cc' # Construct a json representation of a DeleteRateLimitResp model delete_rate_limit_resp_model_json = {} delete_rate_limit_resp_model_json['success'] = True delete_rate_limit_resp_model_json['errors'] = [['[]']] delete_rate_limit_resp_model_json['messages'] = [['[]']] delete_rate_limit_resp_model_json['result'] = delete_rate_limit_resp_result_model # Construct a model instance of DeleteRateLimitResp by calling from_dict on the json representation delete_rate_limit_resp_model = DeleteRateLimitResp.from_dict(delete_rate_limit_resp_model_json) assert delete_rate_limit_resp_model != False # Construct a model instance of DeleteRateLimitResp by calling from_dict on the json representation delete_rate_limit_resp_model_dict = DeleteRateLimitResp.from_dict(delete_rate_limit_resp_model_json).__dict__ delete_rate_limit_resp_model2 = DeleteRateLimitResp(**delete_rate_limit_resp_model_dict) # Verify the model instances are equivalent assert delete_rate_limit_resp_model == delete_rate_limit_resp_model2 # Convert model instance back to dict and verify no loss of data delete_rate_limit_resp_model_json2 = delete_rate_limit_resp_model.to_dict() assert delete_rate_limit_resp_model_json2 == delete_rate_limit_resp_model_json #----------------------------------------------------------------------------- # Test Class for ListRatelimitResp #----------------------------------------------------------------------------- class TestListRatelimitResp(): #-------------------------------------------------------- # Test serialization/deserialization for ListRatelimitResp #-------------------------------------------------------- def test_list_ratelimit_resp_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_match_response_headers_item_model = {} # RatelimitObjectMatchResponseHeadersItem ratelimit_object_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model['op'] = 'ne' ratelimit_object_match_response_headers_item_model['value'] = 'HIT' ratelimit_object_action_response_model = {} # RatelimitObjectActionResponse ratelimit_object_action_response_model['content_type'] = 'text/plain' ratelimit_object_action_response_model['body'] = 'This request has been rate-limited.' ratelimit_object_match_request_model = {} # RatelimitObjectMatchRequest ratelimit_object_match_request_model['methods'] = ['_ALL_'] ratelimit_object_match_request_model['schemes'] = ['_ALL_'] ratelimit_object_match_request_model['url'] = '*.example.org/path*' ratelimit_object_match_response_model = {} # RatelimitObjectMatchResponse ratelimit_object_match_response_model['status'] = [403] ratelimit_object_match_response_model['headers'] = [ratelimit_object_match_response_headers_item_model] ratelimit_object_match_response_model['origin_traffic'] = False ratelimit_object_action_model = {} # RatelimitObjectAction ratelimit_object_action_model['mode'] = 'simulate' ratelimit_object_action_model['timeout'] = 60 ratelimit_object_action_model['response'] = ratelimit_object_action_response_model ratelimit_object_bypass_item_model = {} # RatelimitObjectBypassItem ratelimit_object_bypass_item_model['name'] = 'url' ratelimit_object_bypass_item_model['value'] = 'example.com/*' ratelimit_object_correlate_model = {} # RatelimitObjectCorrelate ratelimit_object_correlate_model['by'] = 'nat' ratelimit_object_match_model = {} # RatelimitObjectMatch ratelimit_object_match_model['request'] = ratelimit_object_match_request_model ratelimit_object_match_model['response'] = ratelimit_object_match_response_model list_ratelimit_resp_result_info_model = {} # ListRatelimitRespResultInfo list_ratelimit_resp_result_info_model['page'] = 1 list_ratelimit_resp_result_info_model['per_page'] = 10 list_ratelimit_resp_result_info_model['count'] = 1 list_ratelimit_resp_result_info_model['total_count'] = 1 ratelimit_object_model = {} # RatelimitObject ratelimit_object_model['id'] = '92f17202ed8bd63d69a66b86a49a8f6b' ratelimit_object_model['disabled'] = False ratelimit_object_model['description'] = 'Prevent multiple login failures to mitigate brute force attacks' ratelimit_object_model['bypass'] = [ratelimit_object_bypass_item_model] ratelimit_object_model['threshold'] = 1000 ratelimit_object_model['period'] = 60 ratelimit_object_model['correlate'] = ratelimit_object_correlate_model ratelimit_object_model['action'] = ratelimit_object_action_model ratelimit_object_model['match'] = ratelimit_object_match_model # Construct a json representation of a ListRatelimitResp model list_ratelimit_resp_model_json = {} list_ratelimit_resp_model_json['success'] = True list_ratelimit_resp_model_json['errors'] = [['[]']] list_ratelimit_resp_model_json['messages'] = [['[]']] list_ratelimit_resp_model_json['result'] = [ratelimit_object_model] list_ratelimit_resp_model_json['result_info'] = list_ratelimit_resp_result_info_model # Construct a model instance of ListRatelimitResp by calling from_dict on the json representation list_ratelimit_resp_model = ListRatelimitResp.from_dict(list_ratelimit_resp_model_json) assert list_ratelimit_resp_model != False # Construct a model instance of ListRatelimitResp by calling from_dict on the json representation list_ratelimit_resp_model_dict = ListRatelimitResp.from_dict(list_ratelimit_resp_model_json).__dict__ list_ratelimit_resp_model2 = ListRatelimitResp(**list_ratelimit_resp_model_dict) # Verify the model instances are equivalent assert list_ratelimit_resp_model == list_ratelimit_resp_model2 # Convert model instance back to dict and verify no loss of data list_ratelimit_resp_model_json2 = list_ratelimit_resp_model.to_dict() assert list_ratelimit_resp_model_json2 == list_ratelimit_resp_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitObject #----------------------------------------------------------------------------- class TestRatelimitObject(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitObject #-------------------------------------------------------- def test_ratelimit_object_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_match_response_headers_item_model = {} # RatelimitObjectMatchResponseHeadersItem ratelimit_object_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model['op'] = 'ne' ratelimit_object_match_response_headers_item_model['value'] = 'HIT' ratelimit_object_action_response_model = {} # RatelimitObjectActionResponse ratelimit_object_action_response_model['content_type'] = 'text/plain' ratelimit_object_action_response_model['body'] = 'This request has been rate-limited.' ratelimit_object_match_request_model = {} # RatelimitObjectMatchRequest ratelimit_object_match_request_model['methods'] = ['_ALL_'] ratelimit_object_match_request_model['schemes'] = ['_ALL_'] ratelimit_object_match_request_model['url'] = '*.example.org/path*' ratelimit_object_match_response_model = {} # RatelimitObjectMatchResponse ratelimit_object_match_response_model['status'] = [403] ratelimit_object_match_response_model['headers'] = [ratelimit_object_match_response_headers_item_model] ratelimit_object_match_response_model['origin_traffic'] = False ratelimit_object_action_model = {} # RatelimitObjectAction ratelimit_object_action_model['mode'] = 'simulate' ratelimit_object_action_model['timeout'] = 60 ratelimit_object_action_model['response'] = ratelimit_object_action_response_model ratelimit_object_bypass_item_model = {} # RatelimitObjectBypassItem ratelimit_object_bypass_item_model['name'] = 'url' ratelimit_object_bypass_item_model['value'] = 'example.com/*' ratelimit_object_correlate_model = {} # RatelimitObjectCorrelate ratelimit_object_correlate_model['by'] = 'nat' ratelimit_object_match_model = {} # RatelimitObjectMatch ratelimit_object_match_model['request'] = ratelimit_object_match_request_model ratelimit_object_match_model['response'] = ratelimit_object_match_response_model # Construct a json representation of a RatelimitObject model ratelimit_object_model_json = {} ratelimit_object_model_json['id'] = '92f17202ed8bd63d69a66b86a49a8f6b' ratelimit_object_model_json['disabled'] = False ratelimit_object_model_json['description'] = 'Prevent multiple login failures to mitigate brute force attacks' ratelimit_object_model_json['bypass'] = [ratelimit_object_bypass_item_model] ratelimit_object_model_json['threshold'] = 1000 ratelimit_object_model_json['period'] = 60 ratelimit_object_model_json['correlate'] = ratelimit_object_correlate_model ratelimit_object_model_json['action'] = ratelimit_object_action_model ratelimit_object_model_json['match'] = ratelimit_object_match_model # Construct a model instance of RatelimitObject by calling from_dict on the json representation ratelimit_object_model = RatelimitObject.from_dict(ratelimit_object_model_json) assert ratelimit_object_model != False # Construct a model instance of RatelimitObject by calling from_dict on the json representation ratelimit_object_model_dict = RatelimitObject.from_dict(ratelimit_object_model_json).__dict__ ratelimit_object_model2 = RatelimitObject(**ratelimit_object_model_dict) # Verify the model instances are equivalent assert ratelimit_object_model == ratelimit_object_model2 # Convert model instance back to dict and verify no loss of data ratelimit_object_model_json2 = ratelimit_object_model.to_dict() assert ratelimit_object_model_json2 == ratelimit_object_model_json #----------------------------------------------------------------------------- # Test Class for RatelimitResp #----------------------------------------------------------------------------- class TestRatelimitResp(): #-------------------------------------------------------- # Test serialization/deserialization for RatelimitResp #-------------------------------------------------------- def test_ratelimit_resp_serialization(self): # Construct dict forms of any model objects needed in order to build this model. ratelimit_object_match_response_headers_item_model = {} # RatelimitObjectMatchResponseHeadersItem ratelimit_object_match_response_headers_item_model['name'] = 'Cf-Cache-Status' ratelimit_object_match_response_headers_item_model['op'] = 'ne' ratelimit_object_match_response_headers_item_model['value'] = 'HIT' ratelimit_object_action_response_model = {} # RatelimitObjectActionResponse ratelimit_object_action_response_model['content_type'] = 'text/plain' ratelimit_object_action_response_model['body'] = 'This request has been rate-limited.' ratelimit_object_match_request_model = {} # RatelimitObjectMatchRequest ratelimit_object_match_request_model['methods'] = ['_ALL_'] ratelimit_object_match_request_model['schemes'] = ['_ALL_'] ratelimit_object_match_request_model['url'] = '*.example.org/path*' ratelimit_object_match_response_model = {} # RatelimitObjectMatchResponse ratelimit_object_match_response_model['status'] = [403] ratelimit_object_match_response_model['headers'] = [ratelimit_object_match_response_headers_item_model] ratelimit_object_match_response_model['origin_traffic'] = False ratelimit_object_action_model = {} # RatelimitObjectAction ratelimit_object_action_model['mode'] = 'simulate' ratelimit_object_action_model['timeout'] = 60 ratelimit_object_action_model['response'] = ratelimit_object_action_response_model ratelimit_object_bypass_item_model = {} # RatelimitObjectBypassItem ratelimit_object_bypass_item_model['name'] = 'url' ratelimit_object_bypass_item_model['value'] = 'example.com/*' ratelimit_object_correlate_model = {} # RatelimitObjectCorrelate ratelimit_object_correlate_model['by'] = 'nat' ratelimit_object_match_model = {} # RatelimitObjectMatch ratelimit_object_match_model['request'] = ratelimit_object_match_request_model ratelimit_object_match_model['response'] = ratelimit_object_match_response_model ratelimit_object_model = {} # RatelimitObject ratelimit_object_model['id'] = '92f17202ed8bd63d69a66b86a49a8f6b' ratelimit_object_model['disabled'] = False ratelimit_object_model['description'] = 'Prevent multiple login failures to mitigate brute force attacks' ratelimit_object_model['bypass'] = [ratelimit_object_bypass_item_model] ratelimit_object_model['threshold'] = 1000 ratelimit_object_model['period'] = 60 ratelimit_object_model['correlate'] = ratelimit_object_correlate_model ratelimit_object_model['action'] = ratelimit_object_action_model ratelimit_object_model['match'] = ratelimit_object_match_model # Construct a json representation of a RatelimitResp model ratelimit_resp_model_json = {} ratelimit_resp_model_json['success'] = True ratelimit_resp_model_json['errors'] = [['[]']] ratelimit_resp_model_json['messages'] = [['[]']] ratelimit_resp_model_json['result'] = ratelimit_object_model # Construct a model instance of RatelimitResp by calling from_dict on the json representation ratelimit_resp_model = RatelimitResp.from_dict(ratelimit_resp_model_json) assert ratelimit_resp_model != False # Construct a model instance of RatelimitResp by calling from_dict on the json representation ratelimit_resp_model_dict = RatelimitResp.from_dict(ratelimit_resp_model_json).__dict__ ratelimit_resp_model2 = RatelimitResp(**ratelimit_resp_model_dict) # Verify the model instances are equivalent assert ratelimit_resp_model == ratelimit_resp_model2 # Convert model instance back to dict and verify no loss of data ratelimit_resp_model_json2 = ratelimit_resp_model.to_dict() assert ratelimit_resp_model_json2 == ratelimit_resp_model_json # endregion ############################################################################## # End of Model Tests ##############################################################################
StarcoderdataPython
81888
flag="OYE, jaa 4 plate emarald se cheese maggi aur patties le kar aa... aur bolna kharcha mere khate mie likh dene!! ISM: TOH_SANDEEP_KO_BULANA_PADTA_HAI" binary_password="<PASSWORD>"
StarcoderdataPython
139110
from typing import List from collections import Counter class Solution: def minSetSize(self, arr: List[int]) -> int: freq = Counter(arr) freq = freq.most_common() numRequired = len(arr) // 2 start = 0 while numRequired > 0: numRequired -= freq[start][1] start += 1 return start sol = Solution() print(sol.minSetSize(arr=[3, 3, 3, 3, 5, 5, 5, 2, 2, 7]))
StarcoderdataPython
1601365
<reponame>wmeueleleyb/Leibniz-series-plotted-<gh_stars>0 import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import random x = [] y = [] pi = 4 j = 0 plt.style.use('fivethirtyeight') def animate(i): global pi, j if j % 2 == 0: pi -= (4/(j*2 + 3)) else: pi += (4/(j*2 + 3)) j += 1 x.append(j) y.append(pi) plt.cla() plt.plot(x,y) plt.title("pi = " + str(pi)) plt.xlabel('Iterations') animation = FuncAnimation(plt.gcf(), animate, interval = 10) plt.tight_layout() plt.show()
StarcoderdataPython
3215700
<gh_stars>1-10 __author__ = 'lorenzo' # # http://stackoverflow.com/a/29681061/2536357 # from google.appengine.ext import vendor # Add any libraries installed in the "lib" folder. vendor.add('lib') # run from the project root: # pip install -t lib -r requirements.txt # Uncomment if appstat is on #def webapp_add_wsgi_middleware(app): # from google.appengine.ext.appstats import recording # app = recording.appstats_wsgi_middleware(app) # return app
StarcoderdataPython
189666
from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): help = 'Clean all entries for http451' def add_arguments(self, parser): pass # parser.add_argument('dump', nargs='+', type=int) def handle(self, *args, **options): self.stdout.write(self.style.ERROR('Command not yet implemented'))
StarcoderdataPython
3221842
<filename>yacg/model/model.py # Attention, this file is generated. Manual changes get lost with the next # run of the code generation. # created by yacg (template: pythonBeans.mako v1.0.0) from enum import Enum class Type: """ Dummy base class to implement strong typed references """ def __init__(self): pass @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() return obj class IntegerType (Type): """ integer values """ def __init__(self): super(Type, self).__init__() #: integer values self.format = None #: integer values self.default = None #: integer values self.minimum = None #: integer values self.exclusiveMinimum = None #: integer values self.maximum = None #: integer values self.exclusiveMaximum = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.format = IntegerTypeFormatEnum.valueForString(dict.get('format', None)) obj.default = dict.get('default', None) obj.minimum = dict.get('minimum', None) obj.exclusiveMinimum = dict.get('exclusiveMinimum', None) obj.maximum = dict.get('maximum', None) obj.exclusiveMaximum = dict.get('exclusiveMaximum', None) return obj class IntegerTypeFormatEnum(Enum): INT32 = 'int32' INT64 = 'int64' @classmethod def valueForString(cls, stringValue): lowerStringValue = stringValue.lower() if stringValue is not None else None if lowerStringValue is None: return None elif lowerStringValue == 'int32': return IntegerTypeFormatEnum.INT32 elif lowerStringValue == 'int64': return IntegerTypeFormatEnum.INT64 else: return None @classmethod def valueAsString(cls, enumValue): if enumValue is None: return '' elif enumValue == IntegerTypeFormatEnum.INT32: return 'int32' elif enumValue == IntegerTypeFormatEnum.INT64: return 'int64' else: return '' class NumberType (Type): """ floating point values """ def __init__(self): super(Type, self).__init__() #: floating point values self.format = None #: floating point values self.default = None #: floating point values self.minimum = None #: floating point values self.exclusiveMinimum = None #: floating point values self.maximum = None #: floating point values self.exclusiveMaximum = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.format = NumberTypeFormatEnum.valueForString(dict.get('format', None)) obj.default = dict.get('default', None) obj.minimum = dict.get('minimum', None) obj.exclusiveMinimum = dict.get('exclusiveMinimum', None) obj.maximum = dict.get('maximum', None) obj.exclusiveMaximum = dict.get('exclusiveMaximum', None) return obj class NumberTypeFormatEnum(Enum): FLOAT = 'float' DOUBLE = 'double' @classmethod def valueForString(cls, stringValue): lowerStringValue = stringValue.lower() if stringValue is not None else None if lowerStringValue is None: return None elif lowerStringValue == 'float': return NumberTypeFormatEnum.FLOAT elif lowerStringValue == 'double': return NumberTypeFormatEnum.DOUBLE else: return None @classmethod def valueAsString(cls, enumValue): if enumValue is None: return '' elif enumValue == NumberTypeFormatEnum.FLOAT: return 'float' elif enumValue == NumberTypeFormatEnum.DOUBLE: return 'double' else: return '' class BooleanType (Type): """ boolean values """ def __init__(self): super(Type, self).__init__() #: boolean values self.default = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) return obj class StringType (Type): """ integer values """ def __init__(self): super(Type, self).__init__() #: integer values self.default = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) return obj class UuidType (Type): """ UUID values """ def __init__(self): super(Type, self).__init__() #: UUID values self.default = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) return obj class EnumType (Type): """ type for enum values - fixed value types """ def __init__(self): super(Type, self).__init__() #: type for enum values - fixed value types self.version = None #: type for enum values - fixed value types self.name = None #: type for enum values - fixed value types self.domain = None #: type for enum values - fixed value types self.source = None #: type for enum values - fixed value types self.description = None #: type for enum values - fixed value types self.values = [] #: type for enum values - fixed value types self.default = None #: type for enum values - fixed value types self.tags = [] @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.version = dict.get('version', None) obj.name = dict.get('name', None) obj.domain = dict.get('domain', None) obj.source = dict.get('source', None) obj.description = dict.get('description', None) arrayValues = dict.get('values', []) for elemValues in arrayValues: obj.values.append(elemValues) obj.default = dict.get('default', None) arrayTags = dict.get('tags', []) for elemTags in arrayTags: obj.tags.append( Tag.dictToObject(elemTags)) return obj class Tag: """ a tag type """ def __init__(self): #: a tag type self.name = None #: a tag type self.value = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.name = dict.get('name', None) obj.value = dict.get('value', None) return obj class DateType (Type): """ type for date values """ def __init__(self): super(Type, self).__init__() #: type for date values self.default = None #: type for date values self.minimum = None #: type for date values self.exclusiveMinimum = None #: type for date values self.maximum = None #: type for date values self.exclusiveMaximum = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) obj.minimum = dict.get('minimum', None) obj.exclusiveMinimum = dict.get('exclusiveMinimum', None) obj.maximum = dict.get('maximum', None) obj.exclusiveMaximum = dict.get('exclusiveMaximum', None) return obj class DateTimeType (Type): """ type for timestamp values """ def __init__(self): super(Type, self).__init__() #: type for timestamp values self.default = None #: type for timestamp values self.minimum = None #: type for timestamp values self.exclusiveMinimum = None #: type for timestamp values self.maximum = None #: type for timestamp values self.exclusiveMaximum = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) obj.minimum = dict.get('minimum', None) obj.exclusiveMinimum = dict.get('exclusiveMinimum', None) obj.maximum = dict.get('maximum', None) obj.exclusiveMaximum = dict.get('exclusiveMaximum', None) return obj class BytesType (Type): """ type for byte values, it will usually be rendered to a byte array """ def __init__(self): super(Type, self).__init__() #: type for byte values, it will usually be rendered to a byte array self.default = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.default = dict.get('default', None) return obj class ComplexType (Type): """ complex type description """ def __init__(self): super(Type, self).__init__() #: complex type description self.version = None #: complex type description self.name = None #: complex type description self.description = None #: complex type description self.domain = None #: complex type description self.source = None #: complex type description self.extendsType = None #: complex type description self.extendedBy = [] #: complex type description self.referencedBy = [] #: complex type description self.properties = [] #: complex type description self.tags = [] @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.version = dict.get('version', None) obj.name = dict.get('name', None) obj.description = dict.get('description', None) obj.domain = dict.get('domain', None) obj.source = dict.get('source', None) obj.extendsType = ComplexType.dictToObject(dict.get('extendsType', None)) arrayExtendedBy = dict.get('extendedBy', []) for elemExtendedBy in arrayExtendedBy: obj.extendedBy.append( ComplexType.dictToObject(elemExtendedBy)) arrayReferencedBy = dict.get('referencedBy', []) for elemReferencedBy in arrayReferencedBy: obj.referencedBy.append( ComplexType.dictToObject(elemReferencedBy)) arrayProperties = dict.get('properties', []) for elemProperties in arrayProperties: obj.properties.append( Property.dictToObject(elemProperties)) arrayTags = dict.get('tags', []) for elemTags in arrayTags: obj.tags.append( Tag.dictToObject(elemTags)) return obj class Property: """ a property of a type """ def __init__(self): #: a property of a type self.name = None #: a property of a type self.isArray = False #: a property of a type self.arrayMinItems = None #: a property of a type self.arrayMaxItems = None #: a property of a type self.arrayUniqueItems = None #: a property of a type self.type = None #: a property of a type self.tags = [] #: a property of a type self.description = None #: a property of a type self.required = False #: a property of a type self.ordinal = None #: a property of a type self.isKey = False #: a property of a type self.isVisualKey = False #: a property of a type self.foreignKey = None #: a property of a type self.format = None @classmethod def dictToObject(cls, dict): if dict is None: return None obj = cls() obj.name = dict.get('name', None) obj.isArray = dict.get('isArray', False) obj.arrayMinItems = dict.get('arrayMinItems', None) obj.arrayMaxItems = dict.get('arrayMaxItems', None) obj.arrayUniqueItems = dict.get('arrayUniqueItems', None) obj.type = Type.dictToObject(dict.get('type', None)) arrayTags = dict.get('tags', []) for elemTags in arrayTags: obj.tags.append( Tag.dictToObject(elemTags)) obj.description = dict.get('description', None) obj.required = dict.get('required', False) obj.ordinal = dict.get('ordinal', None) obj.isKey = dict.get('isKey', False) obj.isVisualKey = dict.get('isVisualKey', False) obj.foreignKey = Type.dictToObject(dict.get('foreignKey', None)) obj.format = dict.get('format', None) return obj
StarcoderdataPython
1756294
<reponame>realjf/ceph-board-py from django.contrib import admin from .models import Article class ArticleAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'created_time',) list_display_links = ('title',) admin.site.register(Article, ArticleAdmin)
StarcoderdataPython
3348313
from avatar_sgg.dataset.ade20k import get_ade20k_split from avatar_sgg.config.util import get_config from avatar_sgg.image_retrieval.evaluation import compute_similarity, compute_text_graph_similarity, \ compute_recall_on_category, compute_recall_johnson_feiefei, \ use_merged_sequence, run_evaluation import numpy as np import os from avatar_sgg.dataset.ade20k import get_preprocessed_text_text_graphs_for_test if __name__ == "__main__": print("Start") output_dir = os.path.join(get_config()["output_dir"], "image_retrieval") current = get_preprocessed_text_text_graphs_for_test() threshold_list = [None] eval_name = lambda caption_type, recall_type: f"{caption_type}_{recall_type}" ade20k_category_recall = "ade20k_category_recall" fei_fei_recall = "feifei_johnson_recall" text_scene_graph_query = "text_text_graph_query_9_epochs" evaluation_name = eval_name(text_scene_graph_query, fei_fei_recall) threshold_list.extend(np.linspace(0.85, 0.99, 15)) run_evaluation(evaluation_name, current, compute_text_graph_similarity, threshold_list, compute_recall_johnson_feiefei, output_dir) evaluation_name = eval_name(text_scene_graph_query, ade20k_category_recall) run_evaluation(evaluation_name, current, compute_text_graph_similarity, threshold_list, compute_recall_on_category, output_dir) print("Done")
StarcoderdataPython
198436
<gh_stars>100-1000 # Copyright 2019-present Kensho Technologies, LLC. import datetime from typing import Tuple import unittest from graphql import print_ast import pytest from .. import test_input_data from ...cost_estimation.analysis import analyze_query_string from ...cost_estimation.statistics import LocalStatistics from ...exceptions import GraphQLInvalidArgumentError from ...global_utils import QueryStringWithParameters from ...query_pagination import paginate_query from ...query_pagination.pagination_planning import ( InsufficientQuantiles, MissingClassCount, PaginationAdvisory, PaginationPlan, VertexPartitionPlan, get_pagination_plan, ) from ...query_pagination.parameter_generator import ( _choose_parameter_values, generate_parameters_for_vertex_partition, ) from ...query_pagination.query_parameterizer import generate_parameterized_queries from ...schema.schema_info import EdgeConstraint, QueryPlanningSchemaInfo, UUIDOrdering from ...schema_generation.graphql_schema import get_graphql_schema_from_schema_graph from ..test_helpers import compare_graphql, generate_schema_graph, get_function_names_from_module from ..test_input_data import CommonTestData # The following TestCase class uses the 'snapshot_orientdb_client' fixture # which pylint does not recognize as a class member. # pylint: disable=no-member @pytest.mark.slow class QueryPaginationTests(unittest.TestCase): """Test the query pagination module.""" @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_basic(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) # Check that the correct plan is generated when it's obvious (page the root) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") } }""", {}, ) number_of_pages = 10 analysis = analyze_query_string(schema_info, query) pagination_plan, advisories = get_pagination_plan(analysis, number_of_pages) expected_plan = PaginationPlan((VertexPartitionPlan(("Animal",), "uuid", number_of_pages),)) expected_advisories: Tuple[PaginationAdvisory, ...] = tuple() self.assertEqual([w.message for w in expected_advisories], [w.message for w in advisories]) self.assertEqual(expected_plan, pagination_plan) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_invalid_extra_args(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) # Check that the correct plan is generated when it's obvious (page the root) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") } }""", {"country": "USA"}, ) with self.assertRaises(GraphQLInvalidArgumentError): number_of_pages = 10 analysis = analyze_query_string(schema_info, query) get_pagination_plan(analysis, number_of_pages) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_invalid_missing_args(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) # Check that the correct plan is generated when it's obvious (page the root) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") @filter(op_name: "=", value: ["$animal_name"]) } }""", {}, ) with self.assertRaises(GraphQLInvalidArgumentError): number_of_pages = 10 analysis = analyze_query_string(schema_info, query) get_pagination_plan(analysis, number_of_pages) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_unique_filter(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: "=", value: ["$animal_uuid"]) name @output(out_name: "animal_name") } }""", { "animal_uuid": "40000000-0000-0000-0000-000000000000", }, ) number_of_pages = 10 analysis = analyze_query_string(schema_info, query) pagination_plan, advisories = get_pagination_plan(analysis, number_of_pages) # This is a white box test. We check that we don't paginate on the root when it has a # unique filter on it. A better plan is to paginate on a different vertex, but that is # not implemented. expected_plan = PaginationPlan(tuple()) expected_advisories: Tuple[PaginationAdvisory, ...] = tuple() self.assertEqual([w.message for w in expected_advisories], [w.message for w in advisories]) self.assertEqual(expected_plan, pagination_plan) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_unique_filter_on_many_to_one(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = { "Animal": 1000, "Animal_FedAt": 10000000, "FeedingEvent": 100000, } statistics = LocalStatistics(class_counts) edge_constraints = {"Animal_ParentOf": EdgeConstraint.AtMostOneSource} schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, edge_constraints=edge_constraints, ) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") out_Animal_ParentOf { uuid @filter(op_name: "=", value: ["$animal_uuid"]) } out_Animal_FedAt { name @output(out_name: "feeding_event_name") } } }""", { "animal_uuid": "40000000-0000-0000-0000-000000000000", }, ) number_of_pages = 10 analysis = analyze_query_string(schema_info, query) pagination_plan, advisories = get_pagination_plan(analysis, number_of_pages) # This is a white box test. There's a filter on the child, which narrows down # the number of possible roots down to 1. This makes the root a bad pagination # vertex. Ideally, we'd paginate on the FeedingEvent node, but that's not implemented. expected_plan = PaginationPlan(tuple()) expected_advisories: Tuple[PaginationAdvisory, ...] = tuple() self.assertEqual([w.message for w in expected_advisories], [w.message for w in advisories]) self.assertEqual(expected_plan, pagination_plan) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_on_int(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): list(range(100))} ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) # Check that the paginator generates a plan paginating on an int field query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) number_of_pages = 10 analysis = analyze_query_string(schema_info, query) pagination_plan, advisories = get_pagination_plan(analysis, number_of_pages) expected_plan = PaginationPlan( (VertexPartitionPlan(("Species",), "limbs", number_of_pages),) ) expected_advisories: Tuple[PaginationAdvisory, ...] = () self.assertEqual([w.message for w in expected_advisories], [w.message for w in advisories]) self.assertEqual(expected_plan, pagination_plan) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_planning_on_int_error(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field class_counts = {"Species": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) # Check that the paginator detects a lack of quantile data for Species.limbs query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) number_of_pages = 10 analysis = analyze_query_string(schema_info, query) pagination_plan, advisories = get_pagination_plan(analysis, number_of_pages) expected_plan = PaginationPlan(tuple()) expected_advisories = (InsufficientQuantiles("Species", "limbs", 0, 51),) self.assertEqual([w.message for w in expected_advisories], [w.message for w in advisories]) self.assertEqual(expected_plan, pagination_plan) # TODO: These tests can be sped up by having an existing test SchemaGraph object. @pytest.mark.usefixtures("snapshot_orientdb_client") def test_basic_pagination(self) -> None: """Ensure a basic pagination query is handled correctly.""" schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal") } }""", {}, ) count_data = { "Animal": 4, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 1) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder expected_first = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "40000000-0000-0000-0000-000000000000", }, ) expected_remainder = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_0"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "40000000-0000-0000-0000-000000000000", }, ) # Check that the correct first page and remainder are generated compare_graphql(self, expected_first.query_string, first.query_string) self.assertEqual(expected_first.parameters, first.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder.query_string, remainder[0].query_string) self.assertEqual(expected_remainder.parameters, remainder[0].parameters) # Check that the first page is estimated to fit into a page first_page_cardinality_estimate = analyze_query_string( schema_info, first ).cardinality_estimate self.assertAlmostEqual(1, first_page_cardinality_estimate) # Get the second page second_page_and_remainder, _ = paginate_query(schema_info, remainder[0], 1) second = second_page_and_remainder.one_page remainder = second_page_and_remainder.remainder expected_second = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_0"]) @filter(op_name: "<", value: ["$__paged_param_1"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "40000000-0000-0000-0000-000000000000", "__paged_param_1": "80000000-0000-0000-0000-000000000000", }, ) expected_remainder = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_1"]) name @output(out_name: "animal") } }""", { "__paged_param_1": "80000000-0000-0000-0000-000000000000", }, ) # Check that the correct queries are generated compare_graphql(self, expected_second.query_string, second.query_string) self.assertEqual(expected_second.parameters, second.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder.query_string, remainder[0].query_string) self.assertEqual(expected_remainder.parameters, remainder[0].parameters) # Check that the second page is estimated to fit into a page second_page_cardinality_estimate = analyze_query_string( schema_info, first ).cardinality_estimate self.assertAlmostEqual(1, second_page_cardinality_estimate) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_basic_pagination_mssql_uuids(self) -> None: """Ensure a basic pagination query is handled correctly.""" schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LastSixBytesFirst} for vertex_name in schema_graph.vertex_class_names } query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal") } }""", {}, ) count_data = { "Animal": 4, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 1) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder expected_first = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "00000000-0000-0000-0000-400000000000", }, ) expected_remainder = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_0"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "00000000-0000-0000-0000-400000000000", }, ) # Check that the correct first page and remainder are generated compare_graphql(self, expected_first.query_string, first.query_string) self.assertEqual(expected_first.parameters, first.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder.query_string, remainder[0].query_string) self.assertEqual(expected_remainder.parameters, remainder[0].parameters) # Check that the first page is estimated to fit into a page first_page_cardinality_estimate = analyze_query_string( schema_info, first ).cardinality_estimate self.assertAlmostEqual(1, first_page_cardinality_estimate) # Get the second page second_page_and_remainder, _ = paginate_query(schema_info, remainder[0], 1) second = second_page_and_remainder.one_page remainder = second_page_and_remainder.remainder expected_second = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_0"]) @filter(op_name: "<", value: ["$__paged_param_1"]) name @output(out_name: "animal") } }""", { "__paged_param_0": "00000000-0000-0000-0000-400000000000", "__paged_param_1": "00000000-0000-0000-0000-800000000000", }, ) expected_remainder = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$__paged_param_1"]) name @output(out_name: "animal") } }""", { "__paged_param_1": "00000000-0000-0000-0000-800000000000", }, ) # Check that the correct queries are generated compare_graphql(self, expected_second.query_string, second.query_string) self.assertEqual(expected_second.parameters, second.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder.query_string, remainder[0].query_string) self.assertEqual(expected_remainder.parameters, remainder[0].parameters) # Check that the second page is estimated to fit into a page second_page_cardinality_estimate = analyze_query_string( schema_info, first ).cardinality_estimate self.assertAlmostEqual(1, second_page_cardinality_estimate) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_datetime(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Event"] = ("event_date",) # Force pagination on datetime field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Event": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Event", "event_date"): [datetime.datetime(2000 + i, 1, 1) for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") } }""", {}, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 100) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # There are 1000 dates uniformly spread out between year 2000 and 3000, so to get # 100 results, we stop at 2010. expected_page_query = QueryStringWithParameters( """{ Event { event_date @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "event_name") } }""", { "__paged_param_0": datetime.datetime(2010, 1, 1, 0, 0), }, ) expected_remainder_query = QueryStringWithParameters( """{ Event { event_date @filter(op_name: ">=", value: ["$__paged_param_0"]) name @output(out_name: "event_name") } }""", { "__paged_param_0": datetime.datetime(2010, 1, 1, 0, 0), }, ) # Check that the correct queries are generated compare_graphql(self, expected_page_query.query_string, first.query_string) self.assertEqual(expected_page_query.parameters, first.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder_query.query_string, remainder[0].query_string) self.assertEqual(expected_remainder_query.parameters, remainder[0].parameters) # Get the second page second_page_and_remainder, _ = paginate_query(schema_info, remainder[0], 100) second = second_page_and_remainder.one_page remainder = second_page_and_remainder.remainder expected_page_query = QueryStringWithParameters( """{ Event { event_date @filter(op_name: ">=", value: ["$__paged_param_0"]) @filter(op_name: "<", value: ["$__paged_param_1"]) name @output(out_name: "event_name") } }""", { # TODO parameters seem wonky "__paged_param_0": datetime.datetime(2010, 1, 1, 0, 0), "__paged_param_1": datetime.datetime(2019, 1, 1, 0, 0), }, ) expected_remainder_query = QueryStringWithParameters( """{ Event { event_date @filter(op_name: ">=", value: ["$__paged_param_1"]) name @output(out_name: "event_name") } }""", { "__paged_param_1": datetime.datetime(2019, 1, 1, 0, 0), }, ) # Check that the correct queries are generated compare_graphql(self, expected_page_query.query_string, second.query_string) self.assertEqual(expected_page_query.parameters, second.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder_query.query_string, remainder[0].query_string) self.assertEqual(expected_remainder_query.parameters, remainder[0].parameters) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_datetime_existing_filter(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } # We allow pagination on uuid as well and leave it to the pagination planner to decide to # paginate on event_date to prevent empty pages if the two fields are correlated. pagination_keys["Event"] = ("uuid", "event_date") uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Event": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Event", "event_date"): [datetime.datetime(2000 + i, 1, 1) for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) local_datetime = datetime.datetime(2050, 1, 1, 0, 0) query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$date_lower"]) } }""", {"date_lower": local_datetime}, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 100) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # There are 1000 dates uniformly spread out between year 2000 and 3000, so to get # 100 results after 2050, we stop at 2059. expected_page_query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$date_lower"]) @filter(op_name: "<", value: ["$__paged_param_0"]) } }""", { "date_lower": local_datetime, "__paged_param_0": datetime.datetime(2059, 1, 1, 0, 0), }, ) expected_remainder_query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$__paged_param_0"]) } }""", { "__paged_param_0": datetime.datetime(2059, 1, 1, 0, 0), }, ) # Check that the correct queries are generated compare_graphql(self, expected_page_query.query_string, first.query_string) self.assertEqual(expected_page_query.parameters, first.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder_query.query_string, remainder[0].query_string) self.assertEqual(expected_remainder_query.parameters, remainder[0].parameters) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_existing_datetime_filter(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Event"] = ("event_date",) # Force pagination on datetime field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Event": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Event", "event_date"): [datetime.datetime(2000 + i, 1, 1) for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$date_lower"]) } }""", {"date_lower": datetime.datetime(2050, 1, 1, 0, 0)}, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 100) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # We can't expect anything good when using a tz-aware filter on a tz-naive # field, but at least we shouldn't error. The current implementation ignores # the timezone, so this is a white-box test for that behavior. expected_page_query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$date_lower"]) @filter(op_name: "<", value: ["$__paged_param_0"]) } }""", { "date_lower": datetime.datetime(2050, 1, 1, 0, 0), "__paged_param_0": datetime.datetime(2059, 1, 1, 0, 0), }, ) expected_remainder_query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") event_date @filter(op_name: ">=", value: ["$__paged_param_0"]) } }""", { "__paged_param_0": datetime.datetime(2059, 1, 1, 0, 0), }, ) # Check that the correct queries are generated compare_graphql(self, expected_page_query.query_string, first.query_string) self.assertEqual(expected_page_query.parameters, first.parameters) self.assertEqual(1, len(remainder)) compare_graphql(self, expected_remainder_query.query_string, remainder[0].query_string) self.assertEqual(expected_remainder_query.parameters, remainder[0].parameters) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_int(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): [i for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [25, 50, 75] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_int_few_quantiles(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 10000000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): [ 0, 10, 20, 30, ], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 3) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [10, 20] self.assertEqual(expected_parameters, list(generated_parameters)) def test_choose_parameter_values(self): self.assertEqual([1], list(_choose_parameter_values([1], 2))) self.assertEqual([1], list(_choose_parameter_values([1], 3))) self.assertEqual([1], list(_choose_parameter_values([1, 1], 3))) self.assertEqual([3], list(_choose_parameter_values([1, 3], 2))) self.assertEqual([1, 3], list(_choose_parameter_values([1, 3], 3))) self.assertEqual([1, 3], list(_choose_parameter_values([1, 3], 4))) self.assertEqual([3], list(_choose_parameter_values([1, 3, 5], 2))) self.assertEqual([3, 5], list(_choose_parameter_values([1, 3, 5], 3))) self.assertEqual([1, 3, 5], list(_choose_parameter_values([1, 3, 5], 4))) self.assertEqual([1, 3, 5], list(_choose_parameter_values([1, 3, 5], 5))) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_int_existing_filters(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): [i for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") limbs @filter(op_name: ">=", value: ["$limbs_lower"]) } }""", {"limbs_lower": 25}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 3) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [50, 75] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_int_existing_filter_tiny_page(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): list(range(0, 101, 10))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") limbs @filter(op_name: ">=", value: ["$limbs_lower"]) } }""", {"limbs_lower": 10}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 10) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) first_parameter = next(generated_parameters) self.assertTrue(first_parameter > 10) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_int_existing_filters_2(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): [i for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") limbs @filter(op_name: "<", value: ["$limbs_upper"]) } }""", {"limbs_upper": 76}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 3) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [25, 50] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_inline_fragment(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): [i for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { out_Entity_Related { ... on Species { name @output(out_name: "species_name") } } } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species", "out_Entity_Related"), "limbs", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [25, 50, 75] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_with_existing_filters(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): list(range(0, 1001, 10))} ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { limbs @filter(op_name: "<", value: ["$num_limbs"]) name @output(out_name: "species_name") } }""", {"num_limbs": 505}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) # XXX document why this is expected, see if bisect_left logic is correct expected_parameters = [130, 260, 390] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_datetime(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Event"] = ("event_date",) # Force pagination on datetime field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Event": 1000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Event", "event_date"): [datetime.datetime(2000 + i, 1, 1) for i in range(101)], }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Event { name @output(out_name: "event_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Event",), "event_date", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [ datetime.datetime(2025, 1, 1, 0, 0), datetime.datetime(2050, 1, 1, 0, 0), datetime.datetime(2075, 1, 1, 0, 0), ] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_uuid(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Animal",), "uuid", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [ "40000000-0000-0000-0000-000000000000", "80000000-0000-0000-0000-000000000000", "c0000000-0000-0000-0000-000000000000", ] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_mssql_uuid(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LastSixBytesFirst} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Animal",), "uuid", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [ "00000000-0000-0000-0000-400000000000", "00000000-0000-0000-0000-800000000000", "00000000-0000-0000-0000-c00000000000", ] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_mssql_uuid_with_existing_filter(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LastSixBytesFirst} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Animal": 1000} statistics = LocalStatistics(class_counts) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Animal { uuid @filter(op_name: ">=", value: ["$uuid_lower"]) name @output(out_name: "animal_name") } }""", { "uuid_lower": "00000000-0000-0000-0000-800000000000", }, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Animal",), "uuid", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) expected_parameters = [ "00000000-0000-0000-0000-a00000000000", "00000000-0000-0000-0000-c00000000000", "00000000-0000-0000-0000-e00000000000", ] self.assertEqual(expected_parameters, list(generated_parameters)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_parameter_value_generation_consecutive(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): [0 for i in range(1000)] + list(range(101))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) generated_parameters = generate_parameters_for_vertex_partition(analysis, vertex_partition) # Check that there are no duplicates list_parameters = list(generated_parameters) self.assertEqual(len(list_parameters), len(set(list_parameters))) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_query_parameterizer(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): [0 for i in range(1000)] + list(range(101))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") } }""", {}, ) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) analysis = analyze_query_string(schema_info, query) next_page, remainder = generate_parameterized_queries(analysis, vertex_partition, 100) expected_next_page = """{ Species { limbs @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "species_name") } }""" expected_remainder = """{ Species { limbs @filter(op_name: ">=", value: ["$__paged_param_0"]) name @output(out_name: "species_name") } }""" compare_graphql(self, expected_next_page, print_ast(next_page.query_ast)) compare_graphql(self, expected_remainder, print_ast(remainder.query_ast)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_query_parameterizer_name_conflict(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): [0 for i in range(1000)] + list(range(101))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") @filter(op_name: "!=", value: ["$__paged_param_0"]) } }""", {"__paged_param_0": "Cow"}, ) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) analysis = analyze_query_string(schema_info, query) next_page, remainder = generate_parameterized_queries(analysis, vertex_partition, 100) expected_next_page = """{ Species { limbs @filter(op_name: "<", value: ["$__paged_param_1"]) name @output(out_name: "species_name") @filter(op_name: "!=", value: ["$__paged_param_0"]) } }""" expected_remainder = """{ Species { limbs @filter(op_name: ">=", value: ["$__paged_param_1"]) name @output(out_name: "species_name") @filter(op_name: "!=", value: ["$__paged_param_0"]) } }""" compare_graphql(self, expected_next_page, print_ast(next_page.query_ast)) compare_graphql(self, expected_remainder, print_ast(remainder.query_ast)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_query_parameterizer_filter_deduplication(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): [0 for i in range(1000)] + list(range(101))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { limbs @filter(op_name: ">=", value: ["$limbs_more_than"]) name @output(out_name: "species_name") } }""", { "limbs_more_than": 100, }, ) vertex_partition = VertexPartitionPlan(("Species",), "limbs", 4) analysis = analyze_query_string(schema_info, query) next_page, remainder = generate_parameterized_queries(analysis, vertex_partition, 100) expected_next_page = """{ Species { limbs @filter(op_name: ">=", value: ["$limbs_more_than"]) @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "species_name") } }""" expected_remainder = """{ Species { limbs @filter(op_name: ">=", value: ["$__paged_param_0"]) name @output(out_name: "species_name") } }""" compare_graphql(self, expected_next_page, print_ast(next_page.query_ast)) compare_graphql(self, expected_remainder, print_ast(remainder.query_ast)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_no_pagination(self): """Ensure pagination is not done when not needed.""" schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } original_query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal") } }""", {}, ) count_data = { "Animal": 4, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, _ = paginate_query(schema_info, original_query, 10) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # No pagination necessary compare_graphql(self, original_query.query_string, first.query_string) self.assertEqual(original_query.parameters, first.parameters) self.assertEqual(0, len(remainder)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_impossible_pagination(self): """Ensure no unwanted error is raised when pagination is needed but stats are missing.""" schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = {} # No pagination keys, so the planner has no options uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } original_query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal") } }""", {}, ) count_data = { "Animal": 100000, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, _ = paginate_query(schema_info, original_query, 10) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # Query should be split, but there's no viable pagination method. compare_graphql(self, original_query.query_string, first.query_string) self.assertEqual(original_query.parameters, first.parameters) self.assertEqual(0, len(remainder)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_impossible_pagination_strong_filters_few_repeated_quantiles(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000000000000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): list(i for i in range(0, 101, 10) for _ in range(10000)) }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") limbs @filter(op_name: "between", value: ["$limbs_lower", "$limbs_upper"]) } }""", { "limbs_lower": 10, "limbs_upper": 14, }, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 10) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # Query should be split, but there's not enough quantiles compare_graphql(self, query.query_string, first.query_string) self.assertEqual(query.parameters, first.parameters) self.assertEqual(0, len(remainder)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_impossible_pagination_strong_filters_few_quantiles(self): schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000000000000} statistics = LocalStatistics( class_counts, field_quantiles={ ("Species", "limbs"): list(i for i in range(0, 101, 10) for _ in range(10000)) }, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { name @output(out_name: "species_name") limbs @filter(op_name: "between", value: ["$limbs_lower", "$limbs_upper"]) } }""", { "limbs_lower": 10, "limbs_upper": 14, }, ) first_page_and_remainder, _ = paginate_query(schema_info, query, 10) first = first_page_and_remainder.one_page remainder = first_page_and_remainder.remainder # Query should be split, but there's not enough quantiles compare_graphql(self, query.query_string, first.query_string) self.assertEqual(query.parameters, first.parameters) self.assertEqual(0, len(remainder)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_with_compiler_tests(self): """Test that pagination doesn't crash on any of the queries from the compiler tests.""" schema_graph = generate_schema_graph(self.orientdb_client) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } count_data = {vertex_name: 100 for vertex_name in schema_graph.vertex_class_names} count_data.update({edge_name: 100 for edge_name in schema_graph.edge_class_names}) statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) arbitrary_value_for_type = { "String": "string_1", "ID": "40000000-0000-0000-0000-000000000000", "Int": 5, "Date": datetime.date(2000, 1, 1), "DateTime": datetime.datetime(2000, 1, 1), "Decimal": 5.3, "[String]": ["string_1", "string_2"], } for test_name in get_function_names_from_module(test_input_data): method = getattr(test_input_data, test_name) if hasattr(method, "__annotations__"): output_type = method.__annotations__.get("return") if output_type == CommonTestData: test_data = method() query = test_data.graphql_input args = { arg_name: arbitrary_value_for_type[str(arg_type)] for arg_name, arg_type in test_data.expected_input_metadata.items() } paginate_query(schema_info, QueryStringWithParameters(query, args), 10) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_missing_vertex_class_count(self) -> None: """Ensure a basic pagination query is handled correctly.""" schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } query = QueryStringWithParameters( """{ Animal { name @output(out_name: "animal") } }""", {}, ) # No class counts provided statistics = LocalStatistics({}) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, advisories = paginate_query(schema_info, query, 1) self.assertTrue(first_page_and_remainder.remainder == tuple()) self.assertEqual(advisories, (MissingClassCount("Animal"),)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_missing_non_root_vertex_class_count(self) -> None: """Ensure a basic pagination query is handled correctly.""" schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } query = QueryStringWithParameters( """{ Animal { out_Animal_LivesIn { name @output(out_name: "animal") } } }""", {}, ) # No counts for Location count_data = { "Animal": 1000, "Animal_LivesIn": 1000, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, advisories = paginate_query(schema_info, query, 1) self.assertTrue(first_page_and_remainder.remainder == tuple()) self.assertEqual(advisories, (MissingClassCount("Location"),)) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_missing_edge_class_count(self) -> None: """Ensure a basic pagination query is handled correctly.""" schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } query = QueryStringWithParameters( """{ Animal { out_Animal_LivesIn { name @output(out_name: "animal") } } }""", {}, ) # No counts for Animal_LivesIn count_data = { "Animal": 1000, "Location": 10000, } statistics = LocalStatistics(count_data) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) first_page_and_remainder, advisories = paginate_query(schema_info, query, 1) self.assertTrue(first_page_and_remainder.remainder == tuple()) self.assertEqual(advisories, (MissingClassCount("Animal_LivesIn"),)) @pytest.mark.xfail(strict=True, reason="inline fragment not supported", raises=Exception) @pytest.mark.usefixtures("snapshot_orientdb_client") def test_pagination_with_inline_fragment(self) -> None: schema_graph = generate_schema_graph(self.orientdb_client) # type: ignore # from fixture graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph(schema_graph) pagination_keys = { vertex_name: ("uuid",) for vertex_name in schema_graph.vertex_class_names } pagination_keys["Species"] = ("limbs",) # Force pagination on int field uuid4_field_info = { vertex_name: {"uuid": UUIDOrdering.LeftToRight} for vertex_name in schema_graph.vertex_class_names } class_counts = {"Species": 1000} statistics = LocalStatistics( class_counts, field_quantiles={("Species", "limbs"): list(range(100))}, ) schema_info = QueryPlanningSchemaInfo( schema=graphql_schema, type_equivalence_hints=type_equivalence_hints, schema_graph=schema_graph, statistics=statistics, pagination_keys=pagination_keys, uuid4_field_info=uuid4_field_info, ) query = QueryStringWithParameters( """{ Species { out_Entity_Related { ... on Species { name @output(out_name: "species_name") } } } }""", {}, ) analysis = analyze_query_string(schema_info, query) vertex_partition_plan = VertexPartitionPlan(("Species", "out_Entity_Related"), "limbs", 2) generated_parameters = generate_parameters_for_vertex_partition( analysis, vertex_partition_plan ) sentinel = object() first_param = next(generated_parameters, sentinel) self.assertEqual(50, first_param) page_query, _ = generate_parameterized_queries(analysis, vertex_partition_plan, first_param) expected_page_query_string = """{ Species { out_Entity_Related { ... on Species { limbs @filter(op_name: "<", value: ["$__paged_param_0"]) name @output(out_name: "species_name") } } } }""" compare_graphql(self, expected_page_query_string, print_ast(page_query.query_ast))
StarcoderdataPython
3381924
import operator import django.urls import ipware.ip import ipware.ip from django.contrib.auth.decorators import login_required from django.db import transaction from django.db.models import Prefetch, Min from django.http.response import (HttpResponseNotFound, JsonResponse, HttpResponseForbidden) from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.cache import cache_page from django.views.decorators.http import require_POST import frontend.icons import frontend.table import modules.ejudge.queue import sistema.helpers import sistema.uploads import users.models from frontend.table.utils import TableDataSource from . import forms from . import models from . import upgrades def get_entrance_level_and_tasks(school, user): base_level = upgrades.get_base_entrance_level(school, user) tasks = upgrades.get_entrance_tasks(school, user, base_level) return base_level, tasks class EntrancedUsersTable(frontend.table.Table): index = frontend.table.IndexColumn(verbose_name='') name = frontend.table.Column( accessor='get_full_name', verbose_name='Имя', order_by=('profile.last_name', 'profile.first_name'), search_in=('profile.first_name', 'profile.last_name')) city = frontend.table.Column( accessor='profile.city', orderable=True, searchable=True, verbose_name='Город') school_and_class = frontend.table.Column( accessor='profile', search_in='profile.school_name', verbose_name='Школа и класс') session = frontend.table.Column( accessor='entrance_statuses', verbose_name='Смена') parallel = frontend.table.Column( accessor='entrance_statuses', verbose_name='Параллель') enrolled_status = frontend.table.Column( empty_values=(), verbose_name='Статус') class Meta: icon = frontend.icons.FaIcon('check') # TODO: title depending on school title = 'Поступившие' pagination = False def __init__(self, school, *args, **kwargs): qs = users.models.User.objects.filter( entrance_statuses__school=school, entrance_statuses__status=models.EntranceStatus.Status.ENROLLED, entrance_statuses__is_status_visible=True, ).annotate( min_session=Min('entrance_statuses__sessions_and_parallels__session__name'), min_parallel=Min('entrance_statuses__sessions_and_parallels__parallel__name') ).order_by( 'min_session', 'min_parallel', 'profile__last_name', 'profile__first_name', ).select_related('profile').prefetch_related( Prefetch( 'entrance_statuses', models.EntranceStatus.objects.filter(school=school)), Prefetch( 'absence_reasons', models.AbstractAbsenceReason.objects.filter(school=school)), ) super().__init__( qs, django.urls.reverse('school:entrance:results_data', args=[school.short_name]), *args, **kwargs) def render_school_and_class(self, value): parts = [] if value.school_name: parts.append(value.school_name) if value.current_class is not None: parts.append(str(value.current_class) + ' класс') return ', '.join(parts) def render_session(self, value): # TODO: will it be filtered? status = value.get() sessions_and_parallels = status.sessions_and_parallels.all() selected_session = sessions_and_parallels.filter(selected_by_user=True).first() if selected_session is not None: return selected_session.session.name if selected_session.session else '' return ', '.join(set( sessions_and_parallels .filter(session__isnull=False) .order_by('session_id') .values_list('session__name', flat=True) )) def render_parallel(self, value): # TODO: will it be filtered? status = value.get() sessions_and_parallels = status.sessions_and_parallels.all() selected_parallel = sessions_and_parallels.filter(selected_by_user=True).first() if selected_parallel is not None: return selected_parallel.parallel.name if selected_parallel.parallel else '' return ', '.join(set( sessions_and_parallels .filter(parallel__isnull=False) .order_by('parallel_id') .values_list('parallel__name', flat=True) )) def render_enrolled_status(self, record): absence_reasons = record.absence_reasons.all() absence_reason = absence_reasons[0] if absence_reasons else None if absence_reason is not None: return str(absence_reason) entrance_status = record.entrance_statuses.get() if not entrance_status.is_approved: return 'Участие не подтверждено' return '' @login_required def exam(request, selected_task_id=None): entrance_exam = get_object_or_404( models.EntranceExam, school=request.school ) is_closed = entrance_exam.is_closed() base_level, tasks = get_entrance_level_and_tasks(request.school, request.user) # Order task by type and order tasks = sorted(tasks, key=lambda t: (t.type_title, t.order)) for task in tasks: task.user_solutions = list( task.solutions.filter(user=request.user).order_by('-created_at')) task.is_accepted = task.is_accepted_for_user(request.user) task.is_solved = task.is_solved_by_user(request.user) task.form = task.get_form_for_user(request.user) if selected_task_id is None and len(tasks) > 0: selected_task_id = tasks[0].id try: selected_task_id = int(selected_task_id) except ValueError: selected_task_id = None categories = list(sorted( {task.category for task in tasks}, key=operator.attrgetter('order'), )) for category in categories: category.is_started = category.is_started_for_user(request.user) category.is_finished = category.is_finished_for_user(request.user) categories_with_tasks = [ (category, [task for task in tasks if task.category == category]) for category in categories ] return render(request, 'entrance/exam.html', { 'is_closed': is_closed, 'entrance_level': base_level, 'school': request.school, 'categories_with_tasks': categories_with_tasks, 'is_user_at_maximum_level': upgrades.is_user_at_maximum_level( request.school, request.user, base_level ), 'can_upgrade': not is_closed and upgrades.can_user_upgrade( request.school, request.user, base_level ), 'selected_task_id': selected_task_id }) @login_required def task(request, task_id): return exam(request, task_id) @login_required @require_POST def submit(request, task_id): entrance_exam = get_object_or_404(models.EntranceExam, school=request.school) task = get_object_or_404(models.EntranceExamTask, pk=task_id) if task.exam_id != entrance_exam.id: return HttpResponseNotFound() is_closed = ( entrance_exam.is_closed() or task.category.is_finished_for_user(request.user)) ip = ipware.ip.get_ip(request) or '' form = task.get_form_for_user(request.user, data=request.POST, files=request.FILES) # TODO (andgein): extract this logic to models if type(task) is models.TestEntranceExamTask: if is_closed: form.add_error('solution', 'Вступительная работа завершена. Решения больше не принимаются') elif form.is_valid(): solution_text = form.cleaned_data['solution'] solution = models.TestEntranceExamTaskSolution( user=request.user, task=task, solution=solution_text, ip=ip ) solution.save() return JsonResponse({'status': 'ok', 'solution_id': solution.id}) return JsonResponse({'status': 'error', 'errors': form.errors}) if type(task) is models.FileEntranceExamTask: if is_closed: form.add_error('solution', 'Вступительная работа завершена. Решения больше не принимаются') elif form.is_valid(): form_file = form.cleaned_data['solution'] solution_file = sistema.uploads.save_file( form_file, 'entrance-exam-files-solutions' ) solution = models.FileEntranceExamTaskSolution( user=request.user, task=task, solution=solution_file, original_filename=form_file.name, ip=ip ) solution.save() return JsonResponse({'status': 'ok', 'solution_id': solution.id}) return JsonResponse({'status': 'error', 'errors': form.errors}) if isinstance(task, models.EjudgeEntranceExamTask): if is_closed: form.add_error('solution', 'Вступительная работа завершена. Решения больше не принимаются') elif form.is_valid(): solution_file = sistema.uploads.save_file( form.cleaned_data['solution'], 'entrance-exam-programs-solutions' ) with transaction.atomic(): if type(task) is models.ProgramEntranceExamTask: language = form.cleaned_data['language'] solution_kwargs = {'language': language} else: language = None solution_kwargs = {} ejudge_queue_element = modules.ejudge.queue.add_from_file( task.ejudge_contest_id, task.ejudge_problem_id, language, solution_file ) solution = task.solution_class( user=request.user, task=task, solution=solution_file, ejudge_queue_element=ejudge_queue_element, ip=ip, **solution_kwargs ) solution.save() return JsonResponse({'status': 'ok', 'solution_id': solution.id}) return JsonResponse({'status': 'error', 'errors': form.errors}) @login_required def task_solutions(request, task_id): task = get_object_or_404(models.EntranceExamTask, id=task_id) solutions = task.solutions.filter(user=request.user).order_by('-created_at') if isinstance(task, models.EjudgeEntranceExamTask): is_checking = any(s.result is None for s in solutions) is_passed = any(s.is_checked and s.result.is_success for s in solutions) template_name = task.solutions_template_file return render(request, 'entrance/exam/' + template_name, { 'task': task, 'solutions': solutions, 'is_checking': is_checking, 'is_passed': is_passed }) if type(task) is models.FileEntranceExamTask: return render(request, 'entrance/exam/_file_solutions.html', { 'task': task, 'solution': solutions.first() }) return HttpResponseNotFound() @login_required def upgrade_panel(request): base_level, _ = get_entrance_level_and_tasks(request.school, request.user) return render(request, 'entrance/_exam_upgrade.html', { 'is_user_at_maximum_level': upgrades.is_user_at_maximum_level( request.school, request.user, base_level ), 'can_upgrade': upgrades.can_user_upgrade( request.school, request.user, base_level ), }) @login_required def solution(request, solution_id): solution = get_object_or_404(models.FileEntranceExamTaskSolution, id=solution_id) if solution.user != request.user and not request.user.is_staff: return HttpResponseForbidden() return sistema.helpers.respond_as_attachment(request, solution.solution, solution.original_filename) @require_POST @login_required @transaction.atomic def upgrade(request): entrance_exam = get_object_or_404(models.EntranceExam, school=request.school) is_closed = entrance_exam.is_closed() # Not allow to upgrade if exam has been finished already if is_closed: return redirect(entrance_exam.get_absolute_url()) base_level = upgrades.get_base_entrance_level(request.school, request.user) # We may need to upgrade several times because there are levels with # the same sets of tasks while upgrades.can_user_upgrade(request.school, request.user): maximum_level = upgrades.get_maximum_issued_entrance_level( request.school, request.user, base_level ) next_level = models.EntranceLevel.objects.filter( school=request.school, order__gt=maximum_level.order ).order_by('order').first() models.EntranceLevelUpgrade( user=request.user, upgraded_to=next_level ).save() return redirect(entrance_exam.get_absolute_url()) def results(request): table = EntrancedUsersTable(request.school) frontend.table.RequestConfig(request).configure(table) return render(request, 'entrance/results.html', { 'table': table, 'school': request.school, }) @cache_page(5 * 60) def results_data(request): table = EntrancedUsersTable(request.school) return TableDataSource(table).get_response(request) @require_POST @login_required def set_enrollment_type(request, step_id): step = get_object_or_404( models.SelectEnrollmentTypeEntranceStep, id=step_id, school=request.school ) form = forms.SelectEnrollmentTypeForm( step.enrollment_types.all(), data=request.POST ) if form.is_valid(): enrollment_type = models.EnrollmentType.objects.get( pk=form.cleaned_data['enrollment_type'] ) models.SelectedEnrollmentType.objects.update_or_create( user=request.user, step=step, defaults={ 'enrollment_type': enrollment_type, 'is_moderated': not enrollment_type.needs_moderation, 'is_approved': not enrollment_type.needs_moderation, 'entrance_level': None } ) else: # TODO (andgein): show error if form is not valid raise ValueError('Errors: ' + ', '.join(map(str, form.errors))) return redirect('school:user', request.school.short_name) @require_POST @login_required def reset_enrollment_type(request, step_id): step = get_object_or_404( models.SelectEnrollmentTypeEntranceStep, id=step_id, school=request.school ) models.SelectedEnrollmentType.objects.filter( user=request.user, step=step ).delete() return redirect('school:user', request.school.short_name) @require_POST @login_required def select_session_and_parallel(request, step_id): get_object_or_404(models.ResultsEntranceStep, id=step_id, school=request.school) entrance_status = models.EntranceStatus.get_visible_status(request.school, request.user) if not entrance_status.is_enrolled: return HttpResponseNotFound() form = forms.SelectSessionAndParallelForm( entrance_status.sessions_and_parallels.all(), data=request.POST ) if form.is_valid(): selected = models.EnrolledToSessionAndParallel.objects.get( pk=form.cleaned_data['session_and_parallel'] ) with transaction.atomic(): selected.select_this_option() entrance_status.approve() else: # TODO (andgein): show error if form is not valid raise ValueError('Errors: ' + ', '.join(map(str, form.errors))) return redirect('school:user', request.school.short_name) @require_POST @login_required def reset_session_and_parallel(request, step_id): step = get_object_or_404(models.ResultsEntranceStep, id=step_id, school=request.school) entrance_status = models.EntranceStatus.get_visible_status(request.school, request.user) if not entrance_status.is_enrolled: return HttpResponseNotFound() if step.available_to_time and step.available_to_time.passed_for_user(request.user): return redirect('school:user', request.school.short_name) with transaction.atomic(): entrance_status.sessions_and_parallels.update(selected_by_user=False) entrance_status.remove_approving() return redirect('school:user', request.school.short_name) @require_POST @login_required def approve_enrollment(request, step_id): get_object_or_404(models.ResultsEntranceStep, id=step_id, school=request.school) entrance_status = models.EntranceStatus.get_visible_status(request.school, request.user) if not entrance_status.is_enrolled: return HttpResponseNotFound() if entrance_status.sessions_and_parallels.count() != 1: return HttpResponseNotFound() with transaction.atomic(): entrance_status.sessions_and_parallels.update(selected_by_user=True) entrance_status.approve() return redirect('school:user', request.school.short_name) @require_POST @login_required def reject_participation(request, step_id): get_object_or_404(models.ResultsEntranceStep, id=step_id, school=request.school) entrance_status = models.EntranceStatus.get_visible_status(request.school, request.user) if not entrance_status.is_enrolled: return HttpResponseNotFound() models.RejectionAbsenceReason.objects.create( school=request.school, user=request.user, created_by=request.user, ) return redirect('school:user', request.school.short_name)
StarcoderdataPython
1755108
import numpy as np import sys import optwrapper as ow A = np.array( [ [1.0979, -.0105, .0167 ], [-.0105, 1.0481, .0825], [.0167, .0825, 1.1540] ] ) def instcost( x, u, grad=True ): Q = np.zeros( (3,3) ) R = .01 if( not grad ): return x.dot(Q).dot(x) + u.dot(R).dot(u) return ( x.dot(Q).dot(x) + u.dot(R).dot(u), 2 * x.dot(Q), 2 * u.dot(R) ) icostdxpattern = np.ones( (3,) ) icostdupattern = np.ones( (1,) ) def fcost( x, grad=True ): S = np.identity(3) dist = x - np.ones(3) if( not grad ): return dist.dot(S).dot(dist) return( dist.dot(S).dot(dist), 2 * dist.dot(S) ) fcostdxpattern = np.ones( (3,) ) def dynamics_mode1( x, u, grad=True ): B1 = np.array( [ [.9801], [-.1987], [0] ] ) if( not grad ): return A.dot(x) + B1.dot(u) return( A.dot(x) + B1.dot(u), A, B1 ) Apattern = np.ones( (3,3) ) B1pattern = np.array( [ [1], [1], [0] ], dtype=np.int ) def dynamics_mode2( x, u, grad=True ): B2 = np.array( [ [.1743], [.8601], [-.4794] ] ) if( not grad ): return A.dot(x) + B2.dot(u) return( A.dot(x) + B2.dot(u), A, B2 ) B2pattern = np.ones( (3,1) ) def dynamics_mode3( x, u, grad=True ): B3 = np.array( [ [.0952], [.4699], [0.8776] ] ) if( not grad ): return A.dot(x) + B3.dot(u) return( A.dot(x) + B3.dot(u), A, B3 ) B3pattern = np.ones( (3,1) ) ## create an instance of socp: prob = ow.socp.Problem( Nstates = 3, Ninputs = 1, Nmodes = 3, Ncons = 0 ) prob.initCond( [ 0.0, 0.0, 0.0 ] ) prob.timeHorizon( 0.0, 1.0 ) prob.costInstant( (instcost,) * 3, dxpattern = (icostdxpattern,) * 3, dupattern = (icostdupattern,) * 3 ) prob.costFinal( fcost, dxpattern = fcostdxpattern ) prob.vectorField( ( dynamics_mode1, dynamics_mode2, dynamics_mode3 ), dxpattern = (Apattern,) * 3, dupattern = ( B1pattern, B2pattern, B3pattern ) ) prob.consBoxState( -1 * np.ones( (prob.Nstates,) ), 2 * np.ones( (prob.Nstates,) ) ) prob.consBoxInput( -20 * np.ones( (prob.Ninputs,) ), 20 * np.ones( (prob.Ninputs,) ) ) ( nlpprob, initencode, solndecode ) = prob.discForwardEuler( Nsamples = 30 ) if( not nlpprob.checkGrad( debug=True ) ): sys.exit( "Gradient check failed." ) if( not nlpprob.checkPattern( debug=True ) ): sys.exit( "Pattern check failed." ) solver = ow.ipopt.Solver( nlpprob ) solver.initPoint( initencode( prob.init, [0], [1/3, 1/3, 1/3] ) ) solver.debug = True # solver.options[ "summaryFile" ] = "stdout" # solver.options[ "printFile" ] = "debugp.txt" # solver.options[ "printLevel" ] = 111111 # solver.options[ "minorPrintLevel" ] = 10 # solver.options[ "verifyLevel" ] = 3 solver.solve() print( "Status: " + nlpprob.soln.getStatus() ) print( "Value: " + str( nlpprob.soln.value ) ) # print( "Final point: " + str( nlpprob.soln.final ) ) print( "Retval: " + str( nlpprob.soln.retval ) ) ( st, u, d, time ) = solndecode( nlpprob.soln.final ) print( "Optimal state:\n" + str( st ) ) print( "Optimal continuous input:\n" + str( u ) ) print( "Optimal relaxed discrete input:\n" + str( d ) ) Npwm = 5 thaar = np.linspace( time[0], time[-1], 2**Npwm + 1 ) uhaar = ow.socp.haarWaveletApprox( time, u, Npwm ) dhaar = ow.socp.haarWaveletApprox( time, d, Npwm ) ( tpwm, upwm, dpwm ) = ow.socp.pwmTransform( thaar, uhaar, dhaar ) print( "PWM time samples:\n" + str( tpwm ) ) print( "Optimal continuous input:\n" + str( upwm ) ) print( "Optimal pure discrete input:\n" + str( dpwm ) )
StarcoderdataPython
4828648
<gh_stars>0 from elegant_finrl.run import * from elegant_finrl.agent import AgentPPO, AgentDDPG from elegant_finrl.env import StockTradingEnv import yfinance as yf from stockstats import StockDataFrame as Sdf args = Arguments(if_on_policy=True) args.agent = AgentPPO() args.env = StockTradingEnv(cwd='./', if_eval=True) args.if_remove = False args.cwd = './AgentPPO/StockTradingEnv-v1_0' args.init_before_training() prediction = args.env.trade_prediction(args, torch) args.env.backtest_plot(prediction, baseline_ticker = '^DJI', baseline_start = '2019-01-01', baseline_end = '2021-01-01')
StarcoderdataPython
1798617
<reponame>Aliacf21/BotBuilder-Samples<filename>samples/python/47.inspection/data_models/__init__.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from .custom_state import CustomState __all__ = ["CustomState"]
StarcoderdataPython
1627657
<gh_stars>0 # -*- coding: utf-8 -*- import logging from pymongo import MongoClient class DB_manager(object): def __init__(self): self.logger = logging.getLogger(" {0}".format(__name__)) def init_db(self): self.client = MongoClient('localhost', 24730) self.db = self.client.mobileparser self.logger.debug('mongodb connection opened') def close_db(self): self.client.close() self.logger.debug('mongodb connection closed') def handle_data(self, data): self.logger.debug(data) parser_info = { "parser_version": data["parser_version"], "parser_name": data["parser_name"].lower(), "parse_date": data["parse_date"] } for restaurant in data['restaurants']: serialized = self.todict(restaurant) serialized["parser_info"] = parser_info self.logger.debug(serialized) self.update_restaurant(serialized) def update_restaurant(self, restaurant): r_id = restaurant["restaurant_info"]["id"] chain = restaurant["restaurant_info"]["chain"] week = restaurant["foodlist_date"]["week_number"] year = restaurant["foodlist_date"]["year"] # restaurant foodlist searched_foodlist = { "foodlist_info.id": r_id, "foodlist_chain": chain, "foodlist_info.week_number": week, "foodlist_info.year": year } foodlist = { "foodlist_info": { "id": r_id, "chain": chain, "week_number": week, "year": year }, "weekly_foods": restaurant["weekly_foods"], "debug": restaurant["parser_info"] } # restaurant info searched_info = { "restaurant_info.id": r_id } info = { "restaurant_info": restaurant["restaurant_info"], "debug": restaurant["parser_info"] } self.db.foods.update(searched_foodlist, foodlist, upsert=True) self.db.info.update(searched_info, info, upsert=True) def update_parser_version(self, version): self.db.parser.save({"version": version}) def todict(self, obj, classkey=None): if isinstance(obj, dict): data = {} for (k, v) in obj.items(): data[k] = self.todict(v, classkey) return data elif hasattr(obj, "_ast"): return self.todict(obj._ast()) elif hasattr(obj, "__iter__"): return [self.todict(v, classkey) for v in obj] elif hasattr(obj, "__dict__"): data = dict( [(key, self.todict(value, classkey)) for key, value in obj.__dict__.iteritems() if not callable(value) and not key.startswith('_')] ) if classkey is not None and hasattr(obj, "__class__"): data[classkey] = obj.__class__.__name__ return data else: return obj
StarcoderdataPython
3388588
<reponame>smrmkt/online_learning_algorithms #!/usr/bin/env python #-*-coding:utf-8-*- import enum import numpy as np class Evaluator: CalcType = enum.Enum("CalcType", ["update", "predict"]) def __init__(self, model, y_vec, feats_vec): self.model = model self.count = len(y_vec) self.y_vec = y_vec self.feats_vec = feats_vec self.tp = 0 self.fp = 0 self.fn = 0 self.tn = 0 self.accuracy = [] self.precision = [] self.recall = [] def _calc(self, calc_type): tp, fp, fn, tn = 0, 0, 0, 0 accuracy, precision, recall = [], [], [] for i in range(self.count): if calc_type == Evaluator.CalcType.update: ret = self.model.update(self.y_vec[i], self.feats_vec[i]) elif calc_type == Evaluator.CalcType.predict: ret = 1 if self.y_vec[i]*self.model.predict(self.feats_vec[i]) > 0 else 0 tp += 1 if ret == 1 and self.y_vec[i] == 1 else 0 fp += 1 if ret == 0 and self.y_vec[i] == -1 else 0 fn += 1 if ret == 0 and self.y_vec[i] == 1 else 0 tn += 1 if ret == 1 and self.y_vec[i] == -1 else 0 accuracy.append(float(tp+tn)/(tp+fp+fn+tn)) precision.append(float(tp)/(tp+fp) if tp+fp > 0 else 0.0) recall.append(float(tp)/(tp+fn) if tp+fn > 0 else 0.0) self.tp = tp self.fp = fp self.fn = fn self.tn = tn self.accuracy = accuracy self.precision = precision self.recall = recall def update(self): self._calc(Evaluator.CalcType.update) def predict(self): self._calc(Evaluator.CalcType.predict)
StarcoderdataPython
1759033
# -*- coding: utf-8 -*- import time from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime from Kinetic import extractPoints from numpy import * #import pyttsx k = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Body) print "Kinect lance" #e = pyttsx.init() #e.say('Bonjour et bienvenu dans la prossaidure de calibration de la machine vivante. Une personne doit se mettre debout au centre de la saine, face public, les bras ecartai comme jaizu cri. et une autre personne est praite a tourner la Kinect selon l''axe Z. Tenez vous prai dans dix, neuf, huit, sept, six, cinq, quatre, trois, deux, un.') #e.runAndWait() calib = True while calib : time.sleep(0.1) seeBody = False if k.has_new_body_frame(): bs = k.get_last_body_frame() tiltrad = arctan(bs.floor_clip_plane.z/bs.floor_clip_plane.y) w = bs.floor_clip_plane.w #print tiltrad*180.0/pi,w if bs is not None: for b in bs.bodies: if not b.is_tracked: continue # get joints positions js = b.joints kpos = extractPoints(js,tiltrad,w,0.0,0.0) if kpos["spine_base"][1]>0.05: # e.say(u'tourner la kinect un peu a droite!') # e.runAndWait() print(u'tourner la kinect un peu a droite!') elif kpos["spine_base"][1]<-0.05: # e.say(u'tourner la kinect un peu a gauche!') # e.runAndWait() print(u'tourner la kinect un peu a gauche!') else: # e.say('c''est bon ne touchez plus la Kinect, tout est calibrai. Merci de votre devoumain') # e.runAndWait() print('c''est bon ne touchez plus la Kinect, tout est calibrai. Merci de votre devoumain') print "rtip" print kpos["r_tip"] print "ltip" print kpos["l_tip"] print "spine" print kpos["spine_base"] print "tilt" print tiltrad*180.0/pi print "hkinect" print w print "dkinect" print -kpos["spine_base"][0] print "pan" print arctan((kpos["r_tip"][0]-kpos["l_tip"][0])/(kpos["r_tip"][1]-kpos["l_tip"][1]))*180.0/pi calib = False
StarcoderdataPython
58800
import indicoio from celery import Celery from flask import Flask from flask_bootstrap import Bootstrap from flask_googlemaps import GoogleMaps from flask_mail import Mail from flask_mongoengine import MongoEngine from app.celery.factory import init_celery from config import config, DEVELOPMENT_CONFIG_NAME celery = Celery('app') mail = Mail() db = MongoEngine() bootstrap = Bootstrap() def create_app(config_name=DEVELOPMENT_CONFIG_NAME): app = Flask(__name__) app.config.from_object(config[config_name]) register_extensions(app) register_blueprints(app) init_celery(app, celery) GoogleMaps(app) set_indico_key(config[config_name]) return app def set_indico_key(cfg): indicoio.config.api_key = cfg.INDICO_KEY def register_extensions(app): mail.init_app(app) db.init_app(app) bootstrap.init_app(app) def register_blueprints(app): from app.blueprints.main import main from app.blueprints.auth import auth from app.blueprints.account import account from app.blueprints.errors import errors app.register_blueprint(main) app.register_blueprint(auth) app.register_blueprint(account) app.register_blueprint(errors)
StarcoderdataPython
4803573
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test apps security token API.""" import unittest from mock import patch from test_utils import GetExpectedPrintOutput from test_utils import LoadTestJsonFile from tokens_api_test_base import TokensApiPrintTokensTestBase _USER_ID = '0' # Stub user_id. # PyLint dislikes the method names Python unittest prefers (testXXX). # pylint: disable=g-bad-name @patch('admin_sdk_directory_api.tokens_api.TokensApiWrapper.GetToken') class TokensApiPrintTokensForUserAndClientIdWithTokensTest( TokensApiPrintTokensTestBase): """Wrapper to test token print code with both user and client_id supplied. NOTE: When you @patch() a class, every testXXX() method will receive an extra argument. The extra argument is the patched function object that is then used to mock return values, check invocations, etc. """ def setUp(self): # pylint: disable=g-bad-name """Setup token return data for these tests.""" super(TokensApiPrintTokensForUserAndClientIdWithTokensTest, self).setUp() self._client_id = 'twitter.com' # Token data captured from: # ./cmds/ls_tokens_for_user_clientid.py -u <EMAIL> \ # -i twitter.com self.returned_token_doc = { u'anonymous': False, u'clientId': u'twitter.com', u'displayText': u'twitter.com', u'kind': u'admin#directory#token', u'nativeApp': False, u'scopes': [u'http://www.google.com/m8/feeds/'], u'userKey': u'112351558298938768732'} def testBasicPrintSingleTokenForUserAndClientIdWithTokens( self, mock_get_token_request_fn): mock_get_token_request_fn.return_value = self.returned_token_doc self._tokens_api.PrintTokenForUserClientId(_USER_ID, self._client_id, long_list=False) self.assertEqual(GetExpectedPrintOutput('PrintTokenForUserClientId.1'), self._new_stdout.print_messages) def testLongPrintSingleTokenForUserAndClientIdWithTokens( self, mock_get_token_request_fn): mock_get_token_request_fn.return_value = self.returned_token_doc self._tokens_api.PrintTokenForUserClientId(_USER_ID, self._client_id, long_list=True) self.assertEqual(GetExpectedPrintOutput('PrintTokenForUserClientId.2'), self._new_stdout.print_messages) @patch('admin_sdk_directory_api.tokens_api.TokensApiWrapper.ListTokens') class TokensApiPrintTokensForUserWithTokensTest( TokensApiPrintTokensTestBase): """Wrapper to test token print code with just user supplied.""" def setUp(self): """Setup token return data for these tests.""" super(TokensApiPrintTokensForUserWithTokensTest, self).setUp() self.returned_token_doc = LoadTestJsonFile( 'primarydomain.com_valid_tokendata.json') def testBasicPrintTokensForUserWithTokens(self, mock_list_tokens_request_fn): mock_list_tokens_request_fn.return_value = self.returned_token_doc self._tokens_api.PrintTokensForUser(_USER_ID, long_list=False) self.assertEqual(GetExpectedPrintOutput('PrintTokensForUser.1'), self._new_stdout.print_messages) def testLongPrintTokensForUserWithTokens( self, mock_list_tokens_request_fn): mock_list_tokens_request_fn.return_value = self.returned_token_doc self._tokens_api.PrintTokensForUser(_USER_ID, long_list=True) self.assertEqual(GetExpectedPrintOutput('PrintTokensForUser.2'), self._new_stdout.print_messages) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1674004
<reponame>Pseudomanifold/pyper """Filtrations and persistent homology calculation for functions.""" import enum import operator import numpy as np from ..utilities import UnionFind from ..representations import PersistenceDiagram def calculate_persistence_diagrams_1d( function, order='sublevel', ): """Calculate persistence diagrams for a 1D function. Calculates persistence diagrams for a 1D function, following the usual Morse filtration. This is equivalent to calculating one of the "merge" or "split" trees. Parameters ---------- function: Input function. Should be an array or an array-like data structure that affords iteration. order: Specifies the filtration order that is to be used for calculating persistence diagrams. Can be either 'sublevel' for a sublevel set filtration, or 'superlevel' for a superlevel set filtration. Returns ------- Persistence diagram of the merge or split tree. """ assert order in ['sublevel', 'superlevel'] function = np.asarray(function) if order == 'sublevel': indices = np.argsort(function, kind='stable') predicate = operator.lt else: indices = np.argsort(-function, kind='stable') predicate = operator.gt n = len(function) # Union--Find data structure for tracking the indices of the # persistence diagram. uf = UnionFind(n) # Will contain persistence pairs as index tuples where each # index refers to a point in the input series. persistence_pairs = [] # In the comments of this function, I will assume that `predicate` # refers to the 'less than' operator. Hence, I will speak of local # minima and so on. This is done to make the code more readable. for index in indices: x = function[index] u = x v = x # Grab neighbours, if available. Else, we just pretend that we # discovered x again. Since we do not check for equality below # this works out just fine. if index > 0: u = function[index - 1] if index < n - 1: v = function[index + 1] # Case 1 [local minimum]: both neighbours have higher function # values if predicate(x, u) and predicate(x, v): # Nothing to do here pass # Case 2 [local maximum]: both neighbours have lower function # values elif predicate(u, x) and predicate(v, x): # For the persistence pairing, the 'older' branch persists, # while the 'younger' branch is being merged. To decide the # age, we use the predicate between both neighbours. Notice # that this also decides the 'direction' of the merge. It's # crucial to look up the lowest point in each component for # merging in the proper direction. if predicate(function[uf.find(index - 1)], function[uf.find(index + 1)]): # u is the 'older' branch and persists; merge everything # into it. persistence_pairs.append((uf.find(index + 1), index)) uf.merge(index, index + 1) uf.merge(index + 1, index - 1) else: # v is the 'older' branch and persists; merge everything # into it. persistence_pairs.append((uf.find(index - 1), index)) uf.merge(index, index - 1) uf.merge(index - 1, index + 1) # Case 3 [regular point]: one neighbour has a higher function # value, the other one has a lower function value. else: # Indicates whether a merge should be done, and if so, which # direction should be used. `LEFT` refers to the left vertex # with respect to the current vertex, for example. class Merge(enum.Enum): LEFT, RIGHT = range(2) # Indicates all merges that need to be done. It is possible # that we want to merge both to the left and to the right. merges = [] # Only add the edge to the *lower* point because we have # already encountered the point in filtration order. The # higher point will then add the second edge. if predicate(u, x): merges.append(Merge.LEFT) elif predicate(v, x): merges.append(Merge.RIGHT) # Check whether the point is incomparable with its left and # right neighbours, respectively. This will decide how they # can be merged. incomparable_l_nb = not predicate(u, x) and not predicate(x, u) incomparable_r_nb = not predicate(v, x) and not predicate(x, v) # At this point, we have already checked whether there are # points that are truly *lower* than the current point and # we have recorded their merges. In addition, we now check # for vertices for which the predicate yields incomparable # results, for this indicates that they are *equal* to the # current point, from the perspective of the predicate. # # Left neighbour is incomparable with current point, hence # we can choose it to create a new edge. if incomparable_l_nb: merges.append(Merge.LEFT) # Right neighbour is incomparable with current point, hence # we can choose it to create a new edge. if incomparable_r_nb: merges.append(Merge.RIGHT) # Depending on the merge direction, adjust all required # data structures. If we do not have at least one valid # merge, we just skip everything. if not merges: continue if Merge.LEFT in merges and index != 0: # Switch the order in which the merges happens if the # neighbours are incomparable. This is done because a # representative of a component should be the highest # index with respect to the ordering of the series so # that lower indices will become children of it. if incomparable_l_nb: uf.merge(index - 1, index) else: uf.merge(index, index - 1) if Merge.RIGHT in merges and index != n - 1: if incomparable_r_nb: uf.merge(index + 1, index) else: uf.merge(index, index + 1) # Merge the minimum with the maximum for the time series. This # ensures that the diagram always contains at least a *single* # persistence pair. if len(indices) >= 2: if (indices[0], indices[-1]) not in persistence_pairs: persistence_pairs.append((indices[0], indices[-1])) pd = PersistenceDiagram( [(function[c], function[d]) for c, d in persistence_pairs] ) return pd
StarcoderdataPython
193605
from django import template from trax.trax import utils register = template.Library() @register.filter(name='humanize_timedelta') def d(value): return utils.humanize_timedelta(value)
StarcoderdataPython
1721012
# Generated by Django 2.2.9 on 2020-10-25 10:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0005_auto_20201004_1241'), ] operations = [ migrations.AlterModelOptions( name='group', options={'verbose_name': 'Группа', 'verbose_name_plural': 'Группы'}, ), migrations.AlterModelOptions( name='post', options={'ordering': ['-pub_date'], 'verbose_name': 'Запись', 'verbose_name_plural': 'Записи'}, ), migrations.AlterField( model_name='group', name='slug', field=models.SlugField(max_length=200, unique=True), ), ]
StarcoderdataPython
182623
<gh_stars>1-10 import logging import time try: from fortrace.core.vmm import Vmm from fortrace.utility.logger_helper import create_logger from fortrace.core.vmm import GuestListener from fortrace.core.reporter import Reporter import fortrace.utility.scenarioHelper as scenH except ImportError as ie: print("Import error! in fileManagement.py " + str(ie)) exit(1) # This test script verifies the functionality and shows the usage of the different antiForensics functions. # The effect of some functions may interfere with each other (e.g. cleaning the Event Log and then deleting the log # files seems pretty pointless # Function status disableEventLog = True disableHibernation = True disablePageFile = True disablePrefetch = True disableRecentFiles = True disableRecycleBin = True disableThumbcache = True disableUserAssist = True clearEventLogFiles = True clearEventLogEntries = True clearJumpLists = True clearPrefetch = True clearThumbcache = True clearUserAssist = True clearRecentDocs = True setRegistryKey = True deleteRegistryKey = True # Instanciate VMM and a VM logger = create_logger('fortraceManager', logging.INFO) macsInUse = [] guests = [] guestListener = GuestListener(guests, logger) virtual_machine_monitor1 = Vmm(macsInUse, guests, logger) imagename = "antiForensics_testscript" guest = virtual_machine_monitor1.create_guest(guest_name=imagename, platform="windows") # Wait for the VM to connect to the VMM guest.waitTillAgentIsConnected() # Create mailClient object antifor = guest.application("antiForensics", {}) # Disable the Recycle Bin logger.info("Disabling the Recycle Bin") try: antifor.disableRecycleBin("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableRecycleBin = False print("An error occured: ") print(e) time.sleep(5) # Disble creation of Thumbcache entries logger.info("Disabling the Thumbcache") try: antifor.disableThumbcache("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableThumbcache = False print("An error occured: ") print(e) time.sleep(5) # Disble creation of Prefetch files logger.info("Disabling Prefetch") try: antifor.disablePrefetch("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disablePrefetch = False print("An error occured: ") print(e) time.sleep(5) # clear Event log entries # Event Log service must be running logger.info("Clearing Event log entries") try: antifor.clearEventLogEntries("security") while antifor.is_busy is True: time.sleep(1) except Exception as e: clearEventLogEntries = False print("An error occured: ") print(e) time.sleep(5) # Disable the Event Log Service # CAUTION: Disabling the Service does NOT prevent the creation of events, but is necessary to delete the Log files. logger.info("Disabling the Event Log service") try: antifor.disableEventLog("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableEventLog = False print("An error occured: ") print(e) time.sleep(5) # Disable the creation of UserAssist entries in the Registry logger.info("Disabling UserAssist") try: antifor.disableUserAssist("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableUserAssist = False print("An error occured: ") print(e) time.sleep(5) # Disable System Hibernation and therefore the creation of the Hibernation file logger.info("Disabling Hibernation") try: antifor.disableHibernation("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableHibernation = False print("An error occured: ") print(e) time.sleep(5) # Disable the page file usage # This can have a negative effect on the system performance, but clearing the pagefile at shutdown # did not work in every test run logger.info("Disabling page file usage") try: antifor.disablePagefile("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disablePageFile = False print("An error occured: ") print(e) time.sleep(5) # disable recent files logger.info("Disabling recent files") try: antifor.disableRecentFiles("1") while antifor.is_busy is True: time.sleep(1) except Exception as e: disableRecentFiles = False print("An error occured: ") print(e) time.sleep(5) ############## # To ensure all set options are active, the system is rebooted ############## guest.shutdown("keep") while guest.isGuestPowered(): time.sleep(5) guest.start() guest.waitTillAgentIsConnected() # clear User Assist Registry key logger.info("Deleting User Assist") try: antifor.clearUserAssist() while antifor.is_busy is True: time.sleep(1) except Exception as e: clearUserAssist = False print("An error occured: ") print(e) time.sleep(5) # clear Recent Docs Registry key logger.info("Deleting Recent Docs") try: antifor.clearRecentDocs() while antifor.is_busy is True: time.sleep(1) except Exception as e: clearRecentDocs = False print("An error occured: ") print(e) time.sleep(5) # clear Event Log files logger.info("Deleting Event Log files") try: antifor.clearEventLogFiles() while antifor.is_busy is True: time.sleep(1) except Exception as e: clearEventLogFiles = False print("An error occured: ") print(e) time.sleep(5) # Clear Prefetch Files logger.info("Clearing Prefetch files") try: antifor.clearPrefetch() while antifor.is_busy is True: time.sleep(1) except Exception as e: clearPrefetch = False print("An error occured: ") print(e) time.sleep(5) # Clear Thumbcache files logger.info("Clearing Thumbcache files") try: antifor.clearThumbcache("fortrace") while antifor.is_busy is True: time.sleep(1) except Exception as e: clearThumbcache = False print("An error occured: ") print(e) time.sleep(5) # Clear Jumplist files logger.info("Clearing Jumplist files") try: antifor.clearJumpLists("fortrace") while antifor.is_busy is True: time.sleep(1) except Exception as e: clearJumpLists = False print("An error occured: ") print(e) time.sleep(5) # Set Registry key logger.info("Changing user defined Registry key") regKey_set = r"HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer" regkey_set_value = "DisableThumbnails" regkey_set_type = "REG_DWORD" try: antifor.setRegistryKey(regKey_set, regkey_set_type, regkey_set_value, "1") while antifor.is_busy is True: time.sleep(1) except Exception as e: setRegistryKey = False print("An error occured: ") print(e) time.sleep(5) # Delete Registry key regkey_del = r"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power" regkey_del_val = "HibernateEnabledDefault" try: antifor.deleteRegistryKey(regkey_del, regkey_del_val) while antifor.is_busy is True: time.sleep(1) except Exception as e: deleteRegistryKey = False print("An error occured: ") print(e) time.sleep(5) # Shut down system and delete guest guest.shutdown("keep") while guest.isGuestPowered(): time.sleep(5) guest.delete() # Finish and print results logger.info("Scenario finished!") logger.info("Results:") logger.info("disableEventLog: " + str(disableEventLog)) logger.info("disableHibernation: " + str(disableHibernation)) logger.info("disablePageFile: " + str(disablePageFile)) logger.info("disablePrefetch: " + str(disablePrefetch)) logger.info("disableRecentFiles: " + str(disableRecentFiles)) logger.info("disableRecycleBin: " + str(disableRecycleBin)) logger.info("disableThumbcache: " + str(disableThumbcache)) logger.info("disableUserAssist: " + str(disableUserAssist)) logger.info("clearEventLogEntries: " + str(clearEventLogEntries)) logger.info("clearEventLogFiles: " + str(clearEventLogFiles)) logger.info("clearJumpLists: " + str(clearJumpLists)) logger.info("clearPrefetch: " + str(clearPrefetch)) logger.info("clearThumbcache: " + str(clearThumbcache)) logger.info("clearUserAssist: " + str(clearUserAssist)) logger.info("clearRecentDocs: " + str(clearRecentDocs)) logger.info("setRegistryKey: " + str(setRegistryKey)) logger.info("deleteRegistryKey: " + str(deleteRegistryKey))
StarcoderdataPython
1745178
<filename>FEF_and_LIP_and_mdPul_v3.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 12 16:23:57 2020 @author: amelie """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 11 13:56:08 2020 @author: amelie """ from brian2 import * from scipy import signal from FEF_full import * from LIP_full import * from mdPul_two_columns_v3 import * from itertools import * def generate_syn(source,target,syntype,connection_pattern,g_i,taur_i,taud_i,V_i): eq_syn='''_post=s_i*g_i*(V_post-V_i) : amp * meter ** -2 (summed) ds_i/dt=-s_i/taud_i+(1-s_i)/taur_i*0.5*(1+tanh(V_pre/10/mV)) : 1 g_i : siemens * meter**-2 V_i : volt taud_i : second taur_i : second ''' S=Synapses(source,target,model=syntype+eq_syn,method='exact') if connection_pattern=='': S.connect() else : S.connect(j=connection_pattern, skip_if_invalid=True) S.g_i=g_i S.taur_i=taur_i S.taud_i=taud_i S.V_i=V_i return S if __name__=='__main__': prefs.codegen.target = 'numpy' theta_phase='bad' target_on=True start_scope() close('all') runtime=1*second Vrev_inp=0*mV taurinp=0.1*ms taudinp=0.5*ms tauinp=taudinp Vhigh=0*mV Vlow=-80*mV NN=1 #multiplicative factor on the number of neurons N_RS,N_FS,N_SI,N_IB= NN*80,NN*20,NN*20,NN*20 #Number of neurons of RE, TC, and HTC type N_SI,N_RS_gran,N_SI_gran=20,20,20 N_RS_vis,N_FS_vis,N_RS_mot,N_SI_mot,N_dSI_vm,N_RS_vm,N_gSI_vm=[20]*7 N_HTC,N_TC,N_RE= 20,80,100 #Number of neurons of RE, TC, and HTC type all_SIdFSg=[2*msiemens * cm **-2] #1 all_FSgRSg=[1* msiemens * cm **-2] all_RSgFSg=[1*msiemens * cm **-2] all_RSgRSg=[0.3*msiemens * cm **-2] all_FSgFSg=[0.3* msiemens * cm **-2] all_RSgRSs=[2*msiemens * cm **-2] all_RSgFSs=[0.1*msiemens * cm **-2] all_FSgRSs=[0.1* msiemens * cm **-2] all_J_RSg=['30 * uA * cmeter ** -2'] all_J_FSg=['5 * uA * cmeter ** -2'] all_thal=[10* msiemens * cm **-2] thal=all_thal[0] all_syn_cond=list(product(all_SIdFSg,all_FSgRSg,all_RSgFSg,all_RSgRSg,all_FSgFSg,all_RSgRSs,all_RSgFSs,all_FSgRSs)) all_J=list(product(all_J_RSg,all_J_FSg)) syn_cond=all_syn_cond[0] J=all_J[0] if theta_phase=='bad': input_beta2_IB=False input_beta2_RS=False input_beta2_FS_SI=True input_thalamus_gran=True gFS=0* msiemens * cm **-2 ginp_SI=0* msiemens * cm **-2 ginpSIdeep=0* msiemens * cm **-2 thal_cond=2* msiemens * cm **-2 kainate='low' if theta_phase=='good': # input_beta2_IB=True input_beta2_IB=False ginp_IB=500* msiemens * cm **-2 ginpSIdeep=500* msiemens * cm **-2 input_beta2_RS=False input_beta2_FS_SI=False input_thalamus_gran=True thal_cond=thal kainate='low' if theta_phase=='mixed': input_mixed=True ginp_IB=500* msiemens * cm **-2 ginpSIdeep=500* msiemens * cm **-2 input_beta2_IB=False input_beta2_RS=False input_beta2_RS=False input_beta2_FS_SI=False input_thalamus_gran=False kainate='low' Vrev_inp2=0*mV taurinp2=0.1*ms taudinp2=0.5*ms tauinp2=taudinp2 Vhigh2=0*mV Vlow2=-80*mV condition='mAChR' in_mode='single_spike' # in_mode='burst' theta_phase='mixed' if condition=='mGluR1': gKL_TC=0.0028e-3 * siemens * cm **-2 gKL_HTC=0.0069e-3 * siemens * cm **-2 gKL_RE=0.05e-3 * siemens * cm **-2 elif condition=='mAChR': gKL_TC=0.0028e-3 * siemens * cm **-2 gKL_HTC=0.0069e-3 * siemens * cm **-2 gKL_RE=0.08e-3 * siemens * cm **-2 # gapp=0.1*mamp * cmeter ** -2 # in HTC cells gKL_HTC=0.001e-3 * siemens * cm **-2 gapp=0.1*mamp * cmeter ** -2 # in HTC cells print('Network setup') net=Network() all_neurons_FEF,all_synapses_FEF,all_monitors_FEF=create_network_no_motor2(N_RS_vis,N_FS_vis,N_RS_mot,N_SI_mot,N_dSI_vm,N_RS_vm,N_gSI_vm,theta_phase,target_on,runtime) R1FEF,R2FEF,R3FEF,V1FEF,V2FEF,V3FEF,R4FEF,R5FEF,V4FEF,V5FEF,mon_FS=all_monitors_FEF RSvm_FEF,SIvm_FEF=all_neurons_FEF[1],all_neurons_FEF[2] SI2vm_FEF=all_neurons_FEF[0] all_neurons_LIP, all_synapses_LIP, all_gap_junctions_LIP, all_monitors_LIP=make_full_network(syn_cond,J,thal,theta_phase) V1,V2,V3,R1,R2,R3,I1,I2,I3,V4,R4,I4s,I4a,I4ad,I4bd,R5,R6,R7,V5,V6,V7,inpmon,inpIBmon=all_monitors_LIP RS_sup_LIP,IB_LIP,SI_deep_LIP=all_neurons_LIP[0],all_neurons_LIP[5],all_neurons_LIP[9] RS_gran_LIP,FS_gran_LIP=all_neurons_LIP[7],all_neurons_LIP[8] all_neurons_mdPul,all_synapses_mdPul,all_gap_junctions_mdPul,all_monitors_mdPul=create_mdPul(N_HTC,N_TC,N_RE,condition,in_mode,theta_phase) R1A,R2A,V1A,V2A,I1A,I2A,R1B,R2B,V1B,V2B,I1B,I2B,RA,RB=all_monitors_mdPul TC_B=all_neurons_mdPul[1] IB_LIP.ginp_IB=0* msiemens * cm **-2 #the input to RS_sup_LIP is provided with synapses from FEF SI_deep_LIP.ginp_SI=0* msiemens * cm **-2 SI2vm_FEF.ginp_VIP_good=0* msiemens * cm **-2 SI2vm_FEF.ginp_VIP_bad=0* msiemens * cm **-2 RS_gran_LIP.ginp_RS_good=0* msiemens * cm **-2 #5 FS_gran_LIP.ginp_FS_good=0* msiemens * cm **-2 #5 RS_gran_LIP.ginp_RS_bad=0* msiemens * cm **-2 #5 FS_gran_LIP.ginp_FS_bad=0* msiemens * cm **-2 #5 # if theta_phase=='good' or theta_phase=='mixed': # RSvm_FEF.ginp_RS=10* msiemens * cm **-2 # SIvm_FEF.ginp_SI=10* msiemens * cm **-2 RSvm_FEF.ginp_RS=0* msiemens * cm **-2 #10 SIvm_FEF.ginp_SI=0* msiemens * cm **-2 #10 HTC_A,HTC_B=all_neurons_mdPul[0],all_neurons_mdPul[2] if in_mode=='single_spike': HTC_A.delay_steps = [1] # delay in time steps per neuron HTC_B.delay_steps = [1] # delay in time steps per neuron buffer_size = 2 # 1+Maximum delay (in time steps) else : HTC_A.delay_steps = [3999] # delay in time steps per neuron HTC_B.delay_steps = [3999] # delay in time steps per neuron buffer_size = 4000 # 1+Maximum delay (in time steps) HTC_A.variables.add_array('voltage_buffer', dimensions=volt.dim, size=(buffer_size, len(HTC_A))) HTC_B.variables.add_array('voltage_buffer', dimensions=volt.dim, size=(buffer_size, len(HTC_B))) update_code = '''buffer_pointer = (buffer_pointer + 1) % buffer_size voltage_delayed = update_voltage_buffer(V, voltage_buffer, buffer_pointer, delay_steps, buffer_size)''' buffer_updater_A = HTC_A.run_regularly(update_code, codeobj_class=NumpyCodeObject) buffer_updater_B = HTC_B.run_regularly(update_code, codeobj_class=NumpyCodeObject) @check_units(V=volt, voltage_buffer=volt, buffer_pointer=1, delay_steps=1, buffer_size=1, result=volt) def update_voltage_buffer(V, voltage_buffer, buffer_pointer, delay_steps, buffer_size): # Write current rate into the buffer voltage_buffer[buffer_pointer, :] = V # Get delayed rates rows = (buffer_pointer - delay_steps) % buffer_size return voltage_buffer[rows, arange(len(rows))] net.add(all_neurons_FEF) net.add(all_synapses_FEF) net.add(all_monitors_FEF) net.add(all_neurons_LIP) net.add(all_synapses_LIP) net.add(all_gap_junctions_LIP) net.add(all_monitors_LIP) net.add(all_neurons_mdPul) net.add(all_synapses_mdPul) net.add(all_gap_junctions_mdPul) net.add(all_monitors_mdPul) S_FEF_IB_LIP=generate_syn(RSvm_FEF,IB_LIP,'Isyn_FEF','',0*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_FEF_SIdeep_LIP=generate_syn(RSvm_FEF,SI_deep_LIP,'Isyn_FEF','',0.03*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_LIP_RS_FEF=generate_syn(RS_sup_LIP,RSvm_FEF,'Isyn_LIP','',0.004*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_LIP_FS_FEF=generate_syn(RS_sup_LIP,SIvm_FEF,'Isyn_LIP','',0.004*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_FEF_mdPul=generate_syn(RSvm_FEF,TC_B,'Isyn_FEF','',0*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_mdPul_FEF_VIP=generate_syn(TC_B,SI2vm_FEF,'Isyn_mdPul','',0.05*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_mdPul_LIP_RSg=generate_syn(TC_B,RS_gran_LIP,'Isyn_mdPul','',0.05*msiemens * cm **-2,0.125*ms,1*ms,0*mV) S_mdPul_LIP_FSg=generate_syn(TC_B,FS_gran_LIP,'Isyn_mdPul','',0.05*msiemens * cm **-2,0.125*ms,1*ms,0*mV) net.add(S_FEF_IB_LIP) net.add(S_FEF_SIdeep_LIP) net.add(S_LIP_RS_FEF) net.add(S_LIP_FS_FEF) net.add([S_FEF_mdPul]) net.add([S_mdPul_FEF_VIP,S_mdPul_LIP_RSg,S_mdPul_LIP_FSg]) print('Compiling with cython') prefs.codegen.target = 'cython' #cython=faster, numpy = default python net.run(runtime,report='text',report_period=300*second) # LIP Plots figure() plot(R1.t,R1.i+140,'r.',label='RS cells') plot(R2.t,R2.i+120,'m.',label='FS cells') plot(R3.t,R3.i+100,'y.',label='SI cells') plot(R5.t,R5.i+70,'g.',label='Granular RS') plot(R6.t,R6.i+50,'c.',label='Granular FS') plot(R4.t,R4.i+20,'b.',label='IB cells') plot(R7.t,R7.i,'k.',label='Deep SI') xlim(0,runtime/second) legend(loc='upper left') # min_t=int(50*ms*100000*Hz) # LFP_V_RS=1/N_RS*sum(V1.V,axis=0)[min_t:] # LFP_V_FS=1/N_FS*sum(V2.V,axis=0)[min_t:] # LFP_V_SI=1/N_SI*sum(V3.V,axis=0)[min_t:] # LFP_V_IB=1/N_IB*sum(V4.V,axis=0)[min_t:] # LFP_V_RSg=1/N_FS*sum(V5.V,axis=0)[min_t:] # LFP_V_FSg=1/N_FS*sum(V6.V,axis=0)[min_t:] # LFP_V_SId=1/N_SI*sum(V7.V,axis=0)[min_t:] # # f,Spectrum_LFP_V_RS=signal.periodogram(LFP_V_RS, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_FS=signal.periodogram(LFP_V_FS, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_SI=signal.periodogram(LFP_V_SI, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_IB=signal.periodogram(LFP_V_IB, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_RSg=signal.periodogram(LFP_V_RSg, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_FSg=signal.periodogram(LFP_V_FSg, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V_SId=signal.periodogram(LFP_V_SId, 100000,'flattop', scaling='spectrum') # # figure(figsize=(10,8)) # subplot(421) # plot(f,Spectrum_LFP_V_RS) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('RS cell') # subplot(422) # plot(f,Spectrum_LFP_V_FS) # yticks([],[]) # xlim(0,100) # title('FS cell') # subplot(423) # plot(f,Spectrum_LFP_V_SI) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('SI cell') # subplot(425) # plot(f,Spectrum_LFP_V_RSg) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('gran RS cell') # subplot(426) # plot(f,Spectrum_LFP_V_FSg) # yticks([],[]) # xlim(0,100) # title('gran FS cell') # subplot(427) # plot(f,Spectrum_LFP_V_IB) # xlabel('Frequency (Hz)') # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('IB cell') # subplot(428) # plot(f,Spectrum_LFP_V_SId) # yticks([],[]) # xlim(0,100) # xlabel('Frequency (Hz)') # title('deep SI cell') # # tight_layout() #FEF Plots figure(figsize=(10,4)) subplot(121) title('Visual Neurons') plot(R4FEF.t,R4FEF.i+20,'r.',label='RS') plot(R5FEF.t,R5FEF.i+0,'b.',label='FS') xlim(0,runtime/second) legend(loc='upper left') subplot(122) title('Visual-Motor Neurons') plot(R3FEF.t,R3FEF.i+0,'c.',label='VIP') plot(R1FEF.t,R1FEF.i+60,'r.',label='RS') plot(R2FEF.t,R2FEF.i+40,'b.',label='SI') xlim(0,runtime/second) legend(loc='upper left') # subplot(133) # title('Motor Neurons') # plot(R6.t,R6.i+60,'r.',label='RS') # plot(R7.t,R7.i+40,'b.',label='SI') # plot(R8.t,R8.i+0,'c.',label='Fix') # xlim(0,runtime/second) # legend(loc='upper left') # min_t=int(50*ms*100000*Hz) # LFP_V1=1/20*sum(V1FEF.V,axis=0)[min_t:] # LFP_V2=1/20*sum(V2FEF.V,axis=0)[min_t:] # LFP_V3=1/20*sum(V3FEF.V,axis=0)[min_t:] # LFP_V4=1/20*sum(V4FEF.V,axis=0)[min_t:] # LFP_V5=1/20*sum(V5FEF.V,axis=0)[min_t:] ## LFP_V6=1/20*sum(V6.V,axis=0)[min_t:] ## LFP_V7=1/20*sum(V7.V,axis=0)[min_t:] # # f,Spectrum_LFP_V1=signal.periodogram(LFP_V1, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V2=signal.periodogram(LFP_V2, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V3=signal.periodogram(LFP_V3, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V4=signal.periodogram(LFP_V4, 100000,'flattop', scaling='spectrum') # f,Spectrum_LFP_V5=signal.periodogram(LFP_V5, 100000,'flattop', scaling='spectrum') ## f,Spectrum_LFP_V6=signal.periodogram(LFP_V6, 100000,'flattop', scaling='spectrum') ## f,Spectrum_LFP_V7=signal.periodogram(LFP_V7, 100000,'flattop', scaling='spectrum') # # figure(figsize=(10,4)) # subplot(321) # plot(f,Spectrum_LFP_V4) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('visual RS') # subplot(323) # plot(f,Spectrum_LFP_V5) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('visual FS') # # subplot(322) # plot(f,Spectrum_LFP_V1) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('visual-motor gran RS') # subplot(324) # plot(f,Spectrum_LFP_V2) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('visual-motor gran SI') # subplot(326) # plot(f,Spectrum_LFP_V3) # ylabel('Spectrum') # yticks([],[]) # xlim(0,100) # title('visual-motor deep SI') #mdPul plots figure() plot(R1A.t,R1A.i+0,'r.',label='HTC') plot(R2A.t,R2A.i+20,'y.',label='TC') plot(RA.t,RA.i+100,'b.',label='RE lat') plot([0,1],[225,225],'k') plot(R1B.t,R1B.i+250,'r.') plot(R2B.t,R2B.i+270,'y.') plot(RB.t,RB.i+350,'b.') xlim(0,runtime/second) yticks([150,500],['Object I','Object II']) legend() # figure() # plot(V1A.t,V1A.V[0],label='TC V') # plot(V2A.t,V2A.V[0],label='RE V') # legend() # f,Spectrum_LFP_V1=signal.periodogram(V1A.V[0], 100000,'flattop', scaling='spectrum') # figure() # plot(f,Spectrum_LFP_V1) # xlim(0,100) clear_cache('cython')
StarcoderdataPython
1622809
import contextlib import datetime import logging import os import tempfile import uuid from pathlib import Path from typing import Dict, Iterator, List, Optional from urllib.parse import urlparse, urlunparse from pkg_resources import get_distribution from scaraplate.automation.base import ProjectVCS, TemplateVCS from scaraplate.config import get_scaraplate_yaml_options from scaraplate.template import TemplateMeta, _call_git, get_template_meta_from_git __all__ = ("GitCloneProjectVCS", "GitCloneTemplateVCS") logger = logging.getLogger("scaraplate") def scaraplate_version() -> str: return get_distribution("scaraplate").version class GitCloneTemplateVCS(TemplateVCS): """A ready to use :class:`.TemplateVCS` implementation which: - Uses git - Clones a git repo with the template to a temporary directory (which is cleaned up afterwards) - Allows to specify an inner dir inside the git repo as the template root (which is useful for monorepos) """ def __init__(self, template_path: Path, template_meta: TemplateMeta) -> None: self._template_path = template_path self._template_meta = template_meta @property def dest_path(self) -> Path: return self._template_path @property def template_meta(self) -> TemplateMeta: return self._template_meta @classmethod @contextlib.contextmanager def clone( cls, clone_url: str, *, clone_ref: Optional[str] = None, monorepo_inner_path: Optional[Path] = None, ) -> Iterator["GitCloneTemplateVCS"]: """Provides an instance of this class by issuing ``git clone`` to a tempdir when entering the context manager. Returns a context manager object which after ``__enter__`` returns an instance of this class. :param clone_url: Any valid ``git clone`` url. :param clone_ref: Git ref to checkout after clone (i.e. branch or tag name). :param monorepo_inner_path: Path to the root dir of template relative to the root of the repo. If ``None``, the root of the repo will be used as the root of template. """ with tempfile.TemporaryDirectory() as tmpdir_name: tmpdir_path = Path(tmpdir_name).resolve() template_path = tmpdir_path / "scaraplate_template" template_path.mkdir() git = Git.clone( clone_url, target_path=template_path, ref=clone_ref, # We need to strip credentials from the clone_url, # because otherwise urls generated for TemplateMeta # would contain them, and we don't want that. strip_credentials_from_remote=True, ) template_path = git.cwd if monorepo_inner_path is not None: template_path = template_path / monorepo_inner_path scaraplate_yaml_options = get_scaraplate_yaml_options(template_path) template_meta = get_template_meta_from_git( template_path, git_remote_type=scaraplate_yaml_options.git_remote_type ) if clone_ref is not None: assert clone_ref == template_meta.head_ref yield cls(template_path, template_meta) class GitCloneProjectVCS(ProjectVCS): """A ready to use :class:`.ProjectVCS` implementation which: - Uses git - Clones a git repo with the project to a temporary directory (which is cleaned up afterwards) - Allows to specify an inner dir inside the git repo as the project root (which is useful for monorepos) - Implements :meth:`.ProjectVCS.commit_changes` as ``git commit`` + ``git push``. """ def __init__( self, project_path: Path, git: "Git", *, changes_branch: str, commit_author: str, commit_message_template: str, ) -> None: self._project_path = project_path self._git = git self.changes_branch = changes_branch self.commit_author = commit_author self.commit_message_template = commit_message_template self.update_time = datetime.datetime.now() @property def dest_path(self) -> Path: return self._project_path def is_dirty(self) -> bool: return self._git.is_dirty() def commit_changes(self, template_meta: TemplateMeta) -> None: assert self.is_dirty() remote_branch = self._git.remote_ref(self.changes_branch) # Create a definitely not existing local branch: local_branch = f"{self.changes_branch}{uuid.uuid4()}" self._git.checkout_branch(local_branch) self._git.commit_all( self.format_commit_message(template_meta=template_meta), author=self.commit_author, ) if not self._git.is_existing_ref(remote_branch): self._git.push(self.changes_branch) else: # A branch with updates already exists in the remote. if self._git.is_same_commit(remote_branch, f"{local_branch}^1"): # The `changes_branch` is the same as the clone branch, # so essentially the created commit forms a linear history. # No need for any diffs here, we just need to push that. self._git.push(self.changes_branch) else: # The two branches have diverged, we need to compare them: changes: bool = not self._git.are_one_commit_diffs_equal( local_branch, remote_branch ) if changes: # We could've used force push here, but instead we delete # the branch first, because in GitLab it would also close # the existing MR (if any), and we want that instead of # silently updating the old MR. self._git.push_branch_delete(self.changes_branch) self._git.push(self.changes_branch) else: logger.info( "scaraplate did update the project, but there's " "an already existing branch in remote which diff " "is equal to the just produced changes" ) # Now we should ensure that a Pull Request exists for # the `self.changes_branch`, but this class is designed to be agnostic # from concrete git remotes, so it should be done in a child class. def format_commit_message(self, *, template_meta: TemplateMeta) -> str: return self.commit_message_template.format( # TODO retrieve path from self.clone_url and pass it here too? # (but careful: that clone_url might contain credentials). update_time=self.update_time, scaraplate_version=scaraplate_version(), template_meta=template_meta, ) @classmethod @contextlib.contextmanager def clone( cls, clone_url: str, *, clone_ref: Optional[str] = None, monorepo_inner_path: Optional[Path] = None, changes_branch: str, commit_author: str, commit_message_template: str = ( "Scheduled template update ({update_time:%Y-%m-%d})\n" "\n" "* scaraplate version: {scaraplate_version}\n" "* template commit: {template_meta.commit_url}\n" "* template ref: {template_meta.head_ref}\n" ), ) -> Iterator["GitCloneProjectVCS"]: """Provides an instance of this class by issuing ``git clone`` to a tempdir when entering the context manager. Returns a context manager object which after ``__enter__`` returns an instance of this class. :param clone_url: Any valid ``git clone`` url. :param clone_ref: Git ref to checkout after clone (i.e. branch or tag name). :param monorepo_inner_path: Path to the root dir of project relative to the root of the repo. If ``None``, the root of the repo will be used as the root of project. :param changes_branch: The branch name where the changes should be pushed in the remote. Might be the same as ``clone_ref``. Note that this branch is never force-pushed. If upon push the branch already exists in remote and its one-commit diff is different from the one-commit diff of the just created local branch, then the remote branch will be deleted and the local branch will be pushed to replace the previous one. :param commit_author: Author name to use for ``git commit``, e.g. ``<NAME> <<EMAIL>>``. :param commit_message_template: :meth:`str.format` template which is used to produce a commit message when committing the changes. Available format variables are: - ``update_time`` [:class:`datetime.datetime`] -- the time of update - ``scaraplate_version`` [:class:`str`] -- scaraplate package version - ``template_meta`` [:class:`.TemplateMeta`] -- template meta returned by :meth:`.TemplateVCS.template_meta` """ with tempfile.TemporaryDirectory() as tmpdir_name: tmpdir_path = Path(tmpdir_name).resolve() project_path = tmpdir_path / "scaraplate_project" project_path.mkdir() git = Git.clone(clone_url, target_path=project_path, ref=clone_ref) project_path = git.cwd if monorepo_inner_path is not None: project_path = project_path / monorepo_inner_path yield cls( project_path, git, changes_branch=changes_branch, commit_author=commit_author, commit_message_template=commit_message_template, ) class Git: def __init__(self, cwd: Path, remote: str = "origin") -> None: self.cwd = cwd self.remote = remote def remote_ref(self, ref: str) -> str: return f"{self.remote}/{ref}" def checkout_branch(self, branch: str) -> None: self._git(["checkout", "-b", branch]) def commit_all(self, commit_message: str, author: Optional[str] = None) -> None: self._git(["add", "--all"]) extra: List[str] = [] if author is not None: extra = ["--author", author] self._git( ["commit", "-m", commit_message, *extra], env={ # git would fail if there's no `user.email` in the local # git config, even if `--author` is specified. "USERNAME": "scaraplate", "EMAIL": "<EMAIL>", }, ) def is_dirty(self) -> bool: return bool(self._git(["status", "--porcelain"])) def is_existing_ref(self, ref: str) -> bool: try: self._git(["rev-parse", "--verify", ref]) except RuntimeError: return False else: return True def is_same_commit(self, ref1: str, ref2: str) -> bool: commit1 = self._git(["rev-parse", "--verify", ref1]) commit2 = self._git(["rev-parse", "--verify", ref2]) return commit1 == commit2 def are_one_commit_diffs_equal(self, ref1: str, ref2: str) -> bool: diff1 = self._git(["diff", f"{ref1}^1..{ref1}"]) diff2 = self._git(["diff", f"{ref2}^1..{ref2}"]) return diff1 == diff2 def push_branch_delete(self, branch: str) -> None: self._git(["push", "--delete", self.remote, branch]) def push(self, ref: str) -> None: # https://stackoverflow.com/a/4183856 self._git(["push", self.remote, f"HEAD:{ref}"]) def _git(self, args: List[str], *, env: Optional[Dict[str, str]] = None) -> str: return _call_git(args, cwd=self.cwd, env=env) @classmethod def clone( cls, clone_url: str, *, target_path: Path, ref: str = None, strip_credentials_from_remote: bool = False, ) -> "Git": remote = "origin" clone_url_without_creds = strip_credentials_from_git_remote(clone_url) args = ["clone", clone_url] if ref is not None: # git-clone(1) explicitly mentions that both branches and tags # are allowed in the `--branch`. args.extend(["--branch", ref]) _call_git(args, cwd=target_path) actual_items_in_target_path = os.listdir(target_path) if len(actual_items_in_target_path) != 1: raise RuntimeError( f"Expected `git clone` to create exactly one directory. " f"Directories in the target: {actual_items_in_target_path}" ) cloned_dir, = actual_items_in_target_path target_path = target_path / cloned_dir if strip_credentials_from_remote: _call_git( ["remote", "set-url", remote, clone_url_without_creds], cwd=target_path ) return cls(cwd=target_path, remote=remote) def strip_credentials_from_git_remote(remote: str) -> str: parsed = urlparse(remote) if not parsed.scheme: # Not a URL (probably an SSH remote) return remote assert parsed.hostname is not None clean = parsed._replace(netloc=parsed.hostname) return urlunparse(clean)
StarcoderdataPython
1726698
from django import template from django.conf import settings register = template.Library() @register.simple_tag def env_value(): return "localhost"
StarcoderdataPython
157663
# -*- coding: utf-8 -*- import unittest from unittest import mock from thumbnails import get_thumbnail from thumbnails.conf import settings from thumbnails.images import Thumbnail from .utils import override_settings class GetThumbnailTestCase(unittest.TestCase): @mock.patch('{}.get'.format(settings.THUMBNAIL_CACHE_BACKEND), lambda o, x: True) def test_get_thumbnail_cached(self): self.assertTrue(get_thumbnail('', '200')) @mock.patch('{}.set'.format(settings.THUMBNAIL_CACHE_BACKEND)) @mock.patch('{}.save'.format(settings.THUMBNAIL_STORAGE_BACKEND)) @mock.patch('thumbnails.engines.base.BaseThumbnailEngine.get_thumbnail') def test_get_thumbnail(self, mock_get_thumbnail, mock_save, mock_cache_set): thumbnail = get_thumbnail('http://puppies.lkng.me/400x600/', '200') self.assertTrue(mock_get_thumbnail.called) self.assertTrue(mock_cache_set.called) self.assertTrue(mock_save.called) mock_save.assert_has_calls([ mock.call(thumbnail.path, b''), mock.call(thumbnail.alternative_resolution_path(2), b''), ]) self.assertIsInstance(thumbnail, Thumbnail) @mock.patch('{}.get'.format(settings.THUMBNAIL_CACHE_BACKEND), lambda x, y: True) @mock.patch('{}.set'.format(settings.THUMBNAIL_CACHE_BACKEND)) @mock.patch('{}.save'.format(settings.THUMBNAIL_STORAGE_BACKEND)) @mock.patch('thumbnails.engines.base.BaseThumbnailEngine.get_thumbnail') def test_force(self, mock_get_thumbnail, mock_save, mock_cache_set): get_thumbnail('http://puppies.lkng.me/400x600/', '200', force=True) get_thumbnail('http://puppies.lkng.me/400x600/', '200', force=True) get_thumbnail('http://puppies.lkng.me/400x600/', '200') self.assertEqual(len(mock_get_thumbnail.call_args_list), 4) self.assertEqual(len(mock_save.call_args_list), 4) self.assertEqual(len(mock_cache_set.call_args_list), 2) def test_dummy(self): with override_settings(THUMBNAIL_DUMMY=True): self.assertEqual( get_thumbnail('t.jpg', '200x200').url, 'http://puppies.lkng.me/200x200' )
StarcoderdataPython
1616369
#from math import pi #from math import * import math as mt #import math print(mt.pi)
StarcoderdataPython
3364471
<filename>lib/data_utils/visualization.py # --------------------------------------------------------------- # SNIPER: Efficient Multi-scale Training # Licensed under The Apache-2.0 License [see LICENSE for details] # by <NAME> # --------------------------------------------------------------- import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import random import numpy as np def transform_im(im, pixel_means): im = im.copy() # put channel back im = im.transpose((1, 2, 0)) im += pixel_means return im.astype(np.uint8) def visualize_dets(im, dets, scale, pixel_means, class_names, threshold=0.5, save_path='debug.png', transform=True): if transform: im = transform_im(im, np.array(pixel_means)[[2, 1, 0]]) plt.imshow(im) for j, name in enumerate(class_names): if name == '__background__': continue color = (random.random(), random.random(), random.random()) for det in dets[j]: bbox = det[:4] * scale score = det[-1] if score < threshold: continue rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') plt.savefig(save_path) plt.cla() plt.clf() plt.close() def vis_polys(polys, im_path, crop, scale): im = misc.imread(im_path) im = im[:, ::-1, :] for obj in range(len(polys)): plt.imshow(im) n_seg = len(polys[obj]) for j in range(n_seg): cur_len = len(polys[obj][j]) for k in range(cur_len/2): point = plt.Circle((polys[obj][j][2*k], polys[obj][j][2*k+1]), radius=1, color='red') plt.gca().add_patch(point) num = np.random.randint(0,100000) plt.savefig('debug/visualization/debug_{}_{}.png'.format(num, obj)) plt.clf() plt.cla() plt.close() imc = im[int(crop[1]):int(crop[3]), int(crop[0]):int(crop[2])] imc2 = misc.imresize(imc, scale) plt.imshow(imc2) h,w,_ = np.shape(imc2) n_seg = len(polys[obj]) for j in range(n_seg): cur_len = len(polys[obj][j]) for k in range(cur_len/2): x1 = (polys[obj][j][2*k]-crop[0])*scale y1 = scale*(polys[obj][j][2*k+1]-crop[1]) x1 = min(max(0, x1), w) y1 = min(max(0, y1), h) point = plt.Circle((x1, y1), radius=1, color='red') plt.gca().add_patch(point) plt.savefig('debug/visualization/debug_{}_{}_c.png'.format(num, obj)) plt.clf() plt.cla() plt.close()
StarcoderdataPython
1615667
<gh_stars>0 import datetime import logging import os import sdm_service import sys GRANT_TIMEOUT=60 #minutes def get_params(): if not sys.argv or len(sys.argv) != 3: raise Exception("Invalid number of arguments") return sys.argv[1], sys.argv[2] class GrantTemporaryAccess: service = sdm_service.create_sdm_service(os.getenv("SDM_API_ACCESS_KEY"), os.getenv("SDM_API_SECRET_KEY"), logging) def __init__(self, resource_name, user_email): self.resource_name = resource_name self.user_email = user_email def __get_resource_id(self): try: resource = self.service.get_resource_by_name(self.resource_name) return resource.id except Exception as e: raise Exception(f"Invalid resource name {self.resource_name}") from e def __get_account_id(self): try: account = self.service.get_account_by_email(self.user_email) return account.id except Exception as e: raise Exception(f"Invalid user email {self.user_email}") from e def execute(self): grant_start_from = datetime.datetime.now(datetime.timezone.utc) grant_valid_until = grant_start_from + datetime.timedelta(minutes=GRANT_TIMEOUT) self.service.grant_temporary_access( self.__get_resource_id(), self.__get_account_id(), grant_start_from, grant_valid_until ) resource_name, user_email = get_params() GrantTemporaryAccess(resource_name, user_email).execute() print(f"Temporary grant successfullly created for {user_email} on {resource_name}")
StarcoderdataPython
129555
class School: def __init__(self, name, num_pupils, num_classrooms): self.name = name self.num_pupils = num_pupils self.num_classrooms = num_classrooms def calculate_average_pupils(self): return self.num_pupils / self.num_classrooms def show_info(self): """ >>> s = School("Eveyln Intermediate", 96, 1500) >>> s.show_info() Eveyln Intermediate has 15.62 pupils per room """ print(f"{self.name} has {self.calculate_average_pupils():.2f} pupils per room") def collect_data(): global school_name, school_pupils, school_classrooms school_name = input("Enter the name of the school: ") while True: try: school_pupils = int(input("Enter the number of pupils the school has: ")) break except ValueError: print("Please enter an integer!") while True: try: school_classrooms = int(input("Enter the number of classrooms the school has: ")) break except ValueError: print("Please enter an integer!") if __name__ == "__main__": collect_data() school1 = School(school_name, school_pupils, school_classrooms) school1.show_info() collect_data() school2 = School(school_name, school_pupils, school_classrooms) school2.show_info()
StarcoderdataPython
75518
<filename>tests/clpy_tests/random_tests/test_distributions.py import unittest import clpy from clpy.random import distributions from clpy import testing @testing.parameterize(*testing.product({ 'shape': [(4, 3, 2), (3, 2)], 'loc_shape': [(), (3, 2)], 'scale_shape': [(), (3, 2)], }) ) @testing.gpu class TestDistributions(unittest.TestCase): _multiprocess_can_split_ = True def check_distribution(self, dist_func, loc_dtype, scale_dtype, dtype): loc = clpy.ones(self.loc_shape, dtype=loc_dtype) scale = clpy.ones(self.scale_shape, dtype=scale_dtype) out = dist_func(loc, scale, self.shape, dtype) self.assertEqual(self.shape, out.shape) self.assertEqual(out.dtype, dtype) @clpy.testing.for_float_dtypes('dtype', no_float16=True) @clpy.testing.for_float_dtypes('loc_dtype') @clpy.testing.for_float_dtypes('scale_dtype') def test_normal(self, loc_dtype, scale_dtype, dtype): self.check_distribution(distributions.normal, loc_dtype, scale_dtype, dtype)
StarcoderdataPython
2646
from unittest import TestCase from unittest.mock import Mock, patch import sys sys.modules['smbus'] = Mock() # Mock the hardware layer to avoid errors. from ledshimdemo.canvas import Canvas from ledshimdemo.effects.cheerlights import CheerLightsEffect class TestCheerLights(TestCase): TEST_CANVAS_SIZE = 3 # type: int def test_cheerlight_call(self): canvas = Canvas(self.TEST_CANVAS_SIZE) effect = CheerLightsEffect(canvas) self.assertIsNone(effect.get_colour_from_channel("http://ejiferfneciudwedwojcmeiocnw.com")) @patch('ledshimdemo.effects.cheerlights.CheerLightsEffect.get_colour_from_channel', return_value=None) def test_effect_failed_cheerlights(self, patch_function): canvas = Canvas(self.TEST_CANVAS_SIZE) effect = CheerLightsEffect(canvas) effect.compose() patch_function.assert_called_once() for i in range(canvas.get_size()): self.assertEqual(canvas.get_pixel(i), canvas.BLANK_PIXEL) def test_effect_working_cheerlights(self): canvas = Canvas(self.TEST_CANVAS_SIZE) effect = CheerLightsEffect(canvas) # Must check before and after in case it changes during the test. before = effect.get_colour_from_channel(effect.URL) effect.compose() after = effect.get_colour_from_channel(effect.URL) self.assertRegex(repr(effect), "^CheerLights\\(Colour:({0}|{1})\\)$".format(before, after))
StarcoderdataPython
120870
<gh_stars>0 import os from lisdf.parsing.sdf import SDF, Collision, Link, Mesh, Visual def _handle_component(component, model_path: str) -> None: """ Handle component and inject URI into link component geometry """ if isinstance(component, Link): for link_component in component.aggregate_order: # TODO: are there other types we need to consider? if isinstance(link_component, (Collision, Visual)) and isinstance( link_component.geometry, Mesh ): link_component.geometry.uri = os.path.join( model_path, link_component.geometry.uri ) def inject_absolute_path(sdf: SDF, model_path: str) -> SDF: """ This function replace relative paths to object and material files with absolute paths so the sdf object is self-contained. """ for world in sdf.aggregate_order: for model in world.models: for component in model.aggregate_order: _handle_component(component, model_path) return sdf def load_sdf(model_name: str, models_dir: str = "models") -> SDF: sdf_path = os.path.join(models_dir, model_name) with open(sdf_path) as f: xml_str = f.read() sdf = SDF.from_xml_string(xml_str) for world in sdf.aggregate_order: # Load all the includes in the world for include in world.includes: include_model = load_sdf(include.model_name) world.models.append(include_model) model_path = os.path.join(models_dir, os.path.dirname(model_name)) return inject_absolute_path(sdf, model_path) if __name__ == "__main__": # pragma: no cover sdf_test = "mud_test/model.sdf" sdf_results = load_sdf(sdf_test) # print(sdf_results)
StarcoderdataPython
1631816
<filename>python/labs/shopping-list-app/starter-code/shopping_list_starter.py<gh_stars>1-10 #!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. choice = "" print("Welcome to the shopping list app!") shopping_list = [] while choice.lower() != "e": print("Please choose your action from the following list:") print("a. Add an item to the list") print("b. Remove an item from the list") print("c. Check to see if an item is on the list") print("d. Show all items on the list") print("e. exit") choice = input("Enter your choice [a|b|c|d|e]:") # Your code below! Handle the cases when the user chooses a, b, c, d, or e if choice == "a": adder = input("What would you like to add? Separate values with commas: ").lower() adder = adder.split(",") for add in adder: if add in shopping_list: print(add+" is already on the list!") else: shopping_list.append(add) print(add+" has been added to the list.") elif choice == "b": remover = input ("What would you like to remove? ").lower() if (remover in shopping_list): a = input("Are you sure you would like to remove "+remover+" y/n ") if a =="y": shopping_list.remove(remover) else: print("Cancelled") else: print("I'm sorry, that was not found in the list.") elif choice == "c": checker = input("What would you like to check for? ").lower() if checker in shopping_list: print("That item is in your list already!") else: a = input("That item is not currently in your list, would you like to add "+checker+" y/n") if a =="y": shopping_list.append(checker) elif choice == "d": for thing in shopping_list: print (thing)
StarcoderdataPython
1747719
from django import forms from django_measurement.forms import MeasurementField from tests.custom_measure_base import DegreePerTime, Temperature, Time from tests.models import MeasurementTestModel class MeasurementTestForm(forms.ModelForm): class Meta: model = MeasurementTestModel exclude = [] class LabelTestForm(forms.Form): simple = MeasurementField(Temperature) class SITestForm(forms.Form): simple = MeasurementField(Time) class BiDimensionalLabelTestForm(forms.Form): simple = MeasurementField(DegreePerTime)
StarcoderdataPython
1725464
<gh_stars>0 import pytest from snek_case.sneks import Snek class TestSnek(Snek): snek_type = "test" snek = "---:>" def test_cannot_create() -> None: # Assemble / Act / Assert with pytest.raises(TypeError): Snek() # type: ignore def test_can_subclass() -> None: # Assemble / Act / Assert TestSnek() def test_object_is_snek() -> None: # Assemble / Act snek = TestSnek() # Assert assert str(snek) == TestSnek.snek
StarcoderdataPython
1747905
<gh_stars>1000+ # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated by the protocol buffer compiler. DO NOT EDIT! # source: inference_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='inference_service.proto', package='com.webank.ai.fate.api.serving', syntax='proto3', serialized_options=_b('B\025InferenceServiceProto'), serialized_pb=_b('\n\x17inference_service.proto\x12\x1e\x63om.webank.ai.fate.api.serving\"0\n\x10InferenceMessage\x12\x0e\n\x06header\x18\x01 \x01(\x0c\x12\x0c\n\x04\x62ody\x18\x02 \x01(\x0c\x32\xf6\x02\n\x10InferenceService\x12o\n\tinference\x12\x30.com.webank.ai.fate.api.serving.InferenceMessage\x1a\x30.com.webank.ai.fate.api.serving.InferenceMessage\x12w\n\x11startInferenceJob\x12\x30.com.webank.ai.fate.api.serving.InferenceMessage\x1a\x30.com.webank.ai.fate.api.serving.InferenceMessage\x12x\n\x12getInferenceResult\x12\x30.com.webank.ai.fate.api.serving.InferenceMessage\x1a\x30.com.webank.ai.fate.api.serving.InferenceMessageB\x17\x42\x15InferenceServiceProtob\x06proto3') ) _INFERENCEMESSAGE = _descriptor.Descriptor( name='InferenceMessage', full_name='com.webank.ai.fate.api.serving.InferenceMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='header', full_name='com.webank.ai.fate.api.serving.InferenceMessage.header', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='body', full_name='com.webank.ai.fate.api.serving.InferenceMessage.body', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=107, ) DESCRIPTOR.message_types_by_name['InferenceMessage'] = _INFERENCEMESSAGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) InferenceMessage = _reflection.GeneratedProtocolMessageType('InferenceMessage', (_message.Message,), dict( DESCRIPTOR = _INFERENCEMESSAGE, __module__ = 'inference_service_pb2' # @@protoc_insertion_point(class_scope:com.webank.ai.fate.api.serving.InferenceMessage) )) _sym_db.RegisterMessage(InferenceMessage) DESCRIPTOR._options = None _INFERENCESERVICE = _descriptor.ServiceDescriptor( name='InferenceService', full_name='com.webank.ai.fate.api.serving.InferenceService', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=110, serialized_end=484, methods=[ _descriptor.MethodDescriptor( name='inference', full_name='com.webank.ai.fate.api.serving.InferenceService.inference', index=0, containing_service=None, input_type=_INFERENCEMESSAGE, output_type=_INFERENCEMESSAGE, serialized_options=None, ), _descriptor.MethodDescriptor( name='startInferenceJob', full_name='com.webank.ai.fate.api.serving.InferenceService.startInferenceJob', index=1, containing_service=None, input_type=_INFERENCEMESSAGE, output_type=_INFERENCEMESSAGE, serialized_options=None, ), _descriptor.MethodDescriptor( name='getInferenceResult', full_name='com.webank.ai.fate.api.serving.InferenceService.getInferenceResult', index=2, containing_service=None, input_type=_INFERENCEMESSAGE, output_type=_INFERENCEMESSAGE, serialized_options=None, ), ]) _sym_db.RegisterServiceDescriptor(_INFERENCESERVICE) DESCRIPTOR.services_by_name['InferenceService'] = _INFERENCESERVICE # @@protoc_insertion_point(module_scope)
StarcoderdataPython
3261607
import numpy as np from glm import vec2 from ....model.model import Material, RenderCompound from ....gl.framebuffer import FrameBuffer, FB_NONE from ....gl.shader import ShaderProgram from ...base import SecondPassRenderer from ...util import sample_vertex_shader, gen_screen_mesh # Separable convolution vert_shader = sample_vertex_shader # language=GLSL frag_shader = '''\ #version 430 core in vec2 tex_coords; out vec4 out_color; uniform sampler2D tex_img; uniform vec2 direction; void main() { out_color = vec4(0); {000;} }''' injectable_code = 'out_color.xyz += texture(tex_img, tex_coords + direction * {dir_offset}).xyz * {distr_value};\n' class SeparableConvolutionSession(SecondPassRenderer): def __init__(self, distribution, width, height, color_buffer_type=1): self.radius = 1 self._make_shader(distribution) self.first = SeparableConvolutionPass(width, height, self.shader_prog, color_buffer_type, vec2(1, 0) / width) self.second = SeparableConvolutionPass(width, height, self.shader_prog, color_buffer_type, vec2(0, 1) / height) self.meshes = self.first.meshes self.fbo = self.first.fbo def _make_shader(self, distr_values): start_value = len(distr_values) // 2 inj_code = ''.join((injectable_code.format(dir_offset=offset, distr_value=value) for value, offset in zip(distr_values, range(-start_value, start_value + 1)))) print('shader', frag_shader.replace('{000;}', inj_code)) self.shader_prog = ShaderProgram(vert_shader, frag_shader.replace('{000;}', inj_code)) def draw(self, out_fbo, data): self.first.draw(self.second.fbo, data) self.second.draw(out_fbo, self.second.meshes) def set_radius(self, value): self.radius = value self.first.direction = vec2(1, 0) / self.first.fbo.width * value self.second.direction = vec2(0, 1) / self.second.fbo.height * value class SeparableConvolutionPass(SecondPassRenderer): def __init__(self, width, height, program, color_buffer_type, direction): self.shader_prog = program self.fbo = FrameBuffer(width, height, color_buffer_type, FB_NONE) self.meshes = (RenderCompound(gen_screen_mesh(), Material(self.fbo.color_buffers)), ) self.direction_setter = self.shader_prog.get_uniform_setter('direction', '2f') self.direction = direction def draw(self, out_fbo, data) -> int: out_fbo.use() self.shader_prog.use() self.direction_setter(*self.direction) i = 0 for i, elem in enumerate(data): elem.draw() return i class GaussianBlur(SeparableConvolutionSession): def __init__(self, width, height, values, color_buffer_type=1): self.values = np.blackman(values) self.values /= self.values.sum() super(GaussianBlur, self).__init__(self.values, width, height, color_buffer_type) class BoxBlur(SeparableConvolutionSession): def __init__(self, width, height, values, color_buffer_type=1): self.values = np.full(values, 1.0) self.values /= self.values.sum() super(BoxBlur, self).__init__(self.values, width, height, color_buffer_type)
StarcoderdataPython
139993
<filename>mini-apps/tic-tac-toe-full/tic_tac_toe_module.py import random # def generate_board(): # """ # funkcija ki generira naključno tic tac toe board - igralno ploščo # vzorci = ['X','O'] # nakljucen_vzorec = random.choice(vzorci) # """ # return board # def print_board(board): # """ funkcija za lepši terminal print board """ # pass # def display_board(): # pass # def check_win_condition(board, player): # """ """ # return win # def check_tie_condition(board): # """ """ # return tie # def check_rows(board, player): # """ """ # return win # def check_columns(board, player): # """ """ # return win # def check_diagonals(board, player): # """ """ # return win # testiraj funkcijo # print_board(generate_random_board())
StarcoderdataPython
3366807
<reponame>icsi-berkeley/framework-code """ .. The SpecalizerTools module performs basic operations to gather information from a SemSpec and output an n-tuple. .. moduleauthor:: <NAME> <<EMAIL>> ------ See LICENSE.txt for licensing information. ------ """ from nluas.utils import update, Struct def updated(d, *maps, **entries): """A "functional" version of update... """ dd = dict(**d) if isinstance(d, dict) else Struct(d) return update(dd, *maps, **entries) # This just defines the interface class NullSpecializer(object): def specialize(self, fs): """Specialize fs into task-specific structures. """ abstract # @UndefinedVariable class DebuggingSpecializer(NullSpecializer): def __init__(self): self.debug_mode = False # Original input sentence self._sentence = None """ Sets debug_mode to ON/OFF """ def set_debug(self): self.debug_mode = not self.debug_mode class ReferentResolutionException(Exception): def __init__(self, message): self.message = message class FeatureStructException(Exception): def __init__(self, message): self.message = message class MoodException(FeatureStructException): def __init__(self, message): self.message = message class TemplateException(Exception): def __init__(self, message): self.message = message class UtilitySpecializer(DebuggingSpecializer): def __init__(self, analyzer): self._stacked = [] DebuggingSpecializer.__init__(self) self.analyzer = analyzer self.mappings = self.analyzer.get_mappings() self.event = True self.addressees = list() # For discourse analysis, distinct from _stacked list, which is used for general referent resolution def is_compatible(self, typesystem, role1, role2): return self.analyzer.issubtype(typesystem, role1, role2) or self.analyzer.issubtype(typesystem, role2, role1) """ Input PROCESS, searches SemSpec for Adverb Modifiers. Currently just returns speed, but could easily be modified to return general manner information. This might be made more complex if we wanted to describe more complex motor routines with adverbs. """ def get_actionDescriptor(self, process): tempSpeed = .5 returned=dict(speed=tempSpeed) if hasattr(process, "speed") and str(process.speed) != "None": tempSpeed = float(process.speed) returned['speed'] = float(process.speed) for i in process.__features__.values(): for role, filler in i.__items__(): if filler.typesystem() == 'SCHEMA' and self.analyzer.issubtype('SCHEMA', filler.type(), 'AdverbModification'): if process.index() == filler.modifiedThing.index(): if (filler.value) and (filler.property.type() == "speed"): newSpeed = float(filler.value) if min(newSpeed, tempSpeed) < .5: #return min(newSpeed, tempSpeed) returned['speed'] = min(newSpeed, tempSpeed) else: returned['speed'] = max(newSpeed, tempSpeed) #return max(newSpeed, tempSpeed) #return float(filler.value) elif (filler.value) and (filler.property.type() == "process_kind"): returned['collaborative'] = filler.value.type() #return filler.value.type() else: returned['collaborative'] = False #return False return returned """ This returns a string of the specified relation of the landmark to the other RD, based on the values and mappings encoded in the SemSpec. This needs to be fixed substantially. """ def get_locationDescriptor(self, goal): #location = {} location = '' for i in goal.__features__.values(): for role, filler in i.__items__(): if filler.type() == "Support": if filler.supporter.index() == goal.index(): return "on" if filler.type() == 'Sidedness': if filler.back.index() == goal.index(): return 'behind' #location = 'behind' elif filler.type() == 'BoundedObject': if filler.interior.index() == goal.index(): if hasattr(i, "m") and i.m.type() == "TrajectorLandmark": return "in" elif hasattr(i, "m") and i.m.type() == "SPG": return 'into' elif filler.type() == "NEAR_Locative": if filler.p.proximalArea.index() == goal.index(): #i.m.profiledArea.index(): location = 'near' #location['relation'] = 'near' elif filler.type() == "AT_Locative": if filler.p.proximalArea.index() == goal.index(): location = 'at' #location['relation'] = 'at' return location def invert_pointers(self, goal): final = {} for i in goal.__features__.values(): for roles, filler in i.__items__(): # Checks: filler is schema, it exists, and it has a temporalitly if filler.typesystem() == "SCHEMA" and filler.has_filler(): for k, v in filler.__items__(): if v.index() == goal.index(): if filler.type() not in final: final[filler.type()] = [] final[filler.type()].append(filler) return final def get_processDescriptor(self, process, referent): """ Retrieves information about a process, according to existing templates. Meant to be implemented in specific extensions of this interface. Can be overwritten as needed -- here, it calls the params_for_compound to gather essentially an embedded n-tuple. """ return list(self.params_for_compound(process)) """ Meant to match 'one-anaphora' with the antecedent. As in, "move to the big red box, then move to another one". Or, 'He likes the painting by Picasso, and I like the one by Dali.' Not yet entirely clear what information to encode besides object type. """ def resolve_anaphoricOne(self, item): popper = list(self._stacked) while len(popper) > 0: ref = popper.pop() while ('location' in ref or 'locationDescriptor' in ref or 'referent' in ref['objectDescriptor']) and len(popper) > 0: ref = popper.pop() if item.givenness.type() == 'distinct': return {'objectDescriptor': {'type': ref['objectDescriptor']['type'], 'givenness': 'distinct'}} else: test = self.get_objectDescriptor(item, resolving=True) merged = self.merge_descriptors(ref['objectDescriptor'], test) return {'objectDescriptor': merged} raise ReferentResolutionException("Sorry, I don't know what you mean by 'one'.") def merge_descriptors(self, old, new): """ Merges object descriptors from OLD and NEW. Objective: move descriptions / properties from OLD into NEW unless NEW conflicts. If a property conflicts, then use the property in NEW. """ if 'referent' in new and new['referent'] in ['anaphora', 'antecedent']: new.pop("referent") for key, value in old.items(): if key == 'type': new[key] = old[key] if not key in new: new[key] = old[key] return new """ Simple reference resolution gadget, meant to unify object pronouns with potential antecedents. """ def resolve_referents(self, item, antecedents = None, actionary=None, pred=None): #self.find_closest_antecedent([7,8]) if antecedents is None: antecedents = self._stacked popper = list(antecedents) while len(popper) > 0: ref = popper.pop() if self.resolves(ref, actionary, pred) and self.compatible_referents(item, ref['objectDescriptor']): if 'partDescriptor' in ref: return ref['partDescriptor'] ref = self.clean_referent(ref) return ref return {'objectDescriptor':item} #raise ReferentResolutionException("Sorry, I did not find a suitable referent found in past descriptions.") def clean_referent(self, ref): ref['objectDescriptor'].pop('property', None) return ref def find_closest_antecedent(self, target): """ Takes in target span/word, ranks previous spans. """ ranks = [] for k in self.np_spans: #if self.analyzer.issubtype("CONSTRUCTION", k[0], "Pronoun"): span = k[2] if span[0] < target[0] and span[1] < target[1]: ranks.insert(0, k) #print(ranks) def ordering(self, fs, ref): for index, value in fs.rootconstituent.__features__.items(): if hasattr(value, "m") and value.m and value.m.type() == "RD": print(index) #print(repr(value)) print(value.m.ontological_category.type()) #temp = self.get_objectDescriptor(value.m) #print(temp) def compatible_referents(self, pronoun, ref): for key, value in pronoun.items(): if key in ref and key != "referent" and (value and ref[key]): if not self.is_compatible("ONTOLOGY", value, ref[key]): return False return True """ Returns a boolean on whether or not the "popped" value works in the context provided. """ def resolves(self, popped, actionary=None, pred=None): if actionary == 'be2' or actionary == 'be': if 'location' in popped or 'locationDescriptor' in popped: return 'relation' in pred else: if 'referent' in popped: test = popped['referent'].replace('_', '-') return self.analyzer.issubtype('ONTOLOGY', test, 'physicalEntity') else: return self.analyzer.issubtype('ONTOLOGY', popped['objectDescriptor']['type'], 'physicalEntity') if actionary == 'forceapplication' or actionary == 'move': if 'location' in popped or 'locationDescriptor' in popped: return False if 'partDescriptor' in popped: pd = popped['partDescriptor']['objectDescriptor'] if 'referent' in pd: return self.analyzer.issubtype('ONTOLOGY', pd['referent'].replace('_', '-'), 'moveable') else: return self.analyzer.issubtype('ONTOLOGY', pd['type'], 'moveable') else: if 'objectDescriptor' in popped and 'type' in popped['objectDescriptor']: return self.analyzer.issubtype('ONTOLOGY', popped['objectDescriptor']['type'], 'moveable') return False # If no actionary passed in, no need to check for context return True def replace_mappings(self, ntuple): """ This is supposed to replace all of the mappings in the ntuple with values from the action ontology, if applicable. """ n = ntuple if type(ntuple) == Struct: n = ntuple.__dict__ for k,v in n.items(): if type(v) == dict or type(v) == Struct: n[k]= self.replace_mappings(v) elif type(v) == list: for value in v: value = self.replace_mappings(value) elif v is None: continue elif v in self.mappings: n[k] = self.mappings[v] v = self.mappings[v] return n def map_ontologies(self, ntuple): """ This is supposed to replace all of the mappings in the ntuple with values from the action ontology, if applicable. """ n = ntuple for k, v in ntuple.items(): if isinstance(v, dict): n[k] = self.map_ontologies(v) elif isinstance(v, list): for value in v: value = self.map_ontologies(value) elif v is None: continue elif v in self.mappings: n[k] = self.mappings[v] v = self.mappings[v] return n
StarcoderdataPython
3355567
<gh_stars>0 """ Interactive CLI menu module """ # Imports import os # Os module for the 'clear' command. import sys # Sys module for the 'exit' command. import config # Config module for the setter functions. import cron # Cron module for the crontab manipulations. # Menu decorator def menu_decorator(menu): def wrapper(): # Header os.system("clear") print "Light System Monitor\n" # Current menu menu() # Footer print # If the decorated function is a submenu: if menu.__name__[:3] == "sub": print "9. Back" # Else if the decorated function is the main menu: elif menu.__name__ == "menu_main": print "0. Exit" else: print "0. Main menu" choice = raw_input(">> ") exec_menu(choice, menu.__name__) return wrapper # Main menu1 @menu_decorator def menu_main(): print "Please choose an option:" print "1. Crontab configuration" print "2. Alerts configuration" print "3. Email configuration" # Execute menu def exec_menu(choice, current_menu): # If the 'choice' action exists in the current menu's options, # use it. Otherwise remain the in the current menu. # This can be redone to use dict.get() method actually. try: menu_actions[current_menu][choice]() except KeyError: menu_actions[current_menu][current_menu]() # Exit program def app_exit(): os.system("clear") sys.exit(0) # Crontab menu @menu_decorator def menu_cron(): print "Crontab configuration\n" if cron.is_set(): print "Crontab is set\n" print "1. Add to crontab" print "2. Remove from crontab" # Add to crontab def menu_cron_add(): cron.add() exec_menu("menu_cron", "menu_cron") # Remove from crontab def menu_cron_remove(): cron.remove() exec_menu("menu_cron", "menu_cron") # Alerts menu @menu_decorator def menu_alerts(): print "Alerts configuration\n" print "1. Processes" print "2. Thresholds" # Alerts - Processes sub-menu @menu_decorator def submenu_alerts_processes(): print "Alerts configuration -> Processes\n" print "Watched processes: {}\n".format(", ".join(config.list_processes())) print "1. Add process" print "2. Remove process" # Alerts - Processes - Add @menu_decorator def submenu_alerts_processes_add(): print "Alerts configuration -> Processes -> Add Process\n" process = raw_input("Please enter a process to watch: ") if config.add_process(process): print "{} added to the watch list!".format(process) else: print "Failed to add!" raw_input("Press enter to acknowledge.") # TODO - Maybe there's no need for this output and it's easier to see the results in the parent menu. exec_menu("submenu_alerts_processes", "submenu_alerts_processes") # Alerts - Processes - Remove @menu_decorator def submenu_alerts_processes_remove(): print "Alerts configuration -> Processes -> Remove Process\n" process = raw_input("Please enter a process to remove from watching: ") if config.remove_process(process): print "{} removed from the watch list!".format(process) else: print "Failed to remove!" raw_input("Press enter to acknowledge.") # TODO - Maybe there's no need for this output and it's easier to see the results in the parent menu. exec_menu("submenu_alerts_processes", "submenu_alerts_processes") # Alerts - Thresholds sub-menu @menu_decorator def submenu_alerts_thresholds(): print "Alerts configuration -> Thresholds\n" print "1. Set CPU percentage threshold" print "2. Set Memory percentage threshold" print "3. Set Swap memory percentage threshold" print "4. Set Core Temperature threshold" # Alerts - Thresholds sub-menu - Set CPU @menu_decorator def submenu_alerts_thresholds_cpu(): print "Alerts configuration -> Thresholds -> CPU percentage\n" threshold = raw_input("Please enter the new threshold: ") config.set_cpu_percent(int(threshold)) exec_menu("submenu_alerts_thresholds", "submenu_alerts_thresholds") # Alerts - Thresholds sub-menu - Set Memory @menu_decorator def submenu_alerts_thresholds_memory(): print "Alerts configuration -> Thresholds -> Memory percentage\n" threshold = raw_input("Please enter the new threshold: ") config.set_memory_percent(int(threshold)) exec_menu("submenu_alerts_thresholds", "submenu_alerts_thresholds") # Alerts - Thresholds sub-menu - Set Swap @menu_decorator def submenu_alerts_thresholds_swap(): print "Alerts configuration -> Thresholds -> Swap percentage\n" threshold = raw_input("Please enter the new threshold: ") config.set_swap_percent(int(threshold)) exec_menu("submenu_alerts_thresholds", "submenu_alerts_thresholds") # Alerts - Thresholds sub-menu - Core temperature @menu_decorator def submenu_alerts_thresholds_temp_core(): print "Alerts configuration -> Thresholds -> Core temperature\n" threshold = raw_input("Please enter the new threshold: ") config.set_temp_core(int(threshold)) exec_menu("submenu_alerts_thresholds", "submenu_alerts_thresholds") # Email menu @menu_decorator def menu_email(): print "Email configuration\n" print "1. Recipient address" print "2. SMTP server" # Email - Recipient sub-menus @menu_decorator def submenu_email_recipient(): print "Email configuration -> Recipient address\n" print "Currently set address: {}\n".format(config.settings["email"]["address"]) print "1. Change address" # Email - Change the recipient @menu_decorator def submenu_email_recipient_change(): print "Email configuration -> Recipient address -> Address change\n" address = raw_input("Please enter a new address: ") config.set_email(address) exec_menu("submenu_email_recipient", "submenu_email_recipient") # Email - SMTP sub-menus @menu_decorator def submenu_email_smtp(): print "Email configuration -> SMTP configuration\n" print "Currently set server: {}".format(config.settings["email"]["smtp_server"]) print "Currently set username: {}".format(config.settings["email"]["smtp_user"]) print "Currently set password: {}\n".format(config.settings["email"]["smtp_pass"]) print "1. Change address" print "2. Change username" print "3. Change password" # Email - Change the SMTP server @menu_decorator def submenu_email_smtp_change(): print "Email configuration -> SMTP configuration -> Server change\n" server = raw_input("Please enter a new server domain name or IP: ") config.set_smtp(server) exec_menu("submenu_email_smtp", "submenu_email_smtp") # Email - Change the SMTP username @menu_decorator def submenu_email_smtp_user(): print "Email configuration -> SMTP configuration -> Username change\n" username = raw_input("Please enter a new SMTP username: ") config.set_smtp_user(username) exec_menu("submenu_email_smtp_user", "submenu_email_smtp_user") # Email - Change the SMTP password @menu_decorator def submenu_email_smtp_pass(): print "Email configuration -> SMTP configuration -> Password change\n" server = raw_input("Please enter a new SMTP password: ") config.set_smtp_pass(server) exec_menu("submenu_email_smtp_pass", "submenu_email_smtp_pass") # Menu definition menu_actions = { "menu_main": { "menu_main": menu_main, "1": menu_cron, "2": menu_alerts, "3": menu_email, "0": app_exit, }, "menu_cron": { "menu_cron": menu_cron, "1": menu_cron_add, "2": menu_cron_remove, "0": menu_main, }, "menu_alerts": { "menu_alerts": menu_alerts, "1": submenu_alerts_processes, "2": submenu_alerts_thresholds, "0": menu_main, }, "submenu_alerts_processes": { "submenu_alerts_processes": submenu_alerts_processes, "1": submenu_alerts_processes_add, "2": submenu_alerts_processes_remove, "9": menu_alerts, "0": menu_main, }, "submenu_alerts_thresholds": { "submenu_alerts_thresholds": submenu_alerts_thresholds, "1": submenu_alerts_thresholds_cpu, "2": submenu_alerts_thresholds_memory, "3": submenu_alerts_thresholds_swap, "4": submenu_alerts_thresholds_temp_core, "9": menu_alerts, "0": menu_main, }, "menu_email": { "menu_email": menu_email, "1": submenu_email_recipient, "2": submenu_email_smtp, "0": menu_main, }, "submenu_email_recipient": { "submenu_email_recipient": submenu_email_recipient, "1": submenu_email_recipient_change, "9": menu_email, "0": menu_main, }, "submenu_email_smtp": { "submenu_email_smtp": submenu_email_smtp, "1": submenu_email_smtp_change, "2": submenu_email_smtp_user, "3": submenu_email_smtp_pass, "9": menu_email, "0": menu_main, } }
StarcoderdataPython
1775257
#Parte 1: from argparse import BooleanOptionalAction from asyncio import current_task from msilib.schema import Directory from tkinter.messagebox import ABORTRETRYIGNORE from tkinter.tix import REAL from pkg_resources import NullProvider tipo CUENTA estructura saldo: REAL descubierto: REAL invariante #El descubierto no está autorizado descubierto = 0 #El saldo debe ser superior al descubierto autorizado saldo >= descubierto fin CUENTA Algoritmo 1: Definición de abrir CUENTA abrir( c:CUENTA, saldo_inicial: REAL) precondición: saldo_inicial > 0 realización: c.descubierto = 0 c.saldo = saldo_inicial postcondicion c.descubierto = 0 #no está autorizado antiguo (saldo_inicial) = saldo_inicial c.saldo = saldo_inicial fin abrir #Parte2 Algoritmo 2: Abonar una cuenta abonar(c:CUENTA, credito: REAL)) precondicion c.saldo ≠ NULO crédito ≠ NULO realizacion c.saldo = c.saldo + credito postcondicion #El descubierto autorizado y el importe del crédito no se modifican antiguo(c).descubierto = descubierto antiguo(c).credito = credito #El saldo aumenta con el credito c.saldo = antiguo(c).saldo + credito fin abonar #Parte 3 Algoritmo 3: Cargar una cuenta cargar (c: CUENTA, debito: REAL) precondicion c.saldo ≠ NULO debito ≠ NULO c.saldo + c.descubierto >= debito >= 0 realización abonar (c, -debito) postcondicion #El descubierto autorizado y el importe del debito no se modifican antiguo(c).descubierto = descubierto antiguo (debito) = debito #Al saldo se le resta el debito c.saldo = antiguo(c).saldo - debito fin cargar #Parte 4 Algoritmo 4: Consultar una cuenta consultar(c:CUENTA): REAL precondición c.saldo ≠ NULO realizacion resultado = c.saldo postcondicion resultado = c.saldo fin consultar #Parte 5 Algoritmo 5: Dfinición es_acredora y es_deudora es_acredora (c:CUENENTA): BOOLEANO precondicion c.saldo ≠ NULO realizacion resultado = (c.saldo >= 0) postcondicion resultado = (c.saldo >= 0) fin es_acredora es_deudora (c:CUENENTA): BOOLEANO precondicion c.saldo ≠ NULO realizacion resultado = (-c.saldo <= c.saldo <=0) postcondicion resultado = (-c.saldo <= c.saldo <=0) fin es_deudora #2 DESCUBIERTO AUTORIZADO #Parte 1 tipo CUENTA estructura saldo: REAL descubierto: REAL invariante #El descubierto está autorizado descubierto >= 0 #El saldo debe ser superior al descubierto autorizado saldo >= descubierto fin CUENTA Algoritmo 1: Definición de abrir CUENTA abrir( c:CUENTA, saldo_inicial: REAL) precondición: saldo_inicial > 0 descubierto_MAX >= 0 realización: c.descubierto = descubierto_MAX c.saldo = saldo_inicial postcondicion c.descubierto = descubierto_MAX c.saldo = saldo_inicial fin abrir #3 CUENTA Y TIEMPO #Parte 1 tipo CUENTA estructura saldo: REAL descubierto: REAL fecha_descubierto: FECHA #Fecha de inicio del último descubierto duracion_max : FECHA #Duración máxima del descubierto invariante #El descubierto está autorizado durante un tiempo limitado descubierto >= 0 fecha_descubierto ≠ 0 => fecha_descubierto + duracion_max <= fecha_actual #El saldo debe ser superior al descubierto autorizado saldo >= descubierto fin CUENTA #Partedo Algoritmo 2:Definición de abrir cuenta abrir Entrada c: CUENTA saldo_inicial: REAL descubierto_MAX: REAL duracion_MAX: FECHA Precondicion: saldo_inicial> 0 descubierto_MAX >=0 duracion_MAX >= 0 Realizacion c.descubierto = c.desubierto_MAX c.saldo = saldo_inicial d.fecha_descubierto = 0 c.duracion_max = duracion_max postcondicion: c.descubierto = c.desubierto_MAX c.saldo = saldo_inicial d.fecha_descubierto = 0 c.duracion_max = duracion_max fin abrir
StarcoderdataPython
1647694
<filename>prepare/input/prepare_pre_select.py from __future__ import print_function from itertools import permutations import numpy as np import os import glob import cv2 import re import sys import matplotlib.pyplot as plt ROUNDS = 100 DIFF = 5 DIFF_RANGE = 0 MODE = 'all' MIN_DIR = int(sys.argv[1]) MAX_DIR = int(sys.argv[2]) SIZE = 4 SAME = 4 #array = np.arange(min_nr, max_nr+1) order = np.arange(0, SIZE) orders = np.array(list(permutations(order))) labels_file = open("odo_image_labels.txt", 'w') keys_file = open("odo_image_keys.txt", 'w') select_name = "select.txt" select_file = open(select_name) select = {} for s in select_file.readlines(): s = s.split() idx = int(s[0]) nr = int(s[1]) if idx not in select: select[idx] = [] select[idx].append(nr) #base_name = "/srv/glusterfs/patilv/Datasets/kitti/raw/extracted" ##local_file_dir = "2011_09_26_drive_0005_sync/image_02/data/" #local_file_dir = "image_02/data/" base_name = "/srv/glusterfs/patilv/Datasets/kitti/visual_odometry/dataset/sequences" local_file_dir = "image_0/" dirs = glob.glob(os.path.join(base_name, "*")) dir_size = [] total_size = 0 for d in dirs[:]: base_dir = os.path.basename(d) if not (MIN_DIR <= int(base_dir) <= MAX_DIR): dirs.remove(d) for d in dirs: int_dir = int(os.path.basename(d)) if int_dir not in select: select[int_dir] = [] local_dir = os.path.join(base_name, d, local_file_dir) #len(os.listdir(local_dir)) dir_size.append(len(select[int_dir])) total_size += dir_size[-1] size_to_idx = np.zeros(total_size, dtype=np.int32) cur_idx = 0 for i in range(len(dirs)): #for j in range(dir_size[i]): size_to_idx[cur_idx:cur_idx+dir_size[i]] = i cur_idx += dir_size[i] for r in range(ROUNDS): # prepare dir_idx = size_to_idx[np.random.randint(total_size)] local_dir = os.path.join(base_name, dirs[dir_idx], local_file_dir) min_nr = 0 max_nr = dir_size[dir_idx] #print(int(os.path.basename(dirs[dir_idx])), len(select[int(os.path.basename(dirs[dir_idx]))]), max_nr) idx = select[int(os.path.basename(dirs[dir_idx]))][np.random.randint(min_nr, max_nr)] files = np.zeros(SIZE, dtype=np.int32) #np.arange(idx - DIFF, idx + DIFF + 1, DIFF) files[0] = idx for i in range(1, SIZE): files[i] = files[i-1] + DIFF + np.random.randint(-DIFF_RANGE, DIFF_RANGE + 1) # create pair indices = np.random.choice(np.arange(0, orders.shape[0]), SAME, False) for index in indices: order = orders[index] out = files[order] print(r, local_dir, out, min_nr, max_nr) for idx in out: keys_file.write("{}{:06}.png".format(local_dir, idx)) keys_file.write(" ") keys_file.write("\n") labels_file.write("{}\n".format(index)) print(total_size)
StarcoderdataPython
3371895
<filename>datedfolders.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 22 08:34:18 2020 @author: anthonysafarik """ import subprocess import os import shutil def check_output(cmd): try: output = subprocess.check_output(cmd) return output except: return '' def get_exif_date_all(inpath): ''' alternate, slower way that checks each tag on each acceptable extension ''' (basename, ext) = os.path.splitext(inpath) #exts = ['.JPG','.ARW','.MP4','.MOV','.AVI'] tags = ['-QuickTime:CreateDate','-EXIF:CreateDate','-RIFF:DateTimeOriginal','-XMP:CreateDate','File:FileModifyDate'] #if ext.upper() in exts: for tag in tags: output = '' output = check_output(['exiftool',tag,'-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) if len(output)==11: output = str(output)[2:12] break if output: print (output,inpath,'T') def get_exif_date_by_ext(inpath): (basename, ext) = os.path.splitext(inpath) photo_exts = ['.JPG','.ARW'] qt_exts = ['.MP4','.MOV'] video_exts = ['.AVI'] #tags = ['-QuickTime:CreateDate','-EXIF:CreateDate','-RIFF:DateTimeOriginal','-XMP:CreateDate','File:FileModifyDate'] output = '' if ext.upper() in photo_exts: output = check_output(['exiftool','-EXIF:CreateDate','-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) tag_to_id ='-EXIF:CreateDate' elif ext.upper() in qt_exts: output = check_output(['exiftool','-QuickTime:CreateDate','-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) tag_to_id ='-QuickTime:CreateDate' elif ext == '.avi': output = check_output(['exiftool','-XMP:CreateDate','-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) tag_to_id ='-XMP:CreateDate' elif ext == '.AVI': output = check_output(['exiftool','-RIFF:DateTimeOriginal','-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) tag_to_id ='-RIFF:DateTimeOriginal' if not len(output)==11: output = check_output(['exiftool','-File:FileModifyDate','-d', '%Y-%m-%d', '-s', '-s', '-s',inpath]) tag_to_id ='-File:FileModifyDate' if len(output)==11: print (tag_to_id) return str(output)[2:12] else: return '' #(basename, ext) = os.path.splitext(fname) def make_dated_folders(inpath,outpath): for path, dirs, files in os.walk(inpath): for fname in files: fpath = path+os.path.sep+fname date = get_exif_date_by_ext(fpath) if date: date_folder = outpath+os.path.sep+date[0:4]+os.path.sep+date dst_fpath = date_folder+os.path.sep+fname if not os.path.exists(date_folder): os.makedirs(date_folder) if os.path.exists(dst_fpath): print('path exists... ',dst_fpath) else: try: shutil.move(fpath, dst_fpath) print (dst_fpath) except: print ('could not move...',fname) else: print('could not extract date...',fname) inpath = input('enter inpath... ') outpath = input('enter outpath... ') make_dated_folders(inpath,outpath)
StarcoderdataPython
148199
<filename>dags/s3topostgres_dag.py<gh_stars>0 """Airflow DAG S3 to postgres @author:Shaurya @date: 2021-01-03 """ import os,sys,inspect current_dir=os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir=os.path.dirname(current_dir) sys.path.insert(0,parent_dir) from pprint import pprint from airflow import DAG from airflow.operators.python import PythonOperator from airflow.operators.dummy import DummyOperator from airflow.operators.postgres_operator import PostgresOperator from airflow.utils.dates import days_ago from datetime import datetime from Tasks.s3_postgres import S3toPostgres default_args={ 'owner':'shaurya', 'provide_context':True, 'depends_on_past':False, 'wait_for_downstream':False, 'email_on_failure':False, 'email_on_retry':False, 'retries':0, 'params':{'template_dir':'/home/abyssnlp/projects/airflow-test-suite/config/templates/', 'template_file':'connections.yaml', 'config_file':'/home/abyssnlp/projects/airflow-test-suite/config/config.ini', 'log_level':'info', 'date':datetime(2021,1,10), 'bucket_name':'airflow-s3-bucket-test', 'table_name':'marketing_data'} } # s3 to postgres dag lake_to_db=DAG( dag_id='lake_to_db', default_args=default_args, schedule_interval=None, # manual or conditional trigger start_date=datetime(2021,1,10), tags=['s3','postgres','marketing'] ) # start begin=DummyOperator( task_id='start_dag', dag=lake_to_db ) # create table to ingest the data into make_table=PostgresOperator( task_id='create_marketing_data', postgres_conn_id='MarketingDataPostgres', sql='sql/marketing_attribution_table.sql' ) # Actual python callable etl_data=PythonOperator( task_id='s3_to_postgres', python_callable=S3toPostgres.airflow_runner, dag=lake_to_db ) # end end=DummyOperator( task_id='end_dag', dag=lake_to_db ) begin >> make_table >> etl_data >> end
StarcoderdataPython
3214076
<filename>acmicpc/2457/2457.py<gh_stars>1-10 n = int(input()) # 꽃의 개수 def quick_sort_in_list(unsorted:list, start, end)->list: if end - start <= 0: return pivot = unsorted[end] i = start for j in range(start, end): if unsorted[j] <= pivot: unsorted[i], unsorted[j] = unsorted[j], unsorted[i] i += 1 unsorted[i], unsorted[end] = unsorted[end], unsorted[i] quick_sort_in_list(unsorted, start, i - 1) quick_sort_in_list(unsorted, i + 1, end) def quick_sort(a): quick_sort_in_list(a, 0, len(a) -1) for i in range(n): input_date = list(map(int, input().split())) quick_sort(input_date) print(input_date) def tuple(): for i in range(n): blooming_date = () # (month, day) falling_date = () # input_date = tuple(map(int, input().split())) # (1, 1, 5, 31) for j in range(len(date)//2): blooming_date += (input_date[j],) for j in range(2, 4): falling_date += (input_date[j],) # 지는 날 기준으로 오름차순 정렬 (quick sort) : 피어있는 기간이 제일 긴 것을 먼저 정렬하면 중복이 최소화되지 않을까?
StarcoderdataPython
67010
<gh_stars>1000+ import h2o h2o.init() weather_hex = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/smalldata/junit/weather.csv") # Get a summary of the data weather_hex.describe()
StarcoderdataPython
1753440
<filename>tess/utils.py from datetime import datetime from tess.data.vulnerability import Vulnerability class Utils: @staticmethod def get_available_feature_schema(data, force_base_entries=True): cwe_entries = [] capec_entries = [] keywords_entries = [] for el in data: cwe_entries.extend([item.lower() for item in el.details.cwe]) capec_entries.extend([item[0].lower() for item in el.details.capec]) keywords_entries.extend([item.lower() for item in el.details.keywords]) if force_base_entries: addon = ['__cvss_expl', '__ref_number', '__days_diff'] else: addon = [] return list(set(keywords_entries)) + list(set(capec_entries)) + list(set(cwe_entries)) + addon @staticmethod def get_element_feature(schema, vulnerability, time): features = [0] * len(schema) for feature in (vulnerability.keywords + [item[0] for item in vulnerability.capec]): try: index = schema.index(feature.lower()) features[index] = 1 except ValueError: pass if '__days_diff' in schema: features[schema.index('__days_diff')] = (time - vulnerability.published_date.replace(tzinfo=None)).days elif '__ref_number' in schema: features[schema.index('__ref_number')] = vulnerability.references_number elif '__cvss_expl' in schema: features[schema.index('__cvss_expl')] = vulnerability.e_score return features @staticmethod def get_target_function_value(data, vuln_event): valid_events = [] if vuln_event.details.target is not None: return vuln_event.details.target for item in data: if vuln_event.id != item.id: continue diff = (vuln_event.date - item.date).days if 0 <= diff <= 31 and item != vuln_event: valid_events.append(item) pos = len([item.outcome for item in valid_events if item.outcome == True]) if len(valid_events) == 0: return vuln_event.details.e_score return vuln_event.details.e_score * (pos / (len(valid_events))) @staticmethod def get_filtered_schema(schema, filter): ret = [] for i in range(len(schema)): if filter[i]: ret.append(schema[i]) return ret @staticmethod def get_vulnerability(cve_id, cve_search, key_parser, skip_capec=False, skip_keywords=False, skip_cwe=False, target = None): info = cve_search.find_cve_by_id(cve_id) if skip_keywords: keywords = [] else: keywords = key_parser.parse(info['cve']['description']['description_data'][0]['value']) if skip_capec: capec = [] else: try: capec = [(item['id'], item['name']) for item in info['capec']] except KeyError: capec = [] if skip_cwe: cwe = [] else: cwe = [] problems = info['cve']['problemtype']['problemtype_data'] for problem in problems: details = problem['description'] for el in details: if el['value'].startswith('CWE'): cwe.append(el['value']) try: exploitability_score = info['impact']['baseMetricV3']['exploitabilityScore'] cvss_vector = info['impact']['baseMetricV3']['cvssV3']['vectorString'] except KeyError: return None vuln_details = Vulnerability(keywords, capec, cwe, exploitability_score, cvss_vector, len(info['cve']['references']['reference_data']), datetime.strptime(info['publishedDate'], '%Y-%m-%dT%H:%MZ'), info['history'], target=target) return vuln_details """ @staticmethod def batch(iterable, size): it = iter(iterable) while item := list(itertools.islice(it, size)): yield item """
StarcoderdataPython
44889
<gh_stars>1-10 #!/usr/bin/env python import s3p_openstack_tools as s3p from datetime import datetime import argparse import sys import os import pdb from time import sleep debug_mode=False verbosity_level=0 # cloud test control: check main() for definition of cloud_info using these validate_existing = True attach_to_router=True pin_instances = True network_list=[] subnet_list=[] hypervisor_list=[] hypervisor_set=set() server_set = set() def isodate(): """prints the date in a pseudo-ISO format (Y-M-D H:M:S)""" d = datetime.now() return d.isoformat() def debug_print(stringIn='', dbg_level=0): """docstring for dbgPrint""" global verbosity_level if debug_mode & (dbg_level <= verbosity_level): print("[{2}] DEBUG({1}): {0}".format( stringIn, dbg_level, isodate())) def logprint(message): """prints a message in 'log format' like '[date] message' """ print("[{0}] {1}".format(isodate(), message)) def get_auth_args_openstackrc(): """ This function should source an openstackrc file for auth_args """ pass def get_auth_args(): service_host_ip = os.getenv('SERVICE_HOST') auth_args = { 'auth_url': 'http://' + service_host_ip + ':5000/v2.0', 'project_name': 'demo', 'username': 'admin', 'password': '<PASSWORD>', } return auth_args def create_instance(conn, instance_name, hypervisor_name, network_id, resource_ids, smoketest=True): """ Creates an S3P server (OpenStack tenant instance) on the specified hypervisor, attached to a specific network """ global validate_existing debug_print("validate_existing = {0}".format(validate_existing), 2) global server_set global cloud_info """ check if instance is already created """ if not(instance_name in server_set): # create instance network_name = s3p.get_network_name(conn, network_id) logmsg = "Creating server {0} on network {1}".format( instance_name, network_name) if not(cloud_info['pin_instances']): # unset the hypervisor hostname if don't need to pin instances to hosts hypervisor_name='' else: logmsg = logmsg + ", on host {0} with CLI library".format(hypervisor_name) logprint(logmsg) t1=datetime.now() os_instance = s3p.create_server(conn, instance_name, resource_ids['image_id'], resource_ids['flavor_id'], network_id, cloud_info['secgrp_name'], hypervisor_name, resource_ids['project_id'] ) t2=datetime.now() debug_print( "os_instance = {0}".format(os_instance) , 3) debug_print( "type(os_instance) = {0}".format(type(os_instance)) , 3) if type(os_instance) == type(None): logprint("ERROR: Server creation failed for:\nserver name: {0}".format( instance_name)) sys.exit(1) else: logprint("Server Creation took {0} seconds".format((t2-t1).total_seconds())) server_set.add(os_instance.name) else: os_instance = s3p.get_server_detail(conn, instance_name) debug_print("Type of os_instance = {0}".format(type(os_instance)), 3) debug_print("os_instance = {0}".format(os_instance), 3) debug_print("WARNING: an OpenStack instance with name '{0}' ({1})".format(os_instance.name, instance_name) + "already exists, skipping creation", 1) smoketest = validate_existing if smoketest: os_network = conn.network.find_network(network_id) debug_print("os_instance = {0}".format(os_instance), 3) os_instance = s3p.get_server_detail(conn, instance_name) smoke_test_server(conn, os_instance, os_network) def smoke_test_server(conn, os_instance, os_network): """ Smoke Test == ping new OpenStack tenant instance until it responds a.k.a. wait_for_tenant This smoke test enters the DHCP network namespace (netns) on the service host that corresponds to the server's network """ debug_print("os_instance = {0}".format(os_instance), 3) logprint("Waiting for instance {0} to respond to ping on network {1}...".format( os_instance.name, os_network.name)) debug_print("os_instance = {0}".format(os_instance), 3) ip_addr = os_instance.addresses[os_network.name][0]['addr'] """ timing: get instance IP address and network_id """ NETNS = 'qdhcp-' + os_network.id logprint("Server '{0}' obtained IPV4 address: {1}".format(os_instance.name, ip_addr)) """ enter netns and ping instance IP """ command = "sudo ip netns exec qdhcp-" + os_network.id + " ping -c 1 " + ip_addr debug_print("Smoke test: {0}".format(command), 2) """ TODO: This smoke test is very coarse - could be much better""" t1 =datetime.now() response = os.system(command) while response != 0: """ timing: enter netns & ping server until it responds """ response = os.system(command) sleep(0.1) t2=datetime.now() """ print/accumulate timing info for server boot & smoke test """ logprint("SmokeTest: {0} seconds for tenant '{1}' to respond to ping".format( (t2-t1).total_seconds(), os_instance.name)) def delete_instance(conn, instance_name): """ Deletes an S3P server (OpenStack tenant instance) """ logprint("Deleting instance \"{0}\"".format(instance_name)) s3p.delete_server(conn, instance_name) """ network management functions """ def determine_net_index(comp_id, num_networks, host_id, numberingType='one_net'): """Function determines which network will be used modulo_num_networks == modulous of number of networks (evenly distributed) one_per_physhost == one network per physical host, all instances on that host are only on that network i.e. comp-11-13 and comp-11-12 share a network a.k.a. "Vertical networks" one_per_wave == one network common to each "wave" of compute hosts i.e. comp-11-13 & comp-39-13 share a network a.k.a. "Horizontal networks" """ if numberingType == 'modulo_num_networks': networkIdx = int(comp_id) % num_networks elif numberingType == 'one_per_wave': networkIdx = int(comp_id) elif numberingType == 'one_per_physhost': networkIdx = int(host_id) else: """ one network to rule them all """ networkIdx = 0 return networkIdx def create_security_group_and_rules(conn, secgrp_name, project_id): """creates s3p security group and adds rules for SSH and ICMP """ os_security_group = conn.network.find_security_group(secgrp_name) if os_security_group == None: logprint("Creating security group {0}".format(secgrp_name)) os_security_group = s3p.create_security_group(conn, secgrp_name, project_id) s3p.add_security_group_rules_ssh(conn, os_security_group.id) s3p.add_security_group_rules_icmp(conn, os_security_group.id) else: logprint("Using existing security group '{0}'".format(secgrp_name)) return os_security_group def create_network_and_subnet(conn, network_name, network_ix): """creates an openstack network and subnet""" global network_set global attach_to_router router_name = 'router1' network_set = s3p.get_network_set(conn) if network_name in network_set: debug_print("Using existing OpenStack network with name '{0}'".format( network_name), 1) os_network = conn.network.find_network(network_name) else: logprint("Creating OpenStack network with name: {0}".format(network_name)) t1 = datetime.now() os_network = s3p.create_network_raw(conn, network_name) t2 = datetime.now() network_set.add(os_network.name) network_list.append(os_network.name) if os_network != None: logprint("Network Creation: {0} seconds".format((t2-t1).total_seconds())) subnet_name = network_name+'-sub' parent_network_id = os_network.id cidr = '10.0.'+str(network_ix)+'.0/24' gateway_ip = '10.0.'+str(network_ix)+'.1' logprint("Creating OpenStack subnet with name: {0}".format(network_name+"-sub")) t1 = datetime.now() os_subnet = s3p.create_subnet_raw( conn, subnet_name, parent_network_id, cidr, gateway_ip) if attach_to_router: os_router = s3p.get_os_router(conn, router_name) s3p.router_add_subnet(conn, os_router, os_subnet.id) t2 = datetime.now() logprint("Subnet Creation: {0} seconds".format((t2-t1).total_seconds())) else: logprint("ERROR: Failed to create openstack network '{0}'".format( network_name)) sys.exit(1) return os_network.id def delete_network_and_subnet(conn, os_network): """ Deletes a network and its associated subnets Each network should have a list of subnets associated with it through OpenStack or through a global variable herein """ name = os_network.name logprint("Deleting network \"{0}\"".format(name)) s3p.delete_network(conn, os_network) logprint("Network \"{0}\" Successfully deleted".format(name)) # cleanup def cleanup(conn, cloud_info): """removes all allocated OpenStack resources incl. servers, networks, subnets""" global server_set global network_list global network_set logprint("Removing instances and networks from OpenStack Cloud...") # delete servers server_prefix = cloud_info['server_prefix'] for server in conn.compute.servers(): if server_prefix in server.name: delete_instance(conn, server.id) server_set = s3p.get_server_set(conn) # delete networks net_prefix = cloud_info['network_prefix'] for network in conn.network.networks(): if net_prefix in network.name: name = network.name delete_network_and_subnet(conn, network) network_list = s3p.list_networks_by_name(conn) network_set = s3p.get_network_set(conn, cloud_info['network_prefix']) # COMPLETED: def unit_tests(conn): """ tests functions defined here or in s3p_openstack_tools """ """ The following functions are working: """ s3p.print_images_list(conn) s3p.print_server_list(conn) node_id="21-11" compute_host="compute-"+node_id server_name="tenant-"+node_id+"-1" logprint("{0}, {1}".format(compute_host, server_name)) s3p.create_server(conn, server_name, compute_host) # List network resources s3p.print_network_list(conn) print("") s3p.print_subnet_list(conn) print("") s3p.print_security_group_list(conn) print("") s3p.print_network_agent_list(conn) print("") s3p.list_net_availability_zones(conn) print("") s3p.list_comp_availability_zones(conn) print("") # create a network: s3p.create_network(conn, network_name) # delete a network & it's subnets: s3p.delete_network(conn, network_name) def get_resource_ids(conn, names): """gets resource identifiers (OpenStack resource IDs) for default resources""" defaults = {} # get project id os_project = conn.identity.find_project(names['project_name']) defaults['project_id'] = os_project.id # get security group id os_secgrp = conn.network.find_security_group(names['secgrp_name']) defaults['secgrp_id'] = os_secgrp.id # get image id os_image = conn.compute.find_image(names['image_name']) defaults['image_id'] = os_image.id # get flavor id os_flavor = conn.compute.find_flavor(names['flavor_name']) defaults['flavor_id'] = os_flavor.id debug_print("S3P Resource IDs:", 2) debug_print("{0}: {1}".format(names['project_name'], defaults['project_id']), 2) debug_print("{0}: {1}".format(names['secgrp_name'], defaults['secgrp_id']), 2) debug_print("{0}: {1}".format(names['image_name'], defaults['image_id']), 2) debug_print("{0}: {1}".format(names['flavor_name'], defaults['flavor_id']), 2) return defaults def parse_ids_from_hypervisor_name(hypervisor_name): """ Returns component identifiers from a provided hyperfisor name example: for hypervisor 'compute-5-11', this function will return two strings: host_id=5 and comp_id=11 """ host_id = hypervisor_name.split('-')[1] comp_id = hypervisor_name.split('-')[2] return host_id, comp_id """ " main testing loop """ def main(): global network_list global network_set global subnet_list global hypervisor_list global hypervisor_set global server_set global debug_mode global cloud_info global verbosity_level global attach_to_router verbosity_level=0 """ parse input args with argparse input args: --cleanup - deletes all s3p-created instances and networks --debug - enables debug_mode NOTE on verbosity level: 0: prints only stats messages 1: prints WARNING: messages 2: prints control messages 3: prints details of resource creation 4: prints ??? TODO: operation - arguments to describe how many networks, servers, etc are created operation['num_networks'] operation['num_servers'] operation['servers_per_host'] """ parser = argparse.ArgumentParser() parser.add_argument("-c", "--cleanup", help="cleanup cluster by deleting all instances and networks", action="store_true") parser.add_argument("-d", "--debug", help="enable debug mode which increases output", action="store_true") parser.add_argument("-v", "--verbosity", type=int, choices=[0,1,2,3,4], help="verbosity level for prints in debug mode (must enable debug mode)") args = parser.parse_args() debug_mode = True debug_mode = args.debug debug_print("args.debug = {0}".format(debug_mode)) verbosity_level = args.verbosity debug_print("args.verbosity = {0}".format(verbosity_level), 1) cleanup_mode = args.cleanup debug_print("args.cleanup = {0}".format(cleanup_mode), 1) logprint("Obtaining OpenStack credentials") conn = s3p.get_openstack_connection() cloud_info = { 'project_name': 'demo', 'secgrp_name': 's3p_secgrp', 'image_name': 'cirros-0.3.4-x86_64-uec', 'flavor_name': 'cirros256', 'network_prefix': 's3p-net-', 'server_prefix': 'tenant-', 'attach_to_router': True, 'pin_instances': True, 'validate_existing': True } attach_to_router = cloud_info['attach_to_router'] validate_existing = cloud_info['validate_existing'] pin_instances = cloud_info['pin_instances'] os_project = conn.identity.find_project(cloud_info['project_name']) # create security group if it doesn't yet exist os_secgrp = create_security_group_and_rules(conn, cloud_info['secgrp_name'], os_project.id) s3p_resource_ids = get_resource_ids(conn, cloud_info) if cleanup_mode: # cleanup resources # TODO: ask user if they REALLY want to delete all the servers and networks in the cluster # server_set = s3p.get_server_set(conn) # network_set = s3p.get_network_set(conn) print("WARNING:: You are about to remove\n" + "\tall server instances matching '{0}' \n".format(cloud_info['server_prefix']) + "\tall networks matching '{0}'\n".format(cloud_info['network_prefix'])) answer = raw_input('Are you sure you want to proceed? ') if (answer == 'y') | (answer == 'Y' ): cleanup(conn, cloud_info) else: logprint("Cleanup operation aborted - no changes to cloud.") else: """ Assumptions: quotas and s3p_secgrp are alreay created """ # get list of networks by name network_list = s3p.list_networks_by_name(conn) debug_print("Network list: {0}".format(network_list), 2) network_set = s3p.get_network_set(conn, cloud_info['network_prefix']) debug_print("Network set: {0}".format(network_set), 2) # get list of hypervisors by name hypervisor_list = s3p.list_hypervisors_by_name(conn) hypervisor_set = s3p.get_hypervisor_set(conn, prefix='compute-') debug_print("Hypervisor List: {0}".format(hypervisor_list), 2) debug_print("Hypervisor Set: {0}".format(hypervisor_set ), 2) # get list of servers by name server_set = s3p.get_server_set(conn) debug_print("Server Set: {0}".format(server_set), 2) servers_per_host = 1 max_networks = 6 net_numbering_type = 'modulo_num_networks' # loop through hypervisors, creating tenants on each for hypervisor_name in hypervisor_list: phys_host_id, comp_id = parse_ids_from_hypervisor_name(hypervisor_name) network_ix = determine_net_index( comp_id, max_networks, phys_host_id, net_numbering_type) network_name = 's3p-net-' + str(network_ix) network_id = create_network_and_subnet(conn, network_name, network_ix) hypervisor_ID = phys_host_id + "-" + comp_id # only create one tenant per host for now instance_name = 'tenant-' + hypervisor_ID + "-1" t1 = datetime.now() create_instance(conn, instance_name, hypervisor_name, network_id, s3p_resource_ids, smoketest=True) t2 = datetime.now() debug_print("Server and network creation took {0} s".format((t2-t1).total_seconds()), 1) # subnet_list = s3p.print_subnet_list(conn) # hypervisor_list = s3p.print_hypervisor_list(conn) logprint("Done") if __name__ == '__main__': main() # vim: set et sw=4 ts=4 ai :
StarcoderdataPython
1788989
<gh_stars>1-10 from numpy.core.numeric import Infinity __author__ = '<NAME> <<EMAIL>>' # TODO: this class will be removed in the future class TimeRangeVO: startDate = -Infinity endDate = Infinity def __init__(self, start_date, end_date): self.startDate = start_date self.endDate = end_date def __repr__(self): return "TimeRangeVO. start date is: " + str(self.startDate) + ', end date is : ' + str(self.endDate) def __str__(self): return "TimeRangeVO. start date is: " + str(self.startDate) + ', end date is : ' + str(self.endDate)
StarcoderdataPython
27425
# Import the Evernote client from evernote.api.client import EvernoteClient # Define access token either: # Developer Tokens (https://dev.evernote.com/doc/articles/dev_tokens.php) # or OAuth (https://dev.evernote.com/doc/articles/authentication.php) access_token = "insert dev or oauth token here" # Setup the client client = EvernoteClient(token = access_token, sandbox = True) # Get note store object note_store = client.get_note_store() # GUID of the note to attach the application data to note_guid = "insert note GUID to attach key-value storage to here" # Value of the key for the storage # 3rd party apps are only allowed 1 key = "your-consumer-key" # the value of the application data entry # containg a string arbitray length value = "this is the value of the application data" # Each note is given this 4kb map of arbitrary data, shared by all third-party applications. # adding new data may cause the field's value to exceed the the 4kb limit. # In this case, an instance of EDAMUserException is thrown with the BAD_DATA_FORMAT error code. # Setting this value will overwrite any existing data usn = note_store.setNoteApplicationDataEntry(note_guid, key, value) print "Application data set for note with GUID, '%s' with the key '%s' and value '%s' (USN %s)" % (note_guid, key, value, usn)
StarcoderdataPython
3391834
from .conn import LogicalConnection
StarcoderdataPython
1601003
<reponame>saschajullmann/sedotra from app.crud.base import CRUDBase from app.models.team import Team from app.schemas.team import TeamCreate, TeamUpdate class CRUDTeam(CRUDBase[Team, TeamCreate, TeamUpdate]): pass team = CRUDTeam(Team)
StarcoderdataPython
191836
import os from blockstack.client import BlockstackClient token = os.environ.get('BK_TOKEN') client = BlockstackClient(base_uri=('%s/api' % os.environ['BK_INSTANCE']), token=token) alice = client.wallets.get('Blue') bob = client.wallets.get('Red') alice_oracle = client.oracles.get('Blue') bob_oracle = client.oracles.get('Red') alice_txs = alice.transactions bob_txs = bob.transactions send = alice_txs.create(asset='TRY', address=bob.assetAddress, amount=1) print(send)
StarcoderdataPython
120759
# -*- coding: utf-8 -*- # # File: cooper.py # Author: <NAME> <<EMAIL>> # Date: Fri Jan 20 16:12:23 2012 # # # Copyright (c) 2012, 2015 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ Tests for cooper. """ import cooper from itertools import repeat import unittest def make_test_hierarchy(trace, decorator=lambda x:x, metacls=type): @decorator class _A(object): __metaclass__ = metacls @cooper.cooperate def __init__(self): trace.append(_A.__init__) @cooper.cooperative def method(self, mparam): self._a_mparam = mparam trace.append(_A.method) @cooper.cooperative def post_method(self, pmparam): self._a_pmparam = pmparam trace.append(_A.post_method) @decorator class _B(_A): __metaclass__ = metacls @cooper.cooperate def __init__(self, b_param = 'b_param'): self._b_param = b_param trace.append(_B.__init__) @cooper.cooperate def method(self, mparam, b_mparam='b_mparam'): self._b_mparam = b_mparam trace.append(_B.method) @cooper.post_cooperate def post_method(self, pmparam, b_pmparam='b_mparam'): self._b_pmparam = b_pmparam trace.append(_B.post_method) @decorator class _C(_A): __metaclass__ = metacls @cooper.cooperate def __init__(self): trace.append(_C.__init__) @cooper.cooperate def method(self, mparam): self._c_mparam = mparam trace.append(_C.method) @cooper.post_cooperate def post_method(self, pmparam): self._c_pmparam = pmparam trace.append(_C.post_method) @decorator class _D(_B, _C): __metaclass__ = metacls @cooper.cooperate def __init__(self, d_param = 'd_param'): self._d_param = d_param trace.append(_D.__init__) @cooper.cooperate def method(self, mparam, d_mparam='d_mparam'): self._d_mparam = d_mparam trace.append(_D.method) @cooper.post_cooperate def post_method(self, pmparam, d_pmparam='d_mparam'): self._d_pmparam = d_pmparam trace.append(_D.post_method) @decorator class _F(_D, _A): __metaclass__ = metacls return _A, _B, _C, _D, _F class TestCoop(unittest.TestCase): cls_decorator = cooper.cooperative_class cls_meta = type def setUp(self): self._trace = [] self._A, self._B, self._C, self._D, self._F = make_test_hierarchy( self._trace, decorator = self.cls_decorator.im_func, metacls = self.cls_meta) def test_init_parameter_passing(self): obj = self._D() self.assertEqual(obj._b_param, 'b_param') self.assertEqual(obj._d_param, 'd_param') obj = self._D(b_param = 'new_b_param') self.assertEqual(obj._b_param, 'new_b_param') self.assertEqual(obj._d_param, 'd_param') obj = self._D(d_param = 'new_d_param') self.assertEqual(obj._b_param, 'b_param') self.assertEqual(obj._d_param, 'new_d_param') obj = self._D(d_param = 'new_d_param', b_param = 'new_b_param') self.assertEqual(obj._b_param, 'new_b_param') self.assertEqual(obj._d_param, 'new_d_param') def test_init_check_no_positional(self): def make_cls(): @self.cls_decorator.im_func class _Bad(object): __metaclass__ = self.cls_meta @cooper.cooperate def __init__(self, positional): pass self.assertRaises (cooper.CooperativeError, make_cls) def test_init_check_no_variadic(self): def make_cls(): @self.cls_decorator.im_func class _Bad(object): __metaclass__ = self.cls_meta @cooper.cooperate def __init__(self, *a): pass self.assertRaises (cooper.CooperativeError, make_cls) def test_init_check_no_variadic_keywords(self): def make_cls(): @self.cls_decorator.im_func class _Bad(object): __metaclass__ = self.cls_meta @cooper.cooperate def __init__(self, **k): pass self.assertRaises (cooper.CooperativeError, make_cls) def test_init_must_cooperate(self): def make_cls(): @self.cls_decorator.im_func class _Bad(object): __metaclass__ = self.cls_meta def __init__(self): pass self.assertRaises (cooper.CooperativeError, make_cls) def test_init_must_override(self): def make_cls(): @self.cls_decorator.im_func class _Bad(object): __metaclass__ = self.cls_meta @cooper.cooperative def __init__(self): pass self.assertRaises (cooper.CooperativeError, make_cls) def test_super_params_sends_params(self): @self.cls_decorator.im_func class _Fixed(self._F): __metaclass__ = self.cls_meta @cooper.cooperate_with_params(b_param='fixed_b_param') def __init__(self): pass obj = _Fixed() self.assertEqual(obj._b_param, 'fixed_b_param') def test_manual_init(self): outer_self = self @self.cls_decorator.im_func class _Manual(self._D): __metaclass__ = self.cls_meta @cooper.manual_cooperate def __init__(self, *a, **k): super(_Manual, self).__init__(*a, **k) outer_self._trace.append(_Manual.__init__) self._clear_trace() _Manual() self._check_trace_calls_with_mro(_Manual.__init__) def test_can_mix_non_cooperative_superclass_single_inherit(self): class NonCooperativeSuperClass(object): pass @self.cls_decorator.im_func class _Good(NonCooperativeSuperClass): __metaclass__ = self.cls_meta self.assertTrue(isinstance(_Good(), _Good)) def test_can_not_mix_non_cooperative_superclass_multi_inherit(self): class NonCooperativeSuperClass1(object): pass class NonCooperativeSuperClass2(object): pass def make_class(): @self.cls_decorator.im_func class _Bad(NonCooperativeSuperClass1, NonCooperativeSuperClass2): __metaclass__ = self.cls_meta self.assertRaises(cooper.CooperativeError, make_class) def test_can_mix_non_cooperative_subclass(self): class _Good(self._D): pass self._clear_trace() _Good() self._check_trace_calls_with_mro(self._D.__init__) def test_abstract_method_forbids_instantiation(self): @self.cls_decorator.im_func class _ABC(self._D): __metaclass__ = self.cls_meta @cooper.abstract def abstract_method(self): return 0 self.assertRaises(TypeError, _ABC) def test_override_abstract_method_enables_instantiation(self): @self.cls_decorator.im_func class _ABC(self._D): __metaclass__ = self.cls_meta @cooper.abstract def abstract_method(self): self._result = 1 @self.cls_decorator.im_func class _Concrete(_ABC): __metaclass__ = self.cls_meta @cooper.cooperate def abstract_method(self): return self._result self.assertEqual(_Concrete().abstract_method(), 1) def test_compatible_abstract_method_forbids_instantiation(self): import abc @self.cls_decorator.im_func class _ABC(self._D): __metaclass__ = self.cls_meta @abc.abstractmethod def abstract_method(self): return 0 self.assertRaises(TypeError, _ABC) def test_compatible_override_abstract_method_enables_instantiation(self): import abc @self.cls_decorator.im_func class _ABC(self._D): __metaclass__ = self.cls_meta @abc.abstractmethod def abstract_method(self): return 0 class _Concrete(_ABC): def abstract_method(self): return super(_Concrete, self).abstract_method() self.assertEqual(_Concrete().abstract_method(), 0) def test_conflict_raises_error(self): @self.cls_decorator.im_func class _A1(object): __metaclass__ = self.cls_meta @cooper.cooperative def method(self): pass @self.cls_decorator.im_func class _A2(object): __metaclass__ = self.cls_meta @cooper.cooperative def method(self): pass def make_class(): @self.cls_decorator.im_func class _A12(_A1, _A2): __metaclass__ = self.cls_meta @cooper.cooperate def method(self): pass self.assertRaises(cooper.CooperativeError, make_class) def test_mro_call_order(self): for cls in (self._D, self._C, self._B, self._A): obj = cls() self._clear_trace() obj.method(1) self._check_trace_calls_with_mro(cls.method) def test_post_mro_call_order(self): for cls in (self._D, self._C, self._B, self._A): obj = cls() self._clear_trace() obj.post_method(1) self._check_trace_calls_with_mro(cls.post_method, reverse=True) def test_mro_init_call_order(self): for cls in (self._D, self._C, self._B, self._A): self._clear_trace() cls() self._check_trace_calls_with_mro(cls.__init__) def test_mro_does_not_decorate_undefined_init(self): self._clear_trace() self._F() self._check_trace_calls_with_mro(self._D.__init__) def test_inner_cooperate(self): outer_self = self @self.cls_decorator.im_func class _Cls(self._D): __metaclass__ = self.cls_meta @cooper.inner_cooperate def method(self, next_method, param): next_method(b_mparam='new_b_mparam') outer_self._trace.append(_Cls.method) obj = _Cls() self._clear_trace() obj.method(1) self._check_trace_calls_with_mro(_Cls.method) self.assertEqual(obj._b_mparam, 'new_b_mparam') def test_inner_error_call_too_much(self): @self.cls_decorator.im_func class _Cls(self._D): __metaclass__ = self.cls_meta @cooper.inner_cooperate def method(self, next_method, param): next_method() next_method() obj = _Cls() self.assertRaises(cooper.CooperativeError, obj.method, 1) def test_inner_error_not_call(self): @self.cls_decorator.im_func class _Cls(self._D): __metaclass__ = self.cls_meta @cooper.inner_cooperate def method(self, next_method, param): pass obj = _Cls() self.assertRaises(cooper.CooperativeError, obj.method, 1) def _clear_trace(self): self._trace[:] = [] def _check_trace_calls_with_mro(self, method, reverse=False): cls = method.im_class name = method.__name__ mro = cls.__mro__[:-1] # discard object self.assertEqual(zip(mro if reverse else mro[::-1], repeat(name)), [(m.im_class, m.__name__) for m in self._trace]) class TestCoopMeta(TestCoop): cls_decorator = lambda x:x cls_meta = cooper.CooperativeMeta def test_meta_works_on_subclasses(self): outer_self = self class _NewClass(self._D): @cooper.cooperate def __init__(self): outer_self._trace.append(_NewClass.__init__) self._clear_trace() _NewClass() self._check_trace_calls_with_mro(_NewClass.__init__) class _TestBase(object): def __init__(self, param=None,*a, **k): super(_TestBase, self).__init__(*a, **k) assert param == 'param' class _TestDeriv(_TestBase): def __init__(self, *a, **k): super(_TestDeriv, self).__init__(param='param',*a, **k) class _CoopTestBase(cooper.Cooperative): @cooper.cooperate def __init__(self, param=None): assert param == 'param' class _CoopTestDeriv(_CoopTestBase): @cooper.cooperate_with_params(param='param') def __init__(self): pass class _SimpleTestBase(object): def __init__(self, *a, **k): super(_SimpleTestBase, self).__init__(*a, **k) class _SimpleTestDeriv(_SimpleTestBase): def __init__(self, *a, **k): super(_SimpleTestDeriv, self).__init__(*a, **k) class _CoopSimpleTestBase(cooper.Cooperative): @cooper.cooperate def __init__(self): pass class _CoopSimpleTestDeriv(_CoopSimpleTestBase): @cooper.cooperate def __init__(self): pass class _SuperSimpleTestBase(object): pass class _SuperSimpleTestDeriv(_SuperSimpleTestBase): pass class _SuperCoopSimpleTestBase(cooper.Cooperative): pass class _SuperCoopSimpleTestDeriv(_SuperCoopSimpleTestBase): pass class TestCoopPerformance(unittest.TestCase): test_number = 1<<8 def test_performance_overhead_override(self): import timeit t1 = min(timeit.repeat(_SimpleTestDeriv, number=self.test_number)) t2 = min(timeit.repeat(_CoopSimpleTestDeriv, number=self.test_number)) print print "Simple override -- " print " Manual: ", t1 print " Coop: ", t2 print " Ratio: ", t2/t1 def test_performance_overhead_no_override(self): import timeit t1 = min(timeit.repeat(_SuperSimpleTestDeriv, number=self.test_number)) t2 = min(timeit.repeat(_SuperCoopSimpleTestDeriv, number=self.test_number)) print print "No override -- " print " Manual: ", t1 print " Coop: ", t2 print " Ratio: ", t2/t1 def test_performance_overhead_with_params(self): import timeit t1 = min(timeit.repeat(_TestDeriv, number=self.test_number)) t2 = min(timeit.repeat(_CoopTestDeriv, number=self.test_number)) print print "Params -- " print " Manual: ", t1 print " Coop: ", t2 print " Ratio: ", t2/t1
StarcoderdataPython
3265056
<gh_stars>0 #Find Perfect Numbers ##TOOLS def Divisors(num): from math import sqrt as mmsq s=set([1]) i=1 a=int(mmsq(num)+1) while i<=a: if(num//i==num): i+=1 continue if (num%i==0): if (num//i!=i): s.add(num//i) s.add(i) i+=1 return s ############################ ##THE PROGRAM def PerfectNumber(num): return sum(Divisors(num))==num def AbundantNumber(num): return sum(Divisors(num))>num def DeficientNumber(num): return sum(Divisors(num))<num def QuasiPerfectNumber(num): return sum(Divisors(num))-num==1 def AlmostPerfectNumber(num): return sum(Divisors(num))-num==-1 def SemiPerfectNumber(n): factors = Divisors(n) if(sum(factors)==n): return True factors = list(factors)[:-1] num_factors = len(factors) subset = [[0 for i in range(n + 1)]for j in range(num_factors + 1)] for i in range(num_factors + 1): subset[i][0]= True for i in range(1, n + 1): subset[0][i] = False for i in range(1, num_factors + 1): for j in range(1, n + 1): if j < factors[i - 1]: subset[i][j] = subset[i - 1][j] else: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - factors[i - 1]] if subset[num_factors][n] == 0: return False return True def HemiPerfectNumber(num): dv=sum(Divisors(num))+num return (dv*2/num) % 1 * 100==0 and (dv*2/num)%2!=-0 def SuperPerfect(n,m=2,k=2): dv=sum(Divisors(n))+n for i in range(m-1): dv=sum(Divisors(dv))+dv return dv==k*n def doTest(toPrint=False,toProgress=False,start=0,toEnd=1000,algo="perfect"): s=set() KK=10000 from IPython.display import clear_output for i in range(start,toEnd+1): if(toProgress and (i<KK or (i>=KK and i%(KK/100)==0))): clear_output(wait=True) print(i,end="\t") if(algo=="perfect"): pf=PerfectNumber(i) elif(algo=="abundant"): pf=AbundantNumber(i) elif(algo=="deficient"): pf=DeficientNumber(i) elif(algo=="quasi"): pf=Quasiperfect(i) elif(algo=="almost"): pf=AlmostPerfectNumber(i) elif(algo=="semi"): pf=SemiPerfectNumber(i) elif(algo=="hemi"): pf=HemiPerfectNumber(i) elif(algo=="super"): pf=SuperPerfect(i) if(pf): s.add(i) if(toPrint and not toProgress): print(i,end=", ") if(toProgress and (i<KK or (i>=KK and i%(KK/100)==0))): print(s) if(not toPrint): return s #PerfectNumber(28) #AbundantNumber(18) #DeficientNumber(23) #Quasiperfect(20) #AlmostPerfectNumber(32) #SemiPerfectNumber(12) #HemiPerfectNumber(24) #SuperPerfect(64) #doTest(True,False,0,20000) #348 ms #doTest(True,False,0,20000,"abundant") #doTest(True,False,0,20000,"deficient") #doTest(True,False,0,20000,"quasi") #doTest(True,False,0,20000,"almost") #doTest(True,False,0,5000,"semi") #doTest(True,False,1,5000,"hemi") #doTest(True,False,0,20000,"super")
StarcoderdataPython
8461
<reponame>dumbPy/beancount_bot import traceback import telebot from telebot import apihelper from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton, MessageEntity, Message, CallbackQuery from beancount_bot import transaction from beancount_bot.config import get_config, load_config from beancount_bot.dispatcher import Dispatcher from beancount_bot.i18n import _ from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session from beancount_bot.task import load_task, get_task from beancount_bot.transaction import get_manager from beancount_bot.util import logger apihelper.ENABLE_MIDDLEWARE = True bot = telebot.TeleBot(token=None, parse_mode=None) @bot.middleware_handler(update_types=['message']) def session_middleware(bot_instance, message): """ Session middleware :param bot_instance: :param message: :return: """ bot_instance.session = get_session_for(message.from_user.id) ####### # Authentication # ####### def check_auth() -> bool: """ Check if you log in :return: """ return SESS_AUTH in bot.session and bot.session[SESS_AUTH] @bot.message_handler(commands=['start']) def start_handler(message: Message): """ First chat time authentication :param message: :return: """ auth = get_session(message.from_user.id, SESS_AUTH, False) if auth: bot.reply_to(message, _("Have been authenticated!")) return # 要求鉴权 bot.reply_to(message, _("Welcome to the accounting robot!Please enter the authentication token:")) def auth_token_handler(message: Message): """ Login token callback :param message: :return: """ if check_auth(): return # Unconfirmation is considered an authentication token auth_token = get_config('bot.auth_token') if auth_token == message.text: set_session(message.from_user.id, SESS_AUTH, True) bot.reply_to(message, _("Authentic success!")) else: bot.reply_to(message, _("Authentication token error!")) ####### # instruction # ####### @bot.message_handler(commands=['reload']) def reload_handler(message): """ Overload configuration instruction :param message: :return: """ if not check_auth(): bot.reply_to(message, _("Please conduct authentication first!")) return load_config() load_task() bot.reply_to(message, _("Successful overload configuration!")) @bot.message_handler(commands=['help']) def help_handler(message): """ Help instruction :param message: :return: """ cmd = message.text dispatchers = get_manager().dispatchers if cmd == '/help': # Create a message button markup = InlineKeyboardMarkup() for ind, d in zip(range(len(dispatchers)), dispatchers): help_btn = _("help:{name}").format(name=d.get_name()) markup.add(InlineKeyboardButton(help_btn, callback_data=f'help:{ind}')) # 帮助信息 command_usage = [ _("/start - Authentication"), _("/help - Using help"), _("/reload - Reload the configuration file"), _("/task - View, run the task"), ] help_text = \ _("Account bill Bot\n\nAvailable instruction list:\n{command}\n\nTrade statement syntax help, select the corresponding module,Use /help [Module name] Check.").format( command='\n'.join(command_usage)) bot.reply_to(message, help_text, reply_markup=markup) else: # Display detailed help name: str = cmd[6:] flag_found = False for d in dispatchers: if name.lower() == d.get_name().lower(): show_usage_for(message, d) flag_found = True if not flag_found: bot.reply_to(message, _("The corresponding name of the transaction statement processor does not exist!")) def show_usage_for(message: Message, d: Dispatcher): """ Show the method of use of a specific processor :param message: :param d: :return: """ usage = _("help:{name}\n\n{usage}").format(name=d.get_name(), usage=d.get_usage()) bot.reply_to(message, usage) @bot.callback_query_handler(func=lambda call: call.data[:4] == 'help') def callback_help(call: CallbackQuery): """ Help statement detailed help :param call: :return: """ try: d_id = int(call.data[5:]) dispatchers = get_manager().dispatchers show_usage_for(call.message, dispatchers[d_id]) except Exception as e: logger.error(f'{call.id}:Unknown error!', e) logger.error(traceback.format_exc()) bot.answer_callback_query(call.id, _("Unknown error!\n"+traceback.format_exc())) @bot.message_handler(commands=['task']) def task_handler(message): """ Task instruction :param message: :return: """ if not check_auth(): bot.reply_to(message, _("Please conduct authentication first!")) return cmd = message.text tasks = get_task() if cmd == '/task': # Show all tasks all_tasks = ', '.join(tasks.keys()) bot.reply_to(message, _("Current registration task:{all_tasks}\n" "able to pass /task [Task Name] Active trigger").format(all_tasks=all_tasks)) else: # Run task dest = cmd[6:] if dest not in tasks: bot.reply_to(message, _("Task does not exist!")) return task = tasks[dest] task.trigger(bot) ####### # trade # ####### @bot.message_handler(func=lambda m: True) def transaction_query_handler(message: Message): """ Trading statement processing :param message: :return: """ if not check_auth(): auth_token_handler(message) return # Treated manager = get_manager() try: tx_uuid, tx = manager.create_from_str(message.text) # Create a message button markup = InlineKeyboardMarkup() markup.add(InlineKeyboardButton(_("Revoke trading"), callback_data=f'withdraw:{tx_uuid}')) # 回复 bot.reply_to(message, transaction.stringfy(tx), reply_markup=markup) except ValueError as e: logger.info(f'{message.from_user.id}:Unable to add transactions', e) bot.reply_to(message, e.args[0]) except Exception as e: logger.error(f'{message.from_user.id}:An unknown mistake!Adding a transaction failed.', e) bot.reply_to(message, _("An unknown mistake!Adding a transaction failed.\n"+traceback.format_exc())) @bot.callback_query_handler(func=lambda call: call.data[:8] == 'withdraw') def callback_withdraw(call: CallbackQuery): """ Transaction withdrawal callback :param call: :return: """ auth = get_session(call.from_user.id, SESS_AUTH, False) if not auth: bot.answer_callback_query(call.id, _("Please conduct authentication first!")) return tx_uuid = call.data[9:] manager = get_manager() try: manager.remove(tx_uuid) # Modify the original message reply message = _("Transaction has been withdrawn") code_format = MessageEntity('code', 0, len(message)) bot.edit_message_text(message, chat_id=call.message.chat.id, message_id=call.message.message_id, entities=[code_format]) except ValueError as e: logger.info(f'{call.id}:Unable to create trading', e) bot.answer_callback_query(call.id, e.args[0]) except Exception as e: logger.error(f'{call.id}:An unknown mistake!Withdrawal of the transaction failed.', e) bot.answer_callback_query(call.id, _("An unknown mistake!Withdrawal of the transaction failed.")) def serving(): """ start up Bot :return: """ # set up Token token = get_config('bot.token') bot.token = token # Set a proxy proxy = get_config('bot.proxy') if proxy is not None: apihelper.proxy = {'https': proxy} # start up bot.infinity_polling()
StarcoderdataPython
101204
""" Parameters and syntactic sugar. """ def dec(func): def wrapper(*args, **kwargs): print('Top decoration') rv = func(*args, **kwargs) print('Bottom decoration') return rv return wrapper @dec def sum_it(a, b): return(a + b) x = sum_it(10, 5) print(x)
StarcoderdataPython
1764392
<gh_stars>1-10 """TEST MODULE TEMPLATE""" from advent_of_code.utils.parse import parse_guard_records from advent_of_code.y2018.d4 import solution_1 from advent_of_code.y2018.d4 import solution_2 def test_solution_1(): example_input = """[1518-11-01 00:00] Guard #10 begins shift [1518-11-01 00:05] falls asleep [1518-11-01 00:25] wakes up [1518-11-01 00:30] falls asleep [1518-11-01 00:55] wakes up [1518-11-01 23:58] Guard #99 begins shift [1518-11-02 00:40] falls asleep [1518-11-02 00:50] wakes up [1518-11-03 00:05] Guard #10 begins shift [1518-11-03 00:24] falls asleep [1518-11-03 00:29] wakes up [1518-11-04 00:02] Guard #99 begins shift [1518-11-04 00:36] falls asleep [1518-11-04 00:46] wakes up [1518-11-05 00:03] Guard #99 begins shift [1518-11-05 00:45] falls asleep [1518-11-05 00:55] wakes up""" example_result = 240 assert solution_1(parse_guard_records(example_input)) == example_result def test_solution_2(): example_input = """[1518-11-01 00:00] Guard #10 begins shift [1518-11-01 00:05] falls asleep [1518-11-01 00:25] wakes up [1518-11-01 00:30] falls asleep [1518-11-01 00:55] wakes up [1518-11-01 23:58] Guard #99 begins shift [1518-11-02 00:40] falls asleep [1518-11-02 00:50] wakes up [1518-11-03 00:05] Guard #10 begins shift [1518-11-03 00:24] falls asleep [1518-11-03 00:29] wakes up [1518-11-04 00:02] Guard #99 begins shift [1518-11-04 00:36] falls asleep [1518-11-04 00:46] wakes up [1518-11-05 00:03] Guard #99 begins shift [1518-11-05 00:45] falls asleep [1518-11-05 00:55] wakes up""" example_result = 4455 assert solution_2(parse_guard_records(example_input)) == example_result
StarcoderdataPython
14213
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Jun 2 13:09:55 2018 @author: mali """ #import time import pickle import pyNN.utility.plotting as plot import matplotlib.pyplot as plt import comn_conversion as cnvrt import prnt_plt_anmy as ppanmy # file and folder names ======================================================= fldr_name = 'rslts/icub64x64/' pickle_filename = 'TDXY.pickle' file_pth = cnvrt.read_flenfldr_ncrntpth(fldr_name, pickle_filename ) with open(file_pth , 'rb') as tdxy: TDXY = pickle.load( tdxy ) print '### lenght of TDXY : {}'.format( len(TDXY) ) # 2+ 2*n_orn ) pop = TDXY[0] t_ist = 1040 print 'check pop: L_rtna_TDXY' print '### T : {}'.format(pop[0][t_ist]) # dimension 4 x t_stp x depend print '### 1D : {}'.format(pop[1][t_ist]) # dimension 4 x t_stp x depend print '### X : {}'.format(pop[2][t_ist]) # dimension 4 x t_stp x depend print '### Y : {}'.format(pop[3][t_ist]) # dimension 4 x t_stp x depend print pop[0] print pop[1] #required variables============================================================ n_rtna = 2 # till now should be two n_orn = 4 rtna_w = 64 rtna_h = 64 krnl_sz = 5 rf_w = rtna_w - krnl_sz +1 rf_h = rtna_h - krnl_sz +1 subplt_rws = n_rtna subplt_cls = n_orn+1 ########### to make animation fast as scale now in micro second ############### #first to scale be divide over 10 or 100 ====================================== T=TDXY[0][0] t10u=T [0:T[-1]:100] #print '### t_10u : {}'.format(t10u) # second find all times has spikes any one of the rtna or rf ================== t_spks=[] for pop in range ( len(TDXY) ): for inst in range( len(TDXY[pop][0]) ): if TDXY[pop][2][inst]!=[] : t_spks.append( TDXY[pop][0][inst] ) print pop, TDXY[pop][0][inst] t_spks.sort() for each in t_spks: count = t_spks.count(each) if count > 1: t_spks.remove(each) print 't_spks : {}'.format( t_spks ) #animate the rtna_rf ========================================================= #print 'abplt_rw, sbplt_cl, rtna_w, rtna_h, rf_w, rf_h: {}, {}, {}, {}, {}, {} '.format(subplt_rws, subplt_cls, rtna_w, rtna_h, rf_w, rf_h) fig, axs = plt.subplots(subplt_rws, subplt_cls, sharex=False, sharey=False) #, figsize=(12,5)) axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) plt.grid(True) plt.show(block=False) plt.pause(.01) #for i in t_spks: #t10u: # axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) # plt.suptitle('rtna_rf_orn_3: t= {} usec'.format( i ) ) # if subplt_rws==1: # axs[0].scatter( TDXY[0][2][i], TDXY[0][3][i] ) # for col in range (subplt_cls): # axs[col].scatter( TDXY[col+1][2][i], TDXY[col+1][3][i] ) ## plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) # plt.show(block=False) # plt.pause(2) # for col in range(subplt_cls): # axs[col].cla() # # elif subplt_rws==2: # for col in range (subplt_cls): # axs[0][0].scatter( TDXY[0][2][i], TDXY[0][3][i] ) # axs[1][0].scatter( TDXY[1][2][i], TDXY[1][3][i] ) # for col in range(1,n_orn+1): # row=0 # axs[row][col].scatter( TDXY[col+1][2][i], TDXY[col+1][3][i] ) # for col in range(1,n_orn): # row=1 # axs[row][col].scatter( TDXY[n_orn+1+col][2][i], TDXY[n_orn+1+col][3][i] ) ## plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) # plt.show(block=False) # plt.pause(2) # for row in range(subplt_rws): # for col in range (subplt_cls): # axs[row][col].cla() # print '##### required variables: \n n_rtna={}, TDXY_len={}, rtna_w={}, rtna_h={}, krnl_sz={}, rf_w={} , rf_h={}'.format( n_rtna , len(TDXY), rtna_w, rtna_h, krnl_sz, rf_w , rf_h ) plt.show(block=False) last_t_spks=-310 for i in range( len(t_spks) ): #t10u: # plt.pause(2) if t_spks[i]-last_t_spks > 300: #clear if subplt_rws==2: for row in range(subplt_rws): for col in range (subplt_cls): axs[row][col].cla() elif subplt_rws==1: for col in range(subplt_cls): axs[col].cla() axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) plt.suptitle('rtna_rf_orn: t= {} usec'.format( t_spks[i] ) ) plt.pause(1.5) #-------------------------------------------------------------------------- if subplt_rws==1: axs[0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) for col in range (subplt_cls): axs[col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) elif subplt_rws==2: for col in range (subplt_cls): axs[0][0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) axs[1][0].scatter( TDXY[1][2][t_spks[i]], TDXY[1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=0 axs[row][col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=1 axs[row][col].scatter( TDXY[n_orn+1+col][2][t_spks[i]], TDXY[n_orn+1+col][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) #-------------------------------------------------------------------------- plt.pause(.5) else: #==================================================================== #-------------------------------------------------------------------------- if subplt_rws==1: axs[0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) for col in range (subplt_cls): axs[col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) elif subplt_rws==2: for col in range (subplt_cls): axs[0][0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) axs[1][0].scatter( TDXY[1][2][t_spks[i]], TDXY[1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=0 axs[row][col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=1 axs[row][col].scatter( TDXY[n_orn+1+col][2][t_spks[i]], TDXY[n_orn+1+col][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) #-------------------------------------------------------------------------- plt.pause(.5) last_t_spks = t_spks[i] # suing builtin animation function =========================================== #strt_tm = TDXY[0][0][0] #stop_tm = TDXY[0][0][-1] #print '\n### n_orn x n_rtna : {}x{}'.format(n_orn, n_rtna) #print '\n### strt_tm - stop_tm : {} - {}'.format(strt_tm, stop_tm) #ppanmy.anmy_rtna_rf_orn( TDXY, rtna_h, rtna_w, n_rtna, krnl_sz, strt_tm , stop_tm)
StarcoderdataPython
1799678
<filename>gyp/ios.gyp { 'includes': [ '../ios/app/mapboxgl-app.gypi', '../ios/benchmark/benchmark-ios.gypi', ], }
StarcoderdataPython
3230091
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from torch import optim import numpy as np NUM_CLASSES = 21 class SimpleClassifier(nn.Module): def __init__(self): super(SimpleClassifier, self).__init__() self.conv1 = nn.Conv2d(3, 64, 5) self.conv2 = nn.Conv2d(64, 32, 3) self.conv3 = nn.Conv2d(32, 16, 3) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 26 * 26, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, NUM_CLASSES) self.relu = nn.ReLU() def forward(self, x): x = self.pool(self.relu(self.conv1(x))) x = self.pool(self.relu(self.conv2(x))) x = self.pool(self.relu(self.conv3(x))) x = x.view(x.size()[0], 16 * 26 * 26) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x class TestNet(nn.Module): def __init__(self): super(TestNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.bn1 = nn.BatchNorm2d(32) self.conv1_1 = nn.Conv2d(32, 64, 3) self.bn1_1 = nn.BatchNorm2d(64) self.dropout1 = nn.Dropout(0.2) self.conv2 = nn.Conv2d(64, 32, 3) self.bn2 = nn.BatchNorm2d(32) self.dropout2 = nn.Dropout(0.3) self.conv3 = nn.Conv2d(32, 32, 3) self.bn3 = nn.BatchNorm2d(32) self.dropout3 = nn.Dropout(0.4) self.conv4 = nn.Conv2d(32, 16, 3) self.bn4 = nn.BatchNorm2d(16) self.dropout4 = nn.Dropout(0.5) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 12 * 12, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, NUM_CLASSES) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn1_1(self.conv1_1(x))) # x = self.dropout1(x) x = self.pool(x) x = self.relu(self.bn2(self.conv2(x))) # x = self.dropout2(x) x = self.pool(x) x = self.relu(self.bn3(self.conv3(x))) # x = self.dropout3(x) x = self.pool(x) x = self.relu(self.bn4(self.conv4(x))) # x = self.dropout4(x) x = self.pool(x) x = x.view(x.size()[0], 16 * 12 * 12) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # MultiScale VGG Network class MSVGG16(nn.Module): # image size: n, 3, 227, 227 def __init__(self): super(MSVGG16, self).__init__() d = 16 self.conv1 = nn.Conv2d(3, d, 3, padding=1) self.conv1_1 = nn.Conv2d(d, d, 3, padding=1) self.bn1 = nn.BatchNorm2d(d) self.drop1 = nn.Dropout(0.1) self.conv2 = nn.Conv2d(d, 2*d, 3, padding=1) self.conv2_1 = nn.Conv2d(2*d, 2*d, 3, padding=1) self.bn2 = nn.BatchNorm2d(2*d) self.drop2 = nn.Dropout(0.2) self.conv3 = nn.Conv2d(2*d, 4*d, 3, padding=1) self.conv3_1 = nn.Conv2d(4*d, 4*d, 3, padding=1) self.conv3_2 = nn.Conv2d(4*d, 4*d, 3, padding=1) self.bn3 = nn.BatchNorm2d(4*d) self.drop3 = nn.Dropout(0.3) self.conv4 = nn.Conv2d(4*d, 2*d, 3, padding=1) self.conv4_1 = nn.Conv2d(2*d, 2*d, 3, padding=1) self.conv4_2 = nn.Conv2d(2*d, 2*d, 3, padding=1) self.bn4 = nn.BatchNorm2d(2*d) self.drop4 = nn.Dropout(0.5) self.conv5= nn.Conv2d(2*d, d, 3, padding=1) self.conv5_1 = nn.Conv2d(d, d, 3, padding=1) self.conv5_2 = nn.Conv2d(d, d, 3, padding=1) self.bn5 = nn.BatchNorm2d(d) self.drop5 = nn.Dropout(0.5) self.pool = nn.MaxPool2d(2, 2) self.pool_4 = nn.MaxPool2d(4, 4) self.pool_8 = nn.MaxPool2d(8, 8) # self.fc1 = nn.Linear(14*14*(16+32+64+128), 10000) self.fc1 = nn.Linear(7*7*d, 4096) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, NUM_CLASSES) self.relu = nn.ReLU() def forward(self, x): # x: 3 x 227 x 227 conv1 = self.relu(self.bn1(self.conv1(x))) conv1 = self.relu(self.bn1(self.conv1_1(conv1))) conv1 = self.drop1(conv1) conv1 = self.pool(conv1) # conv1: d x 113 x 113 conv2 = self.relu(self.bn2(self.conv2(conv1))) conv2 = self.relu(self.bn2(self.conv2_1(conv2))) conv2 = self.drop2(conv2) conv2 = self.pool(conv2) # conv2: 128 x 56 x 56 conv3 = self.relu(self.bn3(self.conv3(conv2))) conv3 = self.relu(self.bn3(self.conv3_1(conv3))) conv3 = self.relu(self.bn3(self.conv3_2(conv3))) conv3 = self.drop3(conv3) conv3 = self.pool(conv3) # conv3: 256 x 28 x 28 conv4 = self.relu(self.bn4(self.conv4(conv3))) conv4 = self.relu(self.bn4(self.conv4_1(conv4))) conv4 = self.relu(self.bn4(self.conv4_2(conv4))) conv4 = self.drop4(conv4) conv4 = self.pool(conv4) # conv4: 512 x 14 x 14 conv5 = self.relu(self.bn5(self.conv5(conv4))) conv5 = self.relu(self.bn5(self.conv5_1(conv5))) conv5 = self.relu(self.bn5(self.conv5_2(conv5))) conv5 = self.drop5(conv5) conv5 = self.pool(conv5) # conv5: 512 x 7 x 7 # MultiScale Feature from conv1, conv2, and conv3 multi_scale1 = self.pool_8(conv1) # 16 x 14 x 14 multi_scale2 = self.pool_4(conv2) # 32 x 14 x 14 multi_scale3 = self.pool(conv3) # 64 x 14 x 14 # flat1 = multi_scale1.view(multi_scale1.size()[0], 16 * 14 * 14) flat2 = multi_scale2.view(multi_scale2.size()[0], 32 * 14 * 14) flat3 = multi_scale3.view(multi_scale3.size()[0], 64 * 14 * 14) flat4 = conv4.view(conv4.size()[0], 32 * 14 * 14) flat5 = conv5.view(conv5.size()[0], 16 * 7 * 7) multi_scale_all = torch.cat((flat1, flat2, flat3, flat4), dim = 1) fc1 = self.relu(self.fc1(multi_scale_all)) # fc1 = self.relu(self.fc1(flat5)) fc1 = self.dropout(fc1) fc2 = self.relu(self.fc2(fc1)) fc2 = self.dropout(fc2) fc3 = self.fc3(fc2) return fc3 # Network based on ResNet
StarcoderdataPython
1655414
<reponame>SDomarecki/WSEOptimizer<gh_stars>1-10 from datetime import date from app.config import Config def test_init_validData_createsValidConfig(): test__fetch_database_config_validData_fetchesValidVariables() test__fetch_simulation_config_validData_fetchesValidVariables() test__fetch_selection_config_validData_fetchesValidVariables() test__fetch_crossover_config_validData_fetchesValidVariables() test__fetch_mutation_config_validData_fetchesValidVariables() test__fetch_wallet_config_validData_fetchesValidVariables() test__fetch_genes_config_validData_fetchesValidVariables() def test_init_emptyData_createsDefaultConfig(): test__fetch_database_config_emptyDict_returnsDefaultSettings() test__fetch_simulation_config_emptyDict_returnsDefaultSettings() test__fetch_selection_config_emptyDict_returnsDefaultSettings() test__fetch_crossover_config_emptyDict_returnsDefaultSettings() test__fetch_mutation_config_emptyDict_returnsDefaultSettings() test__fetch_wallet_config_emptyDict_returnsDefaultSettings() test__fetch_genes_config_emptyDict_returnsDefaultSettings() def test__fetch_database_config_validData_fetchesValidVariables(): db_config = { "min_circulation": 1, "max_circulation": 1, "sectors": ["sector"], "companies": ["company"], "chunks": 1, } config = Config() config._fetch_database_config(db_config) assert ( config.min_circulation == 1 and config.max_circulation == 1 and config.sectors == ["sector"] and config.companies == ["company"] and config.chunks == 1 ) def test__fetch_database_config_emptyDict_returnsDefaultSettings(): db_config = {} config = Config() config._fetch_database_config(db_config) assert ( config.min_circulation == 0 and config.max_circulation == 0 and config.sectors == [] and config.companies == [] and config.chunks == 0 ) def test__fetch_simulation_config_validData_fetchesValidVariables(): sim_config = { "timedelta": 1, "iterations": 1, "initial_population": 1, "learning": {"start_date": "2010-01-01", "end_date": "2020-01-01"}, "testing": [{"start_date": "2010-01-01", "end_date": "2020-01-01"}], } config = Config() config._fetch_simulation_config(sim_config) assert ( config.timedelta == 1 and config.iterations == 1 and config.initial_population == 1 and config.start_date == date(2010, 1, 1) and config.end_date == date(2020, 1, 1) and config.validations[0][0] == date(2010, 1, 1) and config.validations[0][1] == date(2020, 1, 1) ) def test__fetch_simulation_config_emptyDict_returnsDefaultSettings(): sim_config = {} config = Config() config._fetch_simulation_config(sim_config) assert ( config.timedelta == 0 and config.iterations == 0 and config.initial_population == 0 and config.start_date == date(2000, 1, 1) and config.end_date == date(2000, 1, 1) and config.validations == [] ) def test__fetch_selection_config_validData_fetchesValidVariables(): sel_config = {"method": "roulette", "agents_to_save": 1.0} config = Config() config._fetch_selection_config(sel_config) assert config.selection_method == "roulette" and config.agents_to_save == 1.0 def test__fetch_selection_config_emptyDict_returnsDefaultSettings(): sel_config = {} config = Config() config._fetch_selection_config(sel_config) assert config.selection_method == "roulette" and config.agents_to_save == 0.0 def test__fetch_crossover_config_validData_fetchesValidVariables(): cross_config = {"constant_length": False, "initial_genes": 1, "max_genes": 1} config = Config() config._fetch_crossover_config(cross_config) assert ( config.constant_length is False and config.initial_length == 1 and config.max_genes == 1 ) def test__fetch_crossover_config_emptyDict_returnsDefaultSettings(): cross_config = {} config = Config() config._fetch_crossover_config(cross_config) assert ( config.constant_length is True and config.initial_length == 0 and config.max_genes == 0 ) def test__fetch_mutation_config_validData_fetchesValidVariables(): mutation_config = {"method": "gene_creation", "rate": 0.1} config = Config() config._fetch_mutation_config(mutation_config) assert config.mutation_method == "gene_creation" and config.mutation_rate == 0.1 def test__fetch_mutation_config_emptyDict_returnsDefaultSettings(): mutation_config = {} config = Config() config._fetch_mutation_config(mutation_config) assert config.mutation_method == "normalization" and config.mutation_rate == 0.0 def test__fetch_wallet_config_validData_fetchesValidVariables(): wallet_config = { "start_cash": 1, "return_method": "sharpe", "benchmark": "wig", "risk_free_return": 1.0, "fees": {"min": 1.0, "rate": 1.0, "added": 1.0, "max": 1.0}, } config = Config() config._fetch_wallet_config(wallet_config) assert ( config.start_cash == 1 and config.return_method == "sharpe" and config.benchmark == "wig" and config.risk_free_return == 1.0 and config.fee_min == 1.0 and config.fee_rate == 1.0 and config.fee_added == 1.0 and config.fee_max == 1.0 ) def test__fetch_wallet_config_emptyDict_returnsDefaultSettings(): wallet_config = {} config = Config() config._fetch_wallet_config(wallet_config) assert ( config.start_cash == 0 and config.return_method == "total_value" and config.benchmark == "" and config.risk_free_return == 0.0 and config.fee_min == 0.0 and config.fee_rate == 0.0 and config.fee_added == 0.0 and config.fee_max == 0.0 ) def test__fetch_genes_config_validData_fetchesValidVariables(): genes_config = { "fin_statement_lag": 123, "logic_to_all": 1.0, "fundamental_to_all": 1.0, } config = Config() config._fetch_genes_config(genes_config) assert ( config.fin_statement_lag == 123 and config.logic_to_all == 1.0 and config.fundamental_to_all == 1.0 ) def test__fetch_genes_config_emptyDict_returnsDefaultSettings(): genes_config = {} config = Config() config._fetch_genes_config(genes_config) assert ( config.fin_statement_lag == 135 and config.logic_to_all == 0.0 and config.fundamental_to_all == 0.0 )
StarcoderdataPython
4821547
<filename>src/helpers/split_email.py def split_email(email): """ Input: string Returns: "username" If the "email = x" argument is provided to the main function, split_email is called. Splits string containing an email address on the '@', returns 0th element. """ username = str.split(email,'@')[0] return username
StarcoderdataPython
3386291
<filename>3_data_cleaning.py<gh_stars>1-10 import pymongo import pandas as pd def convert_to_excel(pdict): columns = ['职位ID', '公司ID', '国家', '经度', '纬度', '行业领域', '教育水平', '工作经验', '城市', '区域', '职位诱惑', '最低工资', '最高工资', '平均工资', '职位名称', '公司规模', '公司缩写名', '财务阶段', '工作性质', '公司标签', '职位标签', '行业标签', '公司全名', '第一类别', '第二类别', '第三类别', '技术标签'] cc_dict = {} for c in columns: cc_dict[c] = [] for k, v in pdict.items(): print(k) for c in columns: cc_dict[c].append(v.get(c)) df = pd.DataFrame(data=cc_dict, columns=columns) df.to_excel('拉勾网——数据分析岗位.xlsx', na_rep="NULL") def data_clean(): position_dict = {} for w in collection.find(): positionId = w.get("positionId") print(positionId) salary = w.get("salary") low_salary = salary.lower().split("-")[0].replace("k", "000") high_salary = salary.lower().split("-")[1].replace("k", "000") average_salary = (int(low_salary)+int(high_salary))/2 position_dict[positionId] = { "职位ID": positionId, "经度": w.get("longitude"), "纬度": w.get("latitude"), "国家": "中国", "公司ID": w.get("companyId"), "行业领域": w.get("industryField"), "教育水平": w.get("education"), "工作经验": w.get("workYear"), "城市": w.get("city"), "区域": w.get("district"), "职位诱惑": w.get("positionAdvantage"), "最低工资": low_salary, "最高工资": high_salary, "平均工资": average_salary, "职位名称": w.get("positionName"), "公司规模": w.get("companySize"), "公司缩写名": w.get("companyShortName"), "财务阶段": w.get("financeStage"), "工作性质": w.get("jobNature"), "公司标签": w.get("companyLabelList"), "职位标签": w.get("positionLables"), "行业标签": w.get("industryLables"), "公司全名": w.get("companyFullName"), "第一类别": w.get("firstType"), "第二类别": w.get("secondType"), "第三类别": w.get("thirdType"), "技术标签": w.get("skillLables") } return position_dict def main(): position_dict = data_clean() convert_to_excel(position_dict) if __name__ == '__main__': client = pymongo.MongoClient(host='localhost', port=27017) db = client['lagou'] collection = db["position"] main()
StarcoderdataPython
1707783
import copy from spec_classes.types.missing import _MissingType, MISSING def test_missing(): assert MISSING is _MissingType() assert bool(MISSING) is False assert repr(MISSING) == "MISSING" assert copy.copy(MISSING) is MISSING assert copy.deepcopy(MISSING) is MISSING
StarcoderdataPython
1720600
###################################################################### # @author : bidaya0 (<EMAIL>@$HOSTNAME) # @file : api_route # @created : Tuesday Aug 17, 2021 17:43:27 CST # # @description : ###################################################################### from django.db import models from dongtai.utils.settings import get_managed from dongtai.models.agent import IastAgent class HttpMethod(models.Model): method = models.CharField(max_length=100, blank=True) class Meta: managed = get_managed() db_table = 'iast_http_method' class IastApiMethod(models.Model): method = models.CharField(max_length=100, blank=True) http_method = models.ManyToManyField( HttpMethod, blank=True, through='IastApiMethodHttpMethodRelation') class Meta: managed = get_managed() db_table = 'iast_api_methods' class IastApiMethodHttpMethodRelation(models.Model): api_method = models.ForeignKey(IastApiMethod, on_delete=models.CASCADE, db_constraint=False, db_column='api_method_id') http_method = models.ForeignKey(HttpMethod, on_delete=models.CASCADE, db_constraint=False, db_column='http_method_id') class Meta: managed = get_managed() db_table = 'iast_http_method_relation' unique_together = ['api_method_id', 'http_method_id'] class IastApiRoute(models.Model): path = models.CharField(max_length=255, blank=True) code_class = models.CharField(max_length=255, blank=True, db_column='code_class') description = models.CharField(max_length=500, blank=True) method = models.ForeignKey(IastApiMethod, on_delete=models.DO_NOTHING, db_constraint=False, db_index=True, db_column='method_id') code_file = models.CharField(max_length=500, blank=True, db_column='code_file') controller = models.CharField(max_length=100, blank=True) agent = models.ForeignKey(IastAgent, on_delete=models.CASCADE, db_constraint=False, db_index=True, db_column='agent_id') class Meta: managed = get_managed() db_table = 'iast_api_route' unique_together = ['path', 'method'] class IastApiParameter(models.Model): name = models.CharField(max_length=100, blank=True) parameter_type = models.CharField(max_length=100, blank=True, db_column='type') annotation = models.CharField(max_length=500, blank=True) route = models.ForeignKey(IastApiRoute, on_delete=models.CASCADE, db_constraint=False, db_index=True, db_column='route_id') class Meta: managed = get_managed() db_table = 'iast_api_parameter' unique_together = ['name', 'route_id'] class IastApiResponse(models.Model): return_type = models.CharField(max_length=100, blank=True) route = models.ForeignKey(IastApiRoute, on_delete=models.CASCADE, db_constraint=False, db_index=True, db_column='route_id') class Meta: managed = get_managed() db_table = 'iast_api_response' unique_together = ['return_type', 'route_id']
StarcoderdataPython
1647972
import random import time from airtest.core.api import * from airtest.core.error import TargetNotFoundError from airtest.core.helper import (G, delay_after_operation) def connect_windows(name): """ 连接win设备 """ try: connect_device("windows:///?title_re=%s" % name) except Exception as e: print("connect failed! Please check or report it: ", e) return 1 return 0 def connect_android(seq): """ 连接安卓设备 """ try: connect_device("Android:///%s" % seq) except Exception as e: print("connect android failed! Please check or report it: ", e) return 1 print(G.DEVICE.get_display_info()) return 0 def random_pos(pos, xmin, xmax, zmin=-1, zmax=-1): if zmin == -1 or zmax == -1: zmin, zmax = xmin, xmax return (pos[0] + random.randrange(xmin, xmax), pos[1] + random.randrange(zmin, zmax)) def touch_pos(pos, times=1, **kwargs): for _ in range(times): G.DEVICE.touch(pos, **kwargs) time.sleep(0.05) delay_after_operation() def image(path, rpos, rs): return Template(r"../assets/{}".format(path), record_pos=rpos, resolution=rs) def get_current_resolution(): return G.DEVICE.get_current_resolution() def wati_util(v, condition, timeout=60, interval=0.5): """等待符合条件的对象 """ start_time = time.time() while True: ret = find_all(v) if condition(ret): return ret if (time.time() - start_time) > timeout: raise TargetNotFoundError('Continue %s not found in screen' % v) time.sleep(interval) def select(vs, timeout=60, interval=0.5): """等待多个对象,返回第一个匹配到的对象 """ start_time = time.time() while True: for idx, v in enumerate(vs): ret = find_all(v) if ret: return idx, ret if (time.time() - start_time) > timeout: raise TargetNotFoundError('Continue %s not found in screen' % v) time.sleep(interval)
StarcoderdataPython
57113
<reponame>diatomsRcool/checklists<gh_stars>1-10 #this code changes the file names from geonames id to country name #it creates a directory for each country and places the tsv file in that directory #the country name is all lower case with underscores for spaces #be sure to change the file paths for your local machine import os import pickle import re import shutil f = open('country_dict.p', 'rb') country_ids = pickle.load(f) for filename in os.listdir('/Volumes/PCCOMP/effechecka_country_results/checklist/'): #this path needs to point to the unzipped effechecka output if not filename.startswith('.'): #this ignores hidden files. I'm not sure why they are there name = re.sub('.tsv', '', filename) country = country_ids[name] if not os.path.exists('/Volumes/PCCOMP/effechecka_country_results/' + country + '/'): os.makedirs('/Volumes/PCCOMP/effechecka_country_results/' + country + '/') shutil.copy('/Volumes/PCCOMP/effechecka_country_results/checklist/' + filename, '/Volumes/PCCOMP/effechecka_country_results/' + country + '/' + country) else: os.remove(filename) #this removes the hidden files
StarcoderdataPython
58923
<filename>hcc_october_inservice_2021/simple_nn.py<gh_stars>0 # simple_nn.py # A simple neural network with one node that has two inputs and one output. train_X = [1, 2, 4, 5, 6, 7] train_Y = [3, 5, 4, 6, 7, 2] def initialize_parameters:
StarcoderdataPython
58350
<reponame>furious-luke/polecat<gh_stars>1-10 from polecat.db.schema import IntColumn, RelatedColumn, Schema, Table def create_table(name=None, related_table=None, schema=None): columns = [ IntColumn('id', primary_key=True), IntColumn('col1'), IntColumn('col2') ] if related_table: columns.append( RelatedColumn('col3', related_table, related_column='a_tables') ) table = Table(name or 'a_table', columns) if schema is None: schema = Schema() schema.add_table(table) schema.bind() return table
StarcoderdataPython
184613
''' This is a simple service class which accepts http requests and return data based on the request in JSON format. Services - 1./emp - return all rows of the csv file as a JSON array. 2./emp/column/{csv column name} It return all values of a csv column. E.g./emp/column/City will return all Cities like "Seattle, Fairfax, ALDIE, Chantilly, Herndon" 3./emp/search/{search string} - It returns all rows of the csv file in a json array, where each row contains given string. 4./emp/search/{csv column name}/{searchString} It works same like above service but the search is performed only in the given column name instead of on all columns. Sample Reqeust URL http://localhost:50012/emp/search/Position/Analyst Follwoing are expected to run this servies. 1. Python 2.7.10 or later 2. Port shoudl be accessible on which the services are run. Here i am using the port "50012" you can update your port here. ''' from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import SocketServer import simplejson as json import csv searchDict = {} allDicts = [] SocketServer.TCPServer.allow_reuse_address class MockServices(BaseHTTPRequestHandler): print 'Service started' reader = csv.DictReader(open('EmployeeData.csv')) key = 0 for row in reader: arrSearchValues = [] col1 = row["EmpId"] col2 = row["FirstName"] col3 = row["LastName"] col4 = row["Position"] col5 = row["Manager"] col6 = row["Street"] col7 = row["City"] col8 = row["State"] col9 = row["Zip"] col10 = row["Country"] arrSearchValues.append(col1) arrSearchValues.append(col2) arrSearchValues.append(col3) arrSearchValues.append(col4) arrSearchValues.append(col5) arrSearchValues.append(col6) arrSearchValues.append(col7) arrSearchValues.append(col8) arrSearchValues.append(col9) arrSearchValues.append(col10) allValues = ''.join(arrSearchValues) # All values is the main string in which search is performed. # If you want the serach operation should be perforced on only few columnns then you can update the stirng with only those columns. searchDict[allValues] = row allDicts.append(row); # This function return all the values for a column name in the csv def getDetailsOfRecord(self, cellName): responsesTring = (list({d[cellName] for d in searchDict.values()})) return self.wfile.write(json.dumps(responsesTring)) # This function Search in a column and return entire row of columns which met filtered in search def searchStringInColumn(self,searchColumn,searchStr,inputDicts): resultlist = [d for d in inputDicts if d[searchColumn] == searchStr] responsesTring = (json.dumps(resultlist)) return self.wfile.write(responsesTring) # This function search given string in each row of the csv and return filtered rows def searchString(self,searchStr,inputDicts): matches = {x for x in inputDicts.keys() if searchStr in x} returnDicts = [] for tempStr in matches: returnDicts.append(searchDict[tempStr]) responsesTring = (json.dumps(returnDicts)) return self.wfile.write(responsesTring) # This function return all rows of the csv def do_GET(self): print(self.path) requestPath = self.path.split('/') print(requestPath) self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() if len(requestPath) > 0: serviceName = requestPath[1] if serviceName=="emp" : if len(requestPath) > 2: operationName = requestPath[2] print operationName if operationName=="search": if len(requestPath) > 4: # search data in the column name searchColumnName = requestPath[4] return self.searchStringInColumn(requestPath[3],requestPath[4],allDicts) else: return self.searchString(requestPath[3],searchDict) elif operationName=="column": return self.getDetailsOfRecord(requestPath[3]) else: responsesTring = (json.dumps(searchDict)) return self.wfile.write(responsesTring) else: responsesTring = (json.dumps(allDicts)) return self.wfile.write(responsesTring) Handler = MockServices httpd = SocketServer.TCPServer(("", 50012), Handler) httpd.serve_forever()
StarcoderdataPython
146189
<gh_stars>1-10 from typing import Any from dagster.core.errors import DagsterInvalidConfigError from ...config import Shape from ..execution.context.logger import InitLoggerContext, UnboundInitLoggerContext from .logger_definition import LoggerDefinition def logger_invocation_result(logger_def: LoggerDefinition, init_context: UnboundInitLoggerContext): """Using the provided context, call the underlying `logger_fn` and return created logger.""" logger_config = _resolve_bound_config(init_context.logger_config, logger_def) bound_context = InitLoggerContext( logger_config, logger_def, init_context.pipeline_def, init_context.run_id ) return logger_def.logger_fn(bound_context) def _resolve_bound_config(logger_config: Any, logger_def: "LoggerDefinition") -> Any: from dagster.config.validate import process_config validated_config = None outer_config_shape = Shape({"config": logger_def.get_config_field()}) config_evr = process_config( outer_config_shape, {"config": logger_config} if logger_config else {} ) if not config_evr.success: raise DagsterInvalidConfigError( "Error in config for logger ", config_evr.errors, logger_config, ) validated_config = config_evr.value.get("config") mapped_config_evr = logger_def.apply_config_mapping({"config": validated_config}) if not mapped_config_evr.success: raise DagsterInvalidConfigError( "Error in config mapping for logger ", mapped_config_evr.errors, validated_config ) validated_config = mapped_config_evr.value.get("config") return validated_config def _get_default_if_exists(logger_def: LoggerDefinition): return ( logger_def.config_field.default_value if logger_def.config_field and logger_def.config_field.default_provided else None )
StarcoderdataPython
1797096
<reponame>rlan/LeetCode # # LeetCode # Algorithm 136 Single Number # # <NAME>, May 6, 2017. # See LICENSE # # Test case(s): # [1] # [0,2,0] # # Your runtime beats 83.04 % of python submissions. # class Solution(object): def singleNumber(self, nums): """ :type nums: List[int] :rtype: int A number XOR with itself will be zero. If with XOR every element in the array, then the result will be the single one. """ secret = nums[0] for val in nums[1:]: secret = secret ^ val return secret
StarcoderdataPython
3359225
<reponame>saai-sudarsanan-d/Alpha-v1<filename>intent_keys.py import re intent_keywords = { 'self':['your','you','yourself'], 'greet': ['hi','morning','hello','welcome','Hey','Nice to meet you'], 'time': ['time', 'clock'], 'date':['date','day','calendar','today'], "search":['search',"when","what","why","how","who","where"], 'relax':["relax"], 'location':['find','track'], 'close': ['close'], 'exit':['close','shut up','stop','exit'] } patterns = {intent: re.compile('|'.join(keys)) for intent, keys in intent_keywords.items()} def get_intent(message): intents=[] for intent, pattern in patterns.items(): # Check if the pattern occurs in the message if pattern.search(message): intents.append(intent) if(len(intents)!=0): return intents else: return(['default']) def ques_check(message): que = False for i in ["when","what","why","how","who","where"]: if i in message: que = True return que
StarcoderdataPython