id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
1784225
<filename>asyncgTTS/_decos.py<gh_stars>1-10 from __future__ import annotations from functools import wraps from typing import TYPE_CHECKING, Any, Callable, cast from .errors import NoInitialisedSession if TYPE_CHECKING: from typing import TypeVar from typing_extensions import ParamSpec _R = TypeVar("_R") _P = ParamSpec("_P") def require_session(func: Callable[_P, _R]) -> Callable[_P, _R]: @wraps(func) def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R: self = cast(Any, args[0]) if self.session: return func(*args, **kwargs) raise NoInitialisedSession("Session is not initialized, use async context manager or pass aiohttp.ClientSession on init") return wrapper
StarcoderdataPython
1616096
# coding: utf-8 from django.contrib import admin from .models import TarotJoueur, TarotPartie, TarotParticipant, TarotJeu from django.utils.safestring import mark_safe from . import forms class TarotJoueurAdmin(admin.ModelAdmin): list_display = ('owner', 'pseudo', 'email') list_filter = ('owner',) # search_fields = ('pseudo', 'email') pass class TarotPartieAdmin(admin.ModelAdmin): list_display = ('owner', 'name', 'jeu', 'modified') list_filter = ('owner',) # fields = ('name',) # search_fields = ('name',) # list_editable = ['jeu'] pass class TarotParticipantAdmin(admin.ModelAdmin): list_display = ('partie', 'joueur', 'score', 'order', 'donneur') # search_fields = ('partie', 'joueur') # ordering = ('partie', '-score') list_filter = ('partie',) # readonly_fields = ('score',) pass admin.site.register(TarotJoueur, TarotJoueurAdmin) admin.site.register(TarotPartie, TarotPartieAdmin) # admin.site.register(TarotJeu, TarotJeuAdmin) admin.site.register(TarotParticipant, TarotParticipantAdmin)
StarcoderdataPython
3218275
<filename>reviewboard/webapi/tests/test_server_info.py from __future__ import unicode_literals from django.utils import six from reviewboard.webapi.resources import resources from reviewboard.webapi.tests.base import BaseWebAPITestCase from reviewboard.webapi.tests.mimetypes import server_info_mimetype from reviewboard.webapi.tests.mixins import BasicTestsMetaclass from reviewboard.webapi.tests.urls import get_server_info_url @six.add_metaclass(BasicTestsMetaclass) class ResourceTests(BaseWebAPITestCase): """Testing the ServerInfoResource APIs.""" fixtures = ['test_users'] sample_api_url = 'info/' resource = resources.server_info def setup_http_not_allowed_list_test(self, user): return get_server_info_url() def setup_http_not_allowed_item_test(self, user): return get_server_info_url() def compare_item(self, item_rsp, obj): self.assertIn('product', item_rsp) self.assertIn('site', item_rsp) self.assertIn('capabilities', item_rsp) caps = item_rsp['capabilities'] self.assertIn('diffs', caps) diffs_caps = caps['diffs'] self.assertTrue(diffs_caps['moved_files']) self.assertTrue(diffs_caps['base_commit_ids']) diff_validation_caps = diffs_caps['validation'] self.assertTrue(diff_validation_caps['base_commit_ids']) review_request_caps = caps['review_requests'] self.assertTrue(review_request_caps['commit_ids']) text_caps = caps['text'] self.assertTrue(text_caps['markdown']) # # HTTP GET tests # def setup_basic_get_test(self, user, with_local_site, local_site_name): return (get_server_info_url(local_site_name), server_info_mimetype, None)
StarcoderdataPython
4835174
# number = None # while (not number) or not (number > 0): # try_number = input("Please enter a number > 0: ") # try: # number = float(try_number) # print("Got it!") # except ValueError as err: # print("Error: ", err) # try: # file_handle = open("my_file") # except IOError as err: # print("Could not open file! Error: ", err) # else: # content = file_handle.read() # result = analyse(content) # finally: # file_handle.close() # key_list = ["key", "my_key", "bike_key", "transponder"] # key_to_lock = { # "my_key": "Finally I can go home again!", # "bike_key": "This unlocks my Bike!", # "transponder": "Back to work it is." # } # try: # idx = int(input(f"A number bewteen 0 and {len(key_list)-1} please: ")) # key = key_list[idx] # print(key_to_lock[key]) # except (IndexError, KeyError, ValueError) as err: # print("Well this didn't work:", err) # key_list = ["key", "my_key", "bike_key", "transponder"] # key_to_lock = { # "my_key": "Finally I can go home again!", # "bike_key": "This unlocks my Bike!", # "transponder": "Back to work it is." # } # try: # idx = int(input(f"A number bewteen 0 and {len(key_list)-1} please: ")) # key = key_list[idx] # print(key_to_lock[key]) # except IndexError as err: # print("No, no. This index doesn't work.") # except KeyError as err: # print("Seems like that key has no lock. How strange.") # except ValueError as err: # print("That's not a number...") # key_list = ["key", "my_key", "bike_key", "transponder"] # key_to_lock = { # "my_key": "Finally I can go home again!", # "bike_key": "This unlocks my Bike!", # "transponder": "Back to work it is." # } # try: # idx = int(input(f"A number bewteen 0 and {len(key_list)-1} please: ")) # key = key_list[idx] # print(key_to_lock[key]) # except (IndexError, ValueError) as err: # print("That was not a valid index:", err) # except KeyError: # print("Oh no! That key has no lock!") # def sub(a, b): # return a + b # assert sub(5, 4) == 1, '5 - 4 != 1' # assert sub(7, 3) == 4, '7 - 3 != 4' # def diff(a, b): # """Returns the absolute difference of a and b""" # sub = a - b # return sub if sub >= 0 else -sub # ########## # help(diff) # import turtle # help(turtle.up) # def get_number(message): # number = None # while number is None: # try: # value = input(message) # number = float(value) # except ValueError: # print("That was no number.") # return number # def get_idx(): # number = get_number("A positive integer please: ") # if number < 0 or not (int(number) == number): # raise ValueError(f"{number} is no positive integer") # return number # def add(a, b): # """Returns the sum of a and b # Args: # a : the left operand # b : the right operand # Returns: # The sum of of a and b # """ # return a + b # def difficult_function(argument, other_arg=None): # """Concise description. # Longer description (if concise is not enough) # which might need multiple lines. # Or even some paragraphs. # Args: # argument: A description of this argument. # other_arg: Another description. # Returns: # A short summary of what is returned, especially its format. # Raises: # ValueError: When does this occur? # """ # pass <<<<<<< HEAD ======= import Untitled >>>>>>> f02e5a0dc271881fab8d9e89529da082c88d8fae
StarcoderdataPython
1744336
<gh_stars>0 # -*- coding: utf-8 -*- import urllib import urllib2 import json import os import collections import xml.etree.ElementTree as ET url = u'http://thetvdb.com/api' api_key = u'<KEY>' # GetSeries.php?seriesname=<seriesname> # GetSeriesByRemoteID.php?imdbid=<imdbid> def search(term): data = dict(seriesname=term) req = urllib.urlencode(data) fullurl = url + u'/GetSeries.php?' + req xml = urllib2.urlopen(fullurl).read() return ET.fromstring(xml) def remote_id(imdbid): data = dict(imdbid=imdbid) req = urllib.urlencode(data) fullurl = url + u'/GetSeriesByRemoteID.php?' + req # print fullurl xml = urllib2.urlopen(fullurl).read() # print xml return ET.fromstring(xml)
StarcoderdataPython
3355003
# coding=utf-8 """Annotations parsing feature tests.""" from typing import Dict import pytest from pytest_bdd import given, scenario, then, when from yummy_cereal import AnnotationsParser from ..models.menus.course import Course from ..models.menus.dish import Dish from ..models.menus.menu import Menu @pytest.fixture() def bdd_context() -> Dict: return {} @scenario( "annotations_parsing.feature", "Parsing a menu from a yaml file" ) def test_parsing_a_menu_from_a_yaml_file(): """Parsing a menu from a yaml file.""" @given("I have a serialized menu") def i_have_a_serialized_menu(): """I have a serialized menu.""" @given("I have annotated menu classes") def i_have_annotated_menu_classes(): """I have annotated menu classes.""" @when("I create a menu parser") def i_create_a_menu_parser(bdd_context: Dict): """I create a menu parser.""" dish_parser = AnnotationsParser(Dish) course_parser = AnnotationsParser( Course, specified_parsers={Dish: dish_parser} ) bdd_context["menu_parser"] = AnnotationsParser( Menu, specified_parsers={Course: course_parser, Dish: dish_parser}, ) @when("I parse the serialized menu") def i_parse_the_serialized_menu( bdd_context: Dict, serialized_menu: Menu ): """I parse the serialized menu.""" menu_parser = bdd_context["menu_parser"] bdd_context["parsed_menu"] = menu_parser(serialized_menu) @then("I recieve a menu object") def i_recieve_a_menu_object(bdd_context: Dict, parsed_menu: Menu): """I recieve a menu object.""" assert bdd_context["parsed_menu"] == parsed_menu
StarcoderdataPython
3391672
<gh_stars>0 from __future__ import unicode_literals import django from django.conf import settings from django.core.management import call_command def main(): # Dynamically configure the Django settings with the minimum necessary to # get Django running tests settings.configure( MIDDLEWARE=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ), TEMPLATES=[ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ # insert your TEMPLATE_DIRS here ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ], INSTALLED_APPS=( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'oembed', ), TEST_RUNNER='django.test.runner.DiscoverRunner', COVERAGE_EXCLUDES_FOLDERS=['migrations'], # Django replaces this, but it still wants it. *shrugs* DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', 'HOST': '', 'PORT': '', 'USER': '', 'PASSWORD': '', } }, ) django.setup() # Fire off the tests call_command('migrate') call_command('test') if __name__ == '__main__': main()
StarcoderdataPython
1724503
<reponame>choonho/identity import logging from google.protobuf.json_format import MessageToDict from spaceone.core import pygrpc from spaceone.core.connector import BaseConnector from spaceone.core.utils import parse_endpoint from spaceone.identity.error.error_authentication import * _LOGGER = logging.getLogger(__name__) class AuthPluginConnector(BaseConnector): def __init__(self, transaction, config): super().__init__(transaction, config) self.client = None def initialize(self, endpoint): _LOGGER.info(f'[initialize] endpoint: {endpoint}') endpoint = endpoint.replace('"', '') e = parse_endpoint(endpoint) protocol = e['scheme'] if protocol == 'grpc': self.client = pygrpc.client(endpoint="%s:%s" % (e['hostname'], e['port']), version='plugin') elif protocol == 'http': # TODO: pass if self.client is None: raise ERROR_GRPC_CONFIGURATION def call_login(self, endpoint, credentials): self.initialize(endpoint) # TODO: secret_data params = { 'secret_data': {}, 'user_credentials': credentials, 'options': {} } try: meta = self.transaction.get_meta('transaction_id') user_info = self.client.Auth.login( params # metadata=meta ) except ERROR_BASE as e: _LOGGER.error(f'[call_login] Auth.login failed. (reason={e.message})') raise ERROR_INVALID_CREDENTIALS() except Exception as e: _LOGGER.error(f'[call_login] Auth.login failed. (reason={str(e)})') raise ERROR_INVALID_CREDENTIALS() return user_info def init(self, options): params = { 'options': options } try: plugin_info = self.client.Auth.init(params) return MessageToDict(plugin_info) except ERROR_BASE as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(message=e.message) except Exception as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(messsage=str(e)) def verify(self, options, secret_data): params = { 'options': options, 'secret_data': secret_data } try: # TODO: meta (plugin has no meta) auth_verify_info = self.client.Auth.verify(params) return MessageToDict(auth_verify_info) except ERROR_BASE as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(message=e.message) except Exception as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(messsage=str(e)) def call_find(self, keyword, user_id, domain): params = { 'options': domain.plugin_info.options, 'secret_data': {}, 'keyword': keyword, 'user_id': user_id } _LOGGER.info(f'[call_find] params: {params}') try: user_info = self.client.Auth.find( params ) _LOGGER.debug(f'[call_find] MessageToDict(user_info): ' f'{MessageToDict(user_info, preserving_proto_field_name=True)}') return MessageToDict(user_info, preserving_proto_field_name=True) except ERROR_BASE as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(message=e.message) except Exception as e: raise ERROR_AUTHENTICATION_FAILURE_PLUGIN(messsage=str(e))
StarcoderdataPython
1788482
<gh_stars>0 import math import numpy as nx from pylab import linspace import PQmath from numpy.random import normal if __name__=='__main__': if 0: P = nx.array( [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2.1, 3.01, 4, 5, 6]] ) P.transpose() else: t = linspace(0, 10*math.pi, 400 ) P = nx.sin(t)[:,nx.newaxis] P = P + normal( 0, .1, P.shape ) Pstar = PQmath.smooth_position( P, 0.01, 0.5, 1e-9, 1e12) from pylab import * plot( t, P, 'b-' ) plot( t, Pstar, 'r-' ) show()
StarcoderdataPython
3339435
<gh_stars>100-1000 from unittest_reinvent.running_modes.lib_invent_tests.logger_tests import * from unittest_reinvent.running_modes.lib_invent_tests.reinforcement_learning_tests import * from unittest_reinvent.running_modes.lib_invent_tests.scoring_strategy_tests import * from unittest_reinvent.running_modes.lib_invent_tests.learning_strategy_tests import *
StarcoderdataPython
1643635
<filename>AdventOfCode2020/solutions/day01/puzzle1.py #!/usr/bin/env python3 from itertools import combinations tab = [] with open("input", 'r', encoding="utf8") as input: for number in input: number = number[:-1] tab.append(int(number)) # part 1 comb_list = (list(combinations(tab, r=2))) for i in comb_list: a, b = i if a + b == 2020: print("part1 :", a * b) # part 2 comb_list = (list(combinations(tab, r=3))) for i in comb_list: a, b, c = i if a + b + c == 2020: print("part2: ", a * b * c)
StarcoderdataPython
1603088
<filename>pe0001.py def pe0001(upto): total = 0 for i in range(upto): if i % 3 == 0 or i % 5 == 0: total += i return total print(pe0001(1000))
StarcoderdataPython
1605057
import abc import nakama.client import nakama.config import nakama.types class BaseApi(abc.ABC): def __init__( self, http_client: nakama.client.HttpClient, nakama_config: nakama.config.NakamaConfig ): self.http_client = http_client self.nakama_config = nakama_config class AccountApi(BaseApi): def get(self, user_id: str = None) -> nakama.types.ApiResponse: url = f"account/{user_id}" if user_id else "account" return self.http_client.get( self.nakama_config.build_url(f"console/{url}"), self.nakama_config.auth_header ) class ConfigApi(BaseApi): def get(self) -> nakama.types.ApiResponse: return self.http_client.get( self.nakama_config.build_url("console/config"), self.nakama_config.auth_header ) class EndpointsApi(BaseApi): def get(self) -> nakama.types.ApiResponse: return self.http_client.get( self.nakama_config.build_url("console/api/endpoints"), self.nakama_config.auth_header ) class RuntimeApi(BaseApi): def get(self) -> nakama.types.ApiResponse: return self.http_client.get( self.nakama_config.build_url("console/runtime"), self.nakama_config.auth_header ) class StatusApi(BaseApi): def get(self) -> nakama.types.ApiResponse: return self.http_client.get( self.nakama_config.build_url("console/status"), self.nakama_config.auth_header ) class UserApi(BaseApi): def create( self, username: str, password: str, email: str, role: str ) -> nakama.types.ApiResponse: payload = dict(username=username, password=password, email=email, role=role) return self.http_client.post( self.nakama_config.build_url("console/user"), self.nakama_config.auth_header, payload, ) def get( self, username: str = None, email: str = None, role: str = None ) -> nakama.types.ApiResponse: return self.http_client.get( self.nakama_config.build_url("console/user"), self.nakama_config.auth_header, ) def remove(self, username: str) -> nakama.types.ApiResponse: return self.http_client.delete( self.nakama_config.build_url(f"console/user?username={username}"), self.nakama_config.auth_header, ) class NakamaConsoleApi: def __init__(self, **kwargs) -> None: self.nakama_config = nakama.config.NakamaConfig(**kwargs) self.http_client = nakama.client.HttpClient() @property def accounts(self): return AccountApi(self.http_client, self.nakama_config) @property def config(self): return ConfigApi(self.http_client, self.nakama_config) @property def endpoints(self): return EndpointsApi(self.http_client, self.nakama_config) @property def runtime(self): return RuntimeApi(self.http_client, self.nakama_config) @property def status(self): return StatusApi(self.http_client, self.nakama_config) @property def users(self): return UserApi(self.http_client, self.nakama_config) def authenticate(self, username: str, password: str) -> str: data = {"username": username, "password": password} response = self.http_client.post( self.nakama_config.build_url("console/authenticate"), data=data, ) self.nakama_config.token = response.payload["token"] return response
StarcoderdataPython
44681
<gh_stars>0 from django.contrib import admin # Register your models here. from goodsManage.models import * class GoodInventoryInline(admin.TabularInline): model = GoodInventory extra = 1 @admin.register(GoodKind) class GoodKindAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodKind._meta.fields if f.name != 'id'] @admin.register(Good) class GoodAdmin(admin.ModelAdmin): list_display = [f.name for f in Good._meta.fields if f.name != 'id'] list_filter = ('kind',) search_fields = ('partNumber', 'partNumber_once', 'partNumber_old', 'type' ) inlines = (GoodInventoryInline,) @admin.register(Department) class DepartmentAdmin(admin.ModelAdmin): list_display = [f.name for f in Department._meta.fields if f.name != 'id'] @admin.register(Person) class PersonAdmin(admin.ModelAdmin): list_display = [f.name for f in Person._meta.fields if f.name != 'id'] list_filter = ('department',) search_fields = ('name',) @admin.register(GoodInventory) class GoodInventoryAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodInventory._meta.fields if f.name != 'id'] list_filter = ('department', 'good__kind',) search_fields = ('good__type',) @admin.register(GoodRequisition) class GoodRequisitionAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodRequisition._meta.fields if f.name != 'id'] list_filter = ('datetime', 'person__department', 'good__kind',) search_fields = ('good__type',) @admin.register(GoodBack) class GoodBackAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodBack._meta.fields if f.name != 'id'] list_filter = ('datetime', 'person__department', 'good__kind',) #search_fields = ('person',) @admin.register(GoodBuy) class GoodBuyAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodBuy._meta.fields if f.name != 'id'] list_filter = ('date', 'person__department', 'good__kind',) #search_fields = ('pr','po') @admin.register(GoodAllocate) class GoodAllocateAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodAllocate._meta.fields if f.name != 'id'] list_filter = ('datetime', 'person__department', 'toDepartment', 'good__kind',) #search_fields = ('person',) @admin.register(WastageStatus) class WastageStatusAdmin(admin.ModelAdmin): list_display = [f.name for f in WastageStatus._meta.fields if f.name != 'id'] @admin.register(GoodWastage) class GoodWastageAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodWastage._meta.fields if f.name != 'id'] list_filter = ('datetime', 'person__department', 'good__kind',) search_fields = ('good__type',) @admin.register(GoodRepair) class GoodRepairAdmin(admin.ModelAdmin): list_display = [f.name for f in GoodRepair._meta.fields if f.name != 'id'] list_filter = ('date', 'person__department')
StarcoderdataPython
3392982
"""A module contains as set API for the puzzle grids.""" import string import random from abc import ABC, abstractmethod from types import TracebackType from typing import Any, List, Optional, Sequence, Type, Union from loguru import logger as _logger from puzzle.properties import Coordinate, GridSize, LetterCoordinates class Content(ABC): """The class represents an abstract content.""" __slots__: Sequence[str] = () @abstractmethod def to_coordinates(self) -> LetterCoordinates: """Return the abstract coordinates of a content. Returns: dict: a collection of abstract letters coordinates. """ pass @abstractmethod def __str__(self) -> str: """Return an abstract content as a string. Returns: str: an abstract string content. """ pass class Grid(ABC): """The class represents an abstract interface of a grid. Any implementation of this interface allows to close connection: - using context manager (**with** statement) - automatically when an object will be deleted by garbage collector - manually with **__del__** """ __slots__: Sequence[str] = () @property @abstractmethod def content(self) -> Content: """Create a new abstract grid content. Returns: Content: an abstract grid content. """ pass @property @abstractmethod def height(self) -> int: """Specify an abstract grid height. Returns: int: an abstract grid height e.g `10`. """ pass @property @abstractmethod def width(self) -> int: """Specify an abstract grid width. Returns: int: an abstract grid width e.g `10`. """ pass @abstractmethod def build(self) -> None: """Build an abstract grid.""" pass @abstractmethod def refresh(self) -> None: """Clear an abstract grid.""" pass @abstractmethod def __enter__(self) -> 'Grid': """Return runtime connection itself.""" pass @abstractmethod def __exit__( self, exception_type: Optional[Type[BaseException]], exception_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: """Close connection itself. Raise any exception triggered within the runtime context. """ pass @classmethod def __subclasshook__(cls, other: Any) -> Union[bool, NotImplementedError]: """Customize ``issubclass`` builtin function on the ABC level. Args: other: (any) other class type Returns: bool: True, False or NotImplemented of subclassing procedure. """ if cls is Grid: method_order: Sequence[Any] = other.__mro__ for method in '__enter__', '__exit__': for other_type in method_order: if method in other_type.__dict__: if other_type.__dict__[method] is None: return NotImplemented break else: return NotImplemented return True return NotImplemented class GridContent(Content): """The class represents a grid content.""" __slots__: Sequence[str] = ('_rows',) def __init__(self, rows: List[str]) -> None: self._rows = rows def to_coordinates(self) -> LetterCoordinates: """Return the abstract coordinates of a content. Every letter in a grid is able to contain multiple coordinates. Example: >>> content = GridContent(['a', 'b']) >>> content.to_coordinates() {'a': [Coordinate(0, 0)], 'b': [Coordinate(1, 0)]} Returns: dict: a collection of coordinates for letters. """ board: LetterCoordinates = {} for row_index, row_value in enumerate( str(self).split() ): # type: int, str for column_index, column_value in enumerate( row_value ): # type: int, str if column_value not in board: board[column_value] = [] board[column_value].append(Coordinate(row_index, column_index)) return board def __str__(self) -> str: """Return grid content. Returns: str: an grid content as string. Raises: ValueError: if grid rows are empty. """ if len(self._rows) == 0: raise ValueError('Cannot build a grid as it contains empty rows') content: str = '\n'.join(self._rows) _logger.info(f'The following grid of letters is generated\n{content}') return content class RandomWordsGrid(Grid): """The class represents randomly created grid of letters. Any implementation of this interface allows to close connection: - using context manager (**with** statement) - automatically when an object will be deleted by garbage collector - manually with **__del__** Example: >>> with RandomWordsGrid(GridSize(10, 10)) as grid: >>> content = grid.content ... """ __slots__: Sequence[str] = ('_size', '_rows') def __init__(self, grid_size: GridSize) -> None: self._size = grid_size self._rows: List[str] = [] @property def content(self) -> Content: """Create a new grid content. Returns: Content: a grid content. """ return GridContent(self._rows) @property def height(self) -> int: """Specify a grid height. Returns: int: a grid height e.g `10`. """ return self._size.height @property def width(self) -> int: """Specify a grid width. Returns: int: an abstract grid width e.g `10`. """ return self._size.width def build(self) -> None: """Create a grid of randomly created letters (a-z only). Raises: ValueError: if the size of a grid is invalid. """ _logger.info(f'{self._size} is used') if (self.height < 0 or self.width < 0) or ( not self.height or not self.width ): raise ValueError( 'Cannot generate a grid of letters due to ' f'invalid "{self.height}x{self.width}" grid size. ' 'It should not contain negative or zero values!' ) _logger.info('Generating a grid of random letters ...') rows_counter: int = 0 while rows_counter < self.height: next_row: str = ''.join( random.choices( population=string.ascii_lowercase, k=self.width, ) ) self._rows.append(next_row) rows_counter += 1 def refresh(self) -> None: """Clear a grid of letters.""" self._rows = [] def __enter__(self) -> Grid: """Build grid rows of randomly created words. Returns: Grid: a grid connection. """ self.build() return self def __exit__( self, exception_type: Optional[Type[BaseException]], exception_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: """Close a grid connection. Raise any exception triggered within the runtime context. """ self.refresh()
StarcoderdataPython
3303861
import os import unittest from datetime import datetime as dt from satstac.sentinel.cli import parse_args testpath = os.path.dirname(__file__) class Test(unittest.TestCase): def test_parse_no_args(self): with self.assertRaises(SystemExit): parse_args(['']) with self.assertRaises(SystemExit): parse_args(['-h']) def test_parse_args(self): args = parse_args('ingest catalog.json'.split(' ')) assert(args['catalog'] == 'catalog.json')
StarcoderdataPython
98786
<reponame>tabulon-ext/moban import csv from lml.plugin import PluginInfo from moban import constants @PluginInfo(constants.DATA_LOADER_EXTENSION, tags=["custom"]) def open_custom(file_name): with open(file_name, "r") as data_csv: csvreader = csv.reader(data_csv) rows = [] for row in csvreader: rows.append(row) data = dict(zip(rows[0], rows[1])) return data
StarcoderdataPython
1622335
<gh_stars>1-10 """ app.routes.report ================= """ import json from flask import Blueprint, Response, current_app, make_response, request from app.extensions import csrf_protect blueprint = Blueprint("report", __name__, url_prefix="/report") @blueprint.route("/csp_violations", methods=["POST"]) @csrf_protect.exempt def csp_report() -> Response: """Post Content Security Report to ``report-uri``. Log CSP violations JSON payload. :return: Response object with HTTP Status 204 (No Content) status. """ current_app.logger.info( json.dumps(request.get_json(force=True), indent=4, sort_keys=True) ) response = make_response() response.status_code = 204 return response
StarcoderdataPython
1702137
<reponame>dasyak/winagent import asyncio import json import subprocess from time import perf_counter import requests from agent import WindowsAgent class TaskRunner(WindowsAgent): def __init__(self, task_pk): super().__init__() self.task_pk = task_pk self.task_url = f"{self.astor.server}/api/v1/{self.task_pk}/taskrunner/" def run(self): # called manually and not from within a check ret = self.get_task() if not ret: return False asyncio.run(self.run_task(ret)) async def run_while_in_event_loop(self): # called from inside a check ret = self.get_task() if not ret: return False await asyncio.gather(self.run_task(ret)) def get_task(self): try: resp = requests.get(self.task_url, headers=self.headers, timeout=15) except: return False else: return resp.json() async def run_task(self, data): try: script = data["script"] timeout = data["timeout"] except: return False try: if script["shell"] == "python": cmd = [ self.salt_call, "win_agent.run_python_script", script["filename"], f"timeout={timeout}", ] else: cmd = [ self.salt_call, "cmd.script", script["filepath"], f"shell={script['shell']}", f"timeout={timeout}", ] start = perf_counter() proc = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) proc_timeout = int(timeout) + 2 try: proc_stdout, proc_stderr = await asyncio.wait_for( proc.communicate(), proc_timeout ) except asyncio.TimeoutError: try: proc.terminate() except: pass self.logger.error(f"Task timed out after {timeout} seconds") proc_stdout, proc_stderr = False, False stdout = "" stderr = f"Task timed out after {timeout} seconds" retcode = 98 stop = perf_counter() if proc_stdout: resp = json.loads(proc_stdout.decode("utf-8", errors="ignore")) retcode = resp["local"]["retcode"] stdout = resp["local"]["stdout"] stderr = resp["local"]["stderr"] elif proc_stderr: retcode = 99 stdout = "" stderr = proc_stderr.decode("utf-8", errors="ignore") payload = { "stdout": stdout, "stderr": stderr, "retcode": retcode, "execution_time": "{:.4f}".format(round(stop - start)), } resp = requests.patch( self.task_url, json.dumps(payload), headers=self.headers, timeout=15, ) except: pass return "ok"
StarcoderdataPython
1784610
<reponame>alex-dow/sourcelyzer<filename>sourcelyzer/rest/utils/auth.py from base64 import b64encode, b64decode import hashlib import os class InvalidAuthToken(Exception): pass def gen_auth_token(username, password, userid, session_id, encoding='utf-8'): salt = os.urandom(128) if isinstance(session_id, str): session_id = session_id.encode(encoding) elif isinstance(session_id, int): session_id = bytes([session_id]) else: session_id = str(session_id).encode(encoding) token = hashlib.sha256() token.update(username.encode(encoding)) token.update(password.encode(encoding)) token.update(bytes([userid])) token.update(session_id) token.update(salt) b64salt = b64encode(salt).decode('utf-8') b64token = b64encode(token.digest()).decode('utf-8') return b64salt + '/' + b64token def verify_auth_token(token, username, password, userid, session_id, encoding='utf-8'): salt = token[0:172] expected_token = hashlib.sha256() expected_token.update(username.encode(encoding)) expected_token.update(password.encode(encoding)) expected_token.update(bytes([userid])) expected_token.update(bytes([session_id])) expected_token.update(b64decode(salt)) b64token = b64encode(expected_token.digest()) new_token = salt + '/' + b64token if token != new_token: raise InvalidAuthToken()
StarcoderdataPython
3299310
from sklearn.feature_extraction.text import CountVectorizer class FeatureExtractor(): def buildVectorizer(self, data, kwargs): """ Constructs a CountVectorizer based on the given data. Args: data: Data to train the CountVectorizer """ # Instantiate CountVectorizer self.vectorizer = CountVectorizer(**kwargs)#TODO Solve Error related to new arguments causing an array too big to fit normally in memory # Train CountVectorizer self.vectorizer.fit(data) def process(self, feature, data): """ Processes a set of data in a way determined by the feature. Args: feature: Method to extract features from the data data: the data to extract features from Returns: data: The feature extracted data """ # Transform the data data = self.vectorizer.transform(data) return data
StarcoderdataPython
3280191
""" Very basic Q-learning model to play frozen lake from the gym library. No hidden layers, simple q-table update method and exponential explore/exploit rate of decay. """ import numpy as np import gym import random import time from IPython.display import clear_output env = gym.make("FrozenLake-v0") action_space = env.action_space.n state_space = env.observation_space.n q_table = np.zeros((state_space, action_space)) episodes = 10000 max_steps = 100 learning_rate = 0.1 discount_rate = 0.99 # gama # exploration vs exploitation: epsilon greedy strategy exploration_rate = 1 max_exploration_rate = 1 min_exploration_rate = 0.01 exploration_decay_rate = 0.01 episode_rewards = [] # Qlearning algorithm # everything for a single episode for episode in range(episodes): state = env.reset() done = False current_reward = 0 for step in range(max_steps): # everything for a single time step # explore or exploit this step? exploration_threshold = random.uniform(0,1) if exploration_threshold > exploration_rate: # exploit action = np.argmax(q_table[state,:]) else: # explore action = env.action_space.sample() new_state, reward, done, info = env.step(action) # print(reward) # Update Qtable q_table[state, action] = q_table[state, action] * (1 - learning_rate) + learning_rate * (reward + discount_rate * np.max(q_table[new_state, :])) state = new_state current_reward += reward if done == True: break # exponential exploration rate decay exploration_rate = min_exploration_rate + (max_exploration_rate - min_exploration_rate) * np.exp(-exploration_decay_rate * episode) episode_rewards.append(current_reward) print(episode_rewards) # calculate and print the average reward per thousand episodes rewards_per_thousand_eps = np.split(np.array(episode_rewards), episodes/1000) count = 1000 # print("====== Avg. reward per thousand episodes ======\n") # for r in rewards_per_thousand_eps: # print(f"{count}: {sum(r/1000)}") # count += 1000 # # print(f"====== Updated Qtable ======\n{q_table}") # visualising 3 episodes to see how the agent behaves. for episode in range(3): state = env.reset() done = False print(f"====== Episode {episode+1} ======\n\n") time.sleep(2) for step in range(max_steps): clear_output(wait=True) env.render() time.sleep(0.3) action = np.argmax(q_table[state,:]) new_state, reward, done, info = env.step(action) if done: clear_output(wait=True) env.render() if reward == 1: print("====== Agent reached the goal! ======\n") time.sleep(3) clear_output(wait=True) break state = new_state env.close() """ Final notes: To further optimize, adding a reward decay for each step might help the agent move more directly to the goal. This would have to be tweaked to find the optimal decay value. """
StarcoderdataPython
169339
<filename>test/integration/test_command.py import os.path import re from six import assertRegex from . import * class TestCommand(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__( self, os.path.join(examples_dir, '07_commands'), *args, **kwargs ) def test_hello(self): assertRegex(self, self.build('hello'), re.compile(r'^\s*hello$', re.MULTILINE)) def test_world(self): assertRegex(self, self.build('world'), re.compile(r'^\s*world$', re.MULTILINE)) def test_script(self): assertRegex(self, self.build('script'), re.compile(r'^\s*hello, world!$', re.MULTILINE)) self.assertExists(output_file('file')) def test_alias(self): output = self.build('hello-world') assertRegex(self, output, re.compile(r'^\s*hello$', re.MULTILINE)) assertRegex(self, output, re.compile(r'^\s*world$', re.MULTILINE)) @skip_if_backend('msbuild') class TestRunExecutable(IntegrationTest): def __init__(self, *args, **kwargs): IntegrationTest.__init__(self, 'run_executable', *args, **kwargs) def test_env_run(self): self.assertExists(output_file('file.txt')) def test_cxx(self): assertRegex(self, self.build('cxx'), re.compile(r'^\s*hello from c\+\+!$', re.MULTILINE)) def test_java(self): assertRegex(self, self.build('java'), re.compile(r'^\s*hello from java!$', re.MULTILINE)) def test_java_classlist(self): assertRegex(self, self.build('java-classlist'), re.compile(r'^\s*hello from java!$', re.MULTILINE)) def test_python(self): assertRegex(self, self.build('python'), re.compile(r'^\s*hello from python!$', re.MULTILINE))
StarcoderdataPython
3308689
from setuptools import setup with open ( "README.md" , "r" ) as fh : long_description = fh . read () setup( name="organizador", version="0.1.1", description="Organiza archivos en carpetas teniendo como referencia las similitudes en sus nombres.", long_description = long_description , long_description_content_type = "text/markdown" , author="<NAME>", url="https://github.com/Armando-J/organizador", packages=['organizador',], )
StarcoderdataPython
3307059
<gh_stars>0 import enum class StrEnumMeta(enum.EnumMeta): auto = enum.auto def from_str(self, member: str): try: return self[member] except KeyError: # TODO: use `add_suggestion` from torchvision.prototype.utils._internal to improve the error message as # soon as it is migrated. raise ValueError(f"Unknown value '{member}' for {self.__name__}.") from None class StrEnum(enum.Enum, metaclass=StrEnumMeta): pass
StarcoderdataPython
1604223
# functionaltests/tests.py # -*- coding: utf-8 -*- from django.test import LiveServerTestCase from selenium import webdriver from selenium.webdriver.common.keys import Keys class HomePageTest(LiveServerTestCase): def setUp(self): self.browser = webdriver.Firefox() self.browser.implicitly_wait(1) def tearDown(self): self.browser.quit() # Project def test_home_page(self): self.browser.get(self.live_server_url) page_text = self.browser.page_source self.assertIn('Projekte', page_text) def test_project_list(self): self.browser.get('%s%s' % (self.live_server_url, '/project/')) page_text = self.browser.page_source self.assertIn('Projekte', page_text) def test_new_project_test_page(self): self.browser.get('%s%s' % (self.live_server_url, '/project/new/')) page_text = self.browser.page_source self.assertIn('Neues Projekt', page_text) # Member def test_member_list(self): self.browser.get('%s%s' % (self.live_server_url, '/member/')) page_text = self.browser.page_source self.assertIn('Mitglieder', page_text) def test_new_member_test_page(self): self.browser.get('%s%s' % (self.live_server_url, '/member/new/')) page_text = self.browser.page_source self.assertIn('Neues Mitglied', page_text) def test_add_member(self): self.assertIn('a', 'a')
StarcoderdataPython
150305
<reponame>tgragnato/geneva import logging import pytest import actions.tree import actions.drop import actions.tamper import actions.duplicate import actions.sleep import actions.utils import actions.strategy import evaluator import evolve import layers.layer from scapy.all import IP, TCP, Raw def test_mate(logger): """ Tests string representation. """ strat1 = actions.utils.parse("\/", logger) strat2 = actions.utils.parse("\/", logger) assert not actions.strategy.mate(strat1, strat2, 1) strat1 = actions.utils.parse("[TCP:flags:R]-duplicate-| \/", logger) strat2 = actions.utils.parse("[TCP:flags:S]-drop-| \/", logger) # Mate with 100% probability actions.strategy.mate(strat1, strat2, 1) assert str(strat1).strip() == "[TCP:flags:R]-drop-| \/" assert str(strat2).strip() == "[TCP:flags:S]-duplicate-| \/" strat1 = actions.utils.parse("[TCP:flags:R]-duplicate(drop,drop)-| \/", logger) strat2 = actions.utils.parse("[TCP:flags:S]-drop-| \/", logger) assert str(strat1).strip() == "[TCP:flags:R]-duplicate(drop,drop)-| \/" assert str(strat2).strip() == "[TCP:flags:S]-drop-| \/" # Mate with 100% probability actions.strategy.mate(strat1, strat2, 1) assert str(strat1).strip() in ["[TCP:flags:R]-duplicate(drop,drop)-| \/", "[TCP:flags:R]-drop-| \/"] assert str(strat2).strip() in ["[TCP:flags:S]-duplicate(drop,drop)-| \/", "[TCP:flags:S]-drop-| \/"] # Cannot have a strategy with a space in it - malformed with pytest.raises(AssertionError): actions.utils.parse("[TCP:flags:R]-duplicate(drop, drop)-| \/", logger) def test_init(logger): """ Tests various strategy initialization. """ # 1 inbound tree with 1 action, zero outbound trees strat = actions.strategy.Strategy([], []).initialize(logger, 1, 0, 1, 0, None) s = "[TCP:flags:R]-drop-| \/" # initialize with a seed assert str(actions.strategy.Strategy([], []).initialize(logger, 1, 1, 1, 1, s)).strip() == s def test_run(logger): """ Tests strategy execution. """ strat1 = actions.utils.parse("[TCP:flags:R]-duplicate-| \/", logger) strat2 = actions.utils.parse("[TCP:flags:S]-drop-| \/", logger) strat3 = actions.utils.parse("[TCP:flags:A]-duplicate(tamper{TCP:dataofs:replace:0},)-| \/", logger) strat4 = actions.utils.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:replace:15239},),duplicate(tamper{TCP:flags:replace:S}(tamper{TCP:chksum:replace:14539}(tamper{TCP:seq:corrupt},),),))-| \/", logger) p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="S")) packets = strat1.act_on_packet(p1, logger, direction="out") assert packets, "Strategy dropped SYN packets" assert len(packets) == 1 assert packets[0]["TCP"].flags == "S" p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="S")) packets = strat2.act_on_packet(p1, logger, direction="out") assert not packets, "Strategy failed to drop SYN packets" p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="A", dataofs=5)) packets = strat3.act_on_packet(p1, logger, direction="out") assert packets, "Strategy dropped packets" assert len(packets) == 2, "Incorrect number of packets emerged from forest" assert packets[0]["TCP"].dataofs == 0, "Packet tamper failed" assert packets[1]["TCP"].dataofs == 5, "Duplicate packet was tampered" p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="A", dataofs=5, chksum=100)) packets = strat4.act_on_packet(p1, logger, direction="out") assert packets, "Strategy dropped packets" assert len(packets) == 3, "Incorrect number of packets emerged from forest" assert packets[0]["TCP"].flags == "R", "Packet tamper failed" assert packets[0]["TCP"].chksum != p1["TCP"].chksum, "Packet tamper failed" assert packets[1]["TCP"].flags == "S", "Packet tamper failed" assert packets[1]["TCP"].chksum != p1["TCP"].chksum, "Packet tamper failed" assert packets[1]["TCP"].seq != p1["TCP"].seq, "Packet tamper failed" assert packets[2]["TCP"].flags == "A", "Duplicate failed" strat4 = actions.utils.parse("[TCP:load:]-tamper{TCP:load:replace:mhe76jm0bd}(fragment{ip:-1:True}(tamper{IP:load:corrupt},drop),)-| \/ ", logger) p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="S")) packets = strat4.act_on_packet(p1, logger) # Will fail with scapy 2.4.2 if packet is reparsed strat5 = actions.utils.parse("[TCP:options-eol:]-tamper{TCP:load:replace:o}(tamper{TCP:dataofs:replace:11},)-| \/", logger) p1 = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="S")) packets = strat5.act_on_packet(p1, logger) def test_mutate(): """ Mutates some stratiges """ logger = logging.getLogger("test") logger.setLevel(logging.ERROR) strat1 = actions.utils.parse("\/", logger) strat1.environment_id = 1000 strat1.mutate(logger) assert len(strat1.out_actions) == 1 assert len(strat1.in_actions) == 1 assert strat1.out_actions[0].environment_id == 1000 strat1.out_actions[0].mutate() assert strat1.out_actions[0].environment_id == 1000 def test_pretty_print(logger): """ Tests if the string representation of this strategy is correct """ strat = actions.utils.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:corrupt},),)-| \/ ", logger) correct = "TCP:flags:A\nduplicate\n├── tamper{TCP:flags:replace:R}\n│ └── tamper{TCP:chksum:corrupt}\n│ └── ===> \n└── ===> \n \n \/ \n " assert strat.pretty_print() == correct def test_collection(logger): """ Tests collection phase. """ # Create an evaluator cmd = [ "--test-type", "echo", "--censor", "censor2", "--log", actions.utils.CONSOLE_LOG_LEVEL, "--no-skip-empty", "--bad-word", "facebook", "--output-directory", actions.utils.RUN_DIRECTORY ] tester = evaluator.Evaluator(cmd, logger) canary = evolve.generate_strategy(logger, 0, 0, 0, 0, None) environment_id = tester.canary_phase(canary) packets = actions.utils.read_packets(environment_id) assert packets test_pop = [] for _ in range(0, 5): test_pop.append(evolve.generate_strategy(logger, 0, 0, 0, 0, None)) environment_id = evolve.run_collection_phase(logger, tester) packets = actions.utils.read_packets(environment_id) assert packets assert len(packets) > 1 def test_sleep_parse_handling(logger): """ Tests that the sleep action handles bad parsing. """ print("Testing incorrect parsing:") assert not actions.sleep.SleepAction().parse("THISHSOULDFAIL", logger) assert actions.sleep.SleepAction().parse("10.5", logger) def test_get_from_fuzzed_or_real(logger): """ Tests utils.get_from_fuzzed_or_real_packet(environment_id, real_packet_probability): """ # Create an evaluator cmd = [ "--test-type", "echo", "--censor", "censor2", "--log", actions.utils.CONSOLE_LOG_LEVEL, "--no-skip-empty", "--bad-word", "facebook", "--output-directory", actions.utils.RUN_DIRECTORY ] tester = evaluator.Evaluator(cmd, logger) canary = evolve.generate_strategy(logger, 0, 0, 0, 0, None) environment_id = tester.canary_phase(canary) for i in range(0, 100): proto, field, value = actions.utils.get_from_fuzzed_or_real_packet(environment_id, 1) assert proto assert field assert value is not None proto, field, value = actions.utils.get_from_fuzzed_or_real_packet(environment_id, 0) assert proto assert field assert value is not None def test_fail_cases(logger): """ Odd strategies that have caused failures in nightly testing. """ s = "[IP:proto:6]-tamper{IP:proto:replace:125}(fragment{tcp:48:True:26}(tamper{TCP:options-md5header:replace:37f0e737da65224ea03d46c713ed6fd2},),)-| \/ " s = actions.utils.parse(s, logger) p = layers.packet.Packet(IP(src="127.0.0.1", dst="127.0.0.1")/TCP(sport=2222, dport=3333, seq=100, ack=100, flags="S")/Raw("aaaaaaaaaa")) s.act_on_packet(p, logger)
StarcoderdataPython
1763270
<reponame>WillDaSilva/daily-questions from datetime import date, timedelta from dateutil.parser import parse def working_days(year, weekend=(5, 6), holidays=tuple()): year_start, year_end = date(year, 1, 1), date(year, 12, 31) year_range = range((year_end - year_start).days + 1) year_dates = (year_start + timedelta(x) for x in year_range) yield from (x for x in year_dates if not ( x.weekday() in weekend or x in [parse(h).date() for h in holidays]))
StarcoderdataPython
1759157
#! python # coding:utf-8 import svgwrite import maya.cmds as cmds import nnutil as nu def draw_edge(filepath, imagesize=4096, stroke_width=1, integer_mode=False, normalize=True): """ 選択エッジを svg 形式で指定したパスに書き出す integer_mode: True で UV 座標をピクセル変換後に端数を切り捨てる 水平垂直ラインをそのままテクスチャとして使用したい場合等に使う normalize: True なら UV 座標を [0, 1) に納める """ print(filepath) dwg = svgwrite.Drawing(filepath, size=(imagesize, imagesize) ) selections = cmds.ls(selection=True, flatten=True) for edge in selections: vf_list = nu.to_vtxface(edge) vf_pairs = [] if len(vf_list) > 2 : vf_pairs = [vf_list[0:0+2] , vf_list[2:2+2]] else: vf_pairs = [vf_list[0:0+2]] # ライン描画 for vf_pair in vf_pairs: if vf_pair[0]: uv_comp1, uv_comp2 = nu.to_uv(vf_pair) uv_coord1 = nu.get_uv_coord(uv_comp1) uv_coord2 = nu.get_uv_coord(uv_comp2) if normalize: uv_coord1 = [x % 1.0 for x in uv_coord1] uv_coord2 = [x % 1.0 for x in uv_coord2] uv_px_coord1 = nu.mul(uv_coord1, imagesize) uv_px_coord2 = nu.mul(uv_coord2, imagesize) # 上下反転 uv_px_coord1[1] = imagesize - uv_px_coord1[1] uv_px_coord2[1] = imagesize - uv_px_coord2[1] # 整数座標モード if integer_mode: uv_px_coord1 = [int(x) for x in uv_px_coord1] uv_px_coord2 = [int(x) for x in uv_px_coord2] dwg.add(dwg.line(uv_px_coord1, uv_px_coord2, stroke=svgwrite.rgb(0, 0, 0, '%'), stroke_width=stroke_width)) # ファイルとして保存 dwg.save()
StarcoderdataPython
3220612
<reponame>Yunicorn228/web-tools import logging from server.auth import user_mediacloud_client, user_admin_mediacloud_client from flask import request logger = logging.getLogger(__name__) MAX_SOURCES = 60 def media_search_with_page(search_str, tags_id=None, **kwargs): link_id = request.args.get('linkId', 0) user_mc = user_admin_mediacloud_client() media_page = user_mc.mediaList(name_like=search_str, tags_id=tags_id, last_media_id=link_id, rows=100, sort="num_stories", **kwargs) if len(media_page) == 0: last_media_id = -1 else: last_media_id = media_page[len(media_page)-1]['media_id'] return media_page, last_media_id def media_search(search_str, tags_id=None, **kwargs): user_mc = user_mediacloud_client() return user_mc.mediaList(name_like=search_str, tags_id=tags_id, rows=MAX_SOURCES, sort="num_stories", **kwargs) def collection_search_with_page(search_str, public_only, tag_sets_id_list): link_id = request.args.get('linkId') if 'linkId' in request.args else 0 user_mc = user_mediacloud_client() collection_page = user_mc.tagList(tag_sets_id_list, public_only=public_only, name_like=search_str, rows=100, last_tags_id=link_id,) if len(collection_page) == 0: last_tags_id = -1 else: last_tags_id = collection_page[len(collection_page)-1]['tags_id'] return collection_page, last_tags_id def collection_search(search_str, public_only, tag_sets_id_list): user_mc = user_mediacloud_client() return user_mc.tagList(tag_sets_id_list, public_only=public_only, name_like=search_str)
StarcoderdataPython
150717
<reponame>zeemzoet/nuke import nukescripts axis = 1 nuke.thisNode()['code'].execute() _input = checkInput() if _input['cam'] and _input['geo']: ### checks how many vertices are selected i = 0 for vertex in nukescripts.snap3d.selectedPoints(): i += 1 if i: gen = nukescripts.snap3d.selectedPoints() points = [point for point in gen] avgLen = int(len(points)/2) x = 0; y = 0; z = 0 for i in range(avgLen): x += points[i][0] y += points[i][1] z += points[i][2] x /= avgLen; y /= avgLen; z /= avgLen nuke.toNode('xPt%d' %axis)['translate'].setValue([x,y,z]) else: nuke.message('Select some vertices first') elif not _input['geo']: nuke.message('Geometry is not connected or recognized') else: nuke.message('Camera is not connected or recognized')
StarcoderdataPython
4811615
<reponame>sudeep0901/python<filename>FaceDetection/readimagewithcv2.py import numpy as np import cv2 img = cv2.imread('image.jpg') # print(img) while True: cv2.imshow('mandrill', img) if cv2.waitKey(1) & 0xFF == 27: # getting escape key break cv2.imwrite("final_image.png", img) cv2.destroyAllWindows()
StarcoderdataPython
3227195
# -*- coding: utf-8 -*- """Header here.""" import numpy as np def borehole_model(x, theta): """Given x and theta, return matrix of [row x] times [row theta] of values.""" return f def borehole_true(x): """Given x, return matrix of [row x] times 1 of values.""" return y
StarcoderdataPython
107016
from . import tools import os from datetime import datetime import logging import matplotlib.cm as mplcm import matplotlib.pyplot as plt import numpy as np from ipywidgets import Layout import ipywidgets as widgets from IPython.display import display import cv2 DEFAULT_EXTENSIONS = ['jpg', 'png', 'tif', 'iff', 'peg', 'ppm'] class OutputWidgetHandler(logging.Handler): """ Custom logging handler sending logs to an output widget """ def __init__(self, *args, **kwargs): super(OutputWidgetHandler, self).__init__(*args, **kwargs) layout = { 'width': '100%', 'height': '160px', 'border': '1px solid black' } self.out = widgets.Output(layout=layout) def emit(self, record): """ Overload of logging.Handler method """ formatted_record = self.format(record) new_output = { 'name': 'stdout', 'output_type': 'stream', 'text': formatted_record + '\n' } self.out.outputs = (new_output,) + self.out.outputs def show_logs(self): """ Show the logs """ display(self.out) def clear_logs(self): """ Clear the current logs """ self.out.clear_output() def create_logger(): logger = logging.getLogger(__name__) handler = OutputWidgetHandler() handler.setFormatter(logging.Formatter('%(asctime)s - [%(levelname)s] %(message)s')) logger.addHandler(handler) logger.setLevel(logging.INFO) return handler, logger # Global variables set in tools module: # tools.set_binary_thresholds() # global original_shape # global target_binary # global target_overlay # global target_grey # tools.adjust_contour_filters() # global filtered_contours def set_binary_thresholds(target_fn, cropx=None, cropy=None, thresholds=(100, 255), invert=False, gamma=1.0, brightness=0, contrast=0, clahe=False, clahe_window=50, figwidth=32, figheight=16, displayplot=True): # set global variables to be available to the widgets: global original_shape global target_binary global target_overlay global target_grey # print(target_fn, thresholds, figwidth, figheight) # get initial images: if cropx and cropy: x0, x1 = cropx y0, y1 = cropy crop = (y0, y1, x0, x1) else: crop = None target_original, target_overlay, target_grey = tools.get_base_images(target_fn, crop=crop) # invert if invert: target_grey = cv2.bitwise_not(target_grey) # apply contrast limited adaptive histogram equalization (CLAHE) if clahe: clahe_model = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(clahe_window, clahe_window)) target_grey = clahe_model.apply(target_grey) # apply brightness/contrast target_bc = tools.apply_contrast(target_grey, contrast, brightness) # apply gamma transformation target_gamma = tools.apply_gamma(target_bc, gamma) # convert to binary image target_binary = tools.get_binary(target_gamma, thresh=thresholds[0], maxval=thresholds[1]) # display output if displayplot: tools.display_three_plots(target_original, target_bc, target_binary, figsize=(figwidth, figheight,)) original_shape = target_original.shape # return target_binary, target_overlay def adjust_contour_filters(figwidth=32, figheight=16, target_fn=None, area=(20, 50000), contour_ratio=0.67, minwidth=20, ): global filtered_contours target_savedir = tools.get_savedir(target_fn) minarea = area[0] maxarea = area[1] # calculate contours of images (contours, hierarchy) = cv2.findContours(target_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # annotate contours filtered_ids, filtered_contours = tools.collect_contours(contours, hierarchy, minarea=minarea, maxarea=maxarea, skip_first=False, contour_ratio=contour_ratio, minwidth=minwidth ) # draw contours target_contours = tools.draw_contours(target_overlay, filtered_contours, target_savedir=target_savedir, color=(255, 0, 0), figwidth=figwidth / 2, figheight=figheight, ) def widget_find_discontinuities(ksize=(3, 13), edge_thresholds=(15, 100), min_length=30, target_fn=None): min_edge_threshold, max_edge_threshold = edge_thresholds target_savedir = tools.get_savedir(target_fn) tools.find_discontinuities(target_grey, ksize=(3, 13), min_edge_threshold=15, max_edge_threshold=100, min_length=30, target_savedir=target_savedir) def widget_map_color(cmap, ): "Displays greyscale image and an LUT-converted image" if target_grey.shape[0] / target_grey.shape[1] < 1: tools.display_two_plots_v(target_grey, tools.apply_cmap(target_grey, cmap=cmap), figsize=(16,32)) else: tools.display_two_plots(target_grey, tools.apply_cmap(target_grey, cmap=cmap), figsize=(32, 16)) def widget_contour_similarity(target_fn=None, figsize=(30, 60), nrows=0, ncols=0, equalize=True, cmap=mplcm.gist_ncar): target_savedir = tools.get_savedir(target_fn) df_matchDist, Z, band_images, sorted_idx = tools.get_similar_bands(filtered_contours, target_savedir, target_grey, ) idx_filtered = tools.plot_colored_bands(sorted_idx, band_images, target_savedir, figsize=figsize, nrows=nrows, ncols=ncols, equalize=equalize, cmap=cmap ) def widget_similarity_listener(b): widget_contour_similarity(wfilepath.value) def widget_plot_dendrogram(): return None def widget_equalize(rows, columns, saveas, savetype, show_images): if show_images: splitsave = saveas else: splitsave = None splits = tools.split_image(target_grey, rows, columns, splitsave, savetype, show_images) equalized_cols = [np.vstack([cv2.equalizeHist(img) for img in col]) for col in splits if len(col) > 0] res = np.hstack(equalized_cols) # stacking images side-by-side plt.close() fig, ax = plt.subplots(figsize=(20, 10)) plt.imshow(res) plt.tight_layout() # plt.savefig(f"{saveas}_equalized.{savetype}") cv2.imwrite(f"{saveas}_equalized.{savetype}", res) def widget_noise_calculator(filepath, gaussian_k, median_k, bilateral_k, bilateral_r, figwidth, figheight): img = cv2.imread(filepath) tools.calculate_noise(target_grey, gaussian_k, median_k, bilateral_k, bilateral_r, show=True, figsize=(figwidth, figheight)) def load_binary_widgets(DIRECTORY, ext_list=DEFAULT_EXTENSIONS): """ Loads the widgets necessary for image cropping and exposure adjustment. Parameters ---------- DIRECTORY: str The location containing the image(s) to crop ext_list: list List of file extensions (as strings) to display Returns ------- wdirectory, wfilepath, wcropx, wcropy, winvert, wclahe, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight widget objects """ global wfilepath # globalize to make available to observe & update functions # define styling of widgets: items_layout = Layout(width='auto') # define all widgets for binary thresholding and output figsize wdirectory = widgets.Text(value=DIRECTORY, description="Directory of images:") wfilepath = widgets.Dropdown( options=[os.path.join(DIRECTORY, f) for f in os.listdir(DIRECTORY) if f[-3:].upper() in [ext.upper() for ext in ext_list]], description='File:', layout=items_layout) def update_image_options(change): wfilepath.options = [os.path.join(change.new, f) for f in os.listdir(change.new) if f[-3:].lower() in ['jpg', 'png', 'tif', 'iff', 'peg', 'ppm']] wdirectory.observe(update_image_options, 'value') wcropx = widgets.IntRangeSlider(value=[0, 1000], min=0, max=1000, step=10, description='Crop X axis:', continuous_update=False, layout=items_layout) wcropy = widgets.IntRangeSlider(value=[0, 1000], min=0, max=1000, step=10, description='Crop Y axis:', continuous_update=False, layout=items_layout) winvert = widgets.Checkbox(value=False, description="Invert image", layout=items_layout) wclahe = widgets.Checkbox(value=False, description="CLAH equalization:", layout=items_layout) wclahewin = widgets.IntSlider(value=50, min=1, max=200, step=1, description='CLAHE window:', layout=items_layout) wbrange = widgets.IntRangeSlider(value=[100, 255], min=0, max=255, step=1, description='Thresholds:', layout=items_layout) wgamma = widgets.FloatSlider(value=0.8, min=0, max=2.0, step=0.05, description="Gamma:", layout=items_layout) wbright = widgets.IntSlider(value=0.0, min=-100, max=100, step=1, description="Brightness:", layout=items_layout) wcontrast = widgets.FloatSlider(value=0.8, min=0, max=3.0, step=0.05, description="Contrast:", layout=items_layout) wfigwidth = widgets.IntSlider(value=32, min=1, max=32, step=1, description='Fig width:', layout=items_layout) wfigheight = widgets.IntSlider(value=16, min=1, max=48, step=1, description='Fig height:', layout=items_layout) return wdirectory, wfilepath, wcropx, wcropy, winvert, wclahe, wclahewin, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight def load_evaluation_widget(DIRECTORY, ext_list=DEFAULT_EXTENSIONS): """ Load the main widget for analyzing images from the specified directory Parameters ---------- DIRECTORY : str directory path of all images to concatenate ext_list : list list of all file extensions to include Returns ------- widget_tab widget object """ # define styling of widgets: items_layout = Layout(width='auto') # define all widgets for binary thresholding and output figsize wdirectory, wfilepath, wcropx, wcropy, winvert, wclahe, wclahewin, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight = load_binary_widgets( DIRECTORY, ext_list) # set widgets for contour extraction warange = widgets.IntRangeSlider(value=[20, 10000], min=10, max=10000, step=10, description='Area:', continuous_update=False, layout=items_layout) wratio = widgets.FloatSlider(value=0.67, min=0.1, max=2.0, step=0.02, description='ht/wdth ratio:', continuous_update=False, layout=items_layout) wminwidth = widgets.IntSlider(value=30, min=1, max=250, step=1, description='Min width:', continuous_update=False, layout=items_layout) # ### set widgets for edge discontinuity detection wksize = widgets.IntRangeSlider(value=[3, 13], min=1, max=21, step=2, description='k size:', continuous_update=False, layout=items_layout) wedgethresholds = widgets.IntRangeSlider(value=[15, 100], min=1, max=100, step=1, description='Edge thresholds:', continuous_update=False, layout=items_layout) wminedgelen = widgets.IntSlider(value=30, min=1, max=250, step=1, description='Min edge length:', continuous_update=False, layout=items_layout) ### set widgets for color mapping cmap_list = ['Spectral', 'coolwarm', 'gist_rainbow', 'viridis', 'jet', 'inferno', 'hsv', 'nipy_spectral', 'gist_ncar', 'gist_stern', 'RdYlGn', ] wcmaps = widgets.Dropdown(options=[(x, getattr(mplcm, x)) for x in cmap_list], description='CMAP:', layout=items_layout) wsavecmap = widgets.Button(description="FUTURE: Save Me") ### set widgets for band similarity detection wcalcsimilar = widgets.Button(description="Show similarities") wdummy = widgets.IntSlider(value=30, min=1, max=250, step=1, description='Dummy slider:', continuous_update=False, layout=items_layout) wsavebands = widgets.Button(description="FUTURE: Save Me") wbandfigsize = widgets.IntRangeSlider(value=[30, 30], min=5, max=120, step=1, description='Figsize (w,h):', continuous_update=False, layout=items_layout) wbandnrows = widgets.IntSlider(value=0, min=0, max=40, step=1, description='Num. rows:', continuous_update=False, layout=items_layout) wbandncols = widgets.IntSlider(value=0, min=0, max=40, step=1, description='Num. cols:', continuous_update=False, layout=items_layout) wequalize = widgets.Checkbox(value=True, description="Equalize bands", layout=items_layout) wcalcsimilar.on_click(widget_contour_similarity) ### set widgets for noise detection wgaussian = widgets.IntSlider(value=5, min=1, max=15, step=2, description='Gaussian kernal size:', continuous_update=False, layout=items_layout) wmedian = widgets.IntSlider(value=5, min=1, max=15, step=2, description='Median kernal size:', continuous_update=False, layout=items_layout) wbilateralk = widgets.IntSlider(value=9, min=1, max=15, step=2, description='Bilateral kernal size:', continuous_update=False, layout=items_layout) wbilateralr = widgets.IntSlider(value=25, min=1, max=95, step=2, description='Bilateral radiius:', continuous_update=False, layout=items_layout) wnfigwidth = widgets.BoundedIntText(value=20, min=1, max=100, step=1, description="Figure width:", layout=items_layout) wnfigheight = widgets.BoundedIntText(value=30, min=1, max=100, step=1, description="Figure height:", layout=items_layout) # set reporting of widget values widgetlist = [wdirectory, wfilepath, wcropx, wcropy, winvert, wclahe, wclahewin, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight, warange, wratio, wminwidth, wksize, wedgethresholds, wminedgelen, wcmaps, wsavecmap, wbandfigsize, wbandnrows, wbandncols, wequalize, wgaussian, wmedian, wbilateralk, wbilateralr, wnfigwidth, wnfigheight, ] widgetnames = ["wdirectory", "wfilepath", "wcropx", "wcropy", "winvert", "wclahe", "wclahewin", "wbrange", "wgamma", "wbright", "wcontrast", "wfigwidth", "wfigheight", "warange", "wratio", "wminwidth", "wksize", "wedgethresholds", "wminedgelen", "wcmaps", "wsavecmap", "wbandfigsize", "wbandnrows", "wbandncols", "wequalize", "wgaussian", "wmedian", "wbilateralk", "wbilateralr", "wnfigwidth", "wnfigheight", ] def get_widget_value_string(): valuelog = {"TIME": datetime.now()} for i, w in enumerate(widgetlist): try: valuelog[widgetnames[i]] = w.value except AttributeError: pass logstring = "\n".join([f"{w:<15s}: {v}" for w, v in valuelog.items()]) return logstring def get_log_file(): savedir = os.path.join(wdirectory.value, 'log_files') if os.path.exists(savedir): pass else: os.mkdir(savedir) analysis_file = os.path.basename(wfilepath.value) logfile = os.path.join(savedir, f"{analysis_file}.log") return logfile wviewvalues = widgets.Button(description="Show widget values") wsavelog = widgets.Button(description=f"Save to {get_log_file()}", layout={'width': 'auto'}) outlog = widgets.Output(layout={'border': '1px solid black'}) @outlog.capture(clear_output=True) def report_widget_values(click): logstring = get_widget_value_string() print(logstring) def save_value_log(click): logfile = get_log_file() logstring = get_widget_value_string() with open(logfile, 'a') as handle: handle.write(logstring) def update_save_button(change): wsavelog.description = f"Save to {get_log_file()}" wviewvalues.on_click(report_widget_values) wsavelog.on_click(save_value_log) wfilepath.observe(update_save_button, 'value') ########################## # customize binary display outbin = widgets.interactive_output(set_binary_thresholds, {'target_fn': wfilepath, 'cropx': wcropx, 'cropy': wcropy, 'thresholds': wbrange, 'invert': winvert, 'gamma': wgamma, 'brightness': wbright, 'contrast': wcontrast, 'clahe': wclahe, 'clahe_window':wclahewin, 'figwidth': wfigwidth, 'figheight': wfigheight }) # customize contour extraction display outcont = widgets.interactive_output(adjust_contour_filters, { 'figwidth': wfigwidth, 'figheight': wfigheight, 'target_fn': wfilepath, 'area': warange, 'contour_ratio': wratio, 'minwidth': wminwidth, }) # customize discontinuity finder display outedge = widgets.interactive_output(widget_find_discontinuities, {'ksize': wksize, 'edge_thresholds': wedgethresholds, 'min_length': wminedgelen, 'target_fn': wfilepath, }) # LUT color mapping display outcmap = widgets.interactive_output(widget_map_color, {'cmap': wcmaps}) # customize noise display outnoise = widgets.interactive_output(widget_noise_calculator, {'filepath': wfilepath, 'gaussian_k': wgaussian, 'median_k': wmedian, 'bilateral_k': wbilateralk, 'bilateral_r': wbilateralr, 'figwidth': wnfigwidth, 'figheight': wnfigheight, }, ) # customize band similarity display outsimilar = widgets.interactive_output(widget_contour_similarity, {'target_fn': wfilepath, 'figsize': wbandfigsize, 'nrows': wbandnrows, 'ncols': wbandncols, 'equalize': wequalize, 'cmap': wcmaps, }, ) # update crop sliders with dimensions of original image def update_xylim(change): wcropx.max = original_shape[1] wcropy.max = original_shape[0] outbin.observe(update_xylim, ) # create tab views box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', # border='dashed', width='50%', margin='10px', padding='10px', ) binarytab = widgets.VBox([widgets.VBox([wdirectory, wfilepath, wcropx, wcropy, widgets.HBox([winvert, wclahe], ), wclahewin, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight], layout=box_layout), outbin], layout=Layout(border='solid', margin='3')) contourtab = widgets.VBox([widgets.VBox([warange, wratio, wminwidth], layout=box_layout), outcont], layout=Layout(border='solid')) edgetab = widgets.VBox([widgets.VBox([wksize, wedgethresholds, wminedgelen], layout=box_layout), outedge], layout=Layout(border='solid')) noisetab = widgets.VBox([widgets.VBox([wgaussian, wmedian, wbilateralk, wbilateralr, wnfigwidth, wnfigheight], layout=box_layout), outnoise, ], layout=Layout(border='solid')) cmaptab = widgets.VBox([widgets.VBox([wcmaps, wsavecmap], layout=box_layout), outcmap, ], layout=Layout(border='solid')) bandstab = widgets.VBox([widgets.VBox([wcalcsimilar, wbandfigsize, wbandnrows, wbandncols, wcmaps, wequalize], layout=box_layout), outsimilar, ], layout=Layout(border='solid')) reporttab = widgets.VBox([widgets.VBox([wviewvalues, wsavelog, ], layout=box_layout), outlog, ], layout=Layout(border='solid')) # add layouts to tabs for condensed viewing and handling: tab = widgets.Tab() tab.children = [binarytab, contourtab, edgetab, noisetab, cmaptab, bandstab, reporttab, ] tab.set_title(0, "Create Mask") tab.set_title(1, "Create Contours") tab.set_title(2, "Find Discontinuities") tab.set_title(3, "View Noise") tab.set_title(4, "View False Color") tab.set_title(5, "View similarities") tab.set_title(6, "View widget values") return tab def crop_and_equalize(DIRECTORY, ext_list=DEFAULT_EXTENSIONS): # This interactive widget is for dividing the image up into columns and performing histogram equalization on each one. # define styling of widgets: items_layout = Layout(width='auto') box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', # border='dashed', width='75%', margin='10px', padding='10px', ) wdirectory, wfilepath, wcropx, wcropy, winvert, wclahe, wbrange, wgamma, wbright, wcontrast, wfigwidth, wfigheight = load_binary_widgets( DIRECTORY, ext_list) def update_xylim(change): wcropx.max = original_shape[1] wcropy.max = original_shape[0] # customize display outbin = widgets.interactive_output(set_binary_thresholds, {'target_fn': wfilepath, 'cropx': wcropx, 'cropy': wcropy, 'thresholds': wbrange, 'invert': winvert, 'gamma': wgamma, 'brightness': wbright, 'contrast': wcontrast, 'clahe': wclahe, 'figwidth': wfigwidth, 'figheight': wfigheight }) outbin.observe(update_xylim, ) # define all widgets for image splitting and output split images # wdirectory = widgets.Text(value=DIRECTORY, description="Directory of images:") # wfilepath = widgets.Dropdown(options=[os.path.join(DIRECTORY, f) for f in os.listdir(DIRECTORY) if f[-3:] in ['jpg', 'png', 'peg', 'ppm']],description='File:', layout=items_layout) # wdirectory.observe(update_image_options, 'value') wrowfloat = widgets.FloatSlider(value=2, min=1, max=15.0, step=0.05, description="# rows:", layout=Layout(width='80%'), continuous_update=False) wcolfloat = widgets.FloatSlider(value=2, min=1, max=15.0, step=0.05, description="# columns:", layout=Layout(width='80%'), continuous_update=False) wrowtext = widgets.FloatText(value=2, description='# rows:', disabled=False, layout=items_layout) wcoltext = widgets.FloatText(value=2, description='# columns:', disabled=False, layout=items_layout) wsavesplits = widgets.Text(value=f"{DIRECTORY}split_image", description="Save new images as:", continuous_update=False) wfiletype = widgets.Dropdown(options=['jpg', 'png', 'svg', 'tif'], description='File type:', layout=items_layout) wshowsplit = widgets.Checkbox(value=False, description="Show splits:", layout=items_layout) # customize display outsplit = widgets.interactive_output(widget_equalize, {'rows': wrowfloat, 'columns': wcolfloat, 'saveas': wsavesplits, 'savetype': wfiletype, 'show_images': wshowsplit, }) # In[157]: croppingtab = widgets.VBox([widgets.VBox([wdirectory, wfilepath, wcropx, wcropy, winvert, wbrange, wgamma, wbright, wcontrast, wsavesplits, wfiletype], layout=box_layout), outbin], layout=Layout(border='solid', margin='3')) splittingtab = widgets.VBox([widgets.VBox([widgets.HBox([wrowfloat, wrowtext]), widgets.HBox([wcolfloat, wcoltext]), wsavesplits, wfiletype, wshowsplit, ], layout=box_layout), outsplit], layout=Layout(border='solid', margin='3')) # synchronise the slider and text box values def update_col_val(*args): wcolfloat.value = wcoltext.value def update_row_val(*args): wrowfloat.value = wrowtext.value wcoltext.observe(update_col_val, 'value') wrowtext.observe(update_row_val, 'value') # add layouts to tabs for condensed viewing and handling: tab = widgets.Tab() tab.children = [croppingtab, splittingtab, ] tab.set_title(0, "Crop image") tab.set_title(1, "Split & Equalize") return tab
StarcoderdataPython
3279446
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from . import utilities, tables class Cluster(pulumi.CustomResource): aks_config: pulumi.Output[dict] """ The Azure AKS configuration for `aks` Clusters. Conflicts with `eks_config`, `gke_config` and `rke_config` (list maxitems:1) * `aadServerAppSecret` (`str`) - The secret of an Azure Active Directory server application (string) * `aadTenantId` (`str`) - The ID of an Azure Active Directory tenant (string) * `addClientAppId` (`str`) - The ID of an Azure Active Directory client application of type \"Native\". This application is for user login via kubectl (string) * `addServerAppId` (`str`) - The ID of an Azure Active Directory server application of type \"Web app/API\". This application represents the managed cluster's apiserver (Server application) (string) * `adminUsername` (`str`) - The administrator username to use for Linux hosts. Default `azureuser` (string) * `agentDnsPrefix` (`str`) - DNS prefix to be used to create the FQDN for the agent pool (string) * `agentOsDiskSize` (`float`) - GB size to be used to specify the disk for every machine in the agent pool. If you specify 0, it will apply the default according to the \"agent vm size\" specified. Default `0` (int) * `agentPoolName` (`str`) - Name for the agent pool, upto 12 alphanumeric characters. Default `agentpool0` (string) * `agentStorageProfile` (`str`) - Storage profile specifies what kind of storage used on machine in the agent pool. Chooses from [ManagedDisks StorageAccount]. Default `ManagedDisks` (string) * `agentVmSize` (`str`) - Size of machine in the agent pool. Default `Standard_D1_v2` (string) * `authBaseUrl` (`str`) - Different authentication API url to use. Default `https://login.microsoftonline.com/` (string) * `baseUrl` (`str`) - Different resource management API url to use. Default `https://management.azure.com/` (string) * `client_id` (`str`) - Azure client ID to use (string) * `client_secret` (`str`) - Azure client secret associated with the \"client id\" (string) * `count` (`float`) - Number of machines (VMs) in the agent pool. Allowed values must be in the range of 1 to 100 (inclusive). Default `1` (int) * `dnsServiceIp` (`str`) - An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes Service address range specified in \"service cidr\". Default `10.0.0.10` (string) * `dockerBridgeCidr` (`str`) - A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes Service address range specified in \"service cidr\". Default `172.17.0.1/16` (string) * `enableHttpApplicationRouting` (`bool`) - Enable the Kubernetes ingress with automatic public DNS name creation. Default `false` (bool) * `enableMonitoring` (`bool`) - Turn on Azure Log Analytics monitoring. Uses the Log Analytics \"Default\" workspace if it exists, else creates one. if using an existing workspace, specifies \"log analytics workspace resource id\". Default `true` (bool) * `kubernetesVersion` (`str`) - The Kubernetes master version (string) * `location` (`str`) - Azure Kubernetes cluster location. Default `eastus` (string) * `logAnalyticsWorkspace` (`str`) - The name of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses '{resource group}-{subscription id}-{location code}' (string) * `logAnalyticsWorkspaceResourceGroup` (`str`) - The resource group of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses the 'Cluster' resource group (string) * `masterDnsPrefix` (`str`) - DNS prefix to use the Kubernetes cluster control pane (string) * `maxPods` (`float`) - Maximum number of pods that can run on a node. Default `110` (int) * `networkPlugin` (`str`) - Network plugin used for building Kubernetes network. Chooses from `azure` or `kubenet`. Default `azure` (string) * `networkPolicy` (`str`) - Network policy used for building Kubernetes network. Chooses from `calico` (string) * `podCidr` (`str`) - A CIDR notation IP range from which to assign Kubernetes Pod IPs when \"network plugin\" is specified in \"kubenet\". Default `192.168.127.12/16` (string) * `resourceGroup` (`str`) - The name of the Cluster resource group (string) * `serviceCidr` (`str`) - A CIDR notation IP range from which to assign Kubernetes Service cluster IPs. It must not overlap with any Subnet IP ranges. Default `10.0.0.0/16` (string) * `sshPublicKeyContents` (`str`) - Contents of the SSH public key used to authenticate with Linux hosts (string) * `subnet` (`str`) - The name of an existing Azure Virtual Subnet. Composite of agent virtual network subnet ID (string) * `subscriptionId` (`str`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tag` (`dict`) - Tags for Kubernetes cluster. For example, foo=bar (map) * `tenant_id` (`str`) - Azure tenant ID to use (string) * `virtualNetwork` (`str`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) * `virtualNetworkResourceGroup` (`str`) - The resource group of an existing Azure Virtual Network. Composite of agent virtual network subnet ID (string) """ annotations: pulumi.Output[dict] """ Annotations for cluster registration token object (map) """ cluster_auth_endpoint: pulumi.Output[dict] """ Enabling the [local cluster authorized endpoint](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#local-cluster-auth-endpoint) allows direct communication with the cluster, bypassing the Rancher API proxy. (list maxitems:1) * `ca_certs` (`str`) - CA certs for the authorized cluster endpoint (string) * `enabled` (`bool`) - Enable the authorized cluster endpoint. Default `true` (bool) * `fqdn` (`str`) - FQDN for the authorized cluster endpoint (string) """ cluster_monitoring_input: pulumi.Output[dict] """ Cluster monitoring config. Any parameter defined in [rancher-monitoring charts](https://github.com/rancher/system-charts/tree/dev/charts/rancher-monitoring) could be configured (list maxitems:1) * `answers` (`dict`) - Key/value answers for monitor input (map) ======= """ cluster_registration_token: pulumi.Output[dict] """ (Computed) Cluster Registration Token generated for the cluster (list maxitems:1) * `annotations` (`dict`) - Annotations for cluster registration token object (map) * `cluster_id` (`str`) - Cluster ID (string) * `command` (`str`) - Command to execute in a imported k8s cluster (string) * `id` (`str`) - (Computed) The ID of the resource (string) * `insecureCommand` (`str`) - Insecure command to execute in a imported k8s cluster (string) * `labels` (`dict`) - Labels for cluster registration token object (map) * `manifestUrl` (`str`) - K8s manifest url to execute with `kubectl` to import an existing k8s cluster (string) * `name` (`str`) - Name of cluster registration token (string) * `nodeCommand` (`str`) - Node command to execute in linux nodes for custom k8s cluster (string) * `token` (`str`) - Token for cluster registration token object (string) * `windowsNodeCommand` (`str`) - Node command to execute in windows nodes for custom k8s cluster (string) """ cluster_template_answers: pulumi.Output[dict] """ Cluster template answers. Just for Rancher v2.3.x and above (list maxitems:1) * `cluster_id` (`str`) - Cluster ID (string) * `project_id` (`str`) - Project ID to apply answer (string) * `values` (`dict`) - Key/values for answer (map) """ cluster_template_id: pulumi.Output[str] """ Cluster template ID. Just for Rancher v2.3.x and above (string) """ cluster_template_questions: pulumi.Output[list] """ Cluster template questions. Just for Rancher v2.3.x and above (list) * `default` (`str`) - Default variable value (string) * `required` (`bool`) - Required variable. Default `false` (bool) * `type` (`str`) - Variable type. `boolean`, `int` and `string` are allowed. Default `string` (string) * `variable` (`str`) - Variable name (string) >>>>>>> c6a2cbc... Feat: added .ClusterTemplate datasource and resource. For rancher V2.3.x. Doc files """ cluster_template_revision_id: pulumi.Output[str] """ Cluster template revision ID. Just for Rancher v2.3.x and above (string) """ default_pod_security_policy_template_id: pulumi.Output[str] """ [Default pod security policy template id](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#pod-security-policy-support) (string) """ default_project_id: pulumi.Output[str] """ (Computed) Default project ID for the cluster (string) """ description: pulumi.Output[str] """ An optional description of this cluster (string) """ desired_agent_image: pulumi.Output[str] """ Desired agent image. Just for Rancher v2.3.x and above (string) """ desired_auth_image: pulumi.Output[str] """ Desired auth image. Just for Rancher v2.3.x and above (string) """ docker_root_dir: pulumi.Output[str] """ Desired auth image. Just for Rancher v2.3.x and above (string) """ driver: pulumi.Output[str] """ (Computed) The driver used for the Cluster. `imported`, `azurekubernetesservice`, `amazonelasticcontainerservice`, `googlekubernetesengine` and `rancherKubernetesEngine` are supported (string) """ eks_config: pulumi.Output[dict] """ The Amazon EKS configuration for `eks` Clusters. Conflicts with `aks_config`, `gke_config` and `rke_config` (list maxitems:1) * `access_key` (`str`) - The AWS Client ID to use (string) * `ami` (`str`) - AMI ID to use for the worker nodes instead of the default (string) * `associateWorkerNodePublicIp` (`bool`) - Associate public ip EKS worker nodes. Default `true` (bool) * `desiredNodes` (`float`) - The desired number of worker nodes. Just for Rancher v2.3.x and above. Default `3` (int) * `instanceType` (`str`) - The type of machine to use for worker nodes. Default `t2.medium` (string) * `keyPairName` (`str`) - Allow user to specify key name to use. Just for Rancher v2.2.7 and above (string) * `kubernetesVersion` (`str`) - The Kubernetes master version (string) * `maximumNodes` (`float`) - The maximum number of worker nodes. Default `3` (int) * `minimumNodes` (`float`) - The minimum number of worker nodes. Default `1` (int) * `nodeVolumeSize` (`float`) - The volume size for each node. Default `20` (int) * `region` (`str`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`str`) - The AWS Client Secret associated with the Client ID (string) * `securityGroups` (`list`) - List of security groups to use for the cluster. If it's not specified Rancher will create a new security group (list) * `serviceRole` (`str`) - The service role to use to perform the cluster operations in AWS. If it's not specified Rancher will create a new service role (string) * `sessionToken` (`str`) - A session token to use with the client key and secret if applicable (string) * `subnets` (`list`) - List of subnets in the virtual network to use. If it's not specified Rancher will create 3 news subnets (list) * `userData` (`str`) - Pass user-data to the nodes to perform automated configuration tasks (string) * `virtualNetwork` (`str`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) """ enable_cluster_alerting: pulumi.Output[bool] """ Enable built-in cluster alerting. Default `false` (bool) """ enable_cluster_istio: pulumi.Output[bool] """ Enable built-in cluster istio. Default `false`. Just for Rancher v2.3.x and above (bool) """ enable_cluster_monitoring: pulumi.Output[bool] """ Enable built-in cluster monitoring. Default `false` (bool) """ enable_network_policy: pulumi.Output[bool] """ Enable project network isolation. Default `false` (bool) """ gke_config: pulumi.Output[dict] """ The Google GKE configuration for `gke` Clusters. Conflicts with `aks_config`, `eks_config` and `rke_config` (list maxitems:1) * `clusterIpv4Cidr` (`str`) - The IP address range of the container pods (string) * `credential` (`str`) - The contents of the GC credential file (string) * `description` (`str`) - An optional description of this cluster (string) * `diskSizeGb` (`float`) - Size of the disk attached to each node. Default `100` (int) * `diskType` (`str`) - Type of the disk attached to each node (string) * `enableAlphaFeature` (`bool`) - To enable Kubernetes alpha feature. Default `true` (bool) * `enableAutoRepair` (`bool`) - Specifies whether the node auto-repair is enabled for the node pool. Default `false` (bool) * `enableAutoUpgrade` (`bool`) - Specifies whether node auto-upgrade is enabled for the node pool. Default `false` (bool) * `enableHorizontalPodAutoscaling` (`bool`) - Enable horizontal pod autoscaling for the cluster. Default `true` (bool) * `enableHttpLoadBalancing` (`bool`) - Enable HTTP load balancing on GKE cluster. Default `true` (bool) * `enableKubernetesDashboard` (`bool`) - Whether to enable the Kubernetes dashboard. Default `false` (bool) * `enableLegacyAbac` (`bool`) - Whether to enable legacy abac on the cluster. Default `false` (bool) * `enableMasterAuthorizedNetwork` (`bool`) * `enableNetworkPolicyConfig` (`bool`) - Enable stackdriver logging. Default `true` (bool) * `enableNodepoolAutoscaling` (`bool`) - Enable nodepool autoscaling. Default `false` (bool) * `enablePrivateEndpoint` (`bool`) - Whether the master's internal IP address is used as the cluster endpoint. Default `false` (bool) * `enablePrivateNodes` (`bool`) - Whether nodes have internal IP address only. Default `false` (bool) * `enableStackdriverLogging` (`bool`) - Enable stackdriver monitoring. Default `true` (bool) * `enableStackdriverMonitoring` (`bool`) - Enable stackdriver monitoring on GKE cluster (bool) * `imageType` (`str`) - The image to use for the worker nodes (string) * `ipPolicyClusterIpv4CidrBlock` (`str`) - The IP address range for the cluster pod IPs (string) * `ipPolicyClusterSecondaryRangeName` (`str`) - The name of the secondary range to be used for the cluster CIDR block (string) * `ipPolicyCreateSubnetwork` (`bool`) - Whether a new subnetwork will be created automatically for the cluster. Default `false` (bool) * `ipPolicyNodeIpv4CidrBlock` (`str`) - The IP address range of the instance IPs in this cluster (string) * `ipPolicyServicesIpv4CidrBlock` (`str`) - The IP address range of the services IPs in this cluster (string) * `ipPolicyServicesSecondaryRangeName` (`str`) - The name of the secondary range to be used for the services CIDR block (string) * `ipPolicySubnetworkName` (`str`) - A custom subnetwork name to be used if createSubnetwork is true (string) * `issueClientCertificate` (`bool`) - Issue a client certificate. Default `false` (bool) * `kubernetesDashboard` (`bool`) - Enable the Kubernetes dashboard. Default `false` (bool) * `labels` (`dict`) - Labels for cluster registration token object (map) * `localSsdCount` (`float`) - The number of local SSD disks to be attached to the node. Default `0` (int) * `locations` (`list`) - Locations for GKE cluster (list) * `machineType` (`str`) - Machine type for GKE cluster (string) * `maintenanceWindow` (`str`) - Maintenance window for GKE cluster (string) * `masterAuthorizedNetworkCidrBlocks` (`list`) - Define up to 10 external networks that could access Kubernetes master through HTTPS (list) * `masterIpv4CidrBlock` (`str`) - The IP range in CIDR notation to use for the hosted master network (string) * `masterVersion` (`str`) - Master version for GKE cluster (string) * `maxNodeCount` (`float`) - Maximum number of nodes in the NodePool. Must be >= minNodeCount. There has to enough quota to scale up the cluster. Default `0` (int) * `minNodeCount` (`float`) - Minimmum number of nodes in the NodePool. Must be >= 1 and <= maxNodeCount. Default `0` (int) * `network` (`str`) - Network for GKE cluster (string) * `nodeCount` (`float`) - Node count for GKE cluster. Default `3` (int) * `nodePool` (`str`) - The ID of the cluster node pool (string) * `nodeVersion` (`str`) - Node version for GKE cluster (string) * `oauthScopes` (`list`) - The set of Google API scopes to be made available on all of the node VMs under the default service account (list) * `preemptible` (`bool`) - Whether the nodes are created as preemptible VM instances. Default `false` (bool) * `project_id` (`str`) - Project ID to apply answer (string) * `resourceLabels` (`dict`) - The map of Kubernetes labels to be applied to each cluster (map) * `serviceAccount` (`str`) - The Google Cloud Platform Service Account to be used by the node VMs (string) * `subNetwork` (`str`) - Subnetwork for GKE cluster (string) * `taints` (`list`) - List of Kubernetes taints to be applied to each node (list) * `useIpAliases` (`bool`) - Whether alias IPs will be used for pod IPs in the cluster. Default `false` (bool) * `zone` (`str`) - Zone GKE cluster (string) """ kube_config: pulumi.Output[str] """ (Computed) Kube Config generated for the cluster (string) """ labels: pulumi.Output[dict] """ Labels for cluster registration token object (map) """ name: pulumi.Output[str] """ Name of cluster registration token (string) """ rke_config: pulumi.Output[dict] """ The RKE configuration for `rke` Clusters. Conflicts with `aks_config`, `eks_config` and `gke_config` (list maxitems:1) * `addonJobTimeout` (`float`) - Duration in seconds of addon job (int) * `addons` (`str`) - Addons descripton to deploy on RKE cluster. * `addonsIncludes` (`list`) - Addons yaml manifests to deploy on RKE cluster (list) * `authentication` (`dict`) - Kubernetes cluster authentication (list maxitems:1) * `sans` (`list`) - RKE sans for authentication ([]string) * `strategy` (`str`) - RKE strategy for authentication (string) * `authorization` (`dict`) - Kubernetes cluster authorization (list maxitems:1) * `mode` (`str`) - RKE mode for authorization. `rbac` and `none` modes are available. Default `rbac` (string) * `options` (`dict`) - RKE options for network (map) * `bastionHost` (`dict`) - RKE bastion host (list maxitems:1) * `address` (`str`) - Address ip for node (string) * `port` (`str`) - Port for node. Default `22` (string) * `sshAgentAuth` (`bool`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`str`) - Node SSH private key (string) * `sshKeyPath` (`str`) - Node SSH private key path (string) * `user` (`str`) - Registry user (string) * `cloudProvider` (`dict`) - RKE options for Calico network provider (string) * `awsCloudProvider` (`dict`) - RKE AWS Cloud Provider config for Cloud Provider [rke-aws-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/aws/) (list maxitems:1) * `global` (`dict`) - (list maxitems:1) * `disableSecurityGroupIngress` (`bool`) - Default `false` (bool) * `disableStrictZoneCheck` (`bool`) - Default `false` (bool) * `elbSecurityGroup` (`str`) - (string) * `kubernetesClusterId` (`str`) - (string) * `kubernetesClusterTag` (`str`) - (string) * `roleArn` (`str`) - (string) * `routeTableId` (`str`) - (string) * `subnetId` (`str`) - (string) * `vpc` (`str`) - (string) * `zone` (`str`) - Zone GKE cluster (string) * `serviceOverrides` (`list`) - (list) * `region` (`str`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `service` (`str`) - (string) * `signingMethod` (`str`) - (string) * `signingName` (`str`) - (string) * `signingRegion` (`str`) - (string) * `url` (`str`) - Registry URL (string) * `azureCloudProvider` (`dict`) - RKE Azure Cloud Provider config for Cloud Provider [rke-azure-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/azure/) (list maxitems:1) * `aadClientCertPassword` (`str`) - (string) * `aadClientCertPath` (`str`) - (string) * `aadClientId` (`str`) - (string) * `aadClientSecret` (`str`) - (string) * `cloud` (`str`) - (string) * `cloudProviderBackoff` (`bool`) - (bool) * `cloudProviderBackoffDuration` (`float`) - (int) * `cloudProviderBackoffExponent` (`float`) - (int) * `cloudProviderBackoffJitter` (`float`) - (int) * `cloudProviderBackoffRetries` (`float`) - (int) * `cloudProviderRateLimit` (`bool`) - (bool) * `cloudProviderRateLimitBucket` (`float`) - (int) * `cloudProviderRateLimitQps` (`float`) - (int) * `location` (`str`) - Azure Kubernetes cluster location. Default `eastus` (string) * `maximumLoadBalancerRuleCount` (`float`) - (int) * `primaryAvailabilitySetName` (`str`) - (string) * `primaryScaleSetName` (`str`) - (string) * `resourceGroup` (`str`) - The name of the Cluster resource group (string) * `routeTableName` (`str`) - (string) * `securityGroupName` (`str`) - (string) * `subnetName` (`str`) - (string) * `subscriptionId` (`str`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tenant_id` (`str`) - Azure tenant ID to use (string) * `useInstanceMetadata` (`bool`) - (bool) * `useManagedIdentityExtension` (`bool`) - (bool) * `vmType` (`str`) - (string) * `vnetName` (`str`) - (string) * `vnetResourceGroup` (`str`) - (string) * `customCloudProvider` (`str`) - RKE Custom Cloud Provider config for Cloud Provider (string) (string) * `name` (`str`) - Name of cluster registration token (string) * `openstackCloudProvider` (`dict`) - RKE Openstack Cloud Provider config for Cloud Provider [rke-openstack-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/openstack/) (list maxitems:1) * `blockStorage` (`dict`) - (list maxitems:1) * `bsVersion` (`str`) - (string) * `ignoreVolumeAz` (`bool`) - (string) * `trustDevicePath` (`bool`) - (string) * `global` (`dict`) - (list maxitems:1) * `authUrl` (`str`) - (string) * `caFile` (`str`) - (string) * `domainId` (`str`) - Required if `domain_name` not provided. (string) * `domainName` (`str`) - Required if `domain_id` not provided. (string) * `password` (`str`) - Registry password (string) * `region` (`str`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `tenant_id` (`str`) - Azure tenant ID to use (string) * `tenantName` (`str`) - Required if `tenant_id` not provided. (string) * `trustId` (`str`) - (string) * `username` (`str`) - (string) * `loadBalancer` (`dict`) - (list maxitems:1) * `createMonitor` (`bool`) - (bool) * `floatingNetworkId` (`str`) - (string) * `lbMethod` (`str`) - (string) * `lbProvider` (`str`) - (string) * `lbVersion` (`str`) - (string) * `manageSecurityGroups` (`bool`) - (bool) * `monitorDelay` (`str`) - Default `60s` (string) * `monitorMaxRetries` (`float`) - Default 5 (int) * `monitorTimeout` (`str`) - Default `30s` (string) * `subnetId` (`str`) - (string) * `useOctavia` (`bool`) - (bool) * `metadata` (`dict`) - (list maxitems:1) * `requestTimeout` (`float`) - (int) * `searchOrder` (`str`) - (string) * `route` (`dict`) - (list maxitems:1) * `routerId` (`str`) - (string) * `vsphereCloudProvider` (`dict`) - RKE Vsphere Cloud Provider config for Cloud Provider [rke-vsphere-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/vsphere/) Extra argument `name` is required on `virtual_center` configuration. (list maxitems:1) * `disk` (`dict`) - (list maxitems:1) * `scsiControllerType` (`str`) - (string) * `global` (`dict`) - (list maxitems:1) * `datacenters` (`str`) - (string) * `insecureFlag` (`bool`) - (bool) * `password` (`str`) - Registry password (string) * `port` (`str`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`float`) - (int) * `user` (`str`) - Registry user (string) * `network` (`dict`) - Network for GKE cluster (string) * `publicNetwork` (`str`) - (string) * `virtualCenters` (`list`) - (List) * `datacenters` (`str`) - (string) * `name` (`str`) - Name of cluster registration token (string) * `password` (`str`) - Registry password (string) * `port` (`str`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`float`) - (int) * `user` (`str`) - Registry user (string) * `workspace` (`dict`) - (list maxitems:1) * `datacenter` (`str`) - (string) * `defaultDatastore` (`str`) - (string) * `folder` (`str`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `resourcepoolPath` (`str`) - (string) * `server` (`str`) - (string) * `dns` (`dict`) - RKE dns add-on. Just for Rancher v2.2.x (list maxitems:1) * `nodeSelector` (`dict`) - Node selector for RKE Ingress (map) * `provider` (`str`) - Provider for RKE monitoring (string) * `reverseCidrs` (`list`) - DNS add-on reverse cidr (list) * `upstreamNameservers` (`list`) - DNS add-on upstream nameservers (list) * `ignoreDockerVersion` (`bool`) - Ignore docker version. Default `true` (bool) * `ingress` (`dict`) - Kubernetes ingress configuration (list maxitems:1) * `dnsPolicy` (`str`) - Ingress controller DNS policy. `ClusterFirstWithHostNet`, `ClusterFirst`, `Default`, and `None` are supported. [K8S dns Policy](https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy) (string) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `nodeSelector` (`dict`) - Node selector for RKE Ingress (map) * `options` (`dict`) - RKE options for network (map) * `provider` (`str`) - Provider for RKE monitoring (string) * `kubernetesVersion` (`str`) - The Kubernetes master version (string) * `monitoring` (`dict`) - Kubernetes cluster monitoring (list maxitems:1) * `options` (`dict`) - RKE options for network (map) * `provider` (`str`) - Provider for RKE monitoring (string) * `network` (`dict`) - Network for GKE cluster (string) * `calicoNetworkProvider` (`dict`) - Calico provider config for RKE network (list maxitems:1) * `cloudProvider` (`str`) - RKE options for Calico network provider (string) * `canalNetworkProvider` (`dict`) - Canal provider config for RKE network (list maxitems:1) * `iface` (`str`) - Iface config Flannel network provider (string) * `flannelNetworkProvider` (`dict`) - Flannel provider config for RKE network (list maxitems:1) * `iface` (`str`) - Iface config Flannel network provider (string) * `options` (`dict`) - RKE options for network (map) * `plugin` (`str`) - Plugin for RKE network. `canal` (default), `flannel`, `calico` and `weave` are supported. (string) * `weaveNetworkProvider` (`dict`) - Weave provider config for RKE network (list maxitems:1) * `password` (`str`) - Registry password (string) * `nodes` (`list`) - RKE cluster nodes (list) * `address` (`str`) - Address ip for node (string) * `dockerSocket` (`str`) - Docker socket for node (string) * `hostnameOverride` (`str`) - Hostname override for node (string) * `internalAddress` (`str`) - Internal ip for node (string) * `labels` (`dict`) - Labels for cluster registration token object (map) * `nodeId` (`str`) - Id for the node (string) * `port` (`str`) - Port for node. Default `22` (string) * `roles` (`list`) - Roles for the node. `controlplane`, `etcd` and `worker` are supported. (list) * `sshAgentAuth` (`bool`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`str`) - Node SSH private key (string) * `sshKeyPath` (`str`) - Node SSH private key path (string) * `user` (`str`) - Registry user (string) * `prefixPath` (`str`) - Prefix to customize Kubernetes path (string) * `privateRegistries` (`list`) - private registries for docker images (list) * `isDefault` (`bool`) - Set as default registry. Default `false` (bool) * `password` (`str`) - Registry password (string) * `url` (`str`) - Registry URL (string) * `user` (`str`) - Registry user (string) * `services` (`dict`) - Kubernetes cluster services (list maxitems:1) * `etcd` (`dict`) - Etcd options for RKE services (list maxitems:1) * `backup_config` (`dict`) - Backup options for etcd service. Just for Rancher v2.2.x (list maxitems:1) * `enabled` (`bool`) - Enable the authorized cluster endpoint. Default `true` (bool) * `intervalHours` (`float`) - Interval hours for etcd backup. Default `12` (int) * `retention` (`float`) - Retention for etcd backup. Default `6` (int) * `s3BackupConfig` (`dict`) - S3 config options for etcd backup (list maxitems:1) * `access_key` (`str`) - The AWS Client ID to use (string) * `bucketName` (`str`) - Bucket name for S3 service (string) * `customCa` (`str`) - Base64 encoded custom CA for S3 service. Use filebase64(<FILE>) for encoding file. Available from Rancher v2.2.5 (string) * `endpoint` (`str`) - Endpoint for S3 service (string) * `folder` (`str`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `region` (`str`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`str`) - The AWS Client Secret associated with the Client ID (string) * `safeTimestamp` (`bool`) - Safe timestamp for etcd backup. Default: `false` (bool) * `caCert` (`str`) - TLS CA certificate for etcd service (string) * `cert` (`str`) - TLS certificate for etcd service (string) * `creation` (`str`) - Creation option for etcd service (string) * `externalUrls` (`list`) - External urls for etcd service (list) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `gid` (`float`) - Etcd service GID. Default: `0`. For Rancher v2.3.x or above (int) * `image` (`str`) - Docker image for scheduler service (string) * `key` (`str`) - TLS key for etcd service (string) * `path` (`str`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `retention` (`str`) - Retention for etcd backup. Default `6` (int) * `snapshot` (`bool`) - Snapshot option for etcd service (bool) * `uid` (`float`) - Etcd service UID. Default: `0`. For Rancher v2.3.x or above (int) * `kubeApi` (`dict`) - Kube API options for RKE services (list maxitems:1) * `admissionConfiguration` (`dict`) - Admission configuration (map) * `alwaysPullImages` (`bool`) - Enable [AlwaysPullImages](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#alwayspullimages) Admission controller plugin. [Rancher docs](https://rancher.com/docs/rke/latest/en/config-options/services/#kubernetes-api-server-options) Default: `false` (bool) * `auditLog` (`dict`) - K8s audit log configuration. (list maxitem: 1) * `configuration` (`dict`) - Event rate limit configuration. (map) * `format` (`str`) - Audit log format. Default: 'json' (string) * `maxAge` (`float`) - Audit log max age. Default: `30` (int) * `maxBackup` (`float`) - Audit log max backup. Default: `10` (int) * `maxSize` (`float`) - Audit log max size. Default: `100` (int) * `path` (`str`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `policy` (`str`) - Audit log policy json formated string. `omitStages` and `rules` json fields are supported. Example: `policy = jsonencode({"rules":[{"level": "Metadata"}]})` (string) * `enabled` (`bool`) - Enable the authorized cluster endpoint. Default `true` (bool) * `eventRateLimit` (`dict`) - K8s event rate limit configuration. (list maxitem: 1) * `configuration` (`dict`) - Event rate limit configuration. (map) * `enabled` (`bool`) - Enable the authorized cluster endpoint. Default `true` (bool) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `image` (`str`) - Docker image for scheduler service (string) * `podSecurityPolicy` (`bool`) - Pod Security Policy option for kube API service. Default `false` (bool) * `secretsEncryptionConfig` (`dict`) - [Encrypt k8s secret data configration](https://rancher.com/docs/rke/latest/en/config-options/secrets-encryption/). (list maxitem: 1) * `customConfig` (`dict`) - Secrets encryption configuration. (map) * `enabled` (`bool`) - Enable the authorized cluster endpoint. Default `true` (bool) * `serviceClusterIpRange` (`str`) - Service Cluster ip Range option for kube controller service (string) * `serviceNodePortRange` (`str`) - Service Node Port Range option for kube API service (string) * `kubeController` (`dict`) - Kube Controller options for RKE services (list maxitems:1) * `clusterCidr` (`str`) - Cluster CIDR option for kube controller service (string) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `image` (`str`) - Docker image for scheduler service (string) * `serviceClusterIpRange` (`str`) - Service Cluster ip Range option for kube controller service (string) * `kubelet` (`dict`) - Kubelet options for RKE services (list maxitems:1) * `clusterDnsServer` (`str`) - Cluster DNS Server option for kubelet service (string) * `clusterDomain` (`str`) - Cluster Domain option for kubelet service (string) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `failSwapOn` (`bool`) - Enable or disable failing when swap on is not supported (bool) * `generate_serving_certificate` [Generate a certificate signed by the kube-ca](https://rancher.com/docs/rke/latest/en/config-options/services/#kubelet-serving-certificate-requirements). Default `false` (bool) * `generateServingCertificate` (`bool`) * `image` (`str`) - Docker image for scheduler service (string) * `infraContainerImage` (`str`) - Infra container image for kubelet service (string) * `kubeproxy` (`dict`) - Kubeproxy options for RKE services (list maxitems:1) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `image` (`str`) - Docker image for scheduler service (string) * `scheduler` (`dict`) - Scheduler options for RKE services (list maxitems:1) * `extraArgs` (`dict`) - Extra arguments for scheduler service (map) * `extraBinds` (`list`) - Extra binds for scheduler service (list) * `extraEnvs` (`list`) - Extra environment for scheduler service (list) * `image` (`str`) - Docker image for scheduler service (string) * `sshAgentAuth` (`bool`) - Use ssh agent auth. Default `false` (bool) * `sshCertPath` (`str`) - Cluster level SSH certificate path (string) * `sshKeyPath` (`str`) - Node SSH private key path (string) """ system_project_id: pulumi.Output[str] """ (Computed) System project ID for the cluster (string) """ windows_prefered_cluster: pulumi.Output[bool] """ Windows preferred cluster. Default: `false` (bool) """ def __init__(__self__, resource_name, opts=None, aks_config=None, annotations=None, cluster_auth_endpoint=None, cluster_monitoring_input=None, cluster_template_answers=None, cluster_template_id=None, cluster_template_questions=None, cluster_template_revision_id=None, default_pod_security_policy_template_id=None, description=None, desired_agent_image=None, desired_auth_image=None, docker_root_dir=None, driver=None, eks_config=None, enable_cluster_alerting=None, enable_cluster_istio=None, enable_cluster_monitoring=None, enable_network_policy=None, gke_config=None, labels=None, name=None, rke_config=None, windows_prefered_cluster=None, __props__=None, __name__=None, __opts__=None): """ Provides a Rancher v2 Cluster resource. This can be used to create Clusters for Rancher v2 environments and retrieve their information. > This content is derived from https://github.com/terraform-providers/terraform-provider-rancher2/blob/master/website/docs/r/cluster.html.markdown. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] aks_config: The Azure AKS configuration for `aks` Clusters. Conflicts with `eks_config`, `gke_config` and `rke_config` (list maxitems:1) :param pulumi.Input[dict] annotations: Annotations for cluster registration token object (map) :param pulumi.Input[dict] cluster_auth_endpoint: Enabling the [local cluster authorized endpoint](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#local-cluster-auth-endpoint) allows direct communication with the cluster, bypassing the Rancher API proxy. (list maxitems:1) :param pulumi.Input[dict] cluster_monitoring_input: Cluster monitoring config. Any parameter defined in [rancher-monitoring charts](https://github.com/rancher/system-charts/tree/dev/charts/rancher-monitoring) could be configured (list maxitems:1) :param pulumi.Input[dict] cluster_template_answers: Cluster template answers. Just for Rancher v2.3.x and above (list maxitems:1) :param pulumi.Input[str] cluster_template_id: Cluster template ID. Just for Rancher v2.3.x and above (string) :param pulumi.Input[list] cluster_template_questions: Cluster template questions. Just for Rancher v2.3.x and above (list) :param pulumi.Input[str] cluster_template_revision_id: Cluster template revision ID. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] default_pod_security_policy_template_id: [Default pod security policy template id](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#pod-security-policy-support) (string) :param pulumi.Input[str] description: An optional description of this cluster (string) :param pulumi.Input[str] desired_agent_image: Desired agent image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] desired_auth_image: Desired auth image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] docker_root_dir: Desired auth image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] driver: (Computed) The driver used for the Cluster. `imported`, `azurekubernetesservice`, `amazonelasticcontainerservice`, `googlekubernetesengine` and `rancherKubernetesEngine` are supported (string) :param pulumi.Input[dict] eks_config: The Amazon EKS configuration for `eks` Clusters. Conflicts with `aks_config`, `gke_config` and `rke_config` (list maxitems:1) :param pulumi.Input[bool] enable_cluster_alerting: Enable built-in cluster alerting. Default `false` (bool) :param pulumi.Input[bool] enable_cluster_istio: Enable built-in cluster istio. Default `false`. Just for Rancher v2.3.x and above (bool) :param pulumi.Input[bool] enable_cluster_monitoring: Enable built-in cluster monitoring. Default `false` (bool) :param pulumi.Input[bool] enable_network_policy: Enable project network isolation. Default `false` (bool) :param pulumi.Input[dict] gke_config: The Google GKE configuration for `gke` Clusters. Conflicts with `aks_config`, `eks_config` and `rke_config` (list maxitems:1) :param pulumi.Input[dict] labels: Labels for cluster registration token object (map) :param pulumi.Input[str] name: Name of cluster registration token (string) :param pulumi.Input[dict] rke_config: The RKE configuration for `rke` Clusters. Conflicts with `aks_config`, `eks_config` and `gke_config` (list maxitems:1) :param pulumi.Input[bool] windows_prefered_cluster: Windows preferred cluster. Default: `false` (bool) The **aks_config** object supports the following: * `aadServerAppSecret` (`pulumi.Input[str]`) - The secret of an Azure Active Directory server application (string) * `aadTenantId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory tenant (string) * `addClientAppId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory client application of type \"Native\". This application is for user login via kubectl (string) * `addServerAppId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory server application of type \"Web app/API\". This application represents the managed cluster's apiserver (Server application) (string) * `adminUsername` (`pulumi.Input[str]`) - The administrator username to use for Linux hosts. Default `azureuser` (string) * `agentDnsPrefix` (`pulumi.Input[str]`) - DNS prefix to be used to create the FQDN for the agent pool (string) * `agentOsDiskSize` (`pulumi.Input[float]`) - GB size to be used to specify the disk for every machine in the agent pool. If you specify 0, it will apply the default according to the \"agent vm size\" specified. Default `0` (int) * `agentPoolName` (`pulumi.Input[str]`) - Name for the agent pool, upto 12 alphanumeric characters. Default `agentpool0` (string) * `agentStorageProfile` (`pulumi.Input[str]`) - Storage profile specifies what kind of storage used on machine in the agent pool. Chooses from [ManagedDisks StorageAccount]. Default `ManagedDisks` (string) * `agentVmSize` (`pulumi.Input[str]`) - Size of machine in the agent pool. Default `Standard_D1_v2` (string) * `authBaseUrl` (`pulumi.Input[str]`) - Different authentication API url to use. Default `https://login.microsoftonline.com/` (string) * `baseUrl` (`pulumi.Input[str]`) - Different resource management API url to use. Default `https://management.azure.com/` (string) * `client_id` (`pulumi.Input[str]`) - Azure client ID to use (string) * `client_secret` (`pulumi.Input[str]`) - Azure client secret associated with the \"client id\" (string) * `count` (`pulumi.Input[float]`) - Number of machines (VMs) in the agent pool. Allowed values must be in the range of 1 to 100 (inclusive). Default `1` (int) * `dnsServiceIp` (`pulumi.Input[str]`) - An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes Service address range specified in \"service cidr\". Default `10.0.0.10` (string) * `dockerBridgeCidr` (`pulumi.Input[str]`) - A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes Service address range specified in \"service cidr\". Default `172.17.0.1/16` (string) * `enableHttpApplicationRouting` (`pulumi.Input[bool]`) - Enable the Kubernetes ingress with automatic public DNS name creation. Default `false` (bool) * `enableMonitoring` (`pulumi.Input[bool]`) - Turn on Azure Log Analytics monitoring. Uses the Log Analytics \"Default\" workspace if it exists, else creates one. if using an existing workspace, specifies \"log analytics workspace resource id\". Default `true` (bool) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `location` (`pulumi.Input[str]`) - Azure Kubernetes cluster location. Default `eastus` (string) * `logAnalyticsWorkspace` (`pulumi.Input[str]`) - The name of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses '{resource group}-{subscription id}-{location code}' (string) * `logAnalyticsWorkspaceResourceGroup` (`pulumi.Input[str]`) - The resource group of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses the 'Cluster' resource group (string) * `masterDnsPrefix` (`pulumi.Input[str]`) - DNS prefix to use the Kubernetes cluster control pane (string) * `maxPods` (`pulumi.Input[float]`) - Maximum number of pods that can run on a node. Default `110` (int) * `networkPlugin` (`pulumi.Input[str]`) - Network plugin used for building Kubernetes network. Chooses from `azure` or `kubenet`. Default `azure` (string) * `networkPolicy` (`pulumi.Input[str]`) - Network policy used for building Kubernetes network. Chooses from `calico` (string) * `podCidr` (`pulumi.Input[str]`) - A CIDR notation IP range from which to assign Kubernetes Pod IPs when \"network plugin\" is specified in \"kubenet\". Default `192.168.127.12/16` (string) * `resourceGroup` (`pulumi.Input[str]`) - The name of the Cluster resource group (string) * `serviceCidr` (`pulumi.Input[str]`) - A CIDR notation IP range from which to assign Kubernetes Service cluster IPs. It must not overlap with any Subnet IP ranges. Default `10.0.0.0/16` (string) * `sshPublicKeyContents` (`pulumi.Input[str]`) - Contents of the SSH public key used to authenticate with Linux hosts (string) * `subnet` (`pulumi.Input[str]`) - The name of an existing Azure Virtual Subnet. Composite of agent virtual network subnet ID (string) * `subscriptionId` (`pulumi.Input[str]`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tag` (`pulumi.Input[dict]`) - Tags for Kubernetes cluster. For example, foo=bar (map) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `virtualNetwork` (`pulumi.Input[str]`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) * `virtualNetworkResourceGroup` (`pulumi.Input[str]`) - The resource group of an existing Azure Virtual Network. Composite of agent virtual network subnet ID (string) The **cluster_auth_endpoint** object supports the following: * `ca_certs` (`pulumi.Input[str]`) - CA certs for the authorized cluster endpoint (string) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `fqdn` (`pulumi.Input[str]`) - FQDN for the authorized cluster endpoint (string) The **cluster_monitoring_input** object supports the following: * `answers` (`pulumi.Input[dict]`) - Key/value answers for monitor input (map) ======= The **cluster_template_answers** object supports the following: * `cluster_id` (`pulumi.Input[str]`) - Cluster ID (string) * `project_id` (`pulumi.Input[str]`) - Project ID to apply answer (string) * `values` (`pulumi.Input[dict]`) - Key/values for answer (map) The **cluster_template_questions** object supports the following: * `default` (`pulumi.Input[str]`) - Default variable value (string) * `required` (`pulumi.Input[bool]`) - Required variable. Default `false` (bool) * `type` (`pulumi.Input[str]`) - Variable type. `boolean`, `int` and `string` are allowed. Default `string` (string) * `variable` (`pulumi.Input[str]`) - Variable name (string) >>>>>>> c6a2cbc... Feat: added .ClusterTemplate datasource and resource. For rancher V2.3.x. Doc files The **eks_config** object supports the following: * `access_key` (`pulumi.Input[str]`) - The AWS Client ID to use (string) * `ami` (`pulumi.Input[str]`) - AMI ID to use for the worker nodes instead of the default (string) * `associateWorkerNodePublicIp` (`pulumi.Input[bool]`) - Associate public ip EKS worker nodes. Default `true` (bool) * `desiredNodes` (`pulumi.Input[float]`) - The desired number of worker nodes. Just for Rancher v2.3.x and above. Default `3` (int) * `instanceType` (`pulumi.Input[str]`) - The type of machine to use for worker nodes. Default `t2.medium` (string) * `keyPairName` (`pulumi.Input[str]`) - Allow user to specify key name to use. Just for Rancher v2.2.7 and above (string) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `maximumNodes` (`pulumi.Input[float]`) - The maximum number of worker nodes. Default `3` (int) * `minimumNodes` (`pulumi.Input[float]`) - The minimum number of worker nodes. Default `1` (int) * `nodeVolumeSize` (`pulumi.Input[float]`) - The volume size for each node. Default `20` (int) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`pulumi.Input[str]`) - The AWS Client Secret associated with the Client ID (string) * `securityGroups` (`pulumi.Input[list]`) - List of security groups to use for the cluster. If it's not specified Rancher will create a new security group (list) * `serviceRole` (`pulumi.Input[str]`) - The service role to use to perform the cluster operations in AWS. If it's not specified Rancher will create a new service role (string) * `sessionToken` (`pulumi.Input[str]`) - A session token to use with the client key and secret if applicable (string) * `subnets` (`pulumi.Input[list]`) - List of subnets in the virtual network to use. If it's not specified Rancher will create 3 news subnets (list) * `userData` (`pulumi.Input[str]`) - Pass user-data to the nodes to perform automated configuration tasks (string) * `virtualNetwork` (`pulumi.Input[str]`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) The **gke_config** object supports the following: * `clusterIpv4Cidr` (`pulumi.Input[str]`) - The IP address range of the container pods (string) * `credential` (`pulumi.Input[str]`) - The contents of the GC credential file (string) * `description` (`pulumi.Input[str]`) - An optional description of this cluster (string) * `diskSizeGb` (`pulumi.Input[float]`) - Size of the disk attached to each node. Default `100` (int) * `diskType` (`pulumi.Input[str]`) - Type of the disk attached to each node (string) * `enableAlphaFeature` (`pulumi.Input[bool]`) - To enable Kubernetes alpha feature. Default `true` (bool) * `enableAutoRepair` (`pulumi.Input[bool]`) - Specifies whether the node auto-repair is enabled for the node pool. Default `false` (bool) * `enableAutoUpgrade` (`pulumi.Input[bool]`) - Specifies whether node auto-upgrade is enabled for the node pool. Default `false` (bool) * `enableHorizontalPodAutoscaling` (`pulumi.Input[bool]`) - Enable horizontal pod autoscaling for the cluster. Default `true` (bool) * `enableHttpLoadBalancing` (`pulumi.Input[bool]`) - Enable HTTP load balancing on GKE cluster. Default `true` (bool) * `enableKubernetesDashboard` (`pulumi.Input[bool]`) - Whether to enable the Kubernetes dashboard. Default `false` (bool) * `enableLegacyAbac` (`pulumi.Input[bool]`) - Whether to enable legacy abac on the cluster. Default `false` (bool) * `enableMasterAuthorizedNetwork` (`pulumi.Input[bool]`) * `enableNetworkPolicyConfig` (`pulumi.Input[bool]`) - Enable stackdriver logging. Default `true` (bool) * `enableNodepoolAutoscaling` (`pulumi.Input[bool]`) - Enable nodepool autoscaling. Default `false` (bool) * `enablePrivateEndpoint` (`pulumi.Input[bool]`) - Whether the master's internal IP address is used as the cluster endpoint. Default `false` (bool) * `enablePrivateNodes` (`pulumi.Input[bool]`) - Whether nodes have internal IP address only. Default `false` (bool) * `enableStackdriverLogging` (`pulumi.Input[bool]`) - Enable stackdriver monitoring. Default `true` (bool) * `enableStackdriverMonitoring` (`pulumi.Input[bool]`) - Enable stackdriver monitoring on GKE cluster (bool) * `imageType` (`pulumi.Input[str]`) - The image to use for the worker nodes (string) * `ipPolicyClusterIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range for the cluster pod IPs (string) * `ipPolicyClusterSecondaryRangeName` (`pulumi.Input[str]`) - The name of the secondary range to be used for the cluster CIDR block (string) * `ipPolicyCreateSubnetwork` (`pulumi.Input[bool]`) - Whether a new subnetwork will be created automatically for the cluster. Default `false` (bool) * `ipPolicyNodeIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range of the instance IPs in this cluster (string) * `ipPolicyServicesIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range of the services IPs in this cluster (string) * `ipPolicyServicesSecondaryRangeName` (`pulumi.Input[str]`) - The name of the secondary range to be used for the services CIDR block (string) * `ipPolicySubnetworkName` (`pulumi.Input[str]`) - A custom subnetwork name to be used if createSubnetwork is true (string) * `issueClientCertificate` (`pulumi.Input[bool]`) - Issue a client certificate. Default `false` (bool) * `kubernetesDashboard` (`pulumi.Input[bool]`) - Enable the Kubernetes dashboard. Default `false` (bool) * `labels` (`pulumi.Input[dict]`) - Labels for cluster registration token object (map) * `localSsdCount` (`pulumi.Input[float]`) - The number of local SSD disks to be attached to the node. Default `0` (int) * `locations` (`pulumi.Input[list]`) - Locations for GKE cluster (list) * `machineType` (`pulumi.Input[str]`) - Machine type for GKE cluster (string) * `maintenanceWindow` (`pulumi.Input[str]`) - Maintenance window for GKE cluster (string) * `masterAuthorizedNetworkCidrBlocks` (`pulumi.Input[list]`) - Define up to 10 external networks that could access Kubernetes master through HTTPS (list) * `masterIpv4CidrBlock` (`pulumi.Input[str]`) - The IP range in CIDR notation to use for the hosted master network (string) * `masterVersion` (`pulumi.Input[str]`) - Master version for GKE cluster (string) * `maxNodeCount` (`pulumi.Input[float]`) - Maximum number of nodes in the NodePool. Must be >= minNodeCount. There has to enough quota to scale up the cluster. Default `0` (int) * `minNodeCount` (`pulumi.Input[float]`) - Minimmum number of nodes in the NodePool. Must be >= 1 and <= maxNodeCount. Default `0` (int) * `network` (`pulumi.Input[str]`) - Network for GKE cluster (string) * `nodeCount` (`pulumi.Input[float]`) - Node count for GKE cluster. Default `3` (int) * `nodePool` (`pulumi.Input[str]`) - The ID of the cluster node pool (string) * `nodeVersion` (`pulumi.Input[str]`) - Node version for GKE cluster (string) * `oauthScopes` (`pulumi.Input[list]`) - The set of Google API scopes to be made available on all of the node VMs under the default service account (list) * `preemptible` (`pulumi.Input[bool]`) - Whether the nodes are created as preemptible VM instances. Default `false` (bool) * `project_id` (`pulumi.Input[str]`) - Project ID to apply answer (string) * `resourceLabels` (`pulumi.Input[dict]`) - The map of Kubernetes labels to be applied to each cluster (map) * `serviceAccount` (`pulumi.Input[str]`) - The Google Cloud Platform Service Account to be used by the node VMs (string) * `subNetwork` (`pulumi.Input[str]`) - Subnetwork for GKE cluster (string) * `taints` (`pulumi.Input[list]`) - List of Kubernetes taints to be applied to each node (list) * `useIpAliases` (`pulumi.Input[bool]`) - Whether alias IPs will be used for pod IPs in the cluster. Default `false` (bool) * `zone` (`pulumi.Input[str]`) - Zone GKE cluster (string) The **rke_config** object supports the following: * `addonJobTimeout` (`pulumi.Input[float]`) - Duration in seconds of addon job (int) * `addons` (`pulumi.Input[str]`) - Addons descripton to deploy on RKE cluster. * `addonsIncludes` (`pulumi.Input[list]`) - Addons yaml manifests to deploy on RKE cluster (list) * `authentication` (`pulumi.Input[dict]`) - Kubernetes cluster authentication (list maxitems:1) * `sans` (`pulumi.Input[list]`) - RKE sans for authentication ([]string) * `strategy` (`pulumi.Input[str]`) - RKE strategy for authentication (string) * `authorization` (`pulumi.Input[dict]`) - Kubernetes cluster authorization (list maxitems:1) * `mode` (`pulumi.Input[str]`) - RKE mode for authorization. `rbac` and `none` modes are available. Default `rbac` (string) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `bastionHost` (`pulumi.Input[dict]`) - RKE bastion host (list maxitems:1) * `address` (`pulumi.Input[str]`) - Address ip for node (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`pulumi.Input[str]`) - Node SSH private key (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `cloudProvider` (`pulumi.Input[dict]`) - RKE options for Calico network provider (string) * `awsCloudProvider` (`pulumi.Input[dict]`) - RKE AWS Cloud Provider config for Cloud Provider [rke-aws-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/aws/) (list maxitems:1) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `disableSecurityGroupIngress` (`pulumi.Input[bool]`) - Default `false` (bool) * `disableStrictZoneCheck` (`pulumi.Input[bool]`) - Default `false` (bool) * `elbSecurityGroup` (`pulumi.Input[str]`) - (string) * `kubernetesClusterId` (`pulumi.Input[str]`) - (string) * `kubernetesClusterTag` (`pulumi.Input[str]`) - (string) * `roleArn` (`pulumi.Input[str]`) - (string) * `routeTableId` (`pulumi.Input[str]`) - (string) * `subnetId` (`pulumi.Input[str]`) - (string) * `vpc` (`pulumi.Input[str]`) - (string) * `zone` (`pulumi.Input[str]`) - Zone GKE cluster (string) * `serviceOverrides` (`pulumi.Input[list]`) - (list) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `service` (`pulumi.Input[str]`) - (string) * `signingMethod` (`pulumi.Input[str]`) - (string) * `signingName` (`pulumi.Input[str]`) - (string) * `signingRegion` (`pulumi.Input[str]`) - (string) * `url` (`pulumi.Input[str]`) - Registry URL (string) * `azureCloudProvider` (`pulumi.Input[dict]`) - RKE Azure Cloud Provider config for Cloud Provider [rke-azure-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/azure/) (list maxitems:1) * `aadClientCertPassword` (`pulumi.Input[str]`) - (string) * `aadClientCertPath` (`pulumi.Input[str]`) - (string) * `aadClientId` (`pulumi.Input[str]`) - (string) * `aadClientSecret` (`pulumi.Input[str]`) - (string) * `cloud` (`pulumi.Input[str]`) - (string) * `cloudProviderBackoff` (`pulumi.Input[bool]`) - (bool) * `cloudProviderBackoffDuration` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffExponent` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffJitter` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffRetries` (`pulumi.Input[float]`) - (int) * `cloudProviderRateLimit` (`pulumi.Input[bool]`) - (bool) * `cloudProviderRateLimitBucket` (`pulumi.Input[float]`) - (int) * `cloudProviderRateLimitQps` (`pulumi.Input[float]`) - (int) * `location` (`pulumi.Input[str]`) - Azure Kubernetes cluster location. Default `eastus` (string) * `maximumLoadBalancerRuleCount` (`pulumi.Input[float]`) - (int) * `primaryAvailabilitySetName` (`pulumi.Input[str]`) - (string) * `primaryScaleSetName` (`pulumi.Input[str]`) - (string) * `resourceGroup` (`pulumi.Input[str]`) - The name of the Cluster resource group (string) * `routeTableName` (`pulumi.Input[str]`) - (string) * `securityGroupName` (`pulumi.Input[str]`) - (string) * `subnetName` (`pulumi.Input[str]`) - (string) * `subscriptionId` (`pulumi.Input[str]`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `useInstanceMetadata` (`pulumi.Input[bool]`) - (bool) * `useManagedIdentityExtension` (`pulumi.Input[bool]`) - (bool) * `vmType` (`pulumi.Input[str]`) - (string) * `vnetName` (`pulumi.Input[str]`) - (string) * `vnetResourceGroup` (`pulumi.Input[str]`) - (string) * `customCloudProvider` (`pulumi.Input[str]`) - RKE Custom Cloud Provider config for Cloud Provider (string) (string) * `name` (`pulumi.Input[str]`) - Name of cluster registration token (string) * `openstackCloudProvider` (`pulumi.Input[dict]`) - RKE Openstack Cloud Provider config for Cloud Provider [rke-openstack-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/openstack/) (list maxitems:1) * `blockStorage` (`pulumi.Input[dict]`) - (list maxitems:1) * `bsVersion` (`pulumi.Input[str]`) - (string) * `ignoreVolumeAz` (`pulumi.Input[bool]`) - (string) * `trustDevicePath` (`pulumi.Input[bool]`) - (string) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `authUrl` (`pulumi.Input[str]`) - (string) * `caFile` (`pulumi.Input[str]`) - (string) * `domainId` (`pulumi.Input[str]`) - Required if `domain_name` not provided. (string) * `domainName` (`pulumi.Input[str]`) - Required if `domain_id` not provided. (string) * `password` (`pulumi.Input[str]`) - Registry password (string) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `tenantName` (`pulumi.Input[str]`) - Required if `tenant_id` not provided. (string) * `trustId` (`pulumi.Input[str]`) - (string) * `username` (`pulumi.Input[str]`) - (string) * `loadBalancer` (`pulumi.Input[dict]`) - (list maxitems:1) * `createMonitor` (`pulumi.Input[bool]`) - (bool) * `floatingNetworkId` (`pulumi.Input[str]`) - (string) * `lbMethod` (`pulumi.Input[str]`) - (string) * `lbProvider` (`pulumi.Input[str]`) - (string) * `lbVersion` (`pulumi.Input[str]`) - (string) * `manageSecurityGroups` (`pulumi.Input[bool]`) - (bool) * `monitorDelay` (`pulumi.Input[str]`) - Default `60s` (string) * `monitorMaxRetries` (`pulumi.Input[float]`) - Default 5 (int) * `monitorTimeout` (`pulumi.Input[str]`) - Default `30s` (string) * `subnetId` (`pulumi.Input[str]`) - (string) * `useOctavia` (`pulumi.Input[bool]`) - (bool) * `metadata` (`pulumi.Input[dict]`) - (list maxitems:1) * `requestTimeout` (`pulumi.Input[float]`) - (int) * `searchOrder` (`pulumi.Input[str]`) - (string) * `route` (`pulumi.Input[dict]`) - (list maxitems:1) * `routerId` (`pulumi.Input[str]`) - (string) * `vsphereCloudProvider` (`pulumi.Input[dict]`) - RKE Vsphere Cloud Provider config for Cloud Provider [rke-vsphere-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/vsphere/) Extra argument `name` is required on `virtual_center` configuration. (list maxitems:1) * `disk` (`pulumi.Input[dict]`) - (list maxitems:1) * `scsiControllerType` (`pulumi.Input[str]`) - (string) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `datacenters` (`pulumi.Input[str]`) - (string) * `insecureFlag` (`pulumi.Input[bool]`) - (bool) * `password` (`pulumi.Input[str]`) - Registry password (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`pulumi.Input[float]`) - (int) * `user` (`pulumi.Input[str]`) - Registry user (string) * `network` (`pulumi.Input[dict]`) - Network for GKE cluster (string) * `publicNetwork` (`pulumi.Input[str]`) - (string) * `virtualCenters` (`pulumi.Input[list]`) - (List) * `datacenters` (`pulumi.Input[str]`) - (string) * `name` (`pulumi.Input[str]`) - Name of cluster registration token (string) * `password` (`pulumi.Input[str]`) - Registry password (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`pulumi.Input[float]`) - (int) * `user` (`pulumi.Input[str]`) - Registry user (string) * `workspace` (`pulumi.Input[dict]`) - (list maxitems:1) * `datacenter` (`pulumi.Input[str]`) - (string) * `defaultDatastore` (`pulumi.Input[str]`) - (string) * `folder` (`pulumi.Input[str]`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `resourcepoolPath` (`pulumi.Input[str]`) - (string) * `server` (`pulumi.Input[str]`) - (string) * `dns` (`pulumi.Input[dict]`) - RKE dns add-on. Just for Rancher v2.2.x (list maxitems:1) * `nodeSelector` (`pulumi.Input[dict]`) - Node selector for RKE Ingress (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `reverseCidrs` (`pulumi.Input[list]`) - DNS add-on reverse cidr (list) * `upstreamNameservers` (`pulumi.Input[list]`) - DNS add-on upstream nameservers (list) * `ignoreDockerVersion` (`pulumi.Input[bool]`) - Ignore docker version. Default `true` (bool) * `ingress` (`pulumi.Input[dict]`) - Kubernetes ingress configuration (list maxitems:1) * `dnsPolicy` (`pulumi.Input[str]`) - Ingress controller DNS policy. `ClusterFirstWithHostNet`, `ClusterFirst`, `Default`, and `None` are supported. [K8S dns Policy](https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy) (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `nodeSelector` (`pulumi.Input[dict]`) - Node selector for RKE Ingress (map) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `monitoring` (`pulumi.Input[dict]`) - Kubernetes cluster monitoring (list maxitems:1) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `network` (`pulumi.Input[dict]`) - Network for GKE cluster (string) * `calicoNetworkProvider` (`pulumi.Input[dict]`) - Calico provider config for RKE network (list maxitems:1) * `cloudProvider` (`pulumi.Input[str]`) - RKE options for Calico network provider (string) * `canalNetworkProvider` (`pulumi.Input[dict]`) - Canal provider config for RKE network (list maxitems:1) * `iface` (`pulumi.Input[str]`) - Iface config Flannel network provider (string) * `flannelNetworkProvider` (`pulumi.Input[dict]`) - Flannel provider config for RKE network (list maxitems:1) * `iface` (`pulumi.Input[str]`) - Iface config Flannel network provider (string) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `plugin` (`pulumi.Input[str]`) - Plugin for RKE network. `canal` (default), `flannel`, `calico` and `weave` are supported. (string) * `weaveNetworkProvider` (`pulumi.Input[dict]`) - Weave provider config for RKE network (list maxitems:1) * `password` (`pulumi.Input[str]`) - Registry password (string) * `nodes` (`pulumi.Input[list]`) - RKE cluster nodes (list) * `address` (`pulumi.Input[str]`) - Address ip for node (string) * `dockerSocket` (`pulumi.Input[str]`) - Docker socket for node (string) * `hostnameOverride` (`pulumi.Input[str]`) - Hostname override for node (string) * `internalAddress` (`pulumi.Input[str]`) - Internal ip for node (string) * `labels` (`pulumi.Input[dict]`) - Labels for cluster registration token object (map) * `nodeId` (`pulumi.Input[str]`) - Id for the node (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `roles` (`pulumi.Input[list]`) - Roles for the node. `controlplane`, `etcd` and `worker` are supported. (list) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`pulumi.Input[str]`) - Node SSH private key (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `prefixPath` (`pulumi.Input[str]`) - Prefix to customize Kubernetes path (string) * `privateRegistries` (`pulumi.Input[list]`) - private registries for docker images (list) * `isDefault` (`pulumi.Input[bool]`) - Set as default registry. Default `false` (bool) * `password` (`pulumi.Input[str]`) - Registry password (string) * `url` (`pulumi.Input[str]`) - Registry URL (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `services` (`pulumi.Input[dict]`) - Kubernetes cluster services (list maxitems:1) * `etcd` (`pulumi.Input[dict]`) - Etcd options for RKE services (list maxitems:1) * `backup_config` (`pulumi.Input[dict]`) - Backup options for etcd service. Just for Rancher v2.2.x (list maxitems:1) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `intervalHours` (`pulumi.Input[float]`) - Interval hours for etcd backup. Default `12` (int) * `retention` (`pulumi.Input[float]`) - Retention for etcd backup. Default `6` (int) * `s3BackupConfig` (`pulumi.Input[dict]`) - S3 config options for etcd backup (list maxitems:1) * `access_key` (`pulumi.Input[str]`) - The AWS Client ID to use (string) * `bucketName` (`pulumi.Input[str]`) - Bucket name for S3 service (string) * `customCa` (`pulumi.Input[str]`) - Base64 encoded custom CA for S3 service. Use filebase64(<FILE>) for encoding file. Available from Rancher v2.2.5 (string) * `endpoint` (`pulumi.Input[str]`) - Endpoint for S3 service (string) * `folder` (`pulumi.Input[str]`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`pulumi.Input[str]`) - The AWS Client Secret associated with the Client ID (string) * `safeTimestamp` (`pulumi.Input[bool]`) - Safe timestamp for etcd backup. Default: `false` (bool) * `caCert` (`pulumi.Input[str]`) - TLS CA certificate for etcd service (string) * `cert` (`pulumi.Input[str]`) - TLS certificate for etcd service (string) * `creation` (`pulumi.Input[str]`) - Creation option for etcd service (string) * `externalUrls` (`pulumi.Input[list]`) - External urls for etcd service (list) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `gid` (`pulumi.Input[float]`) - Etcd service GID. Default: `0`. For Rancher v2.3.x or above (int) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `key` (`pulumi.Input[str]`) - TLS key for etcd service (string) * `path` (`pulumi.Input[str]`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `retention` (`pulumi.Input[str]`) - Retention for etcd backup. Default `6` (int) * `snapshot` (`pulumi.Input[bool]`) - Snapshot option for etcd service (bool) * `uid` (`pulumi.Input[float]`) - Etcd service UID. Default: `0`. For Rancher v2.3.x or above (int) * `kubeApi` (`pulumi.Input[dict]`) - Kube API options for RKE services (list maxitems:1) * `admissionConfiguration` (`pulumi.Input[dict]`) - Admission configuration (map) * `alwaysPullImages` (`pulumi.Input[bool]`) - Enable [AlwaysPullImages](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#alwayspullimages) Admission controller plugin. [Rancher docs](https://rancher.com/docs/rke/latest/en/config-options/services/#kubernetes-api-server-options) Default: `false` (bool) * `auditLog` (`pulumi.Input[dict]`) - K8s audit log configuration. (list maxitem: 1) * `configuration` (`pulumi.Input[dict]`) - Event rate limit configuration. (map) * `format` (`pulumi.Input[str]`) - Audit log format. Default: 'json' (string) * `maxAge` (`pulumi.Input[float]`) - Audit log max age. Default: `30` (int) * `maxBackup` (`pulumi.Input[float]`) - Audit log max backup. Default: `10` (int) * `maxSize` (`pulumi.Input[float]`) - Audit log max size. Default: `100` (int) * `path` (`pulumi.Input[str]`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `policy` (`pulumi.Input[str]`) - Audit log policy json formated string. `omitStages` and `rules` json fields are supported. Example: `policy = jsonencode({"rules":[{"level": "Metadata"}]})` (string) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `eventRateLimit` (`pulumi.Input[dict]`) - K8s event rate limit configuration. (list maxitem: 1) * `configuration` (`pulumi.Input[dict]`) - Event rate limit configuration. (map) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `podSecurityPolicy` (`pulumi.Input[bool]`) - Pod Security Policy option for kube API service. Default `false` (bool) * `secretsEncryptionConfig` (`pulumi.Input[dict]`) - [Encrypt k8s secret data configration](https://rancher.com/docs/rke/latest/en/config-options/secrets-encryption/). (list maxitem: 1) * `customConfig` (`pulumi.Input[dict]`) - Secrets encryption configuration. (map) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `serviceClusterIpRange` (`pulumi.Input[str]`) - Service Cluster ip Range option for kube controller service (string) * `serviceNodePortRange` (`pulumi.Input[str]`) - Service Node Port Range option for kube API service (string) * `kubeController` (`pulumi.Input[dict]`) - Kube Controller options for RKE services (list maxitems:1) * `clusterCidr` (`pulumi.Input[str]`) - Cluster CIDR option for kube controller service (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `serviceClusterIpRange` (`pulumi.Input[str]`) - Service Cluster ip Range option for kube controller service (string) * `kubelet` (`pulumi.Input[dict]`) - Kubelet options for RKE services (list maxitems:1) * `clusterDnsServer` (`pulumi.Input[str]`) - Cluster DNS Server option for kubelet service (string) * `clusterDomain` (`pulumi.Input[str]`) - Cluster Domain option for kubelet service (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `failSwapOn` (`pulumi.Input[bool]`) - Enable or disable failing when swap on is not supported (bool) * `generate_serving_certificate` [Generate a certificate signed by the kube-ca](https://rancher.com/docs/rke/latest/en/config-options/services/#kubelet-serving-certificate-requirements). Default `false` (bool) * `generateServingCertificate` (`pulumi.Input[bool]`) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `infraContainerImage` (`pulumi.Input[str]`) - Infra container image for kubelet service (string) * `kubeproxy` (`pulumi.Input[dict]`) - Kubeproxy options for RKE services (list maxitems:1) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `scheduler` (`pulumi.Input[dict]`) - Scheduler options for RKE services (list maxitems:1) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshCertPath` (`pulumi.Input[str]`) - Cluster level SSH certificate path (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['aks_config'] = aks_config __props__['annotations'] = annotations __props__['cluster_auth_endpoint'] = cluster_auth_endpoint __props__['cluster_monitoring_input'] = cluster_monitoring_input __props__['cluster_template_answers'] = cluster_template_answers __props__['cluster_template_id'] = cluster_template_id __props__['cluster_template_questions'] = cluster_template_questions __props__['cluster_template_revision_id'] = cluster_template_revision_id __props__['default_pod_security_policy_template_id'] = default_pod_security_policy_template_id __props__['description'] = description __props__['desired_agent_image'] = desired_agent_image __props__['desired_auth_image'] = desired_auth_image __props__['docker_root_dir'] = docker_root_dir __props__['driver'] = driver __props__['eks_config'] = eks_config __props__['enable_cluster_alerting'] = enable_cluster_alerting __props__['enable_cluster_istio'] = enable_cluster_istio __props__['enable_cluster_monitoring'] = enable_cluster_monitoring __props__['enable_network_policy'] = enable_network_policy __props__['gke_config'] = gke_config __props__['labels'] = labels __props__['name'] = name __props__['rke_config'] = rke_config __props__['windows_prefered_cluster'] = windows_prefered_cluster __props__['cluster_registration_token'] = None __props__['default_project_id'] = None __props__['kube_config'] = None __props__['system_project_id'] = None super(Cluster, __self__).__init__( 'rancher2:index/cluster:Cluster', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, aks_config=None, annotations=None, cluster_auth_endpoint=None, cluster_monitoring_input=None, cluster_registration_token=None, cluster_template_answers=None, cluster_template_id=None, cluster_template_questions=None, cluster_template_revision_id=None, default_pod_security_policy_template_id=None, default_project_id=None, description=None, desired_agent_image=None, desired_auth_image=None, docker_root_dir=None, driver=None, eks_config=None, enable_cluster_alerting=None, enable_cluster_istio=None, enable_cluster_monitoring=None, enable_network_policy=None, gke_config=None, kube_config=None, labels=None, name=None, rke_config=None, system_project_id=None, windows_prefered_cluster=None): """ Get an existing Cluster resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] aks_config: The Azure AKS configuration for `aks` Clusters. Conflicts with `eks_config`, `gke_config` and `rke_config` (list maxitems:1) :param pulumi.Input[dict] annotations: Annotations for cluster registration token object (map) :param pulumi.Input[dict] cluster_auth_endpoint: Enabling the [local cluster authorized endpoint](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#local-cluster-auth-endpoint) allows direct communication with the cluster, bypassing the Rancher API proxy. (list maxitems:1) :param pulumi.Input[dict] cluster_monitoring_input: Cluster monitoring config. Any parameter defined in [rancher-monitoring charts](https://github.com/rancher/system-charts/tree/dev/charts/rancher-monitoring) could be configured (list maxitems:1) :param pulumi.Input[dict] cluster_registration_token: (Computed) Cluster Registration Token generated for the cluster (list maxitems:1) :param pulumi.Input[dict] cluster_template_answers: Cluster template answers. Just for Rancher v2.3.x and above (list maxitems:1) :param pulumi.Input[str] cluster_template_id: Cluster template ID. Just for Rancher v2.3.x and above (string) :param pulumi.Input[list] cluster_template_questions: Cluster template questions. Just for Rancher v2.3.x and above (list) :param pulumi.Input[str] cluster_template_revision_id: Cluster template revision ID. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] default_pod_security_policy_template_id: [Default pod security policy template id](https://rancher.com/docs/rancher/v2.x/en/cluster-provisioning/rke-clusters/options/#pod-security-policy-support) (string) :param pulumi.Input[str] default_project_id: (Computed) Default project ID for the cluster (string) :param pulumi.Input[str] description: An optional description of this cluster (string) :param pulumi.Input[str] desired_agent_image: Desired agent image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] desired_auth_image: Desired auth image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] docker_root_dir: Desired auth image. Just for Rancher v2.3.x and above (string) :param pulumi.Input[str] driver: (Computed) The driver used for the Cluster. `imported`, `azurekubernetesservice`, `amazonelasticcontainerservice`, `googlekubernetesengine` and `rancherKubernetesEngine` are supported (string) :param pulumi.Input[dict] eks_config: The Amazon EKS configuration for `eks` Clusters. Conflicts with `aks_config`, `gke_config` and `rke_config` (list maxitems:1) :param pulumi.Input[bool] enable_cluster_alerting: Enable built-in cluster alerting. Default `false` (bool) :param pulumi.Input[bool] enable_cluster_istio: Enable built-in cluster istio. Default `false`. Just for Rancher v2.3.x and above (bool) :param pulumi.Input[bool] enable_cluster_monitoring: Enable built-in cluster monitoring. Default `false` (bool) :param pulumi.Input[bool] enable_network_policy: Enable project network isolation. Default `false` (bool) :param pulumi.Input[dict] gke_config: The Google GKE configuration for `gke` Clusters. Conflicts with `aks_config`, `eks_config` and `rke_config` (list maxitems:1) :param pulumi.Input[str] kube_config: (Computed) Kube Config generated for the cluster (string) :param pulumi.Input[dict] labels: Labels for cluster registration token object (map) :param pulumi.Input[str] name: Name of cluster registration token (string) :param pulumi.Input[dict] rke_config: The RKE configuration for `rke` Clusters. Conflicts with `aks_config`, `eks_config` and `gke_config` (list maxitems:1) :param pulumi.Input[str] system_project_id: (Computed) System project ID for the cluster (string) :param pulumi.Input[bool] windows_prefered_cluster: Windows preferred cluster. Default: `false` (bool) The **aks_config** object supports the following: * `aadServerAppSecret` (`pulumi.Input[str]`) - The secret of an Azure Active Directory server application (string) * `aadTenantId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory tenant (string) * `addClientAppId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory client application of type \"Native\". This application is for user login via kubectl (string) * `addServerAppId` (`pulumi.Input[str]`) - The ID of an Azure Active Directory server application of type \"Web app/API\". This application represents the managed cluster's apiserver (Server application) (string) * `adminUsername` (`pulumi.Input[str]`) - The administrator username to use for Linux hosts. Default `azureuser` (string) * `agentDnsPrefix` (`pulumi.Input[str]`) - DNS prefix to be used to create the FQDN for the agent pool (string) * `agentOsDiskSize` (`pulumi.Input[float]`) - GB size to be used to specify the disk for every machine in the agent pool. If you specify 0, it will apply the default according to the \"agent vm size\" specified. Default `0` (int) * `agentPoolName` (`pulumi.Input[str]`) - Name for the agent pool, upto 12 alphanumeric characters. Default `agentpool0` (string) * `agentStorageProfile` (`pulumi.Input[str]`) - Storage profile specifies what kind of storage used on machine in the agent pool. Chooses from [ManagedDisks StorageAccount]. Default `ManagedDisks` (string) * `agentVmSize` (`pulumi.Input[str]`) - Size of machine in the agent pool. Default `Standard_D1_v2` (string) * `authBaseUrl` (`pulumi.Input[str]`) - Different authentication API url to use. Default `https://login.microsoftonline.com/` (string) * `baseUrl` (`pulumi.Input[str]`) - Different resource management API url to use. Default `https://management.azure.com/` (string) * `client_id` (`pulumi.Input[str]`) - Azure client ID to use (string) * `client_secret` (`pulumi.Input[str]`) - Azure client secret associated with the \"client id\" (string) * `count` (`pulumi.Input[float]`) - Number of machines (VMs) in the agent pool. Allowed values must be in the range of 1 to 100 (inclusive). Default `1` (int) * `dnsServiceIp` (`pulumi.Input[str]`) - An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes Service address range specified in \"service cidr\". Default `10.0.0.10` (string) * `dockerBridgeCidr` (`pulumi.Input[str]`) - A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes Service address range specified in \"service cidr\". Default `172.17.0.1/16` (string) * `enableHttpApplicationRouting` (`pulumi.Input[bool]`) - Enable the Kubernetes ingress with automatic public DNS name creation. Default `false` (bool) * `enableMonitoring` (`pulumi.Input[bool]`) - Turn on Azure Log Analytics monitoring. Uses the Log Analytics \"Default\" workspace if it exists, else creates one. if using an existing workspace, specifies \"log analytics workspace resource id\". Default `true` (bool) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `location` (`pulumi.Input[str]`) - Azure Kubernetes cluster location. Default `eastus` (string) * `logAnalyticsWorkspace` (`pulumi.Input[str]`) - The name of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses '{resource group}-{subscription id}-{location code}' (string) * `logAnalyticsWorkspaceResourceGroup` (`pulumi.Input[str]`) - The resource group of an existing Azure Log Analytics Workspace to use for storing monitoring data. If not specified, uses the 'Cluster' resource group (string) * `masterDnsPrefix` (`pulumi.Input[str]`) - DNS prefix to use the Kubernetes cluster control pane (string) * `maxPods` (`pulumi.Input[float]`) - Maximum number of pods that can run on a node. Default `110` (int) * `networkPlugin` (`pulumi.Input[str]`) - Network plugin used for building Kubernetes network. Chooses from `azure` or `kubenet`. Default `azure` (string) * `networkPolicy` (`pulumi.Input[str]`) - Network policy used for building Kubernetes network. Chooses from `calico` (string) * `podCidr` (`pulumi.Input[str]`) - A CIDR notation IP range from which to assign Kubernetes Pod IPs when \"network plugin\" is specified in \"kubenet\". Default `192.168.127.12/16` (string) * `resourceGroup` (`pulumi.Input[str]`) - The name of the Cluster resource group (string) * `serviceCidr` (`pulumi.Input[str]`) - A CIDR notation IP range from which to assign Kubernetes Service cluster IPs. It must not overlap with any Subnet IP ranges. Default `10.0.0.0/16` (string) * `sshPublicKeyContents` (`pulumi.Input[str]`) - Contents of the SSH public key used to authenticate with Linux hosts (string) * `subnet` (`pulumi.Input[str]`) - The name of an existing Azure Virtual Subnet. Composite of agent virtual network subnet ID (string) * `subscriptionId` (`pulumi.Input[str]`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tag` (`pulumi.Input[dict]`) - Tags for Kubernetes cluster. For example, foo=bar (map) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `virtualNetwork` (`pulumi.Input[str]`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) * `virtualNetworkResourceGroup` (`pulumi.Input[str]`) - The resource group of an existing Azure Virtual Network. Composite of agent virtual network subnet ID (string) The **cluster_auth_endpoint** object supports the following: * `ca_certs` (`pulumi.Input[str]`) - CA certs for the authorized cluster endpoint (string) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `fqdn` (`pulumi.Input[str]`) - FQDN for the authorized cluster endpoint (string) The **cluster_monitoring_input** object supports the following: * `answers` (`pulumi.Input[dict]`) - Key/value answers for monitor input (map) ======= The **cluster_registration_token** object supports the following: * `annotations` (`pulumi.Input[dict]`) - Annotations for cluster registration token object (map) * `cluster_id` (`pulumi.Input[str]`) - Cluster ID (string) * `command` (`pulumi.Input[str]`) - Command to execute in a imported k8s cluster (string) * `id` (`pulumi.Input[str]`) - (Computed) The ID of the resource (string) * `insecureCommand` (`pulumi.Input[str]`) - Insecure command to execute in a imported k8s cluster (string) * `labels` (`pulumi.Input[dict]`) - Labels for cluster registration token object (map) * `manifestUrl` (`pulumi.Input[str]`) - K8s manifest url to execute with `kubectl` to import an existing k8s cluster (string) * `name` (`pulumi.Input[str]`) - Name of cluster registration token (string) * `nodeCommand` (`pulumi.Input[str]`) - Node command to execute in linux nodes for custom k8s cluster (string) * `token` (`pulumi.Input[str]`) - Token for cluster registration token object (string) * `windowsNodeCommand` (`pulumi.Input[str]`) - Node command to execute in windows nodes for custom k8s cluster (string) The **cluster_template_answers** object supports the following: * `cluster_id` (`pulumi.Input[str]`) - Cluster ID (string) * `project_id` (`pulumi.Input[str]`) - Project ID to apply answer (string) * `values` (`pulumi.Input[dict]`) - Key/values for answer (map) The **cluster_template_questions** object supports the following: * `default` (`pulumi.Input[str]`) - Default variable value (string) * `required` (`pulumi.Input[bool]`) - Required variable. Default `false` (bool) * `type` (`pulumi.Input[str]`) - Variable type. `boolean`, `int` and `string` are allowed. Default `string` (string) * `variable` (`pulumi.Input[str]`) - Variable name (string) >>>>>>> c6a2cbc... Feat: added .ClusterTemplate datasource and resource. For rancher V2.3.x. Doc files The **eks_config** object supports the following: * `access_key` (`pulumi.Input[str]`) - The AWS Client ID to use (string) * `ami` (`pulumi.Input[str]`) - AMI ID to use for the worker nodes instead of the default (string) * `associateWorkerNodePublicIp` (`pulumi.Input[bool]`) - Associate public ip EKS worker nodes. Default `true` (bool) * `desiredNodes` (`pulumi.Input[float]`) - The desired number of worker nodes. Just for Rancher v2.3.x and above. Default `3` (int) * `instanceType` (`pulumi.Input[str]`) - The type of machine to use for worker nodes. Default `t2.medium` (string) * `keyPairName` (`pulumi.Input[str]`) - Allow user to specify key name to use. Just for Rancher v2.2.7 and above (string) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `maximumNodes` (`pulumi.Input[float]`) - The maximum number of worker nodes. Default `3` (int) * `minimumNodes` (`pulumi.Input[float]`) - The minimum number of worker nodes. Default `1` (int) * `nodeVolumeSize` (`pulumi.Input[float]`) - The volume size for each node. Default `20` (int) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`pulumi.Input[str]`) - The AWS Client Secret associated with the Client ID (string) * `securityGroups` (`pulumi.Input[list]`) - List of security groups to use for the cluster. If it's not specified Rancher will create a new security group (list) * `serviceRole` (`pulumi.Input[str]`) - The service role to use to perform the cluster operations in AWS. If it's not specified Rancher will create a new service role (string) * `sessionToken` (`pulumi.Input[str]`) - A session token to use with the client key and secret if applicable (string) * `subnets` (`pulumi.Input[list]`) - List of subnets in the virtual network to use. If it's not specified Rancher will create 3 news subnets (list) * `userData` (`pulumi.Input[str]`) - Pass user-data to the nodes to perform automated configuration tasks (string) * `virtualNetwork` (`pulumi.Input[str]`) - The name of the virtual network to use. If it's not specified Rancher will create a new VPC (string) The **gke_config** object supports the following: * `clusterIpv4Cidr` (`pulumi.Input[str]`) - The IP address range of the container pods (string) * `credential` (`pulumi.Input[str]`) - The contents of the GC credential file (string) * `description` (`pulumi.Input[str]`) - An optional description of this cluster (string) * `diskSizeGb` (`pulumi.Input[float]`) - Size of the disk attached to each node. Default `100` (int) * `diskType` (`pulumi.Input[str]`) - Type of the disk attached to each node (string) * `enableAlphaFeature` (`pulumi.Input[bool]`) - To enable Kubernetes alpha feature. Default `true` (bool) * `enableAutoRepair` (`pulumi.Input[bool]`) - Specifies whether the node auto-repair is enabled for the node pool. Default `false` (bool) * `enableAutoUpgrade` (`pulumi.Input[bool]`) - Specifies whether node auto-upgrade is enabled for the node pool. Default `false` (bool) * `enableHorizontalPodAutoscaling` (`pulumi.Input[bool]`) - Enable horizontal pod autoscaling for the cluster. Default `true` (bool) * `enableHttpLoadBalancing` (`pulumi.Input[bool]`) - Enable HTTP load balancing on GKE cluster. Default `true` (bool) * `enableKubernetesDashboard` (`pulumi.Input[bool]`) - Whether to enable the Kubernetes dashboard. Default `false` (bool) * `enableLegacyAbac` (`pulumi.Input[bool]`) - Whether to enable legacy abac on the cluster. Default `false` (bool) * `enableMasterAuthorizedNetwork` (`pulumi.Input[bool]`) * `enableNetworkPolicyConfig` (`pulumi.Input[bool]`) - Enable stackdriver logging. Default `true` (bool) * `enableNodepoolAutoscaling` (`pulumi.Input[bool]`) - Enable nodepool autoscaling. Default `false` (bool) * `enablePrivateEndpoint` (`pulumi.Input[bool]`) - Whether the master's internal IP address is used as the cluster endpoint. Default `false` (bool) * `enablePrivateNodes` (`pulumi.Input[bool]`) - Whether nodes have internal IP address only. Default `false` (bool) * `enableStackdriverLogging` (`pulumi.Input[bool]`) - Enable stackdriver monitoring. Default `true` (bool) * `enableStackdriverMonitoring` (`pulumi.Input[bool]`) - Enable stackdriver monitoring on GKE cluster (bool) * `imageType` (`pulumi.Input[str]`) - The image to use for the worker nodes (string) * `ipPolicyClusterIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range for the cluster pod IPs (string) * `ipPolicyClusterSecondaryRangeName` (`pulumi.Input[str]`) - The name of the secondary range to be used for the cluster CIDR block (string) * `ipPolicyCreateSubnetwork` (`pulumi.Input[bool]`) - Whether a new subnetwork will be created automatically for the cluster. Default `false` (bool) * `ipPolicyNodeIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range of the instance IPs in this cluster (string) * `ipPolicyServicesIpv4CidrBlock` (`pulumi.Input[str]`) - The IP address range of the services IPs in this cluster (string) * `ipPolicyServicesSecondaryRangeName` (`pulumi.Input[str]`) - The name of the secondary range to be used for the services CIDR block (string) * `ipPolicySubnetworkName` (`pulumi.Input[str]`) - A custom subnetwork name to be used if createSubnetwork is true (string) * `issueClientCertificate` (`pulumi.Input[bool]`) - Issue a client certificate. Default `false` (bool) * `kubernetesDashboard` (`pulumi.Input[bool]`) - Enable the Kubernetes dashboard. Default `false` (bool) * `labels` (`pulumi.Input[dict]`) - Labels for cluster registration token object (map) * `localSsdCount` (`pulumi.Input[float]`) - The number of local SSD disks to be attached to the node. Default `0` (int) * `locations` (`pulumi.Input[list]`) - Locations for GKE cluster (list) * `machineType` (`pulumi.Input[str]`) - Machine type for GKE cluster (string) * `maintenanceWindow` (`pulumi.Input[str]`) - Maintenance window for GKE cluster (string) * `masterAuthorizedNetworkCidrBlocks` (`pulumi.Input[list]`) - Define up to 10 external networks that could access Kubernetes master through HTTPS (list) * `masterIpv4CidrBlock` (`pulumi.Input[str]`) - The IP range in CIDR notation to use for the hosted master network (string) * `masterVersion` (`pulumi.Input[str]`) - Master version for GKE cluster (string) * `maxNodeCount` (`pulumi.Input[float]`) - Maximum number of nodes in the NodePool. Must be >= minNodeCount. There has to enough quota to scale up the cluster. Default `0` (int) * `minNodeCount` (`pulumi.Input[float]`) - Minimmum number of nodes in the NodePool. Must be >= 1 and <= maxNodeCount. Default `0` (int) * `network` (`pulumi.Input[str]`) - Network for GKE cluster (string) * `nodeCount` (`pulumi.Input[float]`) - Node count for GKE cluster. Default `3` (int) * `nodePool` (`pulumi.Input[str]`) - The ID of the cluster node pool (string) * `nodeVersion` (`pulumi.Input[str]`) - Node version for GKE cluster (string) * `oauthScopes` (`pulumi.Input[list]`) - The set of Google API scopes to be made available on all of the node VMs under the default service account (list) * `preemptible` (`pulumi.Input[bool]`) - Whether the nodes are created as preemptible VM instances. Default `false` (bool) * `project_id` (`pulumi.Input[str]`) - Project ID to apply answer (string) * `resourceLabels` (`pulumi.Input[dict]`) - The map of Kubernetes labels to be applied to each cluster (map) * `serviceAccount` (`pulumi.Input[str]`) - The Google Cloud Platform Service Account to be used by the node VMs (string) * `subNetwork` (`pulumi.Input[str]`) - Subnetwork for GKE cluster (string) * `taints` (`pulumi.Input[list]`) - List of Kubernetes taints to be applied to each node (list) * `useIpAliases` (`pulumi.Input[bool]`) - Whether alias IPs will be used for pod IPs in the cluster. Default `false` (bool) * `zone` (`pulumi.Input[str]`) - Zone GKE cluster (string) The **rke_config** object supports the following: * `addonJobTimeout` (`pulumi.Input[float]`) - Duration in seconds of addon job (int) * `addons` (`pulumi.Input[str]`) - Addons descripton to deploy on RKE cluster. * `addonsIncludes` (`pulumi.Input[list]`) - Addons yaml manifests to deploy on RKE cluster (list) * `authentication` (`pulumi.Input[dict]`) - Kubernetes cluster authentication (list maxitems:1) * `sans` (`pulumi.Input[list]`) - RKE sans for authentication ([]string) * `strategy` (`pulumi.Input[str]`) - RKE strategy for authentication (string) * `authorization` (`pulumi.Input[dict]`) - Kubernetes cluster authorization (list maxitems:1) * `mode` (`pulumi.Input[str]`) - RKE mode for authorization. `rbac` and `none` modes are available. Default `rbac` (string) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `bastionHost` (`pulumi.Input[dict]`) - RKE bastion host (list maxitems:1) * `address` (`pulumi.Input[str]`) - Address ip for node (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`pulumi.Input[str]`) - Node SSH private key (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `cloudProvider` (`pulumi.Input[dict]`) - RKE options for Calico network provider (string) * `awsCloudProvider` (`pulumi.Input[dict]`) - RKE AWS Cloud Provider config for Cloud Provider [rke-aws-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/aws/) (list maxitems:1) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `disableSecurityGroupIngress` (`pulumi.Input[bool]`) - Default `false` (bool) * `disableStrictZoneCheck` (`pulumi.Input[bool]`) - Default `false` (bool) * `elbSecurityGroup` (`pulumi.Input[str]`) - (string) * `kubernetesClusterId` (`pulumi.Input[str]`) - (string) * `kubernetesClusterTag` (`pulumi.Input[str]`) - (string) * `roleArn` (`pulumi.Input[str]`) - (string) * `routeTableId` (`pulumi.Input[str]`) - (string) * `subnetId` (`pulumi.Input[str]`) - (string) * `vpc` (`pulumi.Input[str]`) - (string) * `zone` (`pulumi.Input[str]`) - Zone GKE cluster (string) * `serviceOverrides` (`pulumi.Input[list]`) - (list) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `service` (`pulumi.Input[str]`) - (string) * `signingMethod` (`pulumi.Input[str]`) - (string) * `signingName` (`pulumi.Input[str]`) - (string) * `signingRegion` (`pulumi.Input[str]`) - (string) * `url` (`pulumi.Input[str]`) - Registry URL (string) * `azureCloudProvider` (`pulumi.Input[dict]`) - RKE Azure Cloud Provider config for Cloud Provider [rke-azure-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/azure/) (list maxitems:1) * `aadClientCertPassword` (`pulumi.Input[str]`) - (string) * `aadClientCertPath` (`pulumi.Input[str]`) - (string) * `aadClientId` (`pulumi.Input[str]`) - (string) * `aadClientSecret` (`pulumi.Input[str]`) - (string) * `cloud` (`pulumi.Input[str]`) - (string) * `cloudProviderBackoff` (`pulumi.Input[bool]`) - (bool) * `cloudProviderBackoffDuration` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffExponent` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffJitter` (`pulumi.Input[float]`) - (int) * `cloudProviderBackoffRetries` (`pulumi.Input[float]`) - (int) * `cloudProviderRateLimit` (`pulumi.Input[bool]`) - (bool) * `cloudProviderRateLimitBucket` (`pulumi.Input[float]`) - (int) * `cloudProviderRateLimitQps` (`pulumi.Input[float]`) - (int) * `location` (`pulumi.Input[str]`) - Azure Kubernetes cluster location. Default `eastus` (string) * `maximumLoadBalancerRuleCount` (`pulumi.Input[float]`) - (int) * `primaryAvailabilitySetName` (`pulumi.Input[str]`) - (string) * `primaryScaleSetName` (`pulumi.Input[str]`) - (string) * `resourceGroup` (`pulumi.Input[str]`) - The name of the Cluster resource group (string) * `routeTableName` (`pulumi.Input[str]`) - (string) * `securityGroupName` (`pulumi.Input[str]`) - (string) * `subnetName` (`pulumi.Input[str]`) - (string) * `subscriptionId` (`pulumi.Input[str]`) - Subscription credentials which uniquely identify Microsoft Azure subscription (string) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `useInstanceMetadata` (`pulumi.Input[bool]`) - (bool) * `useManagedIdentityExtension` (`pulumi.Input[bool]`) - (bool) * `vmType` (`pulumi.Input[str]`) - (string) * `vnetName` (`pulumi.Input[str]`) - (string) * `vnetResourceGroup` (`pulumi.Input[str]`) - (string) * `customCloudProvider` (`pulumi.Input[str]`) - RKE Custom Cloud Provider config for Cloud Provider (string) (string) * `name` (`pulumi.Input[str]`) - Name of cluster registration token (string) * `openstackCloudProvider` (`pulumi.Input[dict]`) - RKE Openstack Cloud Provider config for Cloud Provider [rke-openstack-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/openstack/) (list maxitems:1) * `blockStorage` (`pulumi.Input[dict]`) - (list maxitems:1) * `bsVersion` (`pulumi.Input[str]`) - (string) * `ignoreVolumeAz` (`pulumi.Input[bool]`) - (string) * `trustDevicePath` (`pulumi.Input[bool]`) - (string) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `authUrl` (`pulumi.Input[str]`) - (string) * `caFile` (`pulumi.Input[str]`) - (string) * `domainId` (`pulumi.Input[str]`) - Required if `domain_name` not provided. (string) * `domainName` (`pulumi.Input[str]`) - Required if `domain_id` not provided. (string) * `password` (`pulumi.Input[str]`) - Registry password (string) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `tenant_id` (`pulumi.Input[str]`) - Azure tenant ID to use (string) * `tenantName` (`pulumi.Input[str]`) - Required if `tenant_id` not provided. (string) * `trustId` (`pulumi.Input[str]`) - (string) * `username` (`pulumi.Input[str]`) - (string) * `loadBalancer` (`pulumi.Input[dict]`) - (list maxitems:1) * `createMonitor` (`pulumi.Input[bool]`) - (bool) * `floatingNetworkId` (`pulumi.Input[str]`) - (string) * `lbMethod` (`pulumi.Input[str]`) - (string) * `lbProvider` (`pulumi.Input[str]`) - (string) * `lbVersion` (`pulumi.Input[str]`) - (string) * `manageSecurityGroups` (`pulumi.Input[bool]`) - (bool) * `monitorDelay` (`pulumi.Input[str]`) - Default `60s` (string) * `monitorMaxRetries` (`pulumi.Input[float]`) - Default 5 (int) * `monitorTimeout` (`pulumi.Input[str]`) - Default `30s` (string) * `subnetId` (`pulumi.Input[str]`) - (string) * `useOctavia` (`pulumi.Input[bool]`) - (bool) * `metadata` (`pulumi.Input[dict]`) - (list maxitems:1) * `requestTimeout` (`pulumi.Input[float]`) - (int) * `searchOrder` (`pulumi.Input[str]`) - (string) * `route` (`pulumi.Input[dict]`) - (list maxitems:1) * `routerId` (`pulumi.Input[str]`) - (string) * `vsphereCloudProvider` (`pulumi.Input[dict]`) - RKE Vsphere Cloud Provider config for Cloud Provider [rke-vsphere-cloud-provider](https://rancher.com/docs/rke/latest/en/config-options/cloud-providers/vsphere/) Extra argument `name` is required on `virtual_center` configuration. (list maxitems:1) * `disk` (`pulumi.Input[dict]`) - (list maxitems:1) * `scsiControllerType` (`pulumi.Input[str]`) - (string) * `global` (`pulumi.Input[dict]`) - (list maxitems:1) * `datacenters` (`pulumi.Input[str]`) - (string) * `insecureFlag` (`pulumi.Input[bool]`) - (bool) * `password` (`pulumi.Input[str]`) - Registry password (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`pulumi.Input[float]`) - (int) * `user` (`pulumi.Input[str]`) - Registry user (string) * `network` (`pulumi.Input[dict]`) - Network for GKE cluster (string) * `publicNetwork` (`pulumi.Input[str]`) - (string) * `virtualCenters` (`pulumi.Input[list]`) - (List) * `datacenters` (`pulumi.Input[str]`) - (string) * `name` (`pulumi.Input[str]`) - Name of cluster registration token (string) * `password` (`pulumi.Input[str]`) - Registry password (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `soapRoundtripCount` (`pulumi.Input[float]`) - (int) * `user` (`pulumi.Input[str]`) - Registry user (string) * `workspace` (`pulumi.Input[dict]`) - (list maxitems:1) * `datacenter` (`pulumi.Input[str]`) - (string) * `defaultDatastore` (`pulumi.Input[str]`) - (string) * `folder` (`pulumi.Input[str]`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `resourcepoolPath` (`pulumi.Input[str]`) - (string) * `server` (`pulumi.Input[str]`) - (string) * `dns` (`pulumi.Input[dict]`) - RKE dns add-on. Just for Rancher v2.2.x (list maxitems:1) * `nodeSelector` (`pulumi.Input[dict]`) - Node selector for RKE Ingress (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `reverseCidrs` (`pulumi.Input[list]`) - DNS add-on reverse cidr (list) * `upstreamNameservers` (`pulumi.Input[list]`) - DNS add-on upstream nameservers (list) * `ignoreDockerVersion` (`pulumi.Input[bool]`) - Ignore docker version. Default `true` (bool) * `ingress` (`pulumi.Input[dict]`) - Kubernetes ingress configuration (list maxitems:1) * `dnsPolicy` (`pulumi.Input[str]`) - Ingress controller DNS policy. `ClusterFirstWithHostNet`, `ClusterFirst`, `Default`, and `None` are supported. [K8S dns Policy](https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy) (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `nodeSelector` (`pulumi.Input[dict]`) - Node selector for RKE Ingress (map) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `kubernetesVersion` (`pulumi.Input[str]`) - The Kubernetes master version (string) * `monitoring` (`pulumi.Input[dict]`) - Kubernetes cluster monitoring (list maxitems:1) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `provider` (`pulumi.Input[str]`) - Provider for RKE monitoring (string) * `network` (`pulumi.Input[dict]`) - Network for GKE cluster (string) * `calicoNetworkProvider` (`pulumi.Input[dict]`) - Calico provider config for RKE network (list maxitems:1) * `cloudProvider` (`pulumi.Input[str]`) - RKE options for Calico network provider (string) * `canalNetworkProvider` (`pulumi.Input[dict]`) - Canal provider config for RKE network (list maxitems:1) * `iface` (`pulumi.Input[str]`) - Iface config Flannel network provider (string) * `flannelNetworkProvider` (`pulumi.Input[dict]`) - Flannel provider config for RKE network (list maxitems:1) * `iface` (`pulumi.Input[str]`) - Iface config Flannel network provider (string) * `options` (`pulumi.Input[dict]`) - RKE options for network (map) * `plugin` (`pulumi.Input[str]`) - Plugin for RKE network. `canal` (default), `flannel`, `calico` and `weave` are supported. (string) * `weaveNetworkProvider` (`pulumi.Input[dict]`) - Weave provider config for RKE network (list maxitems:1) * `password` (`pulumi.Input[str]`) - Registry password (string) * `nodes` (`pulumi.Input[list]`) - RKE cluster nodes (list) * `address` (`pulumi.Input[str]`) - Address ip for node (string) * `dockerSocket` (`pulumi.Input[str]`) - Docker socket for node (string) * `hostnameOverride` (`pulumi.Input[str]`) - Hostname override for node (string) * `internalAddress` (`pulumi.Input[str]`) - Internal ip for node (string) * `labels` (`pulumi.Input[dict]`) - Labels for cluster registration token object (map) * `nodeId` (`pulumi.Input[str]`) - Id for the node (string) * `port` (`pulumi.Input[str]`) - Port for node. Default `22` (string) * `roles` (`pulumi.Input[list]`) - Roles for the node. `controlplane`, `etcd` and `worker` are supported. (list) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshKey` (`pulumi.Input[str]`) - Node SSH private key (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `prefixPath` (`pulumi.Input[str]`) - Prefix to customize Kubernetes path (string) * `privateRegistries` (`pulumi.Input[list]`) - private registries for docker images (list) * `isDefault` (`pulumi.Input[bool]`) - Set as default registry. Default `false` (bool) * `password` (`pulumi.Input[str]`) - Registry password (string) * `url` (`pulumi.Input[str]`) - Registry URL (string) * `user` (`pulumi.Input[str]`) - Registry user (string) * `services` (`pulumi.Input[dict]`) - Kubernetes cluster services (list maxitems:1) * `etcd` (`pulumi.Input[dict]`) - Etcd options for RKE services (list maxitems:1) * `backup_config` (`pulumi.Input[dict]`) - Backup options for etcd service. Just for Rancher v2.2.x (list maxitems:1) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `intervalHours` (`pulumi.Input[float]`) - Interval hours for etcd backup. Default `12` (int) * `retention` (`pulumi.Input[float]`) - Retention for etcd backup. Default `6` (int) * `s3BackupConfig` (`pulumi.Input[dict]`) - S3 config options for etcd backup (list maxitems:1) * `access_key` (`pulumi.Input[str]`) - The AWS Client ID to use (string) * `bucketName` (`pulumi.Input[str]`) - Bucket name for S3 service (string) * `customCa` (`pulumi.Input[str]`) - Base64 encoded custom CA for S3 service. Use filebase64(<FILE>) for encoding file. Available from Rancher v2.2.5 (string) * `endpoint` (`pulumi.Input[str]`) - Endpoint for S3 service (string) * `folder` (`pulumi.Input[str]`) - Folder for S3 service. Available from Rancher v2.2.7 (string) * `region` (`pulumi.Input[str]`) - The AWS Region to create the EKS cluster in. Default `us-west-2` (string) * `secret_key` (`pulumi.Input[str]`) - The AWS Client Secret associated with the Client ID (string) * `safeTimestamp` (`pulumi.Input[bool]`) - Safe timestamp for etcd backup. Default: `false` (bool) * `caCert` (`pulumi.Input[str]`) - TLS CA certificate for etcd service (string) * `cert` (`pulumi.Input[str]`) - TLS certificate for etcd service (string) * `creation` (`pulumi.Input[str]`) - Creation option for etcd service (string) * `externalUrls` (`pulumi.Input[list]`) - External urls for etcd service (list) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `gid` (`pulumi.Input[float]`) - Etcd service GID. Default: `0`. For Rancher v2.3.x or above (int) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `key` (`pulumi.Input[str]`) - TLS key for etcd service (string) * `path` (`pulumi.Input[str]`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `retention` (`pulumi.Input[str]`) - Retention for etcd backup. Default `6` (int) * `snapshot` (`pulumi.Input[bool]`) - Snapshot option for etcd service (bool) * `uid` (`pulumi.Input[float]`) - Etcd service UID. Default: `0`. For Rancher v2.3.x or above (int) * `kubeApi` (`pulumi.Input[dict]`) - Kube API options for RKE services (list maxitems:1) * `admissionConfiguration` (`pulumi.Input[dict]`) - Admission configuration (map) * `alwaysPullImages` (`pulumi.Input[bool]`) - Enable [AlwaysPullImages](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#alwayspullimages) Admission controller plugin. [Rancher docs](https://rancher.com/docs/rke/latest/en/config-options/services/#kubernetes-api-server-options) Default: `false` (bool) * `auditLog` (`pulumi.Input[dict]`) - K8s audit log configuration. (list maxitem: 1) * `configuration` (`pulumi.Input[dict]`) - Event rate limit configuration. (map) * `format` (`pulumi.Input[str]`) - Audit log format. Default: 'json' (string) * `maxAge` (`pulumi.Input[float]`) - Audit log max age. Default: `30` (int) * `maxBackup` (`pulumi.Input[float]`) - Audit log max backup. Default: `10` (int) * `maxSize` (`pulumi.Input[float]`) - Audit log max size. Default: `100` (int) * `path` (`pulumi.Input[str]`) - (Optional) Audit log path. Default: `/var/log/kube-audit/audit-log.json` (string) * `policy` (`pulumi.Input[str]`) - Audit log policy json formated string. `omitStages` and `rules` json fields are supported. Example: `policy = jsonencode({"rules":[{"level": "Metadata"}]})` (string) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `eventRateLimit` (`pulumi.Input[dict]`) - K8s event rate limit configuration. (list maxitem: 1) * `configuration` (`pulumi.Input[dict]`) - Event rate limit configuration. (map) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `podSecurityPolicy` (`pulumi.Input[bool]`) - Pod Security Policy option for kube API service. Default `false` (bool) * `secretsEncryptionConfig` (`pulumi.Input[dict]`) - [Encrypt k8s secret data configration](https://rancher.com/docs/rke/latest/en/config-options/secrets-encryption/). (list maxitem: 1) * `customConfig` (`pulumi.Input[dict]`) - Secrets encryption configuration. (map) * `enabled` (`pulumi.Input[bool]`) - Enable the authorized cluster endpoint. Default `true` (bool) * `serviceClusterIpRange` (`pulumi.Input[str]`) - Service Cluster ip Range option for kube controller service (string) * `serviceNodePortRange` (`pulumi.Input[str]`) - Service Node Port Range option for kube API service (string) * `kubeController` (`pulumi.Input[dict]`) - Kube Controller options for RKE services (list maxitems:1) * `clusterCidr` (`pulumi.Input[str]`) - Cluster CIDR option for kube controller service (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `serviceClusterIpRange` (`pulumi.Input[str]`) - Service Cluster ip Range option for kube controller service (string) * `kubelet` (`pulumi.Input[dict]`) - Kubelet options for RKE services (list maxitems:1) * `clusterDnsServer` (`pulumi.Input[str]`) - Cluster DNS Server option for kubelet service (string) * `clusterDomain` (`pulumi.Input[str]`) - Cluster Domain option for kubelet service (string) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `failSwapOn` (`pulumi.Input[bool]`) - Enable or disable failing when swap on is not supported (bool) * `generate_serving_certificate` [Generate a certificate signed by the kube-ca](https://rancher.com/docs/rke/latest/en/config-options/services/#kubelet-serving-certificate-requirements). Default `false` (bool) * `generateServingCertificate` (`pulumi.Input[bool]`) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `infraContainerImage` (`pulumi.Input[str]`) - Infra container image for kubelet service (string) * `kubeproxy` (`pulumi.Input[dict]`) - Kubeproxy options for RKE services (list maxitems:1) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `scheduler` (`pulumi.Input[dict]`) - Scheduler options for RKE services (list maxitems:1) * `extraArgs` (`pulumi.Input[dict]`) - Extra arguments for scheduler service (map) * `extraBinds` (`pulumi.Input[list]`) - Extra binds for scheduler service (list) * `extraEnvs` (`pulumi.Input[list]`) - Extra environment for scheduler service (list) * `image` (`pulumi.Input[str]`) - Docker image for scheduler service (string) * `sshAgentAuth` (`pulumi.Input[bool]`) - Use ssh agent auth. Default `false` (bool) * `sshCertPath` (`pulumi.Input[str]`) - Cluster level SSH certificate path (string) * `sshKeyPath` (`pulumi.Input[str]`) - Node SSH private key path (string) """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["aks_config"] = aks_config __props__["annotations"] = annotations __props__["cluster_auth_endpoint"] = cluster_auth_endpoint __props__["cluster_monitoring_input"] = cluster_monitoring_input __props__["cluster_registration_token"] = cluster_registration_token __props__["cluster_template_answers"] = cluster_template_answers __props__["cluster_template_id"] = cluster_template_id __props__["cluster_template_questions"] = cluster_template_questions __props__["cluster_template_revision_id"] = cluster_template_revision_id __props__["default_pod_security_policy_template_id"] = default_pod_security_policy_template_id __props__["default_project_id"] = default_project_id __props__["description"] = description __props__["desired_agent_image"] = desired_agent_image __props__["desired_auth_image"] = desired_auth_image __props__["docker_root_dir"] = docker_root_dir __props__["driver"] = driver __props__["eks_config"] = eks_config __props__["enable_cluster_alerting"] = enable_cluster_alerting __props__["enable_cluster_istio"] = enable_cluster_istio __props__["enable_cluster_monitoring"] = enable_cluster_monitoring __props__["enable_network_policy"] = enable_network_policy __props__["gke_config"] = gke_config __props__["kube_config"] = kube_config __props__["labels"] = labels __props__["name"] = name __props__["rke_config"] = rke_config __props__["system_project_id"] = system_project_id __props__["windows_prefered_cluster"] = windows_prefered_cluster return Cluster(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
StarcoderdataPython
1627811
<gh_stars>1-10 """ 백준 6764번 : Sounds fishy! """ nums = [int(input()) for _ in range(4)] if nums[0] == nums[1] == nums[2] == nums[3]: print("Fish At Constant Depth") elif nums[0] < nums[1] < nums[2] < nums[3]: print("Fish Rising") elif nums[0] > nums[1] > nums[2] > nums[3]: print("Fish Diving") else: print('No Fish')
StarcoderdataPython
81066
<reponame>likx2/HypeFans import datetime from django.db import models from django.contrib.auth.models import AbstractUser from core.utils.func import user_avatar from unixtimestampfield.fields import UnixTimeStampField from django_countries.fields import CountryField from dateutil.relativedelta import relativedelta import datetime from django.db.models.signals import post_save class User(AbstractUser): email = models.EmailField( 'E-mail', unique=True, help_text='Required', error_messages={ 'unique': "A user with that E-mail already exists.", }, null=True, db_index=True ) avatar = models.ImageField( upload_to=user_avatar, verbose_name='Аватар', null=True, blank=True ) background_photo = models.ImageField( upload_to=user_avatar, verbose_name='Фото заднего плана', null=True, blank=True ) username = models.CharField( 'Username', max_length=255, null=True, blank=True, unique=True) first_name = models.CharField( 'First name', max_length=255, null=True, blank=True) bio = models.TextField(verbose_name='БИО профиля', null=True, blank=True) birthday_date = UnixTimeStampField( verbose_name='День рождения', null=True, blank=True) location = CountryField(null=True, blank=True) subscribtion_price = models.IntegerField(verbose_name='Цена подписки', default=0) subscribtion_duration = models.IntegerField(verbose_name='Длина подписки в днях', default=7) post_amount = models.IntegerField( verbose_name='Кол-во постов', default=0, blank=True, null=True) fans_amount = models.IntegerField( verbose_name='Кол-во фанатов', default=0, blank=True, null=True) repheral_link = models.CharField( verbose_name='Реферальная ссылка', max_length=255, null=True, blank=True) repheral_users = models.ManyToManyField( 'self', verbose_name='Реферальные пользователи', related_name='referal_users', blank=True ) blocked_users = models.ManyToManyField( 'self', verbose_name='Заблокированные пользователи', related_name='blocked_users', blank=True ) my_subscribes = models.ManyToManyField( 'self', verbose_name='Мои подписки', related_name='my_subscribes', blank=True ) email_notifications = models.BooleanField( 'Уведомления по почте', default=False) push_notifications = models.BooleanField('Пуш уведомления', default=False) hide_online = models.BooleanField('Скрывать онлайн', default=False) allow_comments = models.BooleanField( 'Разрешить комментарии постов', default=True) show_post_amount = models.BooleanField( 'Показывать кол-во постов', default=True) show_fans_amount = models.BooleanField( 'Показывать кол-во фанов', default=True) show_watermark = models.BooleanField( 'Показывать вотермарку', default=False) validated_email = models.BooleanField( 'Подтвержденная почта', default=False) validated_user = models.BooleanField( 'Подтвержденный профиль', default=False) credit_amount = models.IntegerField( verbose_name='Кредитный баланс', default=0) earned_credits_amount = models.IntegerField( verbose_name='Заработано', default=0) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [ 'username' ] @staticmethod def _create_user(password, email, **extra_fields): if not email: raise ValueError('The given email must be set') user = User.objects.create( email=email, **extra_fields ) user.set_password(password) user.save() return user def create_user(self, email, password=<PASSWORD>, **extra_fields): extra_fields.setdefault('is_staff', False) extra_fields.setdefault('is_superuser', False) return self._create_user(password, email, **extra_fields) def create_superuser(self, email, password=<PASSWORD>, **extra_fields): extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) if extra_fields.get('is_staff') is not True: raise ValueError('Superuser must have is_staff=True.') if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(password, email, **extra_fields) def __str__(self): return str(self.username) class Meta: verbose_name = 'Пользователь' verbose_name_plural = 'Пользователи' class Subscription(models.Model): source = models.ForeignKey(User, verbose_name='Кто подписался', related_name='source_user_subscribe', on_delete=models.CASCADE) target = models.ForeignKey(User, verbose_name='На кого подписался', related_name='target_user_subscribe', on_delete=models.CASCADE) start_date = UnixTimeStampField('Время подписки', auto_now_add=True) end_date = UnixTimeStampField('Время конца подписки') def __str__(self): return self.source, '-', self.target class Meta: verbose_name = 'Подписка' verbose_name_plural = 'Подписки' class Card(models.Model): user = models.ForeignKey(User, related_name='user_card', on_delete=models.CASCADE,) number = models.BigIntegerField(verbose_name='Номер карты') date_year = models.CharField(verbose_name='Месяц/год', max_length=5) cvc = models.CharField(verbose_name='CVC', max_length=3) creator = models.BooleanField(verbose_name='Карта создателя', default=False) class Meta: verbose_name = 'Карта' verbose_name_plural = 'Карты' def __str__(self): return f"{self.pk}-{self.user}" class Donation(models.Model): sender = models.ForeignKey(User, related_name='paid_user', on_delete=models.DO_NOTHING) reciever = models.ForeignKey(User, related_name='recieved_user', on_delete=models.DO_NOTHING) datetime = UnixTimeStampField('Время оплаты', auto_now_add=True) amount = models.FloatField(verbose_name='Сумма', null=True, default=0) class Meta: verbose_name = 'Пожертвование' verbose_name_plural = 'Пожертвования' def __str__(self): return f"{self.pk}-{self.sender}" class Payment(models.Model): card = models.ForeignKey(Card, verbose_name='Карта пополнения', related_name='card_payment', on_delete=models.DO_NOTHING) datetime = UnixTimeStampField(verbose_name='Время пополнения') amount = models.FloatField(verbose_name='Сумма пополнения') class Meta: verbose_name = 'Пополнение' verbose_name_plural = 'Пополнения' def __str__(self): return f"{self.pk}-{self.card}" class PendingUser(models.Model): user= models.ForeignKey(User, verbose_name='Ожидающие верификации', on_delete=models.CASCADE) photo = models.ImageField(verbose_name='Документы', upload_to='docs/') verified = models.BooleanField(verbose_name='Верифицирован', null=True, blank=True) class Meta: verbose_name = 'Пользователь на верификацию' verbose_name_plural = 'Пользователи на верификацию' def __str__(self): return f"{self.pk}-{self.card}" class UserOnline(models.Model): user = models.CharField(primary_key=True, max_length=255, verbose_name='Ю<NAME>', blank=True) last_action = UnixTimeStampField(auto_now=True) class Meta: verbose_name = 'Последнее действие пользователя' verbose_name_plural = 'Последние действия пользователей' def __str__(self): return f"{self.user}-{self.last_action}" def update_verification(sender: PendingUser, instance: PendingUser, created: bool, **kwargs): if not created: if instance.verified: instance.user.verified = True instance.user.save() post_save.connect(update_verification, sender=PendingUser)
StarcoderdataPython
30578
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MrTaskman worker script which executes MacOS commands.""" __author__ = '<EMAIL> (<NAME>)' import cStringIO import datetime import httplib import json import logging import os import socket import StringIO import subprocess import sys import time import urllib2 import gflags from client import mrtaskman_api from client import package_installer from client import package_cache from common import device_info from common import http_file_upload from common import parsetime from common import split_stream FLAGS = gflags.FLAGS gflags.DEFINE_string('log_filename', '', 'Where to log stuff. Required.') gflags.DEFINE_string('worker_name', '', 'Unique worker name.') gflags.DEFINE_list('worker_capabilities', ['macos', 'android'], 'Things this worker can do.') # Package cache flags. gflags.DEFINE_boolean('use_cache', True, 'Whether or not to use package cache.') gflags.DEFINE_string('cache_path', '/usr/local/worker_cache', 'Where to cache packages.') gflags.DEFINE_integer('min_duration_seconds', 60, 'Minimum time to cache something.') gflags.DEFINE_integer('max_cache_size_bytes', 2 * 1024 * 1024 * 1024, 'Maximum size of the cache in bytes.') gflags.DEFINE_float('low_watermark_percentage', 0.6, 'When cleaning up, keeps at least this much cache.') gflags.DEFINE_float('high_watermark_percentage', 0.8, 'When cleaning up, deletes to below this line.') class TaskError(Exception): pass class MrTaskmanUnrecoverableHttpError(TaskError): pass class MrTaskmanRecoverableHttpError(TaskError): pass def GetHostname(): return socket.gethostname() class MacOsWorker(object): """Executes macos tasks.""" def __init__(self, worker_name, log_stream): self.worker_name_ = worker_name self.log_stream_ = log_stream self.api_ = mrtaskman_api.MrTaskmanApi() self.hostname_ = GetHostname() self.capabilities_ = {'executor': self.GetCapabilities()} self.executors_ = {} for capability in self.capabilities_['executor']: self.executors_[capability] = self.ExecuteTask self.use_cache_ = FLAGS.use_cache if self.use_cache_: self.package_cache_ = package_cache.PackageCache( FLAGS.min_duration_seconds, FLAGS.max_cache_size_bytes, FLAGS.cache_path, FLAGS.low_watermark_percentage, FLAGS.high_watermark_percentage) def GetCapabilities(self): capabilities = device_info.GetCapabilities() capabilities.append('macos') capabilities.append(self.worker_name_) return capabilities def AssignTask(self): """Makes a request to /tasks/assign to get assigned a task. Returns: Task if a task was assigned, or None. """ try: task = self.api_.AssignTask(self.worker_name_, self.hostname_, self.capabilities_) return task except urllib2.HTTPError, e: logging.info('Got %d HTTP response from MrTaskman on AssignTask.', e.code) return None except urllib2.URLError, e: logging.info('Got URLError trying to reach MrTaskman: %s', e) return None def SendResponse(self, task_id, stdout, stderr, task_result): while True: try: # TODO(jeff.carollo): Refactor. device_sn = device_info.GetDeviceSerialNumber() task_result['device_serial_number'] = device_sn response_url = self.api_.GetTaskCompleteUrl(task_id) if not response_url: logging.info('No task complete url for task_id %s', task_id) return response_url = response_url.get('task_complete_url', None) if not response_url: logging.info('No task complete url for task_id %s', task_id) return self.api_.SendTaskResult(response_url, stdout, stderr, task_result) logging.info('Successfully sent response for task %s: %s', task_id, self.api_.MakeTaskUrl(task_id)) return except urllib2.HTTPError, error_response: body = error_response.read() code = error_response.code if code == 404: logging.warning('TaskCompleteUrl timed out.') continue logging.warning('SendResponse HTTPError code %d\n%s', code, body) return except urllib2.URLError, e: logging.info( 'Got URLError trying to send response to MrTaskman: %s', e) logging.info('Retrying in 10 seconds') time.sleep(10) continue def GetTaskCompleteUrl(self, task_id): try: return self.api_.GetTaskCompleteUrl(task_id) except urllib2.HTTPError, error_response: body = error_response.read() code = error_response.code logging.warning('GetTaskCompleteUrl HTTPError code %d\n%s', code, body) def ShouldWaitForDevice(self): """Returns True iff this worker controls a device which is offline.""" if not device_info.DEVICE_SN: return False return not device_info.DeviceIsConnected() def PollAndExecute(self): logging.info('Polling for work...') device_active = True while True: try: if self.ShouldWaitForDevice(): if device_active: logging.info('Device %s is offline. Waiting for it to come back.', device_info.DEVICE_SN) device_active = False time.sleep(10) continue if not device_active: logging.info('Device came back online.') device_active = True # TODO(jeff.carollo): Wrap this in a catch-all Excepion handler that # allows us to continue executing in the face of various task errors. task = self.AssignTask() if not task: time.sleep(10) continue except KeyboardInterrupt: logging.info('Caught CTRL+C. Exiting.') return task_stream = cStringIO.StringIO() task_logs = None self.log_stream_.AddStream(task_stream) try: logging.info('Got a task:\n%s\n', json.dumps(task, 'utf-8', indent=2)) config = task['config'] task_id = int(task['id']) attempt = task['attempts'] # Figure out which of our executors we can use. executor = None allowed_executors = config['task']['requirements']['executor'] for allowed_executor in allowed_executors: try: executor = self.executors_[allowed_executor] except KeyError: pass if executor is not None: break if executor is None: # TODO: Send error response to server. # This is probably our fault - we said we could do something # that we actually couldn't do. logging.error('No matching executor from %s', allowed_executors) raise Exception('No allowed executors matched our executors_:\n' + '%s\nvs.%s\n' % (allowed_executors, self.executors_)) try: # We've got a valid executor, so use it. (results, stdout, stderr) = executor(task_id, attempt, task, config) except MrTaskmanUnrecoverableHttpError: logging.error( 'Unrecoverable MrTaskman HTTP error. Aborting task %d.', task_id) continue finally: self.log_stream_.RemoveStream(task_stream) task_logs = task_stream.getvalue().decode('utf-8') task_stream.close() try: results['worker_log'] = task_logs.encode('utf-8') self.SendResponse(task_id, stdout, stderr, results) except MrTaskmanUnrecoverableHttpError: logging.error( 'Unrecoverable MrTaskman HTTP error. Aborting task %d.', task_id) logging.info('Polling for work...') # Loop back up and poll for the next task. def ExecuteTask(self, task_id, attempt, task, config): logging.info('Recieved task %s', task_id) try: tmpdir = package_installer.TmpDir() # Download the files we need from the server. files = config.get('files', []) self.DownloadAndStageFiles(files) # Install any packages we might need. # TODO(jeff.carollo): Handle any exceptions raised here. packages = config.get('packages', []) self.DownloadAndInstallPackages(packages, tmpdir) # We probably don't want to run forever. Default to 12 minutes. timeout = config['task'].get('timeout', '12m') timeout = parsetime.ParseTimeDelta(timeout) # Get any environment variables to inject. env = config['task'].get('env', {}) env = env.update(os.environ) # Get our command and execute it. command = config['task']['command'] logging.info('Running command %s', command) (exit_code, stdout, stderr, execution_time, result_metadata) = ( self.RunCommandRedirectingStdoutAndStderrWithTimeout( command, env, timeout, tmpdir.GetTmpDir())) logging.info('Executed %s with result %d', command, exit_code) results = { 'kind': 'mrtaskman#task_complete_request', 'task_id': task_id, 'attempt': attempt, 'exit_code': exit_code, 'execution_time': execution_time.total_seconds(), 'result_metadata': result_metadata } return (results, stdout, stderr) finally: tmpdir.CleanUp() def RunCommandRedirectingStdoutAndStderrWithTimeout( self, command, env, timeout, cwd): command = ' '.join([command, '>stdout', '2>stderr']) # TODO: More precise timing through process info. begin_time = datetime.datetime.now() timeout_time = begin_time + timeout process = subprocess.Popen(args=command, env=env, shell=True, cwd=cwd) ret = None while None == ret and (datetime.datetime.now() < timeout_time): time.sleep(0.02) ret = process.poll() finished_time = datetime.datetime.now() if finished_time >= timeout_time and (None == ret): logging.info('command %s timed out.', command) process.terminate() process.wait() ret = -99 execution_time = finished_time - begin_time try: stdout = file(os.path.join(cwd, 'stdout'), 'rb') except IOError, e: logging.error('stdout was not written.') stdout = file(os.path.join(cwd, 'stdout'), 'w') stdout.write('No stdout.') stdout.flush() stdout.close() stdout = file(os.path.join(cwd, 'stdout'), 'rb') try: stderr = file(os.path.join(cwd, 'stderr'), 'rb') except IOError, e: logging.error('stderr was not written.') stderr = file(os.path.join(cwd, 'stderr'), 'w') stderr.write('No stderr.') stderr.flush() stderr.close() stderr = file(os.path.join(cwd, 'stderr'), 'rb') try: result_metadata_file = file(os.path.join(cwd, 'result_metadata'), 'r') result_metadata = json.loads(result_metadata_file.read().decode('utf-8')) except: result_metadata = None return (ret, stdout, stderr, execution_time, result_metadata) def DownloadAndStageFiles(self, files): logging.info('Not staging files: %s', files) # TODO: Stage files. def DownloadAndInstallPackages(self, packages, tmpdir): # TODO(jeff.carollo): Create a package cache if things take off. for package in packages: attempts = 0 while True: try: # TODO(jeff.carollo): Put package cache code here. if self.use_cache_: self.package_cache_.CopyToDirectory( package, tmpdir.GetTmpDir(), package_installer.DownloadAndInstallPackage) else: package_installer.DownloadAndInstallPackage( package['name'], package['version'], tmpdir.GetTmpDir()) break except urllib2.HTTPError, e: logging.error('Got HTTPError %d trying to grab package %s.%s: %s', e.code, package['name'], package['version'], e) raise MrTaskmanUnrecoverableHttpError(e) except (urllib2.URLError, httplib.IncompleteRead, httplib.BadStatusLine, httplib.HTTPException), e: logging.error('Got URLError trying to grab package %s.%s: %s', package['name'], package['version'], e) logging.info('Retrying in 10') attempts += 1 # TODO(jeff.carollo): Figure out a robust way to do this. # Likely need to just try a few times to get around Internet blips # then mark task as failed for package reasons. if attempts < 10: time.sleep(10) continue else: logging.error('Failed to grab package for 100 attempts. Aborting.') raise MrTaskmanUnrecoverableHttpError(e) except IOError, e: logging.error('Got IOError trying to grab package %s.%s: %s', package['name'], package['version'], e) raise MrTaskmanUnrecoverableHttpError(e) def main(argv): try: argv = FLAGS(argv) except gflags.FlagsError, e: sys.stderr.write('%s\n' % e) sys.exit(1) return # Set default socket timeout to 2 hours so that we catch missing timeouts. socket.setdefaulttimeout(2 * 60 * 60) if not FLAGS.log_filename: sys.stderr.write('Flag --log_filename is required.\n') sys.exit(-9) return try: from third_party import portalocker log_file = file(FLAGS.log_filename, 'a+') portalocker.lock(log_file, portalocker.LOCK_EX | portalocker.LOCK_NB) except Exception, e: logging.exception(e) print 'Could not get exclusive lock.' sys.exit(-10) return try: FORMAT = '%(asctime)-15s %(message)s' log_stream = split_stream.SplitStream(sys.stdout, log_file) logging.basicConfig(format=FORMAT, level=logging.DEBUG, stream=log_stream) macos_worker = MacOsWorker(FLAGS.worker_name, log_stream=log_stream) # Run forever, executing tasks from the server when available. macos_worker.PollAndExecute() finally: logging.shutdown() log_file.flush() portalocker.unlock(log_file) log_file.close() if __name__ == '__main__': main(sys.argv)
StarcoderdataPython
157962
<filename>mipqctool/controller/inferschema.py import os from mipqctool.model.qcfrictionless import QCtoDC, CdeDict, QcTable from mipqctool.controller.tablereport import TableReport class InferSchema(object): def __init__(self, table, csvname, sample_rows=100, maxlevels=10, cdedict=None, na_empty_strings_only=False): """Class for infering a dataset's schema which comes in csv file. Arguments: :param table: a QcTable holding the dataset csv data. :param csvname: a string with the filename of the dataset csv. :param sample_rows: number of rows that are going to be used for dataset's schema inference :param maxlevel: number of unique values in order to one infered variable to be considered as nominal(categorical) above that number the variable will be considered as a text data type. :param cdedict: A CdeDict object containg info about all CDE variables """ self.__table = table self.__csvname = csvname self.__table.infer(limit=sample_rows, maxlevels=maxlevels, na_empty_strings_only=na_empty_strings_only) self.__suggestions = None if cdedict: self.__cdedict = cdedict self.__tablereport = TableReport(self.__table, id_column=1) @property def tablereport(self): return self.__tablereport @property def invalid_nominals(self) -> dict: """Returns nominal fields with invalid enumrations. An enumration is invalid if it is an SQL keyword or is a string and starts with a digit. """ return self.__table.invalid_nominals def suggest_cdes(self, threshold): """Arguments: :param threshold: 0-1 similarity threshold, below that not a cde is suggested """ if self.__cdedict: suggestions = {} for name, columnreport in self.__tablereport.columnreports.items(): var_name = columnreport.name cde = self.__cdedict.suggest_cde(columnreport, threshold=threshold) if cde: suggestions[var_name] = [cde.code, cde.conceptpath] else: suggestions[var_name] = [None, None] self.__suggestions = suggestions else: raise Exception('Error with the CDE dictionary') def export2excel(self, filepath): qctodc = QCtoDC(self.__table.schema.descriptor, self.__csvname, self.__suggestions) qctodc.export2excel(filepath) def expoct2qcjson(self, filename): self.__table.schema.save(filename) @classmethod def from_disc(cls, csvpath, sample_rows=100, maxlevels=10, cdedict=None, na_empty_strings_only=False): """ Constructs an InferSchema from loading a csv file from local disc. Arguments: :param csvpath: string filepath of the csv :param sample_rows: number of rows that are going to be used for dataset's schema inference :param maxlevel: number of unique values in order to one infered variable to be considered as nominal(categorical) above that number the variable will be considered as a text data type. :param cdedict: A CdeDict object containg info about all CDE variables """ dataset = QcTable(csvpath, schema=None) csvname = os.path.basename(csvpath) return cls(table=dataset, csvname=csvname, sample_rows=sample_rows,maxlevels=maxlevels, cdedict=cdedict, na_empty_strings_only=na_empty_strings_only)
StarcoderdataPython
1762726
<gh_stars>1-10 # -*- coding: utf-8 -*- # Zinc dumping and parsing module # (C) 2016 VRT Systems # # vim: set ts=4 sts=4 et tw=78 sw=4 si: import base64 import binascii import datetime import random import string import sys import traceback import six import hszinc from hszinc import VER_3_0, Grid, MODE_ZINC, MODE_JSON, XStr from .pint_enable import to_pint STR_CHARSET = string.ascii_letters + string.digits + '\n\r\t\f\b' GENERATION_NUMBER = 1 # FIXME PERCENT_RECURSIVE = 1 def gen_random_const(): return random.choice([True, False, None, hszinc.MARKER, hszinc.REMOVE, hszinc.NA]) def gen_random_ref(): # Generate a randomised reference. name = gen_random_str(charset= \ string.ascii_letters + string.digits \ + '_:-.~') if random.choice([True, False]): value = gen_random_str(charset= \ string.ascii_letters + string.digits + '_') else: value = None return hszinc.Ref(name, value) def gen_random_bin(): # Generate a randomized binary return hszinc.Bin(random.choice([ 'text/plain', 'text/html', 'text/zinc', 'application/json', 'application/octet-stream', 'image/png', 'image/jpeg', ])) def gen_random_xstr(): # Generate a randomized binary barray = bytearray(random.getrandbits(8) for _ in range(5)) return XStr(*random.choice([ ('hex', binascii.hexlify(barray).decode('ascii')), ('b64', binascii.b2a_base64(barray)[:-1] if sys.version_info[0] <= 2 else binascii.b2a_base64(barray).decode("ascii") ) ])) def gen_random_uri(): return hszinc.Uri(gen_random_str(charset= \ string.ascii_letters + string.digits)) def gen_random_str(min_length=1, max_length=20, charset=STR_CHARSET): # Generate a random 20-character string return ''.join([random.choice(charset) for c in range(0, random.randint(min_length, max_length))]) def gen_random_date(): # This might generate an invalid date, we keep trying until we get one. while True: try: return datetime.date(random.randint(1, 3000), random.randint(1, 12), random.randint(1, 31)) except ValueError: pass def gen_random_time(): return datetime.time(random.randint(0, 23), random.randint(0, 59), random.randint(0, 59), random.randint(0, 999999)) def gen_random_date_time(): # Pick a random timezone tz_name = random.choice(list(hszinc.zoneinfo.get_tz_map().keys())) tz = hszinc.zoneinfo.timezone(tz_name) return tz.localize(datetime.datetime.combine( gen_random_date(), gen_random_time())) def gen_random_coordinate(): return hszinc.Coordinate( \ round(gen_random_num(360) - 180.0, 2), round(gen_random_num(360) - 180.0, 2)) def gen_random_num(scale=1000, digits=2): return round(random.random() * scale, digits) def gen_random_quantity(): return hszinc.Quantity(gen_random_num(), to_pint('percent')) def gen_random_list(): return [gen_random_scalar() for x in range(0, random.randint(0, 2))] def gen_random_map(): return {gen_random_name(): gen_random_scalar() for x in range(0, random.randint(0, 2))} RANDOM_TYPES = [ # Only for v2.0 gen_random_bin, gen_random_xstr, # gen_random_const, gen_random_ref, gen_random_uri, gen_random_xstr, # gen_random_str, gen_random_date, gen_random_time, gen_random_date_time, # gen_random_coordinate, gen_random_num, gen_random_quantity ] def gen_random_scalar(): if (random.randint(0, 100) < PERCENT_RECURSIVE): return random.choice(RANDOM_RECURSIVE_TYPES)() else: return random.choice(RANDOM_TYPES)() def gen_random_name(existing=None): while True: meta = random.choice(string.ascii_lowercase) \ + gen_random_str(min_length=0, max_length=7, \ charset=string.ascii_letters + string.digits) if (existing is None) or (meta not in existing): return meta def gen_random_meta(): meta = hszinc.MetadataObject() names = set() for n in range(0, random.randint(1, 5)): name = gen_random_name(existing=names) value = gen_random_scalar() meta[name] = value return meta def gen_random_grid(): # Generate a randomised grid of values and try parsing it back. grid = hszinc.Grid(version=VER_3_0) grid.metadata.extend(gen_random_meta()) # Randomised columns for n in range(0, random.randint(1, 5)): col_name = gen_random_name(existing=grid.column) if random.choice([True, False]): grid.column[col_name] = gen_random_meta() else: grid.column[col_name] = {} # Randomised rows for n in range(0, random.randint(0, 20)): row = {} for c in grid.column.keys(): if random.choice([True, False]): row[c] = gen_random_scalar() grid.append(row) return grid RANDOM_RECURSIVE_TYPES = [gen_random_list, gen_random_map, gen_random_grid] def dump_grid(g): print('Version: %s' % g.version) print('Metadata:') for k, v in g.metadata.items(): print(' %s = %r' % (k, v)) print('Columns:') for c, meta in g.column.items(): print(' %s:' % c) for k, v in g.column[c].items(): print(' %s = %r' % (k, v)) print('Rows:') for row in g: print('---') for c, v in row.items(): print(' %s = %r' % (c, v)) def approx_check(v1, v2): # Check types match if (isinstance(v1, six.string_types) \ and isinstance(v2, six.string_types)): assert type(v1) == type(v2), '%s != %s' % (type(v1), type(v2)) if isinstance(v1, datetime.time): assert v1.replace(microsecond=0) == v2.replace(microsecond=0) elif isinstance(v1, datetime.datetime): assert v1.tzinfo == v2.tzinfo assert v1.date() == v2.date() approx_check(v1.time(), v2.time()) elif isinstance(v1, hszinc.Quantity): assert v1.unit == v2.unit approx_check(v1.value, v2.value) elif isinstance(v1, hszinc.Coordinate): approx_check(v1.latitude, v2.latitude) approx_check(v1.longitude, v2.longitude) elif isinstance(v1, float) or isinstance(v2, float): assert abs(v1 - v2) < 0.000001 elif isinstance(v1, Grid): approx_check_grid(v1, v2) else: assert v1 == v2, '%r != %r' % (v1, v2) def _try_dump_parse(ref_grid, mode): try: # Dump the randomised grid to a string grid_str = hszinc.dump(ref_grid, mode=mode) except: # Dump some detail about the grid print('Failed to dump grid.') dump_grid(ref_grid) raise # Parse the grid string try: parsed_grid = hszinc.parse(grid_str, mode=mode, single=True) except: print('Failed to parse dumped grid') dump_grid(ref_grid) print('--- Parsed string ---') print(grid_str) raise approx_check_grid(parsed_grid, ref_grid) def try_dump_parse_json(): ref_grid = gen_random_grid() _try_dump_parse(ref_grid, MODE_JSON) def try_dump_parse_zinc(): ref_grid = gen_random_grid() _try_dump_parse(ref_grid, MODE_ZINC) def approx_check_grid(parsed_grid, ref_grid): # Check metadata matches try: assert set(ref_grid.metadata.keys()) \ == set(parsed_grid.metadata.keys()) for key in ref_grid.metadata.keys(): approx_check(ref_grid.metadata[key], parsed_grid.metadata[key]) except: print(traceback.format_exc()) print('Mismatch in metadata') print('Reference grid') dump_grid(ref_grid) print('Parsed grid') dump_grid(parsed_grid) raise try: # Check column matches assert set(ref_grid.column.keys()) \ == set(parsed_grid.column.keys()) except: print(traceback.format_exc()) print('Mismatch in column') print('Reference grid') dump_grid(ref_grid) print('Parsed grid') dump_grid(parsed_grid) raise for col in ref_grid.column.keys(): try: for key in ref_grid.column[col].keys(): approx_check(ref_grid.column[col][key], \ parsed_grid.column[col][key]) except: print(traceback.format_exc()) print('Mismatch in metadata for column %s' % col) print('Reference: %r' % ref_grid.column[col]) print('Parsed: %r' % parsed_grid.column[col]) raise try: # Check row matches assert len(ref_grid) == len(parsed_grid) except: print(traceback.format_exc()) print('Mismatch in row count') print('Reference grid') dump_grid(ref_grid) print('Parsed grid') dump_grid(parsed_grid) for (ref_row, parsed_row) in zip(ref_grid, parsed_grid): try: for col in ref_grid.column.keys(): approx_check(ref_row.get(col), parsed_row.get(col)) except: print(traceback.format_exc()) print('Mismatch in row') print('Reference:') print(ref_row) print('Parsed:') print(parsed_row) raise assert parsed_grid == ref_grid def test_loopback_zinc(): for trial in range(0, GENERATION_NUMBER): try_dump_parse_zinc() def test_loopback_json(): for trial in range(0, GENERATION_NUMBER): try_dump_parse_json()
StarcoderdataPython
3325201
<reponame>kids-first/kf-lib-data-ingest import os import pytest from conftest import TEST_DATA_DIR from kf_lib_data_ingest.etl.configuration.base_config import ( AbstractConfig, ConfigValidationError, PyModuleConfig, YamlConfig, ) from kf_lib_data_ingest.etl.configuration.ingest_package_config import ( IngestPackageConfig, ) def test_config_abs_cls(): # Declare a concrete ingest stage class class InvalidConfig(AbstractConfig): pass # Test that TypeError is raised if all abstract classes are not impl with pytest.raises(TypeError) as e: InvalidConfig() for m in ["_read_file", "_validate"]: assert m in str(e.value) class Config(AbstractConfig): def _read_file(self, filepath): pass def _validate(self): pass # Test that FileNotFoundError raised on file not exists with pytest.raises(FileNotFoundError): Config("foo") Config(os.path.join(TEST_DATA_DIR, "valid_yaml_config.yml")) def test_yaml_config(): schema_path = os.path.join(TEST_DATA_DIR, "yaml_schema.yml") config_path = os.path.join(TEST_DATA_DIR, "invalid_yaml_config.yml") with pytest.raises(ConfigValidationError) as e: YamlConfig(config_path, schema_path=schema_path) assert config_path in str(e.value) config_path = os.path.join(TEST_DATA_DIR, "valid_yaml_config.yml") YamlConfig(config_path, schema_path=schema_path) def test_attr_forwarding(): pmc = PyModuleConfig( os.path.join(TEST_DATA_DIR, "test_study", "transform_module.py") ) assert pmc.contents.transform_function == pmc.transform_function assert pmc.foo is None config_path = os.path.join(TEST_DATA_DIR, "valid_yaml_config.yml") schema_path = os.path.join(TEST_DATA_DIR, "yaml_schema.yml") yc = YamlConfig(config_path, schema_path=schema_path) assert yc.contents.get("params") == yc.params assert yc.foo is None def test_ingest_package_config(tmpdir): bipcf_path = os.path.join(tmpdir, "bad_ingest_package_config.py") with open(bipcf_path, "w") as bipcf: bipcf.write("HI, LOL!") with pytest.raises(ConfigValidationError): IngestPackageConfig(bipcf_path) # not valid python (syntax) with open(bipcf_path, "w") as bipcf: bipcf.write("foo = 'HI, LOL!'") with pytest.raises(ConfigValidationError): IngestPackageConfig(bipcf_path) # missing required members confdir = os.path.join(tmpdir, "extract_configs") os.mkdir(confdir) with open(bipcf_path, "w") as bipcf: bipcf.write( "\n".join( [ f'extract_config_dir = "{confdir}"', 'project = "SD_12345678"', "target_service_entities = []", ] ) ) IngestPackageConfig(bipcf_path) def test_extract_config(): pass def test_dataservice_schema(): pass def test_standard_model_schema(): pass
StarcoderdataPython
174299
import datetime from http import HTTPStatus from sanic.response import json from core.helpers import jsonapi from apps.commons.errors import DataNotFoundError from apps.news.models import News from apps.news.repository import NewsRepo from apps.news.services import UpdateService async def update(request, id): response = {} status = HTTPStatus.OK repo = NewsRepo(News) service = UpdateService(id, request.json, repo) try: news = service.call() response = { 'data': { 'id': str(news.id), 'type': 'news', 'attributes': { 'title': news.title, 'content': news.content, 'updated_at': str(news.updated_at) } } } except DataNotFoundError as not_found_err: error = jsonapi.format_error(title='Data not found', detail=not_found_err.message) response = jsonapi.return_an_error(error) status = HTTPStatus.NOT_FOUND return json(response, status=status)
StarcoderdataPython
4808294
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Arduino lock-in amplifier """ __author__ = "<NAME>" __authoremail__ = "<EMAIL>" __url__ = "https://github.com/Dennis-van-Gils/DvG_Arduino_lock-in_amp" __date__ = "31-08-2021" __version__ = "2.0.0" # pylint: disable=invalid-name import os import sys import time as Time import psutil from PyQt5 import QtCore from PyQt5 import QtWidgets as QtWid from PyQt5.QtCore import QDateTime import numpy as np from dvg_pyqt_filelogger import FileLogger from dvg_debug_functions import dprint from dvg_fftw_welchpowerspectrum import FFTW_WelchPowerSpectrum from Alia_protocol_serial import Alia, Waveform from Alia_qdev import Alia_qdev from Alia_gui import MainWindow # Show debug info in terminal? Warning: Slow! Do not leave on unintentionally. DEBUG = False DEBUG_TIMING = False # Enable GPU-accelerated computations on an NVIDIA videocard with CUDA support? # Affects the FIR filters. USE_CUDA = False # ------------------------------------------------------------------------------ # current_date_time_strings # ------------------------------------------------------------------------------ def current_date_time_strings(): cur_date_time = QDateTime.currentDateTime() return ( cur_date_time.toString("dd-MM-yyyy"), cur_date_time.toString("HH:mm:ss"), ) # ------------------------------------------------------------------------------ # Program termination routines # ------------------------------------------------------------------------------ def stop_running(): app.processEvents() alia_qdev.turn_off() alia_qdev.quit() logger.close() @QtCore.pyqtSlot() def notify_connection_lost(): stop_running() excl = " ! ! ! ! ! ! ! ! " window.qlbl_title.setText("%sLOST CONNECTION%s" % (excl, excl)) str_cur_date, str_cur_time = current_date_time_strings() str_msg = "%s %s\nLost connection to Arduino on port %s.\n" % ( str_cur_date, str_cur_time, alia.ser.portstr, ) print("\nCRITICAL ERROR @ %s" % str_msg) reply = QtWid.QMessageBox.warning( window, "CRITICAL ERROR", str_msg, QtWid.QMessageBox.Ok ) if reply == QtWid.QMessageBox.Ok: pass # Leave the GUI open for read-only inspection by the user @QtCore.pyqtSlot() def about_to_quit(): print("\nAbout to quit") stop_running() alia.close() # ------------------------------------------------------------------------------ # Lock-in amplifier data-acquisition update function # ------------------------------------------------------------------------------ def lockin_DAQ_update(): """Listen for new data blocks send by the lock-in amplifier and perform the main mathematical operations for signal processing. This function will run in a dedicated thread (i.e. `worker_DAQ`), separated from the main program thread that handles the GUI. NOTE: NO GUI OPERATIONS ARE ALLOWED HERE. Otherwise it may affect the `worker_DAQ` thread negatively, resulting in lost blocks of data. """ # Shorthands c: Alia.Config = alia.config state: Alia_qdev.State = alia_qdev.state # Prevent throwings errors if just paused if alia.lockin_paused: return False if DEBUG_TIMING: tock = Time.perf_counter() print("%.2f _DAQ" % (tock - alia.tick)) alia.tick = tock # Listen for data buffers send by the lock-in ( success, _counter, state.time, state.ref_X, state.ref_Y, state.sig_I, ) = alia.listen_to_lockin_amp() if not success: dprint("@ %s %s" % current_date_time_strings()) return False # Detect dropped blocks # --------------------- # TODO: Rethink this procedure. Might be easier done with the index of the # block that also gets send by the Arduino. We either receive a full block, # or we don't. There are no partial blocks that can be received. alia_qdev.state.blocks_received += 1 last_time = state.rb_time[-1] if state.blocks_received > 1 else np.nan dT = (state.time[0] - last_time) / 1e6 # [usec] to [sec] if dT > c.SAMPLING_PERIOD * 1e6 * 1.10: # Allow a little clock jitter N_dropped_samples = int(round(dT / c.SAMPLING_PERIOD) - 1) dprint("Dropped samples: %i" % N_dropped_samples) dprint("@ %s %s" % current_date_time_strings()) # Replace dropped samples with np.nan samples. # As a result, the filter output will contain a continuous series of # np.nan values in the output for up to `RingBuffer_FIR_Filter. # T_settle_filter` seconds long after the occurrence of the last dropped # sample. state.rb_time.extend( last_time + np.arange(1, N_dropped_samples + 1) * c.SAMPLING_PERIOD * 1e6 ) state.rb_ref_X.extend(np.full(N_dropped_samples, np.nan)) state.rb_ref_Y.extend(np.full(N_dropped_samples, np.nan)) state.rb_sig_I.extend(np.full(N_dropped_samples, np.nan)) # Stage 0 # ------- state.sig_I_min = np.min(state.sig_I) state.sig_I_max = np.max(state.sig_I) state.sig_I_avg = np.mean(state.sig_I) state.sig_I_std = np.std(state.sig_I) state.rb_time.extend(state.time) state.rb_ref_X.extend(state.ref_X) state.rb_ref_Y.extend(state.ref_Y) state.rb_sig_I.extend(state.sig_I) # Note: `ref_X` [non-dim] is transformed to `ref_X*` [V] # Note: `ref_Y` [non-dim] is transformed to `ref_Y*` [V] window.hcc_ref_X.extendData( state.time, np.multiply(state.ref_X, c.ref_V_ampl_RMS) + c.ref_V_offset ) window.hcc_ref_Y.extendData( state.time, np.multiply(state.ref_Y, c.ref_V_ampl_RMS) + c.ref_V_offset ) window.hcc_sig_I.extendData(state.time, state.sig_I) # Stage 1 # ------- # fmt: off # Apply filter 1 to sig_I state.filt_I = alia_qdev.firf_1_sig_I.apply_filter(state.rb_sig_I) if alia_qdev.firf_1_sig_I.filter_has_settled: # Retrieve the block of original data from the past that aligns with # the current filter output valid_slice = alia_qdev.firf_1_sig_I.rb_valid_slice state.time_1 = state.rb_time [valid_slice] old_sig_I = state.rb_sig_I[valid_slice] old_ref_X = state.rb_ref_X[valid_slice] old_ref_Y = state.rb_ref_Y[valid_slice] # Heterodyne mixing np.multiply(state.filt_I, old_ref_X, out=state.mix_X) np.multiply(state.filt_I, old_ref_Y, out=state.mix_Y) else: state.time_1.fill(np.nan) old_sig_I = np.full(c.BLOCK_SIZE, np.nan) state.mix_X.fill(np.nan) state.mix_Y.fill(np.nan) state.filt_I_min = np.min(state.filt_I) state.filt_I_max = np.max(state.filt_I) state.filt_I_avg = np.mean(state.filt_I) state.filt_I_std = np.std(state.filt_I) state.rb_time_1.extend(state.time_1) state.rb_filt_I.extend(state.filt_I) state.rb_mix_X .extend(state.mix_X) state.rb_mix_Y .extend(state.mix_Y) window.hcc_filt_1_in .extendData(state.time_1, old_sig_I) window.hcc_filt_1_out.extendData(state.time_1, state.filt_I) window.hcc_mix_X .extendData(state.time_1, state.mix_X) window.hcc_mix_Y .extendData(state.time_1, state.mix_Y) # fmt: on # Stage 2 # ------- # Apply filter 2 to the mixer output state.X = alia_qdev.firf_2_mix_X.apply_filter(state.rb_mix_X) state.Y = alia_qdev.firf_2_mix_Y.apply_filter(state.rb_mix_Y) if alia_qdev.firf_2_mix_X.filter_has_settled: # Retrieve the block of time data from the past that aligns with # the current filter output valid_slice = alia_qdev.firf_1_sig_I.rb_valid_slice state.time_2 = state.rb_time_1[valid_slice] # Signal amplitude: R np.sqrt(np.add(np.square(state.X), np.square(state.Y)), out=state.R) # Signal phase: Theta np.arctan2(state.Y, state.X, out=state.T) np.multiply(state.T, 180 / np.pi, out=state.T) # [rad] to [deg] else: state.time_2.fill(np.nan) state.R.fill(np.nan) state.T.fill(np.nan) state.X_avg = np.mean(state.X) state.Y_avg = np.mean(state.Y) state.R_avg = np.mean(state.R) state.T_avg = np.mean(state.T) state.rb_time_2.extend(state.time_2) state.rb_X.extend(state.X) state.rb_Y.extend(state.Y) state.rb_R.extend(state.R) state.rb_T.extend(state.T) window.hcc_LIA_XR.extendData( state.time_2, state.X if window.qrbt_XR_X.isChecked() else state.R ) window.hcc_LIA_YT.extendData( state.time_2, state.Y if window.qrbt_YT_Y.isChecked() else state.T ) # Check if memory address of underlying buffer is still unchanged # pylint: disable=pointless-string-statement """ test = np.asarray(state.rb_X) print("%6i, mem: %i, cont?: %i, rb buf mem: %i, full? %i" % ( state.blocks_received, test.__array_interface__['data'][0], test.flags['C_CONTIGUOUS'], state.rb_X._unwrap_buffer.__array_interface__['data'][0], state.rb_X.is_full)) """ # Power spectra # ------------- calculate_PS_sig_I() calculate_PS_filt_I() calculate_PS_mix_X() calculate_PS_mix_Y() calculate_PS_R() # Logging to file logger.update(mode="w") # Return success return True # ------------------------------------------------------------------------------ # Log functions # ------------------------------------------------------------------------------ def write_header_to_log(): header = ( "\t".join( ( "time[s]", "ref_X*[V]", "ref_Y*[V]", "sig_I[V]", "filt_I[V]", "mix_X[V]", "mix_Y[V]", "X[V]", "Y[V]", "R[V]", "T[deg]", ) ) + "\n" ) logger.write(header) def write_data_to_log(): if alia_qdev.firf_2_mix_X.filter_has_settled: # All filters have settled --> green light c = alia.config N = c.BLOCK_SIZE state = alia_qdev.state idx_offset = alia_qdev.firf_1_sig_I.rb_valid_slice.start # tick = Time.perf_counter() # Note: `ref_X` [non-dim] is transformed to `ref_X*` [V] # Note: `ref_Y` [non-dim] is transformed to `ref_Y*` [V] data = np.asmatrix( [ state.rb_time[:N] / 1e6, np.multiply(state.rb_ref_X[:N], c.ref_V_ampl_RMS) + c.ref_V_offset, np.multiply(state.rb_ref_Y[:N], c.ref_V_ampl_RMS) + c.ref_V_offset, state.rb_sig_I[:N], state.rb_filt_I[idx_offset : idx_offset + N], state.rb_mix_X[idx_offset : idx_offset + N], state.rb_mix_Y[idx_offset : idx_offset + N], state.X[:N], state.Y[:N], state.R[:N], state.T[:N], # For debugging: # state.rb_time_1[idx_offset : idx_offset + N] / 1e6, # state.time_2[:N] / 1e6, ] ) data = np.ma.transpose(data) # tock = Time.perf_counter() # print("%.4f" % (tock - tick), end=", ") # ~ 0.0001 s logger.np_savetxt(data, fmt="%.5f", delimiter="\t") # print("%.4f" % (Time.perf_counter() - tock)) # ~0.01 s # ------------------------------------------------------------------------------ # Main # ------------------------------------------------------------------------------ if __name__ == "__main__": # Set priority of this process to maximum in the operating system print("PID: %s" % os.getpid()) try: proc = psutil.Process(os.getpid()) if os.name == "nt": proc.nice(psutil.HIGH_PRIORITY_CLASS) # Windows else: proc.nice(-20) # Other except: # pylint: disable=bare-except print("Warning: Could not set process to high priority.") # -------------------------------------------------------------------------- # Arduino # -------------------------------------------------------------------------- # Connect to Arduino alia = Alia(read_timeout=4) alia.auto_connect() if not alia.is_alive: print("\nCheck connection and try resetting the Arduino.") print("Exiting...\n") sys.exit(0) if DEBUG_TIMING: alia.tick = Time.perf_counter() alia.begin( waveform=Waveform.Sine, freq=250, V_offset=1.65, V_ampl_RMS=0.5, ) # Create workers and threads alia_qdev = Alia_qdev( dev=alia, DAQ_function=lockin_DAQ_update, N_blocks=21, critical_not_alive_count=3, use_CUDA=USE_CUDA, debug=DEBUG, ) alia_qdev.signal_connection_lost.connect(notify_connection_lost) # -------------------------------------------------------------------------- # Create application and main window # -------------------------------------------------------------------------- QtCore.QThread.currentThread().setObjectName("MAIN") # For DEBUG info app = 0 # Work-around for kernel crash when using Spyder IDE app = QtWid.QApplication(sys.argv) app.aboutToQuit.connect(about_to_quit) window = MainWindow(alia, alia_qdev) # -------------------------------------------------------------------------- # File logger # -------------------------------------------------------------------------- logger = FileLogger( write_header_function=write_header_to_log, write_data_function=write_data_to_log, ) logger.signal_recording_started.connect( lambda filepath: window.qpbt_record.setText( "Recording to file: %s" % filepath ) ) logger.signal_recording_stopped.connect( lambda: window.qpbt_record.setText("Click to start recording to file") ) window.qpbt_record.clicked.connect( lambda state: logger.record(state) # pylint: disable=unnecessary-lambda ) # -------------------------------------------------------------------------- # Create power spectrum FFTW objects # -------------------------------------------------------------------------- p = { "len_data": alia_qdev.state.rb_capacity, "fs": alia.config.Fs, "nperseg": alia.config.Fs, } # fmt: off alia_qdev.fftw_PS_sig_I = FFTW_WelchPowerSpectrum(**p) alia_qdev.fftw_PS_filt_I = FFTW_WelchPowerSpectrum(**p) alia_qdev.fftw_PS_mix_X = FFTW_WelchPowerSpectrum(**p) alia_qdev.fftw_PS_mix_Y = FFTW_WelchPowerSpectrum(**p) alia_qdev.fftw_PS_R = FFTW_WelchPowerSpectrum(**p) # fmt: on # Only calculate the power spectrum when the curve is visible. Calculating # spectra is CPU intensive and might impact the responsiveness of the GUI # or, in the extreme case, cause dropped blocks of data. def calculate_PS_sig_I(): state = alia_qdev.state if window.pc_PS_sig_I.isVisible() and state.rb_sig_I.is_full: window.pc_PS_sig_I.setData( alia_qdev.fftw_PS_sig_I.freqs, alia_qdev.fftw_PS_sig_I.compute_spectrum_dB(state.rb_sig_I), ) def calculate_PS_filt_I(): state = alia_qdev.state if window.pc_PS_filt_I.isVisible() and state.rb_filt_I.is_full: window.pc_PS_filt_I.setData( alia_qdev.fftw_PS_filt_I.freqs, alia_qdev.fftw_PS_filt_I.compute_spectrum_dB(state.rb_filt_I), ) def calculate_PS_mix_X(): state = alia_qdev.state if window.pc_PS_mix_X.isVisible() and state.rb_mix_X.is_full: window.pc_PS_mix_X.setData( alia_qdev.fftw_PS_mix_X.freqs, alia_qdev.fftw_PS_mix_X.compute_spectrum_dB(state.rb_mix_X), ) def calculate_PS_mix_Y(): state = alia_qdev.state if window.pc_PS_mix_Y.isVisible() and state.rb_mix_Y.is_full: window.pc_PS_mix_Y.setData( alia_qdev.fftw_PS_mix_Y.freqs, alia_qdev.fftw_PS_mix_Y.compute_spectrum_dB(state.rb_mix_Y), ) def calculate_PS_R(): state = alia_qdev.state if window.pc_PS_R.isVisible() and state.rb_R.is_full: window.pc_PS_R.setData( alia_qdev.fftw_PS_R.freqs, alia_qdev.fftw_PS_R.compute_spectrum_dB(state.rb_R), ) # Special cases where the lock-in is paused: Clicking the legend checkboxes # to unhide the PS curves should recalculate the PS based on the last known # data. We must check if the lock-in is paused before calculating, because # we might otherwise interfere with the other possible PS calculation # already happening in the worker_DAQ thread if the lock-in is actually # running at the moment of toggling the checkboxes. # # Ugly workaround, I know. All because we want the PS to be calculated only # when the curve will be shown in order to reduce the cpu load. @QtCore.pyqtSlot() def update_paused_PS_sig_I(): if alia.lockin_paused: calculate_PS_sig_I() window.pc_PS_sig_I.update() @QtCore.pyqtSlot() def update_paused_PS_filt_I(): if alia.lockin_paused: calculate_PS_filt_I() window.pc_PS_filt_I.update() @QtCore.pyqtSlot() def update_paused_PS_mix_X(): if alia.lockin_paused: calculate_PS_mix_X() window.pc_PS_mix_X.update() @QtCore.pyqtSlot() def update_paused_PS_mix_Y(): if alia.lockin_paused: calculate_PS_mix_Y() window.pc_PS_mix_Y.update() @QtCore.pyqtSlot() def update_paused_PS_R(): if alia.lockin_paused: calculate_PS_R() window.pc_PS_R.update() window.legend_PS.chkbs[0].clicked.connect(update_paused_PS_sig_I) window.legend_PS.chkbs[1].clicked.connect(update_paused_PS_filt_I) window.legend_PS.chkbs[2].clicked.connect(update_paused_PS_mix_X) window.legend_PS.chkbs[3].clicked.connect(update_paused_PS_mix_Y) window.legend_PS.chkbs[4].clicked.connect(update_paused_PS_R) # -------------------------------------------------------------------------- # Start threads # -------------------------------------------------------------------------- alia_qdev.start(DAQ_priority=QtCore.QThread.TimeCriticalPriority) # -------------------------------------------------------------------------- # Start the main GUI event loop # -------------------------------------------------------------------------- window.show() sys.exit(app.exec_())
StarcoderdataPython
3348675
from typing import Tuple from math import sqrt class Algorithm: """A base levelling algorithm.""" @classmethod def calc(cls, before: int, after: int, inc: int) -> Tuple[int, int, bool]: """Returns the level, xp required to level up, whether the current xp gain is a levelup.""" bl, _ = cls.get_level(before, inc) al, nx = cls.get_level(after, inc) return al, nx, al > bl class Linear(Algorithm): """A fully linear levelling algorithm.""" @staticmethod def get_level(xp: int, inc: int) -> tuple: return xp // inc, inc - (xp % inc) class LinearIncremental(Algorithm): """A linearly incremental levelling algorithm.""" @staticmethod def get_level(xp: int, inc: int) -> tuple: level = 0 sub = inc while xp > sub: xp -= sub sub += inc level += 1 return level, abs(sub - xp) class Quadratic(Algorithm): """A ^0.5 based levelling algorithm.""" @staticmethod def get_level(xp: int, thr: int) -> tuple: level = int((1 + sqrt(1 + 8 * (xp / thr))) / 2) x = ((level + 1) ** 2 * thr - (level + 1) * thr) * 0.5 return level, int(x - xp) class Mee6(Algorithm): """A copy of Mee6's algorithm""" @staticmethod def get_level(xp: int, thr: int) -> tuple: level = int(5 * (n ** 2) + 50 * n + 100) # The equation is 5*(n**2)+50*n+100 idk Python I tried my best return level, int(n)
StarcoderdataPython
1699179
<reponame>Arnaav-Singh/Beginner-code x = int(input("Enter your Sales amount: ")) if x >= 500000: print(x*10/100+x) elif x <=500000: print( x*5/100+x)
StarcoderdataPython
87367
<reponame>shitchell/rpi-server #!/usr/bin/env python3 from importlib.machinery import SourceFileLoader import readline import glob import http.server import socketserver import urllib import glob import random import time import sys import os SCRIPT_FILEPATH = os.path.realpath(__file__) SCRIPT_DIRPATH = os.path.dirname(SCRIPT_FILEPATH) + os.path.sep if len(sys.argv) > 1: port = int(sys.argv[1]) else: port = 9000 NOLOG = False def print(msg, *args, **kwargs): if not NOLOG: timestamp = time.strftime('[%Y-%M-%d %H:%M.%S]') args = ' '.join(list(map(lambda x: str(x), args))) sys.stdout.write('%s %s %s\n' % (timestamp, str(msg), args)) sys.stdout.flush() class Commands: modules = dict() def _find_action(action): # See if the action is attached to a particular module if action.count(".") == 1: module, action = action.split(".") module = Commands.modules.get(module) if module: try: func = getattr(module, "do_" + action) except: pass else: return func else: try: # Search the default commands func = getattr(Commands, "do_" + action) except: pass else: return func def _list_actions(): if Commands._action_cache: return Commands._action_cache # Loop through the default and external commands actions = list() modules = [Commands] + list(Commands.modules.values()) for module in modules: mod_actions = filter(lambda x: x.startswith("do_"), dir(module)) # Filter hidden commands mod_actions = filter(lambda x: not getattr(getattr(module, x), "hidden", False), mod_actions) if module.__name__ == "Commands": mod_actions = map(lambda x: x[3:], mod_actions) else: ## prepend the command with the module name mod_actions = map(lambda x: "%s.%s" % (module.__name__, x[3:]), mod_actions) actions.extend(list(mod_actions)) # Store the list of commands for efficiency's sake Commands._action_cache = actions return actions def _load_base_template(filepath=SCRIPT_DIRPATH + 'base.html'): f = open(filepath, 'r') Commands._base_template = f.read() f.close() def _page_template(title, content, subtitle=""): if not Commands._base_template: # Load the base template Commands._load_base_template() # Substitute stuffs out base = Commands._base_template % {"title": title, "subtitle": subtitle, "content": content} return bytes(base, "UTF-8") def _help_template(func): action = func.__name__[3:] # Parse samples sample = '' if hasattr(func, "samples"): sample = '<span class="sample">' + '</span><span class="sample">'.join(func.samples) + '</span>' return Commands._page_template(action, func.__doc__ or "No documentation", sample) def do_help(req, *args, **kwargs): """Provides documentation on commands""" if args: func = Commands._find_action(args[0]) if func: req.wfile.write(Commands._help_template(func)) return # Create links for each command action_links = map(lambda x: '<a href="/help/%s">%s</a><br />' % (x, x), Commands._list_actions()) action_links = "\n".join(list(action_links)) help = Commands._page_template("Commands", action_links) req.wfile.write(help) do_help.samples = ["/help/reload", "/help/foo.bar"] def do_reload(req, *args, **kwargs): """Refreshes external modules""" load_modules() req.wfile.write(bytes('<meta http-equiv="refresh" content="0;URL=/">', "UTF-8")) def load_modules(): # Dump old modules Commands.modules = dict() # Dump old command cache Commands._action_cache = list() # Reload base template Commands._load_base_template() # Load external command modules for path in glob.glob(SCRIPT_DIRPATH + 'rpi_*.py'): # load the individual module name = os.path.basename(path).split('.')[0][4:] try: module = SourceFileLoader(name, path).load_module() # Change the format for module output module.__builtins__["print"] = print except Exception as e: print("! Error loading module '%s': %s" % (name, e)) else: Commands.modules[name] = module print("loaded module '%s'" % name) load_modules() class Server(http.server.SimpleHTTPRequestHandler): def do_GET(self): # Send initial headers self.protocol_version='HTTP/1.1' self.send_response(200, 'OK') self.send_header('Content-type', 'text/html') self.end_headers() # Get the kwargs path = self.path.split('?') kwargs = dict() if len(path) > 1: for kwarg in path[1].split('&'): kw, arg = kwarg.split('=') kwargs[kw] = urllib.parse.unquote(arg) # Get the action and args path = self.path.split('?')[0] path = path.rstrip('/').split('/')[1:] if path: action = path.pop(0) args = list(map(lambda x: urllib.parse.unquote(x), path)) else: action = None args = None # Find the command to execute if action: print("(action) %s (args) %s (kwargs) %s" % (action, args, kwargs)) func = Commands._find_action(action) if func: try: func(self, *args, **kwargs) except Exception as e: print("! Error executing function '%s'" % action) print("!!", e) return Commands.do_help(self) def log_message(self, format, *args): pass if __name__ == "__main__": while True: try: server = socketserver.TCPServer(('', port), Server) print("Serving on port %i" % port) server.serve_forever() except KeyboardInterrupt: NOLOG = True print("^C one more time to exit") while True: try: x = input("> ") except EOFError: break except KeyboardInterrupt: server.socket.close() sys.exit(1) try: exec(x) except Exception as e: print(e) NOLOG = False
StarcoderdataPython
3314698
<gh_stars>1-10 from sandbox import Scene from sandbox.property import LinesCoincidenceProperty, PointInsideAngleProperty from .base import ExplainerTest class InsideTriangle1(ExplainerTest): def createScene(self): scene = Scene() A, B, C = scene.nondegenerate_triangle(labels=('A', 'B', 'C')).points D = A.segment(B).free_point(label='D') E = A.segment(C).free_point(label='E') X = D.line_through(C).intersection_point(E.line_through(B), label='X') return scene def testPointOnLine(self): A = self.scene.get('A') B = self.scene.get('B') C = self.scene.get('C') D = self.scene.get('D') E = self.scene.get('E') X = self.scene.get('X') self.assertIn(LinesCoincidenceProperty(C.segment(D), B.segment(E), False), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, A.angle(B, C)), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, B.angle(C, A)), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, C.angle(A, B)), self.explainer.context) class InsideTriangle2(ExplainerTest): def createScene(self): scene = Scene() A, B, C = scene.nondegenerate_triangle(labels=('A', 'B', 'C')).points D = A.segment(B).free_point(label='D') E = A.segment(C).free_point(label='E') F = B.segment(C).free_point(label='F') X = D.line_through(E).intersection_point(A.line_through(F), label='X') return scene def testPointOnLine(self): A = self.scene.get('A') B = self.scene.get('B') C = self.scene.get('C') D = self.scene.get('D') E = self.scene.get('E') F = self.scene.get('F') X = self.scene.get('X') self.assertIn(LinesCoincidenceProperty(D.segment(E), A.segment(F), False), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, A.angle(B, C)), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, B.angle(C, A)), self.explainer.context) self.assertIn(PointInsideAngleProperty(X, C.angle(A, B)), self.explainer.context)
StarcoderdataPython
4829738
<filename>server/inventario/managers.py import hashlib import uuid from datetime import timedelta, datetime from time import time from sqlalchemy.exc import IntegrityError from server.common.managers import SuperManager from .models import * from ..user.models import User from openpyxl import load_workbook, Workbook class CompanyManager(SuperManager): def __init__(self, db): super().__init__(Company, db) def getCompanyByID(self, id): return self.db.query(Company).filter(Company.id == id).first() def list_all(self): return self.db.query(Company).filter(Company.id > 0) def import_excel(self, cname): try: wb = load_workbook(filename="server/common/resources/uploads/" + cname) sheet = wb.get_sheet_by_name(name='Hoja1') # parametrizable...... colnames = ['IdEmpresa', 'NomEmpresa', 'NitEmpresa', 'ActEmpresa', 'PagEmpresa', 'TxtEmpresa', 'TcEmpresa'] min_row = 1 indices = {cell[0].value: n - min_row for n, cell in enumerate(sheet.iter_cols(min_row=min_row, max_row=min_row), start=min_row) if cell[0].value in colnames} for row in sheet.iter_rows(min_row=min_row + 1): if row[indices['IdEmpresa']].value is not None and \ row[indices['NomEmpresa']].value is not None and \ row[indices['NitEmpresa']].value is not None and \ row[indices['ActEmpresa']].value is not None and \ row[indices['PagEmpresa']].value is not None and \ row[indices['TxtEmpresa']].value is not None and \ row[indices['TcEmpresa']].value is not None: if CompanyManager(self.db).getCompanyByID(row[indices['IdEmpresa']].value) is None: empresa = Company( id=row[indices['IdEmpresa']].value, name=row[indices['NomEmpresa']].value, nit=row[indices['NitEmpresa']].value, activity=row[indices['ActEmpresa']].value, payment=row[indices['PagEmpresa']].value, text=row[indices['PagEmpresa']].value, coin=row[indices['TcEmpresa']].value ) self.db.add(empresa) self.db.flush() self.db.commit() return {'message': 'Importado Todos Correctamente.', 'success': True} except IntegrityError as e: self.db.rollback() if 'UNIQUE constraint failed: rrhh_persona.dni' in str(e): return {'message': 'CI duplicado', 'success': False} if 'UNIQUE constraint failed: rrhh_empleado.codigo' in str(e): return {'message': 'codigo de empleado duplicado', 'success': False} return {'message': str(e), 'success': False} class OfficeManager(SuperManager): def __init__(self, db): super().__init__(Office, db) def getOfficeByID(self, id): return self.db.query(Office).filter(Office.id == id).first() def getOfficeByName(self, name): return self.db.query(Office).filter(Office.name == name).first() def getOfficeByPromoter(self, fk_promoter): return self.db.query(Office).filter(Office.fk_promoter == fk_promoter).first() def listAll(self): return self.db.query(Office).filter(Office.id > 0) def import_excel(self, cname): try: wb = load_workbook(filename="server/common/resources/uploads/" + cname) sheet = wb.get_sheet_by_name(name='Hoja1') # parametrizable...... colnames = ['idEmpresa', 'idSucursal', 'NomSucursal', 'DirSucusal', 'TelSucursal', 'DepSucursal', 'LdoSucursal', 'NauSucursal', 'DoiSucursal', 'DofSucursal', 'FliSucursal', 'idPromotor'] min_row = 1 indices = {cell[0].value: n - min_row for n, cell in enumerate(sheet.iter_cols(min_row=min_row, max_row=min_row), start=min_row) if cell[0].value in colnames} for row in sheet.iter_rows(min_row=min_row + 1): if row[indices['idEmpresa']].value is not None and \ row[indices['idSucursal']].value is not None and \ row[indices['NomSucursal']].value is not None and \ row[indices['DirSucusal']].value is not None and \ row[indices['TelSucursal']].value is not None and \ row[indices['DepSucursal']].value is not None and \ row[indices['LdoSucursal']].value is not None and \ row[indices['NauSucursal']].value is not None and \ row[indices['DoiSucursal']].value is not None and \ row[indices['DofSucursal']].value is not None and \ row[indices['FliSucursal']].value is not None and \ row[indices['idPromotor']].value is not None: if OfficeManager(self.db).getOfficeByID(row[indices['idSucursal']].value) is None: sucursal = Office( id=row[indices['idSucursal']].value, name=row[indices['NomSucursal']].value, address=row[indices['DirSucusal']].value, phone=row[indices['TelSucursal']].value, department=row[indices['DepSucursal']].value, key=row[indices['LdoSucursal']].value, auth=row[indices['NauSucursal']].value, dsfini=row[indices['DoiSucursal']].value, dsffin=row[indices['DofSucursal']].value, limdate=row[indices['FliSucursal']].value, fk_company=row[indices['idEmpresa']].value, fk_promoter=row[indices['idPromotor']].value ) self.db.add(sucursal) self.db.flush() self.db.commit() return {'message': 'Importado Todos Correctamente.', 'success': True} except IntegrityError as e: self.db.rollback() if 'UNIQUE constraint failed: rrhh_persona.dni' in str(e): return {'message': 'CI duplicado', 'success': False} if 'UNIQUE constraint failed: rrhh_empleado.codigo' in str(e): return {'message': 'codigo de empleado duplicado', 'success': False} return {'message': str(e), 'success': False} class ProductManager(SuperManager): def __init__(self, db): super().__init__(Product, db) # def get_groupsByFamily(self, family): # return self.db.query(Product).filter(Product.fk_family == family) def getProductByID(self, id): return self.db.query(Product).filter(Product.id == id).first() def getProductByName(self, name): return self.db.query(Product).filter(Product.name == name).first() def listAll(self): return self.db.query(Product).filter(Product.id > 0) def import_excel(self, cname): try: wb = load_workbook(filename="server/common/resources/uploads/" + cname) sheet = wb.get_sheet_by_name(name='Hoja1') # parametrizable...... colnames = ['idEmpresa', 'idProducto', 'NomProducto', 'uniProducto', 'PreProducto', 'desProducto', 'salProducto'] min_row = 1 indices = {cell[0].value: n - min_row for n, cell in enumerate(sheet.iter_cols(min_row=min_row, max_row=min_row), start=min_row) if cell[0].value in colnames} for row in sheet.iter_rows(min_row=min_row + 1): if row[indices['idEmpresa']].value is not None and \ row[indices['idProducto']].value is not None and \ row[indices['NomProducto']].value is not None and \ row[indices['uniProducto']].value is not None and \ row[indices['PreProducto']].value is not None and \ row[indices['desProducto']].value is not None and \ row[indices['salProducto']].value is not None: if ProductManager(self.db).getProductByID(row[indices['idProducto']].value) is None: producto = Product( id=row[indices['idProducto']].value, name=row[indices['NomProducto']].value, unit=row[indices['uniProducto']].value, price=row[indices['PreProducto']].value, discount=row[indices['desProducto']].value, stock=row[indices['salProducto']].value, fk_company=row[indices['idEmpresa']].value ) self.db.add(producto) self.db.flush() self.db.commit() return {'message': 'Importado Todos Correctamente.', 'success': True} except IntegrityError as e: self.db.rollback() if 'UNIQUE constraint failed: rrhh_persona.dni' in str(e): return {'message': 'CI duplicado', 'success': False} if 'UNIQUE constraint failed: rrhh_empleado.codigo' in str(e): return {'message': 'codigo de empleado duplicado', 'success': False} return {'message': str(e), 'success': False} class CustomerManager(SuperManager): def __init__(self, db): super().__init__(Customer, db) def getCustomerByID(self, id): return self.db.query(Customer).filter(Customer.id == id).first() def listAll(self): return self.db.query(Customer).filter(Customer.id > 0) def getCustomerByName(self, line): return self.db.query(Customer).filter(Customer.name == line).first() def getCustomerByNit(self, family): return self.db.query(Customer).filter(Customer.nit == family) def import_excel(self, cname): try: print("init flaco") print(str(datetime.now())) wb = load_workbook(filename="server/common/resources/uploads/" + cname) sheet = wb.get_sheet_by_name(name='Hoja1') # parametrizable...... colnames = ['idEmpresa', 'idCliente', 'NomCliente', 'NitCliente'] min_row = 1 indices = {cell[0].value: n - min_row for n, cell in enumerate(sheet.iter_cols(min_row=min_row, max_row=min_row), start=min_row) if cell[0].value in colnames} # print(str(datetime.now())) for row in sheet.iter_rows(min_row=min_row + 1): if row[indices['idEmpresa']].value is not None and \ row[indices['idCliente']].value is not None and \ row[indices['NomCliente']].value is not None and \ row[indices['NitCliente']].value is not None: if CustomerManager(self.db).getCustomerByID(row[indices['idCliente']].value) is None: cliente = Customer( id=row[indices['idCliente']].value, name=row[indices['NomCliente']].value, nit=row[indices['NitCliente']].value, fk_company=row[indices['idEmpresa']].value ) self.db.add(cliente) self.db.flush() self.db.commit() print("end flaco") print(str(datetime.now())) return {'message': 'Importado Todos Correctamente.', 'success': True} except IntegrityError as e: self.db.rollback() if 'UNIQUE constraint failed: rrhh_persona.dni' in str(e): return {'message': 'CI duplicado', 'success': False} if 'UNIQUE constraint failed: rrhh_empleado.codigo' in str(e): return {'message': 'codigo de empleado duplicado', 'success': False} return {'message': str(e), 'success': False} class BillManager(SuperManager): def __init__(self, db): super().__init__(Bill, db) def getBillByID(self, id): return self.db.query(Bill).filter(Bill.id == id).first() # def get_subgroupByLine(self, line): # return self.db.query(SubGroup).filter(SubGroup.subline == line).first() # # def get_subgroupsByGroup(self, group): # return self.db.query(SubGroup).filter(SubGroup.fk_group == group) def insertBills(self, data): # data es una lista de bills :v try: for bill in data: managedBill = Bill(ctrlcode=bill['code'], id_bill=bill['idBill'], fk_company=bill['fkCompany'], fk_customer=bill['fkCustomer'], date=datetime.strptime(bill['date'], '%Y/%m/%d').date(), hour=datetime.strptime(bill['hour'], '%H:%M:%S').time(), nit=bill['nit'], name=bill['name'], fk_promoter=bill['fkPromoter'] ) for detail in bill['detailList']: managedDetail = Detail(fk_bill=detail['fkBill'], fk_product=detail['fkProduct'], quantity=detail['quantity'], oriprize=detail['iprice'], finprize=detail['fprice'], total=detail['total']) managedBill.details.append(managedDetail) self.db.add(managedBill) self.db.commit() return True except IntegrityError as e: print(str(e)) self.db.rollback() return False def listAll(self): return self.db.query(Bill).filter(Bill.id > 0) class DetailManager(SuperManager): def __init__(self, db): super().__init__(Detail, db) def getDetailByID(self, code): return self.db.query(Detail).filter(Detail.id == code).first() def listAll(self): return self.db.query(Detail).filter(Detail.id > 0) # def get_productsBySubgroup(self, subgroup): # return self.db.query(Detail).filter(Detail.fk_subgroup == subgroup) # # def get_productsByGroup(self, group): # return self.db.query(Detail).filter(Detail.fk_group == group.id_group).filter( # Detail.fk_family == group.fk_family) # # def get_productsByFamily(self, family): # return self.db.query(Detail).filter(Detail.fk_family == family) # # def get_productsByWarehouse(self, warehouse): # return self.db.query(Detail).filter(Detail.fk_warehouse == warehouse) # # def get_productByCode(self, code): # return self.db.query(Detail).filter(Detail.code == code).first() # # def get_productByOrigin(self, origin): # return self.db.query(Detail).filter(Detail.code_origin == origin) # # def get_productsByText(self, text): # return self.db.query(Detail).filter(self.colums_like(self.entity, text)) # def import_excel(self, cname): # try: # wb = load_workbook(filename="server/common/resources/uploads/" + cname) # sheet = wb.get_sheet_by_name(name='Hoja1') # parametrizable...... # colnames = ['almacen', 'nomb_alma', 'id_fami', 'nomb_fami', 'id_grup', # 'line', 'nomb_grup', 'id_subg', 'subline', 'nomb_subg', 'codigo', # 'codorigen', 'nomb_cata', 'fechacaduc', 'nrolote', 'nrofabri', 'saldf_ini', 'impor_ini', # 'ingresos', 'salidas', # 'saldf_fin'] # min_row = 1 # indices = {cell[0].value: n - min_row for n, cell in # enumerate(sheet.iter_cols(min_row=min_row, max_row=min_row), start=min_row) if # cell[0].value in colnames} # for row in sheet.iter_rows(min_row=min_row + 1): # if row[indices['almacen']].value is not None and row[indices['nomb_alma']].value is not None and \ # row[indices['id_fami']].value is not None and \ # row[indices['nomb_fami']].value is not None and \ # row[indices['id_grup']].value is not None and \ # row[indices['line']].value is not None and \ # row[indices['nomb_grup']].value is not None and \ # row[indices['id_subg']].value is not None and \ # row[indices['subline']].value is not None and \ # row[indices['nomb_subg']].value is not None and \ # row[indices['codigo']].value is not None and \ # row[indices['codorigen']].value is not None and \ # row[indices['saldf_fin']].value is not None and \ # row[indices['nomb_cata']].value is not None: # # if WarehouseManager(self.db).get_warehouseByID(row[indices['almacen']].value) is None: # almacen = Warehouse( # id=row[indices['almacen']].value, # name=row[indices['nomb_alma']].value # ) # # if FamilyManager(self.db).get_familyByID(row[indices['id_fami']].value) is None: # familia = Family( # id=row[indices['id_fami']].value, # name=row[indices['nomb_fami']].value # ) # # if GroupManager(self.db).get_groupByLine(row[indices['line']].value) is None: # grupo = Group( # id_group=row[indices['id_grup']].value, # line=row[indices['line']].value, # name=row[indices['nomb_grup']].value # ) # if SubGroupManager(self.db).get_subgroupByLine(row[indices['subline']].value) is None: # subgrupo = SubGroup( # id_subgroup=row[indices['id_subg']].value, # subline=row[indices['subline']].value, # name=row[indices['nomb_subg']].value # ) # if ProductManager(self.db).get_product(row[indices['codigo']].value) is None: # producto = InvProduct( # code=row[indices['codigo']].value, # code_origin=row[indices['codorigen']].value, # name=row[indices['nomb_cata']].value, # stock=row[indices['saldf_fin']].value # ) # else: # producto = ProductManager(self.db).get_product(row[indices['codigo']].value) # producto.stock = producto.stock + row[indices['saldf_fin']].value # # if FamilyGroupManager(self.db).get_familygroup(familia.id, grupo.line) is None: # familiagrupo = FamilyGroup() # else: # familiagrupo = FamilyGroupManager(self.db).get_familygroup(familia.id, grupo.line) # # if GroupSubgroupManager(self.db).get_groupsub(grupo.line, subgrupo.subline) is None: # gruposubgrupo = GroupSubGroup() # else: # gruposubgrupo = GroupSubgroupManager(self.db).get_groupsub(grupo.line, subgrupo.subline) # producto.subgroup = subgrupo # # producto.group = grupo # # producto.family = familia # # producto.warehouse = almacen # # subgrupo.group = grupo # # grupo.family = familia # familiagrupo.family = familia # familiagrupo.group = grupo # gruposubgrupo.group = grupo # gruposubgrupo.subgroup = subgrupo # familia.warehouse = almacen # # self.db.add(producto) # self.db.add(familiagrupo) # self.db.add(gruposubgrupo) # self.db.flush() # # self.db.commit() # return {'message': 'Importado Todos Correctamente.', 'success': True} # except IntegrityError as e: # self.db.rollback() # if 'UNIQUE constraint failed: rrhh_persona.dni' in str(e): # return {'message': 'CI duplicado', 'success': False} # if 'UNIQUE constraint failed: rrhh_empleado.codigo' in str(e): # return {'message': 'codigo de empleado duplicado', 'success': False} # return {'message': str(e), 'success': False}
StarcoderdataPython
129436
<reponame>Debagboola/Django-Portfolio-and-Blog-App<gh_stars>0 from django.db import models # Create your models here. class Category(models.Model): name = models.CharField(max_length=20) class Post(models.Model): title = models.CharField(max_length=255) body = models.TextField() created_on = models.DateTimeField(auto_now_add=True) last_modified = models.DateTimeField(auto_now=True) categories = models.ManyToManyField('Category', related_name='posts') class Comment(models.Model): author = models.CharField(max_length=60) body = models.TextField() created_on = models.DateTimeField(auto_now_add=True) post = models.ForeignKey('Post', on_delete=models.CASCADE)
StarcoderdataPython
3260192
from django.shortcuts import render, redirect from django.contrib.auth.decorators import login_required from .forms import ProfileForm from django.contrib import messages # Create your views here. @login_required def profile_view(request): return render(request, 'oauth/profile.html') @login_required def change_profile_view (request): if request.method =='POST': # Uploading files requires request.FILES form = ProfileForm (request.POST, request.FILES, instance = request.user) if form.is_valid (): form.save () # Add a message, the form is redirected to the personal information page messages.add_message (request, messages.SUCCESS, 'Personal information updated successfully!') return redirect ('oauth:profile') else: # Return empty form instead of POST request form = ProfileForm (instance = request.user) return render (request, 'oauth/change_profile.html', context = {'form': form})
StarcoderdataPython
1604806
<reponame>Tejas-Nanaware/Learning-OpenCV<filename>haar cascades/own haar cascade/get files.py import urllib.request import cv2 import numpy as np import os print("Hi") def store_raw_images(): print("getting url") # neg_images_link = 'http://image-net.org/api/text/imagenet.synset.geturls?wnid=n00007846' # neg_images_link = 'http://image-net.org/api/text/imagenet.synset.geturls?wnid=n07942152' neg_images_link = 'http://image-net.org/api/text/imagenet.synset.geturls?wnid=n00523513' print("Got URL") neg_image_urls = urllib.request.urlopen(neg_images_link).read().decode() pic_num = 1 print(pic_num) if not os.path.exists('neg'): os.makedirs('neg') print("made dir") for i in neg_image_urls.split('\n'): try: print(str(pic_num) + "\t" + i) urllib.request.urlretrieve(i, "neg/"+str(pic_num)+".jpg") img = cv2.imread("neg/"+str(pic_num)+".jpg",cv2.IMREAD_GRAYSCALE) # should be larger than samples / pos pic (so we can place our image on it) resized_image = cv2.resize(img, (500, 500)) cv2.imwrite("neg/"+str(pic_num)+".jpg",resized_image) pic_num += 1 except Exception as e: print(str(e)) store_raw_images()
StarcoderdataPython
3380332
<filename>tests/test_validator.py<gh_stars>10-100 import yaml from dbd.db.db_schema import DbSchema def test_schema_validation(): with open('./tests/fixtures/schemas/schema1.yaml', 'r') as f: code = yaml.safe_load(f.read()) result, errors = DbSchema.validate_code(code) assert result with open('./tests/fixtures/schemas/schema2.yaml', 'r') as f: code = yaml.safe_load(f.read()) result, errors = DbSchema.validate_code(code) assert not result with open('./tests/fixtures/schemas/schema3.yaml', 'r') as f: code = yaml.safe_load(f.read()) result, errors = DbSchema.validate_code(code) assert not result with open('./tests/fixtures/schemas/schema4.yaml', 'r') as f: code = yaml.safe_load(f.read()) result, errors = DbSchema.validate_code(code) assert not result with open('./tests/fixtures/schemas/schema5.yaml', 'r') as f: code = yaml.safe_load(f.read()) result, errors = DbSchema.validate_code(code) assert not result
StarcoderdataPython
3255387
<reponame>PDA-UR/DIPPID-py<filename>DIPPID.py import sys import json from threading import Thread from time import sleep from datetime import datetime import signal # those modules are imported dynamically during runtime # they are imported only if the corresponding class is used #import socket #import serial #import wiimote class Sensor(): # class variable that stores all instances of Sensor instances = [] def __init__(self): # list of strings which represent capabilites, such as 'buttons' or 'accelerometer' self._capabilities = [] # for each capability, store a list of callback functions self._callbacks = {} # for each capability, store the last value as an object self._data = {} self._receiving = False Sensor.instances.append(self) # stops the loop in _receive() and kills the thread # so the program can terminate smoothly def disconnect(self): self._receiving = False Sensor.instances.remove(self) if self._connection_thread: self._connection_thread.join() # runs as a thread # receives json formatted data from sensor, # stores it and notifies callbacks def _update(self, data): try: data_json = json.loads(data) except json.decoder.JSONDecodeError: # incomplete data return for key, value in data_json.items(): self._add_capability(key) # do not notify callbacks on initialization if self._data[key] == []: self._data[key] = value continue # notify callbacks only if data has changed if self._data[key] != value: self._data[key] = value self._notify_callbacks(key) # checks if capability is available def has_capability(self, key): return key in self._capabilities def _add_capability(self, key): if not self.has_capability(key): self._capabilities.append(key) self._callbacks[key] = [] self._data[key] = [] # returns a list of all current capabilities def get_capabilities(self): return self._capabilities # get last value for specified capability def get_value(self, key): try: return self._data[key] except KeyError: # notification when trying to get values for a non-existent capability #raise KeyError(f'"{key}" is not a capability of this sensor.') return None # register a callback function for a change in specified capability def register_callback(self, key, func): self._add_capability(key) self._callbacks[key].append(func) # remove already registered callback function for specified capability def unregister_callback(self, key, func): if key in self._callbacks: self._callbacks[key].remove(func) return True else: # in case somebody wants to check if the callback was present before return False def _notify_callbacks(self, key): for func in self._callbacks[key]: func(self._data[key]) # sensor connected via WiFi/UDP # initialized with a UDP port # listens to all IPs by default # requires the socket module class SensorUDP(Sensor): def __init__(self, port, ip='0.0.0.0'): Sensor.__init__(self) self._ip = ip self._port = port self._connect() def _connect(self): import socket self._sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._sock.bind((self._ip, self._port)) self._connection_thread = Thread(target=self._receive) self._connection_thread.start() def _receive(self): self._receiving = True while self._receiving: data, addr = self._sock.recvfrom(1024) try: data_decoded = data.decode() except UnicodeDecodeError: continue self._update(data_decoded) # sensor connected via serial connection (USB) # initialized with a path to a TTY (e.g. /dev/ttyUSB0) # default baudrate is 115200 # requires pyserial class SensorSerial(Sensor): def __init__(self, tty, baudrate=115200): Sensor.__init__(self) self._tty = tty self._baudrate = baudrate self._connect() def _connect(self): import serial self._serial = serial.Serial(self._tty) self._serial.baudrate = self._baudrate self._connection_thread = Thread(target=self._receive) self._connection_thread.start() def _receive(self): self._receiving = True try: while self._receiving: data = self._serial.readline() try: data_decoded = data.decode() except UnicodeDecodeError: continue self._update(data) except: # connection lost, try again self._connect() # uses a Nintendo Wiimote as a sensor (connected via Bluetooth) # initialized with a Bluetooth address # requires wiimote.py (https://github.com/RaphaelWimmer/wiimote.py) # and pybluez class SensorWiimote(Sensor): def __init__(self, btaddr): Sensor.__init__(self) self._btaddr = btaddr self._connect() def _connect(self): import wiimote self._wiimote = wiimote.connect(self._btaddr) self._connection_thread = Thread(target=self._receive) self._connection_thread.start() def _receive(self): self._receiving = True buttons = self._wiimote.buttons.BUTTONS.keys() while self._receiving: x = self._wiimote.accelerometer[0] y = self._wiimote.accelerometer[1] z = self._wiimote.accelerometer[2] data_string = f'{{"x":{x},"y":{y},"z":{z}}}' self._update('accelerometer', data_string) for button in buttons: state = int(self._wiimote.buttons[button]) self._update(f'button_' + button.lower(), state) sleep(0.001) def _update(self, key, value): self._add_capability(key) # do not notify callbacks on initialization if self._data[key] == []: self._data[key] = value return # notify callbacks only if data has changed if self._data[key] != value: self._data[key] = value self._notify_callbacks(key) # close the program softly when ctrl+c is pressed def handle_interrupt_signal(signal, frame): for sensor in Sensor.instances: sensor.disconnect() sys.exit(0) signal.signal(signal.SIGINT, handle_interrupt_signal)
StarcoderdataPython
3312554
import time import os import sys from pathlib import Path import numpy as nump import pandas as panda import uuid import csv import inspect import re import platform import requests import json from datetime import datetime from tir.technologies.core.config import ConfigLoader from tir.technologies.core.logging_config import logger class Log: """ This class is instantiated to create the log file and to append the results and failures to it. Usage: >>> # Instanted inside base.py: >>> self.log = Log() """ def __init__(self, suite_datetime="", user="", station="", program="", program_date=("19800101"), version="", release="", database="", issue="", execution_id="", country="", folder="", test_type="TIR", config_path=""): self.timestamp = time.strftime("%Y%m%d%H%M%S") today = datetime.today() self.config = ConfigLoader(config_path) self.user = user self.station = station self.program = program self.program_date = program_date self.version = version self.release = release self.database = database self.initial_time = datetime.today() self.testcase_initial_time = datetime.today() self.seconds = 0 self.testcase_seconds = 0 self.suite_datetime = suite_datetime self.table_rows = [] self.test_case_log = [] self.csv_log = [] self.invalid_fields = [] self.table_rows.append(self.generate_header()) self.folder = folder self.test_type = test_type self.issue = self.config.issue self.execution_id = self.config.execution_id self.country = country self.start_time = None self.end_time = None self.ct_method = "" self.ct_number = "" self.so_type = platform.system() self.so_version = f"{self.so_type} {platform.release()}" self.build_version = "" self.lib_version = "" self.webapp_version = "" self.date = today.strftime('%Y%m%d') self.hour = today.strftime('%H:%M:%S') self.last_exec = today.strftime('%Y%m%d%H%M%S%f')[:-3] self.hash_exec = "" self.test_case = self.list_of_testcases() self.finish_testcase = [] def generate_header(self): """ Generates the header line on the log file. Usage: >>> # Calling the method: >>> self.log.generate_header() """ return ['Data','Usuário','Estação','Programa','Data Programa','Total CTs','Passou','Falhou', 'Segundos','Versão','Release', 'CTs Falhou', 'Banco de dados','Chamado','ID Execução','Pais', "Tipo de Teste"] def new_line(self, result, message): """ Appends a new line with data on log file. :param result: The result of the case. :type result: bool :param message: The message to be logged.. :type message: str Usage: >>> # Calling the method: >>> self.log.new_line(True, "Success") """ line = [] total_cts = 1 passed = 1 if result else 0 failed = 0 if result else 1 printable_message = self.printable_message(message) if not self.suite_datetime: self.suite_datetime = time.strftime("%d/%m/%Y %X") if self.get_testcase_stack() not in self.test_case_log: line.extend([self.suite_datetime, self.user, self.station, self.program, self.program_date, total_cts, passed, failed, self.seconds, self.version, self.release, printable_message, self.database, self.issue, self.execution_id, self.country, self.test_type]) self.table_rows.append(line) self.test_case_log.append(self.get_testcase_stack()) def save_file(self): """ Writes the log file to the file system. Usage: >>> # Calling the method: >>> self.log.save_file() """ log_file = f"{self.user}_{uuid.uuid4().hex}_auto.csv" if len(self.table_rows) > 0: try: if self.folder: path = Path(self.folder, self.station+"_v6") os.makedirs(path) else: path = Path("Log", self.station) os.makedirs(path) except OSError: pass if self.config.smart_test: open("log_exec_file.txt", "w") if ((len(self.table_rows[1:]) == len(self.test_case) and self.get_testcase_stack() not in self.csv_log) or (self.get_testcase_stack() == "setUpClass") and self.checks_empty_line()) : with open( Path(path, log_file), mode="w", newline="", encoding="windows-1252") as csv_file: csv_writer_header = csv.writer(csv_file, delimiter=';', quoting=csv.QUOTE_NONE) csv_writer_header.writerow(self.table_rows[0]) csv_writer = csv.writer(csv_file, delimiter=';', quotechar='"', quoting=csv.QUOTE_NONNUMERIC) for line in self.table_rows[1:]: csv_writer.writerow(line) logger().debug(f"Log file created successfully: {os.path.join(path, log_file)}") self.csv_log.append(self.get_testcase_stack()) def set_seconds(self, initial_time): """ Sets the seconds variable through a calculation of current time minus the execution start time. Usage: >>> # Calling the method: >>> self.log.set_seconds() """ delta = datetime.today() - initial_time return round(delta.total_seconds(), 2) def list_of_testcases(self): """ Returns a list of test cases from suite """ runner = next(iter(list(filter(lambda x: "runner.py" in x.filename, inspect.stack()))), None) if runner: try: return list(filter(lambda x: x is not None, list(runner.frame.f_locals['test']._tests))) except KeyError: return [] else: return [] def get_testcase_stack(self): """ Returns a string with the current testcase name [Internal] """ return next(iter(list(map(lambda x: x.function, filter(lambda x: re.search('setUpClass', x.function) or re.search('test_', x.function), inspect.stack())))), None) def checks_empty_line(self): """ Checks if the log file is not empty. 03 - 'Programa' 10 - 'Release' 14 - 'ID Execução' 15 - 'Pais' [Internal] """ table_rows_has_line = False if self.table_rows[1][3] == '': self.table_rows[1][3] = 'NO PROGRAM' if self.table_rows[1][10] == '': self.table_rows[1][10] = '12.1.27' if self.table_rows[1][15] == '': self.table_rows[1][15] = 'BRA' if self.table_rows[1][11] == '': self.table_rows[1][11] = 'TIMEOUT' if len(self.table_rows) > 1: for x in [ 3, 10, 15 ]: if (self.table_rows[1][x]): table_rows_has_line = True else: table_rows_has_line = False break if self.config.smart_test and self.table_rows[1][14] and table_rows_has_line: table_rows_has_line = True elif self.config.smart_test: table_rows_has_line = False return table_rows_has_line def generate_result(self, result, message): """ Generate a result of testcase and export to a json. :param result: The result of the case. :type result: bool :param message: The message to be logged.. :type message: str Usage: >>> # Calling the method: >>> self.log.generate_result(True, "Success") """ printable_message = self.printable_message(message) if not self.suite_datetime: self.suite_datetime = time.strftime("%d/%m/%Y %X") self.generate_json(self.generate_dict(result, printable_message)) def get_file_name(self, file_name): """ Returns a Testsuite name """ testsuite_stack = next(iter(list(filter(lambda x: file_name in x.filename.lower(), inspect.stack()))), None) if testsuite_stack: if '/' in testsuite_stack.filename: split_character = '/' else: split_character = '\\' return testsuite_stack.filename.split(split_character)[-1].split(".")[0] else: return "" def generate_dict(self, result, message): """ Returns a dictionary with the log information """ log_version = "20200814" dict_key = { "APPVERSION": self.build_version, "CLIVERSION": self.webapp_version, "COUNTRY": self.country, "CTMETHOD": self.ct_method, "CTNUMBER": self.ct_number, "DBACCESS": "", "DBTYPE": self.database, "DBVERSION": "", "EXECDATE": self.date, "EXECTIME": self.hour, "FAIL": 0 if result else 1, "FAILMSG": message, "IDENTI": self.issue, "IDEXEC": self.config.execution_id, "LASTEXEC": self.last_exec, "LIBVERSION": self.lib_version, "OBSERV": "", "PASS": 1 if result else 0, "PROGDATE": self.program_date, "PROGRAM": self.program, "PROGTIME": "00:00:00", "RELEASE": self.release, "SECONDSCT": self.testcase_seconds, "SOTYPE": self.so_type, "SOVERSION": self.so_version, "STATION": self.station, "STATUS": "", # ??? "TESTCASE": self.get_file_name('testcase'), "TESTSUITE": self.get_file_name('testsuite'), "TESTTYPE": "1", "TOKEN": "TI<PASSWORD>", # ??? "TOOL": self.test_type, "USRNAME": self.user, "VERSION": self.version } return dict_key def generate_json(self, dictionary): """ """ server_address1 = self.config.logurl1 server_address2 = self.config.logurl2 success = False data = dictionary json_data = json.dumps(data) endtime = time.time() + 120 while (time.time() < endtime and not success): success = self.send_request(server_address1, json_data) if not success: success = self.send_request(server_address2, json_data) time.sleep(10) if not success: self.save_json_file(json_data) def send_request(self, server_address, json_data): """ Send a post request to server """ success = False response = None headers = {'content-type': 'application/json'} try: response = requests.post(server_address.strip(), data=json_data, headers=headers) except: pass if response is not None: if response.status_code == 200: logger().debug("Log de execucao enviado com sucesso!") success = True elif response.status_code == 201 or response.status_code == 204: logger().debug("Log de execucao enviado com sucesso!") success = True else: self.save_response_log(response, server_address, json_data) return False else: return False return success def save_response_log(self, response, server_address, json_data): """ """ today = datetime.today() try: path = Path(self.folder, "new_log", self.station) os.makedirs(path) except OSError: pass try: with open( Path(path, "response_log.csv"), mode="a", encoding="utf-8", newline='') as response_log: csv_write = csv.writer(response_log, delimiter=';', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_write.writerow([f"Time: {today.strftime('%Y%m%d%H%M%S%f')[:-3]}", f"URL: {server_address}", f"CT: {json.loads(json_data)['CTMETHOD']}", {f"Status Code: {response.status_code}"}, f"Message: {response.text}"]) except: pass def save_json_file(self, json_data): """ Writes the log file to the file system. Usage: >>> # Calling the method: >>> self.log.save_json_file() """ try: if self.folder: path = Path(self.folder, "new_log", self.station) os.makedirs(path) else: path = Path("Log", self.station) os.makedirs(path) except OSError: pass log_file = f"{self.user}_{uuid.uuid4().hex}.json" if self.config.smart_test: open("log_exec_file.txt", "w") with open( Path(path, log_file), mode="w", encoding="utf-8") as json_file: json_file.write(json_data) logger().debug(f"Log file created successfully: {Path(path, log_file)}") def ident_test(self): """ :return: """ ct_method = self.get_testcase_stack() ct_number = ''.join(list(filter(str.isdigit, f"{ct_method.split('_')[-1]}"))) if ct_method else "" return (ct_method, ct_number) def take_screenshot_log(self, driver, stack_item="", test_number=""): """ [Internal] Takes a screenshot and saves on the log screenshot folder defined in config. :param driver: The selenium driver. :type: Selenium Driver :param stack_item: test case stack :type: str :param test_number: test case number :type: str Usage: >>> # Calling the method: >>> self.log.take_screenshot_log() """ if not stack_item: stack_item = self.get_testcase_stack() if stack_item == "setUpClass": stack_item = self.get_file_name("testsuite") if not test_number: test_number = f"{stack_item.split('_')[-1]} -" if stack_item else "" if not self.release: self.release = self.config.release testsuite = self.get_file_name("testsuite") today = datetime.today() if self.search_stack("log_error"): screenshot_file = self.screenshot_file_name("error", stack_item) elif self.search_stack("CheckResult"): screenshot_file = self.screenshot_file_name("CheckResult_result_divergence", stack_item) else: screenshot_file = self.screenshot_file_name(stack_item) if self.config.debug_log: logger().debug(f"take_screenshot_log in:{datetime.now()}\n") try: if self.config.log_http: folder_path = Path(self.config.log_http, self.config.country, self.release, self.config.issue, self.config.execution_id, testsuite) path = Path(folder_path, screenshot_file) os.makedirs(Path(folder_path)) else: path = Path("Log", self.station, screenshot_file) os.makedirs(Path("Log", self.station)) except OSError: pass try: driver.save_screenshot(str(path)) logger().debug(f"Screenshot file created successfully: {path}") except Exception as e: logger().exception(f"Warning Log Error save_screenshot exception {str(e)}") def screenshot_file_name(self, description="", stack_item=""): """ :param name: :return: """ today = datetime.today() if description: return f"{self.user}_{today.strftime('%Y%m%d%H%M%S%f')[:-3]}_{stack_item}_{description}.png" else: return f"{self.user}_{today.strftime('%Y%m%d%H%M%S%f')[:-3]}_{stack_item}.png" def printable_message(self, string): """ :param string: :return: """ return re.sub(';', ',', ''.join(filter(lambda x: x.isprintable(), string))[:600]) def search_stack(self, function): """ Returns True if passed function is present in the call stack. :param function: Name of the function :type function: str :return: Boolean if passed function is present or not in the call stack. :rtype: bool Usage: >>> # Calling the method: >>> is_present = self.search_stack("MATA020") """ return len(list(filter(lambda x: x.function == function, inspect.stack()))) > 0
StarcoderdataPython
3249920
<reponame>alekseystryukov/quarterly_report<gh_stars>0 from django.shortcuts import render, get_object_or_404 from django.core.serializers.json import DjangoJSONEncoder from django.db.models import Q from companies.models import Company import json def index(request): context = { "companies": None, "search": request.GET.get('search', '') } if context["search"]: context["companies"] = Company.objects.filter( Q(cik__icontains=context["search"]) | Q(symbol__icontains=context["search"]) | Q(name__icontains=context["search"]) ) return render(request, 'index.html', context) def detail(request, cik): company = get_object_or_404(Company, cik=cik) data = json.dumps( list( company.reports.all().values( "date", "shares", "revenue", "cost_of_revenue", "net_income", "convertible_notes", "equity" ) ), cls=DjangoJSONEncoder ) return render(request, 'detail.html', {'company': company, 'chart_data': data})
StarcoderdataPython
3326577
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import sys import pytest import numpy import awkward1 def test(): one = awkward1.Array([999, 123, 1, 2, 3, 4, 5]) two = awkward1.Array([999])[:0] three = awkward1.Array([]) assert awkward1.to_list(one[[None, None]]) == [None, None] assert awkward1.to_list(one[[None, 0, None]]) == [None, 999, None] assert awkward1.to_list(two[[None, None]]) == [None, None] assert awkward1.to_list(two[[None, None, None]]) == [None, None, None] assert awkward1.to_list(three[[None, None]]) == [None, None] assert awkward1.to_list(three[[None, None, None]]) == [None, None, None] array = awkward1.Array([[[0, 1, 2], []], [[], [3, 4]], [[5], [6, 7, 8, 9]]]) assert awkward1.to_list(array[:, [None, 1, None]]) == [[None, [], None], [None, [3, 4], None], [None, [6, 7, 8, 9], None]] assert awkward1.to_list(array[:2, [None, 1, None]]) == [[None, [], None], [None, [3, 4], None]] assert awkward1.to_list(array[1:, [None, 1, None]]) == [[None, [3, 4], None], [None, [6, 7, 8, 9], None]] assert awkward1.to_list(array[:0, [None, 1, None]]) == []
StarcoderdataPython
128466
<gh_stars>0 import sys import pickle import json import os import math import networkx as nx from collections import defaultdict from net_init import load_network from net_init import generate_random_outs_conns_with_oracle as gen_rand_outs_with_oracle from network.sparse_table import SparseTable from network.communicator import Communicator from network import comm_network from network.oracle import SimpleOracle from sec_hop.selector import Selector from mat_complete.mat_comp_solver import construct_table import random import numpy as np class Experiment: def __init__(self, topo, in_lim, out_lim, name, num_keep, num_2hop, num_rand, num_epoch, adapts, num_msg, churn_rate): self.in_lim = in_lim self.out_lim = out_lim self.num_out = out_lim self.outdir = os.path.dirname(name) self.loc, self.ld, self.roles, self.proc_delay, self.pub_prob = load_network(topo) self.num_node = len(self.loc) self.num_epoch = num_epoch self.num_msg = num_msg self.churn_rate = churn_rate self.selectors = {i: Selector(i, num_keep, num_rand, num_msg, self.num_node) for i in range(self.num_node)} # elf.num_cand = num_node # could be less if num_node is large self.snapshots = [] # self.pools = Pool(processes=num_thread) self.directions = ['incoming', 'outgoing', 'bidirect'] self.nodes = {i: Communicator(i, self.proc_delay[i], in_lim, out_lim, []) for i in range(self.num_node)} self.oracle = SimpleOracle(in_lim, out_lim, self.num_node) self.out_hist = [] self.sparse_tables = {i: SparseTable(i) for i in range(self.num_node)} # self.conns_snapshot = [] # self.broad_nodes = [] # hist of broadcasting node # self.timer = time.time() # self.pubs = [k for k,v in self.roles.items() if v=='PUB'] self.adapts = adapts self.pub_hist = [] self.dists_hist = defaultdict(list) self.dist_file = name # log setting # self.use_logger = use_logger # self.logdir = self.outdir + '/' + 'logs' # if not os.path.exists(self.logdir): # os.makedirs(self.logdir) # self.loggers = {} # self.init_logger() self.init_graph_conn = os.path.join(self.outdir, 'init.json') self.snapshot_dir = os.path.join(self.outdir, 'snapshots') self.snapshot_exploit_dir = os.path.join(self.outdir, 'snapshots-exploit') self.write_adapts_node(os.path.join(self.outdir, 'adapts')) if not os.path.exists(self.snapshot_dir): os.makedirs(self.snapshot_dir) if not os.path.exists(self.snapshot_dir): os.makedirs(self.snapshot_dir) self.num_keep = num_keep self.num_2hop = num_2hop self.num_rand = num_rand assert(num_keep + num_2hop + num_rand == self.out_lim) def construct_graph(self): G = nx.Graph() for i, node in self.nodes.items(): for u in node.outs: delay = self.ld[i][u] + node.node_delay/2 + self.nodes[u].node_delay/2 if i == u: print('self loop', i) sys.exit(1) G.add_edge(i, u, weight=delay) return G def construct_exploit_graph(self, curr_outs): G = nx.Graph() for i, node in self.nodes.items(): out_peers = [] if i in self.adapts: out_peers = curr_outs[i][:self.num_out-self.num_rand] else: out_peers = curr_outs[i] for u in out_peers: delay = self.ld[i][u] + node.node_delay/2 + self.nodes[u].node_delay/2 if i == u: print('self loop', i) sys.exit(1) G.add_edge(i, u, weight=delay) return G def write_cost(self, outpath): G = self.construct_graph() with open(outpath, 'w') as w: length = dict(nx.all_pairs_dijkstra_path_length(G)) for i in range(self.num_node): for j in range(self.num_node): cost = length[i][j] - self.proc_delay[i]/2.0 + self.proc_delay[j]/2.0 w.write(str(cost) + ' ') w.write('\n') def write_exploit_cost(self, outpath, curr_outs): G = self.construct_exploit_graph(curr_outs) with open(outpath, 'w') as w: length = dict(nx.all_pairs_dijkstra_path_length(G)) for i in range(self.num_node): for j in range(self.num_node): cost = length[i][j] - self.proc_delay[i]/2.0 + self.proc_delay[j]/2.0 w.write(str(cost) + ' ') w.write('\n') def write_adapts_node(self, filename): with open(filename, 'w') as w: sorted_stars = sorted(self.adapts) for star in sorted_stars: w.write(str(star) + '\n') def get_truth_distance(self, star_i, interested_peers, epoch): # construct graph G = nx.Graph() for i, node in self.nodes.items(): if i == star_i: for u in interested_peers: # only connect interested edge from the interested node delay = self.ld[i][u] + node.node_delay/2 + self.nodes[u].node_delay/2 if i == u: print('self loop', i) sys.exit(1) G.add_edge(i, u, weight=delay) else: for u in node.outs: # not connecting incoming edge to the interested node if u != star_i: delay = self.ld[i][u] + node.node_delay/2 + self.nodes[u].node_delay/2 if i == u: print('self loop', i) sys.exit(1) G.add_edge(i, u, weight=delay) dists = {} # key is the target pub, value is the best peer and length pubs = [k for k,v in self.roles.items() if v=='PUB'] for m in pubs: # the closest distance length, path = nx.single_source_dijkstra(G, source=star_i, target=m, weight='weight') assert(len(path)>=0) topo_length = None line_len = None j = None if len(path) == 1: # itself assert(star_i == m) topo_length = 0 line_len = 0 j = star_i else: j = path[1] topo_length = length - self.proc_delay[j]/2.0 + self.proc_delay[m]/2.0 line_len = self.ld[star_i][m] + self.proc_delay[m] # line_len = (math.sqrt( # (self.loc[star_i][0]-self.loc[m][0])**2+ # (self.loc[star_i][1]-self.loc[m][1])**2 ) +self.proc_delay[m]) dists[m] = (j, round(topo_length, 3), round(line_len, 3)) self.dists_hist[star_i].append((epoch, dists)) def save_dists_hist(self): if self.dist_file == 'None': return with open(self.dist_file, 'wb') as w: pickle.dump(self.dists_hist, w) def write_init_graph(self): with open(self.init_graph_conn, 'w') as w: graph_json = [] for u in range(self.num_node): node = self.nodes[u] outs = sorted([int(i) for i in node.outs]) ins = sorted([int(i) for i in node.ins]) peer = { 'node': int(u), 'outs': outs, 'ins': ins } graph_json.append(peer) json.dump(graph_json, w, indent=4) def take_snapshot(self, epoch, curr_outs): name = "epoch"+str(epoch)+".txt" outpath = os.path.join(self.snapshot_dir, name) self.write_cost(outpath) outpath_exploit = os.path.join(self.snapshot_exploit_dir, name) self.write_exploit_cost(outpath_exploit, curr_outs) # def init_selectors(self, out_conns, in_conns): # for u in range(self.num_node): # # if smaller then it is adv # if u in self.adversary.sybils: # self.selectors[u] = Selector(u, True, out_conns[u], in_conns[u], None) # else: # self.selectors[u] = Selector(u, False, out_conns[u], in_conns[u], None) def broadcast_msgs(self, num_msg): time_tables = {i:defaultdict(list) for i in range(self.num_node)} abs_time_tables = {i:defaultdict(list) for i in range(self.num_node)} broads = [] pubs = [] probs = [] for k, v in self.pub_prob.items(): pubs.append(k) probs.append(v) for _ in range(num_msg): # p = random.choice(self.pubs) p = np.random.choice(pubs, size=1, replace=False, p=probs)[0] self.pub_hist.append(p) broads.append(p) comm_network.broadcast_msg( p, self.nodes, self.ld, time_tables, abs_time_tables ) for i in range(self.num_node): self.sparse_tables[i].append_time(abs_time_tables[i], num_msg, 'abs_time') self.sparse_tables[i].append_time(time_tables[i], num_msg, 'rel_time') return broads def update_selectors(self, outs_conns, ins_conn): for i in range(self.num_node): self.selectors[i].update(outs_conns[i], ins_conn[i]) def get_curr_ins(self, curr_outs): curr_ins = defaultdict(list) for u in range(self.num_node): for o in curr_outs[u]: curr_ins[o].append(u) return curr_ins def setup_conn_graph(self, curr_outs): curr_ins = self.get_curr_ins(curr_outs) for u in range(self.num_node): self.nodes[u].update_conns(curr_outs[u], curr_ins[u]) def run_2hop(self, adapt_i, curr_out, e): slots = self.sparse_tables[adapt_i].table[-self.num_msg:] incomplete_table,M,nM,max_time,ids,ids_direct = construct_table(slots, adapt_i, self.directions) selected, rands = self.selectors[adapt_i].run(self.oracle, curr_out, ids, slots) return selected + rands def run(self): curr_outs = gen_rand_outs_with_oracle(self.num_out, self.num_node, self.oracle) self.oracle.check(curr_outs) self.setup_conn_graph(curr_outs) self.write_init_graph() for e in range(self.num_epoch): self.take_snapshot(e, curr_outs) self.oracle.check(curr_outs) ps = self.broadcast_msgs(self.num_msg) churn_adapts = comm_network.get_network_churning_nodes(self.churn_rate, self.adapts) for adapt_i in np.random.permutation(churn_adapts): curr_outs[adapt_i] = self.run_2hop(adapt_i, curr_outs[adapt_i], e) self.setup_conn_graph(curr_outs) for adapt_i in self.adapts: self.get_truth_distance(adapt_i, curr_outs[adapt_i][:self.num_keep], e) self.save_dists_hist() # while True: # network_state.reset(self.num_node, self.in_lim) # if num_snapshot == len(record_epochs): # break # if self.method == 'mc': # outs_conns, start_mc = self.run_mc(max_epoch,record_epochs, num_msg, epoch, network_state) # self.conns_snapshot.append(outs_conns) # if epoch in record_epochs: # self.take_snapshot(epoch) # num_snapshot += 1 # elif self.method == '2hop': # outs_conns = self.run_2hop(num_msg, epoch, network_state) # self.conns_snapshot.append(outs_conns) # if epoch in record_epochs: # self.take_snapshot(epoch) # num_snapshot += 1 # epoch += 1 # def select_nodes(nodes, ld, num_msg, selectors, oracle, update_nodes, time_tables, in_lim, out_lim, network_state, num_keep, num_2hop, num_random): # outs_neighbors = {} # output container # num_invalid_compose = 0 # # direct peers # num_rand_1hop = 0 # for i in update_nodes: # keep_candidates = list(nodes[i].outs | nodes[i].ins ) # composes = comb_subset.get_config( # num_keep, # keep_candidates, # len(keep_candidates), # network_state, # i) # num_invalid_compose += math.comb(len(keep_candidates), num_keep) - len(composes) # if len(composes) == 0: # peers = selectors[i].select_random_peers(nodes, num_keep, network_state) # num_rand_1hop += 1 # # oracle needs to know the connection # oracle.update_1_hop_peers(i, peers) # outs_neighbors[i] = peers # else: # for compose in composes: # if len(compose) != len(set(compose)): # print('repeat in compose') # print(i) # print('composes', compose) # print(keep_candidates) # print('in', list(nodes[i].outs)) # print('out', list(nodes[i].ins)) # sys.exit(1) # peers = selectors[i].select_1hops(time_tables[i], composes, num_msg, network_state) # # oracle needs to know the connection # oracle.update_1_hop_peers(i, peers) # outs_neighbors[i] = peers # num_added_2hop = 0 # num_added_3hop = 0 # num_added_random = 0 # tot_not_seen = 0 # random.shuffle(update_nodes) # # two hop peers # if num_2hop > 0: # for u in update_nodes: # peers_info = oracle.get_multi_hop_info(u) # peers, num_not_seen = selectors[u].select_peers( # config.num_2_hop, nodes, peers_info.two_hops, network_state) # oracle.update_2_hop_peers(u, peers) # outs_neighbors[u] += peers # num_added_2hop += len(peers) # tot_not_seen += num_not_seen # # add 3hops # if out_lim - len(outs_neighbors[u]) > num_random: # num_3_hop = out_lim - len(outs_neighbors[u]) - num_random # peers_info = oracle.get_multi_hop_info(u) # peers, num_not_seen = selectors[u].select_peers(num_3_hop, nodes, peers_info.three_hops, network_state) # oracle.update_3_hop_peers(u, peers) # outs_neighbors[u] += peers # num_added_3hop += len(peers) # tot_not_seen += num_not_seen # # add random # for u in update_nodes: # num_random = out_lim - len(outs_neighbors[u]) # num_added_random += num_random # peers = selectors[u].select_random_peers(nodes, num_random, network_state) # for p in peers: # if p in outs_neighbors[u]: # print(p, 'in neigbors', outs_neighbors[u]) # sys.exit(1) # outs_neighbors[u] += peers # # debug # for u in update_nodes: # if len(set(outs_neighbors[u])) != out_lim: # print(u, "has less out neighbors") # print(outs_neighbors[u]) # print(selectors[u].desc_conn) # sys.exit(1) # print('num_rand_1hop', num_rand_1hop,'num_invalid_compose', num_invalid_compose ) # # print('Finish. num2hop', num_added_2hop, 'num3hop', num_added_3hop, 'num rand', num_added_random, 'num no seen', tot_not_seen) # return outs_neighbors
StarcoderdataPython
3277730
<reponame>SpiderOak/enkube<gh_stars>0 # Copyright 2018 SpiderOak, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import logging import unittest from unittest.mock import patch, MagicMock, sentinel, call import curio from .util import AsyncTestCase, apatch, dummy_coro from enkube.api.types import * from enkube.api import client class TestStreamIter(AsyncTestCase): def setUp(self): Kind.instances.clear() class FooKind(Kind): apiVersion = 'v1' self.FooKind = FooKind self.objects = [ {'foo': 1}, {'bar': 2}, {'baz': 3}, {"apiVersion": "v1", "kind": "FooKind", "spec": "foospec"}, ] class aiter: async def __anext__(it): try: return self.chunks.pop(0) except IndexError: raise StopAsyncIteration() from None async def close_coro(): pass self.resp = MagicMock() self.resp.body.__aiter__ = aiter self.resp.body.close.side_effect = close_coro async def kindify(obj): try: return Kind.getKind(obj['apiVersion'], obj['kind'])(obj) except KeyError: return obj self.api = MagicMock(**{'_kindify.side_effect': kindify}) self.si = client.StreamIter(self.api, self.resp) def test_iter(self): self.chunks = [b'\n'.join(json.dumps(o).encode('utf-8') for o in self.objects)] res = list(self.si) self.assertEqual(res, self.objects) self.assertTrue(isinstance(res[-1], self.FooKind)) def test_iter_with_trailing_newline(self): self.chunks = [b'\n'.join(json.dumps(o).encode('utf-8') for o in self.objects) + b'\n'] res = list(self.si) self.assertEqual(res, self.objects) self.assertTrue(isinstance(res[-1], self.FooKind)) def test_iter_chunks(self): s = b'\n'.join(json.dumps(o).encode('utf-8') for o in self.objects) n = s.find(b'\n') + 3 self.chunks = [s[:n], s[n:]] res = list(self.si) self.assertEqual(res, self.objects) self.assertTrue(isinstance(res[-1], self.FooKind)) def test_context_manager(self): with self.si as ret: pass self.assertIs(ret, self.si) self.resp.body.close.assert_called_once_with() class TestApiClient(AsyncTestCase): def setUp(self): Kind.instances.clear() self.api = client.ApiClient(MagicMock()) self.api.log = MagicMock() self.api.session = MagicMock(**{'close.side_effect': dummy_coro}) async def test_close(self): await self.api.close() self.api.session.close.assert_called_once_with() def test_context_manager(self): with patch.object(self.api, 'close') as c: c.side_effect = dummy_coro with self.api: pass c.assert_called_once_with() async def test_request(self): resp = MagicMock(status_code=200, headers={'content-type': 'application/json'}) async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro res = await self.api.request('GET', '/', foo='bar') self.assertIs(res, resp.json.return_value) self.api.session.request.assert_called_once_with(method='GET', path='/', foo='bar') resp.json.assert_called_once_with() async def test_request_non_json(self): resp = MagicMock(status_code=200) async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro res = await self.api.request('GET', '/', foo='bar') self.assertIs(res, resp.text) self.api.session.request.assert_called_once_with(method='GET', path='/', foo='bar') self.assertFalse(resp.json.called) async def test_request_non_2xx_raises_apierror(self): resp = MagicMock(status_code=500) async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro with self.assertRaises(client.ApiError) as err: await self.api.request('GET', '/', foo='bar') self.assertIs(err.exception.resp, resp) async def test_request_non_2xx_raises_apierror_with_reason(self): resp = MagicMock(status_code=500, headers={'content-type': 'application/json'}) resp.json.return_value = {'message': sentinel.reason} async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro with self.assertRaises(client.ApiError) as err: await self.api.request('GET', '/', foo='bar') self.assertIs(err.exception.resp, resp) self.assertIs(err.exception.reason, sentinel.reason) async def test_request_resource_not_found(self): resp = MagicMock(status_code=404) async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro with self.assertRaises(client.ResourceNotFoundError) as err: await self.api.request('GET', '/', foo='bar') self.assertIs(err.exception.resp, resp) @apatch('enkube.api.client.ApiClient.getKind') async def test_request_kindtype(self, gk): class FooKind(Kind): apiVersion = 'v1' async def gk_coro(*args, **kw): return FooKind gk.side_effect = gk_coro resp = MagicMock(status_code=200, headers={'content-type': 'application/json'}) resp.json.return_value = {'apiVersion': 'v1', 'kind': 'FooKind', 'spec': 'foospec'} async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro res = await self.api.request('GET', '/') self.assertEqual(res, resp.json.return_value) gk.assert_called_once_with('v1', 'FooKind') self.assertTrue(isinstance(res, FooKind)) @apatch('enkube.api.client.ApiClient.getKind') async def test_request_kindtype_not_found(self, gk): class FooKind(Kind): apiVersion = 'v1' async def gk_coro(*args, **kw): raise client.ResourceKindNotFoundError() gk.side_effect = gk_coro resp = MagicMock(status_code=200, headers={'content-type': 'application/json'}) resp.json.return_value = {'apiVersion': 'v1', 'kind': 'FooKind', 'spec': 'foospec'} async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro res = await self.api.request('GET', '/') self.assertEqual(res, resp.json.return_value) gk.assert_called_once_with('v1', 'FooKind') self.assertFalse(isinstance(res, FooKind)) @apatch('enkube.api.client.ApiClient.getKind') async def test_request_kindtype_other_error(self, gk): class FooKind(Kind): apiVersion = 'v1' exc = client.ApiError(resp=MagicMock(status_code=500)) async def gk_coro(*args, **kw): raise exc gk.side_effect = gk_coro resp = MagicMock(status_code=200, headers={'content-type': 'application/json'}) resp.json.return_value = {'apiVersion': 'v1', 'kind': 'FooKind', 'spec': 'foospec'} async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro with self.assertRaises(client.ApiError) as err: await self.api.request('GET', '/') self.assertIs(err.exception, exc) @apatch('enkube.api.client.StreamIter') async def test_request_stream(self, si): resp = MagicMock(status_code=200) async def req_coro(*args, **kw): return resp self.api.session.request.side_effect = req_coro res = await self.api.request('GET', '/', foo='bar', stream=True) self.assertIs(res, si.return_value) self.api.session.request.assert_called_once_with( method='GET', path='/', foo='bar', stream=True) si.assert_called_once_with(self.api, resp) async def test_get_apiversion_v1(self): v = { 'apiVersion': 'v1', 'kind': 'APIResourceList', 'groupVersion': 'v1', 'resources': [ { 'kind': 'FooKind', 'name': 'foos', 'singularName': '', 'namespaced': True, 'verbs': ['get', 'list'], }, ], } async def get_coro(*args, **kw): return v self.api.get = MagicMock(side_effect=get_coro) res = await self.api._get_apiVersion('v1') self.api.get.assert_called_once_with('/api/v1') self.assertTrue(isinstance(res, APIResourceList)) self.assertEqual(res, v) self.assertIs(res, self.api._apiVersion_cache['/api/v1']) self.assertEqual(self.api._kind_cache['v1', 'FooKind'], v['resources'][0]) async def test_get_apiversion(self): v = { 'apiVersion': 'v1', 'kind': 'APIResourceList', 'groupVersion': 'v1', 'resources': [ { 'kind': 'FooKind', 'name': 'foos', 'singularName': '', 'namespaced': True, 'verbs': ['get', 'list'], }, ], } async def get_coro(*args, **kw): return v self.api.get = MagicMock(side_effect=get_coro) res = await self.api._get_apiVersion('apps/v1') self.api.get.assert_called_once_with('/apis/apps/v1') self.assertTrue(isinstance(res, APIResourceList)) self.assertEqual(res, v) self.assertIs(res, self.api._apiVersion_cache['/apis/apps/v1']) self.assertEqual(self.api._kind_cache['apps/v1', 'FooKind'], v['resources'][0]) async def test_get_apiversion_cached(self): self.api.get = MagicMock() self.api._apiVersion_cache['/apis/apps/v1'] = sentinel.result res = await self.api._get_apiVersion('apps/v1') self.api.get.assert_not_called() self.assertIs(res, sentinel.result) async def test_get_apiversion_apierror(self): async def get_coro(*args, **kw): raise client.ApiError(MagicMock(status_code=400)) self.api.get = MagicMock(side_effect=get_coro) with self.assertRaises(client.ApiError) as err: await self.api._get_apiVersion('apps/v1') self.assertIs(err.exception.reason, None) async def test_get_apiversion_not_found(self): async def get_coro(*args, **kw): raise client.ApiError(MagicMock(status_code=404)) self.api.get = MagicMock(side_effect=get_coro) with self.assertRaises(client.ApiVersionNotFoundError) as err: await self.api._get_apiVersion('apps/v1') self.assertEqual(err.exception.reason, 'apiVersion not found') async def test_get_resourcekind(self): v = { 'apiVersion': 'v1', 'kind': 'APIResourceList', 'groupVersion': 'v1', 'resources': [ { 'kind': 'FooKind', 'name': 'foos', 'singularName': '', 'namespaced': True, 'verbs': ['get', 'list'], }, ], } async def get_coro(*args, **kw): return v self.api.get = MagicMock(side_effect=get_coro) res = await self.api._get_resourceKind('apps/v1', 'FooKind') self.api.get.assert_called_once_with('/apis/apps/v1') self.assertEqual(res, v['resources'][0]) self.assertTrue(isinstance(res, APIResource)) async def test_get_resourcekind_not_found(self): v = { 'apiVersion': 'v1', 'kind': 'APIResourceList', 'groupVersion': 'v1', 'resources': [ { 'kind': 'FooKind', 'name': 'foos', 'singularName': '', 'namespaced': True, 'verbs': ['get', 'list'], }, ], } async def get_coro(*args, **kw): return v self.api.get = MagicMock(side_effect=get_coro) with self.assertRaises(client.ResourceKindNotFoundError) as err: await self.api._get_resourceKind('apps/v1', 'BarKind') self.assertEqual(err.exception.reason, 'resource kind not found') async def test_get_resourcekind_ignores_subresources(self): v = { 'apiVersion': 'v1', 'kind': 'APIResourceList', 'groupVersion': 'v1', 'resources': [ { 'kind': 'FooKind', 'name': 'foos/status', 'singularName': '', 'namespaced': True, 'verbs': ['get', 'list'], }, ], } async def get_coro(*args, **kw): return v self.api.get = MagicMock(side_effect=get_coro) with self.assertRaises(client.ApiError) as err: await self.api._get_resourceKind('apps/v1', 'FooKind') self.assertEqual(err.exception.reason, 'resource kind not found') @apatch('enkube.api.types.Kind.from_apiresource') @apatch('enkube.api.client.ApiClient._get_resourceKind') async def test_getkind(self, fa, gr): async def gr_coro(*args, **kw): return sentinel.rk gr.side_effect = gr_coro fa.return_value = sentinel.fookind FooKind = await self.api.getKind('v1', 'FooKind') self.assertIs(FooKind, sentinel.fookind) fa.assert_called_once_with('v1', sentinel.rk) gr.assert_called_once_with('v1', 'FooKind') async def test_getkind_local_kind(self): class FooKind(Kind): apiVersion = 'v1' res = await self.api.getKind('v1', 'FooKind') self.assertIs(res, FooKind) async def test_check_health_ok(self): async def get_coro(path): return 'ok' self.api.get = MagicMock(side_effect=get_coro) self.assertTrue(await self.api.check_health()) self.assertTrue(self.api.healthy.is_set()) self.api.get.assert_called_once_with('/healthz') async def test_check_health_error(self): await self.api.healthy.set() async def get_coro(path): raise client.ApiError() self.api.get = MagicMock(side_effect=get_coro) self.assertFalse(await self.api.check_health()) self.assertFalse(self.api.healthy.is_set()) async def test_check_health_gibberish(self): await self.api.healthy.set() async def get_coro(path): return 'foo' self.api.get = MagicMock(side_effect=get_coro) self.assertFalse(await self.api.check_health()) self.assertFalse(self.api.healthy.is_set()) @apatch('curio.sleep') async def test_wait_until_healthy(self, sleep): sleep.side_effect = dummy_coro responses = [client.ApiError(), 'ok'] async def get_coro(path): return responses.pop(0) self.api.get = MagicMock(side_effect=get_coro) await self.api.wait_until_healthy() self.assertEqual(responses, []) sleep.assert_called_once_with(client.ApiClient._health_check_interval) self.assertTrue(self.api.healthy.is_set()) async def test_ensure_object(self): self.api.create = MagicMock(side_effect=dummy_coro) await self.api.ensure_object(sentinel.obj) self.api.create.assert_called_once_with(sentinel.obj) async def test_ensure_object_ignores_conflict(self): async def conflict_coro(*args, **kw): raise client.ApiError(MagicMock(status_code=409)) self.api.create = MagicMock(side_effect=conflict_coro) await self.api.ensure_object(sentinel.obj) self.api.create.assert_called_once_with(sentinel.obj) async def test_ensure_object_raises_non_conflict_errors(self): async def conflict_coro(*args, **kw): raise client.ApiError(MagicMock(status_code=500)) self.api.create = MagicMock(side_effect=conflict_coro) with self.assertRaises(client.ApiError): await self.api.ensure_object(sentinel.obj) async def test_ensure_objects(self): self.api.ensure_object = MagicMock(side_effect=dummy_coro) await self.api.ensure_objects([sentinel.obj1, sentinel.obj2]) self.api.ensure_object.assert_has_calls([ call(sentinel.obj1), call(sentinel.obj2), ]) if __name__ == '__main__': unittest.main()
StarcoderdataPython
34433
from datetime import datetime import timebomb.models as models def test_Notification(): notif = models.Notification("message") assert notif.content == "message" assert notif.read is False assert str(notif) == "message" def test_Player(): player = models.Player("name", "id") assert player.name == "name" assert player.id == "id" assert player.team is None assert player.hand is None player = models.Player("name", "id", "team", ("A", "B"), "roomid") assert player.name == "name" assert player.id == "id" assert player.team == "team" assert player.hand == ("A", "B") assert player.roomId == "roomid" def test_Message(): now = datetime.now() message = models.Message("player", "message") assert message.player_name == "player" assert message.content == "message" assert message.timestamp and isinstance(message.timestamp, datetime) assert str(message) == f"[{now:%H:%M}] player: message" def test_Room(): player = models.Player("player", "player_id") room = models.Room("room", "room_id", (player,)) assert room.name == "room" and room.id == "room_id" assert len(room.players) == 1 and room.players[0] is player assert room.cutter is None and room.winning_team is None and room.status == "" assert isinstance(room.cards_found, dict) and isinstance(room.cards_left, dict) assert not room.cards_found and not room.cards_left def test_GameState(): state = models.GameState() assert isinstance(state.messages, list) and not state.messages assert state.room is None and state.me is None and state.notification is None def test_GameState_new_message(): state = models.GameState() assert isinstance(state.messages, list) and not state.messages message = state.new_message({"player": "player", "message": "test_message"}) assert len(state.messages) == 1 and state.messages[0] is message assert message.player_name == "player" and message.content == "test_message" for i in range(99): last = state.new_message( {"player": f"player{i}", "message": f"test_message{i}"} ) assert len(state.messages) == 100 assert state.messages[0] is message and state.messages[99] is last assert last.player_name == "player98" and last.content == "test_message98" last = state.new_message({"player": "player99", "message": "test_message99"}) assert len(state.messages) == 100 assert state.messages[0] is not message and state.messages[99] is last assert ( state.messages[0].player_name == "player0" and state.messages[0].content == "test_message0" ) assert last.player_name == "player99" and last.content == "test_message99" res = state.new_message({"message": "test_message100"}) assert res is None assert state.messages[99] is last def test_GameState_new_notification(): state = models.GameState() assert state.notification is None notif1 = state.new_notification({"message": "notif1"}) assert state.notification is notif1 and notif1.content == "notif1" notif2 = state.new_notification({"message": "notif2"}) assert state.notification is notif2 and notif2.content == "notif2" notif3 = state.new_notification({"unknown": "notif2"}) assert notif3 is None and state.notification is notif2 def test_GameState_update_room(): state = models.GameState() assert state.room is None players_data = [{"name": "player1", "id": "id1"}] room_data = {"name": "roomname", "id": "roomid", "players": players_data} room = state.update_room(room_data) assert state.room is room and room.name == "roomname" and room.id == "roomid" assert len(room.players) == 1 assert room.players[0].name == "player1" and room.players[0].id == "id1" new_data = {"name": "newname", "cutter": {"name": "cutter", "id": "cutterid"}} room = state.update_room(new_data) assert state.room is room and room.name == "newname" and room.id == "roomid" assert len(room.players) == 1 assert room.players[0].name == "player1" and room.players[0].id == "id1" assert ( isinstance(room.cutter, models.Player) and room.cutter.id == "cutterid" and room.cutter.name == "cutter" ) new_data = { "players": [{"name": "player1", "id": "id1"}, {"name": "player2", "id": "id2"}] } room = state.update_room(new_data) assert state.room is room and room.name == "newname" and room.id == "roomid" assert len(room.players) == 2 def test_GameState_update_me(): state = models.GameState() assert state.me is None player = state.update_me({"name": "player1", "id": "id1"}) assert state.me is player and player.name == "player1" and player.id == "id1" assert player.hand is None player = state.update_me({"hand": ("A", "A", "B", "A")}) assert state.me is player and player.name == "player1" and player.id == "id1" assert player.hand == ("A", "A", "B", "A") def test_GameState_reset(): state = models.GameState() assert isinstance(state.messages, list) and not state.messages assert state.room is None and state.me is None and state.notification is None state.messages = ["m1", "m2"] state.room = "Room" state.me = "Me" state.notification = "Notification" state.reset() assert isinstance(state.messages, list) and not state.messages assert state.room is None and state.me is None and state.notification is None
StarcoderdataPython
171545
from . import db from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin from . import login_manager from datetime import datetime, date @login_manager.user_loader def load_user(userName): return User.query.get(str(userName)) class User(UserMixin, db.Model): def get_id(self): return (self.username) __tablename__ = 'users' username = db.Column(db.String(255),unique = True, primary_key = True) firstname = db.Column(db.String(255)) secondname = db.Column(db.String(255)) email = db.Column(db.String(255), unique = True, index = True) profile_picture = db.Column(db.String()) profile_bio = db.Column(db.String(255)) secured_password = db.Column(db.String(255)) pitches = db.relationship('Pitch', backref = 'moto', lazy = 'dynamic') commentsByMe = db.relationship('PitchComment', backref = 'userzs', lazy = 'dynamic') @property def password(self): raise AttributeError('You cannot view a users password') @password.setter def password(self, password): self.secured_password = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.secured_password, password) class Category(db.Model): __tablename__ = 'cats' id = db.Column(db.Integer, primary_key = True) category_name = db.Column(db.String(255)) pitch = db.relationship('Pitch', backref = 'categ', lazy = "dynamic") class Pitch(db.Model): __tablename__ = 'pitch' id = db.Column(db.Integer, primary_key = True) pitch = db.Column(db.String) categoryOfPitch = db.Column(db.Integer, db.ForeignKey("cats.id")) date_posted = db.Column(db.DateTime, default = date.today) user = db.Column(db.String, db.ForeignKey("users.username")) upvote = db.Column(db.Integer, default = 0) downvote = db.Column(db.Integer, default = 0) comments = db.relationship('PitchComment', backref = 'pitch', lazy = "dynamic") def save_pitch(self): db.session.add(self) db.session.commit() def delete_pitch(self): db.session.delete(self) db.sesion.commit() @classmethod def pitch_by_id(cls, id): pitches = Pitch.query.filter_by(id = id).first() return pitches @classmethod def all_pitches(cls, inputUserName): pitches = Pitch.query.filter_by(user = inputUserName).all() return pitches class PitchComment(db.Model): __tablename__ = 'pitchcomments' id = db.Column(db.Integer, primary_key = True) pitch_id = db.Column(db.Integer, db.ForeignKey("pitch.id")) comment = db.Column(db.String) user = db.Column(db.String, db.ForeignKey("users.username")) date_posted = db.Column(db.DateTime, default = date.today) def save_comment(self): db.session.add(self) db.session.commit() def delete_comment(self): db.session.delete(self) db.sesion.commit() @classmethod def all_comments(cls, inputUser): comments = PitchComment.query.filter_by(user = inputUser).all() return comments
StarcoderdataPython
3261075
import unittest import logging from common import loginit from mock import Mock, patch, mock_open from sensors.temperature.ds18b20 import Ds18b20 class TempSensorTest(unittest.TestCase): goodData = "93 01 4b 46 7f ff 0d 10 32 : crc=32 YES\n93 01 4b 46 7f ff 0d 10 32 t=25187" badCrc = "93 01 4b 46 7f ff 0d 10 32 : crc=32 NO\n93 01 4b 46 7f ff 0d 10 32 t=25187" zeroTemp = "93 01 4b 46 7f ff 0d 10 32 : crc=32 YES\n93 01 4b 46 7f ff 0d 10 32 t=0" noTemp = "93 01 4b 46 7f ff 0d 10 32 : crc=32 YES\n93 01 4b 46 7f ff 0d 10 32 t=" invalidTemp = "93 01 4b 46 7f ff 0d 10 32 : crc=32 YES\n93 01 4b 46 7f ff 0d 10 32 t=dfhg" empty = "" name = "testSensorName" @classmethod def setUpClass(cls): loginit.initTestLogging() TempSensorTest.logger = logging.getLogger(__name__) @patch('os.path.isfile') def test_getDataC(self, osMock): osMock.return_value = True sensor = Ds18b20(TempSensorTest.name, 'C', "/file") openMock = mock_open(read_data=TempSensorTest.goodData) with patch('builtins.open', openMock) as mockFile: self.assertEqual(sensor.getData(), 25.187) @patch('os.path.isfile') def test_getDataF(self, osMock): osMock.return_value = True sensor = Ds18b20(TempSensorTest.name, 'F', "/file") openMock = mock_open(read_data=TempSensorTest.goodData) with patch('builtins.open', openMock) as mockFile: self.assertEqual(sensor.getData(), 77.3366) @patch('os.path.isfile') def test_getDataBad(self, osMock): osMock.return_value = True sensor = Ds18b20(TempSensorTest.name, 'Q', "/file") openMock = mock_open(read_data=TempSensorTest.goodData) with patch('builtins.open', openMock) as mockFile: with self.assertRaises(ValueError): sensor.getData()
StarcoderdataPython
154966
""" Modified from https://github.com/facebookresearch/fvcore """ __all__ = ["Registry"] class Registry: """A registry providing name -> object mapping, to support custom modules. To create a registry (e.g. a backbone registry): .. code-block:: python BACKBONE_REGISTRY = Registry('BACKBONE') To register an object: .. code-block:: python @BACKBONE_REGISTRY.register() class MyBackbone(nn.Module): ... Or: .. code-block:: python BACKBONE_REGISTRY.register(MyBackbone) """ def __init__(self, name): self._name = name self._obj_map = dict() def _do_register(self, name, obj, force=False): if name in self._obj_map and not force: raise KeyError( 'An object named "{}" was already ' 'registered in "{}" registry'.format(name, self._name) ) self._obj_map[name] = obj def register(self, obj=None, force=False): if obj is None: # Used as a decorator def wrapper(fn_or_class): name = fn_or_class.__name__ self._do_register(name, fn_or_class, force=force) return fn_or_class return wrapper # Used as a function call name = obj.__name__ self._do_register(name, obj, force=force) def get(self, name): if name not in self._obj_map: raise KeyError( 'Object name "{}" does not exist ' 'in "{}" registry'.format(name, self._name) ) return self._obj_map[name] def registered_names(self): return list(self._obj_map.keys())
StarcoderdataPython
99422
<reponame>kotofey97/yatube_project_finale from django.contrib.auth import get_user_model from django.contrib.auth.forms import (PasswordChangeForm, PasswordResetForm, SetPasswordForm, UserCreationForm) User = get_user_model() class CreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = User fields = ('first_name', 'last_name', 'username', 'email') class PasswordChangingForm(PasswordChangeForm): class Meta: model = User fields = ('old_password', 'new_<PASSWORD>', '<PASSWORD>') class PasswordResForm(PasswordResetForm): class Meta: model = User fields = ('email') class PasswordResConfirmForm(SetPasswordForm): class Meta: model = User fields = ('new_password1', 'new_<PASSWORD>')
StarcoderdataPython
1750387
<reponame>fabric-testbed/core-api # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class Model200OkPaginatedLinks(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, first: str=None, last: str=None, next: str=None, prev: str=None): # noqa: E501 """Model200OkPaginatedLinks - a model defined in Swagger :param first: The first of this Model200OkPaginatedLinks. # noqa: E501 :type first: str :param last: The last of this Model200OkPaginatedLinks. # noqa: E501 :type last: str :param next: The next of this Model200OkPaginatedLinks. # noqa: E501 :type next: str :param prev: The prev of this Model200OkPaginatedLinks. # noqa: E501 :type prev: str """ self.swagger_types = { 'first': str, 'last': str, 'next': str, 'prev': str } self.attribute_map = { 'first': 'first', 'last': 'last', 'next': 'next', 'prev': 'prev' } self._first = first self._last = last self._next = next self._prev = prev @classmethod def from_dict(cls, dikt) -> 'Model200OkPaginatedLinks': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The 200_ok_paginated_links of this Model200OkPaginatedLinks. # noqa: E501 :rtype: Model200OkPaginatedLinks """ return util.deserialize_model(dikt, cls) @property def first(self) -> str: """Gets the first of this Model200OkPaginatedLinks. :return: The first of this Model200OkPaginatedLinks. :rtype: str """ return self._first @first.setter def first(self, first: str): """Sets the first of this Model200OkPaginatedLinks. :param first: The first of this Model200OkPaginatedLinks. :type first: str """ self._first = first @property def last(self) -> str: """Gets the last of this Model200OkPaginatedLinks. :return: The last of this Model200OkPaginatedLinks. :rtype: str """ return self._last @last.setter def last(self, last: str): """Sets the last of this Model200OkPaginatedLinks. :param last: The last of this Model200OkPaginatedLinks. :type last: str """ self._last = last @property def next(self) -> str: """Gets the next of this Model200OkPaginatedLinks. :return: The next of this Model200OkPaginatedLinks. :rtype: str """ return self._next @next.setter def next(self, next: str): """Sets the next of this Model200OkPaginatedLinks. :param next: The next of this Model200OkPaginatedLinks. :type next: str """ self._next = next @property def prev(self) -> str: """Gets the prev of this Model200OkPaginatedLinks. :return: The prev of this Model200OkPaginatedLinks. :rtype: str """ return self._prev @prev.setter def prev(self, prev: str): """Sets the prev of this Model200OkPaginatedLinks. :param prev: The prev of this Model200OkPaginatedLinks. :type prev: str """ self._prev = prev
StarcoderdataPython
1706999
<reponame>kaiwinut/hateyugemu import argparse def show_banner(): banner = """ =================================================\n\n はぁって言うゲーム\n\n =================================================\n\n """ print(banner) def show_players(players): player_list = "Players: " for i, name in enumerate(players): player_list += name if not i == len(players) - 1: player_list += " / " player_list += "\n\n" print(player_list) def parse_user_option(): parser = argparse.ArgumentParser() parser.add_argument('-n', '--newname', action='store_true', help='define new players for this game (new players will not be saved after the game)') parser.add_argument('-s', '--skip', action='store_true', help='skip through the process where the assigned action of each player will be displayed on the screen in turns') return parser.parse_args() def print_topic(topic): print("====================================", end="\n\n") print("Topic:", topic['Topic'], end="\n\n") print("Notes:", topic['Notes'], end="\n\n") print("Act A:", topic['A'], end="\n\n") print("Act B:", topic['B'], end="\n\n") print("Act C:", topic['C'], end="\n\n") print("Act D:", topic['D'], end="\n\n") print("Act E:", topic['E'], end="\n\n") print("Act F:", topic['F'], end="\n\n") print("Act G:", topic['G'], end="\n\n") print("Act H:", topic['H'], end="\n\n") print("====================================", end="\n\n") def get_topic_string(topic): return f"""\n =======================\n テーマ: {topic['Topic']}\n 指示: {topic['Notes']}\n A: {topic['A']}\n B: {topic['B']}\n C: {topic['C']}\n D: {topic['D']}\n E: {topic['E']}\n F: {topic['F']}\n G: {topic['G']}\n H: {topic['H']}\n =======================\n\n """
StarcoderdataPython
3232622
import matplotlib.pyplot as plt import pandas as pd import pathlib import sys source = "res_floor.csv" if len(sys.argv) < 2 else sys.argv[1] ds = pd.read_csv(source, index_col=None) fig, (ax1, ax2, ax3) = plt.subplots(1, 3) # problem: tol was 0.001 but mean error is close to 0.015 ax1.boxplot((ds.true_scale - ds.pred_scale) / ds.true_scale) ax1.set_title("Scale Relative Error\n(true - prediction) / true") ax1.get_xaxis().set_visible(False) ax2.boxplot(ds.true_y - ds.pred_y) ax2.set_title("Coordinate (y) Error\n(true - prediction)") ax2.get_xaxis().set_visible(False) ax3.boxplot(ds.true_x - ds.pred_x) ax3.set_title("Coordinate (x) Error\n(true - prediction)") ax3.get_xaxis().set_visible(False) fig.tight_layout() fig.savefig(pathlib.Path(source).with_suffix(".png"))
StarcoderdataPython
4814313
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: © 2021 Massachusetts Institute of Technology. # SPDX-FileCopyrightText: © 2021 <NAME> <<EMAIL>> # NOTICE: authors should document their contributions in concisely in NOTICE # with details inline in source files, comments, and docstrings. """ """ from .. import base from . import space class Marker(base.OpticalObject): annotate_as_space = False def port_chain(self, p, pname): bmap = { "+A-t": (None, "+B"), "+B-t": (None, "+A"), }.get(pname, None) if bmap is not None: return bmap return super().port_chain(p, pname) @classmethod def visit_port_information(cls, manip): manip.gen_optical_port("+A", "A") manip.gen_optical_port("+B", "B") return def visit_mode_matching_linkage(self, manip): manip.add_link("B!i", "A!o", None) manip.add_link("A!i", "B!o", None) # def visit_mode_matching_transport(self, manip): # length_m = manip.p['length[m]'] # #no need to check these since the space can only be called on proper # #links and the two directions are identical # #manip.lport_fr # #manip.lport_to # #the P-builders are for fast optimization solving # def p_builderXY(p): # length_m = p['length[m]'] # return matrix_stack([[1, length_m], [0, 1]]) # manip.set_XYpropagator(p_builderXY) # manip.set_Zpropagator({'length[m]' : 1}) # matrix = p_builderXY(manip.p) # def inc_builder(z): # return matrix_stack([[1, z], [0, 1]]) # manip.set_XYincremental([ # (length_m, inc_builder, matrix) # ]) # return class MaterialMarker(space.Space): annotate_as_space = False # TODO, need to apply substrate to propagation
StarcoderdataPython
1676215
<filename>python_liftbridge/python_liftbridge.py from logging import getLogger from logging import NullHandler import python_liftbridge.api_pb2 from python_liftbridge.base import BaseClient from python_liftbridge.errors import handle_rpc_errors, handle_rpc_errors_in_generator, ErrDeadlineExceeded, ErrChannelClosed from python_liftbridge.message import Message # noqa: F401 from python_liftbridge.stream import Stream # noqa: F401 logger = getLogger(__name__) logger.addHandler(NullHandler()) class Lift(BaseClient): def fetch_metadata(self): # TODO return self._fetch_metadata(self._fetch_metadata_request()) def subscribe(self, stream, timeout=None): """ Subscribe creates an ephemeral subscription for the given stream. It begins receiving messages starting at the configured position and waits for new messages when it reaches the end of the stream. The default start position is the end of the stream. It returns an ErrNoSuchStream if the given stream does not exist. """ logger.debug('Creating a new subscription to: %s' % stream) try: for message in self._subscribe(self._subscribe_request(stream), timeout): yield message except ErrDeadlineExceeded: return def create_stream(self, stream): """ CreateStream creates a new stream attached to a NATS subject. Subject is the NATS subject the stream is attached to, and name is the stream identifier, unique per subject. It returns ErrStreamExists if a stream with the given subject and name already exists. """ logger.debug('Creating a new stream: %s' % stream) return self._create_stream(self._create_stream_request(stream)) def delete_stream(self, stream): """ DeleteStream deletes a stream and all of its partitions. Name is the stream identifier, globally unique. """ logger.debug('Delete stream: %s' % stream) return self._delete_stream(self._delete_stream_request(stream)) def publish(self, message): """ Publish publishes a new message to the Liftbridge stream. """ logger.debug('Publishing a new message to the Liftbridge stream: %s' % message) return self._publish( self._create_publish_request(message._build_message()), ) def publish_to_subject(self, message): """ Publish publishes a new message to the NATS subject. """ logger.debug('Publishing a new message to the NATS subject: %s' % message) return self._publish_to_subject( self._create_publish_to_subject_request(message._build_message()), ) @handle_rpc_errors def _fetch_metadata(self, metadata_request): response = self.stub.FetchMetadata(metadata_request) return response @handle_rpc_errors_in_generator def _subscribe(self, subscribe_request, timeout=None): # The first message in a subscription tells us if the subscribe succeeded. # From the docs: # """When the subscription stream is created, the server sends an # empty message to indicate the subscription was successfully created. # Otherwise, an error is sent on the stream if the subscribe failed. # This handshake message must be handled and should not be exposed # to the user.""" subscription = self.stub.Subscribe(subscribe_request, timeout) first_message = next(subscription) if first_message.value: raise ErrChannelClosed(first_message.value) for message in subscription: yield Message( message.value, message.subject, offset=message.offset, timestamp=message.timestamp, key=message.key, partition=message.partition ) @handle_rpc_errors def _create_stream(self, stream_request): response = self.stub.CreateStream(stream_request) return response @handle_rpc_errors def _delete_stream(self, stream_request): response = self.stub.DeleteStream(stream_request) return response @handle_rpc_errors def _publish(self, publish_request): response = self.stub.Publish(publish_request) return response @handle_rpc_errors def _publish_to_subject(self, publish_to_subject_request): response = self.stub.PublishToSubject(publish_to_subject_request) return response def _fetch_metadata_request(self): return python_liftbridge.api_pb2.FetchMetadataRequest() def _create_stream_request(self, stream): response = python_liftbridge.api_pb2.CreateStreamRequest( subject=stream.subject, name=stream.name, group=stream.group, replicationFactor=stream.replication_factor, partitions=stream.partitions ) return response def _delete_stream_request(self, stream): response = python_liftbridge.api_pb2.DeleteStreamRequest( name=stream.name, ) return response def _subscribe_request(self, stream): if stream.start_offset: return python_liftbridge.api_pb2.SubscribeRequest( stream=stream.name, startPosition=stream.start_position, startOffset=stream.start_offset, partition=stream.subscribe_to_partition ) elif stream.start_timestamp: return python_liftbridge.api_pb2.SubscribeRequest( stream=stream.name, startPosition=stream.start_position, startTimestamp=stream.start_timestamp, partition=stream.subscribe_to_partition ) else: return python_liftbridge.api_pb2.SubscribeRequest( stream=stream.name, startPosition=stream.start_position, partition=stream.subscribe_to_partition ) def _create_publish_request(self, message): return python_liftbridge.api_pb2.PublishRequest( key=message.key, value=message.value, stream=message.stream, headers=message.headers, partition=message.partition, ackInbox=message.ackInbox, correlationId=message.correlationId, ackPolicy=message.ackPolicy, ) def _create_publish_to_subject_request(self, message): return python_liftbridge.api_pb2.PublishToSubjectRequest( key=message.key, value=message.value, subject=message.subject, headers=message.headers, ackInbox=message.ackInbox, correlationId=message.correlationId, ackPolicy=message.ackPolicy, )
StarcoderdataPython
162166
"""Some utility functions for working with TfJobs.""" import datetime import logging import time from kubernetes import client as k8s_client from kubeflow.testing import util GROUP = "argoproj.io" VERSION = "v1alpha1" PLURAL = "workflows" KIND = "Workflow" def log_status(workflow): """A callback to use with wait_for_workflow.""" logging.info("Workflow %s in namespace %s; phase=%s", workflow["metadata"]["name"], workflow["metadata"]["namespace"], workflow["status"]["phase"]) def wait_for_workflows(client, namespace, names, timeout=datetime.timedelta(minutes=30), polling_interval=datetime.timedelta(seconds=30), status_callback=None): """Wait for multiple workflows to finish. Args: client: K8s api client. namespace: namespace for the workflow. names: Names of the workflows to wait for. timeout: How long to wait for the workflow. polling_interval: How often to poll for the status of the workflow. status_callback: (Optional): Callable. If supplied this callable is invoked after we poll the job. Callable takes a single argument which is the job. Returns: results: A list of the final status of the workflows. Raises: TimeoutError: If timeout waiting for the job to finish. """ crd_api = k8s_client.CustomObjectsApi(client) end_time = datetime.datetime.now() + timeout while True: all_results = [] for n in names: results = crd_api.get_namespaced_custom_object( GROUP, VERSION, namespace, PLURAL, n) all_results.append(results) if status_callback: status_callback(results) done = True for results in all_results: if results["status"]["phase"] not in ["Failed", "Succeeded"]: done = False if done: return all_results if datetime.datetime.now() + polling_interval > end_time: raise util.TimeoutError( "Timeout waiting for workflows {0} in namespace {1} to finish.".format( ",".join(names), namespace)) time.sleep(polling_interval.seconds) return [] def wait_for_workflow(client, namespace, name, timeout=datetime.timedelta(minutes=30), polling_interval=datetime.timedelta(seconds=30), status_callback=None): """Wait for the specified workflow to finish. Args: client: K8s api client. namespace: namespace for the workflow. name: Name of the workflow timeout: How long to wait for the workflow. polling_interval: How often to poll for the status of the workflow. status_callback: (Optional): Callable. If supplied this callable is invoked after we poll the job. Callable takes a single argument which is the job. Raises: TimeoutError: If timeout waiting for the job to finish. """ results = wait_for_workflows(client, namespace, [name], timeout, polling_interval, status_callback) return results[0]
StarcoderdataPython
3337058
from typing import List, Optional, Type from vaccine.base_application import BaseApplication from vaccine.models import Message, User class AppTester: DEFAULT_USER_ADDRESS = "27820001001" DEFAULT_CHANNEL_ADDRESS = "27820001002" DEFAULT_TRANSPORT_NAME = "test_transport" DEFAULT_TRANSPORT_TYPE = Message.TRANSPORT_TYPE.HTTP_API DEFAULT_SESSION_ID = 1 def __init__(self, app_class: Type[BaseApplication]): self.user = User(addr=self.DEFAULT_USER_ADDRESS) self.application = app_class(self.user) def setup_state(self, name: str): """ Sets the current state that the user is in """ self.user.state.name = name def setup_answer(self, answer_name: str, answer_value: str): """ Sets an answer for the user """ self.user.answers[answer_name] = answer_value def setup_user_address(self, address: str): """ Sets an address for the user """ self.user.addr = address async def user_input( self, content: Optional[str] = None, session=Message.SESSION_EVENT.RESUME, transport_metadata: Optional[dict] = None, ): """ User input into the application """ self.application.messages = [] message = Message( to_addr=self.DEFAULT_CHANNEL_ADDRESS, from_addr=self.user.addr, transport_name=self.DEFAULT_TRANSPORT_NAME, transport_type=self.DEFAULT_TRANSPORT_TYPE, content=content, session_event=session, transport_metadata=transport_metadata or {}, ) if session in (Message.SESSION_EVENT.RESUME, Message.SESSION_EVENT.CLOSE): self.user.session_id = self.DEFAULT_SESSION_ID await self.application.process_message(message) def assert_state(self, name: Optional[str]): """ Asserts that the current user state matches `name` """ assert ( self.user.state.name == name ), f"User is in state {self.user.state.name}, not in {name}" def assert_answer(self, answer_name: str, answer_value: str): """ Assert that a user's answer matches the given value """ assert answer_name in self.user.answers, f"{answer_name} not in user answers" assert ( self.user.answers[answer_name] == answer_value ), f"{answer_name} is {self.user.answers[answer_name]}, not {answer_value}" def assert_no_answer(self, answer_name: str): """ Assert that the user does not have a value stored for the answer """ assert ( self.user.answers.get(answer_name) is None ), f"{answer_name} has a value {self.user.answers[answer_name]}" def assert_num_messages(self, num: int): """ Assert that the application sent a specific number of messages. Useful for if we don't want to test the content of the messages """ assert ( len(self.application.messages) == num ), f"{len(self.application.messages)} messages sent, not {num}" def assert_message( self, content: Optional[str] = None, session: Optional[Message.SESSION_EVENT] = None, buttons: Optional[List[str]] = None, header: Optional[str] = None, ): """ Asserts that the application sent a single message, with the provided parameters """ self.assert_num_messages(1) [message] = self.application.messages if content is not None: assert ( message.content == content ), f"Message content is {message.content}, not {content}" if session is not None: assert ( message.session_event == session ), f"Message session is {message.session_event}, not {session}" if buttons is not None: btns = message.helper_metadata.get("buttons") assert btns == buttons, f"Buttons are {btns}, not {buttons}" if header is not None: hdr = message.helper_metadata.get("header") assert hdr == header, f"Header is {hdr}, not {header}"
StarcoderdataPython
1757394
# Given a sorted array containing only 0s and 1s, find the transition point. Transition point is where 0 ends and 1 begins # https://www.geeksforgeeks.org/find-transition-point-binary-array/ # https://practice.geeksforgeeks.org/problems/find-transition-point-1587115620/1/ # time is O(logn) | Space is O(1) def transitionPoint(arr, n): lower_bound = 0 upper_bound = n-1 while (lower_bound <= upper_bound): mid = (lower_bound + upper_bound) // 2 if (arr[mid] == 0): lower_bound = mid + 1 elif arr[mid] == 1: if (mid == 0 or (arr[mid - 1] == 0)): return mid upper_bound = mid - 1 return -1 if __name__=='__main__': t=int(input()) for i in range(t): n = int(input()) arr = list(map(int, input().strip().split())) print(transitionPoint(arr, n))
StarcoderdataPython
167793
<filename>bot/plugins/inline.py # © its-leo-bitch from bot import bot from bot.utils import langs, lang_names from pyrogram import types, errors from piston import Piston import asyncio import time piston = Piston() execute = {} NEXT_OFFSET = 25 @bot.on_inline_query() async def inline_exec(client, query): string = query.query offset = int(query.offset or 0) answers = [] if string == '': for l in langs[offset: offset + NEXT_OFFSET]: answers.append( types.InlineQueryResultArticle( title=l.language, description=l.version or None, input_message_content=types.InputTextMessageContent( "**Language:** `{}`{}\nPress the button below to Execute your code:".format( l.language, '\n**Version:** `{}`'.format(l.version) or '' ) ), reply_markup=types.InlineKeyboardMarkup( [ [ types.InlineKeyboardButton( 'Execute', switch_inline_query_current_chat=l.language + " " ) ] ] ) ) ) elif string.split()[0] in lang_names: if len(string.split()) == 1: await client.answer_inline_query( query.id, results=answers, switch_pm_text=f'Give a code to Excute in {string.split()[0]}', switch_pm_parameter='help_inline', ) return source = string.split(None, 1)[1] start_time = time.time() for l in langs: if string.split()[0] == l.language: out = await piston.execute( language=string.split()[0], version=l.version, source=source ) try: msg = f"**Language:** `{out.language}-{out.version}`\n\n**Code:**\n```{source}```\n\n" if out.run: msg += f"**Output:**\n```{out.run.output}```\n\n" answers.append( types.InlineQueryResultArticle( "Output:", description=out.run.stdout or out.run.stderr, input_message_content=types.InputTextMessageContent( msg, parse_mode='markdown' ), reply_markup=types.InlineKeyboardMarkup( [ [ types.InlineKeyboardButton( 'stats', callback_data=f'stats-{start_time}-{time.time()}' ) ], [ types.InlineKeyboardButton( 'Fork', switch_inline_query_current_chat=f'{out.language} {source}' ), types.InlineKeyboardButton( 'Try Again', switch_inline_query_current_chat=f'{out.language} ' ), ] ] ) ) ) execute[query.from_user.id] = True except AttributeError as err: answers.append( types.InlineQueryResultArticle( "Error", description=str(err), input_message_content=types.InputTextMessageContent( str(err), ) ) ) return await client.answer_inline_query( query.id, results=answers, cache_time=0, ) try: await client.answer_inline_query( query.id, results=answers, next_offset=str(offset + NEXT_OFFSET), cache_time=0, ) except errors.exceptions.bad_request_400.QueryIdInvalid: return
StarcoderdataPython
1770838
"""Module tiktalik.connection""" # Copyright (c) 2013 Techstorage sp. z o.o. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # -*- coding: utf8 -*- import time import http.client import hmac import base64 from urllib import parse import json import string from hashlib import sha1, md5 from .error import TiktalikAPIError class TiktalikAuthConnection: """ Simple wrapper for HTTPConnection. Adds authentication information to requests. """ def __init__( self, api_key, api_secret_key, host="tiktalik.com", port=443, use_ssl=True ): self.api_key = api_key self.api_secret_key = api_secret_key self.host = host self.port = port # backward compability: secret_key is known as a base64 string, but it's used # internally as a binary decoded string. A long time ago this function as input # needed secret key decoded to binary string, so now try to handle both input # forms: deprecated decoded one and "normal" encoded as base64. try: if ( len( self.api_secret_key.lstrip( string.ascii_letters + string.digits + "+/=" ) ) == 0 ): self.api_secret_key = base64.standard_b64decode(self.api_secret_key) except TypeError: pass if use_ssl: self.conn_cls = http.client.HTTPSConnection else: self.conn_cls = http.client.HTTPConnection self.use_ssl = use_ssl self.timeout = 20 self.conn = None def _encode_param(self, value): if isinstance(value, list): return list(map(self._encode_param, value)) elif isinstance(value, str): return value.encode("utf8") return value def request(self, method, path, params=None, query_params=None): """ Send a request over HTTP. The inheriting class must override self.base_url(). :type method: string :param method: HTTP method to use (GET, POST etc.) :type path: string :param path: path to be requested from server :type params: dict :param params: a dictionary of parameters sent in request body :type query_params: dict :param query_params: a dictionary of parameters sent in request path :rtype: dict, string or None :return: a JSON dict if the server replied with "application/json". Raw data otherwise. None, if the reply was empty. """ response = self.make_request( method, self.base_url() + path, params=params, query_params=query_params ) data = response.read() if response.getheader("Content-Type", "").startswith("application/json"): data = json.loads(data) if response.status != 200: raise TiktalikAPIError(response.status, data) return data def base_url(self): """ :rtype: string :return: base URL for API requests, eg. "/api/v1/computing". Must NOT include trailing slash. """ raise NotImplementedError() def make_request( self, method, path, headers=None, body=None, params=None, query_params=None ): """ Sends request, returns httplib.HTTPResponse. If `params` is provided, it should be a dict that contains form parameters. Content-Type is forced to "application/x-www-form-urlencoded" in this case. """ if params and body: raise ValueError("Both `body` and `params` can't be provided.") headers = headers or {} if params: params = dict( (k.encode("utf8"), self._encode_param(v)) for (k, v) in params.items() ) body = parse.urlencode(params, True) headers["content-type"] = "application/x-www-form-urlencoded" path = parse.quote(path.encode("utf8")) if query_params: qp = {} for key, value in query_params.items(): if isinstance(value, bool): qp[key] = "true" if value else "false" else: # assert isinstance(value, (str, int)) qp[key.encode("utf8")] = self._encode_param(value) qp = parse.urlencode(qp, True) path = "%s?%s" % (path, qp) if body: m = md5(body.encode("utf-8")) headers["content-md5"] = m.hexdigest() conn = self.conn_cls(self.host, self.port, timeout=self.timeout) headers = self._add_auth_header(method, path, headers or {}) # conn.set_debuglevel(3) conn.request(method, path, body, headers) response = conn.getresponse() return response def _add_auth_header(self, method, path, headers): if "date" not in headers: headers["date"] = time.strftime("%a, %d %b %Y %X GMT", time.gmtime()) S = self._canonical_string(method, path, headers) headers["Authorization"] = "TKAuth %s:%s" % (self.api_key, self._sign_string(S)) return headers def _canonical_string(self, method, path, headers): S = "\n".join( ( method, headers.get("content-md5", ""), headers.get("content-type", ""), headers["date"], path, ) ) return S def _sign_string(self, S): digest = base64.b64encode( hmac.new(self.api_secret_key, S.encode("utf-8"), sha1).digest() ) return digest.decode("utf-8")
StarcoderdataPython
195823
import logging from kafka.errors import KafkaError, KafkaTimeoutError from kafka import KafkaProducer from data.logs_model.shared import epoch_ms from data.logs_model.logs_producer.interface import LogProducerInterface from data.logs_model.logs_producer.util import logs_json_serializer from data.logs_model.logs_producer import LogSendException logger = logging.getLogger(__name__) DEFAULT_MAX_BLOCK_SECONDS = 5 class KafkaLogsProducer(LogProducerInterface): """ Log producer writing log entries to a Kafka stream. """ def __init__(self, bootstrap_servers=None, topic=None, client_id=None, max_block_seconds=None): self.bootstrap_servers = bootstrap_servers self.topic = topic self.client_id = client_id self.max_block_ms = (max_block_seconds or DEFAULT_MAX_BLOCK_SECONDS) * 1000 self._producer = KafkaProducer(bootstrap_servers=self.bootstrap_servers, client_id=self.client_id, max_block_ms=self.max_block_ms, value_serializer=logs_json_serializer) def send(self, logentry): try: # send() has a (max_block_ms) timeout and get() has a (max_block_ms) timeout # for an upper bound of 2x(max_block_ms) before guaranteed delivery future = self._producer.send(self.topic, logentry.to_dict(), timestamp_ms=epoch_ms(logentry.datetime)) record_metadata = future.get(timeout=self.max_block_ms) assert future.succeeded except KafkaTimeoutError as kte: logger.exception('KafkaLogsProducer timeout sending log to Kafka: %s', kte) raise LogSendException('KafkaLogsProducer timeout sending log to Kafka: %s' % kte) except KafkaError as ke: logger.exception('KafkaLogsProducer error sending log to Kafka: %s', ke) raise LogSendException('KafkaLogsProducer error sending log to Kafka: %s' % ke) except Exception as e: logger.exception('KafkaLogsProducer exception sending log to Kafka: %s', e) raise LogSendException('KafkaLogsProducer exception sending log to Kafka: %s' % e)
StarcoderdataPython
3390353
<reponame>AsiaLi/rust #coding: utf8 from rust.command.base_command import BaseCommand from rust.resources.db.user import models as user_models from rust.resources.business.user.login_service import LoginService MANAGER_USER_NAME = 'manager' class Command(BaseCommand): def handle(self, *args): """ 创建系统管理员 """ if user_models.User.select().dj_where(username=MANAGER_USER_NAME).count() == 0: user_models.User.create( username = MANAGER_USER_NAME, password = LoginService().encrypt_password('<PASSWORD>'), nickname = u'管理员' ) #todo
StarcoderdataPython
3303063
<filename>number_chart.py n = int(input("Enter the value of n : ")) size = n + (n - 1) center = n - 1 temp = [] answer = [] for i in range(size): temp.append("T") for i in range(size): answer.append(temp[:]) for digit in range(1, n + 1): expansion = digit + (digit - 1) position = [center - digit + 1, center - digit + 1] for i in range(expansion): answer[position[0]][position[1] + i] = str(digit) for i in range(expansion): answer[position[0] + i] [position[1]] = str(digit) position = [center + digit - 1, center + digit - 1] for i in range(expansion): answer[position[0]] [position[1] - i] = str(digit) for i in range(expansion): answer[position[0] - i] [position[1]] = str(digit) for arr in answer: print(" ".join(arr))
StarcoderdataPython
3354873
import threading from time import sleep def intervalExecute(interval, func, *args, **argd): ''' @param interval: execute func(*args, **argd) each interval @return: a callable object to enable you terminate the timer. ''' cancelled = threading.Event() def threadProc(*args, **argd): while True: cancelled.wait(interval) if cancelled.isSet(): break func(*args, **argd) #: could be a lenthy operation th = threading.Thread(target=threadProc, args=args, kwargs=argd) th.start() def close(block=True, timeout=3): ''' @param block: if True, block the caller until the thread is closed or time out @param timout: if blocked, timeout is used @return: if block, True -> close successfully; False -> timeout if non block, always return False ''' if not block: cancelled.set() return False else: cancelled.set() th.join(timeout) isClosed = not th.isAlive() return isClosed return close if __name__=='__main__': # sample usage is as follow.... def testFunc(identifier, txt=''): print('test func entered') sleep(2) print(identifier, txt) cancellObj = intervalExecute(2.0, testFunc, 1, 'haha') help(cancellObj) sleep(5.2) print(cancellObj()) #: cancel the intervalExecute timer. print('after calling close')
StarcoderdataPython
3398278
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 17 13:34:59 2019 @author: atekawade """ import numpy as np def get_patches(img, patch_size = None, steps = None): stepy, stepx = steps my, mx = img.shape py, px = patch_size[0], patch_size[1] nx, ny = int(np.ceil(mx/px)), int(np.ceil(my/py)) img = np.asarray([img[ii*stepy:ii*stepy+py] for ii in range(ny)]) img = np.asarray([[img[jj,:,ii*stepx:ii*stepx+px] for ii in range(nx)] for jj in range(img.shape[0])]) return img def get_stepsize(img_shape, patch_size): # Find optimum number of patches to cover full image my, mx = img_shape py, px = patch_size nx, ny = int(np.ceil(mx/px)), int(np.ceil(my/py)) stepx = (mx-px) // (nx-1) if mx != px else 0 stepy = (my-py) // (ny-1) if my != py else 0 return (stepy, stepx) def recon_patches(img, img_shape = None, steps = None): if img.ndim != 4: raise ValueError("Input must be 4D array.") ny, nx, py, px = img.shape stepy, stepx = steps new_img = np.zeros((img_shape)) for ii in range(ny): for jj in range(nx): new_img[ii*stepy:ii*stepy+py,jj*stepx:jj*stepx+px] = img[ii,jj] return new_img def calc_resdrop(img_shape, patch_size, n_max = 3): y_orig, x_orig, = img_shape yres = 1 y_new = y_orig while y_new > patch_size[0]*n_max: yres += 1 y_new = int(np.ceil(y_orig/yres)) xres = 1 x_new = x_orig while x_new > patch_size[1]*n_max: xres += 1 x_new = int(np.ceil(x_orig/xres)) return yres, xres #, y_new, x_new def ssrecon_patches(img, img_shape = None, steps = None): ny, nx = img.shape[:2] stepy, stepx = steps p = img.shape[-1] new_img = np.zeros((img_shape)) for ii in range(ny): for jj in range(nx): new_img[ii*stepy:ii*stepy+p,jj*stepx:jj*stepx+p] = img[ii,jj] return new_img
StarcoderdataPython
3213710
"""Test functions related to the model creation, loading, saving and prediction.""" import os import shutil import pytest from autopylot.cameras import Camera from autopylot.datasets import preparedata from autopylot.models import architectures, utils from autopylot.utils import memory, settings dirpath = os.path.join(settings.settings.MODELS_PATH, "test", "test") @pytest.mark.models def test_create_model_save(): """Test the creation and the saving of a model.""" model = architectures.Models.test_model( [ # testing with "list" shape ["steering", [1, 1]], # testing with "tuple" shape ("test_output", (1, 20)), ] ) model.summary() utils.save_model(model, "test") assert ( os.path.exists(dirpath + ".h5") and os.path.exists(dirpath + ".tflite") and os.path.exists(dirpath + ".info") ) @pytest.mark.models def test_input_shapes(): """Test the expected input and output shape.""" model, model_info = utils.load_model("test/test.tflite") for input_detail, (_, shape) in zip(model.input_details, model_info["inputs"]): assert tuple(input_detail["shape"][1:]) == tuple(shape) for output_detail, (_, shape) in zip(model.output_details, model_info["outputs"]): assert tuple(output_detail["shape"][1:]) == tuple(shape) @pytest.mark.models def test_missing_data(): """If the memory doens't have the right data, it should raise an Exception.""" model, model_info = utils.load_model("test/test.tflite") prepare_data = preparedata.PrepareData(model_info) with pytest.raises(ValueError): prepare_data(memory.mem) @pytest.mark.models def test_tflite_predict(): """Test the prediction on the .tflite model.""" model, model_info = utils.load_model("test/test.tflite") prepare_data = preparedata.PrepareData(model_info) camera = Camera(camera_type="dummy") camera.update() memory.mem["speed"] = 0.123 input_data = prepare_data(memory.mem) predictions = model.predict(input_data) assert predictions != {} @pytest.mark.models def test_tf_predict(): """Test the prediction on the .h5 model.""" model, model_info = utils.load_model("test/test.h5") prepare_data = preparedata.PrepareData(model_info) camera = Camera(camera_type="dummy") camera.update() memory.mem["speed"] = 2.3 input_data = prepare_data(memory.mem) predictions = model.predict(input_data) assert predictions != {} @pytest.mark.models def test_delete_directory(): """Deletes the created models.""" shutil.rmtree(os.path.join(settings.settings.MODELS_PATH, "test")) assert os.path.exists(dirpath) is False
StarcoderdataPython
3234069
#!/usr/bin/python # -*- coding: utf-8 -*- """ Modelagem em tempo real | COVID-19 no Brasil -------------------------------------------- Ideias e modelagens desenvolvidas pela trinca: . <NAME> . <NAME> . <NAME> Esta modelagem possui as seguintes características: a) NÃO seguimos modelos paramétricos => Não existem durante a epidemia dados suficientes ou confiáveis para alimentar modelos epidemiológicos como a excelente calaculadora http://gabgoh.github.io/COVID/index.html (ela serve para gerar cená- rios e para modelar a epidemia DEPOIS que ela passar). Além disso, a natureza exponencial das curvas as torna extremamente sensíveis aos parâmetros que a defi- nem. Isso faz com que a confiabilidade preditiva desses modelos seja ilusória. b) A evolução epidemia no Brasil começou depois da de outros países. Nossa mode- lagem se apoia nesse fato. Com os dados disponíveis, procuramos no instante pre- sente determinar quem estamos seguindo, ou seja, que países mais se pareceram conosco passado o mesmo período de disseminação. A partir do que aconteceu nesses países projetamos o que pode acontecer aqui. c) Esta conta é refeita dia a dia. Dependendo de nossa competência em conter ou não a disseminação do Covid-19 nos aproximaremos dos países que melhor ou pior lidaram com a epidemia e a projeção refletirá essa similaridade. d) As decisões de modelagem são indicadas no código com os zoinhos: # ◔◔ {...} São pontos de partida para discutir a modelagem e propor alternativas. """ import datetime import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns sns.set() # no ipython usar este comando antes de rodar => %matplotlib osx import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) __author__ = "<NAME>" # codigo __copyright__ = "Copyright 2020" __license__ = "New BSD License" __version__ = "1.5.2" __email__ = "<EMAIL>" __status__ = "Experimental" def preparar_dados(p1, uf="SP", cidade=u"São Paulo"): u"""Busca dados e organiza tabela "data" com os dados de referência para a modelagem. Fontes: . Mundo: https://covid.ourworldindata.org . Brasil: https://brasil.io Retorna: raw <DataFrame> | Série completa do número de mortes/dia por país, sem trans- posição temporal inicio <Series> | Referência dos indexes em raw para justapor o início das curvas dos diferentes países data <DataFrame> | Série de número de mortes/dia por país trazendo para o zero (index 0) o primeiro dia em que ocorrem pelo menos p1 mortes (ver macro parâmetros). Isto reduz a quantidade de países para o grupo que está à frente ou pareado ao Brazil. A partir do index 0 é possível comparar a evolução dos casos entre os países. nbr <int> | Número de dias da série de dados para o Brasil """ # ◔◔ {usamos as mortes diárias por parecer ser o dado mais confiável} raw = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/new_deaths.csv").fillna(0.0) # ◔◔ {o link abaixo carrega o acumulado de mortes, não usamos pq a soma vai alisando a série} # raw_soma = pd.read_csv("https://covid.ourworldindata.org/data/ecdc/total_deaths.csv").fillna(0.0) # tempo = raw['date'] # ◔◔ {não usamos as datas} raw = raw.drop(columns='date') raw = raw.drop(columns='World') # para ver tbem os dados "oficias" para_oficial = raw['Brazil'] # correcao de subnotificacao Brasil: sub, hip = estimar_subnotificacao('Brasil') p4br = ((sub + raw['Brazil'].sum()) / raw['Brazil'].sum()) raw['Brasil'] = raw['Brazil'] * p4br # dict subs usa mesmas refs como chave => para reportar nos graficos subs = {"Brasil": str(round(p4br, 1)) + " (" + hip + ")"} # contruir base para a tabela "data" inicio = raw.ge(p1).idxmax() # ◔◔ {encontra os index de qdo cada pais alcança p1} data = pd.DataFrame({'Brasil':raw['Brasil'][inicio['Brasil']:]}).reset_index().drop(columns='index') nbr = data.shape[0] oficial = pd.DataFrame({'Brasil':para_oficial[inicio['Brasil']:]}).reset_index().drop(columns='index') # dados Brasil estados = [ 'AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PR', 'PE', 'PI', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO', ] if uf not in estados or type(uf) is not str: uf = "SP" print(uf, u": UF inválida, usando 'SP'") # ◔◔ {já baixamos filtrado para uf, mas pode se usar outros estados} uf_data = pd.read_csv("https://brasil.io/dataset/covid19/caso?state="+uf+"&format=csv") # adicionar dados da uf uf_select = uf_data.loc[lambda df: df['place_type'] == "state", :] uf_mortes = list(uf_select['deaths'].head(nbr + 1).fillna(0.0)) uf_mortes = [uf_mortes[i] - uf_mortes[i+1] for i in range(len(uf_mortes)-1)] uf_mortes += [0 for _ in range(nbr-len(uf_mortes))] # corrigir tamanho uf_mortes.reverse() oficial[uf] = pd.Series(uf_mortes).values sub_uf, hip_uf = estimar_subnotificacao(uf) p4uf = ((sub_uf + pd.Series(uf_mortes).values.sum())/pd.Series(uf_mortes).values.sum()) data[uf] = pd.Series(uf_mortes).values * p4uf subs[uf] = str(round(p4uf, 1)) + " (" + hip_uf + ")" # adicionar dados da cidade cidade_select = uf_data.loc[lambda df: df['city'] == cidade, :] if cidade_select.shape[0] > 0: cidade_mortes = list(cidade_select['deaths'].head(nbr + 1).fillna(0.0)) cidade_mortes = [cidade_mortes[i] - cidade_mortes[i+1] for i in range(len(cidade_mortes)-1)] cidade_mortes += [0 for _ in range(nbr-len(cidade_mortes))] # corrigir tamanho cidade_mortes.reverse() if sum(cidade_mortes): # subnotificacao para cidade => aprox pela do estado oficial[cidade] = pd.Series(cidade_mortes).values data[cidade] = pd.Series(cidade_mortes).values * p4uf subs[cidade] = str(round(p4uf, 1)) + " (" + hip_uf + ")" else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não possui mortes confirmadas") else: subs["n/d"] = "" print(u"AVISO: a cidade " + cidade + " não consta nos dados para esta UF") print(u'Utilize uma das cidades disponíveis para o terceiro gráfico:') for d in set(uf_data['city']): print(d) refs = list(subs.keys()) # as referencias validas... # adicionar dados dos países à frente ou pareados ao Brasil for k in inicio.keys(): if k == "Brasil": continue if inicio[k] == 0 or inicio[k] > inicio["Brasil"]: continue C = raw[k][inicio[k]:inicio[k]+nbr] data[k] = C.values return raw, inicio, data, nbr, subs, refs, oficial def rodar_modelo(raw, inicio, data, nbr, p2, p3, ref, refs): """ Usa os dados preparados para gerar dados para visualização e a projeção da evoluação da epidemia. Retorna: correlacionados <list>: Países mais correlacionados, usados para a projeção calibrados <DataFrame>: Série alisada de mortes por dia com dados de ref e países correlacionados projetado <Array>: Série estimada para a evoluação da epidemia em ref infos <dict>: informações sobre o pico estimado da epidemia """ # ◔◔ {Optamos por não alisar dados antes de calcular a correlação. Sabemos # que a qualidade do report dos dados é variável, mas assumimos que o ruído # é aleatório e por isso não é preciso alisar para que a correlação seja # válida. Ao contrário, a correlação "bruta" seria a mais verossível} # ◔◔ {mas caso você ache que vale a pena alisar antes, use o codigo abaixo} # alisamento para os casos de morte reportados (média móvel) # data = data.rolling(5).mean() try: data = data.drop(columns='Brazil') except: pass # calcular a matriz de correlações: pearson = data.corr() # ◔◔ {o default do método usa a correlação de Pearson, cf. ref abaixo} # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html # ◔◔ { não incluir os casos locais para evitar endogeneidade} out = refs # nao misturar com os demais cortes locais # selecionar os p2 países que melhor se correlacionam com a ref correlacionados = [_ for _ in pearson[ref].sort_values(ascending=False).keys() if _ not in out][:p2] # criar tabela, começa com dados da ref calibrados = pd.DataFrame({ref:data[ref]}) # preencher com os dados dos países correlacionados for k in correlacionados: # ◔◔ {pega os dados em raw pq agora usaremos todos os dados disponíveis para o país} C = raw[k][inicio[k]:] additional = pd.DataFrame({k: C.values}) # array calibrados = pd.concat([calibrados, additional], axis=1) # ◔◔ {aqui usamos um alisamento p3 de dias para deixar a visualização melhor} calibrados = calibrados.rolling(p3).mean() # ◔◔ {a projeção usa os dados alisados} # ◔◔ {como é feita a projeção: # 1. cada país correlacionado terá um peso, proporcianal a quanto se correlaciona # .. soma dos pesos = 1 # .. quanto mais correlacionado, maior o peso } pesos = [pearson[ref][c] for c in correlacionados] # melhor corr pesa mais pesos = [pesos[i]/sum(pesos) for i in range(len(pesos))] # pesos normalizados pesos = dict(zip(correlacionados, pesos)) # num dict para facilitar # proj <list>: vai ter ao final o tamanho da maior serie em calibrados proj = [np.nan for _ in range(nbr)] # começa com nan onde já temos os dados da ref proj[-1] = calibrados[ref][nbr - 1] # primeiro valor coincide com último de ref # será a partir daí que começa a projeção # ◔◔ {a projeção segue dia a dia as variações dos países correlacionado} for d in range(nbr, calibrados.shape[0]): x = 0 # incremento estimado para o dia for c in correlacionados: if not np.isnan(calibrados[c][d]): # adiciona o incremento % do país ponderado por seu peso x += (calibrados[c][d]/calibrados[c][d-1]) * pesos[c] else: # ◔◔ {qdo acabam os dados de um país ele pára de influenciar a taxa} x += 1 * pesos[c] # print(d, c, x) # a série da projeção é construída aplicando o incremento estimado ao dia anterior proj.append(proj[-1] * x) # projetado <Array> projetado = np.array(proj) # ◔◔ {informações adicionais} # pico => valor máximo da série projetada pico = np.nan_to_num(projetado).max() # float # mortes valor absoluto mortes_no_pico = str(int(pico)) # str ix_do_pico = proj.index(np.nan_to_num(projetado).max()) # int => index # dia em que acontece o pico [! soma 1 no index pq projetado sobrepoe o primeiro valor] dia_do_pico = str(datetime.datetime.now() + datetime.timedelta(days=ix_do_pico-nbr+1))[:10] # str # no caso do pico já ter passado if calibrados[ref].max() > pico: pico = calibrados[ref].max() mortes_no_pico = str(int(pico)) ix_do_pico = list(calibrados[ref]).index(pico) dia_do_pico = str(datetime.datetime.now() + datetime.timedelta(days=ix_do_pico-nbr))[:10] # str # mortes totais: hoje mais tres semanas ix_hoje = list(calibrados[ref]).index(calibrados[ref][nbr - 1]) mortes_totais = { str(datetime.datetime.now())[:10]: int(calibrados[ref].sum()), str(datetime.datetime.now() + datetime.timedelta(days=7))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+7].sum()), str(datetime.datetime.now() + datetime.timedelta(days=14))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+14].sum()), str(datetime.datetime.now() + datetime.timedelta(days=21))[:10]: int(calibrados[ref].sum()+projetado[nbr+1:nbr+1+21].sum()), } # consolidado para output infos = { "mortes_no_pico": mortes_no_pico, "dia_do_pico": dia_do_pico, "pico": pico, "index": ix_do_pico, "mt": mortes_totais, } return correlacionados, calibrados, projetado, infos def gerar_fig_relatorio(p1, p2, p3, uf, cidade): """Roda vários cenários e monta mosaico de gráficos + notas.""" notas = u""" Sobre o modelo e as estimativas: As projeções são obtidas a partir da trajetória observada nos três países que melhor se correlacionem com a evolução dos dados do Brasil e localidades. O desenho da curva projetada (pontilhada) é reflexo do comportamento observado nos países seguidos. Conforme a epidemia avança a referência pode mudar. Outros parâmetros relevantes: • os valores são corrigidos por uma estimativa de subnotificação (s) calculado para duas situações: (a) mortes suspeitas aguardando confirmação e ainda não notificadas (b) mortes potencialmente devido à Covid-19 notificadas como devidas a outras causas • as curvas dos diferentes lugares são emparelhadas a partir do dia em que ocorrem N ou mais mortes (eixo x). • as curvas são alisadas (médias móveis), por isso não iniciam no dia zero. O alisamento permite melhor visualização das curvas mas pode gerar algum desvio com relação aos número diários absolutos. • as projeções são recalculadas diariamente e podem sofrer alterações significativas em função das novas informações incorporadas. Fontes dos dados: https://covid.ourworldindata.org https://brasil.io https://transparencia.registrocivil.org.br """ equipe = u' M.Zac | L.Tozi | R.Luciano || https://github.com/Maurozac/covid-br/blob/master/compara.py' totais = u""" Mortes estimadas (acumulado)""" hoje = str(datetime.datetime.now())[:16] fig, ax = plt.subplots(1, 3, figsize=(12, 6), sharex=True, sharey=True) fig.suptitle(u"Projeção da epidemia Covid-19" + " | " + hoje, fontsize=12) fig.subplots_adjust(bottom=0.5) fig.text(0.33, 0.42, notas, fontsize=7, verticalalignment='top') fig.text(0.33, 0.02, equipe, family="monospace", fontsize='6', color='#ff003f', horizontalalignment='left') raw, inicio, data, nbr, subs, refs, oficial = preparar_dados(p1, uf, cidade) for i in [0, 1, 2]: if refs[i] == 'n/d': ax[i].set_title(u"Dados não disponíveis", fontsize=8) break correlacionados, calibrados, projetado, infos = rodar_modelo(raw, inicio, data, nbr, p2, p3, refs[i], refs) ax[i].set_title(refs[i], fontsize=8) ax[i].set_xlabel(u'Dias desde ' + str(p1) + ' mortes em um dia', fontsize=8) ax[i].set_xlim(0, calibrados.shape[0]+25) ax[i].set_ylabel(u'Mortes por dia', fontsize=8) for c in correlacionados: ax[i].plot(calibrados[c], linewidth=3, color="#ff7c7a") lvi = calibrados[c].last_valid_index() ax[i].text(lvi+1, calibrados[c][lvi], c, fontsize=6, verticalalignment="center") ax[i].plot(calibrados[refs[i]], linewidth=3, color="#1f78b4") ax[i].plot(projetado, linewidth=2, linestyle=":", color="#1f78b4") lvi = pd.Series(projetado).last_valid_index() ax[i].text(lvi+1, projetado[lvi], refs[i], fontsize=6, verticalalignment="center") ax[i].plot(infos["index"], infos["pico"], '^', markersize=5.0, color="1", markeredgecolor="#1f78b4") msg = "PICO ~" + infos["mortes_no_pico"] + " mortes em " + infos["dia_do_pico"] + " s=" + subs[refs[i]] ax[i].text(infos["index"]-1, infos["pico"]-120, msg, fontsize=7, color="#1f78b4", verticalalignment='top') ax[i].plot(oficial[refs[i]], linewidth=1, linestyle="--", color="#1f78b4") ax[i].text(oficial.shape[0]+1, list(oficial[refs[i]])[-1], 'oficial', fontsize=6, verticalalignment="center") totais += "\n\n " + refs[i] + "\n" + "\n".join([" " + x[0] + ": " + str(x[1]) for x in infos['mt'].items()]) fig.text(0.12, 0.42, totais, fontsize=7, verticalalignment='top', color="#1f78b4") return fig ######################### Subnotificações ################################## """ ◔◔ {cada fonte abaixo implica em um valor para o coeficiente p4 de ajuste pela ordem, infos mais recentes ao final ref: https://noticias.uol.com.br/saude/ultimas-noticias/redacao/2020/04/09/covid-19-declaracoes-de-obito-apontam-48-mais-mortes-do-que-dado-oficial.htm} p4 = 1.48 https://saude.estadao.com.br/noticias/geral,em-um-mes-brasil-tem-alta-de-2239-mortes-por-problemas-respiratorios,70003268759 extrapolação => 2239 mortes por covid em março nao contabilizadas, de modo que o total ao final do mês seria de 201 (covid oficial) + 2239 (potencialmente no pior cenário) = 2440 p4 = 12 => DEPRECATED: esta situação ocorreu apenas pontualmente durante o mes de março, mudamos a metodologia para calcular esse parâmetro on-fly (cf. função abaixo) p4 foi para dentro das funções """ def estimar_subnotificacao(ref): u"""Usa dados do Portal da Transparencia do Registro Civil do Brasil para estimar a subnotificação de casos de Covid-19. https://transparencia.registrocivil.org.br/especial-covid Este portal nos premite ver diferença entre a ocorrência de mortes atribuídas à insuficiência respiratória e pneumonia em 2019 e 2020. O PROBLEMA => sabemos que há subnoticações de mortes por COVID por pelo menos duas causas: a) demora na confirmação de casos, testados ou não b) casos não são nem testados e são notificados com causa mortis distinta Para estimar a subnotificação adotamos as seguintes hipóteses: I) mortes por pneumonia e insuficiencia_respiratoria devereriam ser APROXIMADAMENTE iguais em 2019 e 2020 II) caso a) => por causa da demora na confirmacao a morte não é notificada e os números de mortes por pneumonia ou insuficiencia_respiratoria para 2020 aparecem menores do que 2019. Essa diferença seria igual ao número máximo de mortes por covid ainda não confirmadas. Esse número corresponde ao número de mortes ainda no "limbo", sem causa morte determinada. III) caso b) => por causa de notificação errada/incompleta + mortes colaterais, o número de 2020 fica maior: a diferença sendo atribuída ao covid, direta ou indiretamente. IV) os casos a) e b) seriam estratégias deliberadas e, portanto, não se ocorreriam simultaneamente V) ok, mortes colaterais podem puxar estimativas para baixo no caso a); mas por enquanto não há muito o que fazer, são ESTIMATIVAS. Fica a ressalva que s(a) pode estar sendo subestimado. Como as bases de dados são dinâmicas e os números vão mudando conforme confirmações vão sendo computadas, inclusive retroativamente. Portanto, o coeficiente de subnotificação (s) precisa ser recalculado diariamente. Inputs: .ref => sigla do estado ou calcula para Brasil .total => soma das mortes para ref Retorna: tupla . sub: número de casos potencialmente subnotificados . hip: hipóte 'a': casos não notificados; 'b': casos notificados com outra causa """ sub, hip = 1, "ø" estados = [ 'AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PR', 'PE', 'PI', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO', ] if ref not in estados: ref = "all" hoje = str(datetime.datetime.now())[:10] api = "https://transparencia.registrocivil.org.br/api/covid?" api += "data_type=data_ocorrido" api += "&search=death-respiratory" api += "&state=" + ref api += "&start_date=2020-03-16" api += "&end_date=" + hoje call_1 = api + "&causa=insuficiencia_respiratoria" call_2 = api + "&causa=pneumonia" try: c1 = requests.get(call_1).json() c2 = requests.get(call_2).json() m19 = c1['chart']['2019'] + c2['chart']['2019'] m20 = c1['chart']['2020'] + c2['chart']['2020'] if m20 <= m19: # caso a sub = m19 - m20 hip = "a" else: # caso b sub = m20 - m19 hip = "b" except: print("[!] FALHA em registrocivil.org.br") return sub, hip ######################### RELATORIO ######################################## def relatorio_hoje(p1, p2, p3, uf, cidade, my_path): """Calcula tudo e gera um relatorio em pdf.""" # gera o dash do dia dashboard = gerar_fig_relatorio(p1, p2, p3, uf, cidade) # salva em um arquivo pdf hoje = str(datetime.datetime.now())[:10] pp = PdfPages(my_path+"covid_dashboard_"+uf+"_"+cidade+"_"+hoje+".pdf") dashboard.savefig(pp, format='pdf') pp.close() # acerte o caminho para o seu ambiente... esse aí é o meu :-) my_path = "/Users/tapirus/Desktop/" # parametros do modelo: mortes para parear séries, países comparados, alisamento p1, p2, p3 = 15, 3, 7 relatorio_hoje(p1, p2, p3, "SP", "São Paulo", my_path) relatorio_hoje(p1, p2, p3, "AM", "Manaus", my_path)
StarcoderdataPython
11176
<filename>engine/sentiment_analysis.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 14 17:42:27 2018 @author: zgeorg03 """ import re import json # Used for converting json to dictionary import datetime # Used for date conversions import matplotlib.pyplot as plt import numpy as np from sentiment import Sentiment import json class NewsArticle: def __init__(self,hash,title,author,url,content,date,topics, feed): self.hash = hash self.title = title self.author = author self.url = url self.content = content self.date = datetime.datetime.fromtimestamp(date/1000.0) self.topics = topics self.feed = feed self.sep = re.compile("[.!?]") def __repr__(self): return "hash={},title={},author={},date={},topics={}".format( self.hash, self.title, self.author, self.date, self.topics, self.feed) def __str__(self): return self.__repr__() def produce_title_scores(self, sentiment): lines = self.sep.split(self.title) sentiment.score(lines) neg,neu,pos,com,count = sentiment.get_avg_scores() return (float("{0:.2f}".format(neg*100)), float("{0:.2f}".format(neu*100)) , float("{0:.2f}".format(pos*100)), float("{0:.2f}".format(com*100)),count ) def produce_content_scores(self, sentiment): lines = self.sep.split(self.content) sentiment.score(lines) neg,neu,pos,com,count = sentiment.get_avg_scores() return (float("{0:.2f}".format(neg*100)), float("{0:.2f}".format(neu*100)) , float("{0:.2f}".format(pos*100)), float("{0:.2f}".format(com*100)),count ) class Parser: def __init__(self,file_in,max_articles=None,file_out=None): self.file_name = file_name self.max_articles = max_articles self.articles = [] self.sentiment = Sentiment() self.results = [] self.file_out = file_out def parse(self): count = 0 with open(self.file_name,"r",encoding="UTF-8") as file: for line in file: if line.startswith(','): continue self.articles.append(self.parse_news_article(line)) count += 1 if self.max_articles: if count >= self.max_articles: break def write(self): for i,article in enumerate(self.articles): if i % 100 == 0: print('Finished: {} docs'.format(i)) self.write_article(article) if self.file_out: with open(self.file_out, 'w') as outfile: json.dump(self.results, outfile,sort_keys=True,indent=4) else: print(json.dumps(self.results,sort_keys=True,indent=4)) def write_article(self,article): res = {} res['neg_title'],res['neu_title'],res['pos_title'],res['score_title'], _ = article.produce_title_scores(self.sentiment) res['neg_content'],res['neu_content'],res['pos_content'],res['score_content'], _ = article.produce_content_scores(self.sentiment) res['id'] = article.hash res['title'] = article.title res['date'] = int(article.date.timestamp()) res['content'] = article.content res['topics'] = article.topics res['feed'] = article.feed res['url'] = article.url res['author'] = article.author res['overall_score']= float(res['score_title'])*0.75 + float(res['score_content'])*0.25 overall_score = res['overall_score'] if overall_score <= -50: res['class']= 'Very Negative' res['class_code'] = 4 elif overall_score <= 0: res['class']= 'Negative' res['class_code'] = 3 elif overall_score <= 50: res['class']= 'Positive' res['class_code'] = 2 elif overall_score <= 100: res['class']= 'Very Positive' res['class_code'] = 1 self.results.append(res) def parse_news_article(self, line): data = json.loads(line) hash = data['hash'] title = data['title'] author = data['author'] content = data['content'] date = data['date'] topics = list(set(data['topics'])) feed = data['feed'] url = data['link'] return NewsArticle(hash,title,author,url,content,date,topics,feed) if __name__ == '__main__': file_name = "./log" #max_articles = 1000 p = Parser(file_name,file_out='data-26-04.json') p.parse() p.write() print('Finished') def test(): plt.figure(figsize=(12,9)) plt.title('Articles: {}'.format(max_articles)) plt.plot(x[:,0],'x',label="Negative {0:.2f}".format(np.average(x[:,0]))) plt.plot(x[:,2],'+',label="Positive {0:.2f}".format(np.average(x[:,2]))) plt.plot(x[:,1],'.',label="Neutral {0:.2f}".format(np.average(x[:,1]))) plt.plot(x[:,3],'.',label="Compound {0:.2f}".format(np.average(x[:,3]))) plt.legend() x = [] for i in range(0,max_articles): x.append(articles[i].produce_content_scores(sentiment)) x = np.array(x) print(x[:,0]) plt.figure(figsize=(12,9)) plt.title('Articles: {}'.format(max_articles)) plt.plot(x[:,0],'x',label="Negative {0:.2f}".format(np.average(x[:,0]))) plt.plot(x[:,2],'+',label="Positive {0:.2f}".format(np.average(x[:,2]))) plt.plot(x[:,1],'.',label="Neutral {0:.2f}".format(np.average(x[:,1]))) plt.plot(x[:,3],'.',label="Compound {0:.2f}".format(np.average(x[:,3]))) plt.legend()
StarcoderdataPython
3248565
<reponame>rishusingh022/My-Journey-of-Data-Structures-and-Algorithms<filename>Project Euler Problems/Problem30.py def check_self_behaviour(num,pow): return num == sum([int(elem)**pow for elem in str(num)]) final_ans = 0 for i in range(2,1000000): if check_self_behaviour(i,5): final_ans += i print(final_ans)
StarcoderdataPython
1735031
<reponame>ruoshengyuan/louplus-dm import datetime import pandas as pd base = datetime.date(2018, 10, 30) numdays = 80 # 所有的十月三十号以后的八十天的 list date_list = [base + datetime.timedelta(days=x) for x in range(0, numdays)] # 获取从 start 到 dest 的数据并插入数据库中 def getTickets(start, dest, driver, date_list, conn): cursor = conn.cursor() name_attribute = [] for one_day in tqdm_notebook(date_list): # 获取数据 tmp = get_ticket_info(start, dest, str(one_day), driver) for x in tmp: result = cursor.execute( SELECT_COMMAND, (x[-2], str(one_day), x[1])).fetchall() x.append(str(one_day)) if len(result) == 0: # 如果没有爬取则插入数据库 cursor.execute(INSERT_COMMAND1, x) conn.commit() cursor.close() # 成都到上海和上海到成都 getTickets('CTU', 'SHA', driver, date_list, conn) getTickets('SHA', 'CTU', driver, date_list, conn)
StarcoderdataPython
79347
<filename>leekspin/server.py # -*- coding: utf-8 -*- """Module for creating ``@type [bridge-]server-descriptor``s. .. authors:: <NAME> <<EMAIL>> 0xA3ADB67A2CDB8B35 <NAME> <<EMAIL>> .. licence:: see LICENSE file for licensing details .. copyright:: (c) 2013-2014 The Tor Project, Inc. (c) 2013-2014 Isis Lovecruft (c) 2013-2014 <NAME> """ import math import random from leekspin import crypto from leekspin import torversions def generateServerDescriptor(nick, fingerprint, timestamp, ipv4, ipv6, port, vers, protocols, uptime, bandwidth, extraInfoHexDigest, onionKeyLine, signingKeyLine, publicNTORKey, bridge=True): doc = [] # TODO: non-bridge routers need real dirports and socksports doc.append(b"router %s %s %s 0 0" % (nick, ipv4, port)) doc.append(b"or-address [%s]:%s" % (ipv6, port - 1)) doc.append(b"platform Tor %s on Linux" % vers) doc.append(b"%s" % protocols) doc.append(b"published %s" % timestamp) doc.append(b"%s" % makeFingerprintLine(fingerprint, vers)) doc.append(b"uptime %s" % uptime) doc.append(b"%s" % bandwidth) doc.append(b"%s" % makeExtraInfoDigestLine(extraInfoHexDigest, vers)) doc.append(b"%s" % onionKeyLine) doc.append(b"%s" % signingKeyLine) if not bridge: doc.append(b"%s" % makeHSDirLine(vers)) doc.append(b"contact Somebody <<EMAIL>>") if publicNTORKey is not None: doc.append(b"ntor-onion-key %s" % publicNTORKey) doc.append(b"reject *:*") doc.append(b"router-signature\n") unsignedDescriptor = b'\n'.join(doc) return unsignedDescriptor def makeProtocolsLine(version=None): """Generate an appropriate [bridge-]server-descriptor 'protocols' line. :param str version: One of ``SERVER_VERSIONS``. :rtype: str :returns: An '@type [bridge-]server-descriptor' 'protocols' line. """ line = b'' if (version is not None) and torversions.shouldHaveOptPrefix(version): line += b'opt ' line += b'protocols Link 1 2 Circuit 1' return line def makeExtraInfoDigestLine(hexdigest, version): """Create a line to embed the hex SHA-1 digest of the extrainfo. :param string hexdigest: Should be the hex-encoded (uppercase) output of the SHA-1 digest of the generated extrainfo document (this is the extra-info descriptor, just without the signature at the end). This is the same exact digest which gets signed by the OR server identity key, and that signature is appended to the extrainfo document to create the extra-info descriptor. :param string version: One of ``SERVER_VERSIONS``. :rtype: string :returns: An ``@type [bridge-]server-descriptor`` 'extra-info-digest' line. """ line = b'' if (version is not None) and torversions.shouldHaveOptPrefix(version): line += b'opt ' line += b'extra-info-digest %s' % hexdigest return line def makeFingerprintLine(fingerprint, version=None): """Generate an appropriate [bridge-]server-descriptor 'fingerprint' line. For example, for tor-0.2.3.25 and prior versions, this would look like: | | opt fingerprint D4BB C339 2560 1B7F 226E 133B A85F 72AF E734 0B29 | :param string fingerprint: A public key fingerprint in groups of four, separated by spaces. :param string version: One of ``SERVER_VERSIONS``. :rtype: string :returns: An '@type [bridge-]server-descriptor' 'published' line. """ line = b'' if (version is not None) and torversions.shouldHaveOptPrefix(version): line += b'opt ' line += b'fingerprint %s' % fingerprint return line def makeBandwidthLine(variance=30): """Create a random 'bandwidth' line with some plausible burst variance. From torspec.git/dir-spec.txt, §2.1 "Router descriptors": | "bandwidth" bandwidth-avg bandwidth-burst bandwidth-observed NL | | [Exactly once] | | Estimated bandwidth for this router, in bytes per second. The | "average" bandwidth is the volume per second that the OR is willing | to sustain over long periods; the "burst" bandwidth is the volume | that the OR is willing to sustain in very short intervals. The | "observed" value is an estimate of the capacity this relay can | handle. The relay remembers the max bandwidth sustained output over | any ten second period in the past day, and another sustained input. | The "observed" value is the lesser of these two numbers. The "observed" bandwidth, in this function, is taken as some random value, bounded between 20KB/s and 2MB/s. For example, say: >>> import math >>> variance = 25 >>> observed = 180376 >>> percentage = float(variance) / 100. >>> percentage 0.25 The ``variance`` in this context is the percentage of the "observed" bandwidth, which will be added to the "observed" bandwidth, and becomes the value for the "burst" bandwidth: >>> burst = observed + math.ceil(observed * percentage) >>> assert burst > observed This doesn't do much, since the "burst" bandwidth in a real [bridge-]server-descriptor is reported by the OR; this function mostly serves to avoid generating completely-crazy, totally-implausible bandwidth values. The "average" bandwidth value is then just the mean value of the other two. :param integer variance: The percent of the fake "observed" bandwidth to increase the "burst" bandwidth by. :rtype: string :returns: A "bandwidth" line for a [bridge-]server-descriptor. """ observed = random.randint(20 * 2**10, 2 * 2**30) percentage = float(variance) / 100. burst = int(observed + math.ceil(observed * percentage)) bandwidths = [burst, observed] nitems = len(bandwidths) if (len(bandwidths) > 0) else float('nan') avg = int(math.ceil(float(sum(bandwidths)) / nitems)) line = b"bandwidth %s %s %s" % (avg, burst, observed) return line def makeHSDirLine(version): """This line doesn't do much… all the cool kids are HSDirs these days. :param string version: One of ``SERVER_VERSIONS``. :rtype: string :returns: An ``@type [bridge-]server-descriptor`` 'hidden-service-dir' line. """ line = b'' if (version is not None) and torversions.shouldHaveOptPrefix(version): line += b'opt ' line += b'hidden-service-dir' return line
StarcoderdataPython
179840
from .context import polarity def test_pos_polarity_result(): assert polarity.polarity_result(0.8) == 'positive' def test_neg_polarity_result(): assert polarity.polarity_result(-0.8) == 'negative' def test_neutral_polarity_result(): assert polarity.polarity_result(0) == 'neutral'
StarcoderdataPython
137380
# Generated by Django 4.0.2 on 2022-03-23 11:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('base', '0036_profile_following'), ('base', '0037_reportcomments_reportposts_delete_report'), ] operations = [ ]
StarcoderdataPython
3215436
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START cloudoptimization_async_api] from google.api_core.exceptions import GoogleAPICallError from google.cloud import optimization_v1 # TODO(developer): Uncomment these variables before running the sample. # project_id= 'YOUR_PROJECT_ID' # request_file_name = 'YOUR_REQUEST_FILE_NAME' # request_model_gcs_path = 'gs://YOUR_PROJECT/YOUR_BUCKET/YOUR_REQUEST_MODEL_PATH' # model_solution_gcs_path = 'gs://YOUR_PROJECT/YOUR_BUCKET/YOUR_SOLUCTION_PATH' def call_async_api( project_id: str, request_model_gcs_path: str, model_solution_gcs_path_prefix: str ) -> None: """Call the async api for fleet routing.""" # Use the default credentials for the environment to authenticate the client. fleet_routing_client = optimization_v1.FleetRoutingClient() request_file_name = "resources/async_request.json" with open(request_file_name, "r") as f: fleet_routing_request = optimization_v1.BatchOptimizeToursRequest.from_json( f.read() ) fleet_routing_request.parent = f"projects/{project_id}" for idx, mc in enumerate(fleet_routing_request.model_configs): mc.input_config.gcs_source.uri = request_model_gcs_path model_solution_gcs_path = f"{model_solution_gcs_path_prefix}_{idx}" mc.output_config.gcs_destination.uri = model_solution_gcs_path # The timeout argument for the gRPC call is independent from the `timeout` # field in the request's OptimizeToursRequest message(s). operation = fleet_routing_client.batch_optimize_tours(fleet_routing_request) print(operation.operation.name) try: # Block to wait for the job to finish. result = operation.result() print(result) # Do you stuff. except GoogleAPICallError: print(operation.operation.error) # [END cloudoptimization_async_api]
StarcoderdataPython
139709
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2018-2020 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr """Speech activity detection""" from typing import Optional from typing import Text import numpy as np import torch import torch.nn as nn from .base import LabelingTask from .base import LabelingTaskGenerator from pyannote.audio.train.task import Task, TaskType, TaskOutput from ..gradient_reversal import GradientReversal from pyannote.audio.models.models import RNN from pyannote.audio.features.wrapper import Wrappable from pyannote.database import Protocol from pyannote.database import Subset from pyannote.audio.train.model import Resolution from pyannote.audio.train.model import Alignment class SpeechActivityDetectionGenerator(LabelingTaskGenerator): """Batch generator for training speech activity detection Parameters ---------- task : Task Task feature_extraction : Wrappable Describes how features should be obtained. See pyannote.audio.features.wrapper.Wrapper documentation for details. protocol : Protocol subset : {'train', 'development', 'test'}, optional Protocol and subset. resolution : `pyannote.core.SlidingWindow`, optional Override `feature_extraction.sliding_window`. This is useful for models that include the feature extraction step (e.g. SincNet) and therefore output a lower sample rate than that of the input. Defaults to `feature_extraction.sliding_window` alignment : {'center', 'loose', 'strict'}, optional Which mode to use when cropping labels. This is useful for models that include the feature extraction step (e.g. SincNet) and therefore use a different cropping mode. Defaults to 'center'. duration : float, optional Duration of audio chunks. Defaults to 2s. batch_size : int, optional Batch size. Defaults to 32. per_epoch : float, optional Force total audio duration per epoch, in days. Defaults to total duration of protocol subset. mask : str, optional When provided, protocol files are expected to contain a key named after this `mask` variable and providing a `SlidingWindowFeature` instance. Generated batches will contain an additional "mask" key (on top of existing "X" and "y" keys) computed as an excerpt of `current_file[mask]` time-aligned with "y". Defaults to not add any "mask" key. """ def __init__( self, task: Task, feature_extraction: Wrappable, protocol: Protocol, subset: Subset = "train", resolution: Optional[Resolution] = None, alignment: Optional[Alignment] = None, duration: float = 2.0, batch_size: int = 32, per_epoch: float = None, mask: Text = None, ): super().__init__( task, feature_extraction, protocol, subset=subset, resolution=resolution, alignment=alignment, duration=duration, batch_size=batch_size, per_epoch=per_epoch, exhaustive=False, mask=mask, local_labels=True, ) def postprocess_y(self, Y: np.ndarray) -> np.ndarray: """Generate labels for speech activity detection Parameters ---------- Y : (n_samples, n_speakers) numpy.ndarray Discretized annotation returned by `pyannote.core.utils.numpy.one_hot_encoding`. Returns ------- y : (n_samples, 1) numpy.ndarray See also -------- `pyannote.core.utils.numpy.one_hot_encoding` """ # number of speakers for each frame speaker_count = np.sum(Y, axis=1, keepdims=True) # mark speech regions as such return np.int64(speaker_count > 0) @property def specifications(self): specs = { "task": self.task, "X": {"dimension": self.feature_extraction.dimension}, "y": {"classes": ["non_speech", "speech"]}, } for key, classes in self.file_labels_.items(): # TODO. add an option to handle this list # TODO. especially useful for domain-adversarial stuff if key in ["duration", "audio", "uri"]: continue specs[key] = {"classes": classes} return specs class SpeechActivityDetection(LabelingTask): """Train speech activity (and overlap) detection Parameters ---------- duration : float, optional Duration of sub-sequences. Defaults to 3.2s. batch_size : int, optional Batch size. Defaults to 32. per_epoch : float, optional Total audio duration per epoch, in days. Defaults to one day (1). """ def get_batch_generator( self, feature_extraction, protocol, subset: Subset = "train", resolution=None, alignment=None, ): """ resolution : `pyannote.core.SlidingWindow`, optional Override `feature_extraction.sliding_window`. This is useful for models that include the feature extraction step (e.g. SincNet) and therefore output a lower sample rate than that of the input. alignment : {'center', 'loose', 'strict'}, optional Which mode to use when cropping labels. This is useful for models that include the feature extraction step (e.g. SincNet) and therefore use a different cropping mode. Defaults to 'center'. """ return SpeechActivityDetectionGenerator( self.task, feature_extraction, protocol, subset=subset, resolution=resolution, alignment=alignment, duration=self.duration, per_epoch=self.per_epoch, batch_size=self.batch_size, ) class DomainAwareSpeechActivityDetection(SpeechActivityDetection): """Domain-aware speech activity detection Trains speech activity detection and domain classification jointly. Parameters ---------- domain : `str`, optional Batch key to use as domain. Defaults to 'domain'. Could be 'database' or 'uri' for instance. attachment : `int`, optional Intermediate level where to attach the domain classifier. Defaults to -1. Passed to `return_intermediate` in models supporting it. rnn: `dict`, optional Parameters of the RNN used in the domain classifier. See `pyannote.audio.models.models.RNN` for details. domain_loss : `str`, optional Loss function to use. Defaults to 'NLLLoss'. """ DOMAIN_PT = "{train_dir}/weights/{epoch:04d}.domain.pt" def __init__( self, domain="domain", attachment=-1, rnn=None, domain_loss="NLLLoss", **kwargs ): super().__init__(**kwargs) self.domain = domain self.attachment = attachment if rnn is None: rnn = dict() self.rnn = rnn self.domain_loss = domain_loss if self.domain_loss == "NLLLoss": # Default value self.domain_loss_ = nn.NLLLoss() self.activation_ = nn.LogSoftmax(dim=1) elif self.domain_loss == "MSELoss": self.domain_loss_ = nn.MSELoss() self.activation_ = nn.Sigmoid() else: msg = f"{domain_loss} has not been implemented yet." raise NotImplementedError(msg) def more_parameters(self): """Initialize trainable trainer parameters Yields ------ parameter : nn.Parameter Trainable trainer parameters """ domain_classifier_rnn = RNN( n_features=self.model.intermediate_dimension(self.attachment), **self.rnn ) n_classes = len(self.specifications[self.domain]["classes"]) domain_classifier_linear = nn.Linear( domain_classifier_rnn.dimension, n_classes, bias=True ).to(self.device) self.domain_classifier_ = nn.Sequential( domain_classifier_rnn, domain_classifier_linear ).to(self.device) # TODO: check if we really need to do this .to(self.device) twice return self.domain_classifier_.parameters() def load_more(self, model_pt=None) -> bool: """Load classifier from disk""" if model_pt is None: domain_pt = self.DOMAIN_PT.format( train_dir=self.train_dir_, epoch=self.epoch_ ) else: domain_pt = model_pt.with_suffix(".domain.pt") domain_classifier_state = torch.load( domain_pt, map_location=lambda storage, loc: storage ) self.domain_classifier_.load_state_dict(domain_classifier_state) # FIXME add support for different domains return True def save_more(self): """Save domain classifier to disk""" domain_pt = self.DOMAIN_PT.format(train_dir=self.train_dir_, epoch=self.epoch_) torch.save(self.domain_classifier_.state_dict(), domain_pt) def batch_loss(self, batch): """Compute loss for current `batch` Parameters ---------- batch : `dict` ['X'] (`numpy.ndarray`) ['y'] (`numpy.ndarray`) Returns ------- batch_loss : `dict` ['loss'] (`torch.Tensor`) : Loss """ # forward pass X = torch.tensor(batch["X"], dtype=torch.float32, device=self.device_) fX, intermediate = self.model_(X, return_intermediate=self.attachment) # speech activity detection fX = fX.view((-1, self.n_classes_)) target = ( torch.tensor(batch["y"], dtype=torch.int64, device=self.device_) .contiguous() .view((-1,)) ) weight = self.weight if weight is not None: weight = weight.to(device=self.device_) loss = self.loss_func_(fX, target, weight=weight) # domain classification domain_target = torch.tensor( batch[self.domain], dtype=torch.int64, device=self.device_ ) domain_scores = self.activation_(self.domain_classifier_(intermediate)) domain_loss = self.domain_loss_(domain_scores, domain_target) return { "loss": loss + domain_loss, "loss_domain": domain_loss, "loss_task": loss, } class DomainAdversarialSpeechActivityDetection(DomainAwareSpeechActivityDetection): """Domain Adversarial speech activity detection Parameters ---------- domain : `str`, optional Batch key to use as domain. Defaults to 'domain'. Could be 'database' or 'uri' for instance. attachment : `int`, optional Intermediate level where to attach the domain classifier. Defaults to -1. Passed to `return_intermediate` in models supporting it. alpha : `float`, optional Coefficient multiplied with the domain loss """ def __init__(self, domain="domain", attachment=-1, alpha=1.0, **kwargs): super().__init__(domain=domain, attachment=attachment, **kwargs) self.alpha = alpha self.gradient_reversal_ = GradientReversal() def batch_loss(self, batch): """Compute loss for current `batch` Parameters ---------- batch : `dict` ['X'] (`numpy.ndarray`) ['y'] (`numpy.ndarray`) Returns ------- batch_loss : `dict` ['loss'] (`torch.Tensor`) : Loss """ # forward pass X = torch.tensor(batch["X"], dtype=torch.float32, device=self.device_) fX, intermediate = self.model_(X, return_intermediate=self.attachment) # speech activity detection fX = fX.view((-1, self.n_classes_)) target = ( torch.tensor(batch["y"], dtype=torch.int64, device=self.device_) .contiguous() .view((-1,)) ) weight = self.weight if weight is not None: weight = weight.to(device=self.device_) loss = self.loss_func_(fX, target, weight=weight) # domain classification domain_target = torch.tensor( batch[self.domain], dtype=torch.int64, device=self.device_ ) domain_scores = self.activation_( self.domain_classifier_(self.gradient_reversal_(intermediate)) ) if self.domain_loss == "MSELoss": # One hot encode domain_target for Mean Squared Error Loss nb_domains = domain_scores.shape[1] identity_mat = torch.sparse.torch.eye(nb_domains, device=self.device_) domain_target = identity_mat.index_select(dim=0, index=domain_target) domain_loss = self.domain_loss_(domain_scores, domain_target) return { "loss": loss + self.alpha * domain_loss, "loss_domain": domain_loss, "loss_task": loss, }
StarcoderdataPython
117684
<reponame>anoadragon453/synapse-config-generator # -*- coding: utf-8 -*- # Copyright 2014 - 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from os import mkdir from os.path import abspath, isdir, join import yaml from synapse.config import find_config_files from .config import create_config from .constants import CONFIG_LOCK, DATA_SUBDIR from .errors import BaseConfigInUseError from .util import is_subpath class Model: """ The Model brokers modification of the config file and signing keys in the config directory. """ def __init__(self, config_dir): self.config_dir = abspath(config_dir) self.data_dir = abspath(join(self.config_dir, DATA_SUBDIR)) if not isdir(self.config_dir): mkdir(self.config_dir) if not isdir(self.data_dir): mkdir(self.data_dir) def get_config(self, config_path: str) -> dict: """ Retrieves a config from the config directory. Any path can be provided but it must be a subdirectory of self.config_dir Args: config_path: path to the config Returns: The yaml parse of the config file """ conf_path = abspath(join(self.config_dir, config_path)) if not is_subpath(self.config_dir, conf_path): raise FileNotFoundError() with open(conf_path, "r") as f: return yaml.safe_load(f) def write_config(self, config: dict): """ Given a config generates a templated config from synapse and writes it out to the config dir. It will raise an exception if the config in the config directory is in use. Args: config (dict): The configuration to template out. """ if self.config_in_use(): raise BaseConfigInUseError() for conf_name, conf in create_config( self.config_dir, self.data_dir, config ).items(): with open(abspath(join(self.config_dir, conf_name)), "w") as f: f.write(conf) def config_in_use(self) -> bool: """ Checks if we set whether the config is in use. If it was set up by the system but synapse wasn't launched yet we will have set this to False. However if it's not present we assume someone else has set up synapse before so we assume the config is in use. """ config = {} config_files = find_config_files([self.config_dir]) for config_file in config_files: with open(config_file) as stream: config.update(yaml.safe_load(stream)) if not config: return False print(config.get(CONFIG_LOCK)) return config.get(CONFIG_LOCK, True) def generate_secret_key(self, server_name: str) -> str: """ Generates and writes a secret key. Args: server_name: The name of the homeserver Returns: The secret key identifying the server. """ if self.config_in_use(): raise BaseConfigInUseError() signing_key_path = join(self.config_dir, server_name + ".signing.key") subprocess.run(["generate_signing_key.py", "-o", signing_key_path]) with open(signing_key_path, "r") as f: return f.read()
StarcoderdataPython
1627491
<gh_stars>1-10 class Solution(object): def isHappy(self, n): """ :type n: int :rtype: bool """ cycle_members = {4, 16, 37, 58, 89, 145, 42, 20} def getn(n): res = 0 while n: res += (n % 10)**2 n = n // 10 return res while n != 1 and n not in cycle_members: n = getn(n) return n == 1
StarcoderdataPython
3364860
<reponame>kosarkarbasi/python_course<filename>tutproject/blog/admin.py from django.contrib import admin from .models import * # Register your models here. admin.site.register(Blog) admin.site.register(Author) admin.site.register(Entry) # admin.site.register(person)
StarcoderdataPython
119533
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: skip-file import sys sys.path.insert(0, "../../python/") import mxnet as mx import numpy as np import numpy.random as rnd import time def check_diff_to_scalar(A, x, rank=None): """ assert A == x""" assert(np.sum(np.abs((A - x).asnumpy())) == 0), (rank, A.asnumpy(), x) # setup keys = ['3', '5', '7'] rsp_keys = ['9', '11', '13'] rate = 2 shape = (2, 3) big_shape = (1200, 1200) # bigger than BIGARRAY_BOUND def init_kv(): kv = mx.kv.create('dist_sync') # init kv dns keys kv.init(keys, [mx.nd.ones(shape)] * len(keys)) kv.init('99', mx.nd.ones(big_shape)) # init kv row_sparse keys kv.init(rsp_keys, [mx.nd.ones(shape).tostype('row_sparse')] * len(rsp_keys)) kv.init('100', mx.nd.ones(big_shape).tostype('row_sparse')) # worker info my_rank = kv.rank nworker = kv.num_workers # init updater on servers kv.set_optimizer(mx.optimizer.create('test', rescale_grad=rate)) return kv, my_rank, nworker def test_sync_push_pull(): kv, my_rank, nworker = init_kv() def check_default_keys(kv, my_rank, nworker): nrepeat = 3 for i in range(nrepeat): kv.push('3', mx.nd.ones(shape)*(my_rank+1)) kv.push('99', mx.nd.ones(big_shape)*(my_rank+1)) num = (nworker + 1) * nworker * rate / 2 * nrepeat + 1 val = mx.nd.zeros(shape) kv.pull('3', out=val) check_diff_to_scalar(val, num) val2 = mx.nd.zeros(big_shape) kv.pull('99', out=val2) check_diff_to_scalar(val2, num) def check_row_sparse_keys(kv, my_rank, nworker): nrepeat = 3 # prepare gradient v = mx.nd.zeros(shape) my_row = my_rank % shape[0] v[my_row] = my_rank + 1 # push for i in range(nrepeat): kv.push('9', v.tostype('row_sparse')) # select a random subset of rows this worker is interested in num_rows = shape[0] row_ids_np = np.random.randint(num_rows, size=num_rows) row_ids = mx.nd.array(row_ids_np, dtype='int64') # perform pull val = mx.nd.zeros(shape, stype='row_sparse') kv.row_sparse_pull('9', out=val, row_ids=row_ids) # prepare updated values updated_val = mx.nd.ones(shape) for rank in range(nworker): row = rank % shape[0] updated_val[row] += (rank + 1) * rate * nrepeat # verify subset of updated values expected = mx.nd.zeros(shape) for row in row_ids_np: expected[row] = updated_val[row] check_diff_to_scalar(val, expected) def check_row_sparse_keys_with_zeros(kv, my_rank, nworker): nrepeat = 3 # prepare gradient v = mx.nd.zeros(shape) big_v = mx.nd.zeros(big_shape) # push for i in range(nrepeat): kv.push('11', v.tostype('row_sparse')) kv.push('100', big_v.tostype('row_sparse')) # pull a subset of rows this worker is interested in all_row_ids = np.arange(shape[0]) val = mx.nd.ones(shape).tostype('row_sparse') big_val = mx.nd.ones(big_shape).tostype('row_sparse') kv.row_sparse_pull('11', out=val, row_ids=mx.nd.array(all_row_ids, dtype='int64')) big_num_rows = shape[0] big_all_row_ids = np.arange(big_shape[0]) kv.row_sparse_pull('100', out=big_val, row_ids=mx.nd.array(big_all_row_ids, dtype='int64')) # verify results check_diff_to_scalar(val, mx.nd.ones(shape)) check_diff_to_scalar(big_val, mx.nd.ones(big_shape)) def check_big_row_sparse_keys(kv, my_rank, nworker): mx.random.seed(123) rnd.seed(123) density = 0.3 nrepeat = 3 # prepare gradient v = mx.nd.zeros(big_shape) idx_sample = rnd.rand(big_shape[0]) indices = np.argwhere(idx_sample < density).flatten() # each worker chooses a subset of the indices to update update_rows = [] for rank in range(nworker): rows = [] i = 0 step = (rank + 1) * 2 while i < len(indices): rows.append(indices[i]) i += step update_rows.append(np.array(rows)) # rows to update for this worker for row in update_rows[my_rank]: v[row] = my_rank + 1 # push for i in range(nrepeat): kv.push('100', v.tostype('row_sparse')) # select a random subset of rows this worker is interested in mx.random.seed(my_rank) rnd.seed(my_rank) num_rows = big_shape[0] row_ids_np = np.random.randint(num_rows, size=num_rows) row_ids = mx.nd.array(row_ids_np, dtype='int64') # perform pull val = mx.nd.zeros(big_shape, stype='row_sparse') kv.row_sparse_pull('100', out=val, row_ids=row_ids) # prepare expected result updated_val = mx.nd.ones(big_shape) # apply updates from each worker for rank in range(nworker): for row in update_rows[rank]: updated_val[row] += (rank + 1) * rate * nrepeat expected = mx.nd.zeros(big_shape) for row in row_ids_np: expected[row] = updated_val[row] check_diff_to_scalar(val, expected, rank=my_rank) check_default_keys(kv, my_rank, nworker) check_row_sparse_keys(kv, my_rank, nworker) check_row_sparse_keys_with_zeros(kv, my_rank, nworker) check_big_row_sparse_keys(kv, my_rank, nworker) print('worker ' + str(my_rank) + ' is done') if __name__ == "__main__": test_sync_push_pull()
StarcoderdataPython
1628161
<filename>app/domain/repository/musical_weather_repository.py from datetime import datetime from domain.model.city import CityInDb, City from domain.repository.abstract_repository import AbstractRepository from domain.model.track import TrackInDb class MusicalWeatherRepository(AbstractRepository): def get_all(self): return self._db.query(CityInDb).all() def create(self, city: City) -> CityInDb: city_db = CityInDb(name=city.name, temperature=city.temperature, date=datetime.now()) city_db.track_list = [TrackInDb(name=track.name, artist=track.artist) for track in city.track_list] self._db.add(city_db) self._db.commit() self._db.refresh(city_db) return city_db
StarcoderdataPython
3300218
"""Module for running function evaluations in separate processes and measuring time Classes: CodeBenchmark """ from multiprocessing import Process, Queue from signal import signal, alarm, SIGALRM from time import time from benchmike import exceptions as err from benchmike.customlogger import CustomLogger, LOGGER_NAME class CodeBenchmark: """Class for measuring time of execution of function evaluation""" logger = CustomLogger(LOGGER_NAME) def __init__(self, path, timeout): self.measurements = [] self.timeout = timeout self.queue = Queue() with open(path) as file: self.code = compile(file.read(), path, 'exec') self.logger.log( "Started with path {}, timeout {}".format(path, timeout)) def run_benchmark(self, step, start, count): """Runs benchmark, saves data points to self.measurements, returns measurements""" size = start passes_to_make = count pass_count = 0 time_left = time_elapsed = 0.0 while time_elapsed < self.timeout and pass_count < passes_to_make: try: time_left = int(self.timeout - time_elapsed) if time_left == 0: break data_point = self.make_measurement(size, time_left) time_elapsed += data_point[2] self.measurements.append((data_point[0], data_point[1])) size += step pass_count += 1 except err.FunTimeoutError: print("Finished benchmarking") self.logger.log( "Benchmark timeouted at {} passes".format(pass_count)) break except err.FunctionsNotFoundError as ex: raise err.BenchmarkRuntimeError(ex.message) except RuntimeError: raise err.BenchmarkRuntimeError( "Caught other type of runtime error") except Exception as ex: raise err.BenchmarkRuntimeError(repr(ex)) self.logger.log( "Finished benchmarking with {} passes and {} s left".format( pass_count, time_left)) return self.measurements @staticmethod def signal_handler(signum, frame): """Signal handler for run_code""" raise err.FunTimeoutError("Timeout error: process was too slow") def run_code(self, size, timeout): """This runs code in separate thread to measure time, requires set_up(size) and run(size) methods in code to be executed""" signal(SIGALRM, CodeBenchmark.signal_handler) exec(self.code, globals()) alarm(timeout) whole_start_time = time() try: exec('set_up(size)') run_start_time = time() exec('run(size)') whole_end_time = run_end_time = time() self.queue.put((size, run_end_time - run_start_time, whole_end_time - whole_start_time)) except err.FunTimeoutError as ex: self.queue.put((size, ex, time() - whole_start_time)) except TypeError: self.queue.put( (size, err.FunctionsNotFoundError( "Could not find set_up() or run() methods in input file"), time() - whole_start_time)) self.logger.log("File doesn't contain required methods") except Exception as ex: self.queue.put((size, RuntimeError(ex), time() - whole_start_time)) def make_measurement(self, size, timeout): """This will return tuple (size, run_time, full_time) or rethrow exception""" @self.logger.log_fun def run_process(): p = Process(target=self.run_code, args=(size, timeout)) p.start() run_result = self.queue.get() p.join() return run_result result = run_process() if isinstance(result[1], err.FunTimeoutError): raise result[1] elif isinstance(result[1], err.FunctionsNotFoundError): raise result[1] elif isinstance(result[1], RuntimeError): raise result[1] elif result: return result else: raise Exception("Queue returned empty value")
StarcoderdataPython
126424
def do(i): return i + 2
StarcoderdataPython
1632146
# Library imports import random # Project imports from hiddil.crypt import PublicKey, b64_encode, b64_decode from storage import Storage from storage.uid import UID from hiddil.exceptions import * class Block: BLOCK_NUM_MAX = 999999999999999 BLOCK_NUM_MIN = 1 def __init__(self, block_number: int, storage: Storage, public_key: PublicKey): """ Wrapper block object for storing data bytes in storage class, and managing expiration etc :param block_number: Block number to access :param storage: Reference to the storage instance the block is stored in :param public_key: Public key the block is stored with """ # If block if block number is out of bounds, raise an exception if self.BLOCK_NUM_MIN > block_number > self.BLOCK_NUM_MAX: raise BlockNumOutofBounds("value:{}, max:{}, min{}".format(block_number, self.BLOCK_NUM_MAX, self.BLOCK_NUM_MIN)) # Store args in class vars self._storage = storage self._pubkey = public_key self._uid = UID(public_key.key_id) self._block_number = block_number self._key = str(self.block_number) @property def public_key(self) -> PublicKey: return self._pubkey @property def block_number(self) -> int: return self._block_number @property def data(self) -> bytes: return self._storage.get(self._uid, self._key) @data.setter def data(self, new_data: bytes): self._storage.put(self._uid, self._key, new_data) def as_b64(self) -> str: return b64_encode(self.data) def from_b64(self, b64_data: str): self.data = b64_decode(b64_data) def erase(self): self._storage.delete(self._uid, self._key) def _key(self) -> str: return str(self.block_number) def __iter__(self): raise NotImplemented def __len__(self): return len(self._storage.get(self._uid, self._key))
StarcoderdataPython
4822909
<filename>parameters.py<gh_stars>1-10 import csv import numpy as np import sys import time import random from typing import List , Tuple , Optional , Dict , Callable , Any import copy from matrix_implementations import * from measurement import measure, generate_input ### For benchmark functions OptTuple3i = Optional[Tuple[int ,int ,int]] FunType = Callable [[List[int]], OptTuple3i] ### Parameters enabling runing on different computers sleep = False warm_up = True file_name_prefix = "GG" # enter your prefix relative_path = "/horse_race/results/" ## parameters for all the experiment. Modify here to run experiments with different parameters. n_list = [2,4,8,16,32,64,128,256] ### n list for experiment with multiple values of m and n for strassen & write_through m_list = [0,2,4,8,16,32,64,128] ### m list to find the optimal m parameter for n=256 for strassen & write_through s_list = [2,4,8,16,32,64,128] ### s list for tiled experiment - finding optimal value of s n = 256 N = 3 s = 32 m_strassen = 8 m_write_trhough = 16 column_titles_s = ['s', 'time(s)', 'stdv'] column_titles_m = ['m', 'time(s)', 'stdv'] column_titles_n = ['n', 'time(s)', 'stdv'] def write_csv(n_list: list, res: np.ndarray, filename: str, column_titles:str=None): """write_csv Args: n_list (list): list of n (the matrix side length) that the the experiment is run with res (np.ndarray): results from the experiment filename (str): the filename that you desire column_titles (lst): takes a list with the columns title for the csv file. The titles should be given comma seperated words and no spaces """ with open(filename ,'w') as f: writer = csv.writer(f) if column_titles != None: writer.writerow(column_titles) for i in range(len(n_list)): writer.writerow ([n_list[i]] + res[i,:].tolist())
StarcoderdataPython
3397302
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c)2012 Rackspace US, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function import datetime import os import pyrax pyrax.set_setting("identity_type", "rackspace") creds_file = os.path.expanduser("~/.rackspace_cloud_credentials") pyrax.set_credential_file(creds_file) clb = pyrax.cloud_loadbalancers # Get load balancer usage usage = clb.get_usage() print("Usage for Account:", usage["accountId"]) print() print("Account Usage Records") print("-" * 30) au_recs = usage["accountUsage"] for rec_key in au_recs.keys()[:5]: recs = au_recs[rec_key] if len(recs) > 5: print("(only the first 5 records...)") print(recs[:5]) print() print("Load Balancer Usage Records") print("-" * 30) lb_recs = usage["loadBalancerUsages"] if len(lb_recs) > 5: print("(only the first 5 records...)") for rec in lb_recs[:5]: print(rec) print()
StarcoderdataPython
1693671
# Generated by Django 2.0.13 on 2019-09-26 10:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tracking', '0002_auto_20180918_2014'), ] operations = [ migrations.AddField( model_name='visitor', name='medium', field=models.CharField(blank=True, editable=False, max_length=255, null=True), ), migrations.AddField( model_name='visitor', name='source', field=models.CharField(blank=True, editable=False, max_length=255, null=True), ), ]
StarcoderdataPython
3283639
import pyfastnoisesimd.extension as ext import concurrent.futures as cf import numpy as np from enum import Enum _MIN_CHUNK_SIZE = 8192 def empty_aligned(shape, dtype=np.float32, n_byte=ext.SIMD_ALIGNMENT): """ Provides an memory-aligned array for use with SIMD accelerated instructions. Should be used to build Adapted from: https://github.com/hgomersall/pyFFTW/blob/master/pyfftw/utils.pxi Args: shape: a sequence (typically a tuple) of array axes. dtype: NumPy data type of the underlying array. Note FastNoiseSIMD supports only `np.float32`. Seg faults may occur if this is changed. n_byte: byte alignment. Should always use the `pyfastnoisesimd.extension.SIMD_ALIGNMENT` value or seg faults may occur. """ dtype = np.dtype(dtype) itemsize = dtype.itemsize if not isinstance(shape, (int, np.integer)): array_length = 1 for each_dimension in shape: array_length *= each_dimension else: array_length = shape # Allocate a new array that will contain the aligned data buffer = np.empty(array_length * itemsize + n_byte, dtype='int8') offset = (n_byte - buffer.ctypes.data) % n_byte aligned = buffer[offset:offset-n_byte].view(dtype).reshape(shape) return aligned def full_aligned(shape, fill, dtype=np.float32, n_byte=ext.SIMD_ALIGNMENT): """ As per `empty_aligned`, but returns an array initialized to a constant value. Args: shape: a sequence (typically a tuple) of array axes. fill: the value to fill each array element with. dtype: NumPy data type of the underlying array. Note FastNoiseSIMD supports only `np.float32`. Seg faults may occur if this is changed. n_byte: byte alignment. Should always use the `pyfastnoisesimd.extension.SIMD_ALIGNMENT` value or seg faults may occur. """ aligned = empty_aligned(shape, dtype=dtype, n_byte=n_byte) aligned.fill(fill) return aligned def empty_coords(length, dtype=np.float32, n_byte=ext.SIMD_ALIGNMENT): """ """ dtype = np.dtype(dtype) itemsize = dtype.itemsize # We need to expand length to be a multiple of the vector size vect_len = max(ext.SIMD_ALIGNMENT // itemsize, 1) aligned_len = int(vect_len*np.ceil(length/vect_len)) shape = (3, aligned_len) coords = empty_aligned(shape) # Lots of trouble with passing sliced views out, with over-running the # array and seg-faulting on an invalid write. # return coords[:,:length] return coords def check_alignment(array): """ Verifies that an array is aligned correctly for the supported SIMD level. Args: array: numpy.ndarray Returns: truth: bool """ return ((ext.SIMD_ALIGNMENT - array.ctypes.data) % ext.SIMD_ALIGNMENT) == 0 def check_coords(array): """ Verifies that an array is aligned correctly for the supported SIMD level. Args: array: numpy.ndarray Returns: truth: bool """ # print(' Array shape: ', array.shape) # if array.base is not None: # print(' Base shape: ', array.base.shape) base = array if array.base is None else array.base # print(' Check alignment: ', check_alignment(array)) # print(' Base alignment error: ', (array.shape[1]*array.dtype.itemsize)%ext.SIMD_ALIGNMENT) return check_alignment(array) \ and (array.shape[1] * array.dtype.itemsize) % ext.SIMD_ALIGNMENT == 0 == 0 def aligned_chunks(array, n_chunks, axis=0): """ An generator that divides an array into chunks that have memory addresses compatible with SIMD vector length. Args: array: numpy.ndarray the array to chunk n_chunks: int the desired number of chunks, the returned number _may_ be less. axis: int the axis to chunk on, similar to `numpy` axis commanes. Returns chunk: numpy.ndarray start: Tuple[int] the start indices of the chunk, in the `array`. """ block_size = 1 if array.ndim > axis + 1: block_size = np.product(array.shape[axis:]) # print(f'Got blocksize of {block_size}') vect_len = max(ext.SIMD_ALIGNMENT // array.dtype.itemsize, 1) if block_size % vect_len == 0: # Iterate at-will, the underlying blocks have the correct shape slice_size = int(np.ceil(array.shape[axis] / n_chunks)) else: # Round slice_size up to nearest vect_len slice_size = int(vect_len*np.ceil(array.shape[axis] / n_chunks /vect_len)) # print('Slice size: ', slice_size) offset = 0 chunk_index = 0 while(chunk_index < n_chunks): # Dynamic slicing is pretty clumsy, unfortunately: # https://stackoverflow.com/questions/24398708/slicing-a-numpy-array-along-a-dynamically-specified-axis#47859801 # so just use some nested conditions. if axis == 0: if array.ndim == 1: chunk = array[offset:offset+slice_size] else: chunk = array[offset:offset+slice_size, ...] elif axis == 1: if array.ndim == 2: chunk = array[:, offset:offset+slice_size] else: chunk = array[:, offset:offset+slice_size, ...] elif axis == 2: chunk = array[:, :, offset:offset+slice_size] # print(f'Chunk has memory addr: {chunk.ctypes.data}, remain: {chunk.ctypes.data%ext.SIMD_ALIGNMENT}') yield chunk, offset offset += slice_size chunk_index += 1 def num_virtual_cores(): """ Detects the number of virtual cores on a system without importing ``multiprocessing``. Borrowed from NumExpr 2.6. """ import os, subprocess # Linux, Unix and MacOS if hasattr(os, 'sysconf'): if 'SC_NPROCESSORS_ONLN' in os.sysconf_names: # Linux & Unix: ncpus = os.sysconf('SC_NPROCESSORS_ONLN') if isinstance(ncpus, int) and ncpus > 0: return ncpus else: # OSX: return int(subprocess.check_output(['sysctl', '-n', 'hw.ncpu'])) # Windows if 'NUMBER_OF_PROCESSORS' in os.environ: ncpus = int(os.environ['NUMBER_OF_PROCESSORS']) if ncpus > 0: return ncpus else: return 1 # TODO: need method for ARM7/8 return 1 # Default class NoiseType(Enum): """ The class of noise generated. Enums: ``{Value, ValueFractal, Perlin, PerlinFractal, Simplex, SimplexFractal, WhiteNoise, Cellular, Cubic, CubicFractal}`` """ Value = 0 ValueFractal = 1 Perlin = 2 PerlinFractal = 3 Simplex = 4 SimplexFractal = 5 WhiteNoise = 6 Cellular = 7 Cubic = 8 CubicFractal = 9 class FractalType(Enum): """ Enum: Fractal noise types also have an additional fractal type. Values: ``{FBM, Billow, RigidMulti}``""" FBM = 0 Billow = 1 RigidMulti = 2 class PerturbType(Enum): """ Enum: The enumerator for the class of Perturbation. Values: ``{NoPeturb, Gradient, GradientFractal, Normalise, Gradient_Normalise, GradientFractal_Normalise}`` """ NoPerturb = 0 Gradient = 1 GradientFractal = 2 Normalise = 3 Gradient_Normalise = 4 GradientFractal_Normalise = 5 class CellularDistanceFunction(Enum): """ Enum: The distance function for cellular noise. Values: ``{Euclidean, Manhattan, Natural}``""" Euclidean = 0 Manhattan = 1 Natural = 2 class CellularReturnType(Enum): """ Enum: The functional filter to apply to the distance function to generate the return from cellular noise. Values: ``{CellValue, Distance, Distance2, Distance2Add, Distance2Sub, Distance2Mul, Distance2Div, NoiseLookup, Distance2Cave}`` """ CellValue = 0 Distance = 1 Distance2 = 2 Distance2Add = 3 Distance2Sub = 4 Distance2Mul = 5 Distance2Div = 6 NoiseLookup = 7 Distance2Cave = 8 class FractalClass(object): """ Holds properties related to noise types that include fractal octaves. Do not instantiate this class separately from `Noise`. """ def __init__(self, fns): self._fns = fns self._octaves = 3 self._lacunarity = 2.0 self._gain = 0.5 self._fractalType = FractalType.FBM @property def fractalType(self) -> FractalType: """ The type of fractal for fractal NoiseTypes. Default: ``FractalType.FBM``""" return self._fractalType @fractalType.setter def fractalType(self, new): if isinstance(new, FractalType): pass elif isinstance(new, int): new = FractalType(int) elif isinstance(new, str): new = FractalType[new] else: raise TypeError('Unparsable type for fractalType: {}'.format(type(new))) self._fractalType = new self._fns.SetFractalType(new.value) @property def octaves(self) -> int: """ Octave count for all fractal noise types, i.e. the number of log-scaled frequency levels of noise to apply. Generally ``3`` is sufficient for small textures/sprites (256x256 pixels), use larger values for larger textures/sprites. Default: ``3`` """ return self._octaves @octaves.setter def octaves(self, new): self._octaves = int(new) self._fns.SetFractalOctaves(int(new)) @property def lacunarity(self) -> float: """ Octave lacunarity for all fractal noise types. Default: ``2.0`` """ return self._lacunarity @lacunarity.setter def lacunarity(self, new): self._lacunarity = float(new) self._fns.SetFractalLacunarity(float(new)) @property def gain(self) -> float: """ Octave gain for all fractal noise types. Reflects the ratio of the underlying noise to that of the fractal. Values > 0.5 up-weight the fractal. Default: ``0.5`` """ return self._gain @gain.setter def gain(self, new): self._gain = float(new) self._fns.SetFractalGain(float(new)) class CellularClass(object): """ Holds properties related to `NoiseType.Cellular`. Do not instantiate this class separately from ``Noise``. """ def __init__(self, fns): self._fns = fns self._returnType = CellularReturnType.Distance self._distanceFunc = CellularDistanceFunction.Euclidean self._noiseLookupType = NoiseType.Simplex self._lookupFrequency = 0.2 self._jitter = 0.45 self._distanceIndices = (0.0, 1.0) @property def returnType(self): """ The return type for cellular (cubic Voronoi) noise. Default: ``CellularReturnType.Distance`` """ return self._returnType @returnType.setter def returnType(self, new): if isinstance(new, CellularReturnType): pass elif isinstance(new, int): new = CellularReturnType(int) elif isinstance(new, str): new = CellularReturnType[new] else: raise TypeError('Unparsable type for returnType: {}'.format(type(new))) self._returnType = new self._fns.SetCellularReturnType(new.value) @property def distanceFunc(self): return self._distanceFunc @distanceFunc.setter def distanceFunc(self, new): """ The distance function for cellular (cubic Voronoi) noise. Default: ``CellularDistanceFunction.Euclidean`` """ if isinstance(new, CellularDistanceFunction): pass elif isinstance(new, int): new = CellularDistanceFunction(int) elif isinstance(new, str): new = CellularDistanceFunction[new] else: raise TypeError('Unparsable type for distanceFunc: {}'.format(type(new))) self._distanceFunc = new self._fns.SetCellularDistanceFunction(new.value) @property def noiseLookupType(self) -> NoiseType: """ Sets the type of noise used if cellular return type. Default: `NoiseType.Simplex` """ return self._noiseLookupType @noiseLookupType.setter def noiseLookupType(self, new): if isinstance(new, NoiseType): pass elif isinstance(new, int): new = NoiseType(int) elif isinstance(new, str): new = NoiseType[new] else: raise TypeError('Unparsable type for noiseLookupType: {}'.format(type(new))) self._noiseLookupType = new self._fns.SetCellularNoiseLookupType(new.value) @property def lookupFrequency(self): """ Relative frequency on the cellular noise lookup return type. Default: ``0.2`` """ return self._lookupFrequency @lookupFrequency.setter def lookupFrequency(self, new): self._lookupFrequency = float(new) self._fns.SetCellularNoiseLookupFrequency(float(new)) @property def jitter(self): """ The maximum distance a cellular point can move from it's grid position. The value is relative to the cubic cell spacing of ``1.0``. Setting ``jitter > 0.5`` can generate wrapping artifacts. Default: ``0.45`` """ return self._jitter @jitter.setter def jitter(self, new): self._jitter = float(new) self._fns.SetCellularJitter(float(new)) @property def distanceIndices(self) -> tuple: """ Sets the two distance indices used for ``distance2X`` return types Default: ``(0, 1)`` .. note: * index0 should be lower than index1 * Both indices must be ``>= 0`` * index1 must be ``< 4`` """ return self._distanceIndices @distanceIndices.setter def distanceIndices(self, new): if not hasattr(new, '__len__') or len(new) != 2: raise ValueError( 'distanceIndices must be a length 2 array/list/tuple' ) new = list(new) if new[0] < 0: new[0] = 0 if new[1] < 0: new[0] = 0 if new[1] >= 4: new[1] = 3 if new[0] >= new[1]: new[0] = new[1]-1 self._distanceIndices = new return self._fns.SetCellularDistance2Indices(*new) class PerturbClass(object): """ Holds properties related to the perturbation applied to noise. Do not instantiate this class separately from ``Noise``. """ def __init__(self, fns): self._fns = fns self._perturbType = PerturbType.NoPerturb self._amp = 1.0 self._frequency = 0.5 self._octaves = 3 self._lacunarity = 2.0 self._gain = 2.0 self._normaliseLength = 1.0 @property def perturbType(self) -> PerturbType: """ The class of perturbation. Default: ``PerturbType.NoPeturb`` """ return self._perturbType @perturbType.setter def perturbType(self, new): if isinstance(new, PerturbType): pass elif isinstance(new, int): new = PerturbType(int) elif isinstance(new, str): new = PerturbType[new] else: raise TypeError('Unparsable type for perturbType: {}'.format(type(new))) self._perturbType = new return self._fns.SetPerturbType(new.value) @property def amp(self) -> float: """ The maximum distance the input position can be perturbed. The reasonable values of ``amp`` before artifacts are apparent increase with decreased ``frequency``. The default value of ``1.0`` is quite high. Default: ``1.0`` """ return self._amp @amp.setter def amp(self, new): self._amp = float(new) return self._fns.SetPerturbAmp(float(new)) @property def frequency(self) -> float: """ The relative frequency for the perturbation gradient. Default: ``0.5`` """ return self._frequency @frequency.setter def frequency(self, new): self._frequency = float(new) return self._fns.SetPerturbFrequency(float(new)) @property def octaves(self) -> int: """ The octave count for fractal perturbation types, i.e. the number of log-scaled frequency levels of noise to apply. Generally ``3`` is sufficient for small textures/sprites (256x256 pixels), use larger values for larger textures/sprites. Default: ``3`` """ return self._octaves @octaves.setter def octaves(self, new): self._octaves = int(new) return self._fns.SetPerturbFractalOctaves(int(new)) @property def lacunarity(self) -> float: """ The octave lacunarity (gap-fill) for fractal perturbation types. Lacunarity increases the fineness of fractals. The appearance of graininess in fractal noise occurs when lacunarity is too high for the given frequency. Default: ``2.0`` """ return self._lacunarity @lacunarity.setter def lacunarity(self, new): self._lacunarity = float(new) return self._fns.SetPerturbFractalLacunarity(float(new)) @property def gain(self) -> float: """ The octave gain for fractal perturbation types. Reflects the ratio of the underlying noise to that of the fractal. Values > 0.5 up-weight the fractal. Default: ``0.5`` """ return self._gain @gain.setter def gain(self, new): self._gain = float(new) return self._fns.SetPerturbFractalGain(float(new)) @property def normaliseLength(self) -> float: """ The length for vectors after perturb normalising Default: ``1.0`` """ return self._normaliseLength @normaliseLength.setter def normaliseLength(self, new): self._normaliseLength = float(new) return self._fns.SetPerturbNormaliseLength(float(new)) def _chunk_noise_grid(fns, chunk, chunkStart, chunkAxis, start=[0,0,0]): """ For use by ``concurrent.futures`` to multi-thread ``Noise.genAsGrid()`` calls. """ dataPtr = chunk.__array_interface__['data'][0] # print( 'pointer: {:X}, start: {}, shape: {}'.format(dataPtr, chunkStart, chunk.shape) ) if chunkAxis == 0: fns.FillNoiseSet(chunk, chunkStart+start[0], start[1], start[2], *chunk.shape) elif chunkAxis == 1: fns.FillNoiseSet(chunk, start[0], chunkStart+start[1], start[2], *chunk.shape) else: fns.FillNoiseSet(chunk, start[0], start[1], chunkStart+start[2], *chunk.shape) class Noise(object): """ ``Noise`` encapsulates the C++ SIMD class ``FNSObject`` and enables get/set of all relative properties via Python properties. Args: seed: The random number (int32) that seeds the random-number generator If ``seed == None`` a random integer is generated as the seed. numWorkers: The number of threads used for parallel noise generation. If ``numWorkers == None``, the default applied by `concurrent.futures.ThreadPoolExecutor` is used. """ def __init__(self, seed: int=None, numWorkers: int=None): self._fns = ext.FNS() if numWorkers is not None: self._num_workers = int(numWorkers) else: self._num_workers = num_virtual_cores() self._asyncExecutor = cf.ThreadPoolExecutor(max_workers = self._num_workers) # Sub-classed object handles self.fractal = FractalClass(self._fns) self.cell = CellularClass(self._fns) self.perturb = PerturbClass(self._fns) if seed is not None: self.seed = seed # calls setter else: self.seed = np.random.randint(-2147483648, 2147483647) # Syncronizers for property getters should use the default values as # stated in `FastNoiseSIMD.h` self._noiseType = NoiseType.Simplex self._frequency = 0.01 self._axesScales = (1.0, 1.0, 1.0) @property def numWorkers(self) -> int: """ Sets the maximum number of thread workers that will be used for generating noise. Generally should be the number of physical CPU cores on the machine. Default: Number of virtual cores on machine. """ return self._num_workers @numWorkers.setter def numWorkers(self, N_workers) -> int: N_workers = int(N_workers) if N_workers <= 0: raise ValueError('numWorkers must be greater than 0') self._num_workers = N_workers self._asyncExecutor = cf.ThreadPoolExecutor(max_workers = N_workers) @property def seed(self) -> int: """ The random-number seed used for generation of noise. Default: ``numpy.random.randint()`` """ return self._fns.GetSeed() @seed.setter def seed(self, new): return self._fns.SetSeed(int(np.int32(new))) @property def frequency(self) -> float: """ The frequency of the noise, lower values result in larger noise features. Default: ``0.01`` """ return self._frequency @frequency.setter def frequency(self, new): self._frequency = float(new) return self._fns.SetFrequency(float(new)) @property def noiseType(self) -> NoiseType: """ The class of noise. Default: ``NoiseType.Simplex`` """ return self._noiseType @noiseType.setter def noiseType(self, new): if isinstance(new, NoiseType): pass elif isinstance(new, int): new = NoiseType(int) elif isinstance(new, str): new = NoiseType[new] else: raise TypeError('Unparsable type for noiseType: {}'.format(type(new))) self._noiseType = new return self._fns.SetNoiseType(new.value) @property def axesScales(self) -> tuple: """ Sets the FastNoiseSIMD axes scales, which allows for non-square voxels. Indirectly affects `frequency` by changing the voxel pitch. Default: ``(1.0, 1.0, 1.0)`` """ return self._axesScales @axesScales.setter def axesScales(self, new: tuple): if not hasattr(new, '__len__') or len(new) != 3: raise ValueError( 'axesScales must be a length 3 array/list/tuple' ) self._axesScales = new return self._fns.SetAxesScales(*new) def genAsGrid(self, shape=[1,1024,1024], start=[0,0,0]) -> np.ndarray: """ Generates noise according to the set properties along a rectilinear (evenly-spaced) grid. Args: shape: Tuple[int] the shape of the output noise volume. start: Tuple[int] the starting coordinates for generation of the grid. I.e. the coordinates are essentially `start: start + shape` Example:: import numpy as np import pyfastnoisesimd as fns noise = fns.Noise() result = noise.genFromGrid(shape=[256,256,256], start=[0,0,0]) nextResult = noise.genFromGrid(shape=[256,256,256], start=[256,0,0]) """ if isinstance(shape, (int, np.integer)): shape = (shape,) # There is a minimum array size before we bother to turn on futures. size = np.product(shape) # size needs to be evenly divisible by ext.SIMD_ALINGMENT if np.remainder(size, ext.SIMD_ALIGNMENT/np.dtype(np.float32).itemsize) != 0.0: raise ValueError('The size of the array (in bytes) must be evenly divisible by the SIMD vector length') result = empty_aligned(shape) # Shape could be 1 or 2D, so we need to expand it with singleton # dimensions for the FillNoiseSet call if len(start) == 1: start = [start[0], 0, 0] elif len(start) == 2: start = [start[0], start[1], 1] else: start = list(start) start_zero = start[0] if self._num_workers <= 1 or size < _MIN_CHUNK_SIZE: # print('Grid single-threaded') if len(shape) == 1: shape = (*shape, 1, 1) elif len(shape) == 2: shape = (*shape, 1) else: shape = shape self._fns.FillNoiseSet(result, *start, *shape) return result # else run in threaded mode. n_chunks = np.minimum(self._num_workers, shape[0]) # print(f'genAsGrid using {n_chunks} chunks') # print('Grid multi-threaded') workers = [] for I, (chunk, consumed) in enumerate(aligned_chunks(result, n_chunks, axis=0)): # print(f'{I}: Got chunk of shape {chunk.shape} with {consumed} consumed') if len(chunk.shape) == 1: chunk_shape = (*chunk.shape, 1, 1) elif len(chunk.shape) == 2: chunk_shape = (*chunk.shape, 1) else: chunk_shape = chunk.shape start[0] = start_zero + consumed # print('len start: ', len(start), ', len shape: ', len(chunk_shape)) peon = self._asyncExecutor.submit(self._fns.FillNoiseSet, chunk, *start, *chunk_shape) workers.append(peon) for peon in workers: peon.result() # For memory management we have to tell NumPy it's ok to free the memory # region when it is dereferenced. # self._fns._OwnSplitArray(noise) return result def genFromCoords(self, coords: np.ndarray) -> np.ndarray: """ Generate noise from supplied coordinates, rather than a rectilinear grid. Useful for complicated shapes, such as tesselated surfaces. Args: coords: 3-D coords as generated by ``fns.empty_coords()`` and filled with relevant values by the user. Returns: noise: a shape (N,) array of the generated noise values. Example:: import numpy as np import pyfastnoisesimd as fns numCoords = 256 coords = fns.empty_coords(3,numCoords) # <Set the coordinate values, it is a (3, numCoords) array coords[0,:] = np.linspace(-np.pi, np.pi, numCoords) coords[1,:] = np.linspace(-1.0, 1.0, numCoords) coords[2,:] = np.zeros(numCoords) noise = fns.Noise() result = noise.genFromCoords(coords) """ if not isinstance(coords, np.ndarray): raise TypeError('`coords` must be of type `np.ndarray`, not type: ', type(coords)) if coords.ndim != 2: raise ValueError('`coords` must be a 2D array') shape = coords.shape if shape[0] != 3: raise ValueError('`coords.shape[0]` must equal 3') if not check_alignment(coords): raise ValueError('Memory alignment of `coords` is not valid') if coords.dtype != np.float32: raise ValueError('`coords` must be of dtype `np.float32`') if np.remainder(coords.shape[1], ext.SIMD_ALIGNMENT/np.dtype(np.float32).itemsize) != 0.0: raise ValueError('The number of coordinates must be evenly divisible by the SIMD vector length') itemsize = coords.dtype.itemsize result = empty_aligned(shape[1]) if self._num_workers <= 1 or shape[1] < _MIN_CHUNK_SIZE: self._fns.NoiseFromCoords(result, coords[0,:], coords[1,:], coords[2,:], shape[1], 0) return result n_chunks = np.minimum(self._num_workers, shape[1] * itemsize / ext.SIMD_ALIGNMENT) workers = [] # for I, ((result_chunk, r_offset), (coord_chunk, offset)) in enumerate(zip( # aligned_chunks(result, self._num_workers, axis=0), # aligned_chunks(coords, self._num_workers, axis=1))): for I, (result_chunk, offset) in enumerate( aligned_chunks(result, self._num_workers, axis=0)): # aligned_size = int(vect_len*np.ceil(result_chunk.size/vect_len)) # print(f' {I}: Got chunk of length {result_chunk.size}, AlignedSize would be: {aligned_size}') # print(' Offset: ', offset, ', offset error: ', offset % 8) # zPtr = (coords[0,:].ctypes.data + offset) % 8 # yPtr = (coords[1,:].ctypes.data + offset) % 8 # xPtr = (coords[2,:].ctypes.data + offset) % 8 # print(f' Pointer alignment: {zPtr, yPtr, xPtr}') # peon = self._asyncExecutor.submit(self._fns.NoiseFromCoords, result, # coords[0,:], coords[1,:], coords[2,:], aligned_size, offset) peon = self._asyncExecutor.submit(self._fns.NoiseFromCoords, result, coords[0,:], coords[1,:], coords[2,:], result_chunk.size, offset) workers.append(peon) for peon in workers: peon.result() return result
StarcoderdataPython