id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3344040
"""Preference management for cloud.""" from ipaddress import ip_address from typing import List, Optional from homeassistant.auth.const import GROUP_ID_ADMIN from homeassistant.auth.models import User from homeassistant.core import callback from homeassistant.util.logging import async_create_catching_coro from .const import ( DEFAULT_ALEXA_REPORT_STATE, DEFAULT_EXPOSED_DOMAINS, DEFAULT_GOOGLE_REPORT_STATE, DOMAIN, PREF_ALEXA_DEFAULT_EXPOSE, PREF_ALEXA_ENTITY_CONFIGS, PREF_ALEXA_REPORT_STATE, PREF_ALIASES, PREF_CLOUD_USER, PREF_CLOUDHOOKS, PREF_DISABLE_2FA, PREF_ENABLE_ALEXA, PREF_ENABLE_GOOGLE, PREF_ENABLE_REMOTE, PREF_GOOGLE_DEFAULT_EXPOSE, PREF_GOOGLE_ENTITY_CONFIGS, PREF_GOOGLE_LOCAL_WEBHOOK_ID, PREF_GOOGLE_REPORT_STATE, PREF_GOOGLE_SECURE_DEVICES_PIN, PREF_OVERRIDE_NAME, PREF_SHOULD_EXPOSE, PREF_USERNAME, InvalidTrustedNetworks, InvalidTrustedProxies, ) STORAGE_KEY = DOMAIN STORAGE_VERSION = 1 _UNDEF = object() class CloudPreferences: """Handle cloud preferences.""" def __init__(self, hass): """Initialize cloud prefs.""" self._hass = hass self._store = hass.helpers.storage.Store(STORAGE_VERSION, STORAGE_KEY) self._prefs = None self._listeners = [] async def async_initialize(self): """Finish initializing the preferences.""" prefs = await self._store.async_load() if prefs is None: prefs = self._empty_config("") self._prefs = prefs if PREF_GOOGLE_LOCAL_WEBHOOK_ID not in self._prefs: await self._save_prefs( { **self._prefs, PREF_GOOGLE_LOCAL_WEBHOOK_ID: self._hass.components.webhook.async_generate_id(), } ) @callback def async_listen_updates(self, listener): """Listen for updates to the preferences.""" self._listeners.append(listener) async def async_update( self, *, google_enabled=_UNDEF, alexa_enabled=_UNDEF, remote_enabled=_UNDEF, google_secure_devices_pin=_UNDEF, cloudhooks=_UNDEF, cloud_user=_UNDEF, google_entity_configs=_UNDEF, alexa_entity_configs=_UNDEF, alexa_report_state=_UNDEF, google_report_state=_UNDEF, alexa_default_expose=_UNDEF, google_default_expose=_UNDEF, ): """Update user preferences.""" prefs = {**self._prefs} for key, value in ( (PREF_ENABLE_GOOGLE, google_enabled), (PREF_ENABLE_ALEXA, alexa_enabled), (PREF_ENABLE_REMOTE, remote_enabled), (PREF_GOOGLE_SECURE_DEVICES_PIN, google_secure_devices_pin), (PREF_CLOUDHOOKS, cloudhooks), (PREF_CLOUD_USER, cloud_user), (PREF_GOOGLE_ENTITY_CONFIGS, google_entity_configs), (PREF_ALEXA_ENTITY_CONFIGS, alexa_entity_configs), (PREF_ALEXA_REPORT_STATE, alexa_report_state), (PREF_GOOGLE_REPORT_STATE, google_report_state), (PREF_ALEXA_DEFAULT_EXPOSE, alexa_default_expose), (PREF_GOOGLE_DEFAULT_EXPOSE, google_default_expose), ): if value is not _UNDEF: prefs[key] = value if remote_enabled is True and self._has_local_trusted_network: prefs[PREF_ENABLE_REMOTE] = False raise InvalidTrustedNetworks if remote_enabled is True and self._has_local_trusted_proxies: prefs[PREF_ENABLE_REMOTE] = False raise InvalidTrustedProxies await self._save_prefs(prefs) async def async_update_google_entity_config( self, *, entity_id, override_name=_UNDEF, disable_2fa=_UNDEF, aliases=_UNDEF, should_expose=_UNDEF, ): """Update config for a Google entity.""" entities = self.google_entity_configs entity = entities.get(entity_id, {}) changes = {} for key, value in ( (PREF_OVERRIDE_NAME, override_name), (PREF_DISABLE_2FA, disable_2fa), (PREF_ALIASES, aliases), (PREF_SHOULD_EXPOSE, should_expose), ): if value is not _UNDEF: changes[key] = value if not changes: return updated_entity = {**entity, **changes} updated_entities = {**entities, entity_id: updated_entity} await self.async_update(google_entity_configs=updated_entities) async def async_update_alexa_entity_config( self, *, entity_id, should_expose=_UNDEF ): """Update config for an Alexa entity.""" entities = self.alexa_entity_configs entity = entities.get(entity_id, {}) changes = {} for key, value in ((PREF_SHOULD_EXPOSE, should_expose),): if value is not _UNDEF: changes[key] = value if not changes: return updated_entity = {**entity, **changes} updated_entities = {**entities, entity_id: updated_entity} await self.async_update(alexa_entity_configs=updated_entities) async def async_set_username(self, username): """Set the username that is logged in.""" # Logging out. if username is None: user = await self._load_cloud_user() if user is not None: await self._hass.auth.async_remove_user(user) await self._save_prefs({**self._prefs, PREF_CLOUD_USER: None}) return cur_username = self._prefs.get(PREF_USERNAME) if cur_username == username: return if cur_username is None: await self._save_prefs({**self._prefs, PREF_USERNAME: username}) else: await self._save_prefs(self._empty_config(username)) def as_dict(self): """Return dictionary version.""" return { PREF_ALEXA_DEFAULT_EXPOSE: self.alexa_default_expose, PREF_ALEXA_ENTITY_CONFIGS: self.alexa_entity_configs, PREF_ALEXA_REPORT_STATE: self.alexa_report_state, PREF_CLOUDHOOKS: self.cloudhooks, PREF_ENABLE_ALEXA: self.alexa_enabled, PREF_ENABLE_GOOGLE: self.google_enabled, PREF_ENABLE_REMOTE: self.remote_enabled, PREF_GOOGLE_DEFAULT_EXPOSE: self.google_default_expose, PREF_GOOGLE_ENTITY_CONFIGS: self.google_entity_configs, PREF_GOOGLE_REPORT_STATE: self.google_report_state, PREF_GOOGLE_SECURE_DEVICES_PIN: self.google_secure_devices_pin, } @property def remote_enabled(self): """Return if remote is enabled on start.""" enabled = self._prefs.get(PREF_ENABLE_REMOTE, False) if not enabled: return False if self._has_local_trusted_network or self._has_local_trusted_proxies: return False return True @property def alexa_enabled(self): """Return if Alexa is enabled.""" return self._prefs[PREF_ENABLE_ALEXA] @property def alexa_report_state(self): """Return if Alexa report state is enabled.""" return self._prefs.get(PREF_ALEXA_REPORT_STATE, DEFAULT_ALEXA_REPORT_STATE) @property def alexa_default_expose(self) -> Optional[List[str]]: """Return array of entity domains that are exposed by default to Alexa. Can return None, in which case for backwards should be interpreted as allow all domains. """ return self._prefs.get(PREF_ALEXA_DEFAULT_EXPOSE) @property def alexa_entity_configs(self): """Return Alexa Entity configurations.""" return self._prefs.get(PREF_ALEXA_ENTITY_CONFIGS, {}) @property def google_enabled(self): """Return if Google is enabled.""" return self._prefs[PREF_ENABLE_GOOGLE] @property def google_report_state(self): """Return if Google report state is enabled.""" return self._prefs.get(PREF_GOOGLE_REPORT_STATE, DEFAULT_GOOGLE_REPORT_STATE) @property def google_secure_devices_pin(self): """Return if Google is allowed to unlock locks.""" return self._prefs.get(PREF_GOOGLE_SECURE_DEVICES_PIN) @property def google_entity_configs(self): """Return Google Entity configurations.""" return self._prefs.get(PREF_GOOGLE_ENTITY_CONFIGS, {}) @property def google_local_webhook_id(self): """Return Google webhook ID to receive local messages.""" return self._prefs[PREF_GOOGLE_LOCAL_WEBHOOK_ID] @property def google_default_expose(self) -> Optional[List[str]]: """Return array of entity domains that are exposed by default to Google. Can return None, in which case for backwards should be interpreted as allow all domains. """ return self._prefs.get(PREF_GOOGLE_DEFAULT_EXPOSE) @property def cloudhooks(self): """Return the published cloud webhooks.""" return self._prefs.get(PREF_CLOUDHOOKS, {}) async def get_cloud_user(self) -> str: """Return ID from Home Assistant Cloud system user.""" user = await self._load_cloud_user() if user: return user.id user = await self._hass.auth.async_create_system_user( "Home Assistant Cloud", [GROUP_ID_ADMIN] ) await self.async_update(cloud_user=user.id) return user.id async def _load_cloud_user(self) -> Optional[User]: """Load cloud user if available.""" user_id = self._prefs.get(PREF_CLOUD_USER) if user_id is None: return None # Fetch the user. It can happen that the user no longer exists if # an image was restored without restoring the cloud prefs. return await self._hass.auth.async_get_user(user_id) @property def _has_local_trusted_network(self) -> bool: """Return if we allow localhost to bypass auth.""" local4 = ip_address("127.0.0.1") local6 = ip_address("::1") for prv in self._hass.auth.auth_providers: if prv.type != "trusted_networks": continue for network in prv.trusted_networks: if local4 in network or local6 in network: return True return False @property def _has_local_trusted_proxies(self) -> bool: """Return if we allow localhost to be a proxy and use its data.""" if not hasattr(self._hass, "http"): return False local4 = ip_address("127.0.0.1") local6 = ip_address("::1") if any( local4 in nwk or local6 in nwk for nwk in self._hass.http.trusted_proxies ): return True return False async def _save_prefs(self, prefs): """Save preferences to disk.""" self._prefs = prefs await self._store.async_save(self._prefs) for listener in self._listeners: self._hass.async_create_task(async_create_catching_coro(listener(self))) @callback def _empty_config(self, username): """Return an empty config.""" return { PREF_ALEXA_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_ALEXA_ENTITY_CONFIGS: {}, PREF_CLOUD_USER: None, PREF_CLOUDHOOKS: {}, PREF_ENABLE_ALEXA: True, PREF_ENABLE_GOOGLE: True, PREF_ENABLE_REMOTE: False, PREF_GOOGLE_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_GOOGLE_ENTITY_CONFIGS: {}, PREF_GOOGLE_LOCAL_WEBHOOK_ID: self._hass.components.webhook.async_generate_id(), PREF_GOOGLE_SECURE_DEVICES_PIN: None, PREF_USERNAME: username, }
StarcoderdataPython
97989
class MinStack: # Update Min every pop (Accepted), O(1) push, pop, top, min def __init__(self): self.stack = [] self.min = None def push(self, val: int) -> None: if self.stack: self.min = min(self.min, val) self.stack.append((val, self.min)) else: self.min = val self.stack.append((val, self.min)) def pop(self) -> None: val, min_ = self.stack.pop() if self.stack: self.min = self.stack[-1][1] else: self.min = None def top(self) -> int: if self.stack: return self.stack[-1][0] def getMin(self) -> int: return self.min class MinStack: # Find min in last elem (Top Voted), O(1) push, pop, top, min def __init__(self): self.q = [] def push(self, x: int) -> None: curMin = self.getMin() if curMin == None or x < curMin: curMin = x self.q.append((x, curMin)) def pop(self) -> None: self.q.pop() def top(self) -> int: if len(self.q) == 0: return None else: return self.q[len(self.q) - 1][0] def getMin(self) -> int: if len(self.q) == 0: return None else: return self.q[len(self.q) - 1][1] # Your MinStack object will be instantiated and called as such: # obj = MinStack() # obj.push(val) # obj.pop() # param_3 = obj.top() # param_4 = obj.getMin()
StarcoderdataPython
27023
<reponame>oruebel/ndx-icephys-meta """ Module with ObjectMapper classes for the icephys-meta Container classes/neurodata_types """ from pynwb import register_map from pynwb.io.file import NWBFileMap from hdmf.common.io.table import DynamicTableMap from ndx_icephys_meta.icephys import ICEphysFile, AlignedDynamicTable @register_map(ICEphysFile) class ICEphysFileMap(NWBFileMap): """ Customize object mapping for ICEphysFile to define the mapping for our custom icephys tables, i.e., InteracellularRecordings, SimultaneousRecordingsTable, SequentialRecordingsTable, RepetitionsTable, and ExperimentalConditionsTable """ def __init__(self, spec): super().__init__(spec) general_spec = self.spec.get_group('general') icephys_spec = general_spec.get_group('intracellular_ephys') self.map_spec('intracellular_recordings', icephys_spec.get_neurodata_type('IntracellularRecordingsTable')) self.map_spec('icephys_simultaneous_recordings', icephys_spec.get_neurodata_type('SimultaneousRecordingsTable')) self.map_spec('icephys_sequential_recordings', icephys_spec.get_neurodata_type('SequentialRecordingsTable')) self.map_spec('icephys_repetitions', icephys_spec.get_neurodata_type('RepetitionsTable')) self.map_spec('icephys_experimental_conditions', icephys_spec.get_neurodata_type('ExperimentalConditionsTable')) self.map_spec('ic_filtering', icephys_spec.get_dataset('filtering')) @register_map(AlignedDynamicTable) class AlignedDynamicTableMap(DynamicTableMap): """ Customize the mapping for AlignedDynamicTable """ def __init__(self, spec): super().__init__(spec) # By default the DynamicTables contained as sub-categories in the AlignedDynamicTable are mapped to # the 'dynamic_tables' class attribute. This renames the attribute to 'category_tables' self.map_spec('category_tables', spec.get_neurodata_type('DynamicTable')) @DynamicTableMap.object_attr('electrodes') def electrodes(self, container, manager): return container.category_tables.get('electrodes', None) @DynamicTableMap.object_attr('stimuli') def stimuli(self, container, manager): return container.category_tables.get('stimuli', None) @DynamicTableMap.object_attr('responses') def responses(self, container, manager): return container.category_tables.get('responses', None)
StarcoderdataPython
9610
<gh_stars>1-10 """ Test to verify performance of PVC creation and deletion for RBD, CephFS and RBD-Thick interfaces """ import time import logging import datetime import pytest import ocs_ci.ocs.exceptions as ex import threading import statistics from concurrent.futures import ThreadPoolExecutor from uuid import uuid4 from ocs_ci.framework.testlib import performance from ocs_ci.ocs.perftests import PASTest from ocs_ci.helpers import helpers, performance_lib from ocs_ci.ocs import constants from ocs_ci.helpers.helpers import get_full_test_logs_path from ocs_ci.ocs.perfresult import PerfResult from ocs_ci.framework import config log = logging.getLogger(__name__) class ResultsAnalyse(PerfResult): """ This class generates results for all tests as one unit and saves them to an elastic search server on the cluster """ def __init__(self, uuid, crd, full_log_path): """ Initialize the object by reading some of the data from the CRD file and by connecting to the ES server and read all results from it. Args: uuid (str): the unique uid of the test crd (dict): dictionary with test parameters - the test yaml file that modify it in the test itself. full_log_path (str): the path of the results files to be found """ super(ResultsAnalyse, self).__init__(uuid, crd) self.new_index = "pvc_create_delete_fullres" self.full_log_path = full_log_path # make sure we have connection to the elastic search server self.es_connect() @performance class TestPVCCreationDeletionPerformance(PASTest): """ Test to verify performance of PVC creation and deletion """ def setup(self): """ Setting up test parameters """ log.info("Starting the test setup") super(TestPVCCreationDeletionPerformance, self).setup() self.benchmark_name = "PVC_Creation-Deletion" self.uuid = uuid4().hex self.crd_data = { "spec": { "test_user": "Homer simpson", "clustername": "test_cluster", "elasticsearch": { "server": config.PERF.get("production_es_server"), "port": config.PERF.get("production_es_port"), "url": f"http://{config.PERF.get('production_es_server')}:{config.PERF.get('production_es_port')}", }, } } if self.dev_mode: self.crd_data["spec"]["elasticsearch"] = { "server": config.PERF.get("dev_es_server"), "port": config.PERF.get("dev_es_port"), "url": f"http://{config.PERF.get('dev_es_server')}:{config.PERF.get('dev_es_port')}", } @pytest.fixture() def base_setup(self, interface_type, storageclass_factory, pod_factory): """ A setup phase for the test Args: interface_type: A fixture to iterate over ceph interfaces storageclass_factory: A fixture to create everything needed for a storageclass pod_factory: A fixture to create new pod """ self.interface = interface_type if self.interface == constants.CEPHBLOCKPOOL_THICK: self.sc_obj = storageclass_factory( interface=constants.CEPHBLOCKPOOL, new_rbd_pool=True, rbd_thick_provision=True, ) else: self.sc_obj = storageclass_factory(self.interface) self.pod_factory = pod_factory @pytest.fixture() def namespace(self, project_factory): """ Create a new project """ proj_obj = project_factory() self.namespace = proj_obj.namespace def init_full_results(self, full_results): """ Initialize the full results object which will send to the ES server Args: full_results (obj): an empty FIOResultsAnalyse object Returns: FIOResultsAnalyse (obj): the input object fill with data """ for key in self.environment: full_results.add_key(key, self.environment[key]) full_results.add_key("storageclass", self.sc) full_results.add_key("index", full_results.new_index) return full_results @pytest.mark.parametrize( argnames=["interface_type", "pvc_size"], argvalues=[ pytest.param( *[constants.CEPHBLOCKPOOL, "5Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHBLOCKPOOL, "15Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHBLOCKPOOL, "25Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHFILESYSTEM, "5Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHFILESYSTEM, "15Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHFILESYSTEM, "25Gi"], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHBLOCKPOOL_THICK, "5Gi"], marks=[pytest.mark.performance_extended], ), pytest.param( *[constants.CEPHBLOCKPOOL_THICK, "15Gi"], marks=[pytest.mark.performance_extended], ), pytest.param( *[constants.CEPHBLOCKPOOL_THICK, "25Gi"], marks=[pytest.mark.performance_extended], ), ], ) @pytest.mark.usefixtures(base_setup.__name__) def test_pvc_creation_deletion_measurement_performance( self, teardown_factory, pvc_size ): """ Measuring PVC creation and deletion times for pvc samples Verifying that those times are within the required limits """ # Getting the full path for the test logs self.full_log_path = get_full_test_logs_path(cname=self) if self.interface == constants.CEPHBLOCKPOOL: self.sc = "RBD" elif self.interface == constants.CEPHFILESYSTEM: self.sc = "CephFS" elif self.interface == constants.CEPHBLOCKPOOL_THICK: self.sc = "RBD-Thick" self.full_log_path += f"-{self.sc}-{pvc_size}" log.info(f"Logs file path name is : {self.full_log_path}") self.start_time = time.strftime("%Y-%m-%dT%H:%M:%SGMT", time.gmtime()) self.get_env_info() # Initialize the results doc file. self.full_results = self.init_full_results( ResultsAnalyse(self.uuid, self.crd_data, self.full_log_path) ) self.full_results.add_key("pvc_size", pvc_size) num_of_samples = 5 accepted_creation_time = ( 600 if self.interface == constants.CEPHBLOCKPOOL_THICK else 1 ) # accepted deletion time for RBD is 1 sec, for CephFS is 2 secs and for RBD Thick is 5 secs if self.interface == constants.CEPHFILESYSTEM: accepted_deletion_time = 2 elif self.interface == constants.CEPHBLOCKPOOL: accepted_deletion_time = 1 else: accepted_deletion_time = 5 self.full_results.add_key("samples", num_of_samples) accepted_creation_deviation_percent = 50 accepted_deletion_deviation_percent = 50 creation_time_measures = [] deletion_time_measures = [] msg_prefix = f"Interface: {self.interface}, PVC size: {pvc_size}." for i in range(num_of_samples): logging.info(f"{msg_prefix} Start creating PVC number {i + 1}.") start_time = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") pvc_obj = helpers.create_pvc(sc_name=self.sc_obj.name, size=pvc_size) timeout = 600 if self.interface == constants.CEPHBLOCKPOOL_THICK else 60 helpers.wait_for_resource_state( pvc_obj, constants.STATUS_BOUND, timeout=timeout ) pvc_obj.reload() creation_time = performance_lib.measure_pvc_creation_time( self.interface, pvc_obj.name, start_time ) logging.info( f"{msg_prefix} PVC number {i + 1} was created in {creation_time} seconds." ) if creation_time > accepted_creation_time: raise ex.PerformanceException( f"{msg_prefix} PVC creation time is {creation_time} and is greater than " f"{accepted_creation_time} seconds." ) creation_time_measures.append(creation_time) pv_name = pvc_obj.backed_pv pvc_reclaim_policy = pvc_obj.reclaim_policy pod_obj = self.write_file_on_pvc(pvc_obj) pod_obj.delete(wait=True) teardown_factory(pvc_obj) logging.info(f"{msg_prefix} Start deleting PVC number {i + 1}") if pvc_reclaim_policy == constants.RECLAIM_POLICY_DELETE: pvc_obj.delete() pvc_obj.ocp.wait_for_delete(pvc_obj.name) helpers.validate_pv_delete(pvc_obj.backed_pv) deletion_time = helpers.measure_pvc_deletion_time( self.interface, pv_name ) logging.info( f"{msg_prefix} PVC number {i + 1} was deleted in {deletion_time} seconds." ) if deletion_time > accepted_deletion_time: raise ex.PerformanceException( f"{msg_prefix} PVC deletion time is {deletion_time} and is greater than " f"{accepted_deletion_time} seconds." ) deletion_time_measures.append(deletion_time) else: logging.info( f"Reclaim policy of the PVC {pvc_obj.name} is not Delete;" f" therefore not measuring deletion time for this PVC." ) creation_average = self.process_time_measurements( "creation", creation_time_measures, accepted_creation_deviation_percent, msg_prefix, ) self.full_results.add_key("creation-time", creation_average) deletion_average = self.process_time_measurements( "deletion", deletion_time_measures, accepted_deletion_deviation_percent, msg_prefix, ) self.full_results.add_key("deletion-time", deletion_average) self.full_results.all_results["creation"] = creation_time_measures self.full_results.all_results["deletion"] = deletion_time_measures self.end_time = time.strftime("%Y-%m-%dT%H:%M:%SGMT", time.gmtime()) self.full_results.add_key( "test_time", {"start": self.start_time, "end": self.end_time} ) self.full_results.es_write() log.info(f"The Result can be found at : {self.full_results.results_link()}") def process_time_measurements( self, action_name, time_measures, accepted_deviation_percent, msg_prefix ): """ Analyses the given time measured. If the standard deviation of these times is bigger than the provided accepted deviation percent, fails the test Args: action_name (str): Name of the action for which these measurements were collected; used for the logging time_measures (list of floats): A list of time measurements accepted_deviation_percent (int): Accepted deviation percent to which computed standard deviation may be compared msg_prefix (str) : A string for comprehensive logging Returns: (float) The average value of the provided time measurements """ average = statistics.mean(time_measures) log.info( f"{msg_prefix} The average {action_name} time for the sampled {len(time_measures)} " f"PVCs is {average} seconds." ) if self.interface == constants.CEPHBLOCKPOOL_THICK: st_deviation = statistics.stdev(time_measures) st_deviation_percent = st_deviation / average * 100.0 if st_deviation_percent > accepted_deviation_percent: log.error( f"{msg_prefix} The standard deviation percent for {action_name} of {len(time_measures)} sampled " f"PVCs is {st_deviation_percent}% which is bigger than accepted {accepted_deviation_percent}." ) else: log.info( f"{msg_prefix} The standard deviation percent for {action_name} of {len(time_measures)} sampled " f"PVCs is {st_deviation_percent}% and is within the accepted range." ) self.full_results.add_key( f"{action_name}_deviation_pct", st_deviation_percent ) return average def write_file_on_pvc(self, pvc_obj, filesize=1): """ Writes a file on given PVC Args: pvc_obj: PVC object to write a file on filesize: size of file to write (in GB - default is 1GB) Returns: Pod on this pvc on which the file was written """ pod_obj = self.pod_factory( interface=self.interface, pvc=pvc_obj, status=constants.STATUS_RUNNING ) # filesize to be written is always 1 GB file_size = f"{int(filesize * 1024)}M" log.info(f"Starting IO on the POD {pod_obj.name}") # Going to run only write IO pod_obj.fillup_fs(size=file_size, fio_filename=f"{pod_obj.name}_file") # Wait for the fio to finish fio_result = pod_obj.get_fio_results() err_count = fio_result.get("jobs")[0].get("error") assert ( err_count == 0 ), f"IO error on pod {pod_obj.name}. FIO result: {fio_result}" log.info("IO on the PVC has finished") return pod_obj @pytest.mark.parametrize( argnames=["interface_type"], argvalues=[ pytest.param( *[constants.CEPHBLOCKPOOL], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHFILESYSTEM], marks=[pytest.mark.performance], ), pytest.param( *[constants.CEPHBLOCKPOOL_THICK], marks=[pytest.mark.performance_extended], ), ], ) @pytest.mark.usefixtures(base_setup.__name__) @pytest.mark.usefixtures(namespace.__name__) @pytest.mark.polarion_id("OCS-2618") def test_multiple_pvc_deletion_measurement_performance(self, teardown_factory): """ Measuring PVC deletion time of 120 PVCs in 180 seconds Args: teardown_factory: A fixture used when we want a new resource that was created during the tests to be removed in the teardown phase. Returns: """ number_of_pvcs = 120 pvc_size = "1Gi" msg_prefix = f"Interface: {self.interface}, PVC size: {pvc_size}." log.info(f"{msg_prefix} Start creating new 120 PVCs") pvc_objs, _ = helpers.create_multiple_pvcs( sc_name=self.sc_obj.name, namespace=self.namespace, number_of_pvc=number_of_pvcs, size=pvc_size, burst=True, ) for pvc_obj in pvc_objs: pvc_obj.reload() teardown_factory(pvc_obj) timeout = 600 if self.interface == constants.CEPHBLOCKPOOL_THICK else 60 with ThreadPoolExecutor(max_workers=5) as executor: for pvc_obj in pvc_objs: executor.submit( helpers.wait_for_resource_state, pvc_obj, constants.STATUS_BOUND, timeout=timeout, ) executor.submit(pvc_obj.reload) pod_objs = [] for pvc_obj in pvc_objs: pod_obj = self.write_file_on_pvc(pvc_obj, 0.3) pod_objs.append(pod_obj) # Get pvc_name, require pvc_name to fetch deletion time data from log threads = list() for pvc_obj in pvc_objs: process = threading.Thread(target=pvc_obj.reload) process.start() threads.append(process) for process in threads: process.join() pvc_name_list, pv_name_list = ([] for i in range(2)) threads = list() for pvc_obj in pvc_objs: process1 = threading.Thread(target=pvc_name_list.append(pvc_obj.name)) process2 = threading.Thread(target=pv_name_list.append(pvc_obj.backed_pv)) process1.start() process2.start() threads.append(process1) threads.append(process2) for process in threads: process.join() log.info(f"{msg_prefix} Preparing to delete 120 PVC") # Delete PVC for pvc_obj, pod_obj in zip(pvc_objs, pod_objs): pod_obj.delete(wait=True) pvc_obj.delete() pvc_obj.ocp.wait_for_delete(pvc_obj.name) # Get PVC deletion time pvc_deletion_time = helpers.measure_pv_deletion_time_bulk( interface=self.interface, pv_name_list=pv_name_list ) log.info( f"{msg_prefix} {number_of_pvcs} bulk deletion time is {pvc_deletion_time}" ) # accepted deletion time is 2 secs for each PVC accepted_pvc_deletion_time = number_of_pvcs * 2 for del_time in pvc_deletion_time.values(): if del_time > accepted_pvc_deletion_time: raise ex.PerformanceException( f"{msg_prefix} {number_of_pvcs} PVCs deletion time is {pvc_deletion_time.values()} and is " f"greater than {accepted_pvc_deletion_time} seconds" ) logging.info(f"{msg_prefix} {number_of_pvcs} PVCs deletion times are:") for name, a_time in pvc_deletion_time.items(): logging.info(f"{name} deletion time is: {a_time} seconds")
StarcoderdataPython
3384695
#ExrMerge v1.0 from nukepedia #Desarrollado por <NAME> (Zabander) 21-11-2014. #hacked by Rafal 1)removed the write node 2)added stringSplit to tidy the name to remove version, show, shot; 3) changed into class #todo , do noBeauty, make gui, new group name, bring back option to create write, fix error traps (i.e. if read not selected); backStringSplit, clean ui import os import nuke class channelMergeFromRead(): def __init__(self): import os import nuke self.lista = [] self.add = 1 #self.node = 0 self.node2 = 0 self.currentlayerName = "" self.newdir = "" self.dic = {} self.mainBeautyLayer = 0 self.sGroup = [] self.isGroup = True self.nIncrement = 1 self.splitString ='' self.removeFront='' self.removeBack='' self.readNodes=[] self.folderCount='2' #Permite seleccionar al passe beauty def mainBeauty(self): #try: for nodes in self.lista: self.dic[nodes] = os.path.split(nodes.knob('file').value())[1] readNames = self.dic.values() readNames.sort() readNames.sort(key=len) p = nuke.Panel('channel merge read nodes') #p.addSingleLineInput( 'Path', os.path.split(nodes.knob('file').value())[0] ) p.addEnumerationPulldown('BeautyLayer', readNames) p.addEnumerationPulldown('nameMethod', 'from_folder_name from_file_name') #p.Divider('from_folderNameMethod') p.addEnumerationPulldown('folderCount', '2 0 1 2 3 4') #p.Divider('from_fileNameMethod') p.addSingleLineInput('splitString', '_') p.addEnumerationPulldown('removeFront', '8 0 1 2 3 4 5 6 7 8 9 10') p.addEnumerationPulldown('removeBack', '1 0 1 2 3 4 5 6 7 8 9 10') ret = p.show() c = p.value('BeautyLayer') self.folderCount =p.value('folderCount') self.nameMethod =p.value('nameMethod') self.splitString =p.value('splitString') self.removeFront=p.value('removeFront') self.removeBack=p.value('removeBack') result = c.split("'")[1] for mKey, name in self.dic.items(): if result == name: self.mainBeautyLayer = mKey else: pass #except: #pass #Agrega los read nodes a la self.lista def getReadNodes(self): #try: if self.readNodes ==0: sNodes = nuke.selectedNodes() self.readNodes = sNodes else: sNodes = self.readNodes len(sNodes) if len(sNodes) >= 2: for node in sNodes: node.autoplace() if node.Class() == "Read": nodeName = node self.lista.append(nodeName) else: pass#nuke.message("One of your nodes is not a read node: %s, it will be excluded." % node.self.name()) self.mainBeauty() if self.mainBeautyLayer=='0': nuke.ask('err broken.. sorry') else: beautyIndex = self.lista.index(self.mainBeautyLayer) self.lista[beautyIndex], self.lista[0] = self.lista[0], self.lista[beautyIndex] self.node = self.lista[0] self.node.knob("selected").setValue(False) else: nuke.message ("Please select more than 1 node__") #except: # self.isGroup = False #Define el nombre del nodo a ser usado def name(self,node): path = node["file"].value() filename = os.path.basename(path) filenamesplit = filename.split(".") folderCount = int(self.folderCount) if self.nameMethod=='from_folder_name': filePathSplit = path.split("/") self.currentlayerName= ''.join(filePathSplit[len(filePathSplit)-(folderCount+1):-folderCount]) if self.nameMethod=='from_file_name': del filenamesplit[-1] filenamesplit = '_'.join(filenamesplit) filenamesplit = filenamesplit.split(self.splitString) self.currentlayerName = str(self.splitString.join(filenamesplit[int(self.removeFront):len(filenamesplit)-int(self.removeBack)])) nuke.tprint(filenamesplit) nuke.tprint(self.currentlayerName) #Generar Shuffle y transferir atributos def exrCompile (self,x, y): s1 = nuke.nodes.ShuffleCopy() self.sGroup.append(s1) s1.autoplace() if s1.canSetInput(0, self.node) and s1.canSetInput(1,self.node2): s1.setInput( 0, self.node) s1.setInput( 1, self.node2) chan = s1["in2"].value() s1["red"].setValue('red') s1["green"].setValue('green') s1["blue"].setValue('blue') s1["alpha"].setValue('alpha') self.name(self.node2) nameTemp='' listTemp=[] #listTemp=str.split(self.currentlayerName,'_') listTemp=self.currentlayerName #for x in range(int(float(self.removeFront)),len(listTemp)-int(float(self.removeBack)),1): #nameTemp= nameTemp+'_'+listTemp[x] nameTemp=listTemp nuke.tprint(nameTemp) currentlayerNameRed = str(nameTemp) + ".red" currentlayerNameGreen = str(nameTemp) + ".green" currentlayerNameBlue = str(nameTemp) + ".blue" currentlayerNameAlpha = str(nameTemp) + ".alpha" nuke.Layer(nameTemp,[currentlayerNameRed, currentlayerNameGreen,currentlayerNameBlue, currentlayerNameAlpha]) s1["out"].setValue(nameTemp) self.node = s1 self.node.knob("selected").setValue(False) self.node2.knob("selected").setValue(False) else: pass #Evalua cada uno de los nodos de la self.lista y ejecuta exrCompile def selector(self): for item in self.lista[1:]: self.node2 = self.lista[self.add] self.exrCompile(self.node, self.node2) if self.add < len(self.lista): self.add =+ self.add + 1 else: self.add =+ self.add + 0 pass if self.mainBeautyLayer=='0': pass item.knob("selected").setValue(False) def makeGroup(self): if len(self.lista) >= 2: nuke.selectAll() nuke.invertSelection() for shuffleknob in self.sGroup: shuffleknob['selected'].setValue(True) #for shuffleknob in self.readNodes: #shuffleknob['selected'].setValue(True) node = nuke.collapseToGroup(show=False) node['xpos'].setValue(self.mainBeautyLayer.xpos()) node['ypos'].setValue(self.mainBeautyLayer.ypos()+100) #node.autoplace() #gName = node.name() #nuke.tprint((self.mainBeautyLayer)) #nuke.toNode(gName)["name"].setValue("Exr Merge %s" %'hello') #self.nIncrement += 1 #node.lock_connections(True) else: pass def run(self,readNodes=0): self.readNodes = readNodes self.readNodes =0 #nuke.message(str(self.readNodes)) self.getReadNodes() if len(self.lista) >= 2 and self.isGroup == True: self.selector() self.makeGroup() else: print "Process Stopped" pass
StarcoderdataPython
61209
# contains neither Process object nor execute() function
StarcoderdataPython
6479
<gh_stars>1-10 picamera import PiCamera from time import sleep import boto3 import os.path import subprocess s3 = boto3.client('s3') bucket = 'cambucket21' camera = PiCamera() #camera.resolution(1920,1080) x = 0 camerafile = x while True: if (x == 6): x = 1 else: x = x + 1 camera.start_preview() camera.start_recording('/home/pi/' + str(x) + '.h264') sleep(2) camera.stop_recording() camera.stop_preview() subprocess.Popen("MP4Box -add " + str(x) + ".h264 " + str(x) +".mp4", shell=True) sleep(1) s3.upload_file('/home/pi/' + str(x) + '.mp4',bucket,'/home/pi/' + str(x) + '.mp4')
StarcoderdataPython
3360638
<gh_stars>0 from one_indiv_immed_fri import friend_besties from second_degree_fri import friend_second_besties from collections import defaultdict #adapted from University of Melbourne's sample solution def predict_attribute(friends, feat_dict, feature): """predict the target 'feature' from the set 'friends' based on the attributes in 'feat_dict' """ # dictionary for counting attribute frequency among 'friends' freq = defaultdict(int) #add vote for feature if feature exists as friend's for friend in friends: if friend in feat_dict and feature in feat_dict[friend]: freq[feat_dict[friend][feature]] += 1 #in case there is at least 1 count of target feature among 'friends', #find which attribute has majority count to predict if freq: max_count = 0 for attribute, count in freq.items(): if count > max_count: att_list = [attribute] max_count = count elif count == max_count: att_list.append(attribute) return sorted(att_list) #if no attributes of feature are found, return empty list else: return [] def friendly_prediction(unknown_user, features, friend_dict, feat_dict): '''friendly_prediction takes name of 'unkwown_user', target 'features' to predict, information of friends in 'friend_dict' and predicts features of that person according to their friends' attributes in 'feat dict' ''' # to record predictions about unknown_user's features feat_user={} # check if the user is in the social network or not if unknown_user in friend_dict: # look for features of 1st degree friend to predict unkown_user's for feature in features: predict_closeFri_attribute = predict_attribute(friend_besties(unknown_user, friend_dict), feat_dict, feature) #use degree one friends' attribute for feature if it exists if (predict_closeFri_attribute): feat_user[feature] = predict_closeFri_attribute #in case no degree one friends have attribute for target feature, check degree two's else: predict_second_deg_attribute = predict_attribute(friend_second_besties(unknown_user, friend_dict), feat_dict, feature) feat_user[feature] = predict_second_deg_attribute return feat_user
StarcoderdataPython
3386234
# Written by <NAME> # https://github.com/bo-yang/misc/blob/master/run_command_timeout.py import subprocess import threading """ Run system commands with timeout """ class Command(object): def __init__(self, cmd): self.cmd = cmd self.process = None self.out = "TIMEOUT" def run_command(self, capture = False): if not capture: self.process = subprocess.Popen(self.cmd,shell=True) self.process.communicate() return # capturing the outputs of shell commands self.process = subprocess.Popen(self.cmd,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE,stdin=subprocess.PIPE) out,err = self.process.communicate() if len(out) > 0: self.out = out.splitlines() else: self.out = None # set default timeout to 2 minutes def run(self, capture = False, timeout = 120): thread = threading.Thread(target=self.run_command, args=(capture,)) thread.start() thread.join(timeout) if thread.is_alive(): print 'Command timeout, kill it: ' + self.cmd self.process.terminate() thread.join() return False return True if __name__=='__main__': for i in range(3): #three tries s = 3-i r = Command('echo "sleep ' + str(s) + ' seconds"; sleep ' + str(s) + '; echo "done"').run(timeout=2) print r if r: print 'success attempt ' + str(i+1) break else: print 'failed. trying again...'
StarcoderdataPython
3295830
''' Bluefruit_Onboard_Neopixel Illuminates the CPB's built-in NeoPixels (internally connected to pin 8). Developed for The Art of Making: An Introduction to Hands-On System Design and Engineering University of Pittsburgh Swanson School of Engineering v1.2 <NAME> 02/11/2022 Wheel() colorwheel function based on Adafruit's Flora demo code: https://learn.adafruit.com/pages/5682/elements/1711074/download ''' import board import neopixel import time '''In python, functions must be defined before they are called. We'll use this later! Wheel(n) -- input a value n ranging from 0 to 255 to get a color value from a color wheel The colours are a transition red - green - blue - back to red.''' def Wheel(wheelpos): wheelpos=255-wheelpos if wheelpos<85: return (255-wheelpos*3,0,wheelpos*3) elif wheelpos<170: wheelpos-=85 return (0,wheelpos*3,255-wheelpos*3) else: wheelpos-=170 return (wheelpos*3,255-wheelpos*3,0) '''Let's have the Bluefruit's onboard NeoPixels illuminate red, green, blue and white in sequence for 1 second each.// strip.setPixelColor(n, R, G, B) is the function used to send an RGB color value to a NeoPixel. The first argument is the pin the neopixels are connected to, in this case pin D8 The second argument is the number of pixels in the strip. In this case, there is ten pixels on the "strip" -- so n=10 red, green and blue range from 0 (off) to 255 (maximum brightness) Note that onboard.fill DOES immeditely set the color; if you want to set pixels as off, use (0,0,0)''' onboard=neopixel.NeoPixel(board.D8,10,brightness=.5) while True: onboard.fill((255,0,0)) #set onboard neopixels to red (255,0,0) and display time.sleep(1) #Wait for 1 second. sleep() takes numbers in seconds onboard.fill((0,255,0)) #set pixel color to green time.sleep(1) onboard.fill((0,0,255)) #et pixel color to blue time.sleep(1) onboard.fill((255,255,255)) #set pixel color to white time.sleep(1) '''Now let's transition smoothly through rainbow colors We'll use the function "Wheel" defined above''' for i in range(1,5): for j in range(0,255): onboard.fill(Wheel(j)) time.sleep(.03)
StarcoderdataPython
3292939
<reponame>neriat/envcon from .configuration import environment_configuration, configuration from .frozen import FrozenError __all__ = ["environment_configuration", "configuration", "FrozenError"]
StarcoderdataPython
95607
<gh_stars>0 import alsaaudio from math import pi, sin, pow import getch SAMPLE_RATE = 44100 FORMAT = alsaaudio.PCM_FORMAT_U8 PERIOD_SIZE = 512 N_SAMPLES = 1024 notes = "abcdefg" frequencies = {} for i, note in enumerate(notes): frequencies[note] = 440 * pow(pow(2, 1/2), i) # Generate the sine wave, centered at y=128 with 1024 samples sine_wave = [int(sin(x * 2*pi/N_SAMPLES) * 127) for x in range(0, N_SAMPLES)] square_wave = [] sawtooth_wave = [] triangle_wave = [] for i in range(0, N_SAMPLES): phase = (i * 2*pi / N_SAMPLES) % 2*pi if phase < pi: square_wave.append(127) else: square_wave.append(-128) sawtooth_wave.append(int(127 - (127 // pi * phase))) if phase < pi: triangle_wave.append(int(-127 + (2 * 127 * phase // pi))) else: triangle_wave.append(int(3 * 127 - (2 * 127 * phase // pi))) def main(): buf = bytearray(PERIOD_SIZE) # alsaaudio setup dev = alsaaudio.PCM(type=alsaaudio.PCM_PLAYBACK) dev.setchannels(1) dev.setrate(SAMPLE_RATE) dev.setformat(FORMAT) dev.setperiodsize(PERIOD_SIZE) #load_buf(buf, 440) f = 440 w_half = [x//2 + 128 for x in make_wave(sine_wave, f)] #w_o1 = [x//4 for x in make_wave(f*2)] #w_o2 = [x//6 for x in make_wave(f*3)] #w_o3 = [x//8 for x in make_wave(f*4)] #w_o4 = [x//10 for x in make_wave(f*5)] #w_o4 = [x//12 for x in make_wave(f*6)] #w_o5 = [x//14 for x in make_wave(f*7)] #w_o6 = [x//16 for x in make_wave(f*8)] #for i, samp in enumerate(w_o1): # w[i] += samp + w_o2[i] + w_o3[i] + w_o4[i] + w_o5[i] + w_o6[i] + 128 # print(w[i]) #buf = bytearray(w) #for i, samp in enumerate(w): # if samp > 0: # samp = 127 # else: # samp = -128 w = [x + 128 for x in make_wave(square_wave, 440)] buf = bytearray(w) char = getch.getch() last = 'q' while char != 'q': if char != last: if char == '1': w = [x//2 + 128 for x in make_wave(sine_wave, 440)] buf = bytearray(w) elif char == '2': w = [x//2 + 128 for x in make_wave(square_wave, 440)] buf = bytearray(w) elif char == '3': w = [x//2 + 128 for x in make_wave(sawtooth_wave, 440)] buf = bytearray(w) elif char == '4': w = [x//2 + 128 for x in make_wave(triangle_wave, 440)] buf = bytearray(w) elif char == '5': buf = bytearray(w_half) dev.write(buf) dev.write(buf) dev.write(buf) last = char char = getch.getch() return 0 #def load_buf(buf, frequency): # step = N_SAMPLES * frequency // SAMPLE_RATE # for i in range(0, PERIOD_SIZE): # buf[i] = wave[(step * i * N_SAMPLES // PERIOD_SIZE) % N_SAMPLES] # return buf def make_wave(wave, frequency): step = N_SAMPLES * frequency // SAMPLE_RATE w = [] for i in range(0, PERIOD_SIZE): w.append(wave[(step * i * N_SAMPLES // PERIOD_SIZE) % N_SAMPLES]) return w if __name__ == '__main__': main()
StarcoderdataPython
71683
<reponame>DanPopa46/neo3-boa from __future__ import annotations import base64 from typing import Any, Dict, List, Optional from boa3.neo import from_hex_str, to_hex_str from boa3.neo3.core.types import UInt256 from boa3_test.tests.test_classes import transactionattribute as tx_attribute from boa3_test.tests.test_classes.signer import Signer from boa3_test.tests.test_classes.witness import Witness class Transaction: def __init__(self, script: bytes, signers: List[Signer] = None, witnesses: List[Witness] = None): self._signers: List[Signer] = signers if signers is not None else [] self._witnesses: List[Witness] = witnesses if witnesses is not None else [] self._attributes: List[tx_attribute.TransactionAttribute] = [] self._script: bytes = script self._hash: Optional[UInt256] = None def add_attribute(self, tx_attr: tx_attribute.TransactionAttribute): if tx_attr not in self._attributes: self._attributes.append(tx_attr) def to_json(self) -> Dict[str, Any]: return { 'signers': [signer.to_json() for signer in self._signers], 'witnesses': [witness.to_json() for witness in self._witnesses], 'attributes': [attr.to_json() for attr in self._attributes], 'script': to_hex_str(self._script) } @classmethod def from_json(cls, json: Dict[str, Any]) -> Transaction: script = base64.b64decode(json['script']) tx = cls(script) if 'signers' in json: signers_json = json['signers'] if not isinstance(signers_json, list): signers_json = [signers_json] tx._signers = [Signer.from_json(js) for js in signers_json] if 'witnesses' in json: witnesses_json = json['witnesses'] if not isinstance(witnesses_json, list): witnesses_json = [witnesses_json] tx._witnesses = [Witness.from_json(js) for js in witnesses_json] if 'attributes' in json: attributes_json = json['attributes'] if not isinstance(attributes_json, list): attributes_json = [attributes_json] tx._attributes = [tx_attribute.TransactionAttribute.from_json(js) for js in attributes_json] if 'hash' in json and isinstance(json['hash'], str): tx._hash = UInt256(from_hex_str(json['hash'])) return tx def copy(self): copied = Transaction(self._script, self._signers, self._witnesses) copied._hash = self._hash return copied
StarcoderdataPython
121464
import pandas as pd import itertools import numpy as np import pickle import os import argparse basePath=os.getcwd() def get_file_list(file_folder): # method one: file_list = os.listdir(file_folder) for root, dirs, file_list in os.walk(file_folder): return dirs,file_list parser = argparse.ArgumentParser() parser.add_argument("-saveBasePath", help="res file path", type=str, default=basePath+'/res_test_data/ML/') parser.add_argument("-writeDir", help="write file path",type=str, default=basePath+'/results/mlRes/') parser.add_argument("-datasetNames", help="Dataset Name",type=str, default=["ecfp6fcfp6MACCS"]) parser.add_argument("-methodNames", help="method Name",type=str, default="SVM") args = parser.parse_args() saveBasePath = args.saveBasePath writeDir = args.writeDir datasetNames = args.datasetNames methodNames = args.methodNames if not os.path.exists(writeDir): os.makedirs(writeDir) for method in datasetNames: filepath = saveBasePath+method+'/'+methodNames+'/' files_list = get_file_list(filepath)[0] num = len(files_list) AUCall0_0=[] AUCall0_1=[] AUCall0_2=[] AUCmean0=[] targets=[] for i in range(num): datapath= filepath + files_list[i] targetid = files_list[i] f= open(datapath+'/o0001.test.auc.pckl','rb') datacontent0_0 = pickle.load(f) data0_0=datacontent0_0[0][0] f= open(datapath+'/o0002.test.auc.pckl','rb') datacontent0_1 = pickle.load(f) data0_1=datacontent0_1[0][0] f= open(datapath+'/o0003.test.auc.pckl','rb') datacontent0_2 = pickle.load(f) data0_2=datacontent0_2[0][0] AUCall0_0.append(data0_0) AUCall0_1.append(data0_1) AUCall0_2.append(data0_2) mean0=(data0_0+data0_1+data0_2)/3 AUCmean0.append(mean0) targets.append(targetid) res1={'targets':targets,method+'auc_0':AUCall0_0,method+'auc_1':AUCall0_1,method+'auc_2':AUCall0_2} res1_data = pd.DataFrame(res1) res2={'targets':targets,method+'AUCmean':AUCmean0} res2_data = pd.DataFrame(res2) res1_data.to_csv(writeDir+method+'.roc.csv',index=0) res2_data.to_csv(writeDir+method+'.rocmean.csv',index=0)
StarcoderdataPython
18223
from .constants import SPECIAL_TOKENS try: import re2 as re except ImportError: import re def twitter_sentiment_token_matching(token): """Special token matching function for twitter sentiment data.""" if 'URL_TOKEN' in SPECIAL_TOKENS and re.match(r'https?:\/\/[^\s]+', token): return SPECIAL_TOKENS['URL_TOKEN'] if 'POS_EM_TOKEN' in SPECIAL_TOKENS and re.match(r':-?(\)|D|p)+', token): return SPECIAL_TOKENS['POS_EM_TOKEN'] if 'NEG_EM_TOKEN' in SPECIAL_TOKENS and re.match(r':-?(\(|\\|/)+', token): return SPECIAL_TOKENS['NEG_EM_TOKEN'] if 'USER_TOKEN' in SPECIAL_TOKENS and re.match( r'(?<=^|(?<=[^a-zA-Z0-9-_\.]))@([A-Za-z]+[A-Za-z0-9]+)', token): return SPECIAL_TOKENS['USER_TOKEN'] if 'HEART_TOKEN' in SPECIAL_TOKENS and re.match(r'<3+', token): return SPECIAL_TOKENS['HEART_TOKEN']
StarcoderdataPython
3266545
# # -*- coding: utf-8 -*- # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # import os from subprocess import check_output from test_utils import project from mlt.utils import constants, git_helpers from test_utils.e2e_commands import CommandTester class TestTemplates(CommandTester): def _call_template_list(self, template_repo): return check_output(['mlt', 'templates', 'list', '--template-repo={}'.format(template_repo)] ).decode("utf-8") def test_templates(self): output = self._call_template_list(project.basedir()) desired_template_output = """Template Description ------------------- ---------------------------------------------------------\ ----------------------------------------- experiments Runs hyperparameter experiments for a demo job. hello-world A TensorFlow python HelloWorld example run through \ Kubernetes Jobs. horovod A distributed model training using horovod and openmpi. pytorch Sample distributed application taken from \ http://pytorch.org/tutorials/intermediate/dist_tuto.html pytorch-distributed A distributed PyTorch MNIST example run using the \ pytorch-operator. tensorboard-bm A TensorBoard service in Kubernetes Bare Metal cluster. tensorboard-gke A TensorBoard service in Google Kubernetes cluster. tf-dist-mnist A distributed TensorFlow MNIST model which designates \ worker 0 as the chief. tf-distributed A distributed TensorFlow matrix multiplication run \ through the TensorFlow Kubernetes Operator. """ assert output == desired_template_output def test_local_templates(self): """ Tests creating a new template in a clone of mlt. Verifies that we can specify the template-repo for mlt template list and see new template in the list. Then uses mlt init to create an app with new template and verifies that the app directory exists. """ # Create a git clone of mlt to use as a local template diretory with git_helpers.clone_repo(project.basedir()) as temp_clone: # Add a new test template to the local mlt template directory templates_directory = os.path.join( temp_clone, constants.TEMPLATES_DIR) new_template_name = "test-local" new_template_directory = os.path.join(templates_directory, new_template_name) os.mkdir(new_template_directory) new_template_file = os.path.join( new_template_directory, "README.md") with open(new_template_file, "w") as f: f.write("New local template for testing") # call mlt template list and then check the output output = self._call_template_list(temp_clone) # template list should include our new test-local template desired_template_output = """Template Description ------------------- ---------------------------------------------------------\ ----------------------------------------- experiments Runs hyperparameter experiments for a demo job. hello-world A TensorFlow python HelloWorld example run through \ Kubernetes Jobs. horovod A distributed model training using horovod and openmpi. pytorch Sample distributed application taken from \ http://pytorch.org/tutorials/intermediate/dist_tuto.html pytorch-distributed A distributed PyTorch MNIST example run using the \ pytorch-operator. tensorboard-bm A TensorBoard service in Kubernetes Bare Metal cluster. tensorboard-gke A TensorBoard service in Google Kubernetes cluster. test-local New local template for testing tf-dist-mnist A distributed TensorFlow MNIST model which designates \ worker 0 as the chief. tf-distributed A distributed TensorFlow matrix multiplication run \ through the TensorFlow Kubernetes Operator. """ assert output == desired_template_output # init an app with this new template and verify that the app exists self.init(template=new_template_name, template_repo=temp_clone) assert os.path.isdir(self.project_dir) assert os.path.isfile(os.path.join( self.project_dir, "README.md"))
StarcoderdataPython
3391205
<filename>externals/director/src/python/ddapp/shallowCopy.py<gh_stars>0 def deepCopy(dataOb): newData = dataObject.NewInstance() newData.DeepCopy(dataObj) return newData def shallowCopy(dataObj): newData = dataObj.NewInstance() newData.ShallowCopy(dataObj) return newData
StarcoderdataPython
1665580
<filename>python/src/examples/node_ledbutton/node.py #!/usr/bin/python3 # import aiogrpc import asyncio import logging import grpc import signal import sys # pregenerated from proto file import wedge_pb2 import wedge_pb2_grpc from button import Button from led import Led CHANNEL_OPTIONS = [('grpc.lb_policy_name', 'pick_first'), ('grpc.enable_retries', 0), ('grpc.keepalive_timeout_ms', 10000)] node_id = wedge_pb2.NodeIdentity( id="python_node_client_led_button", ) """ Uplink class holds all remote Wedge Methods """ class Uplink: def __init__(self, stub, node_id): logging.info("Initialize Uplink object.") self.stub = stub self.node_id = node_id signal.signal(signal.SIGINT, self.cancel_request) def cancel_request(self, signal, frame): print("") logging.warning("Interrupt signal. Exiting!") self._future.cancel() sys.exit(0) async def SetModel(self, model): # metadata is optional, it just for test purpose. metadata = [('ip', '127.0.0.1')] request = wedge_pb2.SetModelRequest(model=model) return await self.stub.SetModel(request=request, metadata=metadata) async def SetState(self, value_id, state): logging.info("Update value with id {} to: {}" .format(value_id, state.data)) req = wedge_pb2.SetStateRequest( node=self.node_id, device_id=1, # only one device exist in this model value_id=value_id, state=state ) resp = await self.stub.SetState(req) logging.info("Replay: {}".format(resp)) async def GetControl(self, request): self._future = self.stub.GetControl(request) return await self._future async def main() -> None: async with grpc.aio.insecure_channel(target='localhost:50051') as channel: stub = wedge_pb2_grpc.WedgeStub(channel) uplink = Uplink(stub, node_id) button = Button(uplink) led = Led(uplink) # Example of Model, which identical to Seluxit data Model. model = wedge_pb2.Model( node=node_id, device=[wedge_pb2.Device( id=1, name="LED_Button2", version="0.1.2", value=[ button.value, led.value ] )] ) resp = await uplink.SetModel(model) logging.info("Response: {}".format(resp)) # data = button.pin.read() # logging.info("Current button status: {}".format(data)) # button.update(data) await asyncio.gather(led.listen(node_id)) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) asyncio.run(main())
StarcoderdataPython
4821853
<reponame>fcoterroba/first_birthday_statistics_python import matplotlib.pyplot as plt # Make the arrays with the info meses = ["Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre", "Enero", "Febrero", "Marzo"] visitas = [816, 1034, 1101, 1250, 1604, 1983, 2468, 3021, 2867, 3520, 4010, 5097] # Make the arrays with trimester data months = ["1º trimestre: Abril-Junio", "2º trimestre: Julio-Septiembre", "3º trimestre: Octubre-Diciembre", "4º trimestre: Enero-Marzo"] visits_trimester = [2951, 4837, 8356, 12627] def grafico_barra_vertical(): # Make the object fig, ax = plt.subplots() # Label for Y ax.set_ylabel('Visitas') # Label for X ax.set_title('Visitas en el primer aniversario de la web') # Set the arrays to the X and Y plt.bar(meses, visitas) # Show the chart plt.show() def grafico_lineas_horizontal(): # Make a plot with data plt.plot(meses, visitas) # Show the chart plt.show() def grafico_tarta_trimestral(): # Make a plot with the data and labels plt.pie(visits_trimester, labels = months) plt.show() if __name__ == "__main__": grafico_barra_vertical() grafico_lineas_horizontal() grafico_tarta_trimestral()
StarcoderdataPython
1786318
<reponame>michaelfarinacci/tchack2016<filename>app.py from flask import Flask, redirect, url_for, render_template, request, flash import flask import os from os.path import join, dirname from dotenv import load_dotenv import braintree import json app = Flask(__name__) dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) app.secret_key = os.environ.get('APP_SECRET_KEY') braintree.Configuration.configure( os.environ.get('BT_ENVIRONMENT'), os.environ.get('BT_MERCHANT_ID'), os.environ.get('BT_PUBLIC_KEY'), os.environ.get('BT_PRIVATE_KEY') ) TRANSACTION_SUCCESS_STATUSES = [ braintree.Transaction.Status.Authorized, braintree.Transaction.Status.Authorizing, braintree.Transaction.Status.Settled, braintree.Transaction.Status.SettlementConfirmed, braintree.Transaction.Status.SettlementPending, braintree.Transaction.Status.Settling, braintree.Transaction.Status.SubmittedForSettlement ] orders = {'45321': {'total': 100, 'tax': 5}} @app.route('/', methods=['GET']) def index(): return render_template('first.html') def post(): return redirect("second.html") @app.route('/checkouts/new', methods=['GET']) def new_checkout(): return render_template('checkouts/new.html', client_token=client_token) @app.route('/create_order', methods=['GET']) def create_order(): total = flask.request.args['total'] items = flask.request.args['items'] tax = flask.request.args['tax'] merchant_id = flask.request.args['merchantId'] order_id = 45321 return order_id @app.route('/get_order', methods=['GET']) def get_order(): order_id = flask.request.args['orderId'] order_data = orders[order_id] json_order_data = json.dumps(order_data) resp = flask.Response(response=json_order_data, status=200, mimetype="application/json") return resp @app.route('/customer', methods=['GET']) def customer(): return render_template('customer.html') @app.route('/merchant', methods=['GET']) def merchant(): return render_template('merchant.html') @app.route('/checkouts/<transaction_id>', methods=['GET']) def show_checkout(transaction_id): transaction = braintree.Transaction.find(transaction_id) result = {} if transaction.status in TRANSACTION_SUCCESS_STATUSES: result = { 'header': 'Sweet Success!', 'icon': 'success', 'message': 'Your test transaction has been successfully processed. See the Braintree API response and try again.' } else: result = { 'header': 'Transaction Failed', 'icon': 'fail', 'message': 'Your test transaction has a status of ' + transaction.status + '. See the Braintree API response and try again.' } return render_template('checkouts/show.html', transaction=transaction, result=result) @app.route('/checkouts', methods=['POST']) def create_checkout(): result = braintree.Transaction.sale({ 'amount': request.form['amount'], 'payment_method_nonce': request.form['payment_method_nonce'], }) if result.is_success or result.transaction: return redirect(url_for('show_checkout',transaction_id=result.transaction.id)) else: for x in result.errors.deep_errors: flash('Error: %s: %s' % (x.code, x.message)) return redirect(url_for('new_checkout')) if __name__ == '__main__': app.run(host='0.0.0.0', port=4567, debug=True)
StarcoderdataPython
1643745
<reponame>LordKBX/EbookCollection from checkpoint import * from files import * from content_table_editor import * from PyQt5 import QtCore from PyQt5 import QtGui from PyQt5 import QtWidgets sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from common.dialog import * from common.books import * from common.files import * from common.archive import * from common.vars import * import common.qt import common.dialog class EditorWindow(QtWidgets.QMainWindow): default_page = '' ebook_info = None tmpcss = '' toc_type = '' def __init__(self, parent: QtWidgets.QMainWindow, opened_file, lang, bdd): super(EditorWindow, self).__init__(parent) PyQt5.uic.loadUi(os.path.dirname(os.path.realpath(__file__)) + os.sep + 'editor.ui'.replace('/', os.sep), self) self.opened_file = opened_file self.tmpDir = app_user_directory + os.sep + 'editor' + os.sep + 'tmp' try: rmDir(self.tmpDir) if os.path.isdir(self.tmpDir) is not True: os.makedirs(self.tmpDir + os.sep + 'original') os.makedirs(self.tmpDir + os.sep + 'current') except Exception: "" self.lang = lang self.BDD = bdd # load window size size_tx = self.BDD.get_param('editor/windowSize') if size_tx is not None and size_tx != '': size = eval(size_tx) self.resize(size[0], size[1]) # load window position pos_tx = self.BDD.get_param('editor/windowPos') if pos_tx is not None and pos_tx != '': pos = eval(pos_tx) self.move(pos[0], pos[1]) self.pos() self.app_style = self.BDD.get_param('style') self.lang.set_lang(self.BDD.get_param('lang')) self.apply_translation() self.apply_style() # ui.tabWidget ad = app_directory.replace(os.sep, '/') self.tabWidget.clear() self.voidLabel.setVisible(True) self.tabWidget.setVisible(False) self.tabWidget.set_preview_webview(self.webView, self.default_page) self.tabWidget.tabCloseRequested.connect(self.on_close_tab) self.tabWidget.currentChanged.connect(self.on_change_tab) # Processing File Table self.treeFileTable.clear() self.treeFileTable.itemDoubleClicked.connect(self.file_table_item_double_clicked) self.treeFileTable.setIndentation(10) self.treeFileTable.setCursor(QtCore.Qt.PointingHandCursor) self.treeFileTable.setStyleSheet(get_style_var(self.app_style, 'fullTreeView')) # Processing Content Table # self.treeContentTable = QListWidget() self.treeContentTable.setCursor(QtCore.Qt.PointingHandCursor) self.treeContentTable.currentItemChanged.connect(self.content_table_current_item_changed) self.treeContentTable.itemDoubleClicked.connect(self.content_table_item_double_clicked) # Toolbar buttons self.button_save.clicked.connect(self.save_ebook) self.button_load_checkpoint.clicked.connect(self.load_check_point) self.button_create_checkpoint.clicked.connect(self.create_check_point) self.button_file_manager.clicked.connect(self.load_file_managment) self.button_edit_content_table.clicked.connect(self.load_content_table_managment) self.webView.setHtml(self.default_page) self.webView.page().settings().setUserStyleSheetUrl(QtCore.QUrl.fromLocalFile(self.tmpcss)) self.webView.setContextMenuPolicy(QtCore.Qt.NoContextMenu) filepath, ext = os.path.splitext(self.opened_file) mappdir = app_directory.replace(os.sep, '/') + '/data/' self.setWindowTitle( self.lang['Editor']['WindowTitle'] + ' - ' + self.opened_file.replace(os.sep, '/') .replace(mappdir, '').replace('/', ' / ').replace(ext, '') ) # EditorWindow.show() if ext in ['.epub', '.epub2', '.epub3']: self.ebook_info = get_epub_info(self.opened_file) ret = inflate(self.opened_file, self.tmpDir + os.sep + 'original') ret = inflate(self.opened_file, self.tmpDir + os.sep + 'current') elif ext in ['.cbz', '.cbr']: ret = inflate(self.opened_file, self.tmpDir + os.sep + 'original') ret = inflate(self.opened_file, self.tmpDir + os.sep + 'current') else: WarnDialog( self.lang['Editor']['DialogInfoBadFileWindowTitle'], self.lang['Editor']['DialogInfoBadFileWindowText'], self) exit(0) self.file_table_load() self.load_content_table() def resizeEvent(self, a0: QtGui.QResizeEvent) -> None: size = self.size() tx = [size.width(), size.height()].__str__() self.BDD.set_param('editor/windowSize', tx) def moveEvent(self, a0: QtGui.QMoveEvent) -> None: pos = self.pos() tx = [pos.x(), pos.y()].__str__() self.BDD.set_param('editor/windowPos', tx) def apply_translation(self): self.default_page = "".join(self.lang['Editor']['WebViewDefaultPageContent']) # Blocks title self.dockTop.setWindowTitle(self.lang['Editor/BlockToolbar/Header']) self.dockFiles.setWindowTitle(self.lang['Editor/BlockFileListHeader']) self.dockContentTable.setWindowTitle(self.lang['Editor/BlockContentTableHeader']) self.dockPreview.setWindowTitle(self.lang['Editor/BlockPreviewHeader']) # Toolbar buttons self.button_save.setText(self.lang['Editor/BlockToolbar/Save']) self.button_load_checkpoint.setText(self.lang['Editor/BlockToolbar/CheckPointLoad']) self.button_create_checkpoint.setText(self.lang['Editor/BlockToolbar/CheckPointCreate']) self.button_file_manager.setText(self.lang['Editor/BlockToolbar/FileManager']) self.button_edit_content_table.setText(self.lang['Editor/BlockToolbar/EditContentTable']) self.voidLabel.setText(self.lang['Editor/CentralZoneEmpty']) def apply_style(self): self.setStyleSheet(get_style_var(self.app_style, 'QMainWindow')) self.dockTopContents.setStyleSheet(get_style_var(self.app_style, 'QMainWindow')) self.voidLabel.setStyleSheet(get_style_var(self.app_style, 'EditorCentralLabel')) icon_names_list = ['save', 'checkpoint_load', 'checkpoint_create', 'file_manager', 'content_table'] icon_dir = {} for name in icon_names_list: icon_dir[name] = QtGui.QIcon() icon_dir[name].addPixmap( QtGui.QPixmap( get_style_var(self.app_style, 'icons/'+name) .replace('{APP_DIR}', app_directory) .replace('/', os.sep) ), QtGui.QIcon.Normal, QtGui.QIcon.Off ) self.button_save.setIcon(icon_dir['save']) self.button_load_checkpoint.setIcon(icon_dir['checkpoint_load']) self.button_create_checkpoint.setIcon(icon_dir['checkpoint_create']) self.button_file_manager.setIcon(icon_dir['file_manager']) self.button_edit_content_table.setIcon(icon_dir['content_table']) self.tmpcss = self.tmpDir + os.sep + "tmp.css" with open(self.tmpcss, "w", encoding="utf8") as file_page: print('tmpcss = ' + get_style_var(self.app_style, 'EditorQWebViewPreview')) file_page.write(get_style_var(self.app_style, 'EditorQWebViewPreview')) self.tabWidget.setStyleSheet(get_style_var(self.app_style, 'QTabWidgetHorizontal')) self.tabWidget.setBackgroundRole(QtGui.QPalette.ColorRole(QtGui.QPalette.Light)) def content_table_current_item_changed(self, current: QListWidgetItem): if current is None: return try: data = current.data(99) print(data) except Exception: traceback.print_exc() def file_table_item_double_clicked(self, current: QTreeWidgetItem, previous: QTreeWidgetItem): try: data = current.data(0, 99) text = current.data(0, 98) if data != ':dir:': icon = self.file_icon(data) self.tabWidget.create_pane(text, icon, data, self, self.tmpcss) self.voidLabel.setVisible(False) self.tabWidget.setVisible(True) except Exception: traceback.print_exc() def content_table_item_double_clicked(self, current: QListWidgetItem): try: print('current = ', current) data = current.data(99) text = current.data(98) print(text) if data != ':dir:': icon = self.file_icon(data) self.tabWidget.create_pane(text, icon, data, self, self.tmpcss) self.voidLabel.setVisible(False) self.tabWidget.setVisible(True) except Exception: traceback.print_exc() def file_table_load(self): self.treeFileTable.clear() liste = list_directory_tree(self.tmpDir + os.sep + 'current', None) # print(liste) for index in liste: item = QtWidgets.QTreeWidgetItem(self.treeFileTable) item.setText(0, index) item.setData(0, 98, index) if isinstance(liste[index], dict): item.setData(0, 99, ':dir:') common.qt.setQTreeItemFolderIcon(item) item = self.recur_file_table_insert(item, liste[index]) else: self.icon_file_item(item, liste[index]) item.setData(0, 99, liste[index]) self.treeFileTable.insertTopLevelItem(0, item) def recur_file_table_insert(self, base_item: QtWidgets.QTreeWidgetItem, tree: dict): for indexr in tree: itemr = QtWidgets.QTreeWidgetItem(base_item) itemr.setText(0, indexr) itemr.setData(0, 98, indexr) if isinstance(tree[indexr], dict): itemr.setData(0, 99, ':dir:') common.qt.setQTreeItemIcon(itemr, get_style_var(self.app_style, 'icons/folder')) itemr = self.recur_file_table_insert(itemr, tree[indexr]) else: self.icon_file_item(itemr, tree[indexr]) itemr.setData(0, 99, tree[indexr]) base_item.addChild(itemr) return base_item def file_icon(self, file_path: str): file_type = get_file_type(file_path) if file_type.startswith('image/'): return get_style_var(self.app_style, 'icons/image') elif file_type == 'text/css': return get_style_var(self.app_style, 'icons/style') elif file_type == 'application/oebps-package+xml': # .opf return get_style_var(self.app_style, 'icons/info') elif file_type == 'application/x-dtbncx+xml': # .ncx return get_style_var(self.app_style, 'icons/content_table') elif file_type == 'application/xml': return get_style_var(self.app_style, 'icons/xml') elif file_type == 'application/x-font-truetype': return get_style_var(self.app_style, 'icons/font') elif file_type == 'application/xhtml+xml': return get_style_var(self.app_style, 'icons/page') else: return get_style_var(self.app_style, 'icons/file') def icon_file_item(self, item: QTreeWidgetItem, file_path: str): icon = self.file_icon(file_path) file_type = get_file_type(file_path) common.qt.setQTreeItemIcon(item, icon) def on_close_tab(self, index_tab: int): if self.tabWidget.count() == 0: return print('on_close_tab') if self.tabWidget.count() > index_tab >= 0: self.tabWidget.removeTab(index_tab) if self.tabWidget.count() == 0: self.voidLabel.setVisible(True) self.tabWidget.setVisible(False) def on_change_tab(self, index_tab: int): self.tabWidget.draw_preview() def create_check_point(self): try: print("create_check_point") stime = unixtime_to_string(time.time(), template='%Y-%m-%d_%H-%M-%S', is_utc=False) shutil.copytree(self.tmpDir + os.sep + 'current', self.tmpDir + os.sep + stime) InfoDialog( self.lang['Editor']['DialogCreateCheckpointWindowTitle'], self.lang['Editor']['DialogCreateCheckpointWindowText'].format(stime), self ) except Exception: traceback.print_exc() def load_check_point(self): try: wl = CheckpointWindow(self, self.tmpDir) ret = wl.openExec() if ret is not None: if os.path.isdir(self.tmpDir + os.sep + ret) is True: common.files.rmDir(self.tmpDir + os.sep + 'current') common.files.copyDir(self.tmpDir + os.sep + ret, self.tmpDir + os.sep + 'current') self.tabWidget.reload_contents() except Exception: traceback.print_exc() def save_ebook(self): try: ret = common.dialog.InfoDialogConfirm( self.lang['Editor']['DialogConfirmSaveWindowTitle'], self.lang['Editor']['DialogConfirmSaveWindowText'], self.lang['Generic']['DialogBtnYes'], self.lang['Generic']['DialogBtnNo'], self.parent() ) if ret is True: os.remove(self.opened_file) deflate(self.tmpDir + os.sep + 'current' + os.sep + '*', self.opened_file) except Exception: traceback.print_exc() def load_file_managment(self): try: wl = FilesWindow(self, self.tmpDir + os.sep + 'current') ret = wl.open_exec() # print(ret) if ret is not None: for file in ret['delete']: if ret['delete'][file]['type'] == 'deleteFile': os.remove(self.tmpDir + os.sep + 'current' + ret['delete'][file]['innerPath']) elif ret['delete'][file]['type'] == 'deleteFolder': rmDir(self.tmpDir + os.sep + 'current' + ret['delete'][file]['innerPath']) for file in ret['rename']: if ret['rename'][file]['type'] == 'renameFile': rename( self.tmpDir + os.sep + 'current' + ret['rename'][file]['original'], self.tmpDir + os.sep + 'current' + ret['rename'][file]['newPath'] ) elif ret['rename'][file]['type'] == 'renameFolder': rename( self.tmpDir + os.sep + 'current' + ret['rename'][file]['original'], self.tmpDir + os.sep + 'current' + ret['rename'][file]['newPath'] ) for file in ret['new']: # print(file) if ret['new'][file]['type'] == 'new_file': f = open(self.tmpDir + os.sep + 'current' + ret['new'][file]['innerPath'], 'w', encoding="utf8") f.write(' ') f.close() elif ret['new'][file]['type'] == 'new_folder': os.makedirs(self.tmpDir + os.sep + 'current' + ret['new'][file]['innerPath']) elif ret['new'][file]['type'] == 'import': copyFile( ret['new'][file]['original'], self.tmpDir + os.sep + 'current' + ret['new'][file]['innerPath'] ) self.file_table_load() except Exception: traceback.print_exc() def load_content_table_managment(self): try: wl = ContentTableWindow(self, self.tmpDir + os.sep + 'current') ret = wl.open_exec() if ret is not None: chapters = [] for obj in ret: chapters.append(obj['url'][1:]) opf = self.save_metada(chapters) if self.toc_type == 'NCX': li = common.files.list_directory(self.tmpDir + os.sep + 'current', "ncx") if len(li) > 0: file = open(li[0], "r", encoding="utf8") content = file.read() file.close() mydoc = minidom.parseString(content.replace(" ", "").replace("\t", "")) map = mydoc.getElementsByTagName('navMap')[0] points = mydoc.getElementsByTagName('navPoint') for i in range(0, len(points)): map.removeChild(points[i]) i = 0 for obj in ret: i += 1 point = mydoc.createElement('navPoint') point.setAttribute('id', 'num_{}'.format(i)) point.setAttribute('playOrder', "{}".format(i)) label = mydoc.createElement('navLabel') tx = mydoc.createElement('text') text_node = minidom.Text() text_node.data = obj['name'] tx.appendChild(text_node) label.appendChild(tx) point.appendChild(label) content = mydoc.createElement('content') content.setAttribute('src', obj['url']) point.appendChild(content) map.appendChild(point) mydoc.toprettyxml() file = open(li[0], "wt", encoding="utf8") file.write(mydoc.toprettyxml().replace("\r", "").replace("\n", "").replace(" ", "").replace(">\t", ">\n\t")) file.close() self.load_content_table(opf) except Exception: traceback.print_exc() def load_content_table(self, data: str = None): try: print('---------------------------------------------------------') self.treeContentTable.clear() file_name = '' file_path = '' directory = self.tmpDir + os.sep + 'current' + os.sep if data is None: li = common.files.list_directory(directory, "opf") file_name = li[0][li[0].rindex(os.sep)+1:] file_path = li[0] with open(li[0]) as myfile: data = myfile.read() self.toc_type, chapters = parse_content_table( data, file_path.replace(directory, '').replace(file_name, '').replace(os.sep, '/'), directory ) for chapter in chapters: try: try: last_slash = chapter['src'].rindex('/') except ValueError: last_slash = - 1 item = QtWidgets.QListWidgetItem(self.treeContentTable) item.setText(chapter['name']) item.setData(98, chapter['src'][last_slash+1:]) item.setData(99, directory + chapter['src'].replace('/', os.sep)) icon = QtGui.QIcon() image = QtGui.QPixmap() image.load(get_style_var(self.app_style, 'icons/page')) icon.addPixmap(image, QtGui.QIcon.Normal, QtGui.QIcon.Off) item.setIcon(icon) self.treeContentTable.addItem(item) except Exception: traceback.print_exc() except IOError: print("File not open") except Exception: traceback.print_exc() def save_metada(self, chapters: list = None): try: li = common.files.list_directory(self.tmpDir + os.sep + 'current', "opf") if len(li) > 0: content = '' with open(li[0], "r", encoding="utf8") as file: content = file.read() # print(content) mydoc = minidom.parseString(content) manifest = mydoc.getElementsByTagName('manifest')[0] items = mydoc.getElementsByTagName('item') for i in range(0, len(items)): manifest.removeChild(items[i]) spine = mydoc.getElementsByTagName('spine')[0] toc = None try: toc = spine.attributes['toc'].value except Exception: "" refs_list = mydoc.getElementsByTagName('item') for i in range(0, len(refs_list)): spine.removeChild(refs_list[i]) files = common.files.list_directory(self.tmpDir + os.sep + 'current') idno = 1 list_refs = {} for file in files: path = file.replace(self.tmpDir + os.sep + 'current' + os.sep, '') tp = path.split('.') ext = None if len(tp) > 1 and "META-INF" not in path: ext = tp[len(tp) - 1].lower() mtype = 'text/plain' try: mtype = mediatypes[ext] except Exception: "" item = mydoc.createElement('item') item.setAttribute('id', 'id{}'.format(idno)) item.setAttribute('href', path) item.setAttribute('media-type', mtype) manifest.appendChild(item) if ext in ['ncx']: spine.attributes['toc'].value = 'id{}'.format(idno) if ext in ['xhtml', 'html']: itemref = mydoc.createElement('itemref') itemref.setAttribute('idref', 'id{}'.format(idno)) if chapters is None: spine.appendChild(itemref) else: list_refs[path] = itemref idno += 1 if chapters is not None: # print(list_refs) for chapter in chapters: if chapter in list_refs: spine.appendChild(list_refs[chapter]) mydoc.toprettyxml() ret = mydoc.toprettyxml().replace("\r", "").replace("\n", "").replace(" ", "").replace(">\t", ">\n\t") with open(li[0], "wt", encoding="utf8") as file: file.write(ret) return ret except Exception: traceback.print_exc() return None
StarcoderdataPython
1635514
<gh_stars>100-1000 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file # Generated by the protocol buffer compiler. DO NOT EDIT! # source: model_metrics.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='model_metrics.proto', package='nasbench', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\x13model_metrics.proto\x12\x08nasbench\"s\n\x0cModelMetrics\x12\x31\n\x0f\x65valuation_data\x18\x01 \x03(\x0b\x32\x18.nasbench.EvaluationData\x12\x1c\n\x14trainable_parameters\x18\x02 \x01(\x05\x12\x12\n\ntotal_time\x18\x03 \x01(\x01\"\xa3\x01\n\x0e\x45valuationData\x12\x15\n\rcurrent_epoch\x18\x01 \x01(\x01\x12\x15\n\rtraining_time\x18\x02 \x01(\x01\x12\x16\n\x0etrain_accuracy\x18\x03 \x01(\x01\x12\x1b\n\x13validation_accuracy\x18\x04 \x01(\x01\x12\x15\n\rtest_accuracy\x18\x05 \x01(\x01\x12\x17\n\x0f\x63heckpoint_path\x18\x06 \x01(\t') ) _MODELMETRICS = _descriptor.Descriptor( name='ModelMetrics', full_name='nasbench.ModelMetrics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='evaluation_data', full_name='nasbench.ModelMetrics.evaluation_data', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='trainable_parameters', full_name='nasbench.ModelMetrics.trainable_parameters', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total_time', full_name='nasbench.ModelMetrics.total_time', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=33, serialized_end=148, ) _EVALUATIONDATA = _descriptor.Descriptor( name='EvaluationData', full_name='nasbench.EvaluationData', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='current_epoch', full_name='nasbench.EvaluationData.current_epoch', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_time', full_name='nasbench.EvaluationData.training_time', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_accuracy', full_name='nasbench.EvaluationData.train_accuracy', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_accuracy', full_name='nasbench.EvaluationData.validation_accuracy', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_accuracy', full_name='nasbench.EvaluationData.test_accuracy', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_path', full_name='nasbench.EvaluationData.checkpoint_path', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=151, serialized_end=314, ) _MODELMETRICS.fields_by_name['evaluation_data'].message_type = _EVALUATIONDATA DESCRIPTOR.message_types_by_name['ModelMetrics'] = _MODELMETRICS DESCRIPTOR.message_types_by_name['EvaluationData'] = _EVALUATIONDATA _sym_db.RegisterFileDescriptor(DESCRIPTOR) ModelMetrics = _reflection.GeneratedProtocolMessageType('ModelMetrics', (_message.Message,), dict( DESCRIPTOR = _MODELMETRICS, __module__ = 'model_metrics_pb2' # @@protoc_insertion_point(class_scope:nasbench.ModelMetrics) )) _sym_db.RegisterMessage(ModelMetrics) EvaluationData = _reflection.GeneratedProtocolMessageType('EvaluationData', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONDATA, __module__ = 'model_metrics_pb2' # @@protoc_insertion_point(class_scope:nasbench.EvaluationData) )) _sym_db.RegisterMessage(EvaluationData) # @@protoc_insertion_point(module_scope)
StarcoderdataPython
3341024
# Generated by Django 2.2.10 on 2020-03-16 04:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('workflow', '0009_auto_20200306_1040'), ('workflow', '0009_projectstatus'), ] operations = [ ]
StarcoderdataPython
3323398
<filename>source/HTTP_Component/Sensors.py # # Date: 2/24/21 # File Name: Sensors.py # # Engineer: <NAME> # Contact: <EMAIL> # # Description: # This is a script intended to retrieve, parse and return data from network connected sensors. # # from urllib.request import urlopen import math METRIC = "mertric" IMPERIAL = "imperial" class Sensor: def __init__(self, url_plug, units = METRIC, domain = 'localhost', port = '80'): self.units = units try: self.address = 'http://' + domain + ':' + port + '/' + url_plug except Exception as e: print(e) self.address = '' # print("address(sensor): " + self.address) def requestData(self): try: self.page = urlopen(self.address) except Exception as e: print(e) return "NaN" rawBytes = self.page.read() rawString = rawBytes.decode("utf-8") try: float(rawString) except Exception as e: print(e) return "NaN" return rawString def getSensorValue(self): dataString = self.requestData() sensorValue = float(dataString) return sensorValue def getUnits(self): return self.units() class TemperatureSensor(Sensor): def getSensorValue(self): dataString = self.requestData() degreesCelsius = round(float(dataString), 2) if self.units == METRIC: return degreesCelsius else: degreesFahrenheit = round(((degreesCelsius * 1.8) + 32.0), 2) return degreesFahrenheit def getDegreesCelcius(self): dataString = self.requestData() degreesCelsius = float(dataString) return degreesCelsius def getUnits(self): if self.units == IMPERIAL: return "Fahrenheit" else: return "Celsius" class HumiditySensor(Sensor): def getSensorValue(self): dataString = self.requestData() relativeHumidity = float(dataString) return relativeHumidity def calculateDewPoint(self, relativeHumidity, degreesCelsius): dewPoint = (243.12 * (math.log(relativeHumidity / 100) + ((17.62 * degreesCelsius) / (243.12 + degreesCelsius)))) / (17.62 - (math.log(relativeHumidity/100) + ((17.62 * degreesCelsius)/(243.12 + degreesCelsius)))) dewPoint = round(dewPoint, 2) return dewPoint def getDewPoint(self, degreesCelsius): relativeHumidity = self.getSensorValue() dewPointCelsius = self.calculateDewPoint(relativeHumidity, degreesCelsius) if self.units == METRIC: return dewPointCelsius else: dewPointFahrenheit = (dewPointCelsius * 1.8) + 32.0 dewPointFahrenheit = round(dewPointFahrenheit, 2) return dewPointFahrenheit def getUnits(self): if self.units == IMPERIAL: return "Fahrenheit" else: return "Celsius" def main(): temperatureSensorOne = TemperatureSensor( "temperature", IMPERIAL, "http://localhost:8080") humiditySensorOne = HumiditySensor( "humidity", IMPERIAL, "http://localhost:8080") print("Temperature in degrees {}: {}".format(temperatureSensorOne.getUnits(), temperatureSensorOne.getSensorValue())) print("Relative Humidity: ", humiditySensorOne.getSensorValue()) print("Dew Point {}: {}".format(humiditySensorOne.getUnits(), humiditySensorOne.getDewPoint(temperatureSensorOne.getDegreesCelcius()))) def testSimulated(): print("testing") temp = TemperatureSensor(sub_address="temperature") humid = HumiditySensor(sub_address="humidity") print(temp.getSensorValue()) print(humid.getSensorValue()) if __name__ == "__main__": main() #testSimulated()
StarcoderdataPython
22315
""" Defines models """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from torch.autograd import Variable from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.utils.rnn import pad_packed_sequence def init_weights(m): if type(m) == nn.Linear or type(m) == nn.Conv2d: torch.nn.init.xavier_uniform_(m.weight) if m.bias is not None: m.bias.data.fill_(0.01) class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class Model(nn.Module): def __init__(self, opt): super(Model, self).__init__() self.acoustic_modality = opt.acoustic_modality self.visual_modality = opt.visual_modality self.lexical_modality = opt.lexical_modality self.acoustic_feature_dim = opt.acoustic_feature_dim self.visual_feature_dim = opt.visual_feature_dim self.lexical_feature_dim = opt.lexical_feature_dim self.conv_width_v = opt.conv_width_v self.conv_width_a = opt.conv_width_a self.kernel_size_v = opt.kernel_size_v self.kernel_size_a = opt.kernel_size_a self.max_pool_width = opt.max_pool_width self.rnn_layer_num_v = opt.rnn_layer_num_v self.rnn_layer_num_a = opt.rnn_layer_num_a self.rnn_width = opt.rnn_width self.linear_width_l = opt.linear_width_l self.linear_width = opt.linear_width self.dropout_rate = opt.dropout_rate self.conv1d_v1 = nn.Conv1d( in_channels=opt.visual_feature_dim, out_channels=self.conv_width_v, kernel_size=self.kernel_size_v, padding=self.kernel_size_v-1) self.conv1d_v2 = nn.Conv1d( in_channels=self.conv_width_v, out_channels=self.conv_width_v, kernel_size=self.kernel_size_v, padding=self.kernel_size_v-1) self.conv1d_v3 = nn.Conv1d( in_channels=self.conv_width_v, out_channels=self.conv_width_v, kernel_size=self.kernel_size_v, padding=self.kernel_size_v-1) self.conv1d_a1 = nn.Conv1d( in_channels=opt.acoustic_feature_dim, out_channels=self.conv_width_a, kernel_size=self.kernel_size_a, padding=self.kernel_size_a-1) self.conv1d_a2 = nn.Conv1d( in_channels=self.conv_width_a, out_channels=self.conv_width_a, kernel_size=self.kernel_size_a, padding=self.kernel_size_a-1) self.conv1d_a3 = nn.Conv1d( in_channels=self.conv_width_a, out_channels=self.conv_width_a, kernel_size=self.kernel_size_a, padding=self.kernel_size_a-1) self.maxpool = nn.MaxPool1d(self.max_pool_width) self.gru_v = nn.GRU(input_size=self.conv_width_v, num_layers=self.rnn_layer_num_v, hidden_size=self.rnn_width, batch_first=True) self.gru_a = nn.GRU(input_size=self.conv_width_a, num_layers=self.rnn_layer_num_a, hidden_size=self.rnn_width, batch_first=True) self.linear_l = nn.Linear(self.lexical_feature_dim, self.linear_width_l) self.batchnorm_v = nn.BatchNorm1d(self.rnn_width) self.batchnorm_a = nn.BatchNorm1d(self.rnn_width) self.batchnorm_l = nn.BatchNorm1d(self.linear_width_l) self.dropout = nn.Dropout(self.dropout_rate) width = 0 if self.acoustic_modality: width += self.rnn_width if self.visual_modality: width += self.rnn_width if self.lexical_modality: width += self.linear_width_l self.linear_1 = nn.Linear(width, self.linear_width) self.linear_2 = nn.Linear(self.linear_width, 3) self.softmax = nn.Softmax(dim=1) self.relu = nn.ReLU() def forward_v(self, x_v): x = x_v x = torch.transpose(x, 1, 2) x = self.relu(self.maxpool(self.conv1d_v1(x))) x = self.relu(self.maxpool(self.conv1d_v2(x))) x = self.relu(self.maxpool(self.conv1d_v3(x))) x = torch.transpose(x, 1, 2) x, _ = self.gru_v(x) x = torch.transpose(x, 1, 2) x = F.adaptive_avg_pool1d(x,1)[:, :, -1] x = self.batchnorm_v(self.dropout(x)) return x def forward_a(self, x_a): x = x_a x = torch.transpose(x, 1, 2) x = self.relu(self.maxpool(self.conv1d_a1(x))) x = self.relu(self.maxpool(self.conv1d_a2(x))) x = self.relu(self.maxpool(self.conv1d_a3(x))) x = torch.transpose(x, 1, 2) x, _ = self.gru_a(x) x = torch.transpose(x, 1, 2) x = F.adaptive_avg_pool1d(x,1)[:, :, -1] x = self.batchnorm_a(self.dropout(x)) return x def forward_l(self, x_l): x = x_l x = self.relu(self.linear_l(x)) x = self.batchnorm_l(self.dropout(x)) return x def encoder(self, x_v, x_a, x_l): if self.visual_modality: x_v = self.forward_v(x_v) if self.acoustic_modality: x_a = self.forward_a(x_a) if self.lexical_modality: x_l = self.forward_l(x_l) if self.visual_modality: if self.acoustic_modality: if self.lexical_modality: x = torch.cat((x_v, x_a, x_l), 1) else: x = torch.cat((x_v, x_a), 1) else: if self.lexical_modality: x = torch.cat((x_v, x_l), 1) else: x = x_v else: if self.acoustic_modality: if self.lexical_modality: x = torch.cat((x_a, x_l), 1) else: x = x_a else: x = x_l return x def recognizer(self, x): x = self.relu(self.linear_1(x)) x = self.linear_2(x) return x def forward(self, x_v, x_a, x_l): x = self.encoder(x_v, x_a, x_l) x = self.recognizer(x) return x
StarcoderdataPython
1788033
import json import os import shutil from imskaper.experiment.experiment import experiment, read_Xy_data from imskaper.utils.classifiers import get_classifiers from imskaper.utils.features_selectors import get_features_selectors current_path = "tests" # os.path.dirname(os.path.abspath(__file__)) json_path = os.path.join(current_path, "test_config.json") with open(json_path) as config_file: config = json.load(config_file) config["config"]["features_file"] = os.path.join( current_path, "test_dataset.csv" ) config["config"]["output_dir"] = os.path.join(current_path, "temp\\") def test_read_Xy(): X, y, columns_names = read_Xy_data(config["config"]["features_file"]) assert X.shape == (197, 22) assert y.shape == (197,) assert len(columns_names) == 22 assert columns_names[0] == "Elongation" def test_exp(): p = config["config"]["output_dir"] folder_to_delete = [os.path.join(p, f) for f in os.listdir(p)] for f in folder_to_delete: shutil.rmtree(f) df = experiment(config, verbose=0) assert df.shape == ( len(get_classifiers(config)), len(get_features_selectors(config)), ) folder_name = [os.path.join(p, f) for f in os.listdir(p)] assert len([f for f in os.listdir(folder_name[0]) if f.endswith('.csv') or f.endswith('.jpg')]) == 8 df2 = experiment(config, verbose=0) # Make sure we are able to reproduce the results when using the same seed assert df.equals(df2) config["config"]["SEED"] = 999 df3 = experiment(config, verbose=0) assert not (df.equals(df3)) folder_to_delete = [os.path.join(p, f) for f in os.listdir(p)] for f in folder_to_delete: shutil.rmtree(f)
StarcoderdataPython
169544
<filename>AutotestWebD/all_urls/LittleToolUrl.py from django.conf.urls import url from apps.littletool.views import tool urlpatterns = [ #add page url(r'^littletool/jsoncn$', tool.jsoncn, name="LITTLETOOL_jsoncn"), ]
StarcoderdataPython
3343601
<reponame>ChadKillingsworth/sentry from __future__ import absolute_import from django.core.urlresolvers import reverse from mock import patch from sentry.models import ( AuthProvider, OrganizationMember, OrganizationMemberType ) from sentry.testutils import APITestCase class UpdateOrganizationMemberTest(APITestCase): @patch('sentry.models.OrganizationMember.send_invite_email') def test_reinvite_pending_member(self, mock_send_invite_email): self.login_as(user=self.user) organization = self.create_organization(name='foo', owner=self.user) member_om = OrganizationMember.objects.create( organization=organization, email='<EMAIL>', type=OrganizationMemberType.MEMBER, has_global_access=False, ) path = reverse('sentry-api-0-organization-member-details', args=[organization.slug, member_om.id]) self.login_as(self.user) resp = self.client.put(path, data={'reinvite': 1}) assert resp.status_code == 204 mock_send_invite_email.assert_called_once_with() @patch('sentry.models.OrganizationMember.send_sso_link_email') def test_reinvite_sso_link(self, mock_send_sso_link_email): self.login_as(user=self.user) organization = self.create_organization(name='foo', owner=self.user) member = self.create_user('<EMAIL>') member_om = OrganizationMember.objects.create( organization=organization, user=member, type=OrganizationMemberType.MEMBER, has_global_access=False, ) AuthProvider.objects.create(organization=organization, provider='dummy') path = reverse('sentry-api-0-organization-member-details', args=[organization.slug, member_om.id]) self.login_as(self.user) resp = self.client.put(path, data={'reinvite': 1}) assert resp.status_code == 204 mock_send_sso_link_email.assert_called_once_with() @patch('sentry.models.OrganizationMember.send_sso_link_email') def test_cannot_reinvite_normal_member(self, mock_send_sso_link_email): self.login_as(user=self.user) organization = self.create_organization(name='foo', owner=self.user) member = self.create_user('<EMAIL>') member_om = OrganizationMember.objects.create( organization=organization, user=member, type=OrganizationMemberType.MEMBER, has_global_access=False, ) path = reverse('sentry-api-0-organization-member-details', args=[organization.slug, member_om.id]) self.login_as(self.user) resp = self.client.put(path, data={'reinvite': 1}) assert resp.status_code == 400 class DeleteOrganizationMemberTest(APITestCase): def test_simple(self): self.login_as(user=self.user) organization = self.create_organization(name='foo', owner=self.user) member = self.create_user('<EMAIL>') member_om = OrganizationMember.objects.create( organization=organization, user=member, type=OrganizationMemberType.MEMBER, has_global_access=False, ) path = reverse('sentry-api-0-organization-member-details', args=[organization.slug, member_om.id]) self.login_as(self.user) resp = self.client.delete(path) assert resp.status_code == 204 assert not OrganizationMember.objects.filter(id=member_om.id).exists() def test_cannot_delete_only_owner(self): self.login_as(user=self.user) organization = self.create_organization(name='foo', owner=self.user) # create a pending member, which shouldn't be counted in the checks OrganizationMember.objects.create( organization=organization, type=OrganizationMemberType.OWNER, email='<EMAIL>', ) owner_om = OrganizationMember.objects.get( organization=organization, user=self.user, ) path = reverse('sentry-api-0-organization-member-details', args=[organization.slug, owner_om.id]) self.login_as(self.user) resp = self.client.delete(path) assert resp.status_code == 403 assert OrganizationMember.objects.filter(id=owner_om.id).exists()
StarcoderdataPython
16511
<gh_stars>0 import numpy as np from scipy import constants measured_species = ["HMF", "DFF", "HMFCA", "FFCA", "FDCA"] all_species = measured_species.copy() all_species.extend(["H_" + s for s in measured_species]) all_species.extend(["Hx_" + s for s in measured_species]) def c_to_q(c): c_e = list() for i, s in enumerate(all_species): c_e.append(2*(i%5 + int(i/5))*c[:,i]) c_e = np.sum(c_e, axis = 0) # uM c_e *= 1e-6 # M V = 100e-3 # L q = c_e*V*constants.N_A*constants.e # number of charge in coulombs return q def derivatives(y, t, p): """ Calculates the derivatives from local values, used by scipy.integrate.solve_ivp """ c = {s:y[i] for i, s in enumerate(all_species)} dc = dict() dc["HMF"] = - (p["k11"] + p["k12"] + p["kH1"])*c["HMF"] dc["DFF"] = p["k11"]*c["HMF"] - (p["k21"] + p["kH21"])*c["DFF"] dc["HMFCA"] = p["k12"]*c["HMF"] - (p["k22"] + p["kH22"])*c["HMFCA"] dc["FFCA"] = p["k21"]*c["DFF"] + p["k22"]*c["HMFCA"] - (p["k3"] + p["kH3"])*c["FFCA"] dc["FDCA"] = p["k3"]*c["FFCA"] - p["kH4"]*c["FDCA"] dc["H_HMF"] = p["kH1"]*c["HMF"] - p["kHx"]*c["H_HMF"] dc["H_DFF"] = p["kH21"]*c["DFF"] - p["kHx"]*c["H_DFF"] dc["H_HMFCA"] = p["kH22"]*c["HMFCA"] - p["kHx"]*c["H_HMFCA"] dc["H_FFCA"] = p["kH3"]*c["FFCA"] - p["kHx"]*c["H_FFCA"] dc["H_FDCA"] = p["kH4"]*c["FDCA"] - p["kHx"]*c["H_FDCA"] dc["Hx_HMF"] = p["kHx"]*c["H_HMF"] dc["Hx_DFF"] = p["kHx"]*c["H_DFF"] dc["Hx_HMFCA"] = p["kHx"]*c["H_HMFCA"] dc["Hx_FFCA"] = p["kHx"]*c["H_FFCA"] dc["Hx_FDCA"] = p["kHx"]*c["H_FDCA"] dy = [dc[name] for name in all_species] return dy
StarcoderdataPython
1795029
# -*- coding: utf-8 -*- # # Copyright (c) 2018-2019 <NAME> # # Distributed under MIT License. See LICENSE file for details. from __future__ import unicode_literals import factory # FAQ: `pyint` is everywhere because it is always [0..9999], so it # will be good enough for every integer-related field. def build_bigintegerfield(field_cls): return factory.Faker("pyint") def build_decimalfield(field_cls): characteristic = field_cls.max_digits - field_cls.decimal_places mantissa = field_cls.decimal_places return factory.Faker( "pydecimal", left_digits=characteristic, right_digits=mantissa, ) def build_floatfield(field_cls): return factory.Faker("pyfloat") def build_integerfield(field_cls): return factory.Faker("pyint") def build_positiveintegerfield(field_cls): return factory.Faker("pyint") def build_positivesmallintegerfield(field_cls): return factory.Faker("pyint") def build_smallintegerfield(field_cls): return factory.Faker("pyint")
StarcoderdataPython
111243
from typing import Optional, List from ..pattern import Pattern from ..pattern_recognizer import PatternRecognizer class IpRecognizer(PatternRecognizer): """ Recognize IP address using regex. :param patterns: List of patterns to be used by this recognizer :param context: List of context words to increase confidence in detection :param supported_language: Language this recognizer supports :param supported_entity: The entity this recognizer can detect """ PATTERNS = [ Pattern( "IPv4", r"\b(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b", # noqa: E501 0.6, ), Pattern( "IPv6", r"\s*(?!.*::.*::)(?:(?!:)|:(?=:))(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)){6}(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)[0-9a-f]{0,4}(?:(?<=::)|(?<!:)|(?<=:)(?<!::):)|(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)(?:\.(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)){3})\s*", # noqa: E501 0.6, ), ] CONTEXT = ["ip", "ipv4", "ipv6"] def __init__( self, patterns: Optional[List[Pattern]] = None, context: Optional[List[str]] = None, supported_language: str = "en", supported_entity: str = "IP_ADDRESS", ): patterns = patterns if patterns else self.PATTERNS context = context if context else self.CONTEXT super().__init__( supported_entity=supported_entity, patterns=patterns, context=context, supported_language=supported_language, )
StarcoderdataPython
3286132
''' Created on 31 Mar 2017 @author: <NAME> <<EMAIL>> ''' from rdflib import URIRef, BNode, Literal, Graph, Namespace from rdflib.namespace import RDF, RDFS, XSD, OWL from Misc.datacheck import isfloat #Tuple of the form: (*camera id*:string, *camera lat*:string, *camera long*: string, # *OSM derived road name*:string, *speed limit*:string) def toLD( data, debug=False ): assert isinstance(data, tuple), "Expecting tuple" assert len(data) == 5, "Expecting 5 values" assert isinstance(data[0], basestring), "First element of list needs to be a string" assert isinstance(data[1], basestring), "Second element of list needs to be a string" assert isinstance(data[2], basestring), "Third element of list needs to be a string" assert isinstance(data[3], basestring), "Fourth element of list needs to be a string" assert isinstance(data[4], basestring), "Fifth element of list needs to be a int" assert isfloat(data[1]), "Second element of list needs to represent a float number" assert isfloat(data[2]), "Third element of list needs to represent a float number" cameraid=data[0] cameralat=data[1] cameralong=data[2] addrstreet=data[3] speedlimit=data[4] toappend = "" if (float(cameralat) > 0): if(cameralat[0] != "+"): toappend += "+" + cameralat else: toappend += cameralat else: toappend += cameralat if (float(cameralong) > 0): if(cameralong[0] != "+"): toappend += "+" + cameralong else: toappend += cameralong else: toappend += cameralong g = Graph() traffic = Namespace("https://dais-ita.org/traffic/") pos = Namespace("http://www.w3.org/2003/01/geo/wgs84_pos#") osm = Namespace("https://raw.github.com/doroam/planning-do-roam/master/Ontology/tags.owl#") osmaddr = Namespace("https://raw.github.com/doroam/planning-do-roam/master/Ontology/tags.owl#k_addr:") cameranode = URIRef(traffic + "camera" + cameraid ) locationnode = URIRef(traffic + "location" + toappend ) addressnode = URIRef(traffic + "address" + toappend ) g.add( ( cameranode, RDF.type, traffic.Camera ) ) g.add( ( cameranode, RDF.type, OWL.NamedIndividual)) g.add( ( cameranode, RDFS.label, Literal(cameraid, datatype=XSD.string) ) ) g.add( ( cameranode, pos.location, locationnode) ) g.add( ( locationnode, RDF.type, pos.Point) ) g.add( ( locationnode, RDF.type, OWL.NamedIndividual) ) g.add( ( locationnode, pos.lat, Literal(cameralat, datatype=XSD.string) ) ) g.add( ( locationnode, pos.long, Literal(cameralong, datatype=XSD.string) ) ) g.add( ( cameranode, osm.has_address, addressnode ) ) g.add( ( addressnode, RDF.type, osm.address)) g.add( ( addressnode, RDF.type, OWL.NamedIndividual)) g.add( ( addressnode, osmaddr.street, Literal(addrstreet, datatype=XSD.string) ) ) g.add( ( addressnode, traffic.speedLimit, Literal(speedlimit, datatype=XSD.string) ) ) if (debug): print g.serialize(format='turtle') return g def toJsonLD( data ): g = toLD(data) return g.serialize(format='json-ld', indent=4)
StarcoderdataPython
1681072
import os import warnings import numpy as np from scipy.spatial import distance from pycosmosac.molecule.cavity import Cavity from pycosmosac.param import data from pycosmosac.utils import elements BOND_SCALING = 1.2 def get_connectivity(mol, geometry=None): #TODO improve accuracy if geometry is None: geometry = mol.geometry if not geometry: raise RuntimeError("molecule not initialized.") atoms = geometry["atom"] xyz = geometry["xyz"] d = distance.cdist(xyz, xyz) natom = len(atoms) connectivity = [[] for _ in range(natom)] for i, atom_i in enumerate(atoms): for j, atom_j in enumerate(atoms): if i==j: continue l = BOND_SCALING * elements.covalent_bond(atom_i, atom_j) if d[i,j] <= l: connectivity[i].append(j) if not connectivity[i]: warnings.warn("atom (%s, %s) has no bonds." % (i+1, atom_i)) return connectivity def _dfs(connectivity, iatm, color, traversalOrder, res, parent=None): ''' depth-first search ''' color[iatm] = 1 traversalOrder.append(iatm) for jatm in connectivity[iatm]: if color[jatm] == 0: if len(connectivity[jatm]) < 2: color[jatm] = 2 else: _dfs(connectivity, jatm, color, traversalOrder, res, parent=iatm) elif color[jatm] == 1: if parent and parent != jatm: cycle = [] lastatm_index = traversalOrder.index(iatm) for index in range(lastatm_index, -1, -1): katm = traversalOrder[index] if katm == jatm: break else: cycle.append(katm) cycle.append(jatm) res.append(cycle) color[iatm] = 2 traversalOrder.pop() def find_rings(mol, connectivity=None): if connectivity is None: connectivity = mol.connectivity natom = mol.natom color = np.zeros((natom), dtype=int) res = [] for i in range(natom): if color[i] > 0: continue if len(connectivity[i]) < 2: color[i] = 2 continue traversalOrder = [] _dfs(connectivity, i, color, traversalOrder, res) return res def find_ring_atoms(mol, connectivity=None): if connectivity is None: connectivity = mol.connectivity res = find_rings(mol, connectivity) return list(set().union(*res)) def classify_hydrogen_bonds(mol, geometry=None, connectivity=None): if geometry is None: geometry = mol.geometry if connectivity is None: connectivity = mol.connectivity if not geometry or not connectivity: raise RuntimeError("molecule not initialized.") atoms = geometry["atom"] hb_class = [] for i, atom_i in enumerate(atoms): if atom_i in ['N', 'F']: hb_class.append("OT") elif atom_i in ['O', 'H']: bond_type = 'NHB' for j in connectivity[i]: atom_j = atoms[j] atom_ij = atom_i + atom_j if atom_ij in ['OH', 'HO']: bond_type = 'OH' break if atom_i == 'O': bond_type = 'OT' break if atom_i == 'H' and atom_j in ['N', 'F']: bond_type = 'OT' break hb_class.append(bond_type) else: hb_class.append('NHB') return hb_class def get_dispersion_type(mol, geometry=None, connectivity=None): if geometry is None: geometry = mol.geometry if connectivity is None: connectivity = mol.connectivity atoms = geometry["atom"] if len(atoms) == 3 and atoms.count("O") == 1 and atoms.count("H") == 2: disp_tot = (data.disp["H(H2O)"] * 2 + data.disp["-O-"]) / 3.0 return disp_tot, "H2O" disp_type = "NHB" disp_tot = 0.0 natom = 0 nCOOH = 0 for i, atom_i in enumerate(atoms): n = len(connectivity[i]) if atom_i == "C": natom += 1 if n == 4: disp_tot += data.disp["C(sp3)"] elif n == 3: disp_tot += data.disp["C(sp2)"] atom_js = [] js = [] for j in connectivity[i]: atom_js.append(atoms[j]) js.append(j) if atom_js.count("O") == 2: for j, atom_j in zip(js,atom_js): if atom_j != "O": continue if len(connectivity[j]) == 2: for k in connectivity[j]: if atoms[k] == "H": nCOOH += 1 disp_tot += data.disp["H(COOH)"] disp_type = "COOH" elif n == 2: disp_tot += data.disp["C(sp)"] elif atom_i == "N": natom += 1 if n == 3: disp_tot += data.disp["N(sp3)"] elif n == 2: disp_tot += data.disp["N(sp2)"] elif n == 1: disp_tot += data.disp["N(sp)"] elif atom_i == "O": natom += 1 if n == 2: disp_tot += data.disp["-O-"] elif n == 1: disp_tot += data.disp["=O"] elif atom_i == "F": natom += 1 disp_tot += data.disp["F"] elif atom_i == "Cl": natom += 1 disp_tot += data.disp["Cl"] elif atom_i == "Br": natom += 1 disp_tot += data.disp["Br"] elif atom_i == "I": natom += 1 disp_tot += data.disp["I"] elif atom_i == "P": natom += 1 disp_tot += data.disp["P"] elif atom_i == "S": natom += 1 disp_tot += data.disp["S"] elif atom_i == "H": j = connectivity[i][0] atom_j = atoms[j] if atom_j == "O": natom += 1 disp_tot += data.disp["H(OH)"] elif atom_j == "N": natom += 1 disp_tot += data.disp["H(NH)"] else: warnings.warn("dispersion parameter not available for %s" % atom_i) disp_tot -= nCOOH * data.disp["H(OH)"] disp_tot /= natom return disp_tot, disp_type def fromstring(string, format='xyz'): format = format.lower() if format == 'xyz': dat = string.splitlines() natm = int(dat[0]) return '\n'.join(dat[2:natm+2]) elif format == 'raw': return string else: raise NotImplementedError def fromfile(filename, format=None): if format is None: # Guess format based on filename format = os.path.splitext(filename)[1][1:].lower() if format not in ('xyz', 'zmat', 'sdf', 'mol2'): format = 'raw' with open(filename, 'r') as f: return fromstring(f.read(), format) def read_geometry(xyz): if os.path.isfile(xyz): try: xyz_raw = fromfile(xyz) return raw_to_geometry(xyz_raw) except: raise ValueError('Failed to parse geometry file %s' % xyz) else: return raw_to_geometry(xyz) def raw_to_geometry(xyz): geometry = {} geometry["atom"] = [] geometry["xyz"] = [] def str2atm(line): dat = line.split() assert(len(dat) == 4) geometry["atom"].append(dat[0]) geometry["xyz"].append([float(x) for x in dat[1:4]]) if isinstance(xyz, str): xyz = str(xyz.replace(';','\n').replace(',',' ').replace('\t',' ')) fmt_atoms = [] for dat in xyz.split('\n'): dat = dat.strip() if dat and dat[0] != '#': fmt_atoms.append(dat) for line in fmt_atoms: str2atm(line) geometry["xyz"] = np.asarray(geometry["xyz"]) else: raise NotImplementedError return geometry def geometry_to_xyz(geometry, name="unknown"): symb = geometry["atom"] coord = geometry["xyz"] natom = len(symb) xyz = str(natom) + "\n" xyz += name + "\n" for i in range(natom): xyz += symb[i] + " " xyz += str(coord[i, 0]) + " " xyz += str(coord[i, 1]) + " " xyz += str(coord[i, 2]) + " " xyz += "\n" return xyz.strip() class Mole(): ''' Class for molecular information Attributes: geometry : dict Geometry information. "xyz" : ndarray "atom" : list cavity : Cavity Cavity information connectivity : list Connectivity information. hb_class : list Hydrogen bond classification. ''' def __init__(self): #{"atom" : [], "xyz" : ndarray(natom, 3)} self.geometry = None self.cavity = None self.connectivity = None self.hb_class = None @property def natom(self): if self.geometry is None: raise RuntimeError("molecule not initialized") return len(self.geometry["atom"]) def build(self, geometry=None, cavity=None): if geometry is not None: if isinstance(geometry, str): self.geometry = read_geometry(geometry) elif isinstance(geometry, dict): self.geometry = geometry else: raise ValueError("unsupported geometry input") if cavity is not None: self.cavity = cavity self.connectivity = self.get_connectivity() self.hb_class = self.classify_hydrogen_bonds() return self get_connectivity = get_connectivity classify_hydrogen_bonds = classify_hydrogen_bonds get_dispersion_type = get_dispersion_type find_rings = find_rings find_ring_atoms = find_ring_atoms if __name__ == "__main__": from pycosmosac.utils.misc import fingerprint geometry = {} geometry["atom"] = ['O', 'H', 'H'] geometry["xyz"] = np.asarray([[ 0., 0., -0.405655705], [ 0.770106178, 0., 0.202827852], [-0.770106178, 0., 0.202827852]]) mol = Mole().build(geometry) print(mol.connectivity == [[1, 2], [0], [0]]) print(mol.hb_class == ['OH','OH','OH']) print(mol.get_dispersion_type()[0] - 70.75953333333332) print(mol.get_dispersion_type()[1] == "H2O") xyz = ''' N -2.86237 0.53549 -0.00680 C -1.59157 1.12789 -0.00460 C -0.65647 0.06499 -0.00640 N -1.36327 -1.15231 -0.01640 C -2.67117 -0.86471 -0.01510 C 0.72143 0.40079 -0.00170 N 1.06103 1.72159 -0.02520 C 0.08733 2.69019 -0.01940 N -1.23787 2.45869 -0.00720 H 0.42943 3.73339 -0.02780 N 1.75063 -0.53271 0.12520 H -3.73057 1.00639 -0.00350 H -3.47277 -1.60891 -0.01910 H 1.51683 -1.44251 -0.19520 H 2.65133 -0.22311 -0.15800 ''' mol = Mole().build(xyz) print(mol.geometry["atom"] == ['N', 'C', 'C', 'N', 'C', 'C', 'N', 'C', 'N', 'H', 'N', 'H', 'H', 'H', 'H']) print(fingerprint(mol.geometry["xyz"]) - -7.705571225872962) print(mol.connectivity == [[1, 4, 11], [0, 2, 8], [1, 3, 5], [2, 4], [0, 3, 12], [2, 6, 10], [5, 7], [6, 8, 9], [1, 7], [7], [5, 13, 14], [0], [4], [10], [10]]) print(mol.find_ring_atoms() == [0, 1, 2, 3, 4, 5, 6, 7, 8]) print(mol.find_rings() == [[4, 3, 2, 1, 0], [8, 7, 6, 5, 2, 1]]) xyz = ''' C 0.78526 0.09180 -0.07290 C 0.46366 -1.44010 0.02370 C -0.58284 -1.14900 1.15480 C -0.26134 0.38280 1.05820 C -0.33764 0.25930 -1.15480 C -1.38414 0.55030 -0.02370 C -1.70564 -0.98160 0.07290 C -0.65914 -1.27260 -1.05820 H 1.78286 0.52170 -0.13130 H 1.20356 -2.23730 0.04260 H -0.68114 -1.71320 2.07970 H -0.10194 1.04580 1.90590 H -0.23944 0.82320 -2.07990 H -2.12424 1.34730 -0.04270 H -2.70324 -1.41140 0.13130 H -0.81854 -1.93550 -1.90580 ''' mol = Mole().build(xyz) print(mol.find_ring_atoms() == [0, 1, 2, 3, 4, 5, 6, 7])
StarcoderdataPython
129127
<gh_stars>0 from UM.Settings.Models.InstanceContainersModel import InstanceContainersModel from unittest.mock import MagicMock, patch import pytest @pytest.fixture def instance_containers_model(container_registry): with patch("UM.Settings.ContainerRegistry.ContainerRegistry.getInstance", MagicMock(return_value=container_registry)): result = InstanceContainersModel() result._fetchInstanceContainers = MagicMock(return_value = ({}, {"bla": {"name": "test", "id": "beep"}})) return result def test_simpleUpdate(instance_containers_model): instance_containers_model._update() items = instance_containers_model.items assert len(items) == 1 assert items[0]["name"] == "test" assert items[0]["id"] == "beep" test_validate_data_get_set = [ {"attribute": "sectionProperty", "value": "YAY"}, {"attribute": "filter", "value": {"beep": "oh noes"}} ] @pytest.mark.parametrize("data", test_validate_data_get_set) def test_getAndSet(data, instance_containers_model): model = instance_containers_model # Convert the first letter into a capital attribute = list(data["attribute"]) attribute[0] = attribute[0].capitalize() attribute = "".join(attribute) # mock the correct emit setattr(model, data["attribute"] + "Changed", MagicMock()) # Attempt to set the value getattr(model, "set" + attribute)(data["value"]) # Check if signal fired. signal = getattr(model, data["attribute"] + "Changed") assert signal.emit.call_count == 1 # Ensure that the value got set assert getattr(model, data["attribute"]) == data["value"] # Attempt to set the value again getattr(model, "set" + attribute)(data["value"]) # The signal should not fire again assert signal.emit.call_count == 1 def test_updateMetaData(instance_containers_model): instance_container = MagicMock() instance_container.getMetaData = MagicMock(return_value = {}) instance_container.getName = MagicMock(return_value = "name") instance_container.getId = MagicMock(return_value = "the_id") instance_containers_model.setProperty = MagicMock() instance_containers_model._updateMetaData(instance_container) calls = instance_containers_model.setProperty.call_args_list assert calls[0][0][2] == {} assert calls[1][0][2] == "name" assert calls[2][0][2] == "the_id" def test_fetchInstanceContainers(container_registry): with patch("UM.Settings.ContainerRegistry.ContainerRegistry.getInstance", MagicMock(return_value=container_registry)): model = InstanceContainersModel() model.setFilter({"id": "empty"}) assert model.filterList == [{"id": "empty"}] containers, metadatas = model._fetchInstanceContainers() assert "empty" in containers assert metadatas == dict() def test_getIOPlugins(instance_containers_model): registry = MagicMock() registry.getActivePlugins = MagicMock(return_value=["omg"]) registry.getMetaData = MagicMock(return_value = {"test": "blorp"}) with patch("UM.PluginRegistry.PluginRegistry.getInstance", MagicMock(return_value=registry)): assert instance_containers_model._getIOPlugins("test") == [("omg", {"test": "blorp"})]
StarcoderdataPython
153616
<filename>C++/testing/serverSock.py import socket #from threading import * HOST = '10.1.121.102' PORT = 65432 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen() conn, addr = s.accept() with conn: print('connected by', addr) while True: data = conn.recv(100000024) print(data) if not data: break conn.sendall(data)
StarcoderdataPython
122697
from .bot import Bot from .utils.logger import LogLevel __all__ = (LogLevel, Bot)
StarcoderdataPython
160071
#!/usr/bin/python2.4 # # Copyright 2010-2012 Google Inc. All Rights Reserved. """Renderscript Compiler Test. Runs subdirectories of tests for the Renderscript compiler. """ import filecmp import glob import os import re import shutil import subprocess import sys __author__ = 'Android' class Options(object): def __init__(self): return verbose = 0 cleanup = 1 updateCTS = 0 def CompareFiles(actual, expect): """Compares actual and expect for equality.""" if not os.path.isfile(actual): if Options.verbose: print 'Could not find %s' % actual return False if not os.path.isfile(expect): if Options.verbose: print 'Could not find %s' % expect return False return filecmp.cmp(actual, expect, False) def UpdateFiles(src, dst): """Update dst if it is different from src.""" if not CompareFiles(src, dst): print 'Copying from %s to %s' % (src, dst) shutil.copyfile(src, dst) def GetCommandLineArgs(filename): """Extracts command line arguments from first comment line in a file.""" f = open(filename, 'r') line = f.readline() if line[0] == '/' and line [1] == '/': return line[2:].strip() else: return '' def ExecTest(dirname): """Executes an llvm-rs-cc test from dirname.""" passed = True if Options.verbose != 0: print 'Testing %s' % dirname os.chdir(dirname) stdout_file = open('stdout.txt', 'w+') stderr_file = open('stderr.txt', 'w+') cmd_string = ('../../../../../../out/host/linux-x86/bin/llvm-rs-cc ' '-o tmp/ -p tmp/ ' '-MD ' '-I ../../../../../../frameworks/rs/scriptc/ ' '-I ../../../../../../mediatek/external/clang/lib/Headers/') base_args = cmd_string.split() rs_files = glob.glob('*.rs') fs_files = glob.glob('*.fs') rs_files += fs_files; rs_files.sort() # Extra command line arguments can be placed as // comments at the start of # any .rs file. We automatically bundle up all of these extra args and invoke # llvm-rs-cc with them. extra_args_str = '' for rs_file in rs_files: extra_args_str += GetCommandLineArgs(rs_file) extra_args = extra_args_str.split() args = base_args + extra_args + rs_files if Options.verbose > 1: print 'Executing:', for arg in args: print arg, print # Execute the command and check the resulting shell return value. # All tests that are expected to FAIL have directory names that # start with 'F_'. Other tests that are expected to PASS have # directory names that start with 'P_'. ret = 0 try: ret = subprocess.call(args, stdout=stdout_file, stderr=stderr_file) except: passed = False stdout_file.flush() stderr_file.flush() if Options.verbose > 1: stdout_file.seek(0) stderr_file.seek(0) for line in stdout_file: print 'STDOUT>', line, for line in stderr_file: print 'STDERR>', line, stdout_file.close() stderr_file.close() if dirname[0:2] == 'F_': if ret == 0: passed = False if Options.verbose: print 'Command passed on invalid input' elif dirname[0:2] == 'P_': if ret != 0: passed = False if Options.verbose: print 'Command failed on valid input' else: passed = (ret == 0) if Options.verbose: print 'Test Directory name should start with an F or a P' if not CompareFiles('stdout.txt', 'stdout.txt.expect'): passed = False if Options.verbose: print 'stdout is different' if not CompareFiles('stderr.txt', 'stderr.txt.expect'): passed = False if Options.verbose: print 'stderr is different' if Options.updateCTS: # Copy resulting files to appropriate CTS directory (if different). if passed and glob.glob('IN_CTS'): cts_path = '../../../../../cts/' cts_res_raw_path = cts_path + 'tests/res/raw/' cts_src_path = cts_path + 'tests/tests/renderscript/src/' for bc_src in glob.glob('tmp/*.bc'): bc_dst = re.sub('tmp\/', cts_res_raw_path, bc_src, 1) UpdateFiles(bc_src, bc_dst) for java_src in glob.glob('tmp/android/renderscript/cts/*.java'): java_dst = re.sub('tmp\/', cts_src_path, java_src, 1) UpdateFiles(java_src, java_dst) if Options.cleanup: try: os.remove('stdout.txt') os.remove('stderr.txt') shutil.rmtree('tmp/') except: pass os.chdir('..') return passed def Usage(): """Print out usage information.""" print ('Usage: %s [OPTION]... [TESTNAME]...' 'Renderscript Compiler Test Harness\n' 'Runs TESTNAMEs (all tests by default)\n' 'Available Options:\n' ' -h, --help Help message\n' ' -n, --no-cleanup Don\'t clean up after running tests\n' ' -u, --update-cts Update CTS test versions\n' ' -v, --verbose Verbose output\n' ) % (sys.argv[0]), return def main(): passed = 0 failed = 0 files = [] failed_tests = [] for arg in sys.argv[1:]: if arg in ('-h', '--help'): Usage() return 0 elif arg in ('-n', '--no-cleanup'): Options.cleanup = 0 elif arg in ('-u', '--update-cts'): Options.updateCTS = 1 elif arg in ('-v', '--verbose'): Options.verbose += 1 else: # Test list to run if os.path.isdir(arg): files.append(arg) else: print >> sys.stderr, 'Invalid test or option: %s' % arg return 1 if not files: tmp_files = os.listdir('.') # Only run tests that are known to PASS or FAIL # Disabled tests can be marked D_ and invoked explicitly for f in tmp_files: if os.path.isdir(f) and (f[0:2] == 'F_' or f[0:2] == 'P_'): files.append(f) for f in files: if os.path.isdir(f): if ExecTest(f): passed += 1 else: failed += 1 failed_tests.append(f) print 'Tests Passed: %d\n' % passed, print 'Tests Failed: %d\n' % failed, if failed: print 'Failures:', for t in failed_tests: print t, return failed != 0 if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
3253603
<gh_stars>1-10 """ https://leetcode.com/explore/interview/card/top-interview-questions-hard/116/array-and-strings/827/ """ from typing import List # refrenced solution to arrive at this result class Solution: def product_except_self(self, nums: List[int]) -> List[int]: """ no division O(n) desired runtime *except nums[i] brute force would be O(n^2) could do even better with a running prefix multiplier, but then would have to divide out nums[i] at each step n > 1 don't necessarily know that input is sorted, so can't use that dynamic programming? with division would be easy... two-finger approach? nope, would be O(n^2) ... we know all products are 32bits, so that isn't an issue to consider rn... binary approach? # use L and R arrays - was on the right idea there!!! """ N = len(nums) L, R = [0] * N, [0] * N L[0] = 1 for i in range(1, N): L[i] = L[i - 1] * nums[i - 1] R[N - 1] = 1 for j in reversed(range(N - 1)): R[j] = R[j + 1] * nums[j + 1] return [L[i] * R[i] for i in range(N)] class SolutionOptimized: def product_except_self(self, nums: List[int]) -> List[int]: N = len(nums) ans = [0] * N ans[0] = 1 for i in range(1, N): ans[i] = ans[i - 1] * nums[i - 1] # multiply by things on the right, and update that value R as we go R = 1 for j in reversed(range(N)): ans[j] *= R R *= nums[j] return ans
StarcoderdataPython
1713068
<gh_stars>0 import pytest from dynamodb_doctor import Model, String, ModelCreationException, Many ENDPOINT_URL = "http://localhost:58000" @pytest.mark.asyncio async def test_define_model_without_table(): with pytest.raises(ModelCreationException): class _(Model): name = String() @pytest.mark.asyncio async def test_list_all(table_fixture): test_model_name = "test_model" class TestModel(Model): name = String() class Meta: table = table_fixture test_model = TestModel(name=test_model_name) await test_model.save() test_models = await TestModel.all() assert(len(test_models) == 1) assert(test_models[0].id == test_model.id) @pytest.mark.asyncio async def test_list_one_to_many(table_fixture): class TestModelMany(Model): name = String() class Meta: table = table_fixture class TestModelOne(Model): title = String() many = Many(TestModelMany) class Meta: table = table_fixture test_model_one = TestModelOne( title="test", many=[{"name":"testone"}, {"name":"testtwo"}] ) await test_model_one.save() test_models = await TestModelOne.all() assert(len(test_models) == 1) one = test_models[0] assert(one.id == test_model_one.id) many = test_models[0].many assert(len(many) == 2) assert(many[0].name == "testone") assert(many[1].name == "testtwo")
StarcoderdataPython
4809677
<filename>dprint/_impl.py import tokenize import inspect import token import sys import re import io import os _NAME_MATCHING_REGEX = re.compile(r'\bdprint\b') def dprint(value): """A simple printing debugging helper. Designed to be used on any expression, to print the value of an expression, without modifying the result of the same. In most cases, the only visible effect of this function is a call to __str__ of the passed value and a call to the builtin print function. """ frame_info = inspect.stack()[1] message = _construct_message(value, frame_info) # The parts that matter. print(message) return value def _construct_message(value, frame_info): """Construct a human readable message for context. """ # Parts filename_str = _format_filename(frame_info.filename) line_str = _format_lineno(frame_info.lineno) function_str = _format_function(frame_info.function) expression_str = _format_expression(frame_info.code_context) val_str = _format_value(value) # Put an arrow on it. context = filename_str + line_str + function_str if context: context += "\n" # Show the expression with the output. if expression_str: main_text = " {} -> {}".format(expression_str, val_str) else: main_text = " -> {}" + val_str return context + main_text def _format_filename(filename): """Format the filename in a nicer manner than given. Try to make the filename shorter when it makes sense to, without losing the clarity of what it means. """ if filename is None: return "<unknown-file>" # A tiny helper def in_dir(dirpath, abspath): return dirpath == os.path.commonpath([dirpath, abspath]) abspath = os.path.abspath(filename) cwd = os.getcwd() # If it's in the current directory, return the path, with current directory # removed. if in_dir(cwd, abspath): return abspath[len(cwd) + 1:] # If it's importable, we show the path to it. for location in sys.path: if in_dir(location, abspath): fpath = abspath[len(location) + 1:] if fpath.endswith(".py"): fpath = fpath[:-3] return "<installed> " + fpath.replace(os.path.sep, ".") return abspath def _format_lineno(lineno): """Just convert the line number into a better form. """ if lineno is None: return "" return ":" + str(lineno) def _format_function(func_name): """Provide better context for a "function" of the caller. """ if func_name is None: return "" elif func_name == "<module>": return " (top level stmt)" else: return " in " + func_name def _format_expression(code_context): """Provide the expression used to call dprint. Constraints: - Function must be called dprint - A call should span no more than 1 line - No more than 1 call on 1 line If these constraints are violated, the current implementation doesn't manage to extract the expression. """ if not code_context: return "" line = code_context[0] # Tokenize the line token_list = tokenize.tokenize(io.BytesIO(line.encode('utf-8')).readline) # Determine the start and end of expression start = None end = None level = 0 # because nesting for tok in token_list: # Looking for the start of string. if start is None: if tok.type == token.NAME and tok.string == "dprint": start = tok.start[1] # we get the proper value later. continue if end is None: if tok.type != token.OP: continue if tok.string == "(": if level == 0: # opening parens start = tok.end[1] level += 1 elif tok.string == ")": level -= 1 if level == 0: # closing parens end = tok.start[1] # This is fine since we don't need more information break return line[start:end] def _format_value(value): """Convert to a string or be very visibly wrong. """ try: val_str = repr(value) except Exception: val_str = "<could not convert to string>" return val_str
StarcoderdataPython
3222832
<filename>test/test_minimum_jerk_trajectory.py import numpy as np from movement_primitives.minimum_jerk_trajectory import MinimumJerkTrajectory from numpy.testing import assert_array_almost_equal def test_step_through_minimum_jerk_trajectory(): mjt = MinimumJerkTrajectory(3, 1.0, 0.01) mjt.configure(start_y=np.zeros(3), goal_y=np.ones(3)) y = np.zeros(3) yd = np.zeros(3) y, yd = mjt.n_steps_open_loop(y, yd, 50) assert_array_almost_equal(y, 0.49 * np.ones(3), decimal=2) assert_array_almost_equal(yd, 1.9, decimal=2) y, yd = mjt.n_steps_open_loop(y, yd, 1) assert_array_almost_equal(y, 0.51 * np.ones(3), decimal=2) assert_array_almost_equal(yd, 1.9, decimal=2) y, yd = mjt.n_steps_open_loop(y, yd, 50) assert_array_almost_equal(y, np.ones(3)) assert_array_almost_equal(yd, np.zeros(3)) mjt.reset() y, yd = mjt.n_steps_open_loop(y, yd, 101) assert_array_almost_equal(y, np.ones(3)) assert_array_almost_equal(yd, np.zeros(3))
StarcoderdataPython
3320544
from pynwb import TimeSeries import numpy as np from bisect import bisect, bisect_left def get_timeseries_tt(node: TimeSeries, istart=0, istop=None) -> np.ndarray: """ For any TimeSeries, return timestamps. If the TimeSeries uses starting_time and rate, the timestamps will be generated. Parameters ---------- node: pynwb.TimeSeries istart: int, optional Optionally sub-select the returned times - lower bound istop: int, optional Optionally sub-select the returned times - upper bound Returns ------- numpy.ndarray """ if node.timestamps is not None: return node.timestamps[istart:istop] else: if not np.isfinite(node.starting_time): starting_time = 0 else: starting_time = node.starting_time if istop is None: return np.arange(istart, len(node.data)) / node.rate + starting_time elif istop > 0: return np.arange(istart, istop) / node.rate + starting_time else: return ( np.arange(istart, len(node.data) + istop - 1) / node.rate + starting_time ) def get_timeseries_maxt(node: TimeSeries) -> float: """ Returns the maximum time of any TimeSeries Parameters ---------- node: pynwb.TimeSeries Returns ------- float """ if node.timestamps is not None: return node.timestamps[-1] elif np.isnan(node.starting_time): return (len(node.data) - 1) / node.rate else: return (len(node.data) - 1) / node.rate + node.starting_time def get_timeseries_mint(node: TimeSeries) -> float: """ Returns the minimum time of any TimeSeries Parameters ---------- node: pynwb.TimeSeries Returns ------- float """ if node.timestamps is not None: return node.timestamps[0] elif np.isnan(node.starting_time): return 0 else: return node.starting_time def get_timeseries_in_units(node: TimeSeries, istart=None, istop=None): """ Convert data into the designated units Parameters ---------- node: pynwb.TimeSeries istart: int istop: int Returns ------- numpy.ndarray, str """ data = node.data[istart:istop] if node.conversion and np.isfinite(node.conversion): data = data * node.conversion unit = node.unit else: unit = None return data, unit def timeseries_time_to_ind(node: TimeSeries, time, ind_min=None, ind_max=None) -> int: """ Get the index of a certain time for any TimeSeries. For TimeSeries that use timestamps, bisect is used. You can optionally provide ind_min and ind_max to constrain the search. Parameters ---------- node: pynwb.TimeSeries time: float ind_min: int, optional ind_max: int, optional Returns ------- """ if node.timestamps is not None: kwargs = dict() if ind_min is not None: kwargs.update(lo=ind_min) if ind_max is not None: kwargs.update(hi=ind_max) id_found = bisect_left(node.timestamps, time, **kwargs) return id_found if id_found < len(node.data) else len(node.data) - 1 else: if np.isnan(node.starting_time): starting_time = 0 else: starting_time = node.starting_time id_found = int(np.ceil((time - starting_time) * node.rate)) return id_found if id_found < len(node.data) else len(node.data) - 1 def bisect_timeseries_by_times( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries starts: iterable time at which to bisect duration: float duration of window after start traces: int index into the second dim of data Returns ------- out: list list with bisected arrays from data """ out = [] for start in starts: if timeseries.rate is not None: idx_start = int((start - timeseries.starting_time) * timeseries.rate) idx_stop = int(idx_start + duration * timeseries.rate) else: idx_start = bisect(timeseries.timestamps, start) idx_stop = bisect(timeseries.timestamps, start + duration, lo=idx_start) if len(timeseries.data.shape) > 1 and traces is not None: out.append(timeseries.data[idx_start:idx_stop, traces]) else: out.append(timeseries.data[idx_start:idx_stop]) return out def align_by_times_with_timestamps( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.timestamps is not None, "supply timeseries with timestamps" return bisect_timeseries_by_times(timeseries, starts, duration, traces) def align_by_times_with_rate( timeseries: TimeSeries, starts, duration: float, traces=None ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.rate is not None, "supply timeseries with start_time and rate" return np.array(bisect_timeseries_by_times(timeseries, starts, duration, traces)) def align_timestamps_by_trials( timeseries: TimeSeries, starts, before: float, after: float ): """ Parameters ---------- timeseries: TimeSeries timeseries with variable timestamps starts: array-like starts in seconds duration: float duration in seconds Returns ------- out: list list: length=(n_trials); list[0]: array, shape=(n_time, ...) """ assert timeseries.timestamps is not None, "supply timeseries with timestamps" out = [] for start in starts: idx_start = bisect(timeseries.timestamps, start) idx_stop = bisect(timeseries.timestamps, start + before + after, lo=idx_start) out.append(timeseries.timestamps[idx_start:idx_stop]) return [list(np.array(i) - i[0] - before) for i in out] def align_by_trials( timeseries: TimeSeries, start_label="start_time", before=0.0, after=1.0, ): """ Args: timeseries: TimeSeries start_label: str default: 'start_time' before: float time after start_label in secs (positive goes back in time) after: float time after stop_label in secs (positive goes forward in time) Returns: np.array(shape=(n_trials, n_time, ...)) """ trials = timeseries.get_ancestor("NWBFile").trials return align_by_time_intervals(timeseries, trials, start_label, before, after) def align_by_time_intervals( timeseries: TimeSeries, intervals, start_label="start_time", before=0.0, after=0.0, traces=None, ): """ Args: timeseries: pynwb.TimeSeries intervals: pynwb.epoch.TimeIntervals start_label: str default: 'start_time' before: float time after start_label in secs (positive goes back in time) after: float time after stop_label in secs (positive goes forward in time) timestamps: bool if alignment uses timestamps or constant rate and starting time in TimeSeries Returns: np.array(shape=(n_trials, n_time, ...)) """ starts = np.array(intervals[start_label][:]) - before if timeseries.rate is not None: return align_by_times_with_rate( timeseries, starts, duration=after + before, traces=traces ) else: return align_by_times_with_timestamps( timeseries, starts, duration=after + before, traces=traces )
StarcoderdataPython
1605940
<filename>Site-Campus/sitecampus/migrations/0007_auto_20191121_1902.py<gh_stars>1-10 # Generated by Django 2.2.7 on 2019-11-21 19:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sitecampus', '0006_post_sutia'), ] operations = [ migrations.AlterField( model_name='autor', name='semestre', field=models.CharField(max_length=6), ), migrations.AlterField( model_name='post', name='semestrepub', field=models.CharField(max_length=6), ), ]
StarcoderdataPython
1647869
<filename>python/cugraph/cugraph/tests/conftest.py # Copyright (c) 2021, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import pytest from dask.distributed import Client from dask_cuda import LocalCUDACluster from dask_cuda.initialize import initialize from cugraph.comms import comms as Comms from cugraph.dask.common.mg_utils import get_visible_devices # module-wide fixtures @pytest.fixture(scope="module") def dask_client(): dask_scheduler_file = os.environ.get("SCHEDULER_FILE") cluster = None client = None tempdir_object = None if dask_scheduler_file: # Env var UCX_MAX_RNDV_RAILS=1 must be set too. initialize(enable_tcp_over_ucx=True, enable_nvlink=True, enable_infiniband=True, enable_rdmacm=True, # net_devices="mlx5_0:1", ) client = Client(scheduler_file=dask_scheduler_file) print("\ndask_client fixture: client created using " f"{dask_scheduler_file}") else: # The tempdir created by tempdir_object should be cleaned up once # tempdir_object goes out-of-scope and is deleted. tempdir_object = tempfile.TemporaryDirectory() cluster = LocalCUDACluster(local_directory=tempdir_object.name) client = Client(cluster) client.wait_for_workers(len(get_visible_devices())) print("\ndask_client fixture: client created using LocalCUDACluster") Comms.initialize(p2p=True) yield client Comms.destroy() # Shut down the connected scheduler and workers # therefore we will no longer rely on killing the dask cluster ID # for MNMG runs client.shutdown() if cluster: cluster.close() print("\ndask_client fixture: client.close() called")
StarcoderdataPython
162911
<reponame>Aditya-aot/Web-Scraping-of-car24-in-Python<gh_stars>0 from bs4 import BeautifulSoup import pandas as pd import requests import re url = 'https://www.cars24.com/buy-used-honda-cars-delhi-ncr/' page = requests.get(url) soup = BeautifulSoup(page.text,'html.parser') Cars_dict = {} cars_no = 0 no_page = 1 tables = soup.find_all("div", {"class": "col-sm-12 col-md-6 col-lg-4"}) while cars_no < 42: for table in tables: url = 'https://www.cars24.com/buy-used-honda-cars-delhi-ncr/' page = requests.get(url) soup = BeautifulSoup(page.text, 'html.parser') name = table.find('h3', {'class': '_1Nvyc _1Corb'}).text model_date = table.find('li', {'itemprop': 'modelDate'}).text model_date = int(model_date) engine_1 = table.find('li', {'itemprop': 'vehicleEngine'}).text engine = (re.split('•', engine_1)) engine = ''.join(engine) price_1 = table.find('div', {'class': 'col-5 col-md-12 col-xl-5'}).text price_2 = (re.split('₹|,|', price_1)) price = ''.join(price_2) price = float(price) location = table.find('a', {'class': '_1Kids'}).text viwe_1 = table.find('a', {'class': '_3dFtM'}).text viwe_2 = (re.split('K Views|Views|', viwe_1)) viwe_3 = ''.join(viwe_2) viwe_3 = float(viwe_3) viwe = (viwe_3) * 100 link = 'https://www.cars24.com/' + table.find('a', {'class': 'qD5mC'}).get('href') car_1 = requests.get(link) car = car_1.text car_soup = BeautifulSoup(car, 'html.parser') emi_1 = car_soup.find('span', {'class': '_3N4Rp'}) emi_2 = emi_1.text if emi_1 else "N/A" emi_3 = (re.split('EMI starts @|,|', emi_2)) emi_4 = ''.join(emi_3) if emi_4 != "N/A": emi = float(emi_4) else: emi = 'null' overviews = car_soup.find('ul', {"class": "_1wIhE"}) for overview in overviews: detail = overview.text if detail[0] == 'C': car_id = (detail[6:-1] + detail[-1]) elif detail[0] == 'K': km_driven = (detail[10:-1] + detail[-1]) elif detail[0] == 'F': fuel_type = (detail[9:-1] + detail[-1]) elif detail[0] == 'O': owner = (detail[5:-1] + detail[-1]) elif detail[0] == 'T': transmission = (detail[12:-1] + detail[-1]) elif detail[0] == 'R': rot = (detail[3:-1] + detail[-1]) cars_no = cars_no + 1 Cars_dict[cars_no] = [name, model_date, engine, location, viwe, price, link, emi, car_id, km_driven, fuel_type, owner, transmission, rot] no_page = no_page + 1 no_page = str(no_page) url = 'https://www.cars24.com/buy-used-honda-cars-delhi-ncr/' + '?page=' + no_page no_page = int(no_page) cars_dict_df = pd.DataFrame.from_dict(Cars_dict, orient='index', columns=['Name_of_car', 'Model_Date', 'Engine', 'Location', 'Viwe', 'Price_Rs', 'Link', 'Emi_Starts_At :', 'Car_ID', 'KmS_Driven', 'Fuel_Type', 'Owner', 'Transmission', 'RTO']) cars_dict_df cars_dict_df.to_csv('about_cars24.csv')
StarcoderdataPython
3297064
<filename>notes/migrations/0003_auto_20171008_1407.py # -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-08 08:37 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('notes', '0002_auto_20171008_1406'), ] operations = [ migrations.CreateModel( name='Note', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=30)), ('description', models.TextField()), ('created_date', models.DateTimeField(default=datetime.datetime(2017, 10, 8, 8, 37, 29, 863199, tzinfo=utc))), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.RemoveField( model_name='notes', name='author', ), migrations.DeleteModel( name='notes', ), ]
StarcoderdataPython
1662390
<gh_stars>10-100 #!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import d1_common import d1_common.type_conversions import d1_client.baseclient_1_2 class DataONEBaseClient_2_0(d1_client.baseclient_1_2.DataONEBaseClient_1_2): """Extend DataONEBaseClient_1_2 with functionality common between Member and Coordinating nodes that was added in v2.0 of the DataONE infrastructure. For details on how to use these methods, see: https://releases.dataone.org/online/api-documentation-v2.0/apis/MN_APIs.html https://releases.dataone.org/online/api-documentation-v2.0/apis/CN_APIs.html """ def __init__(self, *args, **kwargs): """See baseclient.DataONEBaseClient for args.""" super(DataONEBaseClient_2_0, self).__init__(*args, **kwargs) self._log = logging.getLogger(__name__) self._api_major = 2 self._api_minor = 0 self._pyxb_binding = d1_common.type_conversions.get_pyxb_binding_by_api_version( self._api_major, self._api_minor ) # ============================================================================= # v2.0 APIs shared between CNs and MNs. # ============================================================================= def updateSystemMetadataResponse(self, pid, sysmeta_pyxb, vendorSpecific=None): """MNStorage.updateSystemMetadata(session, pid, sysmeta) → boolean http://jenkins-1.dataone.org/documentation/unstable/API-Documentation- development/apis/MN_APIs.html#MNStorage.updateSystemMetadata. Args: pid: sysmeta_pyxb: vendorSpecific: Returns: """ mmp_dict = { "pid": pid.encode("utf-8"), "sysmeta": ("sysmeta.xml", sysmeta_pyxb.toxml("utf-8")), } return self.PUT("meta", fields=mmp_dict, headers=vendorSpecific) def updateSystemMetadata(self, pid, sysmeta_pyxb, vendorSpecific=None): response = self.updateSystemMetadataResponse(pid, sysmeta_pyxb, vendorSpecific) return self._read_boolean_response(response)
StarcoderdataPython
112886
from rest_framework import serializers from ..models import Anime, Movie, Show class AnimeSerializer(serializers.ModelSerializer): class Meta: model = Anime fields = '__all__' class MovieSerializer(serializers.ModelSerializer): class Meta: model = Movie fields = '__all__' class ShowSerializer(serializers.ModelSerializer): class Meta: model = Show fields = '__all__'
StarcoderdataPython
1732014
import shap import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt try: import plotly.express as px import plotly.graph_objects as go except ModuleNotFoundError: _has_plotly = False _plotly_exception_message = ( 'Plotly is required to run this pydrift functionality.' ) else: _has_plotly = True _plotly_exception_message = None from typing import List, Union, Dict, Tuple from sklearn.pipeline import Pipeline from pathlib import Path from ..models import ScikitModel from ..decorators import check_optional_module class InterpretableDrift: def __init__(self, model: ScikitModel, X_train: pd.DataFrame, X_test: pd.DataFrame, y_train: pd.DataFrame, y_test: pd.DataFrame, column_names: List[str]): """Inits `InterpretableDrift` for a given `model`, `X_train` and `X_test` datasets and `column_names """ if isinstance(model, Pipeline): X_train_to_shap = model[:-1].transform(X_train) X_test_to_shap = model[:-1].transform(X_test) model_to_shap = model.steps[-1][1] else: X_train_to_shap = X_train.copy() X_test_to_shap = X_test.copy() model_to_shap = model self.model = model_to_shap self.X_train_to_shap = pd.DataFrame(X_train_to_shap, columns=column_names) self.X_test_to_shap = pd.DataFrame(X_test_to_shap, columns=column_names) self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test self.column_names = column_names self.shap_values = np.empty(0) def compute_shap_values(self) -> None: """Shap values depending on what model we are using `shap.TreeExplainer` by default and if not it uses `KernelExplainer` Also provides compatibility with sklearn pipelines `shap_values` are stored in `self.shap_values` """ with warnings.catch_warnings(): # Some `shap` warnings are not useful for this implementation warnings.simplefilter("ignore") try: explainer = shap.TreeExplainer( model=self.model, feature_perturbation='tree_path_dependent' ) shap_values_arguments = dict(X=self.X_test_to_shap) except Exception: def model_predict(data_array): data_frame = pd.DataFrame(data_array, columns=self.column_names) return self.model.predict_proba(data_frame)[:, 1] explainer = shap.KernelExplainer(model=model_predict, data=shap.sample( self.X_train_to_shap, 100 ), link='logit') shap_values_arguments = dict(X=self.X_test_to_shap, l1_reg='aic') self.shap_values = explainer.shap_values(**shap_values_arguments) def most_discriminative_features_plot(self, save_plot_path: Path = None) -> None: """Plots most discriminative features with its shap values You can save the plot in `save_plot_path` path """ if self.shap_values.size == 0: self.compute_shap_values() shap.summary_plot(self.shap_values, self.X_test_to_shap, plot_type='bar', title='Most Discriminative Features', show=True if not save_plot_path else False) if save_plot_path: plt.savefig(save_plot_path, bbox_inches='tight') @check_optional_module(has_module=_has_plotly, exception_message=_plotly_exception_message) def both_histogram_plot(self, column: str, fillna_value: Union[str, float, int] = None, nbins: int = None, save_plot_path: Path = None) -> None: """Plots histogram for the column passed in `column` You can set `nbins` to any number that makes your plot better You can save the plot in `save_plot_path` path Requires `plotly` """ if not _has_plotly: raise ModuleNotFoundError( ) X_train_column = self.X_train.loc[:, [column]] X_test_column = self.X_test.loc[:, [column]] if fillna_value: X_train_column.fillna(fillna_value, inplace=True) X_test_column.fillna(fillna_value, inplace=True) X_train_total_nans = X_train_column[column].isna().sum() X_test_total_nans = X_test_column[column].isna().sum() if X_train_total_nans or X_test_total_nans: warnings.warn( f'Column {column} has ' f'{X_train_total_nans + X_test_total_nans} nan values, ' f'you can use `fillna_value` if you need it' ) X_train_column['is_left'] = self.y_train.to_numpy() X_test_column['is_left'] = self.y_test.to_numpy() X_train_and_test = pd.concat([X_train_column, X_test_column]) fig = px.histogram(X_train_and_test, title=f'Both Histogram Normalized For {column}', x=column, color='is_left', barmode='group', nbins=nbins, histnorm='probability density') fig.update_layout(bargroupgap=.1) if save_plot_path: fig.write_html(save_plot_path) else: fig.show() @check_optional_module(has_module=_has_plotly, exception_message=_plotly_exception_message) def feature_importance_vs_drift_map_plot( self, dict_each_column_drift_coefficient: Dict[str, float], top: int = 10, save_plot_path: Path = None) -> None: """Feature importance versus drift coefficient map, with this plot you can visualize the most critical features involved in your model drift process By default shows you the top 10 most important features but you can customize it with `top` parameter You can save the plot in `save_plot_path` path """ df_feature_importance = pd.DataFrame( zip(self.column_names, np.abs(self.shap_values).mean(axis=0)), columns=['Feature Name', 'Feature Importance'] ) df_feature_importance['Drift Coefficient'] = ( (df_feature_importance['Feature Name'] .map(dict_each_column_drift_coefficient)) ) value_min = df_feature_importance['Feature Importance'].min() value_max = df_feature_importance['Feature Importance'].max() df_feature_importance['Feature Importance Scaled'] = ( (df_feature_importance['Feature Importance'] - value_min) / (value_max - value_min) ) df_feature_importance_to_plot = ( df_feature_importance .sort_values('Feature Importance Scaled', ascending=False) .nlargest(top, columns='Feature Importance Scaled') ) fig = px.scatter(df_feature_importance_to_plot, x='Feature Importance Scaled', y='Drift Coefficient', text='Feature Name', hover_name='Feature Name', hover_data={'Feature Importance Scaled': ':.2f', 'Drift Coefficient': ':.2f', 'Feature Importance': False, 'Feature Name': False}, title='Feature Importance vs Drift Map') fig.update_traces(marker=dict(size=10, opacity=.75)) axis_value_min, axis_value_medium, axis_value_max = 0, .5, 1 fig.add_trace( go.Scatter( x=[axis_value_min + .15, axis_value_max - .15, axis_value_max - .15, axis_value_min + .15], y=[axis_value_max + .05, axis_value_max + .05, axis_value_min - .05, axis_value_min - .05], text=['NON-IMPORTANT FEATURES DRIFTED', 'IMPORTANT FEATURES AND DRIFTED', 'IMPORTANT FEATURES NON-DRIFTED', 'NON-IMPORTANT FEATURES NON-DRIFTED'], mode="text", showlegend=False ) ) fig.add_shape( type="rect", x0=axis_value_min, y0=axis_value_min, x1=axis_value_medium, y1=axis_value_medium, fillcolor="khaki", opacity=.25 ) fig.add_shape( type="rect", x0=axis_value_min, y0=axis_value_medium, x1=axis_value_medium, y1=axis_value_max, fillcolor="coral", opacity=.25 ) fig.add_shape( type="rect", x0=axis_value_medium, y0=axis_value_min, x1=axis_value_max, y1=axis_value_medium, fillcolor="limegreen", opacity=.25 ) fig.add_shape( type="rect", x0=axis_value_medium, y0=axis_value_medium, x1=axis_value_max, y1=axis_value_max, fillcolor="crimson", opacity=.25 ) fig.update_layout( xaxis=dict(range=[axis_value_min - .05, axis_value_max + .05]), yaxis=dict(range=[axis_value_min - .1, axis_value_max + .1]) ) if save_plot_path: fig.write_html(save_plot_path) else: fig.show() @staticmethod @check_optional_module(has_module=_has_plotly, exception_message=_plotly_exception_message) def weights_plot(weights: np.array, save_plot_path: Path = None) -> None: """Weights plot, the higher the weight, the more similar the train data is to the test data This will be used to retrain the model You can save the plot in `save_plot_path` path """ fig = px.histogram(weights, title='Weights From The Discriminative Model') fig.update_layout(showlegend=False) if save_plot_path: fig.write_html(save_plot_path) else: fig.show() @staticmethod def _drop_outliers_between( df: pd.DataFrame, feature: str, percentiles: Tuple[float, float] = (.05, .95)) -> pd.DataFrame: """Drop outliers for column `feature` of `df` between `percentiles` """ lower, upper = percentiles return df[df[feature].between(df[feature].quantile(lower), df[feature].quantile(upper))] @staticmethod def _convert_to_mid_interval_with_max_bins( serie: pd.Series, bins: int = 25) -> pd.DataFrame: """Convert `series` values to a binned version of it in `bins` as number of intervals """ return (pd .cut(serie, bins=bins) .apply(lambda x: x.mid) .astype(float)) @check_optional_module(has_module=_has_plotly, exception_message=_plotly_exception_message) def partial_dependence_comparison_plot( self, feature: str, percentiles: Tuple[float, float] = (.05, .95), max_bins: int = 25, save_plot_path: Path = None) -> None: """Partial dependence plot for `feature` in both datasets predictions You can save the plot in `save_plot_path` path """ X_train_copy = self.X_train.copy() X_test_copy = self.X_test.copy() X_train_copy['is_left'] = '1' X_test_copy['is_left'] = '0' X_train_copy['Prediction'] = ( self.model.predict_proba(X_train_copy)[:, 1] ) X_test_copy['Prediction'] = ( self.model.predict_proba(X_test_copy)[:, 1] ) is_numeric = pd.api.types.is_numeric_dtype( X_train_copy[feature] ) if is_numeric: X_train_copy = ( self._drop_outliers_between(X_train_copy, feature=feature, percentiles=percentiles) ) X_test_copy = ( self._drop_outliers_between(X_test_copy, feature=feature, percentiles=percentiles) ) bins = min(X_train_copy[feature].nunique(), max_bins) X_train_copy[feature] = ( self._convert_to_mid_interval_with_max_bins( X_train_copy[feature], bins ) ) X_test_copy[feature] = ( self._convert_to_mid_interval_with_max_bins( X_test_copy[feature], bins ) ) X_both = pd.concat([X_train_copy, X_test_copy]) data_to_plot = ( X_both .groupby(['is_left', feature]) .Prediction .mean() .reset_index() ) if is_numeric: fig = px.scatter(data_to_plot, x=feature, y='Prediction', color='is_left', trendline="ols") else: fig = px.bar(data_to_plot, x=feature, y='Prediction', color='is_left', barmode='group') fig.update_layout(title=f'Partial Dependence For {feature}', bargroupgap=.1) if save_plot_path: fig.write_html(save_plot_path) else: fig.show() @check_optional_module(has_module=_has_plotly, exception_message=_plotly_exception_message) def drift_by_sorted_bins_plot(self, feature: str, bins: int = 10, save_plot_path: Path = None) -> None: """Concat all the data in both dataframes and sort it by `feature`, then it cuts in `bins` number of bins and computes quantity of registers in each bin You can save the plot in `save_plot_path` path """ X_train_copy = self.X_train.copy() X_test_copy = self.X_test.copy() X_train_copy['is_left'] = '1' X_test_copy['is_left'] = '0' X_both = ( pd .concat([X_train_copy[[feature, 'is_left']], X_test_copy[[feature, 'is_left']]]) .sample(frac=1) .reset_index() ) is_categorical = not pd.api.types.is_numeric_dtype( X_both[feature] ) if is_categorical: X_both[feature] = X_both[feature].astype('category') X_both['rank'] = ( X_both[feature].cat.codes .rank(method='first') if is_categorical else X_both[feature].rank(method='first') ) X_both['Bin Number'] = pd.qcut(X_both['rank'], q=bins, labels=range(1, bins + 1)) fig = px.histogram(X_both, x='Bin Number', color='is_left', nbins=bins, barmode='group') fig.update_layout(title=f'Drift By Bin For {feature}', bargroupgap=.1, xaxis=dict(tickmode='linear')) if save_plot_path: fig.write_html(save_plot_path) else: fig.show()
StarcoderdataPython
3375891
<filename>jes/jes-v5.020-linux/demos/turtle.py w = makeWorld(500, 500) t = makeTurtle(w) penUp(t) moveTo(t, int(500 / 3), 250) penDown(t) for i in range(0, 360): turn(t, 1) forward(t, 3)
StarcoderdataPython
1659550
import numpy as np import cv2 import matplotlib.pyplot as plt import pandas as pd from scipy.optimize import linear_sum_assignment from scipy import signal from sklearn.neighbors import KernelDensity import copy import os import utm import rasterio from CountLine import CountLine import sys sys.path.append('/home/golden/general-detection/functions') import koger_tracking as ktf def mark_bats_on_image(image_raw, centers, radii=None, scale_circle_size=5, contours=None, draw_contours=False): ''' Draw a bunch of circles on given image image: 2D or 3D image centers: shape(n,2) array of circle centers radii: list of circle radii ''' if len(image_raw.shape) < 2: print('image has too few dimensions') return None if len(image_raw.shape) == 2: color = 200 else: if image_raw.shape[2] == 3: color = (0, 255, 255) else: print('image is the wrong shape') return None image = np.copy(image_raw) if radii is None: radii = np.ones(len(centers)) for circle_ind, radius in enumerate(radii): cv2.circle(image, (centers[circle_ind, 0].astype(int), centers[circle_ind, 1].astype(int)), int(radius * scale_circle_size), color , 1) if draw_contours and contours: for contour in contours: if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) box_d = np.int0(box) cv2.drawContours(image, [box_d], 0, (0,255,100), 1) return image def get_tracks_in_frame(frame_ind, track_list): """ Return list of all tracks present in frame ind. """ tracks_in_frame = [] for track in track_list: if (track['last_frame'] >= frame_ind and track['first_frame'] <= frame_ind): tracks_in_frame.append(track) return tracks_in_frame def draw_tracks_on_frame(frame, frame_ind, track_list, positions=None, figure_scale=60, track_width=2, position_alpha=.5, draw_whole_track=False, shift=0): """ Draw all active tracks and all detected bat locations on given frame. frame: loaded image - np array frame_ind: frame number track_list: list of all tracks in observation positions: all detected bat positions in observation figure_scale: how big to display output image track_width: width of plotted tracks position_alpha: alpha of position dots draw_whole_track: Boolean draw track in the future of frame_ind shift: compensate for lack of padding in network when drawing tracks on input frames """ plt.figure( figsize = (int(frame.shape[1] / figure_scale), int(frame.shape[0] / figure_scale))) plt.imshow(frame) num_tracks = 0 for track in track_list: if (track['last_frame'] >= frame_ind and track['first_frame'] <= frame_ind): rel_frame = frame_ind - track['first_frame'] if draw_whole_track: plt.plot(track['track'][:, 0] + shift, track['track'][:, 1] + shift, linewidth=track_width) else: plt.plot(track['track'][:rel_frame, 0] + shift, track['track'][:rel_frame, 1] + shift, linewidth=track_width) num_tracks += 1 if positions: plt.scatter(positions[frame_ind][:,0] + shift, positions[frame_ind][:,1] + shift, c='red', alpha=position_alpha) plt.title('Tracks: {}, Bats: {}'.format(num_tracks, len(positions[frame_ind]))) def subtract_background(images, image_ind, background_sum): ''' Subtract an averaged background from the image. Average over frame_range in the past and future images: 3d numpy array (num images, height, width) image_ind: index in circular image array background_sum: sum of blue channel pixels across 0 dimension of images ''' background = np.floor_divide(background_sum, images.shape[0]) # The order of subtraction means dark bats are now light in image_dif image_dif = background - images[image_ind, :, :, 2] return image_dif, background def preprocess_to_binary(image, binary_thresh, background): ''' Converts 2D image to binary after rescaling pixel intensity image: 2D np array low_pix_value: pixel value below which all pixels are set to 0 high_pix_value: pixel value above which all pixels are set to 255 binary_thresh: number from 0 - 255, above set to 255, bellow, set to 0 background: background image (2D probably blue channel) ''' # # Rescale image pixels within range # image_rescale = exposure.rescale_intensity( # image, in_range=(low_pix_value, high_pix_value), out_range=(0, 255)) image_rescale = image # Binarize image based on threshold min_difference = 5 threshold = binary_thresh * background threshold = np.where(threshold < min_difference, min_difference, threshold) binary_image = np.where(image < threshold, 0, 255) return binary_image def get_blob_info(binary_image, background=None, size_threshold=0): ''' Get contours from binary image. Then find center and average radius of each contour binary_image: 2D image background: 2D array used to see locally how dark the background is size_threshold: radius above which blob is considered real ''' contours, hierarchy = cv2.findContours(binary_image.astype(np.uint8).copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) centers = [] # Size of bounding rectangles sizes = [] areas = [] # angle of bounding rectangle angles = [] rects = [] good_contours = [] contours = [np.squeeze(contour) for contour in contours] for contour_ind, contour in enumerate(contours): if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) if background is not None: darkness = background[int(rect[0][1]), int(rect[0][0])] if darkness < 30: dark_size_threshold = size_threshold + 22 elif darkness < 50: dark_size_threshold = size_threshold + 15 elif darkness < 80: dark_size_threshold = size_threshold + 10 elif darkness < 100: dark_size_threshold = size_threshold + 5 # elif darkness < 130: # dark_size_threshold = size_threshold + 3 else: dark_size_threshold = size_threshold else: dark_size_threshold = 0 # just used in if statement area = rect[1][0] * rect[1][1] if (area >= dark_size_threshold) or background is None: centers.append(rect[0]) sizes.append(rect[1]) angles.append(rect[2]) good_contours.append(contour) areas.append(area) rects.append(rect) if centers: centers = np.stack(centers, 0) sizes = np.stack(sizes, 0) else: centers = np.zeros((0,2)) return (centers, np.array(areas), good_contours, angles, sizes, rects) def draw_circles_on_image(image, centers, sizes, rects=None): ''' Draw a bunch of circles on given image image: 2D or 3D image centers: shape(n,2) array of circle centers rects: list of minimum bounding rectangles ''' if len(image.shape) < 2: print('image has too few dimensions') return None if len(image.shape) == 2: color = 200 rect_color = 100 else: if image.shape[2] == 3: color = (0, 255, 255) rect_color = (0,255,100) else: print('image is the wrong shape') return None for circle_ind, size in enumerate(sizes): cv2.circle(image, (centers[circle_ind, 0].astype(int), centers[circle_ind, 1].astype(int)), int(np.max(size)), color , 1) if rects: for rect in rects: box = cv2.boxPoints(rect) box_d = np.int0(box) cv2.drawContours(image, [box_d], 0, rect_color, 1) return image def update_circular_image_array(images, image_ind, image_files, frame_num, background_sum): """ Add new image if nessesary and increment image_ind. Also update sum of pixels across array for background subtraction. If frame_num is less than half size of array than don't need to replace image since intitally all images in average are in the future. images: image array size (num images averaging, height, width, channel) image_ind: index of focal frame in images image_files: list of all image files in observation frame_num: current frame number in observation background_sum: sum of current frames blue dimension across frames """ if (frame_num > int(images.shape[0] / 2) and frame_num < (len(image_files) - int(images.shape[0] / 2))): replace_ind = image_ind + int(images.shape[0] / 2) replace_ind %= images.shape[0] # Subtract the pixel values that are about to be removed from background background_sum -= images[replace_ind, :, :, 2] image_file = image_files[frame_num + int(images.shape[0] / 2)] image = cv2.imread(image_file) images[replace_ind] = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Add new pixel values to the background sum background_sum += images[replace_ind, :, :, 2] image_ind += 1 # image_ind should always be in between 0 and images.shape - 1 image_ind = image_ind % images.shape[0] return images, image_ind, background_sum def initialize_image_array(image_files, focal_frame_ind, num_images): """ Create array of num_images x h x w x 3. Args: image_files (list): sorted paths to all image files in observation focal_frame_ind (int): number of the frame being process num_images (int): number of frames used for background subtraction return array, index in array where focal frame is located """ images = [] first_frame_ind = focal_frame_ind - (num_images // 2) if num_images % 2 == 0: # even last_frame_ind = focal_frame_ind + (num_images // 2) - 1 else: # odd last_frame_ind = focal_frame_ind + (num_images // 2) for file in image_files[first_frame_ind:last_frame_ind+1]: image = cv2.imread(file) images.append(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) images = np.stack(images) focal_ind = num_images // 2 return(images, focal_ind) def process_frame(images, focal_frame_ind, bat_thresh, background_sum, bat_area_thresh, debug=False): """Process bat frame. images: n x h x w x c array where the n images are averaged together for background subtraction focal_frame_ind: which index in images array should be processed bat_thresh: float value to use for thresholding bat from background background_sum: sum of all blue channel pixels across the n dimension of images debug: if true return binary image """ size_threshold = bat_area_thresh max_bats = 600 mean = np.mean(images[focal_frame_ind, :, :, 2]) if mean < 35: max_bats = 200 if mean < 28: max_bats = 100 if mean < 5: print('Too dark...') if debug: return None, None, None, None, None, None, None, None else: return None, None, None, None, None, None, None image_dif, background = subtract_background(images, focal_frame_ind, background_sum) while True: binary_image = preprocess_to_binary(image_dif, bat_thresh, background) bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects = get_blob_info( binary_image, background, size_threshold=size_threshold) if len(bat_centers) < max_bats: break bat_thresh += 0.05 if debug: return bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects, bat_thresh, binary_image else: return bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects, bat_thresh def add_all_points_as_new_tracks(raw_track_list, positions, contours, sizes, current_frame_ind, noise): """ When there are no active tracks, add all new points to new tracks. Args: raw_track_list (list): list of tracks positions (numpy array): p x 2 contours (list): p contours current_frame_ind (int): current frame index noise: how much noise to add to tracks initially """ for ind, (position, contour, size) in enumerate(zip(positions, contours, sizes)): raw_track_list.append( ktf.create_new_track(first_frame=current_frame_ind, first_position=position, pos_index=ind, noise=noise, contour=contour, size=size ) ) return raw_track_list def find_tracks(first_frame_ind, positions, contours_files=None, contours_list=None, sizes_list=None, max_frame=None, verbose=True, tracks_file=None): """ Take in positions of all individuals in frames and find tracks. Args: first_frame_ind (int): index of first frame of these tracks positions (list): n x 2 for each frame contours_files (list): list of files for contour info from each frame contours_list: already loaded list of contours, only used if contours_file is None sizes_list (list): sizes info from each frame return list of all tracks found """ raw_track_list = [] max_distance_threshold = 30 max_distance_threshold_noise = 30 min_distance_threshold = 0 max_unseen_time = 2 min_new_track_distance = 3 min_distance_big = 30 # #Create initial tracks based on the objects in the first frame # raw_track_list = add_all_points_as_new_tracks( # raw_track_list, positions[0], contours_list[0], sizes_list0, noise=0 # ) #try to connect points to the next frame if max_frame is None: max_frame = len(positions) contours_file_ind = 0 previous_contours_seen = 0 if contours_files: contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) while first_frame_ind >= previous_contours_seen + len(contours_list): contours_file_ind += 1 previous_contours_seen += len(contours_list) contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) print(f'using {contours_files[contours_file_ind]}') elif not contours_list: print("Needs contour_files or contour_list") return contours_ind = first_frame_ind - previous_contours_seen - 1 for frame_ind in range(first_frame_ind, max_frame): contours_ind += 1 if contours_files: if contours_ind >= len(contours_list): # load next file try: contours_file_ind += 1 contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) contours_ind = 0 except: if tracks_file: tracks_file_error = os.path.splitext(tracks_file)[0] + f'-error-{frame_ind}.npy' print(tracks_file_error) np.save(tracks_file_error, np.array(raw_track_list, dtype=object)) #get tracks that are still active (have been seen within the specified time) active_list = ktf.calculate_active_list(raw_track_list, max_unseen_time, frame_ind) if verbose: if frame_ind % 10000 == 0: print('frame {} processed.'.format(frame_ind)) if tracks_file: np.save(tracks_file, np.array(raw_track_list, dtype=object)) if len(active_list) == 0: #No existing tracks to connect to #Every point in next frame must start a new track raw_track_list = add_all_points_as_new_tracks( raw_track_list, positions[frame_ind], contours_list[contours_ind], sizes_list[frame_ind], frame_ind, noise=1 ) continue # Make sure there are new points to add new_positions = None row_ind = None col_ind = None new_sizes = None new_position_indexes = None distance = None contours = None if len(positions[frame_ind]) != 0: #positions from the next step new_positions = positions[frame_ind] contours = [np.copy(contour) for contour in contours_list[contours_ind]] new_sizes = sizes_list[frame_ind] raw_track_list = ktf.calculate_max_distance( raw_track_list, active_list, max_distance_threshold, max_distance_threshold_noise, min_distance_threshold, use_size=True, min_distance_big=min_distance_big ) distance = ktf.calculate_distances( new_positions, raw_track_list, active_list ) max_distance = ktf.create_max_distance_array( distance, raw_track_list, active_list ) assert distance.shape[1] == len(new_positions) assert distance.shape[1] == len(contours) assert distance.shape[1] == len(new_sizes) # Some new points could be too far away from every existing track raw_track_list, distance, new_positions, new_position_indexes, new_sizes, contours = ktf.process_points_without_tracks( distance, max_distance, raw_track_list, new_positions, contours, frame_ind, new_sizes ) if distance.shape[1] > 0: # There are new points can be assigned to existing tracks #connect the dots from one frame to the next row_ind, col_ind = linear_sum_assignment(np.log(distance + 1)) # for active_ind, track_ind in enumerate(active_list): # if active_ind in row_ind: # row_count = np.where(row_ind == active_ind)[0] # raw_track_list[track_ind]['debug'].append( # '{} dist {}, best {}'.format( # frame_ind, # distance[row_ind[row_count], # col_ind[row_count]], # np.min(distance[row_ind[row_count], # :]) # ) # ) # best_col = np.argmin(distance[row_ind[row_count], # :]) # row_count = np.where(col_ind == best_col)[0] # raw_track_list[track_ind]['debug'].append( # '{} row_ind {} col {} dist {} track {}'.format( # frame_ind, row_ind[row_count], # col_ind[row_count], # distance[row_ind[row_count], # col_ind[row_count]], # active_list[row_ind[row_count][0]]) # ) # In casese where there are fewer new points than existing tracks # some tracks won't get new point. Just assign them to # the closest point row_ind, col_ind = ktf.filter_tracks_without_new_points( raw_track_list, distance, row_ind, col_ind, active_list, frame_ind ) # Check if tracks with big bats got assigned to small points which are # probably noise row_ind, col_ind = ktf.fix_tracks_with_small_points( raw_track_list, distance, row_ind, col_ind, active_list, new_sizes, frame_ind) # see if points got assigned to tracks that are farther # than max_threshold_distance # This happens when the closer track gets assigned # to a differnt point row_ind, col_ind = ktf.filter_bad_assigns(raw_track_list, active_list, distance, max_distance, row_ind, col_ind ) raw_track_list = ktf.update_tracks(raw_track_list, active_list, frame_ind, row_ind, col_ind, new_positions, new_position_indexes, new_sizes, contours, distance, min_new_track_distance) raw_track_list = ktf.remove_noisy_tracks(raw_track_list) raw_track_list = ktf.finalize_tracks(raw_track_list) if tracks_file: np.save(tracks_file, np.array(raw_track_list, dtype=object)) print('{} final save.'.format(os.path.basename(os.path.dirname(tracks_file)))) return raw_track_list def get_tracked_bats_in_frame(image_files, focal_frame_ind, bat_thresh, bat_area_thresh): centers_list = [] contours_list = [] sizes_list = [] clip_length = 5 array_size = 31 images, frame_buffer_ind = initialize_image_array(image_files, focal_frame_ind, array_size) background_sum = np.sum(images[:,:,:,2], 0, dtype=np.int16) for video_frame_ind in range(focal_frame_ind, focal_frame_ind+clip_length): bat_centers, bat_areas, bat_contours, _, _, _, bat_thresh = process_frame( images, frame_buffer_ind, bat_thresh, background_sum, bat_area_thresh, debug=False) centers_list.append(bat_centers) contours_list.append(bat_contours) sizes_list.append(bat_areas) images, frame_buffer_ind, background_sum = update_circular_image_array( images, frame_buffer_ind, image_files, video_frame_ind, background_sum) raw_tracks = find_tracks(0, centers_list, contours_list=contours_list, sizes_list=sizes_list ) return raw_tracks, centers_list # return raw_tracks, centers_list, distance, max_distance, active_list, all_pre_distances, all_row_inds, all_col_inds # return(connected_distance, connected_size) def piecewise_linear(x, x0, y0, k1, k2): return np.piecewise(x, [x < x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0] ) def get_bat_accumulation(crossing_frames, obs=None, parameters=None, w_multiplier=True, w_darkness=True, w_frac=True): """ Create and return cummulative sum of bats crossing count line over the course of list of given positive and negative crossing frames. crossing_frames: list of frame that each track crosses line. Positive if leaving negative if going obs: observation dictionary. parameters: list of parameters of piecewise linear function w_multiplier: multiply each bat crossing by apropriate bat multiplier for camera etc. w_darkness: scale each bat crossing by apropriate accuracy corrrection based on frame darkness w_frac: scale each bat crossing by fraction of total circle that camera sees """ if not np.any(crossing_frames): return np.zeros(1) last_crossing_frame = np.max(np.abs(crossing_frames)) crossing_per_frame = np.zeros(last_crossing_frame+1) if obs and parameters: accurracies = piecewise_linear(obs['darkness'], *parameters) for crossing_frame, bm, acc in zip(crossing_frames, obs['multiplier'], accurracies): scale = 1 if w_multiplier: scale *= bm if w_darkness: scale *= (1/acc) if crossing_frame < 0: crossing_per_frame[-crossing_frame] -= scale elif crossing_frame > 0: crossing_per_frame[crossing_frame] += scale if w_frac: crossing_per_frame *= obs['fraction_total'] else: for crossing_frame in crossing_frames: if crossing_frame < 0: crossing_per_frame[-crossing_frame] -= 1 elif crossing_frame > 0: crossing_per_frame[crossing_frame] += 1 return np.cumsum(crossing_per_frame) def threshold_short_tracks(raw_track_list, min_length_threshold=2): """Only return tracks that are longer than min_length_threshold.""" track_lengths = [] track_list = [] for track_num, track in enumerate(raw_track_list): if isinstance(track['track'], list): track['track'] = np.array(track['track']) track_length = track['track'].shape[0] if track_length >= min_length_threshold: track_lengths.append(track['track'].shape[0]) track_list.append(track) return track_list def calculate_height(wingspan_pixels, camera_constant, wingspan_meters): ''' Calculate bats height above the ground assumming wingspan_meters is correct. camera_constant = (frame pixels / 2) / tan(fov / 2) height = constant * wingspan_meters / wingspan_pixels ''' return camera_constant * wingspan_meters / wingspan_pixels def calculate_bat_multiplier_simple(height, horizontal_fov, distance_to_center): ''' Calculate how many bats one bats at a given height and camera localtion represents. height: height of bat horizontal_fov: horizontal field of view of camera (degrees) distance_to_center: distance from camera to center of colony ASSUMES CIRCUMFERCE IS MUCH LARGER THAN WIDTH OF SPACE SEEN circumfernce c = 2 * pi * distance_to_center width of seen space w = 2 * height * tan(horizontal_fov / 2) multiplier = c / w ''' c = 2 * np.pi * distance_to_center horizontal_fov_rad = horizontal_fov * np.pi / 180 w = 2 * height * np.tan(horizontal_fov_rad / 2) return c / w def calculate_bat_multiplier(height, horizontal_fov, distance_to_center): ''' Calculate how many bats one bats at a given height and camera localtion represents. height: height of bat horizontal_fov: horizontal field of view of camera (degrees) distance_to_center: distance from camera to center of colony phi = arctan((height*tan(horizontal_fov/2)) / distance to center) multiplier = pi / phi ''' horizontal_fov_rad = horizontal_fov * np.pi / 180 distance_to_center = np.max([distance_to_center, 10e-5]) phi = np.arctan((height * np.tan(horizontal_fov_rad / 2)) / distance_to_center ) return np.pi/phi def combined_bat_multiplier(frame_width, wingspan_meters, wingspan_pixels, camera_distance): """ Calculates bat multiplier. Args: frame_width: frame width in pixels wingspan_meters: bat wingspan in meters wingspan_pixels: bat wingspan in pixels camera_distance: distance from forest point to camera in meters should be a single value or an array of distances with same shape as wingspan_pixels Returns: bat multiplier: float """ denominator = np.arctan( (frame_width*wingspan_meters) / (2*wingspan_pixels*camera_distance) ) return np.pi / denominator def get_rects(track): """ Fit rotated bounding rectangles to each contour in track. track: track dict with 'contour' key linked to list of cv2 contours """ rects = [] for contour in track['contour']: if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) rects.append(rect[1]) else: rects.append((np.nan, np.nan)) return np.array(rects) def get_wingspan(track): """ Estimate wingspan in pixels from average of peak sizes of longest rectangle edges. """ if not 'rects' in track.keys(): track['rects'] = get_rects(track) max_edge = np.nanmax(track['rects'], 1) max_edge = max_edge[~np.isnan(max_edge)] peaks = signal.find_peaks(max_edge)[0] if len(peaks) != 0: mean_wing = np.nanmean(max_edge[peaks]) else: mean_wing = np.nanmean(max_edge) return mean_wing def measure_crossing_bats(track_list, frame_height=None, frame_width=None, count_across=False, count_out=True, num_frames=None, with_rects=True): """ Find and quantify all tracks that cross middle line. track_list: list of track dicts frame_height: height of frame in pixels frame_width: width of frame in pixels count_across: count horizontal tracks count_out: count vertical tracks num_frames: number of frames in observation with_rects: if True calculate rects if not already in track and estimate wingspan and body size """ if count_across: assert frame_width, "If vertical must specify frame width." across_line = CountLine(int(frame_width/2), line_dim=0, total_frames=num_frames) if count_out: assert frame_height, "If horizontal must specify frame height." out_line = CountLine(int(frame_height/2), line_dim=1, total_frames=num_frames) crossing_track_list = [] for track_ind, track in enumerate(track_list[:]): out_result = None across_result = None if count_out: out_result, out_frame_num = out_line.is_crossing(track, track_ind) if count_across: across_result, across_frame_num = across_line.is_crossing(track, track_ind) if out_result or across_result: crossing_track_list.append(track) # result is 1 if forward crossing -1 is backward crossing if count_out: if out_frame_num: crossing_track_list[-1]['crossed'] = out_frame_num * out_result else: crossing_track_list[-1]['crossed'] = 0 if count_across: if across_frame_num: crossing_track_list[-1]['across_crossed'] = across_frame_num * across_result else: crossing_track_list[-1]['across_crossed'] = 0 track[id] = track_ind if with_rects: if not 'rects' in track.keys(): track['rects'] = get_rects(track) min_edge = np.nanmin(track['rects'], 1) min_edge = min_edge[~np.isnan(min_edge)] peaks = signal.find_peaks(max_edge)[0] if len(peaks) != 0: mean_body = np.nanmean(min_edge[peaks]) else: mean_body = np.nanmean(max_edge) crossing_track_list[-1]['mean_wing'] = get_wingspan(track) crossing_track_list[-1]['mean_body'] = mean_body return crossing_track_list def get_camera_locations(observations, all_camera_locations, exclude=False): """Return dict of all camera locations that appear in observations. observations: dict of observations. Probably all observations from one day. all_camera_locations: dict containing all camera locations across all days exclude: if True, exclude observations as marked in obs dict """ camera_locations = {} for camera, obs in observations.items(): if exclude: if 'exclude' in obs.keys(): if obs['exclude']: continue camera_locations[obs['camera']] = all_camera_locations[obs['camera']] return camera_locations def get_camera_distance(camera_utm, center_utm): """ Calculate the distance between utm of camera and possible forest center in meters. camera_utm: [x, y] array center_utm: [x, y] array """ diff = camera_utm - center_utm return np.sum(np.sqrt(diff ** 2)) def get_camera_distances(camera_utms, center_utm): """ Calculate distance from every given camera to specified center. camera_utms: dict with camera names and locations center_utm: np.array 2d, location of forest center """ camera_distances = {} for camera, camera_utm in camera_utms.items(): camera_distances[camera] = get_camera_distance(camera_utm, center_utm) return camera_distances def get_camera_angles(camera_utms, center_utm): """ Calculate angle from center point to each camera location. camera_utms: dict pairs of camera names and location info center_utm: 2d np.array, location of forest center """ camera_angles = {} for camera, camera_utm in camera_utms.items(): dif = camera_utm - center_utm camera_angles[camera] = np.arctan2(dif[1], dif[0]) return camera_angles def get_camera_borders(camera_utms, center_utm, jitter=False): """ Get angles around forest center that evenly bisect camera positions. camera_utms: dict pairs of camera names and location info center_utm: 2d np.array, location of forest center jitter: if True, don't actually bisect cameras at midpoint but drawn from a gaussian """ camera_border = {} camera_angles = get_camera_angles(camera_utms, center_utm) for camera, camera_utm in camera_utms.items(): min_neg = -10000 min_pos = 100000 # for border case where focal is positive angle # and closest cclock is negative max_pos = 0 # for same case a last comment all_pos = True # for border case where focal is positive angle # and closest cclock is negative max_neg = 0 # for same case a last comment all_neg = True max_camera = None camera_border[camera] = {'cclock': None, 'cclock_angle': None, 'clock': None, 'clock_angle': None } for alt_camera, alt_camera_utm in camera_utms.items(): if camera == alt_camera: continue dif = camera_angles[camera] - camera_angles[alt_camera] if dif < 0: all_pos = False if dif > min_neg: min_neg = dif camera_border[camera]['cclock'] = alt_camera camera_border[camera]['cclock_angle'] = dif / 2 if dif < max_neg: max_neg = dif max_camera = alt_camera if dif > 0: all_neg = False if dif < min_pos: min_pos = dif camera_border[camera]['clock'] = alt_camera camera_border[camera]['clock_angle'] = dif / 2 if dif > max_pos: max_pos = dif max_camera = alt_camera if all_pos: camera_border[camera]['cclock'] = max_camera camera_border[camera]['cclock_angle'] = (max_pos - 2*np.pi) / 2 if all_neg: camera_border[camera]['clock'] = max_camera camera_border[camera]['clock_angle'] = (max_neg + 2*np.pi) / 2 if jitter: for camera, border_info in camera_border.items(): camera_angle = camera_angles[camera] clockwise_camera = border_info['clock'] angle_dif = border_info['clock_angle'] # Three sttandard deviations is between camera pair jitter_angle = np.random.normal(scale=angle_dif/3) jitter_angle = np.maximum(-border_info['clock_angle'], jitter_angle) jitter_angle = np.minimum(border_info['clock_angle'], jitter_angle) camera_border[camera]['clock_angle'] += jitter_angle if camera_border[camera]['clock_angle'] < 0: camera_border[camera]['clock_angle'] += (2 * np.pi) if camera_border[camera]['clock_angle'] >= (2 * np.pi): camera_border[camera]['clock_angle'] -= (2 * np.pi) camera_border[clockwise_camera]['cclock_angle'] += jitter_angle if camera_border[clockwise_camera]['cclock_angle'] < -2 * np.pi: camera_border[clockwise_camera]['cclock_angle'] += (2 * np.pi) if camera_border[clockwise_camera]['cclock_angle'] >= (2 * np.pi): camera_border[clockwise_camera]['cclock_angle'] -= (2 * np.pi) return camera_border def latlong_dict_to_utm(latlong_dict): """ Convert dict of latlong coordinates to utm.""" utm_dict = {} for key, latlong in latlong_dict.items(): utm_val = utm.from_latlon(*latlong) utm_dict[key] = np.array([utm_val[0], utm_val[1]]) return utm_dict def get_camera_fractions(camera_utms, center_utm, jitter=False): """ Calculate the fraction of circle around center that each camera is closest to. camera_utms: dict of camera locations center_utm: 2d np array with utm coordinates of center jitter: If True instead of evenly dividing circle by cameras, set borders between camera from a gaussian return dict with fraction for each camera """ if len(camera_utms) == 1: return {list(camera_utms.keys())[0]: 1.0} camera_borders = get_camera_borders(camera_utms, center_utm, jitter=jitter) camera_fractions = {} for camera, border_info in camera_borders.items(): angle = (-border_info['cclock_angle'] + border_info['clock_angle'] ) camera_fractions[camera] = angle / (np.pi * 2) return camera_fractions def get_day_total(observations, center_utm, all_camera_utms, frame_width, wingspan, exclude=False, correct_darkness=False, parameters=None): """ Estimate total number of bats based on all observation counts and corespoinding camera locations. observations: dict of all observations for a specific day center_utm: estimated location of forest center all_camera_utms: dict of the utm locations of each camera frame_width: width of camera frame in pixels wingspan: estimated wingspan off all bats in meters exlude: to manually remove certain cameras, ie shut off early etc. correct_darkness: divide by accuracy estimated for given darkness parameters: param values of linear piecewise function for darkness error correction. Required if correct_darkness is True """ frac_sum = 0 total = 0 obs_totals = [] camera_utms = get_camera_locations(observations, all_camera_utms, exclude=True) camera_fractions = get_camera_fractions(camera_utms, center_utm) for obs in observations.values(): if exclude: if 'exclude' in obs.keys(): if obs['exclude']: continue camera_distances = get_camera_distances(camera_utms, center_utm) obs['multiplier'] = combined_bat_multiplier(frame_width, wingspan, obs['mean_wing'], camera_distances[obs['camera']] ) if correct_darkness: assert parameters is not None, "Must pass parameters if correcting for darkness." acc = piecewise_linear(obs['darkness'], *parameters) obs['total_darkness'] = np.sum(obs['multiplier'] * obs['direction'] * (1/acc)) obs['total'] = np.sum(obs['multiplier'] * obs['direction']) obs['total_unscaled'] = np.sum(obs['direction']) obs['fraction_total'] = camera_fractions[obs['camera']] frac_sum += obs['fraction_total'] if correct_darkness: total += obs['total_darkness'] * obs['fraction_total'] obs_totals.append(obs['total_darkness']) else: total += obs['total'] * obs['fraction_total'] obs_totals.append(obs['total']) if len(obs_totals) > 0: mean_total = np.mean(obs_totals) else: mean_total = 0 return total, mean_total def get_peak_freq(raw_freqs, raw_powers, min_freq): """ Calculate max power frequency above min_freq. raw_freqs: list of frequencies raw_powers: list of powers assosiated with each raw freq value min_freq: minimum acceptable frequency value """ freqs = raw_freqs[raw_freqs>min_freq] powers = raw_powers[raw_freqs>min_freq] if np.any(np.isnan(freqs)) or len(freqs)==0: return np.nan, np.nan return freqs[np.argmax(powers)], powers[np.argmax(powers)] def get_track_wingbeat_freqs(track, fps=25, min_freq=.75): """ Calculate peak wing freqs and assosiated power. track: track dict fps: frames per second track temporal resolution min_freq: minimum frequency for calculating peak_freq. Messily segmented tracks often have have high power close to 0 Hz because actual signal is not clear. """ assert 'max_edge' in track.keys(), "Track must have max_edge already computed" if len(track['max_edge']) < 255: nperseg = len(track['max_edge']) else: nperseg = 255 f, p = signal.welch(track['max_edge'], fps, nperseg=nperseg) peaks = signal.find_peaks(p, threshold=0, height=1)[0] track['freqs'] = f[peaks] track['freqs_power'] = p[peaks] peak_freq, freq_power = get_peak_freq(track['freqs'], track['freqs_power'], min_freq ) track['peak_freq'] = peak_freq track['peak_freq_power'] = freq_power def add_wingbeat_info_to_tracks(tracks, fps=25, min_freq=.75, remove_contours=False): """ Add main wingbeat freq info for all tracks in tracks after calculating all nessissary extra info. Can remove contours after getting bounding rects to save memory. tracks: list of track dicts fps: frames per second - temporal resolution of tracks min_freq: minimum frequency for calculating peak_freq. Messily segmented tracks often have have high power close to 0 Hz because actual signal is not clear. remove_contours: if True remove raw contour info from track dicts. Useful if need to save memory """ for track in tracks: if 'rects' not in track.keys(): track['rects'] = get_rects(track) if remove_contours: try: del track['contour'] except KeyError: pass if 'max_edge' not in track.keys(): track['max_edge'] = np.nanmax(track['rects'], 1) if 'mean_wing' not in track.keys(): track['mean_wing'] = get_wingspan(track) get_track_wingbeat_freqs(track, fps=fps, min_freq=min_freq) def get_random_utm_in_mask(mask, rasterio_map, num_locations=1): """ Get a random utm location within raster mask. mask: 2d np array where forest has values > 0 and background < 0 rasterio_map: rasterio.io.DatasetReader for mask num_locations: number of locations to return in forest """ in_hull = np.argwhere(mask>0) ind = np.random.randint(0, in_hull.shape[0], num_locations) area_x_origin = rasterio_map.bounds.left area_y_origin = rasterio_map.bounds.bottom xutm = in_hull[ind, 1] + area_x_origin yutm = in_hull[ind, 0] + area_y_origin utm_vals = np.stack([xutm, yutm], axis=1) # squeeze for when only returning one value to remove # extra dimension return np.squeeze(utm_vals) def get_wing_correction_distributions(validation_file, num_darkness_bins, kde_bw_scale=1, should_plot=False): """ Calculate wing correction distributions from human validation info. validation_file: .csv file with human groundtruth info num_darkness_bins: how many groups to split darkness range into kde_bw_scale: kernel size used in kde calculation: data std. in bin * kde_bw_scale should_plot: show histograms and resulting distributions """ wing_validation = pd.read_csv(validation_file) max_darkness = wing_validation.loc[wing_validation['has_gt'], 'darkness'].max() darkness_bins = np.linspace(0, max_darkness, num_darkness_bins+1) darkness_bins[-1] = 255 wing_correction_kdes = [] for bin_num in range(num_darkness_bins): rows_in_bin = (wing_validation['has_gt'] & (wing_validation['darkness'] > darkness_bins[bin_num]) & (wing_validation['darkness'] <= darkness_bins[bin_num+1]) & (wing_validation['error_norm'] > -1) ) errors = wing_validation.loc[rows_in_bin, 'error_norm'].values error_std = errors.std() kde = KernelDensity( kernel='gaussian', bandwidth=error_std*kde_bw_scale).fit(errors[..., np.newaxis]) wing_correction_kdes.append(kde) if should_plot: sorted_error = np.sort(errors, axis=0) samples = np.linspace(-1,1,100) log_dens = kde.score_samples(samples[..., np.newaxis]) fig, ax1 = plt.subplots() color = 'tab:red' ax1.hist(sorted_error, bins=40, density=True) ax1.plot(samples, np.exp(log_dens), c='cyan') if should_plot: plt.figure() for kde in wing_correction_kdes: samples = np.linspace(-1,1,100) log_dens = kde.score_samples(samples[..., np.newaxis]) plt.plot(samples, np.exp(log_dens),) return wing_correction_kdes, darkness_bins def get_kde_samples(obs, kde_list, darkness_bins): """ Draw a sample for each track from appropriate kde distribution for tracks darkness. obs: observation dictionary kde_list: a kde distribution for each darkness bin darkness_bins: list of darkness thresholds for between each darkness bin starts at zero so len=num bins + 1 """ kde_samples = np.zeros(len(obs['darkness'])) kde_inds = np.zeros(len(obs['darkness'])) for ind, (kde, min_bin_val, max_bin_val) in enumerate(zip(kde_list, darkness_bins[:-1], darkness_bins[1:])): inds_in_bin = ((obs['darkness'] > min_bin_val) & (obs['darkness'] <= max_bin_val)) bin_samples = np.squeeze(kde.sample(len(obs['darkness']))) kde_samples[inds_in_bin] = bin_samples[inds_in_bin] kde_inds[inds_in_bin] = ind return kde_samples, kde_inds def correct_wingspan(estimate, estimate_scale): """ Correct the estimated wingspan based on groundtruth distribution. estimate: wingespan estimated from track estimate_scale: (estimate - groundtruth)/ estimate obv. don't know groundtruth in application but estimate scale usually ranomly drawn from distribution """ corrected_est = estimate - estimate * estimate_scale return corrected_est def save_fig(save_folder, plot_title, fig=None): """ Convient default figure saving configuration.""" plot_name = plot_title.replace(' ', '-') file = os.path.join(save_folder, plot_name+'.png') if fig: fig.savefig(file, bbox_inches='tight', dpi=600) return plt.savefig(file, bbox_inches='tight', dpi=600) def smooth_track(track, kernel_size=12): """ Smooth n x 2 track with averaging filter.""" kernel = np.ones(kernel_size) / kernel_size x = np.convolve(track[:, 0], kernel, mode='valid') y = np.convolve(track[:, 1], kernel, mode='valid') return np.stack([x, y], 1) def calculate_straightness(track): """ Caclute straightness of n x 2 numpy track.""" track = smooth_track(track, kernel_size=12) step_vectors = track[1:] - track[:-1] step_sizes = np.linalg.norm(step_vectors, axis=1) combined_steps = np.sum(step_sizes) net_distance = np.linalg.norm(track[-1] - track[0]) return net_distance / combined_steps def get_middle_percentiles(values, lower_percentile, upper_percentile): """ Return all values in values between lower and upper percentile.""" values = np.array(values) values = values[~np.isnan(values)] sorted_values = sorted(values) lower_ind = int(lower_percentile * len(values)) upper_ind = int(upper_percentile * len(values) + 1) return sorted_values[lower_ind:upper_ind] def calc_movement_unit_vector(track, frame_height=1520): """ Calculate the unit vector pointing from first position to last position in track with bottom left origin track: track dict frame_height: height of frame in pixels the tracks came from """ track = np.copy(track['track']) track[:, 1] = frame_height - track[:, 1] diff = track[-1] - track[0] unit_position = diff / np.linalg.norm(diff) return unit_position def calculate_polarization(tracks): """ Following Couzin et al. 2002 calculate polarization of all bats in tracks. """ direction_unit_vectors = [] for track in tracks: direction_unit_vectors.append( calc_movement_unit_vector(track)) direction_sum = np.sum(np.array(direction_unit_vectors), axis=0) direction_magnitude = np.linalg.norm(direction_sum) polarization = direction_magnitude / len(tracks) return polarization def get_camera_color_dict(colormap=plt.cm.tab10): """ For consistent camerar colors across plots.""" camera_colors = {'FibweParking2': colormap(0), 'FibweParking': colormap(0), 'Chyniangale': colormap(.1), 'BBC': colormap(.2), 'Sunset': colormap(.3), 'NotChyniangale': colormap(.4), 'MusoleParking': colormap(.5), 'MusolePath2': colormap(.6), 'MusolePath': colormap(.6), 'Puku': colormap(.7), 'FibwePublic': colormap(.8), 'MusoleTower': colormap(.9), } return camera_colors
StarcoderdataPython
3277682
# # @lc app=leetcode id=525 lang=python3 # # [525] Contiguous Array # # https://leetcode.com/problems/contiguous-array/description/ # # algorithms # Medium (40.05%) # Likes: 1821 # Dislikes: 106 # Total Accepted: 125.4K # Total Submissions: 313.1K # Testcase Example: '[0,1]' # # Given a binary array, find the maximum length of a contiguous subarray with # equal number of 0 and 1. # # # Example 1: # # Input: [0,1] # Output: 2 # Explanation: [0, 1] is the longest contiguous subarray with equal number of 0 # and 1. # # # # Example 2: # # Input: [0,1,0] # Output: 2 # Explanation: [0, 1] (or [1, 0]) is a longest contiguous subarray with equal # number of 0 and 1. # # # # Note: # The length of the given binary array will not exceed 50,000. # # # @lc code=start class Solution: def findMaxLength(self, nums: List[int]) -> int: save = {0: -1} count = 0 max_l = 0 for i, n in enumerate(nums): if n: count += 1 else: count -= 1 if count in save: max_l = max(max_l, i - save[count]) else: save[count] = i return max_l # @lc code=end
StarcoderdataPython
3268576
<filename>apps/greencheck/views.py from datetime import date from datetime import timedelta from django.conf import settings from google.cloud import storage from django.views.generic.base import TemplateView class GreenUrlsView(TemplateView): template_name = "green_url.html" def fetch_urls(self): client = storage.Client() bucket_name = settings.PRESENTING_BUCKET bucket = client.get_bucket(bucket_name) blobs = bucket.list_blobs() return [(b.name, b.public_url) for b in blobs] @property def urls(self): ''' Setting the date two weeks in the future. Two weeks from now on it will prefetch the urls again ''' accessed_date = getattr(self, '_date', None) if not accessed_date or self._date < date.today(): self._date = date.today() + timedelta(weeks=2) self._urls = self.fetch_urls() return self._urls def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['urls'] = self.urls return context
StarcoderdataPython
172628
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from ._enums import * __all__ = [ 'GetAmiBlockDeviceMappingResult', 'GetAmiFilterResult', 'GetAmiIdsFilterResult', 'GetAmiProductCodeResult', 'GetAutoscalingGroupsFilterResult', 'GetAvailabilityZoneFilterResult', 'GetAvailabilityZonesFilterResult', 'GetElasticIpFilterResult', 'GetPrefixListFilterResult', 'GetRegionsFilterResult', ] @pulumi.output_type class GetAmiBlockDeviceMappingResult(dict): def __init__(__self__, *, device_name: str, ebs: Mapping[str, str], no_device: str, virtual_name: str): """ :param str device_name: The physical name of the device. :param Mapping[str, str] ebs: Map containing EBS information, if the device is EBS based. Unlike most object attributes, these are accessed directly (e.g. `ebs.volume_size` or `ebs["volume_size"]`) rather than accessed through the first element of a list (e.g. `ebs[0].volume_size`). :param str no_device: Suppresses the specified device included in the block device mapping of the AMI. :param str virtual_name: The virtual device name (for instance stores). """ pulumi.set(__self__, "device_name", device_name) pulumi.set(__self__, "ebs", ebs) pulumi.set(__self__, "no_device", no_device) pulumi.set(__self__, "virtual_name", virtual_name) @property @pulumi.getter(name="deviceName") def device_name(self) -> str: """ The physical name of the device. """ return pulumi.get(self, "device_name") @property @pulumi.getter def ebs(self) -> Mapping[str, str]: """ Map containing EBS information, if the device is EBS based. Unlike most object attributes, these are accessed directly (e.g. `ebs.volume_size` or `ebs["volume_size"]`) rather than accessed through the first element of a list (e.g. `ebs[0].volume_size`). """ return pulumi.get(self, "ebs") @property @pulumi.getter(name="noDevice") def no_device(self) -> str: """ Suppresses the specified device included in the block device mapping of the AMI. """ return pulumi.get(self, "no_device") @property @pulumi.getter(name="virtualName") def virtual_name(self) -> str: """ The virtual device name (for instance stores). """ return pulumi.get(self, "virtual_name") @pulumi.output_type class GetAmiFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the AMI that was provided during image creation. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the AMI that was provided during image creation. """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: return pulumi.get(self, "values") @pulumi.output_type class GetAmiIdsFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: return pulumi.get(self, "values") @pulumi.output_type class GetAmiProductCodeResult(dict): def __init__(__self__, *, product_code_id: str, product_code_type: str): pulumi.set(__self__, "product_code_id", product_code_id) pulumi.set(__self__, "product_code_type", product_code_type) @property @pulumi.getter(name="productCodeId") def product_code_id(self) -> str: return pulumi.get(self, "product_code_id") @property @pulumi.getter(name="productCodeType") def product_code_type(self) -> str: return pulumi.get(self, "product_code_type") @pulumi.output_type class GetAutoscalingGroupsFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the filter. The valid values are: `auto-scaling-group`, `key`, `value`, and `propagate-at-launch`. :param Sequence[str] values: The value of the filter. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the filter. The valid values are: `auto-scaling-group`, `key`, `value`, and `propagate-at-launch`. """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: """ The value of the filter. """ return pulumi.get(self, "values") @pulumi.output_type class GetAvailabilityZoneFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the filter field. Valid values can be found in the [EC2 DescribeAvailabilityZones API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html). :param Sequence[str] values: Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the filter field. Valid values can be found in the [EC2 DescribeAvailabilityZones API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html). """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: """ Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ return pulumi.get(self, "values") @pulumi.output_type class GetAvailabilityZonesFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the filter field. Valid values can be found in the [EC2 DescribeAvailabilityZones API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html). :param Sequence[str] values: Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the filter field. Valid values can be found in the [EC2 DescribeAvailabilityZones API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html). """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: """ Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ return pulumi.get(self, "values") @pulumi.output_type class GetElasticIpFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: return pulumi.get(self, "values") @pulumi.output_type class GetPrefixListFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the filter field. Valid values can be found in the [EC2 DescribePrefixLists API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribePrefixLists.html). :param Sequence[str] values: Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the filter field. Valid values can be found in the [EC2 DescribePrefixLists API Reference](https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribePrefixLists.html). """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: """ Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ return pulumi.get(self, "values") @pulumi.output_type class GetRegionsFilterResult(dict): def __init__(__self__, *, name: str, values: Sequence[str]): """ :param str name: The name of the filter field. Valid values can be found in the [describe-regions AWS CLI Reference][1]. :param Sequence[str] values: Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ The name of the filter field. Valid values can be found in the [describe-regions AWS CLI Reference][1]. """ return pulumi.get(self, "name") @property @pulumi.getter def values(self) -> Sequence[str]: """ Set of values that are accepted for the given filter field. Results will be selected if any given value matches. """ return pulumi.get(self, "values")
StarcoderdataPython
142004
<reponame>zhengxiawu/XNAS import torch import numpy as np from torch.autograd import Variable def _concat(xs): return torch.cat([x.view(-1) for x in xs]) class Architect(object): def __init__(self, net, cfg): self.network_momentum = cfg.OPTIM.MOMENTUM self.network_weight_decay = cfg.OPTIM.WEIGHT_DECAY self.net = net if cfg.DRNAS.REG_TYPE == "l2": weight_decay = cfg.DRNAS.REG_SCALE elif cfg.DRNAS.REG_TYPE == "kl": weight_decay = 0 self.optimizer = torch.optim.Adam( self.net.arch_parameters(), lr=cfg.DARTS.ALPHA_LR, betas=(0.5, 0.999), weight_decay=weight_decay, ) self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def _compute_unrolled_model(self, input, target, eta, network_optimizer): loss = self.net._loss(input, target) theta = _concat(self.net.parameters()).data try: moment = _concat( network_optimizer.state[v]["momentum_buffer"] for v in self.net.parameters() ).mul_(self.network_momentum) except: moment = torch.zeros_like(theta) dtheta = ( _concat(torch.autograd.grad(loss, self.net.parameters())).data + self.network_weight_decay * theta ) unrolled_model = self._construct_model_from_theta( theta.sub(eta, moment + dtheta) ).to(self.device) return unrolled_model def unrolled_backward( self, input_train, target_train, input_valid, target_valid, eta, network_optimizer, unrolled, ): self.optimizer.zero_grad() if unrolled: self._backward_step_unrolled( input_train, target_train, input_valid, target_valid, eta, network_optimizer, ) else: self._backward_step(input_valid, target_valid) self.optimizer.step() # def pruning(self, masks): # for i, p in enumerate(self.optimizer.param_groups[0]['params']): # if masks[i] is None: # continue # state = self.optimizer.state[p] # mask = masks[i] # state['exp_avg'][~mask] = 0.0 # state['exp_avg_sq'][~mask] = 0.0 def _backward_step(self, input_valid, target_valid): loss = self.net._loss(input_valid, target_valid) loss.backward() def _backward_step_unrolled( self, input_train, target_train, input_valid, target_valid, eta, network_optimizer, ): unrolled_model = self._compute_unrolled_model( input_train, target_train, eta, network_optimizer ) unrolled_loss = unrolled_model._loss(input_valid, target_valid) unrolled_loss.backward() dalpha = [v.grad for v in unrolled_model.arch_parameters()] vector = [v.grad.data for v in unrolled_model.parameters()] implicit_grads = self._hessian_vector_product(vector, input_train, target_train) for g, ig in zip(dalpha, implicit_grads): g.data.sub_(eta, ig.data) for v, g in zip(self.net.arch_parameters(), dalpha): if v.grad is None: v.grad = Variable(g.data) else: v.grad.data.copy_(g.data) def _construct_model_from_theta(self, theta): model_new = self.net.new() model_dict = self.net.state_dict() params, offset = {}, 0 for k, v in self.net.named_parameters(): v_length = np.prod(v.size()) params[k] = theta[offset : offset + v_length].view(v.size()) offset += v_length assert offset == len(theta) model_dict.update(params) model_new.load_state_dict(model_dict) return model_new def _hessian_vector_product(self, vector, input, target, r=1e-2): R = r / _concat(vector).norm() for p, v in zip(self.net.parameters(), vector): p.data.add_(R, v) loss = self.net._loss(input, target) grads_p = torch.autograd.grad(loss, self.net.arch_parameters()) for p, v in zip(self.net.parameters(), vector): p.data.sub_(2 * R, v) loss = self.net._loss(input, target) grads_n = torch.autograd.grad(loss, self.net.arch_parameters()) for p, v in zip(self.net.parameters(), vector): p.data.add_(R, v) return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
StarcoderdataPython
81840
""" Various utility functions. """ from __future__ import absolute_import import re import string from Crypto.Random import random HASH_REGEXP = re.compile(r'^{([A-Z0-9]+)}(.*)$') def generate_password(length=12, ascii_lower=True, ascii_upper=True, punctuation=True, digits=True, strip_ambiguous=False, strip_dangerous=True): """ This function will return a password consisting of a mixture of lower and upper case letters, numbers, and non-alphanumberic characters in a ratio defined by the parameters. :param length: Length of generated password. :type length: int :param ascii_lower: Whether to include ASCII lowercase chars. :type ascii_lower: bool :param ascii_upper: Whether to include ASCII uppercase chars. :type ascii_upper: bool :param punctuation: Whether to include punctuation. :type punctuation: bool :param strip_ambiguous: Whether to remove easily-confused (LlOo0iI1) chars from the password. :type strip_ambiguous: bool :param strip_dangerous: Whethr to remove some of the more 'dangerous' punctuation (e.g. quotes) from the generated password. :type strip_dangerous: bool :returns: The generated password. :rtype: str """ pool = [] if ascii_lower: pool.extend(string.ascii_lowercase) if ascii_upper: pool.extend(string.ascii_uppercase) if punctuation: pool.extend(string.punctuation) if digits: pool.extend(string.digits) if strip_ambiguous: pool = set(pool) - set("LlOo0iI1") pool = list(pool) # Turn it back into a list since random.choice() needs indexing. if strip_dangerous: pool = set(pool) - set(r'"\'`') pool = list(pool) if not pool: raise ValueError("No character classes enabled for password generation.") # Generate the total number of characters for the password return ''.join([random.choice(pool) for _i in range(length)])
StarcoderdataPython
10016
<filename>metabot2txt/display.py<gh_stars>0 import os def display_on_editor(text): with open('.metabot2txt', 'w') as f: f.write(text) os.system('gedit .metabot2txt') def display_list_on_editor(texts): if os.path.isfile('.metabot2txt'): os.remove('.metabot2txt') for text in texts: with open('.metabot2txt', 'a') as f: f.write(text) f.write('\n=====================================\n') os.system('gedit .metabot2txt')
StarcoderdataPython
4802399
"""Fixtures for cutty.repositories.domain.providers.""" from collections.abc import Callable from typing import Any from typing import Optional from cutty.filesystems.adapters.dict import DictFilesystem from cutty.filesystems.domain.path import Path from cutty.repositories.domain.locations import Location from cutty.repositories.domain.providers import Provider from cutty.repositories.domain.repository import Repository from cutty.repositories.domain.revisions import Revision pytest_plugins = ["tests.fixtures.repositories.domain.stores"] ProviderFunction = Callable[[Location, Optional[Revision]], Optional[Repository]] def provider(name: str) -> Callable[[ProviderFunction], Provider]: """Decorator to create a provider from a function.""" def _decorator(function: ProviderFunction) -> Provider: class _Provider(Provider): def __init__(self) -> None: super().__init__(name) def __call__( self, location: Location, revision: Optional[Revision] = None ) -> Optional[Repository]: return function(location, revision) return _Provider() return _decorator nullprovider = Provider("null") """Provider that matches no location.""" def constprovider(name: str, repository: Repository) -> Provider: """Provider that returns the same repository always.""" @provider(name) def _(location: Location, revision: Optional[Revision]) -> Optional[Repository]: return repository return _ def dictprovider(mapping: Optional[dict[str, Any]] = None) -> Provider: """Provider that matches every URL with a repository.""" @provider("dict") def _(location: Location, revision: Optional[Revision]) -> Optional[Repository]: filesystem = DictFilesystem(mapping or {}) path = Path(filesystem=filesystem) return Repository(location.name, path, revision) return _
StarcoderdataPython
165824
<filename>demos/appengine/app.py """ Demonstration of Duo authentication on Google App Engine. To use, edit duo.conf, set gae_domain to an appropriate email domain, and visit /. """ import ConfigParser import logging from google.appengine.api import users from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app import duo_web import cookie configfile = 'duo.conf' cookie_secret = '<KEY> # Mutable globals, used because GAE will recycle them if the app is # already running. These should only be written to from main(). _DEBUG = True application = None ikey = None skey = None akey = None host = None gae_domain = None class BasePage(webapp.RequestHandler, cookie.RequestHandler): cookie_secret = cookie_secret def user_email_parts(self, user): """ Return a (local, domain) tuple for user. """ return user.email().split('@') def both_logged_in(self): """ Return True if the user has been authenticated with both Google and Duo. """ user = users.get_current_user() if user: (username, _) = self.user_email_parts(user) if self.get_secure_cookie('logged_in') == username: return True return False class AuthenticatedPage(BasePage): def get(self): if not self.both_logged_in(): self.response.out.write( 'Log in as a user with a %s email to continue: ' '<a href="%s">Login.</a>' % (gae_domain, 'primary_auth')) return self.response.out.write( 'Logged in as %s. <a href="%s">Logout.</a>' % (users.get_current_user(), users.create_logout_url('/'))) class PrimaryAuthPage(BasePage): def get(self): user = users.get_current_user() if user: (_, domain) = self.user_email_parts(user) if domain == gae_domain: self.redirect('/secondary_auth') return self.redirect(users.create_login_url(self.request.uri)) return class SecondaryAuthPage(BasePage): def get(self): if self.both_logged_in(): self.redirect('/') return user = users.get_current_user() if not user: self.redirect('/') return (username, _) = self.user_email_parts(user) sig_request = duo_web.sign_request(ikey, skey, akey, username) self.response.out.write( "<html>" " <head>" " <title>Duo Authentication</title>" " <meta name='viewport' content='width=device-width, initial-scale=1'>" " <meta http-equiv='X-UA-Compatible' content='IE=edge'>" " <link rel='stylesheet' type='text/css' href='/static/Duo-Frame.css'>" " </head>" " <body>" " <h1>Duo Authentication</h1>" " <script src='/static/Duo-Web-v2.js'></script>" " <iframe id='duo_iframe'" " title='Two-Factor Authentication'" " frameborder='0'" " data-host='%(host)s'" " data-sig-request='%(sig_request)s'" " data-post-action='%(post_action)s'" " >" " </iframe>" " </body>" "</html>" % {'host': host, 'sig_request': sig_request, 'post_action': self.request.uri}) def post(self): """ If we have a sig_response argument containing a Duo auth cookie indicating that the current user has logged in to both Google and Duo with matching usernames, write a login cookie and redirect to /. Otherwise, indicate failure. """ user = users.get_current_user() if not user: self.redirect('/') return sig_response = self.request.get('sig_response', '') duo_user = duo_web.verify_response(ikey, skey, akey, sig_response) if duo_user is None: self.write('Did not authenticate.') return # Note that since the secure cookie is never unset, Duo auth is not # required again until it expires, even if Google auth is required. # We can provide redirects on the logout URLs which we present to # unset the cookie, but the user could find and use a Google logout URL # without these. self.set_secure_cookie('logged_in', duo_user) self.redirect('/') def initialize_globals(config): """ Initialize and set the WSGI application and other globals. """ global application global ikey, skey, akey, host global gae_domain logging.basicConfig( level=logging.DEBUG, format="%(levelname)-8s: %(message)s - %(pathname)s:%(lineno)d") logging.debug('start') if application is None: application = webapp.WSGIApplication( [('/primary_auth', PrimaryAuthPage), ('/secondary_auth', SecondaryAuthPage), ('/', AuthenticatedPage),], debug=_DEBUG) if ikey is None or skey is None or host is None or gae_domain is None: ikey = config['ikey'] skey = config['skey'] akey = config['akey'] host = config['host'] gae_domain = config['gae_domain'] def main(): config = ConfigParser.ConfigParser() config.read(configfile) c_d = dict(config.items('duo')) c_d.update(dict(config.items('app'))) initialize_globals(c_d) run_wsgi_app(application) if __name__ == '__main__': main()
StarcoderdataPython
1726398
<gh_stars>0 my_name = 'scott' def print_name(): global my_name my_name = 'jen' print('Name inside of the function is', my_name) print_name() print('Name outside of the function is', my_name)
StarcoderdataPython
134059
<reponame>f0k/matplotlib<filename>examples/pylab_examples/tripcolor_demo.py """ Pseudocolor plots of unstructured triangular grids. """ import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np import math # Creating a Triangulation without specifying the triangles results in the # Delaunay triangulation of the points. # First create the x and y coordinates of the points. n_angles = 36 n_radii = 8 min_radius = 0.25 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2*math.pi, n_angles, endpoint=False) angles = np.repeat(angles[...,np.newaxis], n_radii, axis=1) angles[:,1::2] += math.pi/n_angles x = (radii*np.cos(angles)).flatten() y = (radii*np.sin(angles)).flatten() z = (np.cos(radii)*np.cos(angles*3.0)).flatten() # Create the Triangulation; no triangles so Delaunay triangulation created. triang = tri.Triangulation(x, y) # Mask off unwanted triangles. xmid = x[triang.triangles].mean(axis=1) ymid = y[triang.triangles].mean(axis=1) mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0) triang.set_mask(mask) # pcolor plot. plt.figure() plt.gca().set_aspect('equal') plt.tripcolor(triang, z, shading='flat') plt.colorbar() plt.title('tripcolor of Delaunay triangulation: flat') # Illustrate Gouraud shading. plt.figure() plt.gca().set_aspect('equal') plt.tripcolor(triang, z, shading='gouraud') plt.colorbar() plt.title('tripcolor with Gouraud shading') # You can specify your own triangulation rather than perform a Delaunay # triangulation of the points, where each triangle is given by the indices of # the three points that make up the triangle, ordered in either a clockwise or # anticlockwise manner. xy = np.asarray([ [-0.101,0.872],[-0.080,0.883],[-0.069,0.888],[-0.054,0.890],[-0.045,0.897], [-0.057,0.895],[-0.073,0.900],[-0.087,0.898],[-0.090,0.904],[-0.069,0.907], [-0.069,0.921],[-0.080,0.919],[-0.073,0.928],[-0.052,0.930],[-0.048,0.942], [-0.062,0.949],[-0.054,0.958],[-0.069,0.954],[-0.087,0.952],[-0.087,0.959], [-0.080,0.966],[-0.085,0.973],[-0.087,0.965],[-0.097,0.965],[-0.097,0.975], [-0.092,0.984],[-0.101,0.980],[-0.108,0.980],[-0.104,0.987],[-0.102,0.993], [-0.115,1.001],[-0.099,0.996],[-0.101,1.007],[-0.090,1.010],[-0.087,1.021], [-0.069,1.021],[-0.052,1.022],[-0.052,1.017],[-0.069,1.010],[-0.064,1.005], [-0.048,1.005],[-0.031,1.005],[-0.031,0.996],[-0.040,0.987],[-0.045,0.980], [-0.052,0.975],[-0.040,0.973],[-0.026,0.968],[-0.020,0.954],[-0.006,0.947], [ 0.003,0.935],[ 0.006,0.926],[ 0.005,0.921],[ 0.022,0.923],[ 0.033,0.912], [ 0.029,0.905],[ 0.017,0.900],[ 0.012,0.895],[ 0.027,0.893],[ 0.019,0.886], [ 0.001,0.883],[-0.012,0.884],[-0.029,0.883],[-0.038,0.879],[-0.057,0.881], [-0.062,0.876],[-0.078,0.876],[-0.087,0.872],[-0.030,0.907],[-0.007,0.905], [-0.057,0.916],[-0.025,0.933],[-0.077,0.990],[-0.059,0.993] ]) x = xy[:,0]*180/3.14159 y = xy[:,1]*180/3.14159 x0 = -5 y0 = 52 z = np.exp(-0.01*( (x-x0)*(x-x0) + (y-y0)*(y-y0) )) triangles = np.asarray([ [67,66, 1],[65, 2,66],[ 1,66, 2],[64, 2,65],[63, 3,64],[60,59,57], [ 2,64, 3],[ 3,63, 4],[ 0,67, 1],[62, 4,63],[57,59,56],[59,58,56], [61,60,69],[57,69,60],[ 4,62,68],[ 6, 5, 9],[61,68,62],[69,68,61], [ 9, 5,70],[ 6, 8, 7],[ 4,70, 5],[ 8, 6, 9],[56,69,57],[69,56,52], [70,10, 9],[54,53,55],[56,55,53],[68,70, 4],[52,56,53],[11,10,12], [69,71,68],[68,13,70],[10,70,13],[51,50,52],[13,68,71],[52,71,69], [12,10,13],[71,52,50],[71,14,13],[50,49,71],[49,48,71],[14,16,15], [14,71,48],[17,19,18],[17,20,19],[48,16,14],[48,47,16],[47,46,16], [16,46,45],[23,22,24],[21,24,22],[17,16,45],[20,17,45],[21,25,24], [27,26,28],[20,72,21],[25,21,72],[45,72,20],[25,28,26],[44,73,45], [72,45,73],[28,25,29],[29,25,31],[43,73,44],[73,43,40],[72,73,39], [72,31,25],[42,40,43],[31,30,29],[39,73,40],[42,41,40],[72,33,31], [32,31,33],[39,38,72],[33,72,38],[33,38,34],[37,35,38],[34,38,35], [35,37,36] ]) # Rather than create a Triangulation object, can simply pass x, y and triangles # arrays to tripcolor directly. It would be better to use a Triangulation object # if the same triangulation was to be used more than once to save duplicated # calculations. plt.figure() plt.gca().set_aspect('equal') plt.tripcolor(x, y, triangles, z, shading='flat', edgecolors='k') plt.colorbar() plt.title('tripcolor of user-specified triangulation') plt.xlabel('Longitude (degrees)') plt.ylabel('Latitude (degrees)') plt.show()
StarcoderdataPython
160618
from pathlib import Path ROOT_DIR = Path(__file__).parent.parent.parent DEFAULT_EMBED_COLOUR = 0x00CD99 # Dependant on above constants. from .loc import CodeCounter from .ready import Ready
StarcoderdataPython
163066
import magma as m from magma.testing import check_files_equal import os def test_inline_2d_array_interface(): class Main(m.Generator): @staticmethod def generate(width, depth): class MonitorWrapper(m.Circuit): io = m.IO(arr=m.In(m.Array[depth, m.Bits[width]])) m.inline_verilog(""" monitor #(.WIDTH({width}), .DEPTH({depth})) monitor_inst(.arr({arr})); """, width=width, depth=depth, arr=io.arr) return MonitorWrapper m.compile("build/test_inline_2d_array_interface", Main.generate(8, 64)) assert check_files_equal(__file__, f"build/test_inline_2d_array_interface.v", f"gold/test_inline_2d_array_interface.v") file_dir = os.path.abspath(os.path.dirname(__file__)) assert not os.system("verilator --lint-only " f"{file_dir}/build/test_inline_2d_array_interface.v " f"{file_dir}/vsrc/2d_array_interface.v " "--top-module MonitorWrapper")
StarcoderdataPython
1694189
"""Helper functions for processing the schemas.""" from . import association from . import backref from . import clean from . import iterate from . import process
StarcoderdataPython
1670832
<reponame>mrcbarbier/diffuseclique from wagutils import * import itertools from statsmodels.nonparametric.smoothers_lowess import lowess import pickle from json import dump,load import scipy.linalg as la def reldist_type2(x, y): xm, ym = np.mean(x), np.mean(y) slope = np.mean((x - xm) * (y - ym) ** 2) / np.mean((x - xm) ** 2 * (y - ym)) return [slope, 1. / slope][int(np.abs(slope) > np.abs(1. / slope))] def reldist_odr(x, y): import scipy.odr as odr def f(B, xx): return B[0] * xx + B[1] linear = odr.Model(f) data = odr.Data(x, y, wd=1, we=1) res = odr.ODR(data, linear, beta0=[.4, .0]) res = res.run() b = res.beta[0] b = np.array([b, 1 / b])[np.argmin(np.abs([b, 1 / b]))] # print reldist_type2(x,y),b return b def reldist(x, y, boot=0, typ='', split=0, strip=1,**kwargs): # x,y=np.array(x),np.array(y) idx = list(np.where((~np.isnan(x))&(~np.isnan(y)))[0]) if boot: idx = list(np.random.choice(idx, replace=True, size=x.size)) x, y = x[idx], y[idx] # if strip: idx = np.argsort(x) z = int(np.floor(len(idx) / 20)) idx = idx[z:-z] x, y = x[idx], y[idx] idx = np.argsort(y) return reldist(x[idx[z:-z]], y[idx[z:-z]], boot=0, strip=0, typ=typ,**kwargs) if split: idx = np.argsort(x) return np.mean([reldist(x[idx], y[idx], boot=0, split=0, typ=typ,**kwargs) for idx in np.array_split(idx, split)]) # if 'odr' in typ: return reldist_odr(x, y) if 'type2' in typ or (typ is None and 'type2' in sys.argv): return reldist_type2(x, y) if 'loglike' in typ: if not 'var' in kwargs: code_debugger() v=kwargs.get('var',1) if v is 1: print 'No var found' if len(v.shape)==2: try: v=v[np.ix_(idx,idx)] except: pass if v.shape[0]==x.shape[0]: # print 'Using covariance matrix' return -np.dot((x-y).ravel(),np.dot(la.inv(v ),(x-y).ravel() ))/x.size return -np.mean((x - y) ** 2 / v[idx]) # # Relative distance as correlation rescaled by max variance - like correlation but penalizes != scalings cov = np.cov(x, y) return cov[0, 1] / np.max([cov[0, 0], cov[1, 1]]) def slopedist(x, y, etai, etaj, boot=0, debug=0, per_species=None, linearize=0,**kwargs): if boot: idx = list(np.random.choice(range(x.size), replace=True, size=x.size)) x, y = x[idx], y[idx] if not per_species is None: i, j, species = per_species idx = [np.where(i == z)[0] for z in species] slopy = [linregress(etaj[i], y[i])[0] if len(i)>2 else np.nan for i in idx] slopx = [linregress(etaj[i], x[i])[0] if len(i)>2 else np.nan for i in idx] # else: idx = np.argsort(etai) idx = np.array_split(idx, 4) slopy = [linregress(etaj[i], y[i])[0] if len(i)>2 else np.nan for i in idx] slopx = [linregress(etaj[i], x[i])[0] if len(i)>2 else np.nan for i in idx] loc = np.array([np.median(etai[i]) for i in idx]) # slopx,slopy,loc=[np.array(z) for z in ( slopx,slopy,loc)] if linearize: good=(~np.isnan(slopx))&(~np.isnan(slopy)) slopx,slopy,loc=slopx[good],slopy[good],loc[good] a = np.argsort(loc) slopx, slopy = slopx[a], slopy[a] sx, ix = linregress(loc, slopx)[:2] sy, iy = linregress(loc, slopy)[:2] slopx, slopy = loc * sx + ix, loc * sy + iy # if 'debug' in sys.argv or debug: plt.close('all') plot(loc, slopy, hold=1) scatter(loc, slopx) code_debugger() kwargs.setdefault('strip',0) if kwargs.get('return_all'): return slopx,slopy,reldist(slopy, slopx, **kwargs) return reldist(slopy, slopx, **kwargs) def rowdist(x,y,i,**kwargs): kwargs.setdefault('strip',0) species=kwargs.get('species',np.unique(i)) meanx=np.array([np.mean(x[i==s]) if (i==s).any() else 0 for s in species]) meany=np.array([np.mean(y[i==s]) if (i==s).any() else 0 for s in species]) return reldist(meanx,meany,**kwargs) def get_species(df): return sorted(set(np.concatenate(df['composition'].values))) def get_path(exp,return_suffix=0): suffix = '' if 'bug' in sys.argv: suffix += '_debug' if 'detrendK' in sys.argv: suffix += '_detK' elif 'detrendblock' in sys.argv: suffix += '_detb' elif 'detrend' in sys.argv: suffix += '_det' if 'cheat' in sys.argv: suffix += '_cheat' if 'bminfer' in sys.argv: suffix += '_bminfer' path = Path('data/' + exp + suffix) path.mkdir() if return_suffix: return path,suffix return path def hyperplane_light(df,species,**kwargs): df=df.copy() from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.optimize import least_squares S = len(species) mat = np.zeros((S, S)) #Returned matrix for sidx,s in enumerate(species): res=None notsidx,others=[list(x) for x in zip(*[(o,oth) for o,oth in enumerate(species) if oth!=s])] xs = df[df[s] != 0][species].values xnomono=df[(df[s]!=0) & (np.max(df[others],axis=1)!=0 ) ] if not xnomono.size: print 'hyperplane skipping',s,'only present in monoculture' mat[sidx,sidx]=-1 continue xsT = xs.T def costfeta(y,weights=None): yy = -np.ones(S) yy[notsidx] = y if weights is None: return (np.dot(yy, xsT) +1) else: return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) res=least_squares(costfeta,-np.zeros(S-1) ) row=list(res.x) row.insert(sidx, -1) mat[sidx]=row mat[sidx,np.sum(np.abs(xsT),axis=1)==0]=np.nan return mat def hyperplane(df,species,etamode=0,distances=0,use_var=0,missing=0,**kwargs): df=df.copy() debug=kwargs.get('debug') from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.optimize import least_squares S = len(species) mat = np.zeros((S, S)) #Returned matrix compmat=np.zeros((S,S)) #To compare between differnet methods errmat=np.zeros((S,S)) #Matrix of stderr on coefficients table=[] sidx=-1 res=None Kmono=kwargs.get("K",None) if Kmono is None: Kmono = np.array( [df[np.logical_and(np.sum(df[species].values > 0, axis=1) == 1, df[s] > 0)][s].mean() for s in species]) Kmono[np.isnan(Kmono)] = 10 ** -10 for s in species: res,res2=None,None sidx+=1 rsquared=0 notsidx = [z for z in range(S) if z != sidx] xs = df[df[s] != 0][species].values xnomono=df[(df[s]!=0) & (np.max(df[[oth for oth in species if oth!=s]],axis=1)!=0 ) ] if not xnomono.size: print 'hyperplane skipping',s,'only present in monoculture' mat[sidx,sidx]=-1 dic={'species':s,'R2':0,'K':10**-10,'Kvar':0 } table.append(dic) continue if etamode==1: print 'basic eta mode' xs = xs / np.atleast_1d(Kmono) xs[:, np.where(np.isnan(Kmono))[0]] = 0 xsT = xs.T weights=np.ones(xs.shape[0]) if 'weights' in kwargs: weights*=[ kwargs['weights'].get(surv,0) for surv in np.sum(xs>0,axis=1)] if distances or debug: # print 'USING DISTANCES',distances,debug dxs = np.concatenate([xs - x for x in xs]).T # [1:]-xs[0] def costf(y,weights=None): yy = -np.ones(S) yy[notsidx] = y return np.dot(yy, dxs)# -Kmono[sidx] try: res = least_squares(costf,- np.ones(S - 1)) if kwargs.get('weights',None) and not np.allclose(weights,1): print 'Weights+distances not implemented yet' res = least_squares(costf, res.x,kwargs={'weights':weights}) except Exception as e: print 'Failed least_squares',e code_debugger() ai = list(res.x) residuals=res.fun ai.insert(sidx, -1) mat[sidx] = ai Ks=-np.dot(ai,xsT) rsquared = 1 - np.sum(residuals ** 2) / np.sum((dxs-np.mean(dxs,axis=1).reshape((S,1)) )**2 ) if (not distances) or debug: def costfeta(y,weights=None): # return np.dot(y,xsT[notsidx])-xsT[sidx]+ifelse(etamode=='given',1,Kmono[sidx]) yy = -np.ones(S) yy[notsidx] = y if weights is None: return (np.dot(yy, xsT) +1) else: return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) def costfnoeta(y,weights=None): # return np.dot(y,xsT[notsidx])-xsT[sidx]+ifelse(etamode=='given',1,Kmono[sidx]) yy = -np.ones(S) yy[notsidx] = y[notsidx] if weights is None: return np.dot(yy, xsT) +y[sidx] else: raise Exception('NOT READY') return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) Ks = None if etamode: try: res2=least_squares(costfeta,-np.ones(S-1) ) except: code_debugger() if kwargs.get('weights',None) and not np.allclose(weights,1): # code_debugger() res2 = least_squares(costfeta, res2.x,kwargs={'weights':weights}) comparison=list(res2.x) residuals=costfeta(res2.x) else: x0=-np.ones(S) x0[sidx]=1 res2=least_squares(costfnoeta,x0 ) if kwargs.get('weights',None) and not np.allclose(weights,1): # code_debugger() res2 = least_squares(costfnoeta, res2.x,kwargs={'weights':weights}) Ks=res2.x[sidx] comparison=list(res2.x[notsidx]) residuals = costfnoeta(res2.x) if use_var: xvarT = df[df[s] != 0][[sp + '_var' for sp in species]].values.T xvarT[np.isnan(xvarT)]=0 try: def costd(yy): dd,vv=xsT,np.clip(xvarT,10**-5,None) tmpx=costfeta(yy) tmpv=( np.dot(yy**2, vv[notsidx]) + vv[sidx] ) ** .5 # code_debugger() # tmpv=( np.sum(vv,axis=0) ) ** .5 # tmpv=1 # print tmpv return tmpx/tmpv tmpres = list( least_squares(costd, -np.ones(S - 1)).x) tmpres2 = list( least_squares(costd, comparison).x) comparison=tmpres2 # print costd(np.array(tmpres)),costd(np.array(tmpres2)) except: print 'Failure' code_debugger() # print 'Final',np.sum(costd(np.array(comparison))**2) comparison.insert(sidx, -1) if Ks is None: Ks=-np.dot(comparison,xsT) compmat[sidx]=comparison rsquared = 1 - np.sum(residuals ** 2) / np.sum((xsT-np.mean(xsT,axis=1).reshape((S,1)) )**2 ) if np.isnan(rsquared).any(): code_debugger() # rsquared = 1 - np.sum(residuals ** 2) / np.mean() np.var(xsT)#[sidx]) # if rsquared<0: # code_debugger() if debug: code_debugger() try: def makerr(res): from scipy.linalg import svd tmp, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s ** 2, VT) return np.clip(np.diag(pcov)*2*res.cost/ np.clip(res.jac.shape[0] - res.jac.shape[1],10**-10,None),None,100) fres=res if fres is None: fres=res2 if fres.jac.shape[1]==S: errmat[sidx]=makerr(fres)**.5 else: errmat[sidx,[si for si in range(S) if si != sidx]]=makerr(fres)**.5 except Exception as e: print 'ERROR hyperplane:',e dic={'species':s,'R2':rsquared,'K':np.mean(Ks),'Kvar':np.var(Ks) } table.append(dic) tab=pd.DataFrame(table) Ks=np.array([tab.set_index('species')['K'].loc[s] for s in species ]) if not distances: mat=compmat np.fill_diagonal(errmat,0) # # DEAL WITH MISSING PAIRS missingpairs=[(i,j) for i in species for j in species if not np.max(np.prod(df[[i,j]].values,axis=1))>0 ] for i,j in missingpairs: mat[species.index(i),species.index(j)]=np.nan mat[species.index(j),species.index(i)]=np.nan if missing=='mean': mat[np.isnan(mat)]=np.mean(nonan(offdiag(mat)) ) else: mat[np.isnan(mat)] = missing if etamode: # tab['Kdiff']=tab['K'] tab['K']=Kmono*tab['K'] # code_debugger() beta=mat alpha = mat / np.multiply.outer(Ks, 1. / Ks) else: alpha=mat beta=mat*np.multiply.outer(Ks,1./Ks) return alpha,beta,tab,errmat/(np.abs(mat)+10**-10) def correlcalc(etafull,beta,gamma=0,return_all=1,pad=0,rank=0,**kwargs): '''Compute plot of prediction versus theory for means and correlations''' def bootstrap(x): if not np.sum(x.shape)>0: return x return np.mean(np.random.choice(x, size=x.size)) beta=beta.copy() S=etafull.shape[0] etamean = np.array([bootstrap(etafull[i]) for i in range(S)]) bm, bv, betatheo = hebbian_getbstats(beta, etamean,**kwargs ) # betaerr=ana[i][j].get('beta_relerr', np.ones(beta.shape))) if isinstance(gamma,basestring): gamma=np.corrcoef(offdiag(beta),offdiag(beta.T))[0,1] # print ' gamma',gamma betatheo = bm + (betatheo - bm) + gamma * (betatheo.T - bm) arange=np.arange(S) mean_i=np.multiply.outer(np.arange(S),np.ones(S)).astype('int') mean_j=mean_i.T # code_debugger() # bet=beta.copy() # bet[bet == 0] = np.nan # bet[np.abs(bet)>3.6]=np.nan betadiff = beta - betatheo diag = np.multiply.outer(np.ones(S), np.eye(S)) def removeself(mat): S = mat.shape[0] ss = range(S) mat2 = [mat[i][np.ix_([s for s in ss if s != i], [s for s in ss if s != i])] for i in range(S)] return np.array(mat2) empirical = removeself(np.einsum('ij,ik->ijk', betadiff, betadiff)) var = np.array([np.nanmean(empirical[i][np.eye(S - 1) != 0]) for i in range(S)]).reshape((-1, 1, 1)) empirical /= var + 10 ** -15 empirical -= removeself(diag) prediction = removeself( - np.multiply.outer(1. / (np.sum(etamean ** 2) - etamean ** 2 + 0.0001), np.multiply.outer(etamean, etamean))) def ms(x): return np.concatenate([np.nanmean(x, axis=(1)), np.nanmean(x, axis=(2))]) corr_i=np.multiply.outer(arange,np.ones((S-1,S-1)) ).astype('int') corr_j=removeself(np.multiply.outer(np.ones(S),np.multiply.outer(arange,np.ones(S)) ).astype('int')) corr_k=removeself(np.multiply.outer(np.ones(S),np.multiply.outer(np.ones(S),arange) ).astype('int')) # prediction,empirical=prediction[removeself(diag)==0],empirical[removeself(diag)==0] # prediction,empirical=ms(prediction),ms(empirical) #Makes things significantly worse if kwargs.get('remove_zeros',1): beta[beta==0]=np.nan results=dict( [('mean_theo', offdiag(betatheo)), ('mean_emp', offdiag(beta)), ('corr_theo', prediction.ravel()), ('corr_emp', empirical.ravel()),('mean_etai',etamean[list( offdiag(mean_i))] ),('mean_etaj',etamean[list( offdiag(mean_j))] ), ('corr_etai', etamean[list(corr_i.ravel())] ) ] ) # code_debugger() for z in ('corr_i', 'corr_j', 'corr_k', 'mean_i', 'mean_j'): val=locals()[z] if 'mean' in z: val=offdiag(val) else: val=val.ravel() results[z]=val if rank: results={i:getranks(results[i]) for i in results} results['bm']=bm results['bv']=bv from scipy.stats import sem, linregress, siegelslopes, theilslopes, ttest_1samp try: summary={v: linregress(results[v+'_theo'][~np.isnan( results[v+'_emp'])], results[v+'_emp'][~np.isnan( results[v+'_emp'])] )[0] for v in ('mean','corr')} except Exception as e: print e summary={} if return_all: results.update(summary) if pad: for k in results: if 'mean_' in k: results[k]=np.concatenate([results[k], np.ones(len(results['corr_theo'])-len(results[k]) ) *np.nan ]) # else: return results return summary def infer_bm(eta,meanfield=1,nmat=1,S=None,maxtrials=100,resolution=ifelse('bug' in sys.argv,3,15),use_noise=0, **kwargs): from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.special import erf import time Salive=eta.shape[0] if S is None: S=Salive tstart=time.time() eta=eta[np.argsort(np.mean(eta,axis=1))] mneta=np.mean(np.median(eta,axis=1)) sdeta=np.std(np.median(eta,axis=1)) phieta=np.mean( eta>0) *Salive*1./S if eta.shape[1] == 1 or Salive<2: covmat = np.eye(3) else: var_mneta = np.array(np.mean([np.random.choice(eta[i], size=maxtrials) for i in range(Salive)], axis=0)) var_sdeta = np.array(np.std([np.random.choice(eta[i], size=maxtrials) for i in range(Salive)], axis=0)) var_phieta = np.array(np.mean([np.random.choice((eta[i] > 0), size=maxtrials) for i in range(Salive)], axis=0) * (Salive - np.random.randint(0, 2, maxtrials)) * 1. / S) covmat = np.cov([var_mneta, var_sdeta, var_phieta]) etavec=np.mean(eta,axis=1) vare=np.mean(np.var(eta,axis=1)/etavec**1.5) # bm_mf = (1. / mneta - 1) / S bm_surv=bm=hebbian_stablebm(etavec) bs_surv=bs= np.sqrt( (1- np.mean(etavec)**2/np.mean(etavec**2)) /S) tab,learntab =None,None gamma=0 if not meanfield: # if 'table' in kwargs and not kwargs['table'] is None: tab = kwargs['table'].copy() else: def make_mats(bm,bs,gamma): etas=[] trial=0 while len(etas)<nmat and trial<maxtrials: trial+=1 mat= -genpool(S,mu=bm,sigma=bs,gamma=gamma)[-1] np.fill_diagonal(mat,1) e=np.dot(lainv(mat),np.ones(S)) a=np.argsort(e) mat=mat[np.ix_(a,a)] if (e<0).any(): e=np.clip(e[a],0,None) e=dosimu(-mat,np.ones(S),np.ones(S),tmax=100,noise=0,x0=e+.001)[-1][-1] e[e<10**-5]=0 # print e if vare>0 and use_noise: noise=np.array([np.random.gamma(1./(vare*ee**1.5),(vare*ee**1.5) ) if ee >0 else 0 for ee in e ]) else: noise=1 etas.append(e*noise ) return etas # learntab=[] print 'CREATING TABLE FOR BM INFERENCE' if 'nogamma' in sys.argv: gammas=[0] gammares=1 else: gammas=[0,0.3,0.6] gammares=9 fineres=3*resolution for ix,x in enumerate(np.linspace(bm_surv*.7,2*bm_surv,resolution)): print '{}/{}'.format(ix+1,resolution) for y in np.linspace(bs_surv*.7,2.4*bs_surv,resolution): for g in gammas: etas=make_mats(x,y,g) mns=[np.mean(e) for e in etas] sds=[np.std(e) for e in etas] phi=[np.mean(e>0) for e in etas] learntab.append({'bm':x,'bs':y,'gamma':g,'mn':np.mean(mns),'sd':np.mean(sds),'phi':np.mean(phi),},) learntab=pd.DataFrame(learntab) # XY=learntab[['bm','bs','gamma']].values from sklearn.kernel_ridge import KernelRidge from sklearn.model_selection import GridSearchCV # ax.plot_wireframe(X, Y, Z, rstride=2, cstride=2,color='k',alpha=.7) clf = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) XYsmooth=np.array([x for x in itertools.product( np.linspace(XY[0,0],XY[-1,0],fineres), np.linspace(XY[0,1],XY[-1,1],fineres) , np.linspace(gammas[0],gammas[-1],gammares) ) ]) tab = pd.DataFrame({'bm': XYsmooth[:, 0], 'bs': XYsmooth[:, 1], 'gamma': XYsmooth[:, 2]}) for label in ['mn','sd','phi']: Z=learntab[label].values #bandwidth(XY) #kernel='gaussian', bandwidth=.2 clf.fit(XY,Z) Zsmooth = clf.predict(XYsmooth) tab[label]=Zsmooth for tb in (tab,learntab): if tb is None: continue try: dist=[ np.sqrt( np.dot( (mneta-mn,sdeta-sd,phieta-phi),np.dot(lainv(covmat), (mneta-mn,sdeta-sd,phieta-phi) ) ) ) for mn,sd,phi in tb[['mn','sd','phi']].values] except: code_debugger() # dist = np.abs(mneta*phieta-tb['mn'].values) tb['dist']=dist tb['p']=[(1-erf( dd/np.min(dist) ) )/2. for dd in dist] # code_debugger() if 'bug' in sys.argv: for i in ('p','dist','phi','mn'): plt.figure() if not learntab is None: gammas = learntab['gamma'].unique() plt.subplot(121) plt.imshow(learntab[learntab['gamma']==gammas[0]].pivot('bm', 'bs')[i]), plt.colorbar() plt.subplot(122) # bms,bss=[['{:.2f}'.format(l) for l in ll] for ll in (np.sort(tab['bm'].unique()),np.sort(tab['bs'].unique()))] gammas = tab['gamma'].unique() plt.imshow( tab[tab['gamma']==gammas[0]].pivot('bm', 'bs')[i]), plt.colorbar() ax = plt.gca() dx,dy=ax.get_xticks(),ax.get_yticks() def getidx(lst,z): return [lst[int(i)] if i>=0 and i<len(lst) else '' for i in z] ax.set_yticklabels(getidx(bms,dy)),ax.set_xticklabels(getidx(bss,dx)),plt.suptitle(i) plt.show() # code_debugger() bm,bs,gamma=tab[tab['p']>.95 *tab['p'].max()][['bm','bs','gamma']].median() tend=time.time() # bloc = hebbian_convert(eta, bm, bs, forward=0) # bm = bloc['bm_pool'] print 'Time',tend-tstart, 'bm,bs:',bm_surv,bs_surv, '->',bm,bs,'gamma',gamma#,'bs',bs,'<-',bs_surv if np.isnan([bm,bs]).any(): code_debugger() return bm,bs,gamma, tab def make_groundtruth(S=8,species=None,noise=.08,sizes=(1,2,4,8),replicas=1,nplots=None,plots=None,**kwargs): """Create a fake experimental setup to test inference methods.""" from scipy.misc import comb table=[] if species is None: import string ref=string.ascii_lowercase+string.ascii_uppercase+''.join([str(i) for i in range(10)]) species=[ref[i] for i in range(S)] species=np.array(species) rs,Ks,beta=genpool(S,**kwargs) rs=kwargs.pop('rs',rs) Ks=kwargs.pop('Ks',Ks) beta=kwargs.pop('beta',beta) Aij=beta*np.multiply.outer(rs,1./Ks) alpha=beta*np.multiply.outer(Ks,1./Ks) def get_true_eq(compo,N=None): bet=beta - np.eye(S) if isinstance(compo[0],basestring): sidx=[list(species).index(i) for i in compo] else: sidx=compo bet=bet[np.ix_(sidx,sidx)] eqs = find_eqs(bet, uninvadable=1, stable=1, largest=N is None) if not eqs: eqs = find_eqs(bet, uninvadable=0, stable=1, largest=N is None) if not eqs: eqs = find_eqs(bet, uninvadable=0, stable=0, largest=N is None) eq= eqs[0] if not N is None: from scipy.linalg import norm eq= eqs[np.argmin([ norm(N-eq) for eq in eqs ]) ] val=np.zeros(S) val[sidx]=eq return val if plots is None: if sizes is None: sizes = [2 ** x for x in range(int(np.floor(np.log(S * 1.001) / np.log(2)) + 1))] if not S in sizes: sizes += [S] sizes = np.array(sizes) if replicas is None: replicas = [int(np.round(S / s)) for s in sizes] else: replicas = np.atleast_1d(replicas) if replicas.shape[0] < sizes.shape[0]: replicas = replicas * np.ones(sizes.shape) if nplots is None: nplots = np.array([min(10, comb(S, s)) if s > 1 else S for s in sizes]) * replicas plots=[] for size, nrep, npl in zip(sizes,replicas,nplots): nsamp=max(1,npl/nrep) if npl>comb(S,size): samples=list(tuple(x) for x in itertools.combinations(range(int(S)),size)) elif comb(S,size)<5000: allcombs=[tuple(x) for x in itertools.combinations(range(int(S)), size)] samples = [allcombs[i] for i in np.random.choice(range(len(allcombs)),int(nsamp),replace=0 )] else: samples=[tuple(np.random.choice(range(int(S)),size,replace=0)) for i in range(int(nsamp))] try: nrep = max(1,int(min(nrep, npl / len(samples)))) except: print 'ERROR', size,nrep,npl,nsamp,samples code_debugger() # print size, nrep,npl,samples, len(samples)==len(set(samples)) plots+=[species[list(sidx)] for sidx in samples for rep in range(nrep) ] plotn=0 x0=kwargs.pop('x0',np.ones(len(species))) for plot in plots: plotn += 1 sidx=[list(species).index(s) for s in plot] print 'Plot {} Species {}'.format(plotn, species[sidx]) years,results = dosimu(Aij[np.ix_(sidx, sidx)], Ks[sidx], rs[sidx],x0=x0[sidx], noise=noise, evol=1, print_msg=0, **kwargs) #print results[-1]/Ks[sidx] for year, res in zip(years,results): total = np.sum(res) dic = {'plot': plotn, 'total': total, 'total/m2': total, 'year': int(np.round(year)), 'richness': len(plot), 'composition': tuple(species[sidx]),#'equilibrium':get_true_eq(sidx,plotn) } basekeys=sorted(dic.keys()) abund = np.zeros(len(species)) # code_debugger() abund[sidx] = res dic.update({s: a for s, a in zip(species, abund)}) table.append(dic) df=pd.DataFrame(table) df=df[list(basekeys)+list(species)] ground={} ground.update(kwargs) ground.update({'A':Aij-np.diag(rs/Ks),'beta':beta-np.eye(S),'alpha':alpha-np.eye(S),'Ks':Ks, 'rs':rs,'noise':noise, 'equilibrium':{compo:get_true_eq(compo) for compo in set(df['composition'].values) } } ) return df,ground
StarcoderdataPython
4801213
# Generated by Django 2.0.8 on 2018-11-19 13:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('transformer', '0003_auto_20181114_1407'), ] operations = [ migrations.AlterField( model_name='package', name='process_status', field=models.CharField(choices=[(10, 'Transfer saved'), (20, 'Accession record created'), (30, 'Grouping component created'), (40, 'Transfer component created'), (50, 'Digital object created'), (60, 'Updated data sent to Aurora')], max_length=50), ), ]
StarcoderdataPython
3396250
<gh_stars>1-10 """ Helper Controller Class """ import logging import logging.config import os import multiprocessing import platform try: import queue except ImportError: import Queue as queue import signal import sys import time from helper import config, __version__ LOGGER = logging.getLogger(__name__) class Controller(object): """Extend this class to implement your core application controller. Key methods to implement are Controller.setup, Controller.process and Controller.cleanup. If you do not want to use the sleep/wake structure but rather something like a blocking IOLoop, overwrite the Controller.run method. """ APPNAME = sys.argv[0].split(os.sep)[-1] VERSION = __version__ #: When shutting down, how long should sleeping block the interpreter while #: waiting for the state to indicate the class is no longer active. SLEEP_UNIT = 0.5 #: How often should :meth:`Controller.process` be invoked WAKE_INTERVAL = 60 #: Initializing state is only set during initial object creation STATE_INITIALIZING = 0x01 #: When helper has set the signal timer and is paused, it will be in the #: sleeping state. STATE_SLEEPING = 0x02 #: The idle state is available to implementing classes to indicate that #: while they are not actively performing tasks, they are not sleeping. #: Objects in the idle state can be shutdown immediately. STATE_IDLE = 0x03 #: The active state should be set whenever the implementing class is #: performing a task that can not be interrupted. STATE_ACTIVE = 0x04 #: The stop requested state is set when a signal is received indicating the #: process should stop. The app will invoke the :meth:`Controller.stop` #: method which will wait for the process state to change from STATE_ACTIVE STATE_STOP_REQUESTED = 0x05 #: Once the application has started to shutdown, it will set the state to #: stopping and then invoke the :meth:`Controller.stopping` method. STATE_STOPPING = 0x06 #: Once the application has fully stopped, the state is set to stopped. STATE_STOPPED = 0x07 # For reverse lookup _STATES = {0x00: 'None', 0x01: 'Initializing', 0x02: 'Sleeping', 0x03: 'Idle', 0x04: 'Active', 0x05: 'Stop Requested', 0x06: 'Stopping', 0x07: 'Stopped'} # Default state _state = 0x00 def __init__(self, args, operating_system): """Create an instance of the controller passing in the debug flag, the options and arguments from the cli parser. :param argparse.Namespace args: Command line arguments :param str operating_system: Operating system name from helper.platform """ self.set_state(self.STATE_INITIALIZING) self.args = args try: self.config = config.Config(args.config) except ValueError: sys.exit(1) self.debug = args.foreground logging.config.dictConfig(self.config.logging) self.operating_system = operating_system self.pending_signals = multiprocessing.Queue() @property def current_state(self): """Property method that return the string description of the runtime state. :rtype: str """ return self._STATES[self._state] @property def is_active(self): """Property method that returns a bool specifying if the process is currently active. :rtype: bool """ return self._state == self.STATE_ACTIVE @property def is_idle(self): """Property method that returns a bool specifying if the process is currently idle. :rtype: bool """ return self._state == self.STATE_IDLE @property def is_initializing(self): """Property method that returns a bool specifying if the process is currently initializing. :rtype: bool """ return self._state == self.STATE_INITIALIZING @property def is_running(self): """Property method that returns a bool specifying if the process is currently running. This will return true if the state is active, idle or initializing. :rtype: bool """ return self._state in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_INITIALIZING] @property def is_sleeping(self): """Property method that returns a bool specifying if the process is currently sleeping. :rtype: bool """ return self._state == self.STATE_SLEEPING @property def is_stopped(self): """Property method that returns a bool specifying if the process is stopped. :rtype: bool """ return self._state == self.STATE_STOPPED @property def is_stopping(self): """Property method that returns a bool specifying if the process is stopping. :rtype: bool """ return self._state == self.STATE_STOPPING @property def is_waiting_to_stop(self): """Property method that returns a bool specifying if the process is waiting for the current process to finish so it can stop. :rtype: bool """ return self._state == self.STATE_STOP_REQUESTED def on_configuration_reloaded(self): """Override to provide any steps when the configuration is reloaded.""" LOGGER.debug('%s.on_configuration_reloaded() NotImplemented', self.__class__.__name__) def on_shutdown(self): """Override this method to cleanly shutdown the application.""" LOGGER.debug('%s.cleanup() NotImplemented', self.__class__.__name__) def on_sigusr1(self): """Called when SIGUSR1 is received, does not have any attached behavior. Override to implement a behavior for this signal. """ LOGGER.debug('%s.on_sigusr1() NotImplemented', self.__class__.__name__) def on_sigusr2(self): """Called when SIGUSR2 is received, does not have any attached behavior. Override to implement a behavior for this signal. """ LOGGER.debug('%s.on_sigusr2() NotImplemented', self.__class__.__name__) def process(self): """To be implemented by the extending class. Is called after every sleep interval in the main application loop. """ raise NotImplementedError def process_signal(self, signum): """Invoked whenever a signal is added to the stack. :param int signum: The signal that was added """ if signum == signal.SIGTERM: LOGGER.info('Received SIGTERM, initiating shutdown') self.stop() elif signum == signal.SIGHUP: LOGGER.info('Received SIGHUP') if self.config.reload(): LOGGER.info('Configuration reloaded') logging.config.dictConfig(self.config.logging) self.on_configuration_reloaded() elif signum == signal.SIGUSR1: self.on_sigusr1() elif signum == signal.SIGUSR2: self.on_sigusr2() def run(self): """The core method for starting the application. Will setup logging, toggle the runtime state flag, block on loop, then call shutdown. Redefine this method if you intend to use an IO Loop or some other long running process. """ LOGGER.info('%s v%s started', self.APPNAME, self.VERSION) self.setup() while not any([self.is_stopping, self.is_stopped]): self.set_state(self.STATE_SLEEPING) try: signum = self.pending_signals.get(True, self.wake_interval) except queue.Empty: pass else: self.process_signal(signum) if any([self.is_stopping, self.is_stopped]): break self.set_state(self.STATE_ACTIVE) self.process() def start(self): """Important: Do not extend this method, rather redefine Controller.run """ for signum in [signal.SIGHUP, signal.SIGTERM, signal.SIGUSR1, signal.SIGUSR2]: signal.signal(signum, self._on_signal) self.run() def set_state(self, state): """Set the runtime state of the Controller. Use the internal constants to ensure proper state values: - :attr:`Controller.STATE_INITIALIZING` - :attr:`Controller.STATE_ACTIVE` - :attr:`Controller.STATE_IDLE` - :attr:`Controller.STATE_SLEEPING` - :attr:`Controller.STATE_STOP_REQUESTED` - :attr:`Controller.STATE_STOPPING` - :attr:`Controller.STATE_STOPPED` :param int state: The runtime state :raises: ValueError """ if state == self._state: return elif state not in self._STATES.keys(): raise ValueError('Invalid state {}'.format(state)) # Check for invalid transitions if self.is_waiting_to_stop and state not in [self.STATE_STOPPING, self.STATE_STOPPED]: LOGGER.warning('Attempt to set invalid state while waiting to ' 'shutdown: %s ', self._STATES[state]) return elif self.is_stopping and state != self.STATE_STOPPED: LOGGER.warning('Attempt to set invalid post shutdown state: %s', self._STATES[state]) return elif self.is_running and state not in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_SLEEPING, self.STATE_STOP_REQUESTED, self.STATE_STOPPING]: LOGGER.warning('Attempt to set invalid post running state: %s', self._STATES[state]) return elif self.is_sleeping and state not in [self.STATE_ACTIVE, self.STATE_IDLE, self.STATE_STOP_REQUESTED, self.STATE_STOPPING]: LOGGER.warning('Attempt to set invalid post sleeping state: %s', self._STATES[state]) return LOGGER.debug('State changed from %s to %s', self._STATES[self._state], self._STATES[state]) self._state = state def setup(self): """Override to provide any required setup steps.""" LOGGER.debug('%s.setup() NotImplemented', self.__class__.__name__) def shutdown(self): """Override to provide any required shutdown steps.""" LOGGER.debug('%s.shutdown() NotImplemented', self.__class__.__name__) def stop(self): """Override to implement shutdown steps.""" LOGGER.info('Attempting to stop the process') self.set_state(self.STATE_STOP_REQUESTED) # Call shutdown for classes to add shutdown steps self.shutdown() # Wait for the current run to finish while self.is_running and self.is_waiting_to_stop: LOGGER.info('Waiting for the process to finish') time.sleep(self.SLEEP_UNIT) # Change the state to shutting down if not self.is_stopping: self.set_state(self.STATE_STOPPING) # Call a method that may be overwritten to cleanly shutdown self.on_shutdown() # Change our state self.set_state(self.STATE_STOPPED) @property def system_platform(self): """Return a tuple containing the operating system, python implementation (CPython, pypy, etc), and python version. :rtype: tuple(str, str, str) """ return (self.operating_system, platform.python_implementation(), platform.python_version()) @property def wake_interval(self): """Property method that returns the wake interval in seconds. :rtype: int """ return (self.config.application.get('wake_interval') or self.WAKE_INTERVAL) def _on_signal(self, signum, _frame): """Append the signal to the queue, to be processed by the main.""" self.pending_signals.put(signum)
StarcoderdataPython
139766
<filename>src/key.py from dataclasses import dataclass import uuid import os import re import base58 from typing import Optional from cryptography.hazmat.primitives.ciphers.aead import ChaCha20Poly1305 from cryptography.hazmat.primitives import hashes @dataclass class SymetricKeyProps: alg: str id: Optional[str] = None nonce: bytes = os.urandom(12) key: Optional[bytes] = None hashSeed: str = str(uuid.uuid4()) key_length: int = 32 nonce_length: int = 12 class SymetricKey: _id: Optional[str] _hashSeed: str _key: Optional[bytes] _nonce: bytes _key_length: int _nonce_length: int _alg = 'chacha20-poly1305' def __init__(self, props: SymetricKeyProps): self._id = props.id self._key = props.key self._hashSeed = props.hashSeed self._key_length = props.key_length self._nonce_length = props.nonce_length self._nonce = props.nonce @staticmethod def create(props: SymetricKeyProps): return SymetricKey(props).generate() # def generate_nonce(self, length: Optional[int] = None) -> bytes: # nonce_length = length if length else self._nonce_length # self._nonce = os.urandom(nonce_length) # return self._nonce def generate(self): if self._key is None: self._key = os.urandom(self._key_length) self._nonce = self._nonce if self._nonce else self.create_nonce() if self._id is None: digest = hashes.Hash(hashes.SHA256()) digest.update(self._key) digest.update(self._nonce) self._id=base58.b58encode(digest.finalize()).decode() self._chacha = ChaCha20Poly1305(self._key) return self def create_nonce(self) -> bytes: self._nonce = os.urandom(12) return self.nonce @property def key(self) -> bytes: if self._key is None: raise Exception("key is not set") return self._key @property def id(self) -> str: if self._id is None: raise Exception("key is not set") return self._id @property def nonce(self) -> bytes: if self._nonce is None: raise Exception("nonce is not set") return self._nonce def encrypt(self, nonce: bytes, message: bytes, addition: Optional[bytes] = None ) -> bytes: return self._chacha.encrypt(nonce, message, addition) def decrypt(self, nonce: bytes, encrypted: bytes, addition: Optional[bytes] = None) -> bytes: return self._chacha.decrypt(nonce, encrypted, addition) def hash(self, enc: str)-> str: hasher = hashes.Hash(hashes.SHA256()) hasher.update(bytes(self._hashSeed, 'utf-8')); stripped = re.sub(r'[\n\r\s\t]+','', enc.upper(),flags=(re.M)) hasher.update(stripped.encode()) # 'A' means sha256 upcase und replace string_hash = base58.b58encode(hasher.finalize()).decode() return "A{}".format(string_hash)
StarcoderdataPython
1710406
# -*- coding: utf-8 -*- import logging import unittest from clarifai.rest import ClarifaiApp from clarifai.rest import Concept from clarifai.rest import Image as ClImage from clarifai.rest import ModelOutputInfo, ModelOutputConfig urls = [ "https://samples.clarifai.com/metro-north.jpg", 'https://samples.clarifai.com/3o6gb3kkXfLvdKEZs4.gif', ] class TestPredict(unittest.TestCase): _multiprocess_can_split_ = True to_cleanup = [] @classmethod def setUpClass(cls): cls.app = ClarifaiApp(log_level=logging.WARN) def test_predict_image_url(self): """ predict a single url """ # just by url m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[0]) def test_predict_image_url_min_value(self): # url, with min_value m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[0], min_value=0.4) for c in res['outputs'][0]['data']['concepts']: self.assertGreaterEqual(c['value'], 0.4) def test_predict_image_url_max_concepts(self): # url, with max_concepts m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[0], max_concepts=5) self.assertEqual(len(res['outputs'][0]['data']['concepts']), 5) def test_predict_image_url_min_value_max_concepts(self): # url, with both min_value and max_concepts m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[0], min_value=0.6, max_concepts=5) for c in res['outputs'][0]['data']['concepts']: self.assertGreaterEqual(c['value'], 0.6) self.assertLessEqual(len(res['outputs'][0]['data']['concepts']), 5) def test_predict_image_url_select_concepts(self): # url, with select_concepts, by name m = self.app.models.get('general-v1.3') select_concepts = [Concept(concept_name='beer'), Concept(concept_name='vehicle')] res = m.predict_by_url(urls[0], select_concepts=select_concepts) self.assertEqual(len(res['outputs'][0]['data']['concepts']), 2) # url, with select_concepts by id select_concepts = [Concept(concept_id='ai_hK1KnTCJ'), Concept(concept_id='ai_m52MdMR3'), Concept(concept_id='ai_fN8NZ9JV')] res = m.predict_by_url(urls[0], select_concepts=select_concepts) self.assertEqual(len(res['outputs'][0]['data']['concepts']), 3) def test_predict_video_url(self): """ predict a single url """ # just by url m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[1], is_video=True) def test_predict_video_url_min_value(self): # url, with min_value m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[1], is_video=True, min_value=0.9) for frame in res['outputs'][0]['data']['frames']: for c in frame['data']['concepts']: self.assertGreaterEqual(c['value'], 0.9) def test_predict_video_url_max_concepts(self): # url, with max_concepts m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[1], is_video=True, max_concepts=3) for frame in res['outputs'][0]['data']['frames']: self.assertEqual(len(frame['data']['concepts']), 3) def test_predict_video_url_min_value_max_concepts(self): # url, with both min_value and max_concepts m = self.app.models.get('general-v1.3') res = m.predict_by_url(urls[1], is_video=True, min_value=0.85, max_concepts=3) for frame in res['outputs'][0]['data']['frames']: for c in frame['data']['concepts']: self.assertGreaterEqual(c['value'], 0.85) for frame in res['outputs'][0]['data']['frames']: self.assertLessEqual(len(frame['data']['concepts']), 3) def test_bulk_with_min_value(self): img = ClImage(url=urls[0]) m = self.app.models.get('general-v1.3') model_output_info = ModelOutputInfo(output_config=ModelOutputConfig(min_value=0.96)) res = m.predict(inputs=[img, img, img], model_output_info=model_output_info) for result in res['outputs']: for c in result['data']['concepts']: self.assertGreaterEqual(c['value'], 0.96) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1780635
<reponame>bhaving07/pyup<filename>venv/lib/python3.7/site-packages/gitlab/tests/objects/test_groups.py """ GitLab API: https://docs.gitlab.com/ce/api/groups.html """ import pytest import responses import gitlab @pytest.fixture def resp_groups(): content = {"name": "name", "id": 1, "path": "path"} with responses.RequestsMock(assert_all_requests_are_fired=False) as rsps: rsps.add( method=responses.GET, url="http://localhost/api/v4/groups/1", json=content, content_type="application/json", status=200, ) rsps.add( method=responses.GET, url="http://localhost/api/v4/groups", json=[content], content_type="application/json", status=200, ) rsps.add( method=responses.POST, url="http://localhost/api/v4/groups", json=content, content_type="application/json", status=200, ) yield rsps @pytest.fixture def resp_create_import(accepted_content): with responses.RequestsMock() as rsps: rsps.add( method=responses.POST, url="http://localhost/api/v4/groups/import", json=accepted_content, content_type="application/json", status=202, ) yield rsps def test_get_group(gl, resp_groups): data = gl.groups.get(1) assert isinstance(data, gitlab.v4.objects.Group) assert data.name == "name" assert data.path == "path" assert data.id == 1 def test_create_group(gl, resp_groups): name, path = "name", "path" data = gl.groups.create({"name": name, "path": path}) assert isinstance(data, gitlab.v4.objects.Group) assert data.name == name assert data.path == path def test_create_group_export(group, resp_export): export = group.exports.create() assert export.message == "202 Accepted" @pytest.mark.skip("GitLab API endpoint not implemented") def test_refresh_group_export_status(group, resp_export): export = group.exports.create() export.refresh() assert export.export_status == "finished" def test_download_group_export(group, resp_export, binary_content): export = group.exports.create() download = export.download() assert isinstance(download, bytes) assert download == binary_content def test_import_group(gl, resp_create_import): group_import = gl.groups.import_group("file", "api-group", "API Group") assert group_import["message"] == "202 Accepted" @pytest.mark.skip("GitLab API endpoint not implemented") def test_refresh_group_import_status(group, resp_groups): group_import = group.imports.get() group_import.refresh() assert group_import.import_status == "finished"
StarcoderdataPython
128948
<filename>data/genuine/purge.py<gh_stars>1-10 #!/usr/bin/env python3 import argparse import itertools import logging import os import csv import re from data.genuine.utils import check_lang logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) if __name__ == "__main__": """ Remove articles which are not in ground truth file. """ parser = argparse.ArgumentParser(description='Retain only data with specified language and GUIDs from list.') parser.add_argument('-l', '--lang', help='language not to purge', type=check_lang) parser.add_argument('-t, --test', dest='test', action='store_true', help='will not delete files') parser.set_defaults(lang='en', test=False) args = parser.parse_args() processed_filename_pattern = re.compile('[0-9]{10}.[0-9]-[a-z]{2}-[0-9A-Fa-f]{32}-[0-9A-Fa-f]{32}.q.job.xml') dir_path = os.path.dirname(os.path.realpath(__file__)) heldout_dir = os.path.join(dir_path, "heldout") test_dir = os.path.join(dir_path, "test") filename = os.path.join(dir_path, "2017-10-gold.csv") language = args.lang if not os.path.exists(filename): raise ValueError("File '%s' not found" % filename) ids = set() cluster_ids = set() # Read valid GUIDs with open(filename, 'r') as csvfile: reader = csv.reader(csvfile) # Skip header it = iter(reader) next(it) for row in it: # Skip documents in different languages if language is not None and language != row[1]: continue # Keep track of cluster ids cluster_ids.add(row[6]) ids.add(row[0]) counter = 0 purged = 0 for dirpath, subdirs, files in itertools.chain(os.walk(heldout_dir), os.walk(test_dir)): logging.info("Purging files in directory '%s'" % dirpath) for filename in files: # Construct old file path file_path = os.path.join(dirpath, filename) # Check if it is an article processed_result = processed_filename_pattern.match(filename) if processed_result is None: logging.warning("Skipping file '%s'." % file_path) continue metadata = filename.split("-") guid = metadata[2] counter += 1 if guid not in ids: # logging.info("Purging '%s'" % os.path.join(dirpath, filename)) purged += 1 if not args.test: os.remove(file_path) N = counter - purged K = len(cluster_ids) logging.info("%d files were purged, %d files remain." % (purged, N)) logging.info("%d clusters found, average cluster size = %f" % (K, N / K))
StarcoderdataPython
1780342
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Dense(object): pass class Compressed(object): pass class DenseFormat(object): def __eq__(self, other): if isinstance(other, DenseFormat): return True else: return False class SparseFormat(object): """ Sparse tensor data format. Parameters ---------- mode_formats: a list containing the format of each mode ("dense" or "compressed") mode_order: (optional) a list specifying the order in which modes should be stored """ def __init__(self, mode_formats, mode_order=None): for mode in mode_formats: assert isinstance(mode, (Dense, Compressed)) self.mode_formats = mode_formats if mode_order is None: self.mode_order = list(range(len(mode_formats))) else: self.mode_order = mode_order def __eq__(self, other): if isinstance(other, DenseFormat): return False if self.mode_order != other.mode_order: return False return all( type(mode1) == type(mode2) for mode1, mode2 in zip(self.mode_formats, other.mode_formats)) dense = Dense() compressed = Compressed()
StarcoderdataPython
1740719
<reponame>edupyter/EDUPYTER38 import sys assert sys.platform == "win32" from ctypes import byref, windll from ctypes.wintypes import DWORD, HANDLE from typing import Any, Optional, TextIO from prompt_toolkit.data_structures import Size from prompt_toolkit.win32_types import STD_OUTPUT_HANDLE from .base import Output from .color_depth import ColorDepth from .vt100 import Vt100_Output from .win32 import Win32Output __all__ = [ "Windows10_Output", ] # See: https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms686033(v=vs.85).aspx ENABLE_PROCESSED_INPUT = 0x0001 ENABLE_VIRTUAL_TERMINAL_PROCESSING = 0x0004 class Windows10_Output: """ Windows 10 output abstraction. This enables and uses vt100 escape sequences. """ def __init__( self, stdout: TextIO, default_color_depth: Optional[ColorDepth] = None ) -> None: self.win32_output = Win32Output(stdout, default_color_depth=default_color_depth) self.vt100_output = Vt100_Output( stdout, lambda: Size(0, 0), default_color_depth=default_color_depth ) self._hconsole = HANDLE(windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE)) def flush(self) -> None: """ Write to output stream and flush. """ original_mode = DWORD(0) # Remember the previous console mode. windll.kernel32.GetConsoleMode(self._hconsole, byref(original_mode)) # Enable processing of vt100 sequences. windll.kernel32.SetConsoleMode( self._hconsole, DWORD(ENABLE_PROCESSED_INPUT | ENABLE_VIRTUAL_TERMINAL_PROCESSING), ) try: self.vt100_output.flush() finally: # Restore console mode. windll.kernel32.SetConsoleMode(self._hconsole, original_mode) @property def responds_to_cpr(self) -> bool: return False # We don't need this on Windows. def __getattr__(self, name: str) -> Any: if name in ( "get_size", "get_rows_below_cursor_position", "enable_mouse_support", "disable_mouse_support", "scroll_buffer_to_prompt", "get_win32_screen_buffer_info", "enable_bracketed_paste", "disable_bracketed_paste", "get_default_color_depth", ): return getattr(self.win32_output, name) else: return getattr(self.vt100_output, name) Output.register(Windows10_Output) def is_win_vt100_enabled() -> bool: """ Returns True when we're running Windows and VT100 escape sequences are supported. """ if sys.platform != "win32": return False hconsole = HANDLE(windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE)) # Get original console mode. original_mode = DWORD(0) windll.kernel32.GetConsoleMode(hconsole, byref(original_mode)) try: # Try to enable VT100 sequences. result: int = windll.kernel32.SetConsoleMode( hconsole, DWORD(ENABLE_PROCESSED_INPUT | ENABLE_VIRTUAL_TERMINAL_PROCESSING) ) return result == 1 finally: windll.kernel32.SetConsoleMode(hconsole, original_mode)
StarcoderdataPython
151489
<reponame>xSakix/bayesian_analyses # multivariate lin regresion of heights vs weights import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import norm, uniform, multivariate_normal from scipy.interpolate import griddata import pymc3 as pm d = pd.read_csv('../../rethinking/data/WaffleDivorce.csv', sep=';', header=0) plt.plot(d.MedianAgeMarriage, d.Divorce, 'C0o') plt.xlabel('median age marriage') plt.ylabel('divorce') plt.show() plt.plot(d.Marriage, d.Divorce, 'C0o') plt.xlabel('marriage') plt.ylabel('divorce') plt.show() d['Marriage_s'] = (d.Marriage - np.mean(d.Marriage)) / np.std(d.Marriage) d['MedianAgeMarriage_s'] = (d.MedianAgeMarriage - np.mean(d.MedianAgeMarriage)) / np.std(d.MedianAgeMarriage) with pm.Model() as model: sigma = pm.Uniform('sigma', lower=0, upper=10) bA = pm.Normal('bA', mu=0, sd=1) bR = pm.Normal('bR', mu=0, sd=1) a = pm.Normal('a', mu=10, sd=10) mu = pm.Deterministic('mu', a + bR * d.Marriage_s + bA * d.MedianAgeMarriage_s) divorce = pm.Normal('divorce', mu=mu, sd=sigma, observed=d.Divorce) trace_model = pm.sample(1000, tune=1000) varnames = ['a', 'bA', 'bR', 'sigma'] pm.traceplot(trace_model, varnames) plt.show() print(pm.summary(trace_model, varnames, alpha=0.11)) pm.forestplot(trace_model, varnames=varnames) plt.show()
StarcoderdataPython
3220171
def if_chuck_says_so(): return not True
StarcoderdataPython
1785742
<reponame>gabrielmpp/climate_indices from subprocess import call import os import requests import numpy as np import pandas as pd from pandas.errors import EmptyDataError from datetime import datetime from copy import deepcopy SOURCES = ['NOAA', 'CPC'] PID = os.getpid() TMP_FILE_PATH = os.environ['HOME'] + f'/temp_file_climIndices_{PID}.txt' def file_len(fname): with open(fname) as f: for i, l in enumerate(f): pass return i + 1 def exists(URL): r = requests.head(URL) return r.status_code == requests.codes.ok def create_url(index, source): """ Return the valid URL for download :param variable: string :param level: string :param date: datetime :return: sring """ if source == 'NOAA': if 'nina' in index: base_url = 'https://psl.noaa.gov/data/correlation/{index}.anom.data' else: base_url = 'https://psl.noaa.gov/data/correlation/{index}.data' elif source == 'CPC': base_url = 'https://www.cpc.ncep.noaa.gov/data/indices/req{index}.for' else: raise ValueError("Source not supported") base_url = base_url.format(index=index) return base_url def format_data(df, index, string_nan): colnames=['year'] [colnames.append(i) for i in range(1,13)] df.columns = colnames df = df.set_index('year') df = df.unstack() df = df.reset_index() df.columns = ['month','year','value'] df = df.sort_values(['year','month']) #df = df.replace('-99.99', np.NaN) #df = df.dropna() indexes = pd.date_range(start='{year:0d}-{month}-01'.format(year=int(df['year'].iloc[0]), month=int(df['month'].iloc[0])), end='{year:0d}-{month}-31'.format(year=int(df['year'].iloc[-1]), month=int(df['month'].iloc[-1])),freq='M') df['time']=indexes df = df.set_index('time') df = df.drop(['month','year'], axis=1) df.columns = [index] df[index] = df[index].astype(float) df = df.replace(float(string_nan), np.NaN) df = df.dropna() return df def get_data(indices, source='NOAA'): def download_df(index, source): URL = create_url(index, source) if not exists(URL): print(URL) raise ValueError(f"URL does not exist for index {index}") call(["curl", "-s", "-o", TMP_FILE_PATH, URL], stdout=open(os.devnull, 'wb')) assert source in SOURCES, f'source {source} not valid.' _sources = deepcopy(SOURCES) df_list = [] def format_datetime(x): return pd.Timestamp(datetime(day=1, month=x.month, year=x.year)) for index in indices: for source in _sources: print(f'Trying source {source}') download_df(index, source) try: df_temp = pd.read_csv(TMP_FILE_PATH, sep='\s+', skiprows=[0], header=None) except (EmptyDataError, FileNotFoundError): print("Data is empty, trying another source") else: break try: df_temp except NameError: raise Exception(f'ClimIndices could not download index {index}') try: call(['rm', TMP_FILE_PATH]) except: print('Could not remove temp file.') if source == 'CPC': string_nan = '999.9' else: df_nan = df_temp[df_temp.isnull().any(1)] string_nan = df_nan.iloc[0,0] df = df_temp.dropna() df = format_data(df, index, string_nan) df.index = [format_datetime(x) for x in df.index] df_list.append(df) df = pd.concat(df_list, axis=1) return df if __name__=='__main__': import matplotlib.pyplot as plt plt.style.use('bmh') df = get_data(['nina34', 'soi']) # df.plot(subplots=True, sharex=True, title='Climate indices', legend='False', figsize=[10, 10]) # plt.savefig('../figs/example.png') # plt.close()
StarcoderdataPython
3367830
print "How old are you brother ?" age = raw_input() # will get some text ;def print "How tall are you ?" height = raw_input() print "do you eat enough ?" eat = raw_input() print "So, you're a %r years old and %r tall guy that says : '%r' to the food, right ?" % (age, height, eat) # Nb: to get a number from the return stuff, 'x = int(raw_input())'
StarcoderdataPython
1669910
<reponame>killua4564/2019-AIS3-preexam from pwn import * conn = remote("pre-exam-pwn.ais3.org", "10000") conn.recvuntil(".\n") payload = b"A" * 48 + p64(0x400687) conn.sendline(payload) conn.interactive()
StarcoderdataPython
3321275
# coding: utf-8 # Distributed under the terms of the MIT license. """ This file implements classes to store and manipulate electronic and vibrational DOS, with or without projection data. """ import warnings import copy import functools import numpy as np import scipy.integrate import scipy.interpolate from matador.orm.orm import DataContainer from matador.utils.chem_utils import KELVIN_TO_EV, INVERSE_CM_TO_EV from .dispersion import Dispersion EPS = 1e-6 MIN_PHONON_FREQ = -0.01 FREQ_CUTOFF = 1e-12 class DensityOfStates(Dispersion, DataContainer): """ Generic class for density of states. """ required_keys = ['dos', 'energies'] def __init__(self, *args, **kwargs): """ Initialise the DOS and trim the DOS data arrays. Parameters: data (dict/Dispersion): dictionary containing the phonon dos data, or a dispersion object to convert. """ if kwargs.get('gaussian_width') is not None: self.gaussian_width = kwargs['gaussian_width'] if args and isinstance(args[0], dict): data = args[0] else: data = kwargs # as we can also construct a DOS from arbitarary kpoint/energy data, # check that we've been passed this first if (isinstance(data, Dispersion) or (isinstance(data, dict) and not any(key in data for key in ["spin_dos", "dos", "pdos"]))): data = self._from_dispersion(data) elif isinstance(data, DensityOfStates): data = copy.deepcopy(DensityOfStates._data) # Attempted workaround for old OPTADOS bug where spin-polarized PDOS would # ignore set_efermi_zero. Requires any other DOS data to have been computed # on same grid with OptaDOS, and assumes Fermi level is the same for each spin. # https://github.com/optados-developers/optados/issues/24 if "pdos" in data and len(set(proj[2] for proj in data["pdos"]["projectors"])) == 2: # check for energies either side of 0, if none are found, try to shift to other fermi values if (len(data["pdos"]["energies"]) == len(data.get("energies", [])) and (np.max(data["pdos"]["energies"]) < 0 or np.min(data["pdos"]["energies"]) > 0)): correction = np.max(data["pdos"]["energies"]) - np.max(data["energies"]) data["pdos"]["energies"] -= correction warnings.warn( f"""Corrected PDOS energies with difference between total DOS and PDOS grid. Guessed Fermi level = {correction:4.3f} eV, assumed constant for both spins. In the future, please use an updated version of OptaDOS. This correction is to account for the OptaDOS bug #24: https://github.com/optados-developers/optados/issues/24 """ ) # trigger generation of dos key from spin dos if 'dos' not in data and 'spin_dos' in data: data["dos"] = np.asarray(data["spin_dos"]["up"]) + np.asarray(data["spin_dos"]["down"]) if 'dos' not in data and 'pdos' in data: data["dos"] = np.sum(data["pdos"]["pdos"][proj] for proj in data["pdos"]["projectors"]) data["energies"] = data["pdos"]["energies"] warnings.warn("Total DOS created from sum of projected DOS, which may not be at all reliable.") if 'spin_dos' not in data and 'pdos' in data: spin_channels = set(proj[2] for proj in data["pdos"]["projectors"]) if len(spin_channels) == 2: data["spin_dos"] = {} for channel in spin_channels: data["spin_dos"][channel] = np.sum( data["pdos"]["pdos"][proj] for proj in data["pdos"]["projectors"] if proj[2] == channel ) data["energies"] = data["pdos"]["energies"] warnings.warn("Total spin DOS created from sum of projected DOS, which may not be at all reliable.") super().__init__(data) self._trim_dos() def _trim_dos(self): """ Trim the density of states/frequencies to only include the non-zero section of the DOS. """ dos = self._data['dos'] first_index = np.argmax(dos > EPS) last_index = len(dos) - np.argmax(dos[::-1] > EPS) self._trimmed_dos = dos[first_index:last_index] self._trimmed_energies = self._data['energies'][first_index:last_index] def _from_dispersion(self, data, **kwargs): """ Convert a Dispersion instance to a DOS. """ _data = {} dos, energies = self.bands_as_dos(data, gaussian_width=self.gaussian_width) for key in data: _data[key] = data[key] _data['dos'] = dos _data['energies'] = energies warnings.warn("Loaded DOS from .bands file with naive Gaussian smearing.") return _data @property def sample_dos(self): """ Return the calculated density of states, trimmed at each end to only include non-zero values. """ return self._trimmed_dos @property def sample_energies(self): """ Return the energies corresponding to the trimmed DOS. """ return self._trimmed_energies def plot_dos(self, **kwargs): """ Plot the density of states. """ from matador.plotting.spectral_plotting import plot_spectral _kwargs = { "plot_dos": True, "plot_pdos": "pdos" in self, "plot_bandstructure": False, "phonons": "Vibrational" in self.__class__.__name__ } _kwargs.update(kwargs) plot_spectral( self, **_kwargs ) @staticmethod def bands_as_dos(bands, gaussian_width=0.1): """ Convert bands data to DOS data. """ if 'eigs_s_k' in bands: eigs_key = 'eigs_s_k' elif 'eigs_q' in bands: eigs_key = 'eigs_q' else: raise RuntimeError('Missing eigenvalue keys from bands data.') raw_eigs = np.asarray(bands[eigs_key]) - bands.get('fermi_energy', 0) raw_weights = np.ones_like(raw_eigs) if 'kpoint_weights' in bands: for sind, _ in enumerate(bands[eigs_key]): for kind, _ in enumerate(bands[eigs_key][sind][0]): raw_weights[sind, :, kind] = bands['kpoint_weights'][kind] if len(raw_weights) != 1: if len(raw_weights) > 2: raise NotImplementedError('Non-collinear spin not supported') spin_dos = dict() keys = ['up', 'down'] for sind, _ in enumerate(raw_weights): spin_dos[keys[sind]], energies = DensityOfStates._cheap_broaden( bands[eigs_key][sind].flatten(), weights=raw_weights[sind].flatten(), gaussian_width=gaussian_width ) if 'spin_fermi_energy' in bands: energies -= bands['spin_fermi_energy'][0] return spin_dos, energies dos, energies = DensityOfStates._cheap_broaden( raw_eigs.flatten(), weights=raw_weights.flatten(), gaussian_width=gaussian_width ) if 'fermi_energy' in bands: energies -= bands['fermi_energy'] return dos, energies @staticmethod def _cheap_broaden(eigs, weights=None, gaussian_width=None): """ Quickly broaden and bin a set of eigenvalues. Parameters: eigs (numpy.ndarray): eigenvalue array. weights (numpy.ndarray): array of weights. Keyword arguments: gaussian_width (float): width of gaussian broadening to apply. Returns: Two arrays containing the DOS and energies. """ if gaussian_width is None: gaussian_width = 0.1 hist, energies = np.histogram(eigs, weights=weights, bins=1001) if gaussian_width == 0: return hist, energies # shift bin edges to bin centres energies -= energies[1] - energies[0] energies = energies[:-1] new_energies = np.reshape(energies, (1, len(energies))) new_energies = new_energies - np.reshape(energies, (1, len(energies))).T dos = np.sum(hist * np.exp(-(new_energies)**2 / gaussian_width), axis=1) dos = np.divide(dos, np.sqrt(2 * np.pi * gaussian_width**2)) return dos, energies class VibrationalDOS(DensityOfStates): """ Specific class for phonon DOS data, including free energy integration. """ gaussian_width = 10 * INVERSE_CM_TO_EV @property def debye_temperature(self): """ Returns the Debye temperature in K. """ return self.debye_freq / KELVIN_TO_EV @property def debye_freq(self): """ Returns the Debye frequency in eV. """ return np.max(self.eigs) @property def zpe(self): """ The zero-point energy per atom as computed from frequency data. """ if 'zero_point_energy_per_atom' not in self._data: if 'eigs_q' not in self._data: raise RuntimeError('Unable to compute ZPE without frequency data.') zpe = self._compute_zero_point_energy(self.eigs, self.num_kpoints, kpoint_weights=self.kpoint_weights) self['zero_point_energy'] = zpe self['zero_point_energy_per_atom'] = zpe / (self.num_modes / 3) return self._data['zero_point_energy_per_atom'] @staticmethod def _compute_zero_point_energy(eigs, num_kpoints, kpoint_weights=None): """ Computes and returns the zero-point energy of the cell in eV from frequency data. Parameters: eigs (np.ndarray): phonon eigenvalues (in eV) array in any shape. If `kpoint_weights` is passed, then at least one axis of eigs must match the length of `kpoint_weights`. num_kpoints (int): the number of kpoints at which these eigenvalues were calculated. Keyword arguments: kpoint_weights (np.ndarray): array of weights to use for each kpoint. """ min_energy = np.min(eigs) if min_energy < MIN_PHONON_FREQ: warnings.warn( 'Imaginary frequency phonons found in this structure {:.1f}, ZPE ' 'calculation will be unreliable, using 0 eV as lower limit of integration.' .format(min_energy) ) if kpoint_weights is not None: # if kpoint weights are all the same, discard them # and just normalise by number of kpoints if len(np.unique(kpoint_weights)) == 1: kpoint_weights = None else: eigs_shape = np.shape(eigs) if not any(len(kpoint_weights) == axis for axis in eigs_shape): raise RuntimeError( 'Unable to match eigs with shape {} with kpoint weights of length {}' .format(eigs_shape, len(kpoint_weights)) ) _eigs = np.copy(eigs) if kpoint_weights is not None: _eigs = _eigs * kpoint_weights else: _eigs /= num_kpoints return 0.5 * np.sum(np.ma.masked_where(_eigs < 0.0, _eigs, copy=False)) def vibrational_free_energy(self, temperatures=None): """ Computes and returns the vibrational contribution to the free energy, including zero-point energy, from the phonon frequencies. Parameters: temperatures (list): list or array of temperatures to compute G(T) at. Returns: (np.ndarray, np.ndarray): temperature and energy array. """ if temperatures is None: temperatures = np.linspace(0, 600, num=5) try: _ = len(temperatures) except TypeError: temperatures = [temperatures] if 'eigs_q' not in self._data: raise RuntimeError('Unable to compute free energies without frequency data.') temperatures = np.asarray(temperatures) free_energy = np.zeros_like(temperatures, dtype=np.float64) min_energy = np.min(self._data['eigs_q'][0]) if min_energy < MIN_PHONON_FREQ: warnings.warn( 'Imaginary frequency phonons found in this structure {:.1f}, free energy ' 'calculation will be unreliable, using {} eV as lower limit of integration.' .format(min_energy, FREQ_CUTOFF) ) for ind, temperature in enumerate(temperatures): free_energy[ind] = self.compute_free_energy(temperature) if len(temperatures) == 1: return free_energy[0] return temperatures, free_energy @functools.lru_cache(100) def compute_free_energy(self, temperature): """ Compute the vibrational free energy at the given temperature, using lru_cache to avoid doing much extra work. Uses minimum temperature cutoff of 1e-9, below which it returns just the ZPE (unless T < 0 K). Raises: RuntimeError: if temperature is < 0 K. Returns: float: vibrational free energy per atom, including ZP correction. """ free_energy = 0.0 kT = KELVIN_TO_EV * temperature if temperature < 0.0: raise RuntimeError('Not calculating free energies at T = {} K < 0 K'.format(temperature)) if temperature < 1e-9: return self.zpe for mode_ind in range(self.num_modes): for qpt_ind in range(self.num_qpoints): freq = self._data['eigs_q'][0][mode_ind][qpt_ind] if freq > FREQ_CUTOFF and freq / kT < 32: contrib = kT * np.log(1 - np.exp(-freq/kT)) if 'kpoint_weights' in self._data: contrib *= self.kpoint_weights[qpt_ind] else: contrib /= self.num_qpoints free_energy += contrib # normalize by number of atoms free_energy /= (self.num_modes / 3) # add on zpe per atom free_energy += self.zpe return free_energy def vibrational_free_energy_from_dos(self, temperatures=None): """ Computes the vibrational contribution to the free energy at a given set of temperatures. Keyword arguments: temperature (list): list, array or float of temperatures. """ if temperatures is None: temperatures = np.linspace(0, 600, num=5) temperatures = np.asarray(temperatures) free_energy = np.zeros_like(temperatures) errs = np.zeros_like(free_energy) min_energy = self.sample_energies[0] max_energy = self.sample_energies[-1] if min_energy < 0.01: warnings.warn( 'Imaginary frequency phonons found in this structure {:.1f}, free energy ' 'calculation will be unreliable, using {} eV as lower limit of integration.' .format(min_energy, FREQ_CUTOFF), Warning ) min_energy = FREQ_CUTOFF for ind, temperature in enumerate(temperatures): # if 0 K is requested, return 0 and move on if temperature == 0: free_energy[ind] = 0.0 errs[ind] = 0.0 continue kT = KELVIN_TO_EV * temperature def integrand(omega): return self.vdos_function(omega) * np.log(1 - np.exp(-omega/kT)) result = scipy.integrate.quad( integrand, min_energy, max_energy ) free_energy[ind] = kT * result[0] errs[ind] = result[1] if len(temperatures) == 1: return free_energy[0] return temperatures, free_energy @property def vdos_function(self): """ From the data arrays :attr:`sample_energies` and :attr:`sample_dos`, return an interpolated function to integrate. """ return scipy.interpolate.interp1d( self.sample_energies, self.sample_dos, fill_value=(0, 0), bounds_error=False, copy=False ) def plot_free_energy(self, temperatures=None, ax=None, **kwargs): """ Plot G(T) on the array of given temperatures. Default T is [0, 800]. Keyword arguments: temperatures (list/np.ndarray): list or array of temperatures to plot. If the array/list has length 2, use these as the start and endpoints with 21 plotting points. ax (matplotlib.pyplot.Axis): axis object to plot onto. """ from matador.plotting.temperature_plotting import plot_free_energy return plot_free_energy(self, temperatures=temperatures, ax=ax, **kwargs) class ElectronicDOS(DensityOfStates): """ Specific class for electronic DOS data. """ gaussian_width = 0.01
StarcoderdataPython
3293096
#!/usr/bin/env python # coding:utf-8 """merge_json.py""" import logging import time import os import json, csv import xlwt, xlrd from datetime import datetime from xlrd import xldate_as_tuple def get_logger(logname): """Config the logger in the module Arguments: logname {str} -- logger name Returns: logging.Logger -- the logger object """ logger = logging.getLogger(logname) formater = logging.Formatter( fmt='%(asctime)s - %(filename)s : %(levelname)-5s :: %(message)s', # filename='./log.log', # filemode='a', datefmt='%m/%d/%Y %H:%M:%S') stream_hdlr = logging.StreamHandler() stream_hdlr.setFormatter(formater) logger.addHandler(stream_hdlr) logger.setLevel(logging.DEBUG) return logger json_path = "json/" __logger__ = get_logger('merge_json.py') cur_date = time.strftime("%Y-%m-%d", time.localtime()) state_json_list = [] date_list = [] processed_json_data = 0 # ! 处理后的整体数据 def print_state_data(state_data): for province in state_data: print(province["name"]) print(province["state"]) print(province["cities"]) def read_json_files(): global state_json_list global json_path global date_list json_file_list = sorted(os.listdir(json_path), reverse=True) date_list = list(map(lambda x: x[0:10], json_file_list)) for file_name in json_file_list: json_data = "" with open(json_path + file_name, 'r') as json_file: json_data = json.load(json_file) state_json_list.append(json_data) # __logger__.debug(state_json_list) def init_processed_json_data(): global processed_json_data global state_json_list processed_json_data = state_json_list[0] # __logger__.debug(processed_json_data) for province in processed_json_data: province["confirmedCount"] = [province["confirmedCount"]] province["suspectedCount"] = [province["suspectedCount"]] province["curedCount"] = [province["curedCount"]] province["deadCount"] = [province["deadCount"]] for city in province["cities"]: city["confirmedCount"] = [city["confirmedCount"]] city["suspectedCount"] = [city["suspectedCount"]] city["curedCount"] = [city["curedCount"]] city["deadCount"] = [city["deadCount"]] # __logger__.debug(json.dumps(processed_json_data[0], ensure_ascii=False)) def merge_cities(processed_json_cities, add_cities, day_index): missing_city_list = list(map(lambda x: x["cityName"], processed_json_cities)) for city in add_cities: city_list = list(filter(lambda x: x["cityName"] in city["cityName"], processed_json_cities)) if len(city_list) == 0: # ! 在现有数据之上新增 城市 数据 # city["confirmedCount"] = [city["confirmedCount"]] + [0] * day_index # city["suspectedCount"] = [city["suspectedCount"]] + [0] * day_index # city["curedCount"] = [city["curedCount"]] + [0] * day_index # city["deadCount"] = [city["deadCount"]] + [0] * day_index # processed_json_cities.append(city) pass else: # ! 刷新现有 城市 数据 processed_json_data_cur_city = city_list[0] processed_json_data_cur_city["confirmedCount"].insert(0, city["confirmedCount"]) processed_json_data_cur_city["suspectedCount"].insert(0, city["suspectedCount"]) processed_json_data_cur_city["curedCount"].insert(0, city["curedCount"]) processed_json_data_cur_city["deadCount"].insert(0, city["deadCount"]) if processed_json_data_cur_city["cityName"] not in missing_city_list: # ! 锡林郭勒盟 会导致这里出问题 pass else: missing_city_list.remove(processed_json_data_cur_city["cityName"]) for city_name in missing_city_list: # ! 补全缺失的现有 城市 数据 miss_city = list(filter(lambda x: x["cityName"] == city_name, processed_json_cities))[0] miss_city["confirmedCount"].insert(0, 0) miss_city["suspectedCount"].insert(0, 0) miss_city["curedCount"].insert(0, 0) miss_city["deadCount"].insert(0, 0) def sort_json(): global processed_json_data sort_flag_index = len(processed_json_data[0]["confirmedCount"]) - 1 processed_json_data.sort( key=lambda k: (k.get("confirmedCount", 0)[sort_flag_index]), reverse=True) for province in processed_json_data: province["cities"].sort( key=lambda k: (k.get("confirmedCount", 0)[sort_flag_index]), reverse=True) def merge_state_json_list(): global processed_json_data global state_json_list global date_list init_processed_json_data() # days_sum = len(date_list) for state_json_index in range(1, len(date_list)): exsited_province_list = list(map(lambda x: x["provinceShortName"], processed_json_data)) add_province_list = list( map(lambda x: x["provinceShortName"], state_json_list[state_json_index])) update_province_list = list(set(add_province_list) & set(exsited_province_list)) new_province_list = list(set(add_province_list) - set(exsited_province_list)) missing_province_list = list(set(exsited_province_list) - set(add_province_list)) # __logger__.debug("更新 %s" % update_province_list) # __logger__.debug("新增 %s" % new_province_list) # __logger__.debug("缺失 %s" % missing_province_list) # ! 刷新现有 省市 数据 for province_name in update_province_list: processed_json_data_cur_province = list( filter(lambda x: x["provinceShortName"] == province_name, processed_json_data))[0] province = list( filter(lambda x: x["provinceShortName"] == province_name, state_json_list[state_json_index]))[0] processed_json_data_cur_province["confirmedCount"].insert(0, province["confirmedCount"]) processed_json_data_cur_province["suspectedCount"].insert(0, province["suspectedCount"]) processed_json_data_cur_province["curedCount"].insert(0, province["curedCount"]) processed_json_data_cur_province["deadCount"].insert(0, province["deadCount"]) merge_cities(processed_json_data_cur_province["cities"], province["cities"], state_json_index) # ! 在现有数据之上新增 省市 数据 # for province_name in new_province_list: # new_province = list( # filter(lambda x: x["provinceShortName"] == province_name, # state_json_list[state_json_index]))[0] # new_province["confirmedCount"] = [new_province["confirmedCount"]] + [0] * state_json_index # new_province["suspectedCount"] = [new_province["suspectedCount"]] + [0] * state_json_index # new_province["curedCount"] = [new_province["curedCount"]] + [0] * state_json_index # new_province["deadCount"] = [new_province["deadCount"]] + [0] * state_json_index # for city in new_province["cities"]: # city["confirmedCount"] = [city["confirmedCount"]] + [0] * state_json_index # city["suspectedCount"] = [city["suspectedCount"]] + [0] * state_json_index # city["curedCount"] = [city["curedCount"]] + [0] * state_json_index # city["deadCount"] = [city["deadCount"]] + [0] * state_json_index # processed_json_data.append(new_province) # ! 补全缺失的现有 省市 数据 for province_name in missing_province_list: miss_province = list( filter(lambda x: x["provinceShortName"] == province_name, processed_json_data))[0] miss_province["confirmedCount"].insert(0, 0) miss_province["suspectedCount"].insert(0, 0) miss_province["curedCount"].insert(0, 0) miss_province["deadCount"].insert(0, 0) for city in miss_province["cities"]: city["confirmedCount"].insert(0, 0) city["suspectedCount"].insert(0, 0) city["curedCount"].insert(0, 0) city["deadCount"].insert(0, 0) sort_json() processed_json_data.insert(0, date_list) def save_json(file_path): global processed_json_data with open(file_path, "w") as json_file: json.dump(processed_json_data, json_file, ensure_ascii=False) json_file.close() def save_csv(): global processed_json_data global date_list cnt_state = ["确诊", "疑似", "治愈", "死亡"] cnt_name = ["confirmedCount", "suspectedCount", "curedCount", "deadCount"] with open("history-areas.csv", "w") as csv_file: csv_write = csv.writer(csv_file) csv_head = ["省份", "区域", "状态"] + date_list csv_write.writerow(csv_head) for province in processed_json_data[1:]: province_name = province["provinceShortName"] for index in range(0, len(cnt_state)): row = [province_name, province_name, cnt_state[index]] + province[cnt_name[index]] csv_write.writerow(row) for city in province["cities"]: for index in range(0, len(cnt_state)): row = [province_name, city["cityName"], cnt_state[index]] + city[cnt_name[index]] csv_write.writerow(row) return def compress_state_json(): global processed_json_data for p_idx in range(4, len(processed_json_data)): processed_json_data[p_idx]["confirmedCount"] = processed_json_data[p_idx]["confirmedCount"][-1:] processed_json_data[p_idx]["suspectedCount"] = processed_json_data[p_idx]["suspectedCount"][-1:] processed_json_data[p_idx]["curedCount"] = processed_json_data[p_idx]["curedCount"][-1:] processed_json_data[p_idx]["deadCount"] = processed_json_data[p_idx]["deadCount"][-1:] for c_idx in range(0, len(processed_json_data[p_idx]["cities"])): processed_json_data[p_idx]["cities"][c_idx]["confirmedCount"] = processed_json_data[p_idx][ "cities"][c_idx]["confirmedCount"][-1:] processed_json_data[p_idx]["cities"][c_idx]["suspectedCount"] = processed_json_data[p_idx][ "cities"][c_idx]["suspectedCount"][-1:] processed_json_data[p_idx]["cities"][c_idx]["curedCount"] = processed_json_data[p_idx][ "cities"][c_idx]["curedCount"][-1:] processed_json_data[p_idx]["cities"][c_idx]["deadCount"] = processed_json_data[p_idx][ "cities"][c_idx]["deadCount"][-1:] def read_csv_file(file_path): global processed_json_data with open(file_path, 'r') as csvFile: reader = csv.reader(csvFile) all_china = {} rows = [row for row in reader] all_china["date"] = rows[0][2:] all_china["confirmedCount"] = [int(x) for x in rows[1][2:]] all_china["suspectedCount"] = [int(x) for x in rows[2][2:]] all_china["curedCount"] = [int(x) for x in rows[3][2:]] all_china["deadCount"] = [int(x) for x in rows[4][2:]] processed_json_data.insert(0, all_china) return def read_xlsx_file(file_path, sheet_name): json_from_xlsx = {} workbook = xlrd.open_workbook(file_path) cur_sheet = workbook.sheet_by_name(sheet_name) ncols = cur_sheet.ncols date_list = [] for col_idx in range(1, ncols): date_list.append( datetime(*xldate_as_tuple(cur_sheet.cell_value(0, col_idx), workbook.datemode)).strftime( "%Y-%m-%d")) json_from_xlsx["date"] = date_list row_idx = 1 for category_name in ["confirmedIncr", "suspectedIncr", "curedIncr", "deadIncr"]: data_list = [] for col_idx in range(1, ncols): data_list.append(int(cur_sheet.cell_value(row_idx, col_idx))) json_from_xlsx[category_name] = data_list row_idx += 1 return json_from_xlsx def load_json_file(file_path): with open(file_path, 'r') as json_file: json_data = json.load(json_file) return json_data def main(): """Main function""" global processed_json_data file_path = "history-areas.json" read_json_files() merge_state_json_list() for idx in range(2, len(processed_json_data)): if processed_json_data[idx]["provinceName"] == "待明确地区": processed_json_data[idx]["provinceName"] = "其他" if processed_json_data[idx]["provinceShortName"] == "待明确地区": processed_json_data[idx]["provinceShortName"] = "其他" save_csv() read_csv_file("history.csv") nation_state_json = load_json_file("nation_state.json") incr_json = read_xlsx_file("WJW数据.xlsx", "增量") processed_json_data.insert(0, incr_json) processed_json_data.insert(0, nation_state_json) save_json("history-areas-all.json") compress_state_json() save_json(file_path) if __name__ == '__main__': # ! Uncomment the next line to read args from cmd-line main()
StarcoderdataPython
1642640
""" Divergence metric between two scores based on size of subgraph isomorphism. If two DAGs are the exact same, the subgraph isomorphism will be of maximum size and node divergence and edge divergence will be zero. """ import sys import os import json import argparse import numpy as np import networkx as nx def get_flow(f): return json.load(f)["flow"] def simplify_flow(flow): if isinstance(flow, str): flow = json.loads(flow) s_flow = {} for node in flow: s_node = dict(**node) s_node["wires"] = s_node.get("wires", []) if len(s_node["wires"]) > 0 and isinstance(s_node["wires"][0], list): s_node["wires"] = sum(s_node["wires"], []) s_flow[s_node["id"]] = s_node return s_flow def num_nodes(flow): return len(flow.keys()) def num_edges(flow): return sum(len(v["wires"]) for v in flow.values()) def has_edge(flow, k1, k2): return k2 in flow[k1]["wires"] def edge_to_string(k1, k2): return " --> ".join([k1, k2]) def string_to_edge(s): return tuple(s.split(" --> ")) def get_node_similarity(node1, node2): if node1["type"] != node2["type"]: return 0 __skip_compares__ = set( [ "id", "x", "y", "z", "wires", "type", "endpointUrl", # for bot-intent type nodes "name", # for ui_ nodes "group", # for ui_ nodes "tab", # for all nodes "label", # for tab nodes ] ) num = 0 den = 0 inc = 0 for x in node1.keys(): if x in __skip_compares__: continue den += 1 inc = 1 val1 = node1.get(x, None) val2 = node2.get(x, None) if (val1 is None) ^ (val2 is None): inc = 0 elif not isinstance(val1, type(val1)) and not isinstance(val1, type(val2)): inc = 0 elif val1 != val2: inc = 0 num += inc if den == 0 or num == den: return 1 else: return num / den def mapping_weight(node1, node2): # only makes sense to compare nodes of the same type # can add additional conditions here if needed try: mnode1 = {k: v for k, v in node1.items() if k != "wires"} mnode2 = {k: v for k, v in node2.items() if k != "wires"} ans = get_node_similarity(mnode1, mnode2) except Exception as e: print("Comparison Exception:", e) print( "comparing", json.dumps(node1, indent=2), "\nand\n", json.dumps(node2, indent=2), ) ans = 0 return ans def get_nodemap(flow1, flow2): nodemap = [] for k1, v1 in flow1.items(): for k2, v2 in flow2.items(): wt = mapping_weight(v1, v2) if wt > 0: nodemap.append((k1, k2, wt)) nodemap.sort(key=lambda x: ( len(flow1[x[0]]["wires"]) + len(flow2[x[1]]["wires"]))) return nodemap def create_product_graph(nmap, flow1, flow2): prodgraph = set() for k1a, k2a, wta in nmap: for k1b, k2b, wtb in nmap: # assert one-to-one mapping if k1a == k1b or k2a == k2b: continue # is there is an edge between the two nodes in flow1? e_a = has_edge(flow1, k1a, k1b) # is there is an edge between the corresponding two nodes in flow2? e_b = has_edge(flow2, k2a, k2b) if not (e_a ^ e_b): # if (k1a, k1b) ⇔ (k2a, k2b), AND # the mapped nodes are of the same type, # add edge to product graph ind1 = nmap.index((k1a, k2a, wta)) ind2 = nmap.index((k1b, k2b, wtb)) edge = (min(ind1, ind2), max(ind1, ind2)) prodgraph.add(edge) return list(prodgraph) def density(pgraph, nmap): return (2 * len(pgraph)) / (len(nmap) * (len(nmap) - 1)) def check_clique(pgraph, clq): for i in clq: for j in clq: if (i != j) and (i, j) not in pgraph: return False return True def large_graph_corr(pgraph, nmap, flow1, flow2): pg_arr = np.array(pgraph, dtype=np.uint64) + 1 # runtime error if vertex numbers has 0, so add 1 and subtract when finding subset import cliquematch G = cliquematch.Graph.from_edgelist(pg_arr, len(nmap)) exact = True dens = density(pgraph, nmap) if dens > 0.7: # highly dense graphs => node mapping is not strict enough, # (too many nodes of same type) so computing the exact value is SLOW # hence approximate via heuristic (some form of penalty) clique0 = G.get_max_clique(use_heuristic=True, use_dfs=False) # note that the approximate clique is <= the exact clique exact = False else: clique0 = G.get_max_clique(use_heuristic=True, use_dfs=True) clique = max( G.all_cliques(size=len(clique0)), key=setup_weighted_clique(nmap, flow1, flow2) ) subset = [nmap[i - 1] for i in clique] return subset, exact def setup_weighted_clique(nmap, flow1, flow2): def clique_wt(clq): wts = [nmap[x - 1][2] for x in clq] return sum(wts) return clique_wt def small_graph_corr(pgraph, nmap, flow1, flow2): G = nx.Graph() G.add_nodes_from(i + 1 for i in range(len(nmap))) G.add_edges_from([(a + 1, b + 1) for a, b in pgraph]) clique = max( nx.algorithms.clique.find_cliques(G), key=setup_weighted_clique(nmap, flow1, flow2), ) subset = [nmap[x - 1] for x in clique] return subset, True def find_correspondence(pgraph, nmap, flow1, flow2): if len(pgraph) == 0 and len(nmap) == 0: return [], True elif len(pgraph) < 2000: return small_graph_corr(pgraph, nmap, flow1, flow2) else: return large_graph_corr(pgraph, nmap, flow1, flow2) def get_mapped_edges(subset, flow1, flow2): mapped_edges = {} for k1a, k2a, wta in subset: for k1b, k2b, wtb in subset: if k1a == k1b or k2a == k2b: continue # is there is an edge between the two nodes in flow1? e_a = has_edge(flow1, k1a, k1b) # is there is an edge between the corresponding two nodes in flow2? e_b = has_edge(flow2, k2a, k2b) if e_a and e_b: # successfully mapped the edge mapped_edges[edge_to_string( k1a, k1b)] = edge_to_string(k2a, k2b) return mapped_edges def edge_similarity(edgemap, nodemap, flow1, flow2): if num_edges(flow1) != 0 and num_edges(flow2) != 0: return (len(edgemap) / num_edges(flow1)) * (len(edgemap) / num_edges(flow2)) else: return 0 def node_similarity(subset, nodemap, flow1, flow2): if num_nodes(flow1) != 0 and num_nodes(flow2) != 0: score = sum(x[2] for x in subset) answer = (score / num_nodes(flow1)) * (score / num_nodes(flow2)) return answer else: return 0 def get_divergence(full1, full2, edges_only=True): flow1 = simplify_flow(full1) flow2 = simplify_flow(full2) nmap = get_nodemap(flow1, flow2) pg = create_product_graph(nmap, flow1, flow2) corr, exact = find_correspondence(pg, nmap, flow1, flow2) emap = get_mapped_edges(corr, flow1, flow2) # print(f"{num_nodes(flow1)} nodes, {num_edges(flow1)} edges in flow1") # print(f"{num_nodes(flow2)} nodes, {num_edges(flow2)} edges in flow2") # print(len(emap), "edges mapped") ns = node_similarity(corr, nmap, flow1, flow2) es = edge_similarity(emap, nmap, flow1, flow2) if edges_only: return 1 - es else: return (1 - ns, 1 - es, exact) def node_divergence(flow1, flow2): return get_divergence(flow1, flow2, False)[0] def edge_divergence(flow1, flow2): return get_divergence(flow1, flow2, True)[1] def runner(file1, file2): divergence = get_divergence(get_flow(file1), get_flow(file2), False)[0] return divergence
StarcoderdataPython
1611735
<reponame>sony-si/pytorch-CycleGAN-and-pix2pix import os.path from data.base_dataset import BaseDataset, scale_width_and_crop_height_func from data.image_folder import make_dataset from PIL import Image class ViewUnpairedDataset(BaseDataset): """ This dataset class loads unpaired datasets for a single a view. It requires a pair of image folders, one for each person """ def __init__(self, opt, subdir = ''): """ Parameters: opt (an Option class) -- contains experiment flags """ BaseDataset.__init__(self, opt) self.dir_A_images = os.path.join(opt.dataroot, subdir, opt.personA) self.dir_B_images = os.path.join(opt.dataroot, subdir, opt.personB) self.A_paths = sorted(make_dataset(self.dir_A_images, opt.max_dataset_size)) self.B_paths = sorted(make_dataset(self.dir_B_images, opt.max_dataset_size)) self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B def __getitem__(self, index_A, index_B): A_path = self.A_paths[index_A % self.A_size] B_path = self.B_paths[index_B] A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') [A, crop_pos_A] = scale_width_and_crop_height_func(A_img, self.opt) [B, crop_pos_B] = scale_width_and_crop_height_func(B_img, self.opt) return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path, 'crop_pos_A': crop_pos_A, 'crop_pos_B': crop_pos_B} def __len__(self): return max(self.A_size, self.B_size)
StarcoderdataPython
3219565
<gh_stars>1-10 from .Job import Job, JobIdError from .ExpandedJob import ExpandedJob from .CollapsedJob import CollapsedJob
StarcoderdataPython
1644507
import os import pygraphviz as pgv import pytest data_path = os.path.join('tardis', 'plasma', 'tests', 'data') def test_write_dot(tmpdir, simulation_verysimple): fname = str(tmpdir.mkdir('test_dot').join('plasma.dot')) simulation_verysimple.plasma.write_to_dot(fname) actual = pgv.AGraph(fname).to_string() expected = pgv.AGraph(os.path.join(data_path, 'plasma_ref.dot')).to_string() assert actual == expected def test_write_tex(tmpdir, simulation_verysimple): fname = str(tmpdir.mkdir('test_tex').join('plasma.tex')) simulation_verysimple.plasma.write_to_tex(fname) with open(fname, 'r') as fp1, open(os.path.join(data_path, 'plasma_ref.tex'), 'r') as fp2: assert fp1.readline() ==fp2.readline()
StarcoderdataPython
76220
from st2common.runners.base_action import Action import paho.mqtt.publish as publish import paho.mqtt.client as paho class PublishAction(Action): def __init__(self, config): super(PublishAction, self).__init__(config) # Sensor/Action Mismatch self._config = self.config self._client = None self._hostname = self._config.get('hostname', None) self._port = self._config.get('port', 1883) # self._protocol = self._config.get('protocol', 'MQTTv311') self._protocol = self._config.get('protocol', paho.MQTTv311) self._client_id = self._config.get('client_id', None) self._userdata = self._config.get('userdata', None) self._username = self._config.get('username', None) self._password = self._config.get('password', None) self._subscribe = self._config.get('subscribe', None) self._ssl = self._config.get('ssl', False) self._ssl_cacert = self._config.get('ssl_cacert', None) self._ssl_cert = self._config.get('ssl_cert', None) self._ssl_key = self._config.get('ssl_key', None) self._ssl_payload = None self._auth_payload = None def run(self, topic, message=None, qos=0, retain=False): if self._username: self._auth_payload = { 'username': self._username, 'password': self._password, } if self._ssl: if not self._ssl_cacert: raise ValueError('Missing "ssl_cacert" config option') if not self._ssl_cert: raise ValueError('Missing "ssl_cert" config option') if not self._ssl_key: raise ValueError('Missing "ssl_key" config option') self._ssl_payload = { 'ca_certs': self._ssl_cacert, 'certfile': self._ssl_cert, 'keyfile': self._ssl_key, } publish.single(topic, payload=message, qos=qos, retain=retain, hostname=self._hostname, port=self._port, client_id=self._client_id, keepalive=60, auth=self._auth_payload, tls=self._ssl_payload, protocol=self._protocol)
StarcoderdataPython
54566
import datetime import utils import glob import os import numpy as np import pandas as pd if __name__ == '__main__': loaddir = "E:/Data/h5/" labels = ['https', 'netflix'] max_packet_length = 1514 for label in labels: print("Starting label: " + label) savedir = loaddir + label + "/" now = datetime.datetime.now() savename = "payload_%s-%.2d%.2d_%.2d%.2d" % (label, now.day, now.month, now.hour, now.minute) filelist = glob.glob(loaddir + label + '*.h5') # Try only one of each file fullname = filelist[0] # for fullname in filelist: load_dir, filename = os.path.split(fullname) print("Loading: {0}".format(filename)) df = utils.load_h5(load_dir, filename) packets = df['bytes'].values payloads = [] labels = [] filenames = [] for packet in packets: if len(packet) == max_packet_length: # Extract the payload from the packet should have length 1460 payload = packet[54:] p = np.fromstring(payload, dtype=np.uint8) payloads.append(p) labels.append(label) filenames.append(filename) d = {'filename': filenames, 'bytes': payloads, 'label': labels} dataframe = pd.DataFrame(data=d) key = savename.split('-')[0] dataframe.to_hdf(savedir + savename + '.h5', key=key, mode='w') # utils.saveextractedheaders(loaddir, savedir, savename, num_headers=headersize) print("Done with label: " + label)
StarcoderdataPython
3261965
# -*- coding: utf-8 -*- # Copyright (c) 2004-2015 Odoo S.A. # Copyright 2018-2019 <NAME> <https://it-projects.info/team/KolushovAlexandr> # License MIT (https://opensource.org/licenses/MIT). from odoo import api, fields, models class BaseConfigSettings(models.TransientModel): _inherit = "base.config.settings" group_attendance_use_pin = fields.Selection( [ ( 0, 'Partners do not need to enter their PIN to check in manually in the "Kiosk Mode".', ), ( 1, 'Partners must enter their PIN to check in manually in the "Kiosk Mode".', ), ], string="Partner PIN", help="Enable or disable partner PIN identification at check in", implied_group="base_attendance.group_hr_attendance_use_pin", ) shift_autocheckout = fields.Integer( "Autocheckout ", help="Maximum Shift Time in Minutes" ) hex_scanner_is_used = fields.Boolean( "HEX Scanner", default=False, help="Some devices scan regular barcodes as hexadecimal. " "This option decode those types of barcodes", ) @api.multi def set_shift_autocheckout(self): self.env["ir.config_parameter"].set_param( "base_attendance.shift_autocheckout", self.shift_autocheckout or "0" ) self.checkout_shifts() @api.multi def get_default_shift_autocheckout(self, fields): shift_autocheckout = self.env["ir.config_parameter"].get_param( "base_attendance.shift_autocheckout", default=0 ) return {"shift_autocheckout": int(shift_autocheckout)} @api.model def checkout_shifts(self): cron_record = self.env.ref("base_attendance.base_attendance_autocheckout") if self.shift_autocheckout == 0: cron_record.write({"active": False}) else: cron_record.write({"active": True}) @api.multi def set_hex_scanner_is_used(self): self.env["ir.config_parameter"].set_param( "base_attendance.hex_scanner_is_used", self.hex_scanner_is_used ) @api.multi def get_default_hex_scanner_is_used(self, fields): hex_scanner_is_used = self.env["ir.config_parameter"].get_param( "base_attendance.hex_scanner_is_used", default=False ) return {"hex_scanner_is_used": hex_scanner_is_used}
StarcoderdataPython
4811963
""" lights.py Code based upon: https://github.com/artem-smotrakov/esp32-weather-google-sheets class Lights controls LEDs that report the following: WiFi connection, error, high temperature level, discomfort exceeded 2021-0817 PP added discomfort, removed test """ import time from machine import Pin import lolin_d1mini as board class Lights(object): # initializes a new instance def __init__(self, leds_config): # define LEDS led_pins = [leds_config.get(i)[0] for i in range(1, len(leds_config)+1)] self._leds = [Pin(pin, Pin.OUT) for pin in led_pins] # assign meaning to specific LEDs: for i in range(1, len(leds_config)+1): if 'reserve' in leds_config.get(i): #DEBUG: print(led_pins[i-1], self._leds[i-1]) #OK: self._leds[i-1].value(0) if led_pins[i-1] == board.D0 else self._leds[i-1].value(0) self._leds[i-1].off() if 'wifi' in leds_config.get(i): self.wifi_led = self._leds[i-1] if 'error' in leds_config.get(i): self.error_led = self._leds[i-1] if 'discomfort' in leds_config.get(i): self.discomfort_led = self._leds[i-1] if 'high_threshold' in leds_config.get(i): self.high_threshold_led = self._leds[i-1] if 'low_threshold' in leds_config.get(i): self.low_threshold_led = self._leds[i-1] def set_wifi_led(self, idx): self.wifi_led = self._leds[idx] def set_error_led(self, idx): self.error_led = self._leds[idx] def set_discomfort_led(self, idx): self.discomfort_led = self._leds[idx] def set_high_threshold_led(self, idx): self.high_threshold_led = self._leds[idx] def set_low_threshold_led(self, idx): self.low_threshold_led = self._leds[idx] # turn on the LED for WiFi def wifi_on(self): self.wifi_led.on() # turn off the LED for WiFi def wifi_off(self): self.wifi_led.off() # turn on the LED that reports an error def error_on(self): self.error_led.on() # turn off the LED that reports an error def error_off(self): self.error_led.off() # turn on the LED for discomfort def discomfort_on(self): self.discomfort_led.on() # turn off the LED for discomfort def discomfort_off(self): self.discomfort_led.off() # turn on the LED that reports high threshold level def high_threshold_on(self): self.high_threshold_led.on() # turn off the LED that reports high threshold level def high_threshold_off(self): self.high_threshold_led.off() # turn on the LED that reports low threshold level def low_threshold_on(self): self.low_threshold_led.on() # turn off the LED that reports low threshold level def low_threshold_off(self): self.low_threshold_led.off() # turn off all LEDs def off(self): self.wifi_off() self.error_off() self.discomfort_led.off() self.high_threshold_off() self.low_threshold_off() """ 2021-0812 PP added test def test(self, dt=1): self.off() time.sleep(dt) print("Wifi connected...") self.wifi_on() time.sleep(dt) print("Error condition...") self.error_on() time.sleep(dt) print("Temperature > high_threshold...") self.high_threshold_on() time.sleep(dt) print("Temperature < low_threshold...") self.low_threshold_on() time.sleep(dt*5) print("Wifi disconnected...") self.wifi_off() time.sleep(dt) print("No error condition...") self.error_off() time.sleep(dt) print("Temperature < high_threshold...") self.high_threshold_off() time.sleep(dt) print("Temperature > low_threshold...") self.low_threshold_off() """
StarcoderdataPython
3360875
from __future__ import absolute_import import os from celery import Celery from django.conf import settings # set the default Django settings module for the 'celery' program. BASE_PATH = os.path.dirname(os.path.abspath('manage.py')) os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'botforms.settings') app = Celery('botforms') # Using a string here means the worker will not have to # pickle the object when using Windows. app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request))
StarcoderdataPython
4825235
import tensorflow as tf import numpy as np from net.layers import _conv class ResNet(): def __init__(self, arch, layers, base_filters=64, is_training=False, use_bn=True): if arch == 'resnet18' or arch == 'resnet34': self.block = self.BasicBlock elif arch == 'resnet50' or arch =='resnet101': self.block = self.Bottleneck else: raise ValueError('only support resnet18 34 50 101') self.layers = layers self.base_filters = base_filters if self.block == self.BasicBlock: assert self.base_filters == 64 self.is_training = is_training self.use_bn = use_bn self.inplanes = 64 def BasicBlock(self, inputs, filters, strides=1, is_training=False, use_bn=True): expansion = 1 conv1_bn_relu = _conv(inputs, filters, [3,3], strides, 'same', activation=tf.nn.relu, is_training=self.is_training, use_bn=self.use_bn) conv2_bn = _conv(conv1_bn_relu, filters, [3,3], 1, 'same', activation=None, is_training=self.is_training, use_bn=self.use_bn) if strides != 1 or self.inplanes != filters*expansion: inputs = _conv(inputs, filters, [1,1], strides, 'valid', activation=None, is_training=self.is_training, use_bn=self.use_bn) self.inplanes = filters*expansion out = tf.nn.relu(conv2_bn+inputs) return out def Bottleneck(self, inputs, filters, strides=1, is_training=False, use_bn=True): expansion = 4 conv1_bn_relu = _conv(inputs, filters, [1,1], 1, 'valid', activation=tf.nn.relu, is_training=self.is_training, use_bn=self.use_bn) conv2_bn_relu = _conv(conv1_bn_relu, filters, [3,3], strides, 'same', activation=tf.nn.relu, is_training=self.is_training, use_bn=self.use_bn) conv3_bn = _conv(conv2_bn_relu, filters*expansion, [1,1], 1, 'valid', activation=None, is_training=self.is_training, use_bn=self.use_bn) if strides != 1 or self.inplanes != filters*expansion: inputs = _conv(inputs, filters*expansion, [1,1], strides, 'valid', activation=None, is_training=self.is_training, use_bn=self.use_bn) self.inplanes = filters*expansion out = tf.nn.relu(conv3_bn+inputs) return out def _make_layer(self, x, num_channels, layers, strides=1): for i in range(layers): if i == 0: x = self.block(x, num_channels, strides=strides) else: x = self.block(x, num_channels) return x def _layer0(self, inputs, filters, kernel_size=(7, 7)): outputs = _conv(inputs, filters, [7,7], 2, 'same', activation=tf.nn.relu, is_training=self.is_training, use_bn=self.use_bn) outputs = tf.layers.max_pooling2d(outputs, pool_size=3, strides=2, padding='same') return outputs def forward(self, inputs): self.layer0 = self._layer0(inputs, self.inplanes, (7, 7)) self.layer1 = self._make_layer(self.layer0, self.base_filters, self.layers[0]) self.layer2 = self._make_layer(self.layer1, 2 * self.base_filters, self.layers[1], 2) self.layer3 = self._make_layer(self.layer2, 4 * self.base_filters, self.layers[2], 2) self.layer4 = self._make_layer(self.layer3, 8 * self.base_filters, self.layers[3], 2) return self.layer1, self.layer2, self.layer3,self.layer4 def load_weights(sess,path): pretrained = np.load(path,allow_pickle=True).item() for variable in tf.trainable_variables(): for key in pretrained.keys(): key2 = variable.name.rstrip(':0') if (key == key2): sess.run(tf.assign(variable, pretrained[key])) def _resnet(block, layers, **kwargs): model = ResNet(block, layers, **kwargs) return model def resnet18(**kwargs): return _resnet('resnet18', [2, 2, 2, 2], **kwargs) def resnet34(**kwargs): return _resnet('resnet34', [3, 4, 6, 3], **kwargs) def resnet50(**kwargs): return _resnet('resnet50', [3, 4, 6, 3], **kwargs) def resnet101(**kwargs): return _resnet('resnet101', [3, 4, 23, 3], **kwargs) if __name__ =='__main__': inputs = tf.placeholder(shape=[None,300,300,3],dtype=tf.float32) net = resnet18(is_training=True).forward(inputs) for variable in tf.trainable_variables(): print(variable.name,variable.shape)
StarcoderdataPython
4816435
import os import discord import sqlite3 from environs import Env from bgg import BGGCog from meetup import Meetup from discord.ext import commands from boardgamegeek import BGGClient from codenames import Codenames import logging from music import Music logging.basicConfig(level=logging.INFO) logger = logging.getLogger("boardgame.helper") env = Env() env.read_env() token = env.str("DISCORD_TOKEN") def main(): bot = commands.Bot(command_prefix=commands.when_mentioned_or('!'),) async def on_ready(): logger.info(f'{bot.user} has connected to Discord!') bot.add_listener(on_ready) bot.add_check(commands.guild_only()) bot.add_cog(BGGCog(bot)) #bot.add_cog(Meetup(bot)) #bot.add_cog(Codenames(bot)) bot.add_cog(Music(bot)) bot.run(token) if __name__ == "__main__": main()
StarcoderdataPython
3372026
T = int(input()) for i in range(T): input() cs, ec = [int(x) for x in input().split()] total = cs + ec IQs = [int(x) for x in input().split()] while len(IQs)<total: IQs += [int(x) for x in input().split()] csIQs = IQs[0:cs] ecIQs = IQs[cs:len(IQs)] total = 0 for x in csIQs: if (sum(csIQs)/len(csIQs) < (sum(csIQs)-x)/(len(csIQs)-1)) and ( sum(ecIQs)/len(ecIQs) < (sum(ecIQs) + x) / (len(ecIQs)+1) ): total += 1 print(total)
StarcoderdataPython
3323043
<gh_stars>1-10 #!/usr/bin/python3 import os # Run a filesystem scan every day unless one is in progress. os.system("echo \"$(($RANDOM % 60)) $(($RANDOM % 24)) * * * /scan.sh 2>&1 >> /logs/fimscan.log \" > /root.crontab") os.system("fcrontab -u root /root.crontab") os.system("rm /root.crontab") # Perform a bootup Scan os.system("/scan.sh") # Run cron os.system("/usr/sbin/fcron -f -d")
StarcoderdataPython
45493
<reponame>isabella232/ALM-SF-DX-Python-Tools ''' Bitbucket Server Interface ''' import urllib from modules.utils import INFO_TAG, WARNING_TAG, ERROR_LINE, SUCCESS_LINE, print_key_value_list from modules.git_server_callout import http_request from modules.comment_operations import get_last_comment, append_new_comments, save_comment_to_file class GitlabHandler(): def __init__(self, host, projectId): self.host = host self.projectId = projectId def create_branch(self, sslVerify, token, branchName, commitHash, **kwargs): ''' Method for creating new branch ''' url = ( f'{self.host}/api/v4/projects/{self.projectId}/repository/branches' ) headers = { 'Private-Token' : token } payload = { 'branch' : branchName, 'ref' : commitHash } data = urllib.parse.urlencode( payload ).encode( "utf-8" ) print_key_value_list( f'{INFO_TAG} Creating branch:', [ ( 'Remote URL', self.host ), ( 'Project Id', self.projectId ), ( 'Branch Name', branchName ), ( 'Source Ref', commitHash ), ( 'Endpoint', f'{url}' ) ] ) response = http_request( url, data, headers, 'POST', sslVerify ) if response.statusCode == 201: print( f'{INFO_TAG} Branch \'{branchName}\' created' ) else: print( f'{WARNING_TAG} Branch \'{branchName}\' not created. Status code: {response.statusCode}' ) def create_tag(self, sslVerify, token, tagName, commitHash, **kwargs): ''' Method for creating new tag ''' message = kwargs[ 'message' ] releaseDescription = kwargs[ 'releaseDescription' ] url = ( f'{self.host}/api/v4/projects/{self.projectId}/repository/tags' ) headers = { 'Private-Token' : token } payload = { 'tag_name' : tagName, 'ref' : commitHash, 'message' : message, 'release_description' : releaseDescription } data = urllib.parse.urlencode( payload ).encode( "utf-8" ) print_key_value_list( f'{INFO_TAG} Creating tag with:', [ ( 'Remote URL', self.host ), ( 'Project Id', self.projectId ), ( 'Tag Name', tagName ), ( 'Ref', commitHash ), ( 'Message', message ), ( 'Description', releaseDescription ), ( 'Endpoint', f'{url}' ) ] ) response = http_request( url, data, headers, 'POST', sslVerify ) if response.statusCode == 201: print( f'{INFO_TAG} Tag Created' ) else: print( f'{WARNING_TAG} TAG \'{tagName}\' not created. Status code: {response.statusCode}' ) def update_commit_status(self, sslVerify, token, commitHash, status, buildUrl, **kwargs): ''' Updates the commit status ''' jobName = kwargs[ 'jobName' ] url = ( f'{self.host}/api/v4/projects/{self.projectId}/statuses/{commitHash}' ) headers = { 'Private-Token' : token } payload = { 'state' : status, 'target_url' : buildUrl, 'name' : jobName } data = urllib.parse.urlencode( payload ).encode( 'utf-8' ) print_key_value_list( f'{INFO_TAG} Updating commit status:', [ ( 'Host URL', self.host ), ( 'Commmit SHA', commitHash ), ( 'Status', status ), ( 'Build URL', buildUrl ), ( 'Endpoint', url ) ] ) response = http_request( url, data, headers, 'POST', sslVerify ) if response.statusCode == 200: print( f'{SUCCESS_LINE} Commit status updated Successfully' ) else: print( f'{ERROR_LINE} Could not update commit status' ) def add_comment(self, sslVerify, token, mergeRequestId, newComments, buildId, workspace, **kwargs): ''' Adds a new comment to the merge request ''' commentBody = ' '.join( newComments ) url = ( f'{self.host}/api/v4/projects/{self.projectId}/merge_requests/{mergeRequestId}/notes' ) payload = { 'body': commentBody } headers = { 'Private-Token': token } data = urllib.parse.urlencode( payload ).encode( 'utf-8' ) print_key_value_list( f'{INFO_TAG} Adding new Comment to:', [ ( 'Host URL', self.host ), ( 'Project Id', self.projectId ), ( 'Target Endpoint', url), ( 'Comment', commentBody ), ( 'MergeRequest Id', mergeRequestId ) ] ) response = http_request( url, data, headers, 'POST', sslVerify ) if response.statusCode == 201: commentId = str( response.responseBody[ 'id' ] ) save_comment_to_file( commentBody, buildId, commentId, workspace ) print( f'{SUCCESS_LINE} Comment created succesfully with id \'{commentId}\', saved to ./{buildId}-comment.txt' ) else: print( f'{ERROR_LINE} Could not create comment on merge request ({response.responseBody} -- {response.statusCode})' ) def edit_comment(self, sslVerify, token, mergeRequestId, newComments, buildId, workspace, **kwargs): ''' Appends message to the merge request's comments ''' commentId, lastComments = get_last_comment( workspace, buildId ) commentBody = append_new_comments( newComments, lastComments ) url = ( f'{self.host}/api/v4/projects/{self.projectId}/merge_requests/{mergeRequestId}/notes/{commentId}' ) payload = { 'body': commentBody } headers = { 'Private-Token': token } data = urllib.parse.urlencode( payload ).encode( 'utf-8' ) print_key_value_list( f'{INFO_TAG} Edditing Comment to:', [ ( 'Host URL', self.host ), ( 'Project Id', self.projectId ), ( 'Target Endpoint', url), ( 'Comment', commentBody ), ( 'MergeRequest Id', mergeRequestId ) ] ) response = http_request( url, data, headers, 'PUT', sslVerify ) if response.statusCode == 200: commentId = str( response.responseBody[ 'id' ] ) save_comment_to_file( commentBody, buildId, commentId, workspace ) print( f'{SUCCESS_LINE} Comment created succesfully with id \'{commentId}\', saved to ./{buildId}-comment.txt' ) else: print( f'{ERROR_LINE} Could not edit comment on merge request ({response.responseBody} -- {response.statusCode})' )
StarcoderdataPython
157750
from django.db import models # Create your models here. class Image(models.Model): image = models.ImageField(upload_to = 'gallery/') name = models.CharField(max_length=30) description = models.CharField(max_length=100) location = models.ForeignKey('location',on_delete = models.CASCADE) category = models.ForeignKey('category',on_delete = models.CASCADE) @classmethod def images(cls): images = cls.objects.all() return images @classmethod def search_by_category(cls,search_term): images = cls.objects.filter(category__name__icontains=search_term) return images @classmethod def filter_by_location(cls,location): images = cls.objects.filter(location__name__icontains=location) return images @classmethod def get_image_by_id(cls,id): image_id = cls.objects.get(id = id) return image_id def save_image(self): self.save() def delete_image(self): self.delete() def __str__(self): return self.name class Category(models.Model): name = models.CharField(max_length =30) def save_category(self): self.save() def __str__(self): return self.name class Location(models.Model): name = models.CharField(max_length =30) @classmethod def location(cls): location = cls.objects.all() return location def save_location(self): self.save() def __str__(self): return self.name
StarcoderdataPython
93351
<gh_stars>1-10 from django.db import models from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.fields import GenericForeignKey class Feed(models.Model): user = models.ForeignKey('auth.User', related_name='actions', on_delete=models.CASCADE, db_index=True) activity = models.CharField(max_length=150) target_model = models.ForeignKey(ContentType, blank=True, null=True, related_name='target_obj', on_delete=models.CASCADE) target_id = models.PositiveIntegerField(null=True, blank=True) target = GenericForeignKey('target_model','target_id') created = models.DateTimeField(auto_now_add=True, db_index=True) class Meta: ordering = ('-created',)
StarcoderdataPython
1648059
<reponame>rakesh-chinta/Blender_Renderer import os import OpenGL OpenGL.ERROR_CHECKING = False from OpenGL.GL import * from OpenGL.GL import shaders from OpenGL.GL.ARB.bindless_texture import * class Voxelizer: src_dir = os.path.dirname(os.path.realpath(__file__)) shader_clear = 0 shader_voxelize = 0 shader_voxelize_scene = 0 tex_counter = 0 tex_scene_voxel_data = 0 tex_scene_voxel_list = 0 scene_aabb = [[0, 0, 0], [0, 0, 0]] scene_resolution = [1, 1, 1] @classmethod def init(cls): # Setup voxel clear computer shader cshader = glCreateShader(GL_COMPUTE_SHADER) src = cls.src_dir + "/shaders/comp_clear_voxels.glsl" with open(src, 'r') as fin: src = fin.read() comp = shaders.compileShader(src, GL_COMPUTE_SHADER) cls.shader_clear = shaders.compileProgram(comp) glDeleteShader(cshader) # Setup voxelize computer shader cshader = glCreateShader(GL_COMPUTE_SHADER) src = cls.src_dir + "/shaders/comp_voxelize.glsl" with open(src, 'r') as fin: src = fin.read() comp = shaders.compileShader(src, GL_COMPUTE_SHADER) cls.shader_voxelize = shaders.compileProgram(comp) glDeleteShader(cshader) # Setup voxelize scene computer shader cshader = glCreateShader(GL_COMPUTE_SHADER) src = cls.src_dir + "/shaders/comp_voxelize_scene.glsl" with open(src, 'r') as fin: src = fin.read() comp = shaders.compileShader(src, GL_COMPUTE_SHADER) cls.shader_voxelize_scene = shaders.compileProgram(comp) glDeleteShader(cshader) # Setup texture counter data cls.tex_counter = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, cls.tex_counter) glTexImage2D(GL_TEXTURE_2D, 0, GL_R32UI, 1, 1, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, None) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glBindTexture(GL_TEXTURE_2D, 0) # Setup textures for scene voxel data cls.tex_scene_voxel_data, cls.tex_scene_voxel_list = glGenTextures(2) glBindTexture(GL_TEXTURE_3D, cls.tex_scene_voxel_data) glTexImage3D(GL_TEXTURE_3D, 0, GL_R32UI, cls.scene_resolution[0], cls.scene_resolution[1], cls.scene_resolution[2], 0, GL_RED_INTEGER, GL_UNSIGNED_INT, None) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) cls.hnd_scene_voxel_data = glGetImageHandleARB(cls.tex_scene_voxel_data, 0, GL_FALSE, 0, GL_R32UI) glMakeImageHandleResidentARB(cls.hnd_scene_voxel_data, GL_READ_WRITE) glBindTexture(GL_TEXTURE_2D, cls.tex_scene_voxel_list) glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32UI, 1024, 1024, 0, GL_RG_INTEGER, GL_UNSIGNED_INT, None) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glBindTexture(GL_TEXTURE_2D, 0) cls.hnd_scene_voxel_list = glGetImageHandleARB(cls.tex_scene_voxel_list, 0, GL_FALSE, 0, GL_RG32UI) glMakeImageHandleResidentARB(cls.hnd_scene_voxel_list, GL_READ_WRITE) @classmethod def voxelize_scene(cls, meshes): '''Assumes the mesh buffer is bound to buffer base 0''' glBindImageTexture(2, cls.tex_counter, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32UI) glBindTexture(GL_TEXTURE_2D, cls.tex_counter) data = (ctypes.c_uint32*1)(0) glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 1, 1, GL_RED_INTEGER, GL_UNSIGNED_INT, data) glUseProgram(cls.shader_clear) loc = glGetUniformLocation(cls.shader_clear, "voxels") glUniformHandleui64ARB(loc, cls.hnd_scene_voxel_data) glDispatchCompute(*cls.scene_resolution) glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT) mesh_bounds = [mesh.aabb for mesh in meshes] cls.scene_aabb[0][0] = min(mesh_bounds, key=lambda b: b[0][0])[0][0] * 1.1 cls.scene_aabb[0][1] = min(mesh_bounds, key=lambda b: b[0][1])[0][1] * 1.1 cls.scene_aabb[0][2] = min(mesh_bounds, key=lambda b: b[0][2])[0][2] * 1.1 cls.scene_aabb[1][0] = max(mesh_bounds, key=lambda b: b[1][0])[1][0] * 1.1 cls.scene_aabb[1][1] = max(mesh_bounds, key=lambda b: b[1][1])[1][1] * 1.1 cls.scene_aabb[1][2] = max(mesh_bounds, key=lambda b: b[1][2])[1][2] * 1.1 dimensions = ( cls.scene_aabb[1][0] - cls.scene_aabb[0][0], cls.scene_aabb[1][1] - cls.scene_aabb[0][1], cls.scene_aabb[1][2] - cls.scene_aabb[0][2] ) glUseProgram(cls.shader_voxelize_scene) loc = glGetUniformLocation(cls.shader_voxelize_scene, "u_res") glUniform3f(loc, *cls.scene_resolution) loc = glGetUniformLocation(cls.shader_voxelize_scene, "u_size") glUniform3f(loc, *dimensions) loc = glGetUniformLocation(cls.shader_voxelize_scene, "u_aabb[0]") glUniform3f(loc, *cls.scene_aabb[0]) loc = glGetUniformLocation(cls.shader_voxelize_scene, "u_aabb[1]") glUniform3f(loc, *cls.scene_aabb[1]) loc = glGetUniformLocation(cls.shader_voxelize_scene, "num_meshes") glUniform1i(loc, len(meshes)) loc = glGetUniformLocation(cls.shader_voxelize_scene, "voxels") glUniformHandleui64ARB(loc, cls.hnd_scene_voxel_data) loc = glGetUniformLocation(cls.shader_voxelize_scene, "link_list") glUniformHandleui64ARB(loc, cls.hnd_scene_voxel_list) glDispatchCompute(len(meshes), 1, 1) glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT) # glBindTexture(GL_TEXTURE_3D, cls.tex_scene_voxel_data); # data = (ctypes.c_uint32*8)() # glGetTexImage(GL_TEXTURE_3D, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, data) # print('ures:', cls.scene_resolution) # print('u_size:', dimensions) # print('u_aabb', cls.scene_aabb) # print(['END' if i == 4294967295 else i for i in data]) glUseProgram(0) @classmethod def voxelize_mesh(cls, mesh): # start = time.perf_counter() glBindImageTexture(2, cls.tex_counter, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32UI) glBindTexture(GL_TEXTURE_2D, cls.tex_counter) data = (ctypes.c_uint32*1)(0) glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 1, 1, GL_RED_INTEGER, GL_UNSIGNED_INT, data) glUseProgram(cls.shader_clear) loc = glGetUniformLocation(cls.shader_clear, "voxels") glUniformHandleui64ARB(loc, mesh.hnd_voxel_data) glDispatchCompute(*mesh.voxel_resolution) glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT) glUseProgram(cls.shader_voxelize) loc = glGetUniformLocation(cls.shader_voxelize, "u_res") glUniform3f(loc, *mesh.voxel_resolution) loc = glGetUniformLocation(cls.shader_voxelize, "u_size") glUniform3f(loc, *mesh.dimensions) loc = glGetUniformLocation(cls.shader_voxelize, "u_aabb[0]") glUniform3f(loc, *mesh.aabb[0]) loc = glGetUniformLocation(cls.shader_voxelize, "u_aabb[1]") glUniform3f(loc, *mesh.aabb[1]) loc = glGetUniformLocation(cls.shader_voxelize, "u_count") glUniform1i(loc, mesh.count) loc = glGetUniformLocation(cls.shader_voxelize, "tri_buffer") glUniformHandleui64ARB(loc, mesh.hnd_indices) loc = glGetUniformLocation(cls.shader_voxelize, "vert_buffer") glUniformHandleui64ARB(loc, mesh.hnd_positions) loc = glGetUniformLocation(cls.shader_voxelize, "voxels") glUniformHandleui64ARB(loc, mesh.hnd_voxel_data) loc = glGetUniformLocation(cls.shader_voxelize, "link_list") glUniformHandleui64ARB(loc, mesh.hnd_voxel_list) glDispatchCompute(mesh.count, 1, 1) glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT) glUseProgram(0) # glActiveTexture(GL_TEXTURE2) # glGetTexImage(GL_TEXTURE_2D, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, data) # print("Voxelization time: %.2fms\n" % (time.perf_counter() - start) * 1000) # print(data[0])
StarcoderdataPython
171751
<gh_stars>10-100 #! /usr/bin/env python3 # <<BEGIN-copyright>> # Copyright 2021, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: BSD-3-Clause # <<END-copyright>> from PoPs.quantities import quantity as quantityModule from PoPs.quantities import mass as massModule from PoPs.quantities import spin as spinModule from PoPs.quantities import parity as parityModule from PoPs.quantities import charge as chargeModule from PoPs.quantities import halflife as halflifeModule from PoPs.families import lepton as leptonModule electron = leptonModule.particle( 'e-', generation = 'electronic' ) mass = massModule.double( 'base', 5.48579909070e-4, quantityModule.stringToPhysicalUnit( 'amu' ) ) electron.mass.add( mass ) charge = chargeModule.integer( 'base', -1, quantityModule.stringToPhysicalUnit( 'e' ) ) electron.charge.add( charge ) halflife = halflifeModule.string( 'base', 'stable', quantityModule.stringToPhysicalUnit( 's' ) ) electron.halflife.add( halflife ) spin = spinModule.fraction( 'base', spinModule.fraction.toValueType( '1/2' ), quantityModule.stringToPhysicalUnit( 'hbar' ) ) electron.spin.add( spin ) parity = parityModule.integer( 'base', 1, quantityModule.stringToPhysicalUnit( '' ) ) electron.parity.add( parity ) print( electron.toXML( ) ) print() electron2 = leptonModule.particle.parseXMLStringAsClass( electron.toXML( ) ) if( electron.toXML( ) != electron2.toXML( ) ) : raise Exception( 'Fix me' ) suite = leptonModule.suite( ) suite.add( electron ) print( suite.toXML( ) ) suite2 = leptonModule.suite.parseXMLStringAsClass( suite.toXML( ) ) if( suite2.toXML( ) != suite.toXML( ) ) : raise Exception( 'Fix me' )
StarcoderdataPython
3327895
<filename>prove_ethics.py #!/usr/bin/python import subprocess import json steps = { '1a1': """ all A ( is_only_in_itself(A) | is_only_in_another(A) ). """, # Note: the "exists" of predicate logic is not the "is" of Spinoza's # philosophy. I am having trouble explaining how I use prover9's "exists", # then. This could be a sign that Spinoza's philosophy is ultimately not # translatable into a contemporary predicate logic, which has too many # contemporary assumptions built into it. Perhaps what could be said in defense # of this project is that it will make plainer---in the things that couldn't be # captured--exactly where Spinoza departs from today's "common sense". '1a4': """ all e all c ( % if c causes e... causes(c, e) -> % ...then... ( % ...there is a cognition of the effect that depends on and % involves the cognition of its cause. exists cog_e exists cog_c ( is_cognition_of(cog_e, e) & is_cognition_of(cog_c, c) & depends_on(cog_e, cog_c) & involves(cog_e, cog_c) ) ) ). """, # 1a5: Things that have nothing in common with one another also cannot be # understood through one another, or the concept of the one does not involve # the concept of the other. '1a5': """ all a all b ( % If two things have nothing in common with one another... -(exists t ( has(a, t) & has(b, t) )) % ...then.... -> ( neither_is_understood_through_the_other(a, b) & the_concept_of_the_one_does_not_involve_the_concept_of_the_other(a, b) ) ). """, # Note that this claim---"Things have have nothing in common with one # another..."---is a generic, which I am interpreting as two universal # quantifiers. # I take "cannot" to mean "ipso facto not". # 1a7: If a thing can be conceived as not existing, its essence does # not involve existence. '1a7': """ all X ( conceivably_does_not_exist(X) -> -essence_involves_existence(X) ). """, # Definition of causa sui '1def1': """ all X ( causes(X,X) <-> essence_involves_existence(X) ). """, # 1def3: By substance I understand what is in itself and is conceived # through itself, i.e., that whose concept does not require the concept of # another thing, from which it must be formed. '1def3': """ all S ( is_substance(S) <-> ( % S is the only thing it is in all T ( is_in(S,T) <-> (S=T) ) ) ). all S ( is_substance(S) <-> ( all T ( is_conceived_through(S,T) <-> (S=T) ) % & % % It's not the case that... % -( % exists sc exists t exists tc ( % % ...any concept of the substance... % is_concept_of(tc,c) & % % ...requires any concept... % requires(sc,tc) & % is_concept_of(sc,s) & % % ...of a distinct thing. % -(s=t) % ) % ) ) ). % The definition seems to be used in this way too. all S ( is_substance(S) <-> is_in(S,S) ). % TODO: Because this is a real definition, it states not only the % biconditional, but also that the biconditional makes plain the essence of % the thing. I'm not sure how to write that in prover9. % TODO: Haven't encoded the "I understand" bit. """, # 1def4: By attribute I understand what the intellect perceives of a substance, # as constituting its essence. '1def4': """ % Will leave this blank and try to fill in in various ways. """, # 1def5: By mode I understand the affections of a substance, or that which is # in another through which it is also conceived. '1def5': """ all M ( is_mode(M) -> ( exists S ( is_substance(S) & is_mode_of(M, S) & is_in(M, S) & is_conceived_through(M, S) ) ) ). all M all S ( ( is_mode(M) & is_mode_of(M, S) & is_substance(S) ) -> (is_in(M, S) & is_conceived_through(M, S)) ). all M ( ( exists S ( is_in(M, S) ) ) -> is_mode_of(M, S) ). % TODO: Haven't encoded the "I understand" bit. """, # 1def6: By God I understand a being absolutely infinite, i.e., a substance # consisting of an infinity of attributes, of which each one expresses an # eternal and infinite essence. '1def6': """ % God is a substance. is_substance(God). % God has all the attributes. all A ( is_attribute(A) -> ( exists G ( God=G & is_attribute_of(A,G) ) ) ). % Each attribute of God expresses an eternal and infinite essence. all A ( is_attribute_of(A, God) -> exists E ( is_essence(E) & expresses(A,E) & is_eternal(E) & is_infinite(E) ) ). """, # 1def8: By eternity I understand existence itself, insofar as it is conceived # to follow necessarily from the definition alone of the eternal thing. '1def8': """ % Paraphrasing this as something like: if the existence of something % follows from its definition then its existence is eternity. all x (follows_from(existence(x),definition(x)) -> (existence(x) = Eternity)). % TODO: Incorporate the "insofar as" bit. """, '1p1': """ % 1p1: A substance is prior in nature to its affections. all S all A ( ( is_substance(S) & is_affection_of(A, S) ) -> is_prior_in_nature_to(S, A) ). % Noticed while doing this: This proposition is ambiguous between "a % substance is prior in nature to all of its affections taken together" and % "a substance is prior in nature to each of its affections." % Noticed while doing this: It's not clear why 1def3 is needed in the % demonstration. """, # 1p11: God, or a substance consisting of infinite attributes, each of # which expresses eternal and infinite essence, necessarily exists. # # Dem.: If you deny this, conceive, if you can, that God does not # exist. Therefore (by 1a7) his essence does not involve existence. # But this (by 1p7) is absurd. Therefore God necessarily exists, q.e.d. '1p11': """ % Treating existence like a predicate. necessarily_exists(God). """, # 1p14: Except God, no substance can be or be conceived. # # Dem.: Since God is an absolutely infinite being, of whom no attribute which # expresses an essence of substance can be denied (by 1def6), and he # necessarily exists (by 1p11), if there were any substance except God, it # would have to be explained through some attribute of God, and so two # substances of the same attribute would exist, which (by 1p5) is absurd. And # so except God, no substance can be or, consequently, be conceived. For if it # could be conceived, it would have to be conceived as existing. But this (by # the first part of this demonstration) is absurd. Therefore, except for God no # substance can be or be conceived, q.e.d. '1p14': """ % Except God, no substance can be or be conceived. all s ( is_substance(s) -> (s=God) ). """, # 1p15: Whatever is, is in God, and nothing can be or be conceived without God. # # Dem.: Except for God, there neither is, nor can be conceived, any substance # (by 1p14), i.e. (by 1def3), thing that is in itself and is conceived through # itself. But modes (by 1def5) can neither be nor be conceived without # substance. So they can be in the divine nature alone, and can be conceived # through it alone. But except for substances and modes [II/57] there is # nothing (by 1a1). Therefore, [NS: everything is in God and] nothing can be # or be conceived without God, q.e.d. '1p15': """ all X ( is_in(X,God) ). %& -can_be_without(X,God) & -can_be_conceived_without(God) ). """, # 1p16: From the necessity of the divine nature there must follow infinitely # many things in infinitely many modes, (i.e., everything which can fall under # an infinite intellect.) # # Dem.: This Proposition must be plain to anyone, provided he attends to the # fact that the intellect infers from the given definition of any thing a # number of properties that really do follow necessarily from it (i.e., from # the very essence of the thing); and that it infers more properties the more # the definition of the thing expresses reality, i.e., the more reality the # essence of the defined thing involves. But since the divine nature has # absolutely infinite attributes (by 1def6), each of which also expresses an # essence infinite in its own kind, from its necessity there must follow # infinitely many things in infinite modes (i.e., everything which can fall # under an infinite intellect), q.e.d. '1p16': """ % The number of modes of each attribute is infinite. %all a ( is_attribute(a) -> number(modes_of(a), Infinity) ). exists properties ( (properties = modes_of(God)) & (a_infers_b_from_c(Intellect, properties, definition(God))) & infinite(properties) ). % All modes follow from the divine nature. %number(DivineAttributes, Infinity). all m ( is_mode(m) -> follows_from(m, DivineNature) ). """, '1p19': """ % 1p19: God is eternal, or all God's attributes are eternal. eternal(God). """, '1p2': """ % 1p2: Two substances having different attributes have nothing in common with % one another. % % Dem.: This also evident from 1def3. For each must be in itself and be % conceived through itself, or the concept of the one does not involve the % concept of the other. all s1 all s2 ( % If there are two substances... ( is_substance(s1) & is_substance(s2) & -(s1=s2) ) % ...then... -> % ...there is no attribute they have in common. -( exists a ( is_attribute_of(a, s1) & is_attribute_of(a, s2) ) ) ). """, # 1p21: All the things which follow from the absolute nature of any of God's # attributes have always had to exist and be infinite, or are, through the same # attribute, eternal and infinite. '1p21': """ % 1p21: All the things which follow from the absolute nature of any of God's % attributes all t ( ( % simplify for now follows_from(t, God) %exists nature exists a ( % is_attribute_of(a, God) & % is_absolute_nature_of(nature, a) & % follows_from(t, nature) %) ) -> % have always had to exist and be infinite, or are, through the same % attribute, eternal and infinite. ( is_infinite(t) %has_always_existed(t) & has_always_been_infinite(t) & %eternal_through(t, a) & %infinite_through(t, a) ) ). """, '1p22': """ % 1p22: Whatever follows from some attribute of God % insofar as it is modified by a modification which, % through the same attribute, exists necessarily and % is infinite, must also exist necessarily and be % infinite. % Whatever follows from some attribute of God insofar as it is modified by % a modification which, through the same attribute, exists necessarily and % is infinite all x exists mod exists attribute ( ( % Note simplification here: to follow from an attribute insofar as % it is modified is to follow from a modification of that attribute follows_from(x, mod) & is_modification_of(mod, attribute) & exists_necessarily(mod) & is_infinite(mod) ) -> ( exists_necessarily(x) & is_infinite(x) ) ). """, # 1p24: The essence of things produced by God does not involve # existence. '1p24': """ % The phrase 'things produced by God' implicitly excludes % God. all x ( (produced_by(x,God) & -(God=x)) -> -essence_involves_existence(x) ). """, # 1p24c: From this it follows that God is not only the cause of things' # beginning to exist, but also of their persevering in existing, *or* (to use a # Scholastic term) God is the cause of the being of things. For -- whether the # things [NS: produced] exist or not -- so long as we attend to their essence, # we shall find that it involves neither existence nor duration. So their # essence can be the cause neither of their existence nor of their duration, # but only God, to whose nature alone it pertains to exist[, can be the cause] # (by 1p14c1). '1p24c': """ % God is...the cause of things' persevering in existing. all t exists b ( is_being_of(b, t) & partial_cause(God, b) ). % Noticed while doing this: we can't translate this as "God is *the* cause % of the being of things" because there are other causes. So we must % translate it as "God is a cause" """, # 1p25c: Particular things are nothing but affections of God's attributes, *or* # modes by which God's attributes are expressed in a certain and determinate # way. The demonstration is evident from 1p15 and 1def5. '1p25c': """ % Paraphrasing as: each particular thing is nothing but an affection of an % attribute of God and this affection is a mode that expresses an attribute % of God. all t ( is_particular_thing(t) -> ( exists attribute exists affection ( is_nothing_but(t, affection) & is_affection_of(affection, attribute) & is_attribute_of(attribute, God) ) & is_mode(affection) & expresses_in_a_certain_and_determinate_way(affection, attribute) ) ). """, # 1p26: A thing which has been determined to produce an effect has necessarily # been determined in this way by God; and one which has not been determined by # God cannot determine itself to produce an effect. '1p26': """ % Simplification: doesn't subselect things in particular all t ( (exists e (determined_to_produce(t, e))) -> x_determines_y_to_produce_z(God, t, e) ). """, # 1p28: Every singular thing, or any thing which is finite and has a # determinate existence, can neither exist nor be determined to produce an # effect unless it is determined to exist and produce an effect by another # cause, which is also finite and has a determinate existence; and again, this # cause also can neither exist nor be determined to produce an effect unless it # is determined to exist and produce an effect by another, which is also finite # and has a determinate existence, and so on, to infinity. '1p28': """ %all x (is_finite(x) -> exists y (causes(y,x))). %all x all y ((causes(x,y) & infinite(x)) -> infinite(y)). all x (infinite(x)). % For simplicity, ignoring "exists" and just handling "determined to exist" %all y ( % % Every singular thing, or any thing which is finite and has a % % determinate existence, % ( % %is_singular(y) & % is_finite(y) & % %has_determinate_existence(y) & % %determined_to_produce_effect(y) % ) % % can neither exist nor be determined to produce an % % effect unless % -> % % it is determined to exist and produce an effect by another cause, % % which is also finite and has a determinate existence; % ( % exists x ( %exists z % is_infinite(x) %determines_to_exist(x, y) & % %x_determines_y_to_produce_z(x, y, z) & % %is_finite(x) %& % %has_determinate_existence(x) % ) % ) %). """, # intermediary step on the way to 1p28 '1p28-i': """ all x ( is_finite(x) -> -causes(God, x) ). """, '1p2': """ % 1p2: Two substances having different attributes have nothing in common with % one another. % % Dem.: This also evident from 1def3. For each must be in itself and be % conceived through itself, or the concept of the one does not involve the % concept of the other. all s1 all s2 ( % If there are two substances with different attributes... ( ( is_substance(s1) & is_substance(s2) & -(s1=s2) ) & -exists a ( is_attribute_of(a, s1) && is_attribute_of(a, s2) ) ) % ...then... -> % ...there is no thing that each has. -exists t ( has(s1, t) && has(s2, t) ) ). """, '1p3': """ % 1p3: If things have nothing in common with one another, one of them cannot be % the cause of the other. % % Dem.: If they have nothing in common with one another, then (by 1a5) they % cannot be understood through one another, and so (by 1a4) one cannot be the % cause of the other, q.e.d. % Used in 1p6 % Given two things, all a all b ( % If there is no thing that they both have, ... -(exists t ( has(a, t) & has(b, t) )) % ...then... -> % ...neither is understood through nor causes the other. ( neither_is_understood_through_the_other(a, b) & neither_causes_the_other(a, b) ) ). % Note that "they cannot be understood through one another" must mean "neither % can be understood through the another", although strictly speaking it could % mean that it is impossible to (simultaneously?) understand each through the % other. """, '1p4': """ % 1p4: Two or more distinct things are distinguished from one another, either % by a difference in the attributes of the substances or by a difference in % their affections. % % Dem.: Whatever is, is either in itself or in another (by 1a1), i.e. (by 1def3 % and 1def5), outside the intellect there is nothing except substances and % their affections. Therefore, there is nothing outside the intellect through % which a number of things can be distinguished from one another except % substances, or what is the same (by 1def4), their attributes, and their % affections, q.e.d. % For simplicity, I will just stick to two things. % all a all b all c ( % distinguished_by(a, b, c) % -> % ( % ( % is_a_difference_in_attributes(c, a, b) % & is_substance(a) % & is_substance(b) % ) % | % is_a_difference_in_affections(c, a, b) % ) % ). % Paraphrase: For any distinct x and y, there is either an attribute that % exactly one of them has, or an affection that exactly one of them has. all x all y ( ( -(x=y) ) -> ( exists a ( ( is_attribute_of(a, x) & -is_attribute_of(a, y) ) | ( -is_attribute_of(a, x) & is_attribute_of(a, y) ) | ( is_affection_of(a, x) & -is_affection_of(a, y) ) | ( -is_affection_of(a, x) & is_affection_of(a, y) ) ) ) ). """, '1p5': """ % 1p5: In nature there cannot be two or more substances of the same % nature or attribute. % % Dem.: If there were two or more distinct substances, they would have % to be distinguished from one another either by a difference in their % attributes, or by a difference in their affections (by 1p4). If only % by a difference in their attributes, then it will be conceded that % there is only one of the same attribute. But if by a difference in % their affections, then since a substance is prior in nature to its % affections (by 1p1), if the affections are put to one side and [the % substance] is considered in itself, i.e. (by 1def3 and 1a6), % considered truly, one cannot be conceived to be distinguished from % another, i.e. (by 1p4), there cannot be many, but only one [of the % same nature or attribute], q.e.d. % Rewriting the above. all s all t all a ( % If an attribute belongs to two substances... ( is_substance(s) & is_substance(t) & is_attribute_of(a, s) & is_attribute_of(a, t) ) -> % ...then they are identical (s=t) ). """, '1p6': """ % 1p6: One substance cannot be produced by another substance. % % Dem.: In nature there cannot be two substances of the same attribute (by % 1p5), i.e. (by 1p2), which have something in common with each other. % Therefore (by 1p3) one cannot be the cause of the other, or cannot be % produced by the other, q.e.d. all s ( is_substance(s) -> -( exists s2 ( -(s=s2) & produces(s2, s) ) ) ). % I'm hoping that the formula above could be written like this one day: % "For all s, if s is a substance, then it is not the case that there exists % something s2 such that s and s2 are distinct and s2 produces s." """, '1p7': """ % 1p7: It pertains to the nature of a substance to exist. % % Dem.: A substance cannot be produced by anything else (by 1p6c); therefore it % will be the cause of itself, i.e. (by 1def1), its essence necessarily % involves existence, or it pertains to its nature to exist, q.e.d. all s ( is_substance(s) -> pertains_to_its_nature_to_exist(s) ). """, '2a1': """ % 2a1'' (G II/99) % "All modes by which a body is affected by another body follow both % from the nature of the body affected at at the same time from the % nature of the affecting body..." % I'm ignoring this bit, which I take to just be a gloss: % "so that one and the same body may be moved differently according to % differences in the nature of the bodies moving it. And conversely, % different bodies may be moved differently by one and the same body." all mode all body ( ( % All modes of any given body... mode_of(mode,body) & is_body(body) & % ...that have an external cause... exists body2 ( cause(body2,mode) & -(body2=body) ) ) -> % ...are such that... ( all n all n2 ( ( % ...the nature of the affected body nature_of(n,body) & % ...and the nature of the affecting body nature_of(n2,body2) ) -> % ...are such that... ( % ...the mode follows from both natures. follow_from(mode,n) & follow_from(mode,n2) ) ) ) ). """, # 2p16: The idea of any mode in which the human body is affected by external # bodies must involve the nature of the human body and at the same time the # nature of the external body. '2p16': """ all mode all body ( % for each mode of the human body... ( is_human(body) & mode_of(mode,body) ) -> % ...all of that mode's external causes all body2 ( ( cause(body2,mode) & -(body2 = body) ) -> % are such that all i all n all n2 ( % the idea of that mode involves the external bodies' natures ( idea_of(i,body) & nature_of(n,body) & nature_of(n2,body2) ) -> ( involves(i,n) & involves(i,n2) ) ) ) ). """, # 2p7: The order and connection of ideas is the same as the order and # connection of things. '2p7': """ % Two ideas are connected (implicitly: by a relation of dependence) ( exists i exists j ( is_idea(i) & is_idea(j) & depends_on(j, i) ) ) % ...if and only if two things are connected (implicitly: by a causal relation) <-> ( exists t exists u ( causes(t, u) ) ). % Noticed: this seems to require that causation, dependence and involvement are % the only ways of being connected. """, # Some of Spinoza's phrases involve # generics. If we switch to a generic # interpretation of them, what happens to # the book? "Assumption: Anything that's an idea of something is an idea": "all I all O ( is_idea_of(I,O) -> is_idea(I) ).", "Assumption: Anything that's a cognition of something is an idea of that thing.": "all I all O ( is_cognition_of(I,O) <-> is_idea_of(I,O) ).", "Assumption: Ideas are concepts": "all I all X ( is_idea_of(I,X) <-> is_concept_of(I,X) ).", "Assumption: Whatever we end up talking about is a 'thing'.": "all X is_thing(X).", "Assumption: There is an idea of each thing. (Needed for 2p7)": "all T ( exists I ( is_idea_of(I, T) ) ).", "Assumption: Definition of essential involvement": "all X all F ( involves_essentially(X,F) <-> all E ( is_essence_of(E,X) -> involves(E,F) )).", # We need either this or 'everything has a cause' "Assumption: Everything is conceived through something": "all X (exists Y conceived_through(X,Y)).", "Everything has a cause": "all X (exists Y causes(Y,X)).", "To not conceivably have is to necessarily lack.": "all X all F ( -conceivably_has(X,F) <-> necessarily_lacks(X,F) ).", "To necessarily lack is to not possibly have": "all X all F ( necessarily_lacks(X,F) <-> -possibly_has(X,F) ).", "To conceivably lack is to not necessarily have": "all X all F ( conceivably_lacks(X,F) <-> -necessarily_has(X,F) ).", # Seemingly at least one of these is needed for 1p1 "What something is conceived through is prior in nature to it": "all X all Y ( is_conceived_through(Y, X) -> is_prior_in_nature_to(X, Y) ).", "What something is in is prior in nature to it": "all X all Y ( is_in(Y, X) -> is_prior_in_nature_to(X, Y) ).", "If A is an affection of S then A is an affection and S has A": "all A all S ( is_affection_of(A, S) -> ( is_affection(A) & has(S, A) ) ).", "If A is an attribute of S then A is an attribute and S has A": "all A all S ( is_attribute_of(A, S) -> ( is_attribute(A) & has(S, A) ) ).", "Assumption: Your modes are your affections": "all X all Y ( is_mode_of(X,Y) <-> is_affection_of(X,Y) ).", "Assumption: Modes are affections and vice versa": "all X ( is_mode(X) <-> is_affection(X) ).", "Assumption: Your modes are modes and you have them.": "all X all Y ( is_mode_of(X,Y) <-> ( is_mode(X) & has(Y, X) ) ).", "Assumption: If you're conceived through something then its concept involves your concept": """ all X all Y ( is_conceived_through(A, B) -> ( exists CA exists CB ( is_concept_of(CA, A) & is_concept_of(CB, B) & involves(CB, CA) ) ) ). """, "Assumption: Grammar of 'neither of two things is understood through the other'": """ all A all B ( neither_is_understood_through_the_other(A, B) <-> ( -is_understood_through(A, B) & -is_understood_through(B, A) ) ). """, "Assumption: Grammar of 'neither causes the other'": """ all A all B ( neither_causes_the_other(A, B) <-> ( -causes(A, B) & -causes(B, A) ) ). """, "Assumption: Grammar of 'the concept of the one does not involve the concept of the other": """ all A all B ( the_concept_of_the_one_does_not_involve_the_concept_of_the_other(A, B) <-> ( all CA all CB ( ( is_concept_of(CA, A) & is_concept_of(CB, B) ) -> ( -involves(CA, CB) & -involves(CB, CA) ) ) ) ). """, "Assumption: You are understood through your causes.": "all A all B ( causes(A, B) -> is_understood_through(B, A) ). ", "Assumption: What is understood through something is conceived through it": "all A all B ( is_understood_through(A, B) <-> is_conceived_through(A, B) ).", # This is to bring everything under the scope of 1a1 "Assumption: Everything is": "all X ( is(X) ).", # Controversial but I think it's needed for 1p4. Talk of attributes is just # a way of talking about how a substance is conceived and it can be # regimented out. "Assumption: Attributes are substances": "all A ( is_attribute(A) <-> is_substance(A) ).", "Assumption: What produces something causes it (but not necessarily vice versa)": "all X all Y ( produces(X, Y) -> causes(X, Y)).", "Assumption: If something is only in itself then anything it is in is actually itself": "all A ( is_only_in_itself(A) <-> ( all B ( is_in(A,B) -> (B=A) ))).", "Assumption: If something is only in another then it is not in itself but something else": """ all A ( is_only_in_another(A) % better: is only in exactly one, distinct, thing <-> ( exists B ( -(B=A) & is_in(A,B) ) & -is_in(A,A) ) ). """, "Assumption: A causes B iff B is in A": "all A all B ( causes(A, B) <-> is_in(B, A) ).", #all A all B ( -produces(A, B) ). % just for debugging 1p6 # If we write 2p7 in a way that involves the idea of a "connection", then we might need these. # Each dependency relation is a "connection" in a graph. #all X all Y ( depends_on(X,Y) <-> is_connected_to(X,Y) ). #all X all Y ( depends_on(X,Y) <-> is_connected_to(Y,X) ). % perhaps? #all X all Y ( involves(X,Y) <-> is_connected_to(X,Y) ). #all X all Y ( involves(X,Y) <-> is_connected_to(Y,X) ). % perhaps? #all X all Y ( causes(X,Y) <-> is_connected_to(X,Y) ). #all X all Y ( causes(X,Y) <-> depends_on(Y,X) ). % perhaps? #all X all Y ( is_connected_to(X,Y) -> causes(X,Y) ). % might make 2p7 work #all X all Y ( is_connected_to(X,Y) -> ( causes(X,Y) | depends_on(X,Y) | involves(X,Y) ) ). % needed for 2p7? """Assumption: If it pertains to the nature of something to exist, then its essence involves existence""": "all S ( pertains_to_its_nature_to_exist(S) <-> essence_involves_existence(S) ).", """Assumption: If something does not conceivably fail to exist then it necessarily exists""": "all S ( -conceivably_does_not_exist(S) <-> necessarily_exists(S) ).", "Assumption: If something necessarily exists then it necessarily has existence": "all X ( necessarily_exists(X) <-> ( all E ( is_existence(E) -> necessarily_has(X, E) ) ) ).", #Needed for 1p14. "Assumption: Each substance has an attribute.": "all S ( ( is_substance(S) & -is_attribute(S) ) -> ( exists A ( is_attribute_of(A, S) ) ) ).", # I've included the clause `& -is_attribute(S)`, which is strictly speaking # false. If we don't include it, this line combines with the formula stating # that each attribute is a substance to produce an infinite loop. "If an attribute belongs to two substances then they are identical": """ % Rewriting the above. all S all T all A ( % If an attribute belongs to two substances... ( is_substance(S) & is_substance(T) & is_attribute_of(A, S) & is_attribute_of(A, T) ) -> % ...then they are identical (S = T) ). """, "Assumption: If there is a substance other than God then they do not share attributes": """ exists S ( is_substance(S) & -(S=God) ) -> exists S exists T exists A ( -(S=T) & is_attribute_of(A,S) & is_attribute_of(A,T) ). """, #all X ( is_in(X,God) & -can_be_without(X,God) & -can_be_conceived_without(X,God) ). "Assumption: Something cannot be without its causes": "all X all Y ( causes(X,Y) -> -can_be_without(Y,X) ).", "Assumption: Something cannot be conceived without what it is conceived through": "all X all Y ( is_conceived_through(X,Y) -> -can_be_conceived_without(Y,X) ).", # the intellect infers from the given definition of any thing a number of # properties that really do follow necessarily from it (i.e., from the very # essence of the thing); (1p16) # "the intellect...infers more properties the more the definition of the # thing expresses reality, i.e., the more reality the essence of the # defined thing involves." (1p16) # Paraphrase this as: if the definition of a thing expresses an infinite # amount of reality, then the intellect infers an infinite number of # properties from it. """Assumption: if the definition of a thing expresses an infinite amount of reality, then the intellect infers an infinite number of properties from it.""": """ all x ( ( exists amount_of_reality ( expresses(definition(x),amount_of_reality) & infinite(amount_of_reality) )) -> exists properties ( (properties = modes_of(x)) & (a_infers_b_from_c(Intellect, properties, definition(x))) & infinite(properties) ) ). """, "Assumption: the definition of God expresses an infinite amount of reality": """ exists amount_of_reality ( expresses(definition(God), amount_of_reality) & infinite(amount_of_reality) ). """, """Assumption: If something expresses an infinite essence then the intellect infers an infinite set of properties from it.""": """ all x all y ( ( expresses(x,y) & is_essence_of(y,x) & infinite(y) ) -> % ...then the intellect infers an infinite set of properties from it. exists properties ( (properties = modes_of(x)) & (a_infers_b_from_c(Intellect, properties, definition(x))) & infinitely_large_set(properties) ) ). """, "Assumption: any infinitely large set numbers infinity": "all x (infinitely_large_set(x) <-> number(x, Infinity)).", "Assumption: equivalence of is_infinite() and infinite()": "all x (is_infinite(x) <-> infinite(x)).", "Assumption: the existence of God follows from his definition": "follows_from(existence(God),definition(God)).", "Assumption: If the existence of something is eternity then it is eternal.": "all x ((existence(x) = Eternity) -> eternal(x)).", "Assumption: If B is produced by A, then A produces B": "all A all B (produced_by(B, A) <-> produces(A, B)).", "Assumption: The divine nature is the nature of God": "is_the_nature_of(DivineNature, God).", # Possibly incorrect. "Assumption: If x is nothing but y, then x equals y": "all x all y ( is_nothing_but(x,y) <-> x=y ).", # Helps 1p25c go through. "Assumption: A mode of a substance is a mode of one of its attributes.": """ all M all S ( is_mode_of(M, S) -> exists A (is_attribute_of(A, S) & is_mode_of(M, A)) ). """, # Helps 1p25c to go through. """Assumption: If you express something you express it in a certain and determinate way""": "all x all y (expresses(x,y) -> expresses_in_a_certain_and_determinate_way(x,y)).", "Assumption: Your modes express you": "all x all y (is_mode_of(x,y) -> expresses(x,y)).", # all x (has_always_existed(x) <-> sempiternal(x)). # all x (has_always_been_infinite(x) <-> is_infinite(x)). # all x all y (eternal_through(x, y) -> is_eternal(x)). # all x all y (infinite_through(x, y) -> is_infinite(x)). # all x ( is_finite(x) <-> -is_infinite(x) ). "Assumption: what follows from something is caused by it": "all x all y (follows_from(y,x) <-> causes(x,y)).", "Assumption: What follows from something is determined by it to produce an effect": "all x all y (follows_from(y,x) <-> determines_to_produce_effect(x,y)).", "Assumption: What follows from something is determined by it to exist": "all x all y (follows_from(y,x) <-> determines_to_exist(x,y)).", """Assumption: X determines y to produce an effect iff there is something z such that x determines y to produce z""": "all x all y (determines_to_produce_effect(x,y) <-> exists z (x_determines_y_to_produce_z(x,y,z))).", "Assumption: What is finite has a determinate existence": "all x (finite(x) <-> has_determinate_existence(x)).", "Assumption: A substance is conceived through itself": "all s ( is_substance(s) -> is_conceived_through(s,s) ).", "Assumption: A substance exists in itself": "all s ( is_substance(x) -> exists_in(s,s) ).", "Assumption: God is a substance": "all s ( is_god(s) -> is_substance(s) ).", "Assumption: If it pertains to the nature of something to exist, then its essence involves existence": "all s ( pertains_to_its_nature_to_exist(s) -> essence_involves_existence(s) ).", """Assumption: If something conceivably does not exist then its essence does not involve existence""": "all s ( conceivably_does_not_exist(s) -> -essence_involves_existence(s) ).", "Assumption: If something conceivably does not exist then it conceivably lacks existence": "all s ( conceivably_does_not_exist(s) <-> ( all e ( is_existence(e) -> conceivably_lacks(s,e) ) ) ).", "Assumption: What something conceivably lacks it possibly lacks": "all x all F ( conceivably_lacks(x, F) <-> possibly_lacks(x, F) ).", "Assumption: What something possibly lacks it does not necessarily have": "all x all F ( possibly_lacks(x, F) <-> -necessarily_has(x, F) ).", "Assumption: If something necessarily exists then it necessarily has existence": "all x ( necessarily_exists(x) <-> ( all e ( is_existence(e) -> necessarily_has(x, e) ) ) ).", "Assumption: If something is god it necessarily exists": "all s ( is_god(s) -> necessarily_exists(s) )." } demos = { '1p1': '1def3 1def5', #'1p1': '1def3 1def5', #'1p1': '1def3 1def5', #'1p2': '1def3', #'1p2v2': '1def3', #'1p3': '1a4 1a5', #'1p4': '1a1 1def3 1def4 1def5', #'1p4': '1a1 1def3 1def5', #'1p6': '1p5 1p2 1p3 1def3', #'2p7': '1a4', #'1p11': '1a7 1p7 1def6', #'1p14': '1def6 1p11 1p5', #'1p15': '1p14 1def3 1def5 1a1', #'1p16.1': '1def6', #'1p16.2': '1def6', #'1p19': '1def6 1p7 1def8 1def4', #'1p24': '1def1 1def3', #'1p25c': '1p15 1def5', #'1p28': '1p21', #'1p28.1': '1a1 1def3 1def5 1p21 1p22 1p24c 1p25c 1p26', #'1p28': '1a1 1def3 1def5 1p21 1p22 1p24c 1p25c 1p26', } for (conclusion_key, premise_keys) in demos.items(): def escape(x): return x.replace('"','\\\"') premises = "\n".join([escape(steps[key]) for key in premise_keys.split(" ")]) cmd = """ echo " set(prolog_style_variables). formulas(goals). %s end_of_list. formulas(assumptions). %s end_of_list. " | prover9 """ # > /dev/null 2>&1 cmd = cmd % (escape(steps[conclusion_key]), premises) #print cmd output = subprocess.check_output(cmd, shell=True)
StarcoderdataPython
1652335
from .sgd_optimization import * from .utils import * from .data_plotter import * """ pythonw -m ad_examples.common.test_sgd_optimization """ def generate_data(p=11, n=400): """ Generates non-linear multivariate data of dimension 'p'. The data is linear in parameters of the type: y = b0 + b1 * x + b2*x^2 + ... + bp * x^p Args: :param p: int dimensions :param n: int number of samples Returns: np.ndarray """ true_params = np.random.uniform(low=0.0, high=1.0, size=p+1) x = np.sort(np.random.uniform(low=-1.0, high=1.0, size=n)) X = np.zeros(shape=(n, p+1), dtype=float) X[:, 0] = 1. for i in range(p): X[:, i+1] = x ** (i+1) # logger.debug("X:\n%s" % str(list(X))) e = np.random.normal(loc=0.0, scale=0.2, size=n) y_true = X.dot(true_params) y = y_true + e # logger.debug("y:\n%s" % str(list(y))) return X, y, true_params, x, y_true, e def f(w, x, y): loss = np.mean(0.5 * ((x.dot(w) - y) ** 2)) return loss def g(w, x, y): grad = np.multiply(x, np.transpose([x.dot(w) - y])) mean_grad = np.mean(grad, axis=0) # logger.debug(mean_grad.shape) return mean_grad def get_loss_grad(): return f, g if __name__ == "__main__": logger = logging.getLogger(__name__) args = get_command_args(debug=True, debug_args=["--log_file=temp/sgd.log", "--debug"]) configure_logger(args) np.random.seed(42) X, y, w_true, x, y_true, e = generate_data(p=11, n=400) # logger.debug("True params:\n%s" % str(list(w_true))) # logger.debug("Num batches: %d" % get_num_batches(400, 25)) w0 = np.zeros(len(w_true), dtype=float) # w = sgd(w0, X, y, f, g, learning_rate=0.01, batch_size=25, max_epochs=1000) # w = sgdRMSPropNestorov(w0, X, y, f, g, learning_rate=0.01, alpha=0.9, ro=0.9, batch_size=25, max_epochs=1000) # w = sgdMomentum(w0, X, y, f, g, learning_rate=0.01, alpha=0.9, batch_size=25, max_epochs=1000) w = sgdRMSProp(w0, X, y, f, g, learning_rate=0.01, ro=0.9, batch_size=25, max_epochs=1000) # w = sgdAdam(w0, X, y, f, g, learning_rate=0.01, ro1=0.9, ro2=0.999, batch_size=25, max_epochs=1000) logger.debug("Inferred params:\n%s" % str(list(w))) y_pred = X.dot(w) pdfpath = "temp/sgd_test.pdf" dp = DataPlotter(pdfpath=pdfpath, rows=1, cols=1) pl = dp.get_next_plot() pl.plot(x, y_true, 'b-') pl.plot(x, y_pred, 'g-') pl.plot(x, y, 'r.') dp.close()
StarcoderdataPython