id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
1667201
#==================================================== # text_reply.py ## decide the response according to the input text # YIHAN LINE BOT # Created by <NAME> on May 21, 2021. # Copyright © 2021 <NAME>. All rights reserved. #==================================================== from linebot import ( LineBotApi, WebhookHandler ) from linebot.exceptions import ( InvalidSignatureError ) from linebot.models import * import json import requests import re import os, sys #---------------- custom module ---------------- import text_push as text_push import RSSfeed as RSSfeed import tools as tools import bot_functions as bot_functions import user_db_manipulate as user_db_manipulate from config import * #---------------- global variables ---------------- # key words for detecting what action is it action_key_word = [".*文章列表.*", ".*查看追蹤列表.*", ".*取消追蹤.*"] #--------------------------------------------------- def text_reply_message(user_message, userId): #---------------------- Info recording --------------------- ## website name = crawling: <title> ## site url = user_message ## article titles = web_info[nth article]['title'] ## published dates = web_info[nth article]['published'] ## articles' urls = web_info[nth article]['links'][0]['href'] ## image to show = crawling: <og:image> || <icon> #----------------------------------------------------------- return_message_array = [] repeat_tracker = False # get user's data(DB) with open("./json/userDB/"+userId+".json", "r") as data: userData = json.load(data) try: ### 加入追蹤 Add_new_tracker if requests.get( user_message ).status_code == 200: if len(userData["tracker_list"]) == 0: return_message_array = bot_functions.add_new_tracker( user_message, userId ) else: # detect if the URL has been already added to the tracker list for element in userData["tracker_list"]: if element["web_url"] == user_message: # remind the user that he/she has already track the URL return_message_array.append( TextSendMessage(text="這個網誌您已有追蹤囉!") ) ### show tracker_list (carousel) FlexMessage = bot_functions.show_tracker_list( userId ) return_message_array.append( FlexSendMessage( 'trackers', FlexMessage ) ) repeat_tracker = True break # if not find, then add new tracker if repeat_tracker == False: return_message_array = bot_functions.add_new_tracker( user_message, userId ) # if the user is in "tutorial status", then also reply the guiding text if (userData["status"] == "tutorial"): return_message_array.append( TextSendMessage(text="已成功將網誌加入追蹤!") ) return_message_array.append( TextSendMessage(text="請按上上則訊息中的「按我看文章列表」以查看最新文章") ) except requests.exceptions.RequestException as e: # typeof(URL) != URL ### 查看最新文章 Show_articles_card ================================= if( tools.analyze_text(user_message, action_key_word[0]) ): # split the "user_message" to get which website that user want to get ### split user_message str_array = user_message.split('#') web_name = str_array[0] # call function to get articles' cards return_message_array = bot_functions.show_articles_card( web_name, userId ) # if the user is in "tutorial status", then also reply the guiding text if (userData["status"] == "tutorial"): return_message_array.append( TextSendMessage(text="成功看到這個網誌的最新文章列表囉!") ) return_message_array.append( TextSendMessage(text="請按以下按鈕以查看追蹤清單", quick_reply=QuickReply(items=[ QuickReplyButton( action=MessageAction( label="查看追蹤列表", text="查看追蹤列表")) ])) ) ### 查看追蹤列表 Show_tracker_list ================================= elif( tools.analyze_text(user_message, action_key_word[1]) ): if len(userData["tracker_list"]) == 0: return_message_array.append( TextSendMessage(text="還沒有追蹤任何文章唷,現在就開始追蹤吧~") ) return_message_array.append( TextSendMessage(text="請以鍵盤輸入想追蹤的網誌URL:") ) else: ### show tracker_list (carousel) FlexMessage = bot_functions.show_tracker_list( userId ) return_message_array.append( FlexSendMessage( 'trackers', FlexMessage ) ) # if the user is in "tutorial status", then also reply the guiding text if (userData["status"] == "tutorial"): return_message_array.append( TextSendMessage(text="成功看到列表了!以上這些就是您目前已追蹤的網誌唷~") ) return_message_array.append( TextSendMessage(text="請按上則訊息中的「取消追蹤」以取消追蹤此網誌") ) ### 取消追蹤 Delete_tracker ================================= elif( tools.analyze_text(user_message, action_key_word[2]) ): ### split "web_name" string from user_message str_array = user_message.split('#') web_name = str_array[1] bot_functions.delete_tracker( userId, web_name ) # if the user is in "tutorial status", then also reply the guiding text if (userData["status"] == "tutorial"): user_db_manipulate.modify_db(userId, "status", "general") # Finish tutorial return_message_array.append( TextSendMessage(text="已成功刪除一個追蹤項目!") ) return_message_array.append( TextSendMessage(text="恭喜呀~您已完成試用!現在,試著加入自己想追蹤的網誌吧~") ) else: return_message_array.append( TextSendMessage(text="已成功刪除一個追蹤項目!", quick_reply=QuickReply(items=[ QuickReplyButton( action=MessageAction( label="查看追蹤列表", text="查看追蹤列表")), ])) ) ### 不認識的指令 Exception Handler else: return_message_array.append( TextSendMessage(text="咦這個指令沒看過耶🤔")) return_message_array.append( TextSendMessage(text="請點選以下指令、或直接輸入網址唷!", quick_reply=QuickReply(items=[ QuickReplyButton( action=MessageAction( label="查看追蹤列表", text="查看追蹤列表")), ])) ) return return_message_array # because the amount of reply sometimes > 1, so return the array type # ### Add_new_tracker # if( requests.get(user_message).status_code == 200 ): # # user send new URL # return_message_array = bot_functions.add_new_tracker( user_message ) # # if the user is in "tutorial status", then also reply the guiding text # if (userData["status"] == "tutorial"): # return_message_array.append( TextSendMessage(text="已成功將網誌加入追蹤!請按上則訊息中的「按我看文章列表」以查看最新文章 ") )
StarcoderdataPython
3313286
<filename>sphinx_js/nodes.py from docutils import nodes from docutils.nodes import Node class automodulestoctree(nodes.comment): pass def automodules_noop(self: nodes.NodeVisitor, node: Node) -> None: pass def automodules_toc_visit_html(self: nodes.NodeVisitor, node: automodulestoctree) -> None: """Hide automodules toctree list in HTML output.""" raise nodes.SkipNode
StarcoderdataPython
3215711
from floodsystem.stationdata import build_station_list as stations def test_1D(): #Task 1D (1) Produce a list of rivers with stations without reiteration and in alphabetical order (SZ) def rivers_with_station(stations): """takes station object list. returns a set of rivers which have stations.""" set_rivers = set() for i in stations: set_rivers.add(i.river) assert type(set_rivers) == type(set) return sorted(set_rivers) # Task 1D (2) (EE) def stations_by_river(stations): """takes list of station objects returns dictionary of format {river: list of stations on this river}""" stations_by_river_dictionary = {} # if station is in dictionary, add to to appropriate list, else create new key and item for object in stations: if object.river in stations_by_river_dictionary: stations_by_river_dictionary[object.river].append(object) else: stations_by_river_dictionary[object.river] = [object] assert type(stations_by_river_dictionary) == type(dict) return stations_by_river_dictionary
StarcoderdataPython
34970
<reponame>codernayeem/python-cheat-sheet # Functions print("************* Function ***********") # Simple function without any arguments/parameters def say_welocme(): return print('Welocme') # Simple function with arguments/parameters def say_helo(name, age): print('Helo', name, age) # this function returns None say_helo('Nayeem', 18) # passing args as positional args say_helo(age=19, name='Sami') # passing args as keyword args (if you mismatch the serial, use keywords) def check_odd_number(n): return True if n % 2 else False if check_odd_number(43): print(43, " is a odd number") print("********* Default parameter **********") # Simple function with a default arguments/parameters def say_somethings(name, message="Welcome"): print(message, name) # Type hint: print("********* Type hint **********") def greeting(name: str) -> str: # Type hints improve IDEs and linters. They make it much easier to statically reason about your code # The Python runtime does not enforce function and variable type annotations. They can be used by third party tools such as type checkers, IDEs, linters, etc # here we defined name should be str and a str will be returned return 'Hello ' + name greeting("Nayeem") # scope print("************ Scope *************") parent_name = "Anything" # this is a global variable def show_parent1(): print(parent_name) # this will print the global variable def show_parent2(): parent_name = "Lovely" # this will not change global variable. it will create a new local variable print(parent_name) # print local variable def show_parent3(): # we can use global variable in function # but cannot modify them directly # TO modify: # method 1: global parent_name parent_name = "Something" # this will change the global variable print(parent_name) # method 2: globals()['parent_name'] = "Something_Nothing" # this will change the global variable print(globals()['parent_name']) def show_parent4(parent_name): print(parent_name) # this parent_name is a local variable # to use the global variable here print(globals()['parent_name']) # this will print the global variable, not the local one # A variable can not be both : parameter and global # So you can not do that here: # global parent_name # print(parent_name) show_parent1() show_parent2() show_parent3() show_parent4("Long Lasting") l1 = [56, 87, 89, 45, 57] d1 = {'Karim': 50, 'Rafiq': 90, 'Sabbir': 60} # Lambda function print("************ Lambda function *************") # lambda function is just a one line simple anonymous function. # It's defination ==> lambda parameter_list: expression # lambda function is used when we need a function once and as a argument to another function print(min(d1.items(), key=lambda item: item[1])) # returns the smallest element # Python built-in functions/methods print("************ Some Built-in functions *************") print(len(l1)) # returns the length of that iterable print(sum(l1)) # return the sum of an iterable print(max(l1)) # returns the biggext element print(min(l1)) # returns the smallest element print(max(d1, key=lambda k: d1[k])) # returns the biggext element print(min(d1.items(), key=lambda item: item[1])) # returns the smallest element print(all([0, 1, 5])) # returns True if all the elements is True, otherwise False print(any([0, 1, 5])) # returns True if any of the elements is True, otherwise False print(repr('hi')) # call __repr__() for that object. Represent object print(id(l1)) # returns a unique integer number which represents identity print(type(56)) # returns the class type of that object print(dir(567)) # Returns a list of the specified object's properties and methods print(ord('A')) # 65 : Return the Unicode code point for a one-character string print(chr(65)) # 'A' : Return a Unicode string of one character with ordina print(abs(-62)) # 62 : Return a absolute value of a number eval('print("hi")') # Evaluates and executes an expression print(eval('(58*9)+3**2')) # Evaluates and executes an expression print("************ All Built-in functions *************") # abs() Returns the absolute value of a number # all() Returns True if all items in an iterable object are true # any() Returns True if any item in an iterable object is true # ascii() Returns a readable version of an object. Replaces none-ascii characters with escape character # bin() Returns the binary version of a number # bool() Returns the boolean value of the specified object # bytearray() Returns an array of bytes # bytes() Returns a bytes object # callable() Returns True if the specified object is callable, otherwise False # chr() Returns a character from the specified Unicode code. # classmethod() Converts a method into a class method # compile() Returns the specified source as an object, ready to be executed # complex() Returns a complex number # delattr() Deletes the specified attribute (property or method) from the specified object # dict() Returns a dictionary (Array) # dir() Returns a list of the specified object's properties and methods # divmod() Returns the quotient and the remainder when argument1 is divided by argument2 # enumerate() Takes a collection (e.g. a tuple) and returns it as an enumerate object # eval() Evaluates and executes an expression # exec() Executes the specified code (or object) # filter() Use a filter function to exclude items in an iterable object # float() Returns a floating point number # format() Formats a specified value # frozenset() Returns a frozenset object # getattr() Returns the value of the specified attribute (property or method) # globals() Returns the current global symbol table as a dictionary # hasattr() Returns True if the specified object has the specified attribute (property/method) # hash() Returns the hash value of a specified object # help() Executes the built-in help system # hex() Converts a number into a hexadecimal value # id() Returns the id of an object # input() Allowing user input # int() Returns an integer number # isinstance() Returns True if a specified object is an instance of a specified object # issubclass() Returns True if a specified class is a subclass of a specified object # iter() Returns an iterator object # len() Returns the length of an object # list() Returns a list # locals() Returns an updated dictionary of the current local symbol table # map() Returns the specified iterator with the specified function applied to each item # max() Returns the largest item in an iterable # memoryview() Returns a memory view object # min() Returns the smallest item in an iterable # next() Returns the next item in an iterable # object() Returns a new object # oct() Converts a number into an octal # open() Opens a file and returns a file object # ord() Convert an integer representing the Unicode of the specified character # pow() Returns the value of x to the power of y # print() Prints to the standard output device # property() Gets, sets, deletes a property # range() Returns a sequence of numbers, starting from 0 and increments by 1 (by default) # repr() Returns a readable version of an object # reversed() Returns a reversed iterator # round() Rounds a numbers # set() Returns a new set object # setattr() Sets an attribute (property/method) of an object # slice() Returns a slice object # sorted() Returns a sorted list # @staticmethod() Converts a method into a static method # str() Returns a string object # sum() Sums the items of an iterator # super() Returns an object that represents the parent class # tuple() Returns a tuple # type() Returns the type of an object # vars() Returns the __dict__ property of an object # zip() Returns an iterator, from two or more iterators # Decorators print('*********** Decorators ************') from functools import wraps def star(func): def inner(*args, **kwargs): print("*" * 30) func(*args, **kwargs) print("*" * 30) return inner @star def printer1(msg): print(msg) def percent(func): def inner(*args, **kwargs): print("%" * 30) func(*args, **kwargs) print("%" * 30) return inner @star @percent def printer2(msg): print(msg) printer1("Hello") printer2("Hello") # Function caching print('*********** Function caching ************') import time from functools import lru_cache @lru_cache(maxsize=32) def some_work(n): time.sleep(3) return n * 2 print('Running work') some_work(5) print('Calling again ..') some_work(9) # tihs time, this run immedietly print('finished') # Coroutines print('*********** Coroutines ************') import time def searcher(): time.sleep(3) book = "Tihs is ok" while True: text = (yield) # this means its a Coroutine function if text in book: print(f'"{text}" found') else: print(f'"{text}" not found') search = searcher() next(search) # this runs until that while loop search.send('ok') print('Going for next') search.send('okk') print('Going for next') search.send('is') print('Finished') search.close()
StarcoderdataPython
3393682
from slack_sms_gw.config import ( LoggingConfig, SlackConfig ) from slack_sms_gw.slack.client import SlackClient from requests import Response, PreparedRequest from requests.structures import CaseInsensitiveDict class SlackClientHelper: def __init__(self, log_config: LoggingConfig, config: SlackConfig): self.log_config = log_config self.config = config self.slack_client = SlackClient( log_config=self.log_config, config=self.config, ) @staticmethod def mock_send_ok(request: PreparedRequest) -> Response: resp = Response() resp.status_code = 200 resp.url = request.url headers = CaseInsensitiveDict() headers["content-type"] = "text/html" headers["content-encoding"] = "gzip" resp.encoding = headers["content-encoding"] resp.headers = headers resp._content = b"ok" return resp
StarcoderdataPython
3335221
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('genealogio', '0018_person_last_name_current'), ] operations = [ migrations.AlterField( model_name='timelineitem', name='families', field=models.ManyToManyField(help_text='Sind hier Familien ausgew\xe4hlt, so wird der Eintrag nur bei den ausgew\xe4hlten Familien angezeigt, sonst bei allen Familien', to='genealogio.Family', verbose_name='Familien', blank=True), preserve_default=True, ), ]
StarcoderdataPython
42988
<gh_stars>0 from datadog import initialize, api options = { 'api_key': 'api_key', 'app_key': 'app_key' } initialize(**options) start_time = 1419436850 end_time = 1419436870 api.Event.query(start=start_time, end=end_time, priority="normal", tags=["application:web"])
StarcoderdataPython
3212434
#!/usr/bin/env python # -*- coding: utf-8 -*- # ##-------- [PPC] Jobshop Scheduling --------- # * Author: <NAME> # * Date: Apr 30th, 2020 # * Description: # Using the event-driven scheuling method # to solve the JSS prob. Here is a sample # code with the style of OOP. Feel free to # modify it as you like. ##-------------------------------------------- # import os import numpy as np import pandas as pd from gantt_plot import Gantt #entity class Order: def __init__(self, ID, AT, DD, routing, PT): self.ID = ID self.AT = AT #AT: arrival time self.DD = DD #DD: due date self.PT = PT #PT: processing time self.routing = routing self.progress = 0 #resource in factory class Source: def __init__(self, order_info): self.order_info = order_info self.output = 0 def arrival_event(self, fac): raise NotImplementedError class Machine: def __init__(self, ID, DP_rule): self.ID = ID self.state = 'idle' self.buffer = [] self.wspace = [] #wspace: working space self.DP_rule = DP_rule def start_processing(self, fac): raise NotImplementedError def end_process_event(self, fac): raise NotImplementedError class Factory: def __init__(self, order_info, DP_rule): self.order_info = order_info self.DP_rule = DP_rule self.event_lst = pd.DataFrame(columns=["event_type", "time"]) #statistics self.throughput = 0 self.order_statistic = pd.DataFrame(columns = ["ID", "release_time", "complete_time", "due_date", "flow_time", "lateness", "tardiness"]) #[Plug in] tool of gantt plotting self.gantt_plot = Gantt() #build ur custom factory self.__build__() def __build__(self): raise NotImplementedError def initialize(self, order_info): raise NotImplementedError def next_event(self, stop_time): raise NotImplementedError def event(self, event_type): raise NotImplementedError def update_order_statistic(self, order): raise NotImplementedError # some parameters M = float('inf') LOG = True stop_time = 500 if __name__ == '__main__': #read the input data sheet data_dir = os.getcwd() + "/data/" order_info = pd.read_excel(data_dir + "order_information.xlsx") #data preprocessing order_info = order_info.sort_values(['arrival_time']).reset_index(drop=True) DP_rule = 'SPT' #'EDD' #build the factory fac = Factory(order_info, DP_rule) fac.build() #start the simulation fac.next_event(stop_time) #output result print(fac.order_statistic) fac.gantt_plot.draw_gantt()
StarcoderdataPython
65967
<reponame>kainstan/stealer import re from typing import Optional from django.http import HttpResponse from core.interface import Service from core.model import Result, ErrorResult from tools import http_utils from core import config from core.type import Video headers = { "user-agent": config.user_agent } info_headers = { "accept": "*/*", "accept-encoding": "gzip, deflate", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": config.user_agent } download_headers = { "accept": "*/*", "accept-encoding": "identity;q=1, *;q=0", "accept-language": "zh-CN,zh;q=0.9,ja;q=0.8,en;q=0.7,zh-TW;q=0.6,de;q=0.5,fr;q=0.4,ca;q=0.3,ga;q=0.2", "range": "bytes=0-", "sec-fetch-dest": "video", "sec-fetch-mode": "no-cors", "sec-fetch-site": "cross-sit", "user-agent": config.user_agent } vtype = Video.HUOSHAN class HuoshanService(Service): @classmethod def get_prefix_pattern(cls) -> str: return 'com/hotsoon/s\/' @classmethod def make_url(cls, index) -> str: return 'https://share.huoshan.com/hotsoon/s/' + index @classmethod def index(cls, url) -> Optional[str]: index = re.findall(r'(?<=s\/)\w+', url) try: return index[0] except IndexError: return None @classmethod def fetch(cls, url: str, mode=0) -> Result: url = cls.get_url(url) if url is None: return ErrorResult.URL_NOT_INCORRECT # 请求短链接,获得itemId res = http_utils.get(url, header=headers) if http_utils.is_error(res): return Result.error(res) try: item_id = re.findall(r"(?<=item_id=)\d+(?=\&)", res.url)[0] except IndexError: return Result.failed(res.reason) # 视频信息链接 infourl = "https://share.huoshan.com/api/item/info?item_id=" + item_id # 请求长链接,获取play_addr url_res = http_utils.get(infourl, header=info_headers) if http_utils.is_error(url_res): return Result.error(url_res) vhtml = str(url_res.text) try: video_id = re.findall(r'(?<=video_id\=)\w+(?=\&)', vhtml)[0] except IndexError: return Result.failed(url_res.reason) if not video_id: return ErrorResult.VIDEO_ADDRESS_NOT_FOUNT link = "https://api.huoshan.com/hotsoon/item/video/_source/?video_id=" + video_id + "&line=0&app_id=0&vquality=normal" result = Result.success(link) if mode != 0: result.ref = res.url return result @classmethod def download(cls, url) -> HttpResponse: return cls.proxy_download(vtype, url, download_headers) if __name__ == '__main__': HuoshanService.fetch('http://share.huoshan.com/hotsoon/s/eVDEDNYXu78')
StarcoderdataPython
181360
<reponame>ADrozdova/ASR import random import librosa as lr import torch from torch import Tensor from hw_asr.augmentations.base import AugmentationBase class PitchShift(AugmentationBase): def __init__(self, **kwargs): self.steps = kwargs.get("steps") self.sampling_rate = kwargs.get("sampling_rate", 16000) def __call__(self, data: Tensor): n_steps = float(random.randint(-self.steps, self.steps)) data = data.squeeze(0).numpy() return torch.from_numpy(lr.effects.pitch_shift(data, self.sampling_rate, n_steps=n_steps)).unsqueeze(0)
StarcoderdataPython
1694662
# Generated by Django 3.0 on 2020-03-16 19:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('administration', '0020_auto_20200316_1325'), ] operations = [ migrations.CreateModel( name='Variable', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('key', models.CharField(help_text='key of the key-value pair', max_length=255, unique=True, verbose_name='key')), ('value', models.TextField(help_text='value of the key-value pair', verbose_name='value')), ], options={ 'verbose_name': 'variable', 'verbose_name_plural': 'variables', }, ), ]
StarcoderdataPython
3364807
import tensorflow as tf import tensorflow.keras as K import tensorflow_probability as tfp class UNet(K.Model): def __init__(self, base_channels=64, fixed_size=False, in_channels=3, in_size=(512, 512), classes=21, aux=False, variational=False, activation='relu', **kwargs): super().__init__(**kwargs) assert (in_channels > 0) assert ((in_size[0] % 32 == 0) and (in_size[1] % 32 == 0)) self.base_channels = base_channels self.in_size = in_size self.classes = classes self.fixed_size = fixed_size self.in_conv = K.layers.Conv2D(base_channels, 3, activation=activation, padding='same', kernel_initializer='he_normal') self.conv1 = [K.layers.Conv2D(base_channels, 3, activation=activation, padding='same', kernel_initializer='he_normal') for _ in range(3)] self.conv2 = [K.layers.Conv2D(base_channels * 2, 3, activation=activation, padding='same', kernel_initializer='he_normal') for _ in range(4)] self.conv3 = [K.layers.Conv2D(base_channels * 4, 3, activation=activation, padding='same', kernel_initializer='he_normal') for _ in range(4)] self.conv4 = [K.layers.Conv2D(base_channels * 8, 3, activation=activation, padding='same', kernel_initializer='he_normal') for _ in range(4)] if not variational: self.conv5 = [K.layers.Conv2D(base_channels * 16, 3, activation=activation, padding='same', kernel_initializer='he_normal') for _ in range(2)] else: self.conv5 = [tfp.layers.Convolution2DReparameterization(base_channels * 16, 3, activation=activation, padding='same'), K.layers.Conv2D(base_channels * 16, 3, activation=activation, padding='same', kernel_initializer='he_normal') ] self.dropout1 = K.layers.Dropout(0.1) self.dropout2 = K.layers.Dropout(0.2) self.dropout3 = K.layers.Dropout(0.3) self.pool = K.layers.MaxPool2D(pool_size=(2, 2)) self.bn = [] for _ in range(18): self.bn.append(K.layers.BatchNormalization()) self.up6 = K.layers.Conv2DTranspose(base_channels * 8, (3, 3), strides=(2, 2), padding="same") self.up7 = K.layers.Conv2DTranspose(base_channels * 4, (3, 3), strides=(2, 2), padding="same") self.up8 = K.layers.Conv2DTranspose(base_channels * 2, (3, 3), strides=(2, 2), padding="same") self.up9 = K.layers.Conv2DTranspose(base_channels, (3, 3), strides=(2, 2), padding="same") self.conv10 = K.layers.Conv2D(classes, 1, strides=1, padding="same") def call(self, inputs, training=None, mask=None): c1 = self.in_conv(inputs) c1 = self.bn[0](c1, training=training) c1 = self.dropout1(c1) c1 = self.conv1[0](c1) c1 = self.bn[1](c1, training=training) p1 = self.pool(c1) c2 = self.conv2[0](p1) c2 = self.bn[2](c2, training=training) c2 = self.dropout1(c2) c2 = self.conv2[1](c2) c2 = self.bn[3](c2, training=training) p2 = self.pool(c2) c3 = self.conv3[0](p2) c3 = self.bn[4](c3, training=training) c3 = self.dropout2(c3) c3 = self.conv3[1](c3) c3 = self.bn[5](c3, training=training) p3 = self.pool(c3) c4 = self.conv4[0](p3) c4 = self.bn[6](c4, training=training) c4 = self.dropout2(c4) c4 = self.conv4[1](c4) c4 = self.bn[7](c4, training=training) p4 = self.pool(c4) c5 = self.conv5[0](p4) c5 = self.bn[8](c5, training=training) c5 = self.dropout3(c5) c5 = self.conv5[1](c5) c5 = self.bn[9](c5, training=training) u6 = self.up6(c5) u6 = K.layers.concatenate([u6, c4]) c6 = self.conv4[2](u6) c6 = self.bn[10](c6, training=training) c6 = self.dropout2(c6) c6 = self.conv4[3](c6) c6 = self.bn[11](c6, training=training) u7 = self.up7(c6) u7 = K.layers.concatenate([u7, c3]) c7 = self.conv3[2](u7) c7 = self.bn[12](c7, training=training) c7 = self.dropout2(c7) c7 = self.conv3[3](c7) c7 = self.bn[13](c7, training=training) u8 = self.up8(c7) u8 = K.layers.concatenate([u8, c2]) c8 = self.conv2[2](u8) c8 = self.bn[14](c8, training=training) c8 = self.dropout1(c8) c8 = self.conv2[3](c8) c8 = self.bn[15](c8, training=training) u9 = self.up9(c8) u9 = K.layers.concatenate([u9, c1]) c9 = self.conv1[1](u9) c9 = self.bn[16](c9, training=training) c9 = self.dropout1(c9) c9 = self.conv1[2](c9) c9 = self.bn[17](c9, training=training) final = self.conv10(c9) return final class VUNet(K.Model): def __init__(self, base_channels=32, fixed_size=False, in_channels=3, in_size=(512, 512), classes=21, aux=False, activation='relu', **kwargs): super().__init__(**kwargs) assert (in_channels > 0) assert ((in_size[0] % 32 == 0) and (in_size[1] % 32 == 0)) self.base_channels = base_channels self.in_size = in_size self.classes = classes self.fixed_size = fixed_size self.in_conv = tfp.layers.Convolution2DReparameterization(base_channels, 3, activation=activation, padding='same') self.conv1 = [tfp.layers.Convolution2DReparameterization(base_channels, 3, activation=activation, padding='same') for _ in range(3)] self.conv2 = [tfp.layers.Convolution2DReparameterization(base_channels * 2, 3, activation=activation, padding='same') for _ in range(4)] self.conv3 = [tfp.layers.Convolution2DReparameterization(base_channels * 4, 3, activation=activation, padding='same') for _ in range(4)] self.conv4 = [tfp.layers.Convolution2DReparameterization(base_channels * 8, 3, activation=activation, padding='same') for _ in range(4)] self.conv5 = [tfp.layers.Convolution2DReparameterization(base_channels * 16, 3, activation=activation, padding='same') for _ in range(2)] self.dropout1 = K.layers.Dropout(0.1) self.dropout2 = K.layers.Dropout(0.2) self.dropout3 = K.layers.Dropout(0.3) self.pool = K.layers.MaxPool2D(pool_size=(2, 2)) self.bn = [] for _ in range(18): self.bn.append(K.layers.BatchNormalization()) self.up6 = K.layers.Conv2DTranspose(base_channels * 8, (3, 3), strides=(2, 2), padding="same") self.up7 = K.layers.Conv2DTranspose(base_channels * 4, (3, 3), strides=(2, 2), padding="same") self.up8 = K.layers.Conv2DTranspose(base_channels * 2, (3, 3), strides=(2, 2), padding="same") self.up9 = K.layers.Conv2DTranspose(base_channels, (3, 3), strides=(2, 2), padding="same") self.conv10 = tfp.layers.Convolution2DReparameterization(classes, 1, strides=1, padding="same") def call(self, inputs, training=None, mask=None): c1 = self.in_conv(inputs) c1 = self.bn[0](c1, training=training) c1 = self.dropout1(c1) c1 = self.conv1[0](c1) c1 = self.bn[1](c1, training=training) p1 = self.pool(c1) c2 = self.conv2[0](p1) c2 = self.bn[2](c2, training=training) c2 = self.dropout1(c2) c2 = self.conv2[1](c2) c2 = self.bn[3](c2, training=training) p2 = self.pool(c2) c3 = self.conv3[0](p2) c3 = self.bn[4](c3, training=training) c3 = self.dropout2(c3) c3 = self.conv3[1](c3) c3 = self.bn[5](c3, training=training) p3 = self.pool(c3) c4 = self.conv4[0](p3) c4 = self.bn[6](c4, training=training) c4 = self.dropout2(c4) c4 = self.conv4[1](c4) c4 = self.bn[7](c4, training=training) p4 = self.pool(c4) c5 = self.conv5[0](p4) c5 = self.bn[8](c5, training=training) c5 = self.dropout3(c5) c5 = self.conv5[1](c5) c5 = self.bn[9](c5, training=training) u6 = self.up6(c5) u6 = K.layers.concatenate([u6, c4]) c6 = self.conv4[2](u6) c6 = self.bn[10](c6, training=training) c6 = self.dropout2(c6) c6 = self.conv4[3](c6) c6 = self.bn[11](c6, training=training) u7 = self.up7(c6) u7 = K.layers.concatenate([u7, c3]) c7 = self.conv3[2](u7) c7 = self.bn[12](c7, training=training) c7 = self.dropout2(c7) c7 = self.conv3[3](c7) c7 = self.bn[13](c7, training=training) u8 = self.up8(c7) u8 = K.layers.concatenate([u8, c2]) c8 = self.conv2[2](u8) c8 = self.bn[14](c8, training=training) c8 = self.dropout1(c8) c8 = self.conv2[3](c8) c8 = self.bn[15](c8, training=training) u9 = self.up9(c8) u9 = K.layers.concatenate([u9, c1]) c9 = self.conv1[1](u9) c9 = self.bn[16](c9, training=training) c9 = self.dropout1(c9) c9 = self.conv1[2](c9) c9 = self.bn[17](c9, training=training) final = self.conv10(c9) return final if __name__ == "__main__": x = tf.random.uniform((1, 512, 512, 3)) unet = UNet(32) unet.build(input_shape=(None, None, None, 3)) print(unet.summary()) print(unet(x).shape)
StarcoderdataPython
15901
from os.path import abspath, join, dirname from colibris.conf import settings STATIC_PATH = abspath(join(dirname(__file__), 'swagger')) UI_URL = settings.API_DOCS_URL STATIC_URL = '{}/static'.format(UI_URL) APISPEC_URL = '{}/apispec'.format(UI_URL)
StarcoderdataPython
3329915
<reponame>S73ph4n/octavvs<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> Atmospheric and scattering correction """ import gc import os.path from time import monotonic import numpy as np import sklearn.linear_model import sklearn.cluster #import statsmodels.multivariate.pca from scipy.interpolate import PchipInterpolator from scipy.signal import hilbert, savgol_filter, tukey from scipy.io import loadmat, savemat import matplotlib.pyplot as plt from . import baseline def load_reference(wn, what=None, matfilename=None): """ Loads and normalizes a spectrum from a Matlab file, interpolating at the given points. The reference is assumed to cover the entire range of wavenumbers. Parameters: wn: array of wavenumbers at which to get the spectrum what: A string defining what type of reference to get, corresponding to a file in the 'reference' directory matfilename: the name of an arbitrary Matlab file to load data from; the data must be in a matrix called AB, with wavenumbers in the first column. Returns: spectrum at the points given by wn """ if (what is None) == (matfilename is None): raise ValueError("Either 'what' or 'matfilename' must be specified") if what is not None: matfilename = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__), 'reference', what + '.mat')) ref = loadmat(matfilename)['AB'] # Handle the case of high-to-low since the interpolator requires low-to-high d = 1 if ref[0,0] < ref[-1,0] else -1 ref = PchipInterpolator(ref[::d,0], ref[::d,1])(wn) return ref #/ ref.max() def nonnegative(y, fracspectra=.02, fracvalues=.02): """ Make a matrix of spectral data nonnegative by shifting all the spectra up by the same computed amount, followed by setting negative values to 0. The shift is chosen such that at most fracspectra of the spectra get more than fracvalues of their intensities set to zero. Parameters: y: array of intensities for (pixel, wavenumber) fracspectra: unheeded fraction of the spectra fracvalues: maximal fraction of points to clip at 0 Returns: shifted spectra in the same format as y """ s = int(fracspectra * y.shape[0]) v = int(fracvalues * y.shape[1]) if s == 0 or v == 0: return y - np.min(y.min(), 0) if s >= y.shape[0] or v >= y.shape[1]: return np.maximum(y, 0) yp = np.partition(y, v, axis=1)[:,v] a = np.partition(yp, s)[s] return np.maximum(y - a if a < 0 else y, 0) def find_wn_ranges(wn, ranges): """ Find indexes corresponding to the beginning and end of a list of ranges of wavenumbers. The wavenumbers have to be sorted in either direction. Parameters: wn: array of wavenumbers ranges: numpy array of shape (n, 2) with desired wavenumber ranges in order [low,high] Returns: numpy array of shape (n, 2) with indexes of the wavenumbers delimiting those ranges """ if isinstance(ranges, list): ranges = np.array(ranges) if(wn[0] < wn[-1]): return np.stack((np.searchsorted(wn, ranges[:,0]), np.searchsorted(wn, ranges[:,1], 'right')), 1) return len(wn) - np.stack((np.searchsorted(wn[::-1], ranges[:,1], 'right'), np.searchsorted(wn[::-1], ranges[:,0])), 1) def cut_wn(wn, y, ranges): """ Cut a set of spectra, leaving only the given wavenumber range(s). Parameters: wn: array of wavenumbers, sorted in either direction y: array of spectra, shape (..., wavenumber) ranges: list or numpy array of shape (..., 2) with desired wavenumber ranges in pairs (low, high) Returns: (wavenumbers, spectra) with data in the given wavenumber ranges """ if isinstance(ranges, list): ranges = np.array(ranges) inrange = lambda w: ((w >= ranges[...,0]) & (w <= ranges[...,1])).any() ix = np.array([inrange(w) for w in wn]) return wn[ix], y[...,ix] def atmospheric(wn, y, atm=None, cut_co2 = True, extra_iters=5, extra_factor=0.25, smooth_win=9, progressCallback = None): """ Apply atmospheric correction to multiple spectra, subtracting as much of the atompsheric spectrum as needed to minimize the sum of squares of differences between consecutive points in the corrected spectra. Each supplied range of wavenumbers is corrected separately. Parameters: wn: array of wavenumbers, sorted in either direction y: array of spectra in the order (pixel, wavenumber), or just one spectrum atm: atmospheric spectrum; if None, load the default cut_co2: replace the CO2 region with a neatly fitted spline extra_iters: number of iterations of subtraction of a locally reshaped atmospheric spectrum (needed if the relative peak intensities are not always as in the atmospheric reference) extra_factor: how much of the reshaped atmospheric spectrum to remove per iteration smooth_win: window size (in cm-1) for smoothing of the spectrum in the atm regions progressCallback(int a, int b): callback function called to indicated that the processing is complete to a fraction a/b. Returns: tuple of (spectra after correction, array of correction factors; shape (spectra,ranges)) """ squeeze = False yorig = y if y.ndim == 1: y = y[None,:] squeeze = True else: y = y.copy() if atm is None or (isinstance(atm, str) and atm == ''): atm = load_reference(wn, what='water') elif isinstance(atm, str): atm = load_reference(wn, matfilename=atm) else: atm = atm.copy() # ranges: numpy array (n, 2) of n non-overlapping wavenumber ranges (typically for H2O only), or None # extra_winwidth: width of the window (in cm-1) used to locally reshape the atm spectrum ranges = [[1300, 2100], [3410, 3850], [2190, 2480]] extra_winwidth = [30, 150, 40] corr_ranges = 2 if cut_co2 else 3 # ranges = ranges[:2] # extra_winwidth = extra_winwidth[:2] if ranges is None: ranges = np.array([0, len(wn)]) else: ranges = find_wn_ranges(wn, ranges) for i in range(corr_ranges): p, q = ranges[i] if q - p < 2: continue atm[p:q] -= baseline.straight(wn[p:q], atm[p:q]); savgolwin = 1 + 2 * int(smooth_win * (len(wn) - 1) / np.abs(wn[0] - wn[-1])) if progressCallback: progressA = 0 progressB = 1 + corr_ranges * (extra_iters + (1 if savgolwin > 1 else 0)) progressCallback(progressA, progressB) dh = atm[:-1] - atm[1:] dy = y[:,:-1] - y[:,1:] dh2 = np.cumsum(dh * dh) dhdy = np.cumsum(dy * dh, 1) az = np.zeros((len(y), corr_ranges)) for i in range(corr_ranges): p, q = ranges[i] if q - p < 2: continue r = q-2 if q <= len(wn) else q-1 az[:, i] = ((dhdy[:,r] - dhdy[:,p-1]) / (dh2[r] - dh2[p-1])) if p > 0 else (dhdy[:,r] / dh2[r]) y[:, p:q] -= az[:, i, None] @ atm[None, p:q] if progressCallback: progressA += 1 progressCallback(progressA, progressB) for pss in range(extra_iters): for i in range(corr_ranges): p, q = ranges[i] if q - p < 2: continue window = 2 * int(extra_winwidth[i] * (len(wn) - 1) / np.abs(wn[0] - wn[-1])) winh = (window+1)//2 dy = y[:,:-1] - y[:,1:] dhdy = np.cumsum(dy * dh, 1) aa = np.zeros_like(y) aa[:,1:winh+1] = dhdy[:,1:window:2] / np.maximum(dh2[1:window:2], 1e-8) aa[:,1+winh:-winh-1] = (dhdy[:,window:-1] - dhdy[:,:-1-window]) / np.maximum(dh2[window:-1] - dh2[:-1-window], 1e-8) aa[:,-winh-1:-1] = (dhdy[:,-1:] - dhdy[:,-1-window:-1:2]) / np.maximum(dh2[-1] - dh2[-1-window:-1:2], 1e-8) aa[:, 0] = aa[:, 1] aa[:, -1] = aa[:, -2] aa = savgol_filter(aa, window + 1, 3, axis=1) y[:, p:q] -= extra_factor * aa[:, p:q] * atm[p:q] if progressCallback: progressA += 1 progressCallback(progressA, progressB) if savgolwin > 1: for i in range(corr_ranges): p, q = ranges[i] if q - p < savgolwin: continue y[:, p:q] = savgol_filter(y[:, p:q], savgolwin, 3, axis=1) if progressCallback: progressA += 1 progressCallback(progressA, progressB) if cut_co2: rng = np.array([[2190, 2260], [2410, 2480]]) rngm = rng.mean(1) rngd = rngm[1] - rngm[0] cr = find_wn_ranges(wn, rng).flatten() if cr[1] - cr[0] > 2 and cr[3] - cr[2] > 2: a = np.empty((4, len(y))) a[0:2,:] = np.polyfit((wn[cr[0]:cr[1]]-rngm[0])/rngd, y[:,cr[0]:cr[1]].T, deg=1) a[2:4,:] = np.polyfit((wn[cr[2]:cr[3]]-rngm[1])/rngd, y[:,cr[2]:cr[3]].T, deg=1) P,Q = find_wn_ranges(wn, rngm[None,:])[0] t = np.interp(wn[P:Q], wn[[Q,P] if wn[0] > wn[-1] else [P,Q]], [1, 0]) tt = np.array([-t**3+t**2, -2*t**3+3*t**2, -t**3+2*t**2-t, 2*t**3-3*t**2+1]) pt = a.T @ tt y[:, P:Q] += (pt - y[:, P:Q]) * tukey(len(t), .3) corrs = np.zeros(2) ncorrs = np.zeros_like(corrs) for i in range(len(ranges)): p, q = ranges[i] if q - p < 2: continue corr = np.abs(yorig[:, p:q] - y[:, p:q]).sum(1) / np.maximum(np.abs(yorig[:, p:q]), np.abs(y[:, p:q])).sum(1) gas = int(i > 1) corrs[gas] += corr.mean() ncorrs[gas] += 1 if ncorrs[0] > 1: corrs[0] = corrs[0] / ncorrs[0] return (y.squeeze() if squeeze else y), corrs def kkre(wn, ref): wn2 = wn ** 2. wa = wn * ref kk = np.empty_like(wn) for i in range(len(wn)): with np.errstate(divide='ignore', invalid='ignore'): fg = wa / (wn2 - wn[i] ** 2.) if i == 0 or i == len(wn) - 1: fg[i] = 0 else: fg[i] = (fg[i-1] + fg[i+1]) / 2 kk[i] = 2/np.pi * np.trapz(x=wn, y=fg) if wn[0] < wn[-1]: return kk return -kk def hilbert_n(wn, ref, zeropad=500): """ Compute the Kramers-Kronig relations by Hilbert transform, extending the absorption spectrum with 0 to either size and resampling the spectrum at evenly spaced intervals if it is found to be unevenly sampled. """ # Cache some data structures to avoid having to reinitialize them on every call. if not hasattr(hilbert_n, "wn") or hilbert_n.wn is not wn or hilbert_n.zp != zeropad: hilbert_n.wn = wn even = (wn[-1] - wn[0]) / (len(wn) - 1) diff = np.abs((np.diff(wn) - even) / even).mean() hilbert_n.zp = zeropad hilbert_n.evenspaced = diff < 1e-3 hilbert_n.increasing = wn[0] < wn[-1] # print('hilbert',hilbert_n.evenspaced,hilbert_n.increasing) if not hilbert_n.evenspaced: hilbert_n.lin = np.linspace(min(wn[0], wn[-1]), max(wn[0], wn[-1]), len(wn)) hilbert_n.npad = int(len(wn) / abs(wn[-1] - wn[0]) * zeropad) hilbert_n.nim = np.zeros((len(wn) + 2 * hilbert_n.npad)) if hilbert_n.evenspaced: if hilbert_n.npad == 0: if hilbert_n.increasing: hilbert_n.nim = ref else: hilbert_n.nim = ref[::-1] elif hilbert_n.increasing: hilbert_n.nim[hilbert_n.npad:hilbert_n.npad+len(wn)] = ref else: hilbert_n.nim[hilbert_n.npad:hilbert_n.npad+len(wn)] = ref[::-1] else: if hilbert_n.increasing: hilbert_n.nim[hilbert_n.npad:hilbert_n.npad+len(wn)] = PchipInterpolator(wn, ref)(hilbert_n.lin) else: hilbert_n.nim[hilbert_n.npad:hilbert_n.npad+len(wn)] = PchipInterpolator(wn[::-1], ref[::-1])(hilbert_n.lin) nreal = -np.imag(hilbert(hilbert_n.nim)) if hilbert_n.npad: nreal = nreal[hilbert_n.npad:-hilbert_n.npad] if hilbert_n.evenspaced: return nreal if hilbert_n.increasing else nreal[::-1] return PchipInterpolator(hilbert_n.lin, nreal)(wn) def pca_nipals(x, ncomp, tol=1e-5, max_iter=1000, copy=True, explainedvariance=None): """ NIPALS algorithm for PCA, based on the code in statmodels.multivariate but with optimizations as in Bassan's Matlab implementation to sacrifice some accuracy for speed. x: ndarray of data, will be altered ncomp: number of PCA components to return tol: tolerance copy: If false, destroy the input matrix x explainedvariance: If >0, stop after this fraction of the total variance is explained returns: PCA loadings as rows """ if copy: x = x.copy() if explainedvariance is not None and explainedvariance > 0: varlim = (x * x).sum() * (1. - explainedvariance) else: varlim = 0 npts, nvar = x.shape vecs = np.empty((ncomp, nvar)) for i in range(ncomp): factor = np.ones(npts) for j in range(max_iter): vec = x.T @ factor #/ (factor @ factor) vec = vec / np.sqrt(vec @ vec) f_old = factor factor = x @ vec #/ (vec @ vec) f_old = factor - f_old if tol > np.sqrt(f_old @ f_old) / np.sqrt(factor @ factor): break vecs[i, :] = vec if i < ncomp - 1: x -= factor[:,None] @ vec[None,:] if varlim > 0 and (x * x).sum() < varlim: return vecs[:i+1, :] return vecs def compute_model(wn, ref, n_components, a, d, bvals, konevskikh=True, linearcomponent=False, variancelimit = None): """ Support function for rmiesc_miccs. Compute the extinction matrix for Bassan's algorithm, then PCA transform it. Parameters: wn: array of wavenumbers ref: reference spectrum n_components: number of PCA components to use a: array of values for the parameter a (index of refraction) d: array of values for the parameter d*4pi (sphere size) bvals: number of values for parameter b (mixing of a and real part of n from absorption ref) konevskikh: if True, use the faster method by Konevskikh et al. variancelimit: if a number (around 0.9996), use as many PCA components as needed to explain this fraction of the variance of the extinction matrix """ # Compute the scaled real part of the refractive index by Kramers-Kronig transform: # We skip a factor 2pi because it's normalized away anyway. # n_im = ref / wn # nkk = -np.imag(hilbert(n_im)) if wn[0] < wn[-1] else -np.imag(hilbert(n_im[::-1]))[::-1] # I'm a bit confused about the division/multiplication by wn. # Bassan's matlab code uses wn*ref in kkre # bassan2010 says k (=n_im) is proportional to ref # but various sources say k is ref/wn * const # My kkre reproduces's Bassan with the same wn*ref # My hilbert_n gives the same output with Hilbert transform of ref # Causin's python code Hilbert transforms ref for Bassan's algorith but ref/wn for Konevskikh's! # Solheim's matlab code Hilbert transforms ref/wn if konevskikh: # nim = ref / ref.max() / (wn * 100) nim = ref / (wn * 100) nre = hilbert_n(wn, nim, 300) nmin = nre.min() # print('refmax', ref.max(), 'nrange', nmin, nre.max()) if nmin < -1: nre = nre / -nmin nim = nim / -nmin # My revised distribution of alpha_0 and gamma alpha_0 = 1e-2 * np.linspace(d[0] * (a[0]-1), d[-1] * (a[-1]-1), len(a)) gamma = .25 * 2 * np.log(10) / np.pi * np.linspace(1 / alpha_0[0], 1 / alpha_0[-1], len(alpha_0)) # Solheim's distributions of alpha_0 and gamma # alpha_0 = 1e-2 * d * (a - 1) # gamma = .25 * 2 * np.log(10) / np.pi / alpha_0 Q = np.empty((len(alpha_0) * len(gamma), len(wn))) # Initialize the extinction matrix # print('alpha_0', alpha_0) # print('gamma', gamma) # Build the extinction matrix n_row = 0 for a0 in alpha_0: for g in gamma: rho = a0 * (1. + g * nre) * wn * 100 denom = 1. / g + nre tanbeta = nim / denom beta = np.arctan2(nim, denom) cosb = np.cos(beta) cosbrho = cosb / rho # Following Konevskikh et al 2016 Q[n_row] = 2. - 4. * cosbrho * (np.exp(-rho * tanbeta) * (np.sin(rho - beta) + cosbrho * np.cos(rho - 2 * beta)) - cosbrho * np.cos(2 * beta)) n_row += 1 # savemat('everything-p.mat', locals()) else: nkk = kkre(wn, ref/wn) # should divide by wn here (or not multiply by wn in the function) # nkk = hilbert_n(wn, ref / wn, 300) # should divide by wn nkk = nkk / abs(nkk.min()) # Build the extinction matrix Q = np.empty((len(a) * bvals * len(d), len(wn))) # Initialize the extinction matrix n_row = 0 for i in range(len(a)): b = np.linspace(0.0, a[i] - 1.01, bvals) # Range of amplification factors of nkk for j in range(len(b)): n = a[i] + b[j] * nkk # Compute the real refractive index for k in range(len(d)): rho = d[k] * (n - 1.) * wn # Compute the extinction coefficients for each combination of a, b and d: Q[n_row] = 2. - 4. / rho * np.sin(rho) + \ 4. / (rho * rho) * (1. - np.cos(rho)) n_row += 1 n_nonpca = 3 if linearcomponent else 2 # Orthogonalization of the model to improve numeric stability refn = ref / np.sqrt(ref@ref) Q = Q - (Q @ refn)[:,None] @ refn[None,:] # Perform PCA of the extinction matrix pca = pca_nipals(Q, ncomp=n_components, tol=1e-5, copy=False, explainedvariance=variancelimit) model = np.empty((n_nonpca + pca.shape[0], pca.shape[1])) model[n_nonpca:, :] = pca # # This method is up to 50% slower but gives additional info # pca = statsmodels.multivariate.pca.PCA(Q, ncomp=n_components, # method='nipals', tol=1e-5, demean=False, standardize=False) # esum = pca.eigenvals.cumsum() # n_components = np.min((np.searchsorted(esum, esum[-1] * variancelimit) + 1, len(esum))) # model = np.zeros((n_nonpca + n_components, len(wn))) # model[n_nonpca:, :] = pca.loadings[:,:n_components].T model[0,:] = ref model[1,:] = 1 if linearcomponent: model[2,:] = np.linspace(0., 1., len(wn)) if linearcomponent: model[2,:] = np.linspace(0., 1., len(wn)) # for i in range(2, n_nonpca): # w = model[i, :] - np.sum(np.dot(model[i, :], b) * b for b in model[0:i, :]) # model[i,:] = w / np.sqrt(w @ w) # savemat('everything_after-p.mat', locals()) # killmenow # Orthogonalization of the model to improve numeric stability (doing it after PCA is only # marginally slower) # for i in range(len(model)): # v = model[i, :] # w = v - np.sum(np.dot(v, b) * b for b in model[0:i, :]) # model[i,:] = w / np.linalg.norm(w) return model def stable_rmiesc_clusters(iters, clusters): """ Make a cluster size scheme for reliable convergence in rmiesc_miccs. Parameters: iters: The number of basic iterations to be used, preferably at least about 12-20 Returns: array of cluster sizes (or zeros) for each iteration; this will be bigger than the input iterations """ iters = max(2, iters) * 2 cc = np.zeros(iters, dtype=np.int) cc[:iters//3] = 1 cc[iters//2:iters*3//4] = clusters return cc def rmiesc(wn, app, ref, n_components=7, iterations=10, clusters=None, pcavariancelimit=None, verbose=False, a=np.linspace(1.1, 1.5, 10), d=np.linspace(2.0, 8.0, 10), bvals=10, plot=False, progressCallback = None, progressPlotCallback=None, konevskikh=False, linearcomponent=True, weighted=False, renormalize=False, autoiterations=False, targetrelresiduals=0.95): """ Correct scattered spectra using Bassan's algorithm. This implementation does no orthogonalization of the extinction matrix or PCA components relative to the reference, nor is the reference smoothed or filtered through a sum of gaussians as in the original Matlab implementation. Parameters: wn: sorted array of wavenumbers (high-to-low or low-to-high) app: apparent spectrum, shape (pixels, wavenumbers) ref: reference spectrum; array (wavenumbers) n_components: number of principal components to be calculated for the extinction matrix iterations: number of iterations of the algorithm clusters: if not None, cluster pixels into this many clusters in each iteration and use a common reference spectrum for each cluster. May be given as a list with one value per iteration, in which case 0 means to reuse clusters from the previous iteration and mix new/old references for stable convergence. If clusters is negative, use stable_rmiesc_clusters to generate the list. verbose: print progress information a: indexes of refraction to use in model d: sphere sizes to use in model, in micrometers bvals: number of values for the model parameter b plot: produce plots of the cluster references, if in cluster mode progressCallback(int a, int b): callback function called to indicated that the processing is complete to a fraction a/b. konevskikh: if True, use the faster method by Konevskikh et al. linearcomponent: if True, include a linear term in the model (used in Bassan's paper only). weighted: if true, downweight the 1800-2800 region when fitting the model. renormalize: if True, renormalize spectra against reference in each generation. autoiterations; if True, iterate until residuals stop improving targetrelresiduals: if autoiterations, stop when this relative change in residuals is seen Return: corrected apparent spectra (the best encountered if autoiterations, else the final ones) """ # Make a rescaled copy of d and include the factor 4*pi d = d * 4e-4 * np.pi; # The input can be a single spectrum or a matrix of spectra. If the former, squeeze at the end. squeeze = False if app.ndim == 1: app = app[None,:] squeeze = True if weighted: weights = np.ones_like(wn) weights[range(*find_wn_ranges(wn, [[1800, 2800]])[0])] = .001 ** .5 weights = weights[:, None] else: weights = None if plot: plt.figure() color=plt.cm.jet(np.linspace(0, 1, iterations)) plt.plot(wn, app.mean(0), 'k', linewidth=.5) if np.isscalar(clusters): if clusters == 0: clusters = None elif clusters < 0: clusters = stable_rmiesc_clusters(iterations, -clusters) iterations = len(clusters) else: clusters = np.repeat(clusters, iterations) elif clusters is not None: if len(clusters) != iterations: raise ValueError('len(clusters) must match iterations') clusters = clusters.copy() if progressCallback: # Compute the number of progress steps progressA = 0 if clusters is None: progressB = 1 + (iterations > 1) * len(app) else: progressB = 0 prev = 1 for cl in clusters: if cl > 0: prev = cl progressB += prev startt = monotonic() corrected = None # Just to get rid of warnings in the editor; will be set on iteration 0 # Set parameters for automatic iteration control if renormalize: autoupadd = 3 # Residual going up counts as residual going down too little this many times automax = 3 # Stop when residual has gone down too little this many times else: autoupadd = 1 automax = 5 if clusters is not None: # Cluster mode: In each iteration, after correcting all the spectra, cluster them. Then take the # mean of the corrected spectra in each cluster as the new reference for that cluster in the next # iteration. ref = ref.copy()[None, :] # One reference per cluster ref = ref / (np.abs(ref).mean() / np.abs(app).mean()) labels = np.zeros(len(app)) # Cluster labels; initially all in cluster 0 # clusters[-1] = 0 progstep = 1 # Current progress bar step size for iteration in range(iterations): gc.collect() # Because my old laptop was unhappy with RAM usage otherwise curc = clusters[iteration] # Current cluster size setting if curc > 0: progstep = curc # Skip this iteration if every spectrum has stopped improving and the cluster settings # are unchanged if autoiterations: if not iteration or curc != clusters[iteration-1]: unimproved = np.zeros(len(app), dtype=int) elif (unimproved <= automax).sum() == 0: progressA += progstep if progressCallback: progressCallback(progressA, progressB) # print('progX',progressA,progressB) continue # Possibly recluster the spectra and compute reference spectra if iteration == 0: pass elif curc > 0: if autoiterations: notdone = unimproved <= automax nds = notdone.sum() curc = min(curc, int(nds)) labels = np.zeros(len(app)) - 1 if curc == nds: labels[notdone] = range(0, nds) elif curc > 1: kmeans = sklearn.cluster.MiniBatchKMeans(curc) labels[notdone] = kmeans.fit_predict(corrected[notdone,:]) else: labels[notdone] = 0 else: if curc > 1: kmeans = sklearn.cluster.MiniBatchKMeans(curc) labels = kmeans.fit_predict(corrected) else: labels = np.zeros(len(app), dtype=int) if(len(ref) != curc): ref = np.zeros((curc, len(wn))) for cl in range(curc): sel = labels == cl if sel.sum() == 0: print('Info: empty cluster at %d, %d' % (iteration, cl)) else: ref[cl,:] = corrected[sel].mean(0) else: # Mix old reference and corrected spectrum. This requires the clusters # to remain unchanged. if autoiterations: labels[unimproved > automax] = -1 # Exclude all that are done already for cl in range(len(ref)): sel = labels == cl if sel.sum() > 0: ref[cl,:] = .5 * corrected[sel].mean(0) + .5 * ref[cl,:] if plot: plt.plot(wn, ref.T, c=color[iteration], linewidth=.5) if progressPlotCallback: progressPlotCallback(ref, (iteration, iterations)) ref[ref < 0] = 0 if iteration == 0 : projs = [np.dot(app[i], ref[0].T)*(ref[0]/(ref[0] @ ref[0])) for i in range(len(app))] else : projs = [np.dot(app[i], corrected[i].T)*(corrected[i]/(corrected[i] @ corrected[i])) for i in range(len(app))] projs = np.array(projs) app_deref = app - projs for cl in range(len(ref)): ix = np.where(labels == cl)[0] # Indexes of spectra in this cluster if autoiterations: ix = ix[unimproved[ix] <= automax] if ix.size: model0 = compute_model(wn, ref[cl], n_components, a, d, bvals, konevskikh=konevskikh, linearcomponent=linearcomponent, variancelimit=pcavariancelimit) #print(np.shape(corrected), np.shape(app)) if plot: plt.figure() plt.plot(projs[0], label="Proj") plt.plot(app[0, :] - projs[0], label='Difference') plt.plot(app[0, :], label='App') plt.plot(model0[0, :], label='Reference') if iteration : plt.plot(corrected[0, :], label='Prev') plt.legend() plt.show() model = model0[1:, :] #Then we don't need the reference part of the model if weights is None: cons = np.linalg.lstsq(model.T, app_deref[ix].T, rcond=None)[0] else: cons = np.linalg.lstsq(model.T * weights, app_deref[ix].T * weights, rcond=None)[0] corrs = app[ix] - cons.T @ model if renormalize: corrs = corrs / cons[0, :, None] resids = ((corrs - projs[ix])**2).sum(1) #We compare to the previous correction, not the reference if iteration == 0: corrected = corrs residuals = resids nimprov = len(resids) else: improved = resids < residuals[ix] iximp = ix[improved] # Indexes of improved spectra if autoiterations: impmore = resids[improved] < residuals[iximp] * targetrelresiduals unimproved[iximp[impmore]] = 0 unimproved[iximp[np.logical_not(impmore)]] += 1 unimproved[ix[np.logical_not(improved)]] += autoupadd corrected[iximp, :] = corrs[improved, :] residuals[iximp] = resids[improved] nimprov = improved.sum() if verbose: print("iter %3d, cluster %3d (%5d px): avgres %7.3g imprvd %4d time %f" % (iteration, cl, len(ix), resids.mean(), nimprov, monotonic()-startt)) if progressCallback: progressCallback(progressA + cl + 1, progressB) if progressCallback: progressA += progstep if len(ref) < progstep: progressCallback(progressA, progressB) # print('progY',progressA,progressB) else: # For efficiency, compute the model from the input reference spectrum only once model = compute_model(wn, ref, n_components, a, d, bvals, konevskikh=konevskikh, linearcomponent=linearcomponent, variancelimit=pcavariancelimit) if weights is None: cons = np.linalg.lstsq(model.T, app.T, rcond=None)[0] else: cons = np.linalg.lstsq(model.T * weights, app.T * weights, rcond=None)[0] corrected = app - cons[1:, :].T @ model[1:, :] if renormalize: corrected = corrected / cons[0, :, None] if autoiterations: residuals = ((corrected - model[0, :])**2).sum(1) if progressPlotCallback: progressPlotCallback(ref, (0, len(app) + 1)) if verbose: print("all pixels, iter %2d time %f" % (0, monotonic()-startt)) if progressCallback: progressA += 1 progressCallback(progressA, progressB) if iterations > 1: for s in range(len(app)): gc.collect() unimproved = 0 ref = corrected[s, :] # Corrected spectrum as new reference for iteration in range(1, iterations): ref[ref < 0] = 0. # No negative values in reference spectrum model = compute_model(wn, ref, n_components, a, d, bvals, konevskikh=konevskikh, linearcomponent=linearcomponent, variancelimit=pcavariancelimit) if weights is None: cons = np.linalg.lstsq(model.T, app[s], rcond=None)[0] else: cons = np.linalg.lstsq(model.T * weights, app[s] * weights[:, 0], rcond=None)[0] corr = app[s] - cons[1:] @ model[1:, :] if renormalize: corr = corr / cons[0] print("pixel %5d: iter %3d residual %7.3g " % (s, iteration+1, ((corr - model[0, :])**2).sum())) if autoiterations: residual = ((corr - model[0, :])**2).sum() if residual < residuals[s]: corrected[s, :] = corr unimproved = unimproved + 1 if residual > residuals[s] * targetrelresiduals else 0 residuals[s] = residual else: unimproved += autoupadd if unimproved > automax: break ref = corr if not autoiterations: corrected[s, :] = corr residual = ((corr / cons[0] - model[0, :])**2).sum() if verbose: print("pixel %5d: iter %3d residual %7.3g time %f" % (s, iteration+1, residual, monotonic()-startt)) if progressCallback: progressA += 1 progressCallback(progressA, progressB) if progressPlotCallback and len(app) < 50: progressPlotCallback(ref, (s + 1, len(app) + 1)) return corrected.squeeze() if squeeze else corrected
StarcoderdataPython
1781182
from splinter import Browser from time import sleep b = Browser() b.visit('http://ddg.gg') print(f'Título: {b.title}') # print(f'html: {b.html}') print(f'URL: {b.url}') b.visit('http://google.com') b.back() sleep(3) b.forward() sleep(2) b.quit()
StarcoderdataPython
1603791
# # # Copyright (c) 2013, Georgia Tech Research Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Georgia Tech Research Corporation nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY GEORGIA TECH RESEARCH CORPORATION ''AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL GEORGIA TECH BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # \authors: <NAME> (Healthcare Robotics Lab, Georgia Tech.) # \adviser: <NAME> (Healthcare Robotics Lab, Georgia Tech.) import subprocess import roslib roslib.load_manifest('hrl_dynamic_mpc') import sys import time import hrl_lib.util as ut import numpy as np import os from hrl_dynamic_mpc.srv import LogData import threading import rospy import signal import darci_client as dc class BatchRunner(): def __init__(self, num_trials, f_threshes, delta_t_s, goal_reset=None): self.num_trials = num_trials self.lock = threading.RLock() self.first_reach = True goal_reset[2] = goal_reset[2] - 0.15 self.goal_reset = goal_reset rospy.init_node('batch_trials_reaching') rospy.wait_for_service('rosbag_data') rospy.wait_for_service('log_skin_data') rospy.wait_for_service('log_data') self.rosbag_srv = rospy.ServiceProxy('rosbag_data', LogData) self.ft_and_humanoid_record_srv = rospy.ServiceProxy('log_data', LogData) self.skin_record_srv = rospy.ServiceProxy('log_skin_data', LogData) self.robot_state = dc.DarciClient() self.f_threshes = f_threshes self.delta_t_s = delta_t_s self.reaching_left_results = [] self.reaching_right_results = [] def run_trial(self, i, side, f_thresh, t_impulse, goal): self.rosbag_srv('first_impact_'+str(i).zfill(3)+'_'+side+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.skin_record_srv('first_impact_'+str(i).zfill(3)+'_'+side+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.ft_and_humanoid_record_srv('first_impact_'+str(i).zfill(3)+'_'+side+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') goal_ls = goal[0].A1.tolist() goal_str_buf = [str(goal_ls[0])+', '+str(goal_ls[1])+', '+str(goal_ls[2])] goal_str = ''.join(goal_str_buf) controller = subprocess.call(['python', 'run_controller_debug.py', '--darci', '--t_impulse='+str(t_impulse), '--f_thresh='+str(f_thresh), "--goal="+goal_str]) time.sleep(1.0) self.rosbag_srv('') self.skin_record_srv('') self.ft_and_humanoid_record_srv('') data = ut.load_pickle('./result.pkl') if side == 'left': self.reaching_left_results.append(data['result']) else: self.reaching_right_results.append(data['result']) return data['result'] def run_slip_trial(self, i, f_thresh, t_impulse, goal): self.rosbag_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.skin_record_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.ft_and_humanoid_record_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') goal_ls = goal[0].A1.tolist() goal_str_buf = [str(goal_ls[0])+', '+str(goal_ls[1])+', '+str(goal_ls[2])] goal_str = ''.join(goal_str_buf) controller = subprocess.call(['python', 'run_controller_debug.py', '--darci', '--t_impulse='+str(t_impulse), '--f_thresh='+str(f_thresh), "--goal="+goal_str]) time.sleep(1.0) self.rosbag_srv('') self.skin_record_srv('') self.ft_and_humanoid_record_srv('') data = ut.load_pickle('./result.pkl') self.reaching_right_results.append(data['result']) return data['result'] def run_slip_trial(self, i, f_thresh, t_impulse, goal): self.rosbag_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.skin_record_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.ft_and_humanoid_record_srv('slip_impact_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') goal_ls = goal[0].A1.tolist() goal_str_buf = [str(goal_ls[0])+', '+str(goal_ls[1])+', '+str(goal_ls[2])] goal_str = ''.join(goal_str_buf) controller = subprocess.call(['python', 'run_controller_debug.py', '--darci', '--t_impulse='+str(t_impulse), '--f_thresh='+str(f_thresh), "--goal="+goal_str]) time.sleep(1.0) self.rosbag_srv('') self.skin_record_srv('') self.ft_and_humanoid_record_srv('') data = ut.load_pickle('./result.pkl') self.reaching_right_results.append(data['result']) return data['result'] def run_canonical_trial(self, i, f_thresh, t_impulse, goal, num_can): self.rosbag_srv('canonical_'+str(num_can).zfill(2)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)) self.skin_record_srv('canonical_'+str(num_can).zfill(2)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.ft_and_humanoid_record_srv('canonical_'+str(num_can).zfill(2)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') goal_ls = goal[0].A1.tolist() goal_str_buf = [str(goal_ls[0])+', '+str(goal_ls[1])+', '+str(goal_ls[2])] goal_str = ''.join(goal_str_buf) controller = subprocess.call(['python', 'run_controller_debug.py', '--darci', '--t_impulse='+str(t_impulse), '--f_thresh='+str(f_thresh), "--goal="+goal_str]) time.sleep(1.0) self.rosbag_srv('') self.skin_record_srv('') self.ft_and_humanoid_record_srv('') data = ut.load_pickle('./result.pkl') self.reaching_right_results.append(data['result']) return data['result'] def run_canonical(self, goals, q_configs, num_canonical): for cmd in q_configs['start']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) for f_thresh in self.f_threshes: for t_impulse in self.delta_t_s: for i in xrange(self.num_trials): self.robot_state.setDesiredJointAngles(list(q_configs['right_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) result = self.run_canonical_trial(i, f_thresh, t_impulse, goals, num_canonical) for cmd in q_configs['restart']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) self.robot_state.setDesiredJointAngles(list(q_configs['right_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) data2 = {} data2['reaching_straight'] = self.reaching_right_results ut.save_pickle(data, './combined_results_for_canonical'+str(num_canonical)+'.pkl') def run_foliage_trial(self, i, f_thresh, t_impulse, goal, num_reach, record = True): if record == True: self.rosbag_srv('foliage_goal_'+str(num_reach).zfill(3)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.skin_record_srv('foliage_goal_'+str(num_reach).zfill(3)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') self.ft_and_humanoid_record_srv('foliage_goal_'+str(num_reach).zfill(3)+'_trial_'+str(i).zfill(3)+'_f_thresh_'+str(f_thresh).zfill(2)+'_delta_t_impulse_'+str(t_impulse).zfill(3)+'_') goal_ls = goal goal_str_buf = [str(goal_ls[0])+', '+str(goal_ls[1])+', '+str(goal_ls[2])] goal_str = ''.join(goal_str_buf) controller = subprocess.call(['python', 'run_controller_debug.py', '--darci', '--t_impulse='+str(t_impulse), '--f_thresh='+str(f_thresh), "--goal="+goal_str]) time.sleep(1.0) if record == True: self.rosbag_srv('') self.skin_record_srv('') self.ft_and_humanoid_record_srv('') data = ut.load_pickle('./result.pkl') return data['result'] def run_foliage_reach(self, goals, q_configs, num_reach): if self.first_reach == True: self.first_reach = False for cmd in q_configs['start']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) for f_thresh in self.f_threshes: for t_impulse in self.delta_t_s: for i in xrange(self.num_trials): self.robot_state.setDesiredJointAngles(list(q_configs['trial_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) result = self.run_foliage_trial(i, f_thresh, t_impulse, goals, num_reach) offset = 0.20 - goals[2] goals[2] = goals[2]+offset counter = (str(i)+'_up').zfill(6) reset_result = self.run_foliage_trial(counter, f_thresh, t_impulse, goals, num_reach) reset_result = self.run_foliage_trial(i, f_thresh, t_impulse, self.goal_reset, num_reach, record = False) if result != 'success': raw_input('Help me a bit please ..') for cmd in q_configs['restart']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) self.robot_state.setDesiredJointAngles(list(q_configs['trial_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) data2 = {} data2['reaching_straight'] = self.reaching_right_results ut.save_pickle(data, './combined_results_for_foliage.pkl') def run_first_impact(self, goals, q_configs): for cmd in q_configs['start']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) for f_thresh in self.f_threshes: for t_impulse in self.delta_t_s: for i in xrange(self.num_trials): self.robot_state.setDesiredJointAngles(list(q_configs['left_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) side = 'left' result = self.run_trial(i, side, f_thresh, t_impulse, goals[side]) if result == 'success': self.robot_state.setDesiredJointAngles(list(q_configs['right_start'][0])) self.robot_state.updateSendCmd() time.sleep(2.) else: for cmd in q_configs['left_to_right_restart']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) self.robot_state.setDesiredJointAngles(list(q_configs['right_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) side = 'right' result = self.run_trial(i, side, f_thresh, t_impulse, goals[side]) if result == 'success': self.robot_state.setDesiredJointAngles(list(q_configs['left_start'][0])) self.robot_state.updateSendCmd() time.sleep(2.) else: for cmd in q_configs['right_to_left_restart']: self.robot_state.setDesiredJointAngles(list(cmd)) self.robot_state.updateSendCmd() time.sleep(2.) self.robot_state.setDesiredJointAngles(list(q_configs['left_start'][0])) self.robot_state.updateSendCmd() time.sleep(1.) data2 = {} data2['reaching_left'] = self.reaching_left_results data2['reaching_right'] = self.reaching_right_results ut.save_pickle(data, './combined_results_for_first_impact.pkl') def in_hull(self, p, hull): """ Test if points in `p` are in `hull` `p` should be a `NxK` coordinates of `N` points in `K` dimension `hull` is either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimension for which a Delaunay triangulation will be computed """ from scipy.spatial import Delaunay if not isinstance(hull,Delaunay): hull = Delaunay(hull) return hull.find_simplex(p)>=0 if __name__ == '__main__': num_trials = 1 #f_threshes = [10.] #, 15.] f_threshes = [5.] #delta_t_s = [2., 4., 16., 48.] delta_t_s = [8.] #delta_t_s = [16., 48.] data = ut.load_pickle('./joint_and_ee_data.pkl') goal = data['ee_positions']['restart'] goal_reset = goal[0].A1.tolist() runner = BatchRunner(num_trials, f_threshes, delta_t_s, goal_reset) # goals = {'left':data['ee_positions']['right_start'], # 'right':data['ee_positions']['left_start']} # runner.run_first_impact(goals, data['q_configs']) # data = ut.load_pickle('./starting_configs.pkl') # goals = data['ee_positions']['goal'] # #runner.run_slip_impact(goals, data['q_configs']) # runner.run_canonical(data['ee_positions']['goal'], data['q_configs'], 5) range_pos = np.array(data['ee_positions']['range']).reshape(7,3) z_max = -0.05 z_min = -0.25 x_max = np.max(range_pos[:,0]) x_min = np.min(range_pos[:,0]) y_max = np.max(range_pos[:,1]) y_min = np.min(range_pos[:,1]) goals = [] for i in xrange(120): flag = False while flag == False: x_rand, y_rand, z_rand = np.random.rand(3) x = x_rand*(x_max-x_min)+x_min y = y_rand*(y_max-y_min)+y_min z = z_rand*(z_max-z_min)+z_min flag = runner.in_hull(np.array([x, y]), range_pos[:, 0:2].reshape(7,2)) if np.sqrt(x**2+(y-0.185)**2) < 0.30: flag = False goal_ls = [x, y, z] goals.append(goal_ls) ut.save_pickle(goals, './goal_positions.pkl') runner.run_foliage_reach(goal_ls, data['q_configs'], i)
StarcoderdataPython
90357
<filename>macord/bot.py import aiohttp import asyncio import json import requests from typing import Any, Callable from .message import * class Bot(object): def __init__(self, token: str) -> None: self.__token: str = token self.__heartbeat_interval: float = 0.0 self.__gateway_url: str = None self.__ws: aiohttp.ClientWebSocketResponse = None self.__message_create_callback: Callable[[Bot, Message], Any] = None self.__message_update_callback: Callable[[Bot, Message], Any] = None def run(self): resp = requests.get( 'https://discord.com/api/v9/gateway/bot', headers={ "Authorization": "Bot " + self.__token } ) if resp.status_code != 200: raise requests.RequestException('failed to get gateway url') resp_json = resp.json() if 'url' not in resp_json: raise KeyError('invalid response when get gateway url') self.__gateway_url = resp_json['url'] + "?v=9&encoding=json" try: asyncio.run(self.__run()) except KeyboardInterrupt: print("EXIT!!!") def on_message_create(self, callback: Callable[['Bot', Message], Any]): self.__message_create_callback = callback def on_message_update(self, callback: Callable[['Bot', Message], Any]): self.__message_update_callback = callback def send_message(self, channel_id: str, message: MessageSend) -> Message: resp = requests.post( f"https://discord.com/api/v9/channels/{channel_id}/messages", data=message.to_json(), headers={ "Authorization": "Bot " + self.__token } ) if resp.status_code != 200: raise requests.RequestException('failed to send message') resp_json = resp.json() return Message(resp_json) async def __heartbeat(self): heartbeat_payload = {"op": 1, "d": None} while True: await asyncio.sleep(self.__heartbeat_interval / 1000) await self.__ws.send_json(heartbeat_payload) async def __run(self): session = aiohttp.ClientSession() self.__ws = await session.ws_connect(self.__gateway_url) resp = await self.__ws.receive_json() if 'op' not in resp or resp['op'] != 10 or 'd' not in resp or 'heartbeat_interval' not in resp['d']: raise KeyError('invalid response when connected to gateway') self.__heartbeat_interval = resp['d']['heartbeat_interval'] heartbeat_task: asyncio.Task = asyncio.create_task(self.__heartbeat()) await self.__ws.send_json({ "op": 2, "d": { "token": <PASSWORD>.__token, "intents": 513, "properties": { "$os": "linux", "$browser": "disco", "$device": "pc" } } }) try: while True: resp = await self.__ws.receive() if resp.type == aiohttp.WSMsgType.TEXT: respJson = resp.json() if respJson['op'] == 0: if respJson['t'] == 'MESSAGE_CREATE' and self.__message_create_callback != None: self.__message_create_callback(self, Message(respJson['d'])) elif respJson['t'] == 'MESSAGE_UPDATE' and self.__message_update_callback != None: self.__message_update_callback(self, Message(respJson['d'])) except: pass heartbeat_task.cancel() await self.__ws.close() await session.close()
StarcoderdataPython
62951
<gh_stars>1-10 # Copyright (C) 2013-2015 Ragpicker Developers. # This file is part of Ragpicker Malware Crawler - http://code.google.com/p/malware-crawler/ from yapsy.IPlugin import IPlugin from core.abstracts import Report class MySQL(IPlugin, Report): """Stores data from long-run analysis in MySQL.""" def run(self, results, objfile): # Import muss hier stehen, sonst kommt es bei Konfiguration ohne Mysql zum Fehler from core.databaseMysql import DatabaseMySQL """Writes report. @param results: analysis results dictionary. @param objfile: file object """ database = DatabaseMySQL() print "mysql.py Methode Run" """ # Count query using URL hash and file hash count = database.countRagpickerDB(results["Info"]["file"]["md5"], results["Info"]["url"]["md5"]) # If report available for the file and url -> not insert if count == 0: # Create a copy of the dictionary. This is done in order to not modify # the original dictionary and possibly compromise the following # reporting modules. report = dict(results) # Store the report database.insertRagpickerDB(report) """ def deleteAll(self): """Deletes all reports. """ print "mysql.py Methode DeleteAll" """ # Alle Ragpicker-Daten aus der MongoDB loeschen count = Database().deleteRagpickerDB() print "*** MongoDB (Ragpicker)***" print "deleted documents:" + str(count) print "" """
StarcoderdataPython
4804383
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from test.unit.rules import BaseRuleTestCase from cfnlint.rules.resources.properties.ListDuplicatesAllowed import ListDuplicatesAllowed # pylint: disable=E0401 class TestListDuplicatesAllowed(BaseRuleTestCase): """Test Allowed Value Property Configuration""" def setUp(self): """Setup""" super(TestListDuplicatesAllowed, self).setUp() self.collection.register(ListDuplicatesAllowed()) self.success_templates = [ 'test/fixtures/templates/good/resources/properties/list_duplicates_allowed.yaml' ] def test_file_positive(self): """Test Positive""" self.helper_file_positive() def test_file_negative(self): """Test failure""" self.helper_file_negative( 'test/fixtures/templates/bad/resources/properties/list_duplicates_allowed.yaml', 3)
StarcoderdataPython
106531
import torch.nn as nn import torch import numpy as np class VNet(nn.Module): def __init__(self, nb_classes, in_channels=1, depth=5, start_filters=16, batchnorm=True, mode="AE", input_size=None): assert mode in ['AE', 'classifier'], "Unknown mode selected, currently supported are: 'AE' and 'classifier'" if mode == 'classifier' and (input_size is None or len(input_size) != 3): raise ValueError('The input size must be set as HxWxD') super(VNet, self).__init__() self.mode = mode self.input_size = input_size self.nb_classes = nb_classes self.in_channels = in_channels self.start_filters = start_filters if self.mode == "AE": self.up = [] self.down = [] nconvs = [min(cnt+1, 3) for cnt in range(depth)] # Nb of convs in each Down module # Create the encoder pathway for cnt in range(depth): in_channels = self.in_channels if cnt == 0 else out_channels out_channels = self.start_filters * (2 ** cnt) dconv = False if cnt == 0 else True # apply a down conv ? self.down.append( Down(in_channels, out_channels, nconv=nconvs[cnt], dconv=dconv, batchnorm=batchnorm)) if self.mode == "AE": # Create the decoder pathway # - careful! decoding only requires depth-1 blocks for cnt in range(depth - 1): in_channels = out_channels out_channels = in_channels // 2 self.up.append( Up(in_channels, out_channels, nconv=nconvs[-1-cnt], batchnorm=batchnorm)) # Add the list of modules to current module self.down = nn.ModuleList(self.down) if self.mode == "AE": self.up = nn.ModuleList(self.up) # Get ouptut segmentation if self.mode == "AE": self.final_layer = nn.Conv3d(out_channels, self.nb_classes, kernel_size=1, groups=1, stride=1) else: # Classification (h, w, d) = np.array(self.input_size) // 2**(depth -1) self.final_layer = nn.Sequential( nn.Linear(out_channels*h*w*d, 128), nn.ReLU(True), nn.Dropout(), nn.Linear(128, 128), nn.ReLU(True), nn.Dropout(), nn.Linear(128, self.nb_classes)) # Weight initialization self.weight_initializer() def weight_initializer(self): for module in self.modules(): if isinstance(module, nn.ConvTranspose3d) or isinstance(module, nn.Conv3d): nn.init.xavier_normal_(module.weight) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, 0, 0.01) nn.init.constant_(module.bias, 0) def forward(self, x): encoder_outs = [] for module in self.down: x = module(x) encoder_outs.append(x) encoder_outs = encoder_outs[:-1][::-1] for cnt, module in enumerate(self.up): x_up = encoder_outs[cnt] x = module(x, x_up) x = self.final_layer(x) return x class LUConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0, batchnorm=True, bias=True, mode="conv"): super(LUConv, self).__init__() if mode == "conv": # Usual Conv self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) elif mode == "transpose": # UpConv self.conv = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) if batchnorm: self.bn = nn.BatchNorm3d(out_channels) self.relu = nn.ReLU(True) self.ops = nn.Sequential(self.conv, self.bn, self.relu) def forward(self, x): x = self.ops(x) return x class NConvs(nn.Module): def __init__(self, in_channels, out_channels, nconv=3, kernel_size=5, stride=1, padding=0, batchnorm=True, bias=True, mode="conv"): super(NConvs, self).__init__() self.ops = nn.Sequential(LUConv(in_channels, out_channels, kernel_size, stride, padding, batchnorm, bias, mode), *[LUConv(out_channels, out_channels, kernel_size, stride, padding, batchnorm, bias, mode) for _ in range(nconv-1)]) def forward(self, x): x = self.ops(x) return x class Down(nn.Module): def __init__(self, in_channels, out_channels, nconv=3, dconv=True, batchnorm=True): super(Down, self).__init__() self.dconv = dconv self.in_channels = in_channels if dconv: self.down_conv = NConvs(in_channels, out_channels, 1, kernel_size=2, stride=2, batchnorm=batchnorm) self.nconvs = NConvs(out_channels, out_channels, nconv, kernel_size=5, stride=1, padding=2, batchnorm=batchnorm) else: self.nconvs = NConvs(in_channels, out_channels, nconv, kernel_size=5, stride=1, padding=2, batchnorm=batchnorm) def forward(self, x): if self.dconv: x_down = self.down_conv(x) else: x_down = x x_out = self.nconvs(x_down) # Add the input in order to learn only the residual if self.in_channels == 1 or self.dconv: x = x_out + x_down else: x = x_out return x class Up(nn.Module): def __init__(self, in_channels, out_channels, nconv=3, batchnorm=True): super(Up, self).__init__() self.up_conv = NConvs(in_channels, out_channels, 1, kernel_size=2, stride=2, batchnorm=batchnorm, mode="transpose") self.nconvs = NConvs(in_channels, out_channels, nconv, kernel_size=5, stride=1, padding=2, batchnorm=batchnorm) def forward(self, x_down, x_up): x_down = self.up_conv(x_down) xcat = torch.cat((x_up, x_down), dim=1) x = self.nconvs(xcat) x = x + x_down return x
StarcoderdataPython
87624
import os config = { 'project_path': os.getcwd() + '/../openfoam/run/Airfoil2D_full/' }
StarcoderdataPython
7741
import torch import logging # Transformer version 4.9.1 - Newer versions may not work. from transformers import AutoTokenizer from trained_gpt_model import get_inference2 def t5_supp_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 't5-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/t5_model_hotpot_supporting_facts_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def t5_full_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 't5-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/t5_model_hotpot_full_context_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def bart_supp_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 'facebook/bart-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/bart_model_hotpot_supporting_facts_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string def bart_full_inference(review_text): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # CPU may not work, got to check. # device = torch.device('cpu') print('Using device:' + str(device)) PRETRAINED_MODEL = 'facebook/bart-base' SEQ_LENGTH = 600 tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL) tokenizer.add_special_tokens( {'additional_special_tokens': ['<answer>', '<context>']} ) model = torch.load("../trained_models/bart_model_hotpot_full_context_last.pth") model.eval() encoded_text = tokenizer( review_text, padding=True, max_length=SEQ_LENGTH, truncation=True, return_tensors="pt" ).to(device) input_ids = encoded_text['input_ids'] with torch.no_grad(): output = model.generate(input_ids) decoded_string = tokenizer.decode(output[0], skip_special_tokens=True) logging.debug("Decoded string" + decoded_string) print(decoded_string) # device.empty_cache() del model del tokenizer return decoded_string # if __name__ == "__main__": # review_text = "<answer> a fusional language <context> Typologically, Estonian represents a transitional form from an agglutinating language to a fusional language. The canonical word order is SVO (subject–verb–object)." # t5_supp_inference(review_text, md2, device) def get_inference(answer, context, model_name): valuation_text = "<answer> " + answer + " <context> " + context if model_name == 't5_supp': return t5_supp_inference(valuation_text) elif model_name == 't5_full': return t5_full_inference(valuation_text) elif model_name == 'bart_supp': return bart_supp_inference(valuation_text) elif model_name == 'bart_full': return bart_full_inference(valuation_text) elif model_name == 'gpt2': return get_inference2(answer, context)
StarcoderdataPython
120099
<gh_stars>1-10 from threading import Thread from time import sleep from os import _exit as kill from _thread import interrupt_main as terminate import logging _log = logging.getLogger(__name__) class Watchdog(object): def __init__(self, timeout_seconds): # type: (float) -> Watchdog """ A watchdog service that shuts down the application, should it become unresponsive. The application must call Watchdog.alive() at least every timeout_seconds to signal it's alive. Failing to do so will prompt the watchdog to shut down all threads and then kill the application. Recommended usage is inside a "with" block. """ self._interval = timeout_seconds self._thread = None self._alive_flag = True self._do_watch = False def is_watching(self): # type: () -> bool return self._do_watch or self._thread is not None def start(self): if self.is_watching(): return _log.debug('starting') self._do_watch = True self._thread = Thread(target=self._watch) self._thread.start() _log.debug('started') def stop(self): if not self.is_watching(): return _log.debug('stopping') self._do_watch = False self._thread.join(self._interval * 2) self._thread = None _log.debug('stopped') def alive(self): self._alive_flag = True _log.debug('got alive signal') def _watch(self): while self._do_watch: sleep(self._interval) if self._alive_flag: self._reset_alive() else: _log.debug('no alive signal received for more than ' + str(self._interval) + ' seconds') self.shutdown() def _reset_alive(self): _log.debug('resetting alive flag') self._alive_flag = False def shutdown(self): _log.debug('terminating threads') terminate() # give the threads time to shutdown gracefully sleep(self._interval * 2) _log.debug('kill') kill(1) def __enter__(self): self.start() return self # important def __exit__(self, exc_type, exc_val, exc_tb): self.stop()
StarcoderdataPython
1703987
from typing import AsyncIterable, Iterable, Any, List from os import scandir, DirEntry, stat_result from .wrap import to_thread class EntryWrapper: __slots__ = "entry", def __init__(self, entry: DirEntry): self.entry = entry def __getattr__(self, attr: str) -> Any: return getattr(self.entry, attr) def __repr__(self) -> str: name = type(self).__name__ return f"{name}<{self.entry}>" async def inode(self) -> int: return await to_thread(self.entry.inode) async def is_dir(self, *, follow_symlinks: bool = True) -> bool: return await to_thread(self.entry.is_dir, follow_symlinks=follow_symlinks) async def is_file(self, *, follow_symlinks: bool = True) -> bool: return await to_thread(self.entry.is_file, follow_symlinks=follow_symlinks) async def is_symlink(self) -> bool: return await to_thread(self.entry.is_symlink) async def stat(self, *, follow_symlinks: bool = True) -> stat_result: return await to_thread(self.entry.stat, follow_symlinks=follow_symlinks) def wrapped_scandir(*args, **kwargs) -> Iterable[EntryWrapper]: entries = scandir(*args, **kwargs) yield from map(EntryWrapper, entries) def _scandir_results(*args, **kwargs) -> List[EntryWrapper]: return list(wrapped_scandir(*args, **kwargs)) async def scandir_async(*args, **kwargs) -> AsyncIterable[EntryWrapper]: results = await to_thread(_scandir_results, *args, **kwargs) for result in results: yield result
StarcoderdataPython
101187
<reponame>KenWoo/Algorithm<filename>Algorithms/Easy/1309. Decrypt String from Alphabet to Integer Mapping/answer.py<gh_stars>0 from typing import List class Solution: def freqAlphabets(self, s: str) -> str: dict = {} for i in range(1, 10): dict[str(i)] = chr(97+i-1) for i in range(10, 27): dict[str(i)+'#'] = chr(97+i-1) N = len(s) i = 0 res = [] while i < N: if s[i] != '#': if i == N - 1: prev = i while s[prev] != '#' and prev > -1: prev -= 1 for j in range(prev+1, N): res.append(dict[s[j]]) else: prev = i-1 while s[prev] != '#' and prev > -1: prev -= 1 for j in range(prev+1, i-2): res.append(dict[s[j]]) res.append(dict[s[i-2: i+1]]) i += 1 return ''.join(res) if __name__ == "__main__": s = Solution() result = s.freqAlphabets( "10#11#12") print(result)
StarcoderdataPython
3363839
<reponame>BenjaminAllardEngineer/Adversarial-Attacks-on-Neural-Networks # Generate adversarial examples for the FC model # Save some of them in a file filename = 'data/pickle/fc_adv_examples' # Create and export 200 adversarial examples for later with epsilon=0.05 fc_model = torch.load(model_2_file) acc, ex = test_attack_bis(fc_model, test_loader, 0.05, size_limit=200) with open('data/pickle/fc_adv_examples', 'wb') as file: pickle.dump(ex, file)
StarcoderdataPython
1755228
<gh_stars>1-10 """ ============ Mirai 配置 ============ """ from pydantic import BaseModel class Config(BaseModel): """ Mirai 配置类,将在适配器被加载时被混入到机器人主配置中。 """ __config_name__ = 'mirai' """ 配置名称。 """ adapter_type: str = 'ws' """ 适配器类型,需要和 mirai-api-http 配置相同。 :type: str """ host: str = '127.0.0.1' """ 本机域名。 :type: str """ port: int = 8080 """ 监听的端口。 :type: int """ url: str = '/mirai/ws' """ WebSocket 路径,需要和 mirai-api-http 配置相同。 :type: str """ api_timeout: int = 1000 """ 进行 API 调用时等待返回响应的超时时间。 :type: int """ verify_key: str = '' """ 建立连接时的认证密钥,需要和 mirai-api-http 配置中的 verifyKey 相同,如果关闭验证则留空。 :type: str """ qq: int = 10001 """ 机器人的 QQ 号码,必须指定。 :type: int """
StarcoderdataPython
193331
from setuptools import setup import sys import os import re IS_PY_2 = (sys.version_info[0] <= 2) def read_readme(): with open('README.md') as f: return f.read() def read_version(): # importing gpustat causes an ImportError :-) __PATH__ = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(__PATH__, 'gpustat.py')) as f: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find __version__ string") install_requires = [ 'six', 'nvidia-ml-py>=7.352.0' if IS_PY_2 else \ 'nvidia-ml-py3>=7.352.0', 'psutil', 'blessings>=1.6', ] tests_requires = [ 'mock>=2.0.0', 'nose', 'nose-cover3' ] setup( name='gpustat', version=read_version(), license='MIT', description='An utility to monitor NVIDIA GPU status and usage', long_description=read_readme(), url='https://github.com/wookayin/gpustat', author='<NAME>', author_email='<EMAIL>', keywords='nvidia-smi gpu cuda monitoring gpustat', classifiers=[ # https://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: System :: Monitoring', ], #packages=['gpustat'], py_modules=['gpustat'], install_requires=install_requires, extras_require={'test': tests_requires}, tests_require=tests_requires, test_suite='nose.collector', entry_points={ 'console_scripts': ['gpustat=gpustat:main'], }, include_package_data=True, zip_safe=False, )
StarcoderdataPython
3293796
from Colors_Initialize import color_lookup def color_pair_to_string(major_color, minor_color): return f'{major_color}\t\t{minor_color}' def console_print_ref_manual(): print('################# Reference Manual #################') print('Major Color\tMinor Color\tPair Number') pair_id = 1 for major_color in color_lookup().MAJOR_COLORS: for minor_color in color_lookup().MINOR_COLORS: print(f'{color_pair_to_string(major_color, minor_color)}\t\t{pair_id}') pair_id += 1
StarcoderdataPython
1695220
<filename>gapid_tests/command_buffer_tests/vkCmdSetStencilReference_test/vkCmdSetStencilReference.py # Copyright 2017 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gapit_test_framework import gapit_test, require, require_equal from gapit_test_framework import require_not_equal, little_endian_bytes_to_int from gapit_test_framework import GapitTest, get_read_offset_function from gapit_test_framework import GapidUnsupportedException from vulkan_constants import * @gapit_test("vkCmdSetStencilReference_test") class SetStencilReference(GapitTest): def expect(self): first_set_stencil = require( self.next_call_of("vkCmdSetStencilReference")) require_not_equal(0, first_set_stencil.int_commandBuffer) require_equal(VK_STENCIL_FACE_FRONT_BIT, first_set_stencil.int_faceMask) require_equal(0, first_set_stencil.int_reference) second_set_stencil = require( self.next_call_of("vkCmdSetStencilReference")) require_not_equal(0, second_set_stencil.int_commandBuffer) require_equal(VK_STENCIL_FACE_BACK_BIT, second_set_stencil.int_faceMask) require_equal(10, second_set_stencil.int_reference) third_set_stencil = require( self.next_call_of("vkCmdSetStencilReference")) require_not_equal(0, third_set_stencil.int_commandBuffer) require_equal(VK_STENCIL_FRONT_AND_BACK, third_set_stencil.int_faceMask) require_equal(0xFFFFFFFF, third_set_stencil.int_reference)
StarcoderdataPython
1756280
import numpy as np class Statistic: def __init__(self, data=None): if data is not None: self._data = list(data) else: self._data = [] def append(self, value): self._data.append(value) def extend(self, data): self._data.extend(data) def mean(self): if self.empty: raise ValueError('no data') return self.asarray().mean() def std(self): if self.empty: raise ValueError('no data') return self.asarray().std() def var(self): if self.empty: raise ValueError('no data') return self.asarray().var() def moment(self, k): n = len(self) if n == 0: raise ValueError('no data') if np.abs(np.round(k) - k) > 0 or k <= 0: raise ValueError('positive integer expected') return sum((x ** k for x in self._data)) / n def lag(self, k): n = len(self) if n == 0: raise ValueError('no data') if np.abs(np.round(k) - k) > 0 or k < 0: raise ValueError('non-negative integer expected') if n <= k: raise ValueError('statistic has too few samples') ar = self.asarray() if k == 0: return 1 return np.corrcoef(ar[k:], ar[:-k])[0, 1] def __len__(self): return len(self._data) @property def empty(self): return len(self._data) == 0 def as_list(self): return list(self._data) def as_tuple(self): return tuple(self._data) def asarray(self): return np.asarray(self._data) def pmf(self): values = {} for v in self._data: if v not in values: values[v] = 1 else: values[v] += 1 return values class Trace: def __init__(self, data=None, mode='auto'): if data is not None: try: valid_as_samples = all(len(item) == 2 for item in data) valid_as_split = len(data) == 2 and len(data[0]) == len(data[1]) except TypeError as e: raise ValueError('wrong data shape') from e else: if not valid_as_samples and not valid_as_split: raise ValueError('wrong data shape') if (mode == 'auto' and valid_as_samples) or mode == 'samples': _data = [(t, v) for (t, v) in data] elif mode in {'auto', 'split'}: _data = [(t, v) for t, v in zip(*data)] else: raise ValueError('invalid mode') ar = np.asarray(_data).transpose()[0] if np.any((ar[1:] - ar[:-1]) < 0): raise ValueError('data must be ordered by time') self._data = _data else: self._data = [] def record(self, t, v): if self._data and t < self._data[-1][0]: raise ValueError('adding data in past prohibited') self._data.append((t, v),) @property def empty(self): return len(self._data) == 0 def __len__(self): return len(self._data) def pmf(self): if self.empty: raise ValueError('expected non-empty values') values = {} for i in range(0, len(self._data) - 1): v, dt = self._data[i][1], self._data[i + 1][0] - self._data[i][0] if self._data[i][1] not in values: values[v] = dt else: values[v] += dt total_time = sum(values.values()) values = {v: t / total_time for v, t in values.items()} return values def timeavg(self): return sum(v * p for v, p in self.pmf().items()) def _convert(self, fn, mode): if mode == 'samples': return fn(fn([t, v]) for (t, v) in self._data) elif mode == 'split': timestamps, values = [], [] for (t, v) in self._data: timestamps.append(t) values.append(v) if timestamps: return fn([fn(timestamps), fn(values)]) return fn() else: raise ValueError('invalid mode') def as_list(self, mode='samples'): return self._convert(list, mode) def as_tuple(self, mode='samples'): return self._convert(tuple, mode) def asarray(self, mode='samples'): return np.asarray(self.as_list(mode)) class Intervals: def __init__(self, timestamps=None): if timestamps: _timestamps = [0] + list(timestamps) try: _zipped = zip(_timestamps[:-1], _timestamps[1:]) if any(x > y for x, y in _zipped): raise ValueError('timestamps must be ascending') except TypeError as e: raise TypeError('only numeric values expected') from e self._timestamps = [0] + list(timestamps) else: self._timestamps = [0] @property def last(self): return self._timestamps[-1] @property def empty(self): return len(self._timestamps) == 1 def __len__(self): return len(self._timestamps) - 1 def record(self, timestamp): try: if timestamp < self.last: raise ValueError('prohibited timestamps from past') except TypeError as e: raise TypeError('only numeric values expected') from e self._timestamps.append(timestamp) def statistic(self): return Statistic(self.as_tuple()) def as_tuple(self): ar = np.asarray(self._timestamps) return tuple(ar[1:] - ar[:-1]) def as_list(self): return list(self.as_tuple())
StarcoderdataPython
4840096
<filename>python/paddle/fluid/tests/unittests/test_unique_name.py # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid class TestUniqueName(unittest.TestCase): def test_guard(self): with fluid.unique_name.guard(): name_1 = fluid.unique_name.generate('') with fluid.unique_name.guard(): name_2 = fluid.unique_name.generate('') self.assertEqual(name_1, name_2) with fluid.unique_name.guard("A"): name_1 = fluid.unique_name.generate('') with fluid.unique_name.guard('B'): name_2 = fluid.unique_name.generate('') self.assertNotEqual(name_1, name_2) def test_generate(self): with fluid.unique_name.guard(): name1 = fluid.unique_name.generate('fc') name2 = fluid.unique_name.generate('fc') name3 = fluid.unique_name.generate('tmp') self.assertNotEqual(name1, name2) self.assertEqual(name1[-2:], name3[-2:])
StarcoderdataPython
3362410
<gh_stars>0 from rest_framework import status from rest_framework.authentication import BasicAuthentication, SessionAuthentication from rest_framework.generics import RetrieveAPIView, ListAPIView from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.response import Response from rest_framework_jwt.authentication import JSONWebTokenAuthentication from rates.api.serializers import FiatRateListSerializer from rates.models import FiatRate class FiatRateAPIView(RetrieveAPIView): permission_classes = (IsAuthenticatedOrReadOnly,) authentication_classes = [BasicAuthentication, SessionAuthentication, JSONWebTokenAuthentication] def get(self, request): try: user_profile_obj = Profile.objects.get(user=request.user) user_country = FiatRate.objects.get(country=user_profile_obj.country) status_code = status.HTTP_200_OK response = { 'success': True, 'status code': status_code, 'message': 'User Fiat Fetched', 'data': [{ 'updated': user_country.updated, 'timestamp': user_country.timestamp, 'country': user_profile_obj.get_country(), 'dollar_rate': user_country.dollar_rate }] } except Exception as e: user_profile_obj = Profile.objects.get(user=request.user) user_country = FiatRate.objects.get(country='United States Of America') status_code = status.HTTP_200_OK response = { 'success': True, 'status code': status_code, 'message': 'User Fiat Fetched', 'data': [{ 'updated': user_country.updated, 'timestamp': user_country.timestamp, 'country': user_profile_obj.get_country(), 'dollar_rate': user_country.dollar_rate }] } return Response(response, status=status_code) class FiatListView(ListAPIView): authentication_classes = [BasicAuthentication, SessionAuthentication, JSONWebTokenAuthentication] serializer_class = FiatRateListSerializer queryset = FiatRate.objects.all() permission_classes = (IsAuthenticatedOrReadOnly,) paginate_by = 15
StarcoderdataPython
1620945
<gh_stars>0 from pyglet import image import os, sys base = os.getcwd() + "/Assets/" icon = image.load(base + 'icon.png') mario_img = image.load(base + 'mario.png') luigi_img = image.load(base + 'luigi.png')
StarcoderdataPython
1651997
<reponame>Inch4Tk/label_server<filename>flask_label/api.py import json import os import random import xml.etree.ElementTree as ET from xml.dom import minidom import tensorflow as tf from flask import ( Blueprint, current_app, send_from_directory, jsonify, request ) from object_detection.utils import dataset_util from annotation_predictor import accept_prob_predictor from annotation_predictor.util.class_reader import ClassReader from annotation_predictor.util.send_accept_prob_request import send_accept_prob_request from annotation_predictor.util.util import compute_feature_vector from flask_label.auth import api_login_required from flask_label.database import db from flask_label.models import ( ImageTask, ImageBatch, VideoBatch, image_batch_schema, video_batch_schema, image_task_schema ) from object_detector import train_od_model from object_detector.send_od_request import send_od_request from object_detector.util import parse_class_ids_json_to_pbtxt, update_number_of_classes from settings import known_class_ids_annotation_predictor, \ class_ids_od, path_to_od_train_record bp = Blueprint("api", __name__, url_prefix="/api") def batch_statistics(batch): """ Computes the total number of task and the number of labeled tasks in a batch. Args: batch: identifier of a batch Returns: total number of tasks in batch, number of labeled tasks in batch """ lc = 0 for task in batch["tasks"]: if task["is_labeled"]: lc += 1 return len(batch["tasks"]), lc def get_path_to_image(img_id: int): """ Computes the path to an image in the instance directory . Args: img_id: identifier of an image Returns: absolute path to image """ img_task = None while img_task is None: img_task = ImageTask.query.filter_by(id=img_id).first() img_path = os.path.join( current_app.instance_path, current_app.config["IMAGE_DIR"], img_task.batch.dirname, img_task.filename ) return img_path def get_path_to_label(img_id: int): """ Computes the path to a label belonging to an image in the instance directory . Args: img_id: identifier of an image Returns: absolute path to label """ img_task = None while img_task is None: img_task = ImageTask.query.filter_by(id=img_id).first() path = os.path.join( current_app.instance_path, current_app.config['IMAGE_DIR'], img_task.batch.dirname, current_app.config['IMAGE_LABEL_SUBDIR'], img_task.filename ) base = os.path.splitext(path)[0] path = base + '.xml' return path def get_path_to_prediction(img_id: int): """ Computes the path to a prediction belonging to an image in the instance directory . Args: img_id: identifier of an image Returns: absolute path to prediction """ img_task = None while img_task is None: img_task = ImageTask.query.filter_by(id=img_id).first() pred_dir_path = os.path.join( current_app.instance_path, current_app.config["IMAGE_DIR"], img_task.batch.dirname, current_app.config['IMAGE_PREDICTIONS_SUBDIR'], img_task.filename ) base = os.path.splitext(pred_dir_path)[0] pred_path = base + '.json' return pred_path def read_labels_from_xml(path): """ Reads in an xml-file containing labels for an image and transforms it to a json. Returns: width: width of the respective image of the label height: height of the respective image of the label classes: classes of annotated objects boxes: position of annotated objects """ width = '-1' height = '-1' classes = [] boxes = [] if os.path.exists(path): tree = ET.parse(path) root = tree.getroot() for name in root.findall('./size/width'): width = name.text for name in root.findall('./size/height'): height = name.text for name in root.findall('./object/name'): classes.append(name.text) for i, xmin in enumerate(root.findall('./object/bndbox/xmin')): boxes.append([]) boxes[i].append(int(xmin.text, 10)) for i, ymin in enumerate(root.findall('./object/bndbox/ymin')): boxes[i].append(int(ymin.text, 10)) for i, xmax in enumerate(root.findall('./object/bndbox/xmax')): boxes[i].append(int(xmax.text, 10)) for i, ymax in enumerate(root.findall('./object/bndbox/ymax')): boxes[i].append(int(ymax.text, 10)) return width, height, classes, boxes def save_labels_to_xml(data, path): """ Save labels in data to xml-file specified by path or deletes the file, when data is empty. Args: data: dict containing the label data path: path to xml-file where the labels will be saved """ classes = data['classes'] boxes = data['boxes'] width = data['width'] height = data['height'] if len(classes) != 0: root = ET.Element('annotation') size = ET.SubElement(root, 'size') ET.SubElement(size, 'width').text = str(width) ET.SubElement(size, 'height').text = str(height) for i, c in enumerate(classes): obj = ET.SubElement(root, 'object') ET.SubElement(obj, 'name').text = c box = ET.SubElement(obj, 'bndbox') ET.SubElement(box, 'xmin').text = str(round(boxes[i][0])) ET.SubElement(box, 'ymin').text = str(round(boxes[i][1])) ET.SubElement(box, 'xmax').text = str(round(boxes[i][2])) ET.SubElement(box, 'ymax').text = str(round(boxes[i][3])) rough_str = ET.tostring(root) pretty_str = minidom.parseString(rough_str).toprettyxml(indent=" ") with open(path, 'w') as f: f.write(pretty_str) elif os.path.exists(path): os.remove(path) def create_tf_example(example: list): """ Creates a tf.train.Example object from an image and its labels which can be used in the training pipeline for the object detector. Args: example: list containing information about the image and its labels. Returns: information of example parsed into a tf.train.Example object """ width = int(example[0]) height = int(example[1]) filename = str.encode(example[2]) with tf.gfile.GFile(example[3], 'rb') as f: encoded_image_data = bytes(f.read()) image_format = b'jpg' boxes = example[5] xmins = [] ymins = [] xmaxs = [] ymaxs = [] for b in boxes: xmins.append(b[0]) ymins.append(b[1]) xmaxs.append(b[2]) ymaxs.append(b[3]) xmins = [x / width for x in xmins] xmaxs = [x / width for x in xmaxs] ymins = [y / height for y in ymins] ymaxs = [y / height for y in ymaxs] class_reader = ClassReader(known_class_ids_annotation_predictor) classes_text = example[4][:] classes = [] none_vals = [] for i, cls in enumerate(classes_text): if cls is None: none_vals.append(i) for index in sorted(none_vals, reverse=True): classes_text.pop(index) xmins.pop(index) ymins.pop(index) xmaxs.pop(index) ymaxs.pop(index) for i, cls in enumerate(classes_text): classes.append(class_reader.get_index_of_class_from_label(cls)) class_encoded = str.encode(cls) classes_text[i] = class_encoded tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_image_data), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example @bp.route("/batches/") @api_login_required def batches(): """Return all image and video directories and their stats.""" img_batches = ImageBatch.query.options(db.joinedload('tasks')).all() video_batches = VideoBatch.query.all() image_batch_data = image_batch_schema.dump(img_batches, many=True) video_batch_data = video_batch_schema.dump(video_batches, many=True) # Add postprocessing info about statistics for batch in image_batch_data: batch["imgCount"], batch["labeledCount"] = batch_statistics(batch) return jsonify({"imageBatches": image_batch_data, "videoBatches": video_batch_data}) @bp.route("/img_batch/<int:batch_id>") @api_login_required def img_batch(batch_id): """Return data to a single image batch""" img_batch = ImageBatch.query.filter_by(id=batch_id).options(db.joinedload('tasks')).first() batch = image_batch_schema.dump(img_batch) batch["imgCount"], batch["labeledCount"] = batch_statistics(batch) return jsonify(batch) @bp.route("/img_task/<int:task_id>") @api_login_required def image_task(task_id): """Return data to a single image task""" img_task = ImageTask.query.filter_by(id=task_id).first() return image_task_schema.jsonify(img_task) @bp.route("/img_task/random/<int:batch_id>") @api_login_required def image_task_random(batch_id): """Return a random image task contained in a batch""" img_tasks = [] labeled = request.args.get("labeled") if labeled == "true": img_tasks = ImageTask.query.filter_by(batch_id=batch_id, is_labeled=True).all() elif labeled == "false": img_tasks = ImageTask.query.filter_by(batch_id=batch_id, is_labeled=False).all() else: img_tasks = ImageTask.query.filter_by(batch_id=batch_id).all() if not img_tasks: return jsonify(dict()) img_task = random.choice(img_tasks) return image_task_schema.jsonify(img_task) @bp.route("/serve_image/<int:img_id>/") @api_login_required def serve_image(img_id): """Serves an image from the instance folder Args: img_id (int): Is the same as task id, since every task is matched to one image. """ img_path = get_path_to_image(img_id) current_app.logger.info(img_path) path, file = os.path.split(img_path) return send_from_directory(path, file) @bp.route("/serve_labels/") @api_login_required def serve_labels(): """Serves labels for all images from the instance folder""" labels = [] img_batches = ImageBatch.query.options(db.joinedload('tasks')).all() image_batch_data = image_batch_schema.dump(img_batches, many=True) for batch in image_batch_data: for task in batch['tasks']: label_path = get_path_to_label(task['id']) width, height, classes, boxes = read_labels_from_xml(label_path) labels.append({'id': str(task['id']), 'classes': classes, 'boxes': boxes, 'width': width, 'height': height}) return jsonify(labels) @bp.route('/save_labels/<int:img_id>/', methods=['POST']) @api_login_required def save_labels(img_id): """"Saves labels entered by a labeler for an image from the instance folder Args: img_id (int): Is the same as task id, since every task is matched to one image. """ data = request.get_json() label_path = get_path_to_label(img_id) if not os.path.exists(os.path.dirname(label_path)): os.mkdir(label_path) save_labels_to_xml(data, label_path) return jsonify(success=True) @bp.route('/serve_predictions/') @api_login_required def serve_predictions(): """Serves predictions for all images from the instance folder""" predictions = [] img_batches = ImageBatch.query.options(db.joinedload('tasks')).all() image_batch_data = image_batch_schema.dump(img_batches, many=True) for batch in image_batch_data: for task in batch['tasks']: img_path = get_path_to_image(task['id']) pred_path = get_path_to_prediction(task['id']) if os.path.exists(pred_path): with open(pred_path, 'r') as f: predictions.append({'id': str(task['id']), 'predictions': json.load(f)}) else: prediction = send_od_request(img_path) prediction = list(prediction.values())[0] if len(prediction) > 0: feature_vectors = [] for i, _ in enumerate(prediction): feature_vectors.append(compute_feature_vector(prediction[i])) acceptance_prediction = send_accept_prob_request(feature_vectors) for i, p in enumerate(acceptance_prediction): prediction[i]['acceptance_prediction'] = p prediction.sort(key=lambda p: p['acceptance_prediction'], reverse=True) predictions.append({'id': str(task['id']), 'predictions': prediction}) if not os.path.exists(os.path.dirname(pred_path)): os.mkdir(os.path.dirname(pred_path)) with open(pred_path, 'w') as f: json.dump(prediction, f) return jsonify(predictions) @bp.route('/update_predictions/<int:batch_id>/') @api_login_required def update_predictions(batch_id): """ Creates and returns predictions for all images contained in a batch whether predictions already exist in the instance directory or not. Args: batch_id: id of the batch for which the predictions will be generated """ predictions = [] batch = ImageBatch.query.filter_by(id=batch_id).all() batch_data = image_batch_schema.dump(batch, many=True) for task in batch_data[0]['tasks']: img_path = get_path_to_image(task['id']) pred_path = get_path_to_prediction(task['id']) prediction = send_od_request(img_path) prediction = list(prediction.values())[0] if len(prediction) > 0: feature_vectors = [] for i, _ in enumerate(prediction): feature_vectors.append(compute_feature_vector(prediction[i])) acceptance_prediction = send_accept_prob_request(feature_vectors) for i, p in enumerate(acceptance_prediction): prediction[i]['acceptance_prediction'] = p prediction.sort(key=lambda p: p['acceptance_prediction'], reverse=True) predictions.append({'id': str(task['id']), 'predictions': prediction}) if not os.path.exists(os.path.dirname(pred_path)): os.mkdir(os.path.dirname(pred_path)) with open(pred_path, 'w') as f: json.dump(prediction, f) return jsonify(predictions) @bp.route('/save_predictions/<int:img_id>/', methods=['POST']) @api_login_required def save_predictions(img_id): """ Receives prediction data for an image and saves it in instance directory Args: img_id: id of the image for which the predictions will be saved """ predictions = request.get_json() pred_path = get_path_to_prediction(img_id) if not os.path.exists(os.path.dirname(pred_path)): os.mkdir(os.path.dirname(pred_path)) result = [] for p in predictions: result.append(p) with open(pred_path, 'w') as f: json.dump(result, f) return jsonify(success=True) # @bp.route('/update_label_performance_log/', methods=['POST']) # @api_login_required # def update_label_performance_log(): # """ # Receives logging data concerning the type and creation-times for newly added labels and # appends them to the label_performance_log. # """ # new_log_data = request.get_json() # log_data = [] # # if os.path.exists(path_to_label_performance_log): # with open(path_to_label_performance_log, 'r') as f: # log_data = json.load(f) # # log_data.extend(new_log_data) # # with open(path_to_label_performance_log, 'w') as f: # json.dump(log_data, f) # # return jsonify(success=True) # # @bp.route('/update_model_performance_log/') # @api_login_required # def update_model_performance_log(): # """ # Normally called after retraining the object-detector, compute the mean average precision for the # top 2, top 5 and top 10 detections of the detector respectively for a test set which is defined # via the glbal variable path_to_test_data in settings.py # """ # map_at_2 = compute_map(path_to_test_data, path_to_od_test_data_gt, 2) # map_at_5 = compute_map(path_to_test_data, path_to_od_test_data_gt, 5) # map_at_10 = compute_map(path_to_test_data, path_to_od_test_data_gt, 10) # # maps = [map_at_2, map_at_5, map_at_10] # # log_data = [] # # if os.path.exists(path_to_map_log): # with open(path_to_map_log, 'r') as f: # log_data = json.load(f) # # log_data.append(maps) # # with open(path_to_map_log, 'w') as f: # json.dump(log_data, f) # # return jsonify(success=True) @bp.route("/serve_classes/") @api_login_required def serve_classes(): """Serves classes for all images from the instance folder""" class_reader = ClassReader(class_ids_od) return jsonify(list(class_reader.class_ids.values())) @bp.route('/train_models/') @api_login_required def train_models(): """Checks instance folder for new training data and uses it to further train models""" nr_of_labels = 0 feature_vectors = [] y_ = [] img_batches = ImageBatch.query.options(db.joinedload('tasks')).all() image_batch_data = image_batch_schema.dump(img_batches, many=True) class_reader_od = ClassReader(class_ids_od) class_reader_acc_prob = ClassReader(known_class_ids_annotation_predictor) writer = tf.python_io.TFRecordWriter(path_to_od_train_record) for batch in image_batch_data: for task in batch['tasks']: label_path = get_path_to_label(task['id']) if os.path.exists(label_path): width, height, classes, boxes = read_labels_from_xml(label_path) for i, cls in enumerate(classes): nr_of_labels += 1 image_path = get_path_to_image(task['id']) class_id_od = class_reader_od.get_index_of_class_from_label(cls) if class_id_od == -1: class_reader_od.add_class_to_file(cls) parse_class_ids_json_to_pbtxt() update_number_of_classes() class_id_accept_prob = class_reader_acc_prob.get_index_of_class_from_label( cls) if class_id_accept_prob == -1: class_reader_acc_prob.add_class_to_file(cls) if classes is not None: tf_example = create_tf_example( [width, height, task['filename'], image_path, classes, boxes]) writer.write(tf_example.SerializeToString()) pred_path = get_path_to_prediction(task['id']) if os.path.exists(pred_path): with open(pred_path, 'r') as f: predictions = json.load(f) for i, p in enumerate(predictions): if 'was_successful' in p: label = p['LabelName'] predictions[i]['LabelName'] = label if p['was_successful'] and p['acceptance_prediction'] is 0: feature_vectors.append(compute_feature_vector(predictions[i])) y_.append(1.0) elif not p['was_successful'] and p['acceptance_prediction'] is 1: feature_vectors.append(compute_feature_vector(predictions[i])) y_.append(0.0) with open(pred_path, 'w') as f: json.dump(predictions, f) writer.close() if len(feature_vectors) > 0: accept_prob_predictor.main(mode='train', user_feedback={'x': feature_vectors, 'y_': y_}) writer.close() if nr_of_labels > 0: train_od_model.train() return jsonify(success=True)
StarcoderdataPython
78274
# TODO: Faire un test QUI MARCHE sur une des annales du hashcode # TODO: Coder une solution algo genetique. # TODO: Voir si splitter Problem en une seconde classe (Solver?) (qui gère parsing + output) est pas plus pratique. C'est surement plus lisible. import glob import os import collections import ntpath from typing import Union Number = Union[int, float] PATH_DIR_INPUTS = os.path.join("..", "inputs") PATH_DIR_OUTPUTS = os.path.join("..", "outputs") Input = collections.namedtuple("Input", []) Solution = collections.namedtuple("Problem", []) class Problem: def parse_input(self, path_file_input: str) -> Input: raise NotImplementedError() def solve(self, inp: Input) -> Solution: raise NotImplementedError() def score(self, inp: Input, solution: Solution) -> Number: raise NotImplementedError() def write_output(self, solution: Solution, func_convert: callable, score: Number, id_problem: str, path_dir_outputs: str = PATH_DIR_OUTPUTS): # Create outputs directory if it does not exists os.makedirs(path_dir_outputs, exist_ok=True) path_file_output = os.path.join(path_dir_outputs, id_problem + '_' + str(score)) + ".out" string = func_convert(solution) with open(path_file_output, 'w') as fp: fp.write(string) def iter_path_files_input(extension: str = ".in", path_dir_inputs: str = PATH_DIR_INPUTS): """ Iterate through all files located at `path_dir_inputs`. :param extension: Suffix matching desired files. Empty string to match everything. """ for file_input in glob.glob(os.path.join(path_dir_inputs, "*" + extension)): yield file_input def get_id_problem(path_file_input: str) -> str: """ Return the ID of a problem given its filename. """ return ntpath.basename(path_file_input)[0] def main(problem_class: Problem, func_convert: callable, path_dir_inputs: str, path_dir_outputs: str, inputs_to_skip=[]): problem = problem_class() for path_file_input in iter_path_files_input(path_dir_inputs=path_dir_inputs): id_problem = get_id_problem(path_file_input) print("Classe :", id_problem) if id_problem in inputs_to_skip: continue inp = problem.parse_input(path_file_input) solution = problem.solve(inp) score = problem.score(inp=inp, solution=solution) problem.write_output( solution=solution, func_convert=func_convert, score=score, id_problem=id_problem, path_dir_outputs=path_dir_outputs ) if __name__ == "__main__": main()
StarcoderdataPython
3368324
<reponame>doersino/handwriting #!/usr/bin/env python3 # -*- coding: utf-8 -*- # Designed to run on Uberspace. Get yourself an account and follow these guides: # https://wiki.uberspace.de/database:postgresql # https://gist.github.com/tessi/82981559017f79a06042d2229bfd72a8 (s/9.6/10.4/g) import cgi import json import subprocess import traceback import sys sys.stderr = sys.stdout # via https://stackoverflow.com/a/14860540 def enc_print(string='', encoding='utf8'): sys.stdout.buffer.write(string.encode(encoding) + b'\n') enc_print("Content-type: text/html") enc_print() form = cgi.FieldStorage() if not form or "pen" not in form: enc_print("no data received :(") else: validated = json.loads(form["pen"].value) pen = str(validated).replace("'", "\"") try: enc_print(subprocess.check_output(["bash", "backendhelper.sh", pen]).decode("utf-8").strip()) except subprocess.CalledProcessError as e: enc_print('something went wrong, sorry about that :(') raise
StarcoderdataPython
4818090
<gh_stars>1-10 from django.db import models class Snapshot(models.Model): snapped_at = models.DateField(unique=True) href = models.CharField(max_length=55) completed = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Cryptocurrency(models.Model): name = models.CharField(max_length=255) symbol = models.CharField(max_length=20, unique=True) slug = models.CharField(max_length=50) added_at = models.DateTimeField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Quote(models.Model): snapshot = models.ForeignKey( Snapshot, on_delete=models.CASCADE, related_name='quotes') cryptocurrency = models.ForeignKey( Cryptocurrency, on_delete=models.CASCADE, related_name='quotes') rank = models.IntegerField() max_supply = models.IntegerField(null=True) circulating_supply = models.IntegerField() total_supply = models.IntegerField() price = models.FloatField() volume_24h = models.FloatField() change_7d = models.FloatField() market_cap = models.FloatField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: unique_together = ('snapshot', 'cryptocurrency', 'rank')
StarcoderdataPython
4800302
<filename>tests/test_fields.py import re from datetime import datetime from decimal import Decimal import pytest from bson import ObjectId, Decimal128 from aiomongodel import Document, EmbeddedDocument from aiomongodel.errors import ValidationError from aiomongodel.fields import ( AnyField, StrField, IntField, FloatField, BoolField, DateTimeField, ObjectIdField, EmbDocField, ListField, RefField, EmailField, DecimalField, SynonymField) from aiomongodel.utils import _Empty class EmbDoc(EmbeddedDocument): int_field = IntField(required=True) class WrongEmbDoc(EmbeddedDocument): wrong = StrField(required=True) class RefDoc(Document): str_field = StrField(required=False) class WrongRefDoc(Document): wrong = IntField(required=False) dt = datetime.strptime('1985-09-14 12:00:00', '%Y-%m-%d %H:%M:%S') ref_doc = RefDoc(_id=ObjectId('58ce6d537e592254b67a503d'), str_field='xxx') emb_doc = EmbDoc(int_field=1) wrong_ref_doc = RefDoc(_id=ObjectId('58ce6d537e592254b67a503d'), wrong=1) wrong_emb_doc = EmbDoc(wrong='xxx') FIELD_DEFAULT = [ (AnyField, 'xxx'), (StrField, 'xxx'), (IntField, 13), (FloatField, 1.3), (BoolField, True), (DateTimeField, dt), (ObjectIdField, ObjectId('58ce6d537e592254b67a503d')), (EmailField, '<EMAIL>'), (DecimalField, Decimal('0.005')), ] @pytest.mark.parametrize('field, expected', [ (StrField(required=False), None), (IntField(required=False), None), (FloatField(required=False), None), (BoolField(required=False), None), (DateTimeField(required=False), None), (ObjectIdField(required=False), None), (EmbDocField(EmbDoc, required=False), None), (ListField(EmbDocField(EmbDoc), required=False), None), (RefField(RefDoc, required=False), None), (EmailField(required=False), None), ]) def test_field_not_exist_get_value(field, expected): class Doc(Document): value = field assert Doc().value is expected @pytest.mark.parametrize('field, default', FIELD_DEFAULT) def test_field_attributes(field, default): class Doc(Document): value = field(required=False) assert isinstance(Doc.value, field) assert Doc.value.name == 'value' assert Doc.value.mongo_name == 'value' assert Doc.value.s == 'value' assert Doc.value.required is False assert Doc.value.default is _Empty assert Doc.value.choices is None assert Doc.value.allow_none is False class DocWithMongo(Document): value = field(required=True, default=default, mongo_name='val', choices=[default], allow_none=True) assert isinstance(DocWithMongo.value, field) assert DocWithMongo.value.name == 'value' assert DocWithMongo.value.mongo_name == 'val' assert DocWithMongo.value.s == 'val' assert DocWithMongo.value.required is True assert DocWithMongo.value.default == default assert DocWithMongo.value.choices == {default} assert DocWithMongo.value.allow_none is True @pytest.mark.parametrize('field, default', FIELD_DEFAULT) def test_field_default(field, default): class Doc(Document): value = field() assert Doc.value.default is _Empty class DocWithDefault(Document): value = field(required=True, default=default) assert DocWithDefault.value.default == default class DocWithCallableDefault(Document): value = field(required=True, default=lambda: default) assert DocWithCallableDefault.value.default == default def test_compound_field_name(): class EmbDoc(EmbeddedDocument): int_field = IntField(mongo_name='intf') class ComplexEmbDoc(EmbeddedDocument): emb_field = EmbDocField(EmbDoc, mongo_name='emb') class ComplexListDoc(EmbeddedDocument): lst_field = ListField(EmbDocField(ComplexEmbDoc)) class Doc(Document): int_field = IntField() emb_field = EmbDocField(EmbDoc, mongo_name='emb') complex_emb_field = EmbDocField(ComplexEmbDoc, mongo_name='cmplx_emb') lst_field = ListField(EmbDocField(EmbDoc), mongo_name='lst') lst_int_field = ListField(IntField(), mongo_name='lst_int') complex_lst_emb_field = EmbDocField(ComplexListDoc, mongo_name='clef') assert EmbDoc.int_field.s == 'intf' assert Doc.int_field.s == 'int_field' assert Doc.emb_field.s == 'emb' assert Doc.complex_emb_field.s == 'cmplx_emb' assert Doc.lst_field.s == 'lst' assert Doc.lst_int_field.s == 'lst_int' assert Doc.emb_field.int_field.s == 'emb.intf' assert Doc.complex_emb_field.emb_field.s == 'cmplx_emb.emb' assert Doc.lst_field.int_field.s == 'lst.intf' assert Doc.complex_emb_field.emb_field.int_field.s == 'cmplx_emb.emb.intf' mn = 'clef.lst_field.emb.intf' assert ( Doc.complex_lst_emb_field.lst_field.emb_field.int_field.s == mn) with pytest.raises(AttributeError): Doc.int_field.wrong_field.s with pytest.raises(AttributeError): Doc.emb_field.int_field.wrong_field.s with pytest.raises(AttributeError): Doc.lst_int_field.wrong_field.s with pytest.raises(AttributeError): Doc.complex_emb_field.emb_field.wrong.s with pytest.raises(AttributeError): Doc.complex_lst_emb_field.lst_field.wrong.s def test_compound_field_document_class(): class Doc(Document): emb = EmbDocField('test_fields.EmbDoc') ref = RefField('test_fields.RefDoc') lst_emb = ListField(EmbDocField('test_fields.EmbDoc')) lst_ref = ListField(RefField('test_fields.RefDoc')) lst_int = ListField(IntField()) wrong_emb = EmbDocField('xxx') wrong_ref = RefField('xxx') wrong_lst_emb = ListField(EmbDocField('xxx')) wrong_emb_doc = EmbDocField('test_fields.RefDoc') wrong_ref_doc = RefField('test_fields.EmbDoc') assert Doc.emb.document_class is EmbDoc assert Doc.ref.document_class is RefDoc assert Doc.lst_emb.document_class is EmbDoc assert Doc.lst_ref.document_class is None assert Doc.lst_int.document_class is None with pytest.raises(ImportError): Doc.wrong_emb.document_class with pytest.raises(ImportError): Doc.wrong_lst_emb.document_class with pytest.raises(ImportError): Doc.wrong_ref.document_class with pytest.raises(TypeError): class WrongEmbDoc(Document): wrong_emb = EmbDocField(RefDoc) with pytest.raises(TypeError): class WrongRefDoc(Document): wrong_ref = RefField(EmbDoc) with pytest.raises(TypeError): Doc.wrong_ref_doc.document_class with pytest.raises(TypeError): Doc.wrong_emb_doc.document_class @pytest.mark.parametrize('field, value, expected', [ (AnyField(), '1', '1'), (AnyField(), 1, 1), (AnyField(), True, True), (AnyField(), None, None), (StrField(), 'xxx', 'xxx'), (StrField(), None, None), (IntField(), 1, 1), (IntField(), None, None), (FloatField(), 13.0, pytest.approx(13.0)), (FloatField(), None, None), (BoolField(), True, True), (BoolField(), False, False), (BoolField(), None, None), (DateTimeField(), dt, dt), (DateTimeField(), None, None), (ObjectIdField(), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (ObjectIdField(), None, None), (EmbDocField(EmbDoc), emb_doc, {'int_field': 1}), (EmbDocField(EmbDoc), None, None), (ListField(IntField()), [], []), (ListField(IntField()), [1, 2, 3], [1, 2, 3]), (ListField(IntField()), None, None), (ListField(EmbDocField(EmbDoc)), [emb_doc], [{'int_field': 1}]), (ListField(EmbDocField(EmbDoc)), None, None), (RefField(RefDoc), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (RefField(RefDoc), ref_doc, ref_doc._id), (RefField(RefDoc), None, None), (EmailField(), '<EMAIL>', '<EMAIL>'), (EmailField(), None, None), (DecimalField(), Decimal('0.005'), Decimal128(Decimal('0.005'))), (DecimalField(), None, None), ]) def test_field_to_mongo(field, value, expected): class Doc(Document): value = field assert Doc.value.to_mongo(value) == expected @pytest.mark.parametrize('field, value, expected', [ (AnyField(), '1', '1'), (AnyField(), 1, 1), (AnyField(), True, True), (AnyField(), None, None), (StrField(), 'xxx', 'xxx'), (StrField(), None, None), (IntField(), 1, 1), (IntField(), None, None), (FloatField(), 13.0, pytest.approx(13.0)), (FloatField(), None, None), (BoolField(), True, True), (BoolField(), False, False), (BoolField(), None, None), (DateTimeField(), dt, dt), (DateTimeField(), None, None), (ObjectIdField(), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (ObjectIdField(), None, None), (ListField(IntField()), [], []), (ListField(IntField()), [1, 2, 3], [1, 2, 3]), (ListField(IntField()), None, None), (ListField(IntField()), [None], [None]), (RefField(RefDoc), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (RefField(RefDoc), None, None), (EmailField(), '<EMAIL>', '<EMAIL>'), (EmailField(), None, None), (DecimalField(), Decimal128(Decimal('0.005')), Decimal('0.005')), (DecimalField(), float(0.005), Decimal('0.005')), (DecimalField(), str(0.005), Decimal('0.005')), (DecimalField(), None, None), (EmbDocField(EmbDoc, allow_none=True), None, None) ]) def test_field_from_mongo(field, value, expected): class Doc(Document): value = field assert Doc.value.from_mongo(value) == expected FROM_DATA = [ (AnyField(), '1', '1'), (AnyField(), 1, 1), (AnyField(), True, True), (StrField(), '', ''), (StrField(), 'xxx', 'xxx'), (StrField(choices=('xxx', 'yyy')), 'xxx', 'xxx'), (StrField(), 1, '1'), (StrField(), True, 'True'), (StrField(allow_blank=False), '', ''), (StrField(choices=('xxx', 'yyy')), 'zzz', 'zzz'), (StrField(choices=('xxx', 'yyy')), 1, '1'), (IntField(), 1, 1), (IntField(), '1', 1), (IntField(choices=[*range(10)]), 5, 5), (IntField(choices=[*range(10)]), 'xxx', 'xxx'), (IntField(choices=[*range(10)]), 100, 100), (IntField(), 'xxx', 'xxx'), (IntField(), 1.3, 1), (IntField(gte=1, lte=13), 1, 1), (IntField(gte=1, lte=13), 13, 13), (IntField(gte=1, lte=13), 10, 10), (IntField(gte=1, lte=13), 0, 0), (IntField(gte=1, lte=13), 20, 20), (IntField(gt=1, lt=13), 10, 10), (IntField(gt=1, lt=13), 1, 1), (IntField(gt=1, lt=13), 13, 13), (IntField(gt=1, lt=13), 0, 0), (IntField(gt=1, lt=13), 20, 20), (FloatField(), 1, pytest.approx(1.0)), (FloatField(), 1.0, pytest.approx(1.0)), (FloatField(), '1.0', pytest.approx(1.0)), (FloatField(), '1', pytest.approx(1.0)), (FloatField(), 'x', 'x'), (FloatField(gt=1.0, lt=13.0), 10.0, pytest.approx(10.0)), (FloatField(gt=1.0, lt=13.0), 0.0, pytest.approx(0.0)), (FloatField(gt=1.0, lt=13.0), 20.0, pytest.approx(20.0)), (BoolField(), True, True), (BoolField(), False, False), (BoolField(), 13, True), (DateTimeField(), dt, dt), (DateTimeField(), True, True), (ObjectIdField(), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (ObjectIdField(), '58ce6d537e592254b67a503d', ObjectId('58ce6d537e592254b67a503d')), (ListField(IntField()), [], []), (ListField(IntField()), [1, 2, 3], [1, 2, 3]), (ListField(IntField()), ['1', '2', '3'], [1, 2, 3]), (ListField(IntField()), [0, 'xxx', 1], [0, 'xxx', 1]), (ListField(IntField(), min_length=3, max_length=5), [0, 1], [0, 1]), (ListField(IntField(), min_length=3, max_length=5), [0, 1, 2], [0, 1, 2]), (ListField(IntField(), min_length=3, max_length=5), [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]), (ListField(RefField(RefDoc)), [ref_doc], [ref_doc]), (ListField(RefField(RefDoc)), [1], [1]), (ListField(EmbDocField(EmbDoc)), [emb_doc], [emb_doc]), (ListField(EmbDocField(EmbDoc)), [1], [1]), (RefField(RefDoc), ObjectId('58ce6d537e592254b67a503d'), ObjectId('58ce6d537e592254b67a503d')), (RefField(RefDoc), ref_doc, ref_doc), (RefField(RefDoc), wrong_ref_doc, wrong_ref_doc), (RefField(RefDoc), 'xxx', 'xxx'), (EmbDocField(EmbDoc), emb_doc, emb_doc), (EmbDocField(EmbDoc), wrong_emb_doc, wrong_emb_doc), (EmbDocField(EmbDoc), 1, 1), (EmbDocField(EmbDoc), ref_doc, ref_doc), (EmailField(), '<EMAIL>', '<EMAIL>'), (EmailField(), 'example.com', 'example.com'), (EmailField(), '@example.com', '@example.com'), (EmailField(), '<EMAIL>', '<EMAIL>'), (EmailField(), 1, '1'), (DecimalField(), Decimal(1), Decimal(1)), (DecimalField(), '0.005', Decimal('0.005')), (DecimalField(gte=1, lte=13), '1.0', Decimal('1.0')), (DecimalField(gte=1, lte=13), '13', Decimal('13')), (DecimalField(gte=1, lte=13), '10.5', Decimal('10.5')), (DecimalField(gte=Decimal(1), lte=13), 0, 0), (DecimalField(gte=1, lte=13), Decimal('20.5'), Decimal('20.5')), (DecimalField(gt=1, lt=13), 10, Decimal(10)), (DecimalField(gt=1, lt=13), 1, 1), (DecimalField(gt=1, lt=Decimal('13.0')), 13, 13), (DecimalField(gt=1, lt=Decimal('13.0')), Decimal('0'), Decimal('0')), (DecimalField(gt=1, lt=13), Decimal('20'), Decimal('20')) ] @pytest.mark.parametrize('field, value, expected', FROM_DATA) def test_field_from_data(field, value, expected): class Doc(Document): value = field assert Doc.value.from_data(value) == expected @pytest.mark.parametrize('field, value, expected', FROM_DATA) def test_field_init(field, value, expected): class Doc(Document): value = field assert Doc(value=value).value == expected @pytest.mark.parametrize('field, value, expected', FROM_DATA) def test_field_assign(field, value, expected): class Doc(Document): value = field d = Doc(_empty=True) d.value = value assert d.value == expected def test_emb_doc_field(): class Doc(Document): emb_field = EmbDocField(EmbDoc) assert isinstance(Doc(emb_field={'int_field': 1}).emb_field, EmbDoc) d = Doc(_empty=True) d.emb_field = {'int_field': 1} assert isinstance(d.emb_field, EmbDoc) assert isinstance(Doc.emb_field.from_data({'int_field': 1}), EmbDoc) d = Doc.from_mongo({'emb_field': {'int_field': 1}}) assert isinstance(d.emb_field, EmbDoc) assert d.emb_field.int_field == 1 def test_list_field(): with pytest.raises(TypeError): class Doc(Document): lst_field = ListField(int) def test_filed_choices(): class Doc(Document): set_choices = StrField(choices={'xxx', 'yyy'}) dict_choices = StrField(choices={'xxx': 'AAA', 'yyy': 'BBB'}) d = Doc(set_choices='xxx', dict_choices='yyy') d.validate() d = Doc(set_choices='AAA', dict_choices='BBB') with pytest.raises(ValidationError) as excinfo: d.validate() assert excinfo.value.as_dict() == { 'set_choices': 'value does not match any variant', 'dict_choices': 'value does not match any variant', } @pytest.mark.parametrize('field, value, expected', [ # AnyField (AnyField(), '1', None), (AnyField(), 1, None), (AnyField(), True, None), (AnyField(allow_none=True), None, None), (AnyField(allow_none=False), None, ValidationError('none value is not allowed')), (AnyField(choices={'xxx', 'yyy'}), 'xxx', None), (AnyField(choices={'xxx', 'yyy'}), 1, ValidationError('value does not match any variant')), # StrField (StrField(), 'xxx', None), (StrField(allow_none=True), None, None), (StrField(allow_blank=True), '', None), (StrField(choices=('xxx', 'yyy')), 'xxx', None), (StrField(choices=('xxx', 'yyy'), max_length=2), 'xxx', None), (StrField(choices=('xxx', 'yyy'), regex=r'zzz'), 'xxx', None), (StrField(regex=r'[abc]+'), 'aa', None), (StrField(regex=re.compile(r'[abc]+')), 'aa', None), (StrField(min_length=2, max_length=3), 'aa', None), (StrField(allow_none=False), None, ValidationError('none value is not allowed')), (StrField(), 1, ValidationError("invalid value type")), (StrField(allow_none=True), True, ValidationError("invalid value type")), (StrField(allow_blank=False), '', ValidationError("blank value is not allowed")), (StrField(choices=('xxx', 'yyy')), 'zzz', ValidationError("value does not match any variant")), (StrField(choices=('xxx', 'yyy')), 1, ValidationError("invalid value type")), (StrField(regex=r'[abc]+'), 'd', ValidationError('value does not match pattern [abc]+')), (StrField(regex=re.compile(r'[abc]+')), 'd', ValidationError('value does not match pattern [abc]+')), (StrField(min_length=2, max_length=3), 'a', ValidationError('length is less than 2')), (StrField(min_length=2, max_length=3), 'aaaa', ValidationError('length is greater than 3')), # IntField (IntField(), 1, None), (IntField(allow_none=True), None, None), (IntField(choices=[*range(10)]), 5, None), (IntField(choices=[*range(10)]), 'xxx', ValidationError("invalid value type")), (IntField(choices=[*range(10)]), 100, ValidationError("value does not match any variant")), (IntField(), 'xxx', ValidationError("invalid value type")), (IntField(gte=1, lte=13), 1, None), (IntField(gte=1, lte=13), 13, None), (IntField(gte=1, lte=13), 10, None), (IntField(gte=1, lte=13), 0, ValidationError('value is less than 1')), (IntField(gte=1, lte=13), 20, ValidationError('value is greater than 13')), (IntField(gt=1, lt=13), 10, None), (IntField(gt=1, lt=13), 1, ValidationError('value should be greater than 1')), (IntField(gt=1, lt=13), 13, ValidationError('value should be less than 13')), (IntField(gt=1, lt=13), 0, ValidationError('value should be greater than 1')), (IntField(gt=1, lt=13), 20, ValidationError('value should be less than 13')), # FloatField (FloatField(), 1.0, None), (FloatField(allow_none=True), None, None), (FloatField(allow_none=False), None, ValidationError('none value is not allowed')), (FloatField(), 'x', ValidationError("invalid value type")), (FloatField(), '1.0', ValidationError("invalid value type")), (FloatField(gt=1.0, lt=13.0), 10.0, None), (FloatField(gt=1.0, lt=13.0), 0.0, ValidationError("value should be greater than 1.0")), (FloatField(gt=1.0, lt=13.0), 20.0, ValidationError("value should be less than 13.0")), # BoolField (BoolField(), True, None), (BoolField(), False, None), (BoolField(allow_none=True), None, None), (BoolField(allow_none=False), None, ValidationError('none value is not allowed')), (BoolField(), 13, ValidationError('invalid value type')), # DateTimeField (DateTimeField(), dt, None), (DateTimeField(allow_none=True), None, None), (DateTimeField(allow_none=False), None, ValidationError('none value is not allowed')), (DateTimeField(), True, ValidationError('invalid value type')), # ObjectIdField (ObjectIdField(), ObjectId('58ce6d537e592254b67a503d'), None), (ObjectIdField(allow_none=True), None, None), (ObjectIdField(allow_none=False), None, ValidationError('none value is not allowed')), (ObjectIdField(), '58ce6d537e592254b67a503d', ValidationError('invalid value type')), # ListField (ListField(IntField()), [], None), (ListField(IntField()), [1, 2, 3], None), (ListField(IntField(), allow_none=True), None, None), (ListField(IntField(), allow_none=False), None, ValidationError('none value is not allowed')), (ListField(IntField()), [0, 'xxx', 1], ValidationError({1: ValidationError('invalid value type')})), (ListField(IntField(), min_length=3, max_length=5), [0, 1], ValidationError('list length is less than 3')), (ListField(IntField(), min_length=3, max_length=5), [0, 1, 2], None), (ListField(IntField(), min_length=3, max_length=5), [0, 1, 2, 3, 4, 5], ValidationError('list length is greater than 5')), # (ListField(RefField(RefDoc)), [ref_doc], None), (ListField(RefField(RefDoc)), [1], ValidationError({0: ValidationError('invalid value type')})), (ListField(EmbDocField(EmbDoc)), [emb_doc], None), (ListField(EmbDocField(EmbDoc)), [1], ValidationError({0: ValidationError('invalid value type')})), # RefField (RefField(RefDoc), ObjectId('58ce6d537e592254b67a503d'), None), (RefField(RefDoc), ref_doc, None), (RefField(RefDoc, allow_none=True), None, None), (RefField(RefDoc, allow_none=False), None, ValidationError('none value is not allowed')), (RefField(RefDoc), 'xxx', ValidationError('invalid value type')), (RefField(RefDoc), WrongRefDoc(), ValidationError('invalid value type')), # EmbDocField (EmbDocField(EmbDoc), emb_doc, None), (EmbDocField(EmbDoc, allow_none=True), None, None), (EmbDocField(EmbDoc, allow_none=False), None, ValidationError('none value is not allowed')), (EmbDocField(EmbDoc), WrongEmbDoc(wrong='xxx'), ValidationError("invalid value type")), (EmbDocField(EmbDoc), 1, ValidationError("invalid value type")), (EmbDocField(EmbDoc), {'str_field': 1}, ValidationError("invalid value type")), (EmbDocField(EmbDoc), EmbDoc(int_field='xxx'), ValidationError({'int_field': ValidationError('invalid value type')})), (EmbDocField(EmbDoc), RefDoc(), ValidationError("invalid value type")), # EmailField (EmailField(), '<EMAIL>', None), (EmailField(allow_none=True), None, None), (EmailField(allow_none=False), None, ValidationError('none value is not allowed')), (EmailField(), 'example.com', ValidationError("value is not a valid email address")), (EmailField(), '@example.com', ValidationError("value is not a valid email address")), (EmailField(), '<EMAIL>', ValidationError("value is not a valid email address")), (EmailField(), 1, ValidationError("invalid value type")), (EmailField(max_length=10), '<EMAIL>', ValidationError("length is greater than 10")), # DecimalField (DecimalField(), Decimal(1), None), (DecimalField(allow_none=True), None, None), (DecimalField(allow_none=False), None, ValidationError('none value is not allowed')), (DecimalField(gte=1, lte=13), Decimal('1.0'), None), (DecimalField(gte=1, lte=13), Decimal('13'), None), (DecimalField(gte=1, lte=13), Decimal('10.5'), None), (DecimalField(gte=Decimal(1), lte=13), Decimal(0), ValidationError('value is less than 1')), (DecimalField(gte=1, lte=13), Decimal('20.5'), ValidationError('value is greater than 13')), (DecimalField(gt=1, lt=13), Decimal(10), None), (DecimalField(gt=1, lt=13), Decimal(1), ValidationError('value should be greater than 1')), (DecimalField(gt=1, lt=Decimal('13.0')), Decimal(13), ValidationError('value should be less than 13.0')), (DecimalField(gt=1, lt=Decimal('13.0')), Decimal('0'), ValidationError('value should be greater than 1')), (DecimalField(gt=1, lt=13), Decimal('20'), ValidationError('value should be less than 13')), ]) def test_fields_validation(field, value, expected): if expected is not None: with pytest.raises(ValidationError) as excinfo: field.validate(value) assert excinfo.value.as_dict() == expected.as_dict() else: # should be no errors field.validate(value) class DocWithSynonym(Document): _id = StrField(required=True, allow_blank=False) name = SynonymField(_id) class DocWithSynonymStr(Document): _id = StrField(required=True, allow_blank=False) name = SynonymField('_id') @pytest.mark.parametrize('Doc', [DocWithSynonym, DocWithSynonymStr]) def test_synonym_field(Doc): assert Doc.name is Doc._id assert Doc.name.name == '_id' assert Doc.name.s == '_id' assert Doc.meta.fields == {'_id': Doc._id} d = Doc(_id='totti') assert d.name == 'totti' d.name = 'francesco' assert d._id == 'francesco'
StarcoderdataPython
199839
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods """Documentation TBD""" from __future__ import unicode_literals from __future__ import print_function import logging # pylint: disable=unused-import from .common import container_type class baseimage(object): """Documentation TBD""" def __init__(self, **kwargs): """Documentation TBD""" #super(baseimage, self).__init__() self.__as = kwargs.get('AS', '') # Docker specific self.__as = kwargs.get('_as', self.__as) # Docker specific self.image = kwargs.get('image', 'nvcr.io/nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04') def toString(self, ctype): """Documentation TBD""" if ctype == container_type.DOCKER: image = 'FROM {}'.format(self.image) if self.__as: image = image + ' AS {}'.format(self.__as) return image elif ctype == container_type.SINGULARITY: return 'BootStrap: docker\nFrom: {}'.format(self.image) else: logging.error('Unknown container type') return ''
StarcoderdataPython
1738288
import base64 import math class DotDict(dict): """ a dictionary that supports dot notation access as well as dictionary access notation """ def __init__(self, dictionary): for key, val in dictionary.items(): self[key] = val def __setitem__(self, key, val): if isinstance(val, dict): val = self.__class__(val) return super().__setitem__(key, val) __setattr__ = __setitem__ __getattr__ = dict.__getitem__ class Hasher: @classmethod def index_qid_to_sid(cls, index, qid): # Remove '===...' padding - it's ugly and we can reconstruct it later encoded_index = base64.b32encode(index.encode()).decode().rstrip("=") sid = encoded_index + "_" + qid return sid @classmethod def sid_to_index_qid(cls, sid): index, _, qid = sid.partition("_") index = base64.b32decode(cls.pad(index).encode()).decode() return index, qid @classmethod def pad(cls, v, length=8): # TODO: Understand why it's 8 return v.ljust(math.ceil(float(len(v))/length)*length, "=")
StarcoderdataPython
173034
""" :Copyright: 2006-2021 <NAME> :License: Revised BSD (see `LICENSE` file for details) """ from byceps.services.authentication.session.models.current_user import ( CurrentUser, ) from byceps.services.authentication.session import service as session_service from byceps.services.shop.cart.models import Cart from byceps.services.shop.order import service as order_service from tests.integration.services.shop.helpers import create_orderer def get_current_user_for_user(user) -> CurrentUser: return session_service.get_authenticated_current_user( user, locale=None, permissions=frozenset() ) def place_order_with_items( storefront_id, user, created_at=None, items_with_quantity=None ): orderer = create_orderer(user) cart = Cart() if items_with_quantity is not None: for article, quantity in items_with_quantity: cart.add_item(article, quantity) order, _ = order_service.place_order( storefront_id, orderer, cart, created_at=created_at ) return order
StarcoderdataPython
3388440
# -*- coding: utf-8 -*- """ Created on Mon Apr 13 11:31:53 2020 @author: tobia """ import networkx as nx #import network filepath = '' print("importing network from" + filepath) comment_network = nx.read_gpickle(filepath) #define function to be applied in different shapes def surpress_problematic_nodes(problem = None, location = None, G = comment_network): #parameters require strings: what to look for in a node and where to look for it. example (surpress_problematic_nodes(problem = "$$", location = 'text')) #detect problematic content counter = 1 good_nodes = 0 bad_nodes = 0 problematic_nodes = [] #start debugging print("Checking for problematic nodes") for (node, attr) in G.nodes(data = True): #check whether text attribute contains $ signs and surpress them from the network if(problem in attr[location]): print("problematic node found") problematic_nodes.append(node) bad_nodes = bad_nodes + 1 else: print("node looks fine") good_nodes = good_nodes + 1 counter = counter + 1 #report on nodes print(str(good_nodes) + " nodes in the network") print(str(bad_nodes) + " problematic nodes collected from the network") print(str(len(G.nodes())) + " nodes in the network at collection end") print(str(len(G.edges())) + " edges in the network at collection end") print("collection of faulty nodes finished") #remove problematic nodes G.remove_nodes_from(problematic_nodes) print(str(bad_nodes) + " faulty nodes erased from the network") print(str(len(G.nodes())) + " nodes in the network after removal of problematic nodes") print(str(len(G.edges())) + " edges in the network after removal of problematic nodes") #execute funtions according to the problems that have risen surpress_problematic_nodes(problem = "$$", location = 'text') #save pickle to specified filepath filepath = "" #create comment_network.gpickle print("saving file to " + str(filepath)) nx.write_gpickle(comment_network, filepath) print("exe finnished")
StarcoderdataPython
1791573
<filename>common/camera_info.py import json import cv2 import numpy as np OAK_L_CALIBRATION_JSON = open('../resources/14442C10218CCCD200.json') OAK_L_CALIBRATION_DATA = json.load(OAK_L_CALIBRATION_JSON) OAK_L_CAMERA_RGB = OAK_L_CALIBRATION_DATA['cameraData'][2][1] OAK_L_CAMERA_LEFT = OAK_L_CALIBRATION_DATA['cameraData'][0][1] OAK_L_CAMERA_RIGHT = OAK_L_CALIBRATION_DATA['cameraData'][1][1] LR_Translation = np.array(list(OAK_L_CAMERA_LEFT['extrinsics']['translation'].values())) / 100 # Convert cm to m LR_Rotation = np.array(list(OAK_L_CAMERA_LEFT['extrinsics']['rotationMatrix'])) L_DISTORTION = np.array(OAK_L_CAMERA_LEFT['distortionCoeff']) L_INTRINSIC = np.array(OAK_L_CAMERA_LEFT['intrinsicMatrix']) R_DISTORTION = np.array(OAK_L_CAMERA_RIGHT['distortionCoeff']) R_INTRINSIC = np.array(OAK_L_CAMERA_RIGHT['intrinsicMatrix']) R1, R2, L_Projection, R_Projection, Q, L_ROI, R_ROI = cv2.stereoRectify(L_INTRINSIC, L_DISTORTION, R_INTRINSIC, R_DISTORTION, (1280, 720), LR_Rotation, LR_Translation) OAK_L_PARAMS = { 'l_intrinsic': L_INTRINSIC, 'r_intrinsic': R_INTRINSIC, 'l_distortion': L_DISTORTION, 'r_distortion': R_DISTORTION, 'l_projection': L_Projection, 'r_projection': R_Projection } # https://towardsdatascience.com/estimating-a-homography-matrix-522c70ec4b2c CR_Translation = np.array(list(OAK_L_CAMERA_LEFT['extrinsics']['translation'].values())).T / 100 # Convert cm to m CR_Rotation = np.array(list(OAK_L_CAMERA_RIGHT['extrinsics']['rotationMatrix'])).T H_CR = np.matmul(R_INTRINSIC, np.concatenate((CR_Rotation[:, 0:2], CR_Translation.reshape(3, 1)), axis=1)) RL_Rotation = LR_Rotation.T RL_Translation = LR_Translation * -1 H_LR = np.matmul(L_INTRINSIC, np.concatenate((RL_Rotation[:, 0:2], RL_Translation.reshape(3, 1)), axis=1))
StarcoderdataPython
1697697
""" Creating signor database :argument: DB_TYPE: name of the source database :argument: DB_DESTINATION: saving location of the created database files :argument: CSV_LIST: list of .csv files of each signalink pathway :argument: FILENAME_TO_PATHWAY_MAP: dictionary from files name to SLK pathway :argument: IS_DIRECT_MAP: dictionary of directness to MI ids :argument: EFFECT_MAP: dictionary of effect to MI ids :argument: MOLECULAR_MAP: dictionary of molecular background to MI ids Important! Since the signor db provides it's data in multiple files. This script can be called multiple times to generate a single SQL .db files. On the first run the script creates a signore.db files. If the script is called again on another signor .tsv files, it can extend the previously created signor.db files by adding 'signor.db' as a fourth argument. """ # -*- coding: utf-8 -*- import csv, sys from SLKlib.SQLiteDBApi.sqlite_db_api import PsimiSQL #Defining constants SQL_SEED = '../../../../../SLKlib/SQLiteDBApi/network-db-seed.sql' DB_TYPE = 'Signor' DB_DESTINATION = '../../../SLK_Core/output/signor' CSV_LIST = ['files/SIGNOR_WNT.csv', 'files/SIGNOR_TOLLR.csv', 'files/SIGNOR_TGFb.csv', 'files/SIGNOR_SAPK_JNK.csv', 'files/SIGNOR_P38.csv', 'files/SIGNOR_NOTCH.csv', 'files/SIGNOR_NFKBNC.csv', 'files/SIGNOR_NFKBC.csv', 'files/SIGNOR_MTOR.csv', 'files/SIGNOR_MCAPO.csv', 'files/SIGNOR_INSR.csv', 'files/SIGNOR_IL1R.csv', 'files/SIGNOR_IAPO.csv', 'files/SIGNOR_AMPK.csv', 'files/SIGNOR_BMP.csv', 'files/SIGNOR_DR.csv', 'files/SIGNOR_EGF.csv', 'files/SIGNOR_HPP.csv', 'files/SIGNOR_Hedgehog.csv' ] NUMBER_OF_FILES = len(CSV_LIST) FILENAME_TO_PATHWAY_MAP = { 'SIGNOR_AMPK.csv': 'Receptor tyrosine kinase', 'SIGNOR_BMP.csv': 'TGF', 'SIGNOR_DR.csv': 'TNF pathway', 'SIGNOR_EGF.csv': 'Receptor tyrosine kinase', 'SIGNOR_HPP.csv': 'Hippo', 'SIGNOR_Hedgehog.csv': 'Hedgehog', 'SIGNOR_IAPO.csv': 'TNF pathway', 'SIGNOR_IL1R.csv': 'JAK/STAT', 'SIGNOR_INSR.csv': 'Receptor tyrosine kinase', 'SIGNOR_MCAPO.csv': 'TNF pathway', 'SIGNOR_MTOR.csv': 'Receptor tyrosine kinase', 'SIGNOR_NFKBC.csv': 'Innate immune pathways', 'SIGNOR_NFKBNC.csv': 'Innate immune pathways', 'SIGNOR_NOTCH.csv': 'Notch', 'SIGNOR_P38.csv': 'Receptor tyrosine kinase', 'SIGNOR_SAPK_JNK.csv': 'Receptor tyrosine kinase', 'SIGNOR_TGFb.csv': 'TGF', 'SIGNOR_TOLLR.csv': 'Toll-like receptor', 'SIGNOR_WNT.csv': 'WNT/Wingless' } IS_DIRECT_MAP = { "YES": "MI:0407(direct interaction)", "NO": "indirect", "UNK": "unknown" } EFFECT_MAP = { 'Unknown': 'MI:0190(interaction type)', 'down-regulates': 'MI:2240(down-regulates)', "down-regulates activity": 'MI:2241(down-regulates activity)', "down-regulates quantity": 'MI:2242(down-regulates quantity)', "down-regulates quantity by destabilization": 'MI:2244(down-regulates quantity by destabilization)', "down-regulates quantity by repression": 'MI:2243(down-regulates quantity by repression)', 'unknown': 'MI:0190(interaction type)', 'up-regulates': 'MI:2235(up-regulates)', "up-regulates activity": 'MI:2236(up-regulates activity)', "up-regulates quantity by expression": 'MI:2238(up-regulates quantity by expression)', "up-regulates quantity by stabilization": 'MI:2239(up-regulates quantity by stabilization)' } MOLECULAR_MAP = { 'binding' : 'MI:0462(bind)', 'transcriptional regulation' : 'MI:2247(transcriptional regulation)', 'phosphorylation' : 'MI:0217(phosphorylation reaction)', '' : 'MI:0190(interaction type)', 'ubiquitination' : 'MI:0220(ubiquitination reaction)', 'relocalization' : 'MI:2256(relocalization reaction)', 'dephosphorylation' : 'MI:0203(dephosphorylation reaction)', 'cleavage' : 'MI:0194(cleavage reaction)', 'deubiquitination' : 'MI:0204(deubiquitination reaction)', 'guanine nucleotide exchange factor' : 'MI:2252(guanine nucleotide exchange factor)' } def main(logger): # Initiating a PsimiSQL class db_api = PsimiSQL(SQL_SEED) # Making the script user friendly file_counter = 1 print("Started parsing .csv files") # Parsing data files for csv_file_location in CSV_LIST: csv_file_name = csv_file_location.split('/')[-1] sys.stdout.write("Parsing '%s' (%d/%d)\r" % (csv_file_name, file_counter, NUMBER_OF_FILES)) csv_file = csv.reader(open(csv_file_location, encoding="ISO-8859-1"), delimiter = ';', quotechar = '"') pathway = FILENAME_TO_PATHWAY_MAP[csv_file_name] # Skipping the header for cells in csv_file: type_a = cells[1].lower() type_b = cells[5].lower() taxids = cells[12].split(';')[0] if type_a == 'protein' and type_b == 'protein' and taxids == '9606': # Dealing with the first node node_a_name = f'Uniprot:{cells[2]}' node_a_taxid = 'taxid:' + taxids node_a_taxid = node_a_taxid node_a_dict = {} # If the node already exists in the db, than only it's pathway will be modified, otherwise it will be added to the db if db_api.get_node(node_a_name,node_a_taxid): node_a_dict = db_api.get_node(node_a_name,node_a_taxid) if not pathway in node_a_dict['pathways']: node_a_dict['pathways'] += '|'+pathway db_api.update_node(node_a_dict) else: node_a_dict = { 'name' : node_a_name, 'alt_accession' : 'entrez gene/locuslink:'+cells[0], 'tax_id' : node_a_taxid, 'pathways' : pathway, 'aliases' : None, 'topology' : "" } db_api.insert_node(node_a_dict) # Doing the same with node b node_b_name = f'Uniprot:{cells[2]}' node_b_taxid = 'taxid:' + taxids node_b_taxid = node_b_taxid node_b_dict = {} # If the node already exists in the db, than only it's pathway will be modified, otherwise it will be added to the db if db_api.get_node(node_b_name,node_b_taxid): node_b_dict = db_api.get_node(node_b_name,node_b_taxid) if not pathway in node_b_dict['pathways']: node_b_dict['pathways'] += '|'+pathway db_api.update_node(node_b_dict) else: node_b_dict = { 'name' : node_b_name, 'alt_accession' : 'entrez gene/locuslink:'+cells[4], 'tax_id' : node_b_taxid, 'pathways' : pathway, 'aliases' : None, 'topology' : "" } db_api.insert_node(node_b_dict) # Getting publication id publication_id = ['pubmed:'+cells[21]] publication_id.append("pubmed:26467481") effect = EFFECT_MAP[cells[8]] molecular_background = MOLECULAR_MAP[cells[9]] inttype_final = effect + '|' + molecular_background is_direct = IS_DIRECT_MAP[cells[22]].strip() if "MI:0407(direct interaction)" in is_direct: is_direct = "true" else: is_direct = "false" # Setting up the interaction type interaction_types = "%s|is_directed:%s|is_direct:%s" \ % (inttype_final, "true", is_direct) edge_dict = { 'interaction_detection_method': None, 'first_author': None, 'publication_ids': "|".join(publication_id), 'interaction_types': interaction_types, 'source_db': 'Signor', 'interaction_identifiers': None, 'confidence_scores': None, 'layer': "8" } db_api.insert_edge(node_a_dict,node_b_dict,edge_dict) print("Parsing files finished!") print("Finished parsing Signor. Saving db to %s.db" % (DB_TYPE)) db_api.save_db_to_file(DB_DESTINATION) if __name__ == '__main__': main()
StarcoderdataPython
1755031
<filename>demo/lib/faker_demo.py<gh_stars>1-10 from random import choice import faker f = faker.Faker('zh_CN') # address print('f.country(): {}'.format(f.country())) print('f.country_code(): {}'.format(f.country_code())) print('f.address(): {}'.format(f.address())) print('f.city: {}'.format(f.city())) print('f.city_name: {}'.format(f.city_name())) print('f.city_suffix: {}'.format(f.city_suffix())) print('f.street_name: {}'.format(f.street_name())) print('f.postcode: {}'.format(f.postcode())) # text print('f.text: {}'.format(f.text(20))) print('f.words: {}'.format(f.words(4))) # person print() print('f.name: {}'.format(f.name())) print('f.first_name: {}'.format(f.first_name())) print('f.first_name_male: {}'.format(f.first_name_male())) print('f.first_name_female: {}'.format(f.first_name_female())) print('f.last_name: {}'.format(f.last_name())) print('f.last_name_male: {}'.format(f.last_name_male())) print('f.last_name_female: {}'.format(f.last_name_female())) # phone print() print('f.phone_number: {}'.format(f.phone_number())) # python print() print('f.pyfloat:{}'.format(f.pyfloat())) print('f.pyint:{}'.format(f.pyint())) print('f.pylist: {}'.format(f.pylist(3))) print('f.py str: {}'.format(f.pystr())) print('f.pydict: {}'.format(f.pydict(3))) # job print('f.job: {}'.format(f.job())) # uuid print('f.uuid4():{}'.format(f.uuid4())) print('f.uuid4(cast_to=int):{}'.format(f.uuid4(cast_to=int))) print('f.uuid4(cast_to=lambda x: x):{}'.format(f.uuid4(cast_to=lambda x: x))) # internet print('网络') print('f.image_url(200, 300):{}'.format(f.image_url(200, 300))) print('f.hostname():{}'.format(f.hostname())) print('f.url():{}'.format(f.url())) schemes_sets = [['usb'], ['ftp', 'file'], ['usb', 'telnet', 'http']] print('f.url(schemes=): {}'.format(f.url(schemes=choice(schemes_sets)))) print('f.domain_name(): {}'.format(f.domain_name(10))) print('f.tld(): {}'.format(f.tld())) print('f.email(): {}'.format(f.email())) print('f.domain_word(): {}'.format(f.domain_word())) # geo print('地理位置') print('f.local_latlng(country_code=\'CN\'): {}'.format(f.local_latlng(country_code='CN'))) print('f.local_latlng(country_code=\'CN\', coords_only=True): {}'.format( f.local_latlng(country_code='US', coords_only=True))) print('factory.longitude(): {}'.format(f.longitude())) print('factory.latitude(): {}'.format(f.latitude())) print('factory.coordinate(): {}'.format(f.coordinate())) print('factory.coordinate(center=23): {}'.format(f.coordinate(center=23))) print('factory.location_on_land(): {}'.format(f.location_on_land())) print('f.location_on_land(coords_only=True): {}'.format(f.location_on_land(coords_only=True))) # file print('文件') print('f.file_path(): {}'.format(f.file_path())) print('f.unix_device(\'sdas\'): {}'.format(f.unix_device('sdas'))) print('f.file_path(category=\'image\'): {}'.format(f.file_path(category='image'))) print('f.file_path(depth=3): {}'.format(f.file_path(depth=4))) print('f.file_path(extension=\'pdf\')): {}'.format(f.file_path(extension='pdf'))) print('f.unix_device(): {}'.format(f.unix_device())) print('f.unix_partition(): {}'.format(f.unix_partition())) print('f.unix_partition(\'sff\'): {}'.format(f.unix_partition('sff'))) # datetime print('日期') print('f.date_of_birth(minimum_age=0): {}'.format(f.date_of_birth(minimum_age=0))) print('f.date_of_birth(minimum_age=20, maximum_age=22): {}'.format(f.date_of_birth(minimum_age=20, maximum_age=22))) # 公司 print('公司') print('f.company(): {}'.format(f.company())) print('f.company_prefix(): {}'.format(f.company_prefix())) print('f.company_suffix(): {}'.format(f.company_suffix())) # color print('颜色') print('f.color_name(): {}'.format(f.color_name())) print('f.safe_color_name(): {}'.format(f.safe_color_name())) print('f.rgb_css_color(): {}'.format(f.rgb_css_color())) print('f.hex_color(): {}'.format(f.hex_color())) print('f.safe_hex_color(): {}'.format(f.safe_hex_color())) # bank print('银行账户') print('f.bban(): {}'.format(f.bban())) print('f.iban(): {}'.format(f.iban())) # automotive print('汽车') print('f.license_plate(): {}'.format(f.license_plate()))
StarcoderdataPython
1629895
""" Stores the class for TimeSeriesDisplay. """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import datetime as dt import warnings from re import search as re_search from matplotlib import colors as mplcolors from mpl_toolkits.axes_grid1 import make_axes_locatable from .plot import Display # Import Local Libs from . import common from ..utils import datetime_utils as dt_utils from ..utils.datetime_utils import reduce_time_ranges, determine_time_delta from ..qc.qcfilter import parse_bit from ..utils import data_utils from ..utils.geo_utils import get_sunrise_sunset_noon from copy import deepcopy from scipy.interpolate import NearestNDInterpolator class TimeSeriesDisplay(Display): """ This subclass contains routines that are specific to plotting time series plots from data. It is inherited from Display and therefore contains all of Display's attributes and methods. Examples -------- To create a TimeSeriesDisplay with 3 rows, simply do: .. code-block:: python ds = act.read_netcdf(the_file) disp = act.plotting.TimeSeriesDisplay( ds, subplot_shape=(3,), figsize=(15,5)) The TimeSeriesDisplay constructor takes in the same keyword arguments as plt.subplots. For more information on the plt.subplots keyword arguments, see the `matplotlib documentation <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html>`_. If no subplot_shape is provided, then no figure or axis will be created until add_subplots or plots is called. """ def __init__(self, obj, subplot_shape=(1,), ds_name=None, **kwargs): super().__init__(obj, subplot_shape, ds_name, **kwargs) def day_night_background(self, dsname=None, subplot_index=(0, )): """ Colorcodes the background according to sunrise/sunset. Parameters ---------- dsname : None or str If there is more than one datastream in the display object the name of the datastream needs to be specified. If set to None and there is only one datastream then ACT will use the sole datastream in the object. subplot_index : 1 or 2D tuple, list, or array The index to the subplot to place the day and night background in. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream to derive the " + "information needed for the day and night " + "background when 2 or more datasets are in " + "the display object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Get File Dates try: file_dates = self._obj[dsname].attrs['_file_dates'] except KeyError: file_dates = [] if len(file_dates) == 0: sdate = dt_utils.numpy_to_arm_date( self._obj[dsname].time.values[0]) edate = dt_utils.numpy_to_arm_date( self._obj[dsname].time.values[-1]) file_dates = [sdate, edate] all_dates = dt_utils.dates_between(file_dates[0], file_dates[-1]) if self.axes is None: raise RuntimeError("day_night_background requires the plot to " "be displayed.") ax = self.axes[subplot_index] # Find variable names for latitude and longitude variables = list(self._obj[dsname].data_vars) lat_name = [var for var in ['lat', 'latitude'] if var in variables] lon_name = [var for var in ['lon', 'longitude'] if var in variables] if len(lat_name) == 0: lat_name = None else: lat_name = lat_name[0] if len(lon_name) == 0: lon_name = None else: lon_name = lon_name[0] # Variable name does not match, look for standard_name declaration if lat_name is None or lon_name is None: for var in variables: try: if self._obj[dsname][var].attrs['standard_name'] == 'latitude': lat_name = var except KeyError: pass try: if self._obj[dsname][var].attrs['standard_name'] == 'longitude': lon_name = var except KeyError: pass if lat_name is not None and lon_name is not None: break if lat_name is None or lon_name is None: return try: if self._obj[dsname][lat_name].data.size > 1: # Look for non-NaN values to use for locaiton. If not found use first value. lat = self._obj[dsname][lat_name].values index = np.where(np.isfinite(lat))[0] if index.size == 0: index = [0] lat = float(lat[index[0]]) # Look for non-NaN values to use for locaiton. If not found use first value. lon = self._obj[dsname][lon_name].values index = np.where(np.isfinite(lon))[0] if index.size == 0: index = [0] lon = float(lon[index[0]]) else: lat = float(self._obj[dsname][lat_name].values) lon = float(self._obj[dsname][lon_name].values) except AttributeError: return if not np.isfinite(lat): warnings.warn(f"Latitude value in dataset of '{lat}' is not finite. ", RuntimeWarning) return if not np.isfinite(lon): warnings.warn(f"Longitude value in dataset of '{lon}' is not finite. ", RuntimeWarning) return lat_range = [-90, 90] if not (lat_range[0] <= lat <= lat_range[1]): warnings.warn(f"Latitude value in dataset of '{lat}' not within acceptable " f"range of {lat_range[0]} <= latitude <= {lat_range[1]}. ", RuntimeWarning) return lon_range = [-180, 180] if not (lon_range[0] <= lon <= lon_range[1]): warnings.warn(f"Longitude value in dataset of '{lon}' not within acceptable " f"range of {lon_range[0]} <= longitude <= {lon_range[1]}. ", RuntimeWarning) return # initialize the plot to a gray background for total darkness rect = ax.patch rect.set_facecolor('0.85') # Get date ranges to plot plot_dates = [] for f in all_dates: for ii in [-1, 0, 1]: plot_dates.append(f + dt.timedelta(days=ii)) # Get sunrise, sunset and noon times sunrise, sunset, noon = get_sunrise_sunset_noon(lat, lon, plot_dates) # Plot daylight for ii in range(0, len(sunrise)): ax.axvspan(sunrise[ii], sunset[ii], facecolor='#FFFFCC', zorder=0) # Plot noon line for ii in noon: ax.axvline(x=ii, linestyle='--', color='y', zorder=1) def set_xrng(self, xrng, subplot_index=(0, )): """ Sets the x range of the plot. Parameters ---------- xrng : 2 number array The x limits of the plot. subplot_index : 1 or 2D tuple, list, or array The index of the subplot to set the x range of. """ if self.axes is None: raise RuntimeError("set_xrng requires the plot to be displayed.") if not hasattr(self, 'xrng') and len(self.axes.shape) == 2: self.xrng = np.zeros((self.axes.shape[0], self.axes.shape[1], 2), dtype='datetime64[D]') elif not hasattr(self, 'xrng') and len(self.axes.shape) == 1: self.xrng = np.zeros((self.axes.shape[0], 2), dtype='datetime64[D]') with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) self.axes[subplot_index].set_xlim(xrng) self.xrng[subplot_index, :] = np.array(xrng, dtype='datetime64[D]') def set_yrng(self, yrng, subplot_index=(0, )): """ Sets the y range of the plot. Parameters ---------- yrng : 2 number array The y limits of the plot. subplot_index : 1 or 2D tuple, list, or array The index of the subplot to set the x range of. """ if self.axes is None: raise RuntimeError("set_yrng requires the plot to be displayed.") if not hasattr(self, 'yrng') and len(self.axes.shape) == 2: self.yrng = np.zeros((self.axes.shape[0], self.axes.shape[1], 2)) elif not hasattr(self, 'yrng') and len(self.axes.shape) == 1: self.yrng = np.zeros((self.axes.shape[0], 2)) if yrng[0] == yrng[1]: yrng[1] = yrng[1] + 1 self.axes[subplot_index].set_ylim(yrng) self.yrng[subplot_index, :] = yrng def plot(self, field, dsname=None, subplot_index=(0, ), cmap=None, set_title=None, add_nan=False, day_night_background=False, invert_y_axis=False, abs_limits=(None, None), time_rng=None, y_rng=None, use_var_for_y=None, set_shading='auto', assessment_overplot=False, overplot_marker='.', overplot_behind=False, overplot_markersize=6, assessment_overplot_category={'Incorrect': ['Bad', 'Incorrect'], 'Suspect': ['Indeterminate', 'Suspect']}, assessment_overplot_category_color={'Incorrect': 'red', 'Suspect': 'orange'}, force_line_plot=False, labels=False, cbar_label=None, secondary_y=False, **kwargs): """ Makes a timeseries plot. If subplots have not been added yet, an axis will be created assuming that there is only going to be one plot. Parameters ---------- field : str The name of the field to plot. dsname : None or str If there is more than one datastream in the display object the name of the datastream needs to be specified. If set to None and there is only one datastream ACT will use the sole datastream in the object. subplot_index : 1 or 2D tuple, list, or array The index of the subplot to set the x range of. cmap : matplotlib colormap The colormap to use. set_title : str The title for the plot. add_nan : bool Set to True to fill in data gaps with NaNs. day_night_background : bool Set to True to fill in a color coded background. according to the time of day. abs_limits : tuple or list Sets the bounds on plot limits even if data values exceed those limits. Set to (ymin,ymax). Use None if only setting minimum or maximum limit, i.e. (22., None). time_rng : tuple or list List or tuple with (min, max) values to set the x-axis range limits. y_rng : tuple or list List or tuple with (min, max) values to set the y-axis range use_var_for_y : str Set this to the name of a data variable in the Dataset to use as the y-axis variable instead of the default dimension. Useful for instances where data has an index-based dimension instead of a height-based dimension. If shapes of arrays do not match it will automatically revert back to the original ydata. set_shading : string Option to to set the matplotlib.pcolormesh shading parameter. Default to 'auto' assessment_overplot : boolean Option to overplot quality control colored symbols over plotted data using flag_assessment categories. overplot_marker : str Marker to use for overplot symbol. overplot_behind : bool Place the overplot marker behind the data point. overplot_markersize : float or int Size of overplot marker. If overplot_behind or force_line_plot are set the marker size will be double overplot_markersize so the color is visible. assessment_overplot_category : dict Lookup to categorize assessments into groups. This allows using multiple terms for the same quality control level of failure. Also allows adding more to the defaults. assessment_overplot_category_color : dict Lookup to match overplot category color to assessment grouping. force_line_plot : boolean Option to plot 2D data as 1D line plots. labels : boolean or list Option to overwrite the legend labels. Must have same dimensions as number of lines plotted. cbar_label : str Option to overwrite default colorbar label. secondary_y : boolean Option to plot on secondary y axis. **kwargs : keyword arguments The keyword arguments for :func:`plt.plot` (1D timeseries) or :func:`plt.pcolormesh` (2D timeseries). Returns ------- ax : matplotlib axis handle The matplotlib axis handle of the plot. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Get data and dimensions data = self._obj[dsname][field] dim = list(self._obj[dsname][field].dims) xdata = self._obj[dsname][dim[0]] if 'units' in data.attrs: ytitle = ''.join(['(', data.attrs['units'], ')']) else: ytitle = field if cbar_label is None: cbar_default = ytitle if len(dim) > 1: if use_var_for_y is None: ydata = self._obj[dsname][dim[1]] else: ydata = self._obj[dsname][use_var_for_y] ydata_dim1 = self._obj[dsname][dim[1]] if np.shape(ydata) != np.shape(ydata_dim1): ydata = ydata_dim1 units = ytitle if 'units' in ydata.attrs.keys(): units = ydata.attrs['units'] ytitle = ''.join(['(', units, ')']) else: units = '' ytitle = dim[1] # Create labels if 2d as 1d if force_line_plot is True: if labels is True: labels = [' '.join([str(d), units]) for d in ydata.values] ytitle = f"({data.attrs['units']})" ydata = None else: ydata = None # Get the current plotting axis, add day/night background and plot data if self.fig is None: self.fig = plt.figure() if self.axes is None: self.axes = np.array([plt.axes()]) self.fig.add_axes(self.axes[0]) # Set up secondary y axis if requested if secondary_y is False: ax = self.axes[subplot_index] else: ax = self.axes[subplot_index].twinx() if ydata is None: if day_night_background is True: self.day_night_background(subplot_index=subplot_index, dsname=dsname) # If limiting data being plotted use masked arrays # Need to do it this way because of autoscale() method if abs_limits[0] is not None and abs_limits[1] is not None: data = np.ma.masked_outside( data, abs_limits[0], abs_limits[1]) elif abs_limits[0] is not None and abs_limits[1] is None: data = np.ma.masked_less_equal( data, abs_limits[0]) elif abs_limits[0] is None and abs_limits[1] is not None: data = np.ma.masked_greater_equal( data, abs_limits[1]) # Plot the data lines = ax.plot(xdata, data, '.', **kwargs) # Check if we need to call legend method after plotting. This is only # called when no assessment overplot is called. add_legend = False if 'label' in kwargs.keys(): add_legend = True # Overplot failing data if requested if assessment_overplot: # If we are doing forced line plot from 2D data need to manage # legend lables. Will make arrays to hold labels of QC failing # because not set when labels not set. if not isinstance(labels, list) and add_legend is False: labels = [] lines = [] # For forced line plot need to plot QC behind point instead of # on top of point. zorder = None if force_line_plot or overplot_behind: zorder = 0 overplot_markersize *= 2. for assessment, categories in assessment_overplot_category.items(): flag_data = self._obj[dsname].qcfilter.get_masked_data( field, rm_assessments=categories, return_inverse=True) if np.invert(flag_data.mask).any() and np.isfinite(flag_data).any(): try: flag_data.mask = np.logical_or(data.mask, flag_data.mask) except AttributeError: pass qc_ax = ax.plot( xdata, flag_data, marker=overplot_marker, linestyle='', markersize=overplot_markersize, color=assessment_overplot_category_color[assessment], label=assessment, zorder=zorder) # If labels keyword is set need to add labels for calling legend if isinstance(labels, list): # If plotting forced_line_plot need to subset the Line2D object # so we don't have more than one added to legend. if len(qc_ax) > 1: lines.extend(qc_ax[:1]) else: lines.extend(qc_ax) labels.append(assessment) add_legend = True # Add legend if labels are available if isinstance(labels, list): ax.legend(lines, labels) elif add_legend: ax.legend() else: # Add in nans to ensure the data are not streaking if add_nan is True: xdata, data = data_utils.add_in_nan(xdata, data) # Sets shading parameter to auto. Matplotlib will check deminsions. # If X,Y and C are same deminsions shading is set to nearest. # If X and Y deminsions are 1 greater than C shading is set to flat. mesh = ax.pcolormesh(np.asarray(xdata), ydata, data.transpose(), shading=set_shading, cmap=cmap, edgecolors='face', **kwargs) # Set Title if set_title is None: set_title = ' '.join([dsname, field, 'on', dt_utils.numpy_to_arm_date( self._obj[dsname].time.values[0])]) if secondary_y is False: ax.set_title(set_title) # Set YTitle ax.set_ylabel(ytitle) # Set X Limit - We want the same time axes for all subplots if not hasattr(self, 'time_rng'): if time_rng is not None: self.time_rng = list(time_rng) else: self.time_rng = [xdata.min().values, xdata.max().values] self.set_xrng(self.time_rng, subplot_index) # Set Y Limit if y_rng is not None: self.set_yrng(y_rng) if hasattr(self, 'yrng'): # Make sure that the yrng is not just the default if ydata is None: if abs_limits[0] is not None or abs_limits[1] is not None: our_data = data else: our_data = data.values else: our_data = ydata finite = np.isfinite(our_data) if finite.any(): our_data = our_data[finite] if invert_y_axis is False: yrng = [np.min(our_data), np.max(our_data)] else: yrng = [np.max(our_data), np.min(our_data)] else: yrng = [0, 1] # Check if current range is outside of new range an only set # values that work for all data plotted. current_yrng = ax.get_ylim() if yrng[0] > current_yrng[0]: yrng[0] = current_yrng[0] if yrng[1] < current_yrng[1]: yrng[1] = current_yrng[1] # Set y range the normal way if not secondary y # If secondary, just use set_ylim if secondary_y is False: self.set_yrng(yrng, subplot_index) else: ax.set_ylim(yrng) # Set X Format if len(subplot_index) == 1: days = (self.xrng[subplot_index, 1] - self.xrng[subplot_index, 0]) else: days = (self.xrng[subplot_index[0], subplot_index[1], 1] - self.xrng[subplot_index[0], subplot_index[1], 0]) myFmt = common.get_date_format(days) ax.xaxis.set_major_formatter(myFmt) # Set X format - We want the same time axes for all subplots if not hasattr(self, 'time_fmt'): self.time_fmt = myFmt # Put on an xlabel, but only if we are making the bottom-most plot if subplot_index[0] == self.axes.shape[0] - 1: ax.set_xlabel('Time [UTC]') if ydata is not None: if cbar_label is None: self.add_colorbar(mesh, title=cbar_default, subplot_index=subplot_index) else: self.add_colorbar(mesh, title=''.join(['(', cbar_label, ')']), subplot_index=subplot_index) return ax def plot_barbs_from_spd_dir(self, dir_field, spd_field, pres_field=None, dsname=None, **kwargs): """ This procedure will make a wind barb plot timeseries. If a pressure field is given and the wind fields are 1D, which, for example, would occur if one wants to plot a timeseries of rawinsonde data, then a time-height cross section of winds will be made. Note: This procedure calls plot_barbs_from_u_v and will take in the same keyword arguments as that procedure. Parameters ---------- dir_field : str The name of the field specifying the wind direction in degrees. 0 degrees is defined to be north and increases clockwise like what is used in standard meteorological notation. spd_field : str The name of the field specifying the wind speed in m/s. pres_field : str The name of the field specifying pressure or height. If using height coordinates, then we recommend setting invert_y_axis to False. dsname : str The name of the datastream to plot. Setting to None will make ACT attempt to autodetect this. kwargs : dict Any additional keyword arguments will be passed into :func:`act.plotting.TimeSeriesDisplay.plot_barbs_from_u_and_v`. Returns ------- the_ax : matplotlib axis handle The handle to the axis where the plot was made on. Examples -------- ..code-block :: python sonde_ds = act.io.armfiles.read_netcdf( act.tests.sample_files.EXAMPLE_TWP_SONDE_WILDCARD) BarbDisplay = act.plotting.TimeSeriesDisplay( {'sonde_darwin': sonde_ds}, figsize=(10,5)) BarbDisplay.plot_barbs_from_spd_dir('deg', 'wspd', 'pres', num_barbs_x=20) """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Make temporary field called tempu, tempv spd = self._obj[dsname][spd_field] dir = self._obj[dsname][dir_field] tempu = -np.sin(np.deg2rad(dir)) * spd tempv = -np.cos(np.deg2rad(dir)) * spd self._obj[dsname]["temp_u"] = deepcopy(self._obj[dsname][spd_field]) self._obj[dsname]["temp_v"] = deepcopy(self._obj[dsname][spd_field]) self._obj[dsname]["temp_u"].values = tempu self._obj[dsname]["temp_v"].values = tempv the_ax = self.plot_barbs_from_u_v("temp_u", "temp_v", pres_field, dsname, **kwargs) del self._obj[dsname]["temp_u"], self._obj[dsname]["temp_v"] return the_ax def plot_barbs_from_u_v(self, u_field, v_field, pres_field=None, dsname=None, subplot_index=(0, ), set_title=None, day_night_background=False, invert_y_axis=True, num_barbs_x=20, num_barbs_y=20, use_var_for_y=None, **kwargs): """ This function will plot a wind barb timeseries from u and v wind data. If pres_field is given, a time-height series will be plotted from 1-D wind data. Parameters ---------- u_field : str The name of the field containing the U component of the wind. v_field : str The name of the field containing the V component of the wind. pres_field : str or None The name of the field containing the pressure or height. Set to None to not use this. dsname : str or None The name of the datastream to plot. Setting to None will make ACT automatically try to determine this. subplot_index : 2-tuple The index of the subplot to make the plot on. set_title : str or None The title of the plot. day_night_background : bool Set to True to plot a day/night background. invert_y_axis : bool Set to True to invert the y axis (i.e. for plotting pressure as the height coordinate). num_barbs_x : int The number of wind barbs to plot in the x axis. num_barbs_y : int The number of wind barbs to plot in the y axis. cmap : matplotlib.colors.LinearSegmentedColormap A color map to use with wind barbs. If this is set the plt.barbs routine will be passed the C parameter scaled as sqrt of sum of the squares and used with the passed in color map. A colorbar will also be added. Setting the limits of the colorbar can be done with 'clim'. Setting this changes the wind barbs from black to colors. use_var_for_y : str Set this to the name of a data variable in the Dataset to use as the y-axis variable instead of the default dimension. Useful for instances where data has an index-based dimension instead of a height-based dimension. If shapes of arrays do not match it will automatically revert back to the original ydata. **kwargs : keyword arguments Additional keyword arguments will be passed into plt.barbs. Returns ------- ax : matplotlib axis handle The axis handle that contains the reference to the constructed plot. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Get data and dimensions u = self._obj[dsname][u_field].values v = self._obj[dsname][v_field].values dim = list(self._obj[dsname][u_field].dims) xdata = self._obj[dsname][dim[0]].values num_x = xdata.shape[-1] barb_step_x = round(num_x / num_barbs_x) if barb_step_x == 0: barb_step_x = 1 if len(dim) > 1 and pres_field is None: if use_var_for_y is None: ydata = self._obj[dsname][dim[1]] else: ydata = self._obj[dsname][use_var_for_y] ydata_dim1 = self._obj[dsname][dim[1]] if np.shape(ydata) != np.shape(ydata_dim1): ydata = ydata_dim1 if 'units' in ydata.attrs: units = ydata.attrs['units'] else: units = '' ytitle = ''.join(['(', units, ')']) num_y = ydata.shape[0] barb_step_y = round(num_y / num_barbs_y) if barb_step_y == 0: barb_step_y = 1 xdata, ydata = np.meshgrid(xdata, ydata, indexing='ij') elif pres_field is not None: # What we will do here is do a nearest-neighbor interpolation # for each member of the series. Coordinates are time, pressure pres = self._obj[dsname][pres_field] u_interp = NearestNDInterpolator( (xdata, pres.values), u, rescale=True) v_interp = NearestNDInterpolator( (xdata, pres.values), v, rescale=True) barb_step_x = 1 barb_step_y = 1 x_times = pd.date_range(xdata.min(), xdata.max(), periods=num_barbs_x) if num_barbs_y == 1: y_levels = pres.mean() else: y_levels = np.linspace(np.nanmin(pres), np.nanmax(pres), num_barbs_y) xdata, ydata = np.meshgrid(x_times, y_levels, indexing='ij') u = u_interp(xdata, ydata) v = v_interp(xdata, ydata) if 'units' in pres.attrs: units = pres.attrs['units'] else: units = '' ytitle = ''.join(['(', units, ')']) else: ydata = None # Get the current plotting axis, add day/night background and plot data if self.fig is None: self.fig = plt.figure() if self.axes is None: self.axes = np.array([plt.axes()]) self.fig.add_axes(self.axes[0]) if ydata is None: ydata = np.ones(xdata.shape) if 'cmap' in kwargs.keys(): map_color = np.sqrt(np.power(u[::barb_step_x], 2) + np.power(v[::barb_step_x], 2)) map_color[np.isnan(map_color)] = 0 ax = self.axes[subplot_index].barbs(xdata[::barb_step_x], ydata[::barb_step_x], u[::barb_step_x], v[::barb_step_x], map_color, **kwargs) plt.colorbar(ax, ax=[self.axes[subplot_index]], label='Wind Speed (' + self._obj[dsname][u_field].attrs['units'] + ')') else: self.axes[subplot_index].barbs(xdata[::barb_step_x], ydata[::barb_step_x], u[::barb_step_x], v[::barb_step_x], **kwargs) self.axes[subplot_index].set_yticks([]) else: if 'cmap' in kwargs.keys(): map_color = np.sqrt(np.power(u[::barb_step_x, ::barb_step_y], 2) + np.power(v[::barb_step_x, ::barb_step_y], 2)) map_color[np.isnan(map_color)] = 0 ax = self.axes[subplot_index].barbs( xdata[::barb_step_x, ::barb_step_y], ydata[::barb_step_x, ::barb_step_y], u[::barb_step_x, ::barb_step_y], v[::barb_step_x, ::barb_step_y], map_color, **kwargs) plt.colorbar(ax, ax=[self.axes[subplot_index]], label='Wind Speed (' + self._obj[dsname][u_field].attrs['units'] + ')') else: ax = self.axes[subplot_index].barbs( xdata[::barb_step_x, ::barb_step_y], ydata[::barb_step_x, ::barb_step_y], u[::barb_step_x, ::barb_step_y], v[::barb_step_x, ::barb_step_y], **kwargs) if day_night_background is True: self.day_night_background(subplot_index=subplot_index, dsname=dsname) # Set Title if set_title is None: set_title = ' '.join([dsname, 'on', dt_utils.numpy_to_arm_date( self._obj[dsname].time.values[0])]) self.axes[subplot_index].set_title(set_title) # Set YTitle if 'ytitle' in locals(): self.axes[subplot_index].set_ylabel(ytitle) # Set X Limit - We want the same time axes for all subplots time_rng = [xdata.min(), xdata.max()] self.set_xrng(time_rng, subplot_index) # Set Y Limit if hasattr(self, 'yrng'): # Make sure that the yrng is not just the default if not np.all(self.yrng[subplot_index] == 0): self.set_yrng(self.yrng[subplot_index], subplot_index) else: if ydata is None: our_data = xdata else: our_data = ydata if np.isfinite(our_data).any(): if invert_y_axis is False: yrng = [np.nanmin(our_data), np.nanmax(our_data)] else: yrng = [np.nanmax(our_data), np.nanmin(our_data)] else: yrng = [0, 1] self.set_yrng(yrng, subplot_index) # Set X Format if len(subplot_index) == 1: days = (self.xrng[subplot_index, 1] - self.xrng[subplot_index, 0]) else: days = (self.xrng[subplot_index[0], subplot_index[1], 1] - self.xrng[subplot_index[0], subplot_index[1], 0]) # Put on an xlabel, but only if we are making the bottom-most plot if subplot_index[0] == self.axes.shape[0] - 1: self.axes[subplot_index].set_xlabel('Time [UTC]') myFmt = common.get_date_format(days) self.axes[subplot_index].xaxis.set_major_formatter(myFmt) return self.axes[subplot_index] def plot_time_height_xsection_from_1d_data( self, data_field, pres_field, dsname=None, subplot_index=(0, ), set_title=None, day_night_background=False, num_time_periods=20, num_y_levels=20, invert_y_axis=True, cbar_label=None, set_shading='auto', **kwargs): """ This will plot a time-height cross section from 1D datasets using nearest neighbor interpolation on a regular time by height grid. All that is needed are a data variable and a height variable. Parameters ---------- data_field : str The name of the field to plot. pres_field : str The name of the height or pressure field to plot. dsname : str or None The name of the datastream to plot subplot_index : 2-tuple The index of the subplot to create the plot on. set_title : str or None The title of the plot. day_night_background : bool Set to true to plot the day/night background. num_time_periods : int Set to determine how many time periods. Setting to None will do one time period per day. num_y_levels : int The number of levels in the y axis to use. invert_y_axis : bool Set to true to invert the y-axis (recommended for pressure coordinates). cbar_label : str Option to overwrite default colorbar label. set_shading : string Option to to set the matplotlib.pcolormesh shading parameter. Default to 'auto' **kwargs : keyword arguments Additional keyword arguments will be passed into :func:`plt.pcolormesh` Returns ------- ax : matplotlib axis handle The matplotlib axis handle pointing to the plot. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2" "or more datasets in the TimeSeriesDisplay" "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] dim = list(self._obj[dsname][data_field].dims) if len(dim) > 1: raise ValueError(("plot_time_height_xsection_from_1d_data only " "supports 1-D datasets. For datasets with 2 or " "more dimensions use plot().")) # Get data and dimensions data = self._obj[dsname][data_field].values xdata = self._obj[dsname][dim[0]].values # What we will do here is do a nearest-neighbor interpolation for each # member of the series. Coordinates are time, pressure pres = self._obj[dsname][pres_field] u_interp = NearestNDInterpolator( (xdata, pres.values), data, rescale=True) # Mask points where we have no data # Count number of unique days x_times = pd.date_range(xdata.min(), xdata.max(), periods=num_time_periods) y_levels = np.linspace(np.nanmin(pres), np.nanmax(pres), num_y_levels) tdata, ydata = np.meshgrid(x_times, y_levels, indexing='ij') data = u_interp(tdata, ydata) ytitle = ''.join(['(', pres.attrs['units'], ')']) units = (data_field + ' (' + self._obj[dsname][data_field].attrs['units'] + ')') # Get the current plotting axis, add day/night background and plot data if self.fig is None: self.fig = plt.figure() if self.axes is None: self.axes = np.array([plt.axes()]) self.fig.add_axes(self.axes[0]) mesh = self.axes[subplot_index].pcolormesh( x_times, y_levels, np.transpose(data), shading=set_shading, **kwargs) if day_night_background is True: self.day_night_background(subplot_index=subplot_index, dsname=dsname) # Set Title if set_title is None: set_title = ' '.join( [dsname, 'on', dt_utils.numpy_to_arm_date(self._obj[dsname].time.values[0])]) self.axes[subplot_index].set_title(set_title) # Set YTitle if 'ytitle' in locals(): self.axes[subplot_index].set_ylabel(ytitle) # Set X Limit - We want the same time axes for all subplots time_rng = [x_times[-1], x_times[0]] self.set_xrng(time_rng, subplot_index) # Set Y Limit if hasattr(self, 'yrng'): # Make sure that the yrng is not just the default if not np.all(self.yrng[subplot_index] == 0): self.set_yrng(self.yrng[subplot_index], subplot_index) else: if ydata is None: our_data = data.values else: our_data = ydata if np.isfinite(our_data).any(): if invert_y_axis is False: yrng = [np.nanmin(our_data), np.nanmax(our_data)] else: yrng = [np.nanmax(our_data), np.nanmin(our_data)] else: yrng = [0, 1] self.set_yrng(yrng, subplot_index) # Set X Format if len(subplot_index) == 1: days = (self.xrng[subplot_index, 1] - self.xrng[subplot_index, 0]) else: days = (self.xrng[subplot_index[0], subplot_index[1], 1] - self.xrng[subplot_index[0], subplot_index[1], 0]) # Put on an xlabel, but only if we are making the bottom-most plot if subplot_index[0] == self.axes.shape[0] - 1: self.axes[subplot_index].set_xlabel('Time [UTC]') if ydata is not None: if cbar_label is None: self.add_colorbar(mesh, title=units, subplot_index=subplot_index) else: self.add_colorbar(mesh, title=cbar_label, subplot_index=subplot_index) myFmt = common.get_date_format(days) self.axes[subplot_index].xaxis.set_major_formatter(myFmt) return self.axes[subplot_index] def time_height_scatter( self, data_field=None, dsname=None, cmap='rainbow', alt_label=None, alt_field='alt', cb_label=None, **kwargs): """ Create a time series plot of altitude and data variable with color also indicating value with a color bar. The Color bar is positioned to serve both as the indicator of the color intensity and the second y-axis. Parameters ---------- data_field : str Name of data field in the object to plot on second y-axis. height_field : str Name of height field in the object to plot on first y-axis. dsname : str or None The name of the datastream to plot. cmap : str Colorbar color map to use. alt_label : str Altitude first y-axis label to use. If None, will try to use long_name and units. alt_field : str Label for field in the object to plot on first y-axis. cb_label : str Colorbar label to use. If not set will try to use long_name and units. **kwargs : keyword arguments Any other keyword arguments that will be passed into TimeSeriesDisplay.plot module when the figure is made. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Get data and dimensions data = self._obj[dsname][data_field] altitude = self._obj[dsname][alt_field] dim = list(self._obj[dsname][data_field].dims) xdata = self._obj[dsname][dim[0]] if alt_label is None: try: alt_label = (altitude.attrs['long_name'] + ''.join([' (', altitude.attrs['units'], ')'])) except KeyError: alt_label = alt_field if cb_label is None: try: cb_label = (data.attrs['long_name'] + ''.join([' (', data.attrs['units'], ')'])) except KeyError: cb_label = data_field colorbar_map = plt.cm.get_cmap(cmap) self.fig.subplots_adjust(left=0.1, right=0.86, bottom=0.16, top=0.91) ax1 = self.plot(alt_field, color='black', **kwargs) ax1.set_ylabel(alt_label) ax2 = ax1.twinx() sc = ax2.scatter(xdata.values, data.values, c=data.values, marker='.', cmap=colorbar_map) cbaxes = self.fig.add_axes( [self.fig.subplotpars.right + 0.02, self.fig.subplotpars.bottom, 0.02, self.fig.subplotpars.top - self.fig.subplotpars.bottom]) cbar = plt.colorbar(sc, cax=cbaxes) ax2.set_ylim(cbar.mappable.get_clim()) cbar.ax.set_ylabel(cb_label) ax2.set_yticklabels([]) return self.axes[0] def qc_flag_block_plot( self, data_field=None, dsname=None, subplot_index=(0, ), time_rng=None, assessment_color=None, edgecolor='face', set_shading='auto', **kwargs): """ Create a time series plot of embedded quality control values using broken barh plotting. Parameters ---------- data_field : str Name of data field in the object to plot corresponding quality control. dsname : None or str If there is more than one datastream in the display object the name of the datastream needs to be specified. If set to None and there is only one datastream ACT will use the sole datastream in the object. subplot_index : 1 or 2D tuple, list, or array The index of the subplot to set the x range of. time_rng : tuple or list List or tuple with (min, max) values to set the x-axis range limits. assessment_color : dict Dictionary lookup to override default assessment to color. Make sure assessment work is correctly set with case syntax. set_shading : string Option to to set the matplotlib.pcolormesh shading parameter. Default to 'auto' **kwargs : keyword arguments The keyword arguments for :func:`plt.broken_barh`. """ # Color to plot associated with assessment. color_lookup = {'Bad': 'red', 'Incorrect': 'red', 'Indeterminate': 'orange', 'Suspect': 'orange', 'Missing': 'darkgray', 'Not Failing': 'green', 'Acceptable': 'green'} if assessment_color is not None: for asses, color in assessment_color.items(): color_lookup[asses] = color if asses == 'Incorrect': color_lookup['Bad'] = color if asses == 'Suspect': color_lookup['Indeterminate'] = color # Set up list of test names to use for missing values missing_val_long_names = ['Value equal to missing_value*', 'Value set to missing_value*', 'Value is equal to missing_value*', 'Value is set to missing_value*'] if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Set up or get current plot figure if self.fig is None: self.fig = plt.figure() # Set up or get current axes if self.axes is None: self.axes = np.array([plt.axes()]) self.fig.add_axes(self.axes[0]) ax = self.axes[subplot_index] # Set X Limit - We want the same time axes for all subplots data = self._obj[dsname][data_field] dim = list(self._obj[dsname][data_field].dims) xdata = self._obj[dsname][dim[0]] # Get data and attributes qc_data_field = self._obj[dsname].qcfilter.check_for_ancillary_qc(data_field, add_if_missing=False, cleanup=False) if qc_data_field is None: raise ValueError(f"No quality control ancillary variable in Dataset for {data_field}") flag_masks = self._obj[dsname][qc_data_field].attrs['flag_masks'] flag_meanings = self._obj[dsname][qc_data_field].attrs['flag_meanings'] flag_assessments = self._obj[dsname][qc_data_field].attrs['flag_assessments'] # Get time ranges for green blocks time_delta = determine_time_delta(xdata.values) barh_list_green = reduce_time_ranges(xdata.values, time_delta=time_delta, broken_barh=True) # Set background to gray indicating not available data ax.set_facecolor('dimgray') # Check if plotting 2D data vs 1D data. 2D data will be summarized by # assessment category instead of showing each test. data_shape = self._obj[dsname][qc_data_field].shape if len(data_shape) > 1: cur_assessments = list(set(flag_assessments)) cur_assessments.sort() cur_assessments.reverse() qc_data = np.full(data_shape, -1, dtype=np.int16) plot_colors = [] tick_names = [] index = self._obj[dsname][qc_data_field].values == 0 if index.any(): qc_data[index] = 0 plot_colors.append(color_lookup['Not Failing']) tick_names.append('Not Failing') for ii, assess in enumerate(cur_assessments): if assess not in color_lookup: color_lookup[assess] = list(mplcolors.CSS4_COLORS.keys())[ii] ii += 1 assess_data = self._obj[dsname].qcfilter.get_masked_data(data_field, rm_assessments=assess) if assess_data.mask.any(): qc_data[assess_data.mask] = ii plot_colors.append(color_lookup[assess]) tick_names.append(assess) # Overwrite missing data. Not sure if we want to do this because VAPs set # the value to missing but the test is set to Bad. This tries to overcome that # by looking for correct test description that would only indicate the values # are missing not that they are set to missing by a test... most likely. missing_test_nums = [] for ii, flag_meaning in enumerate(flag_meanings): # Check if the bit set is indicating missing data. for val in missing_val_long_names: if re_search(val, flag_meaning): test_num = parse_bit(flag_masks[ii])[0] missing_test_nums.append(test_num) assess_data = self._obj[dsname].qcfilter.get_masked_data(data_field, rm_tests=missing_test_nums) if assess_data.mask.any(): qc_data[assess_data.mask] = -1 plot_colors.append(color_lookup['Missing']) tick_names.append('Missing') # Create a masked array to allow not plotting where values are missing qc_data = np.ma.masked_equal(qc_data, -1) dims = self._obj[dsname][qc_data_field].dims xvalues = self._obj[dsname][dims[0]].values yvalues = self._obj[dsname][dims[1]].values cMap = mplcolors.ListedColormap(plot_colors) mesh = ax.pcolormesh(xvalues, yvalues, np.transpose(qc_data), cmap=cMap, vmin=0, shading=set_shading) divider = make_axes_locatable(ax) # Determine correct placement of words on colorbar tick_nums = ((np.arange(0, len(tick_names) * 2 + 1) / (len(tick_names) * 2) * np.nanmax(qc_data))[1::2]) cax = divider.append_axes('bottom', size='5%', pad=0.3) cbar = self.fig.colorbar(mesh, cax=cax, orientation='horizontal', spacing='uniform', ticks=tick_nums, shrink=0.5) cbar.ax.set_xticklabels(tick_names) # Set YTitle dim_name = list(set(self._obj[dsname][qc_data_field].dims) - set(['time'])) try: ytitle = f"{dim_name[0]} ({self._obj[dsname][dim_name[0]].attrs['units']})" ax.set_ylabel(ytitle) except KeyError: pass # Add which tests were set as text to the plot unique_values = [] for ii in np.unique(self._obj[dsname][qc_data_field].values): unique_values.extend(parse_bit(ii)) if len(unique_values) > 0: unique_values = list(set(unique_values)) unique_values.sort() unique_values = [str(ii) for ii in unique_values] self.fig.text(0.5, -0.35, f"QC Tests Tripped: {', '.join(unique_values)}", transform=ax.transAxes, horizontalalignment='center', verticalalignment='center', fontweight='bold') else: test_nums = [] for ii, assess in enumerate(flag_assessments): if assess not in color_lookup: color_lookup[assess] = list(mplcolors.CSS4_COLORS.keys())[ii] # Plot green data first. ax.broken_barh(barh_list_green, (ii, ii + 1), facecolors=color_lookup['Not Failing'], edgecolor=edgecolor, **kwargs) # Get test number from flag_mask bitpacked number test_nums.append(parse_bit(flag_masks[ii])) # Get masked array data to use mask for finding if/where test is set data = self._obj[dsname].qcfilter.get_masked_data( data_field, rm_tests=test_nums[-1]) if np.any(data.mask): # Get time ranges from time and masked data barh_list = reduce_time_ranges(xdata.values[data.mask], time_delta=time_delta, broken_barh=True) # Check if the bit set is indicating missing data. If so change # to different plotting color than what is in flag_assessments. for val in missing_val_long_names: if re_search(val, flag_meanings[ii]): assess = "Missing" break # Lay down blocks of tripped tests using correct color ax.broken_barh(barh_list, (ii, ii + 1), facecolors=color_lookup[assess], edgecolor=edgecolor, **kwargs) # Add test description to plot. ax.text(xdata.values[0], ii + 0.5, ' ' + flag_meanings[ii], va='center') # Change y ticks to test number plt.yticks([ii + 0.5 for ii in range(0, len(test_nums))], labels=['Test ' + str(ii[0]) for ii in test_nums]) # Set ylimit to number of tests plotted ax.set_ylim(0, len(flag_assessments)) # Set X Limit - We want the same time axes for all subplots if not hasattr(self, 'time_rng'): if time_rng is not None: self.time_rng = list(time_rng) else: self.time_rng = [xdata.min().values, xdata.max().values] self.set_xrng(self.time_rng, subplot_index) # Get X format - We want the same time axes for all subplots if hasattr(self, 'time_fmt'): ax.xaxis.set_major_formatter(self.time_fmt) else: # Set X Format if len(subplot_index) == 1: days = (self.xrng[subplot_index, 1] - self.xrng[subplot_index, 0]) else: days = (self.xrng[subplot_index[0], subplot_index[1], 1] - self.xrng[subplot_index[0], subplot_index[1], 0]) myFmt = common.get_date_format(days) ax.xaxis.set_major_formatter(myFmt) self.time_fmt = myFmt return self.axes[subplot_index] def fill_between(self, field, dsname=None, subplot_index=(0, ), set_title=None, secondary_y=False, **kwargs): """ Makes a fill_between plot, based on matplotlib Parameters ---------- field : str The name of the field to plot. dsname : None or str If there is more than one datastream in the display object the name of the datastream needs to be specified. If set to None and there is only one datastream ACT will use the sole datastream in the object. subplot_index : 1 or 2D tuple, list, or array The index of the subplot to set the x range of. set_title : str The title for the plot. secondary_y : boolean Option to indicate if the data should be plotted on second y-axis. **kwargs : keyword arguments The keyword arguments for :func:`plt.plot` (1D timeseries) or :func:`plt.pcolormesh` (2D timeseries). Returns ------- ax : matplotlib axis handle The matplotlib axis handle of the plot. """ if dsname is None and len(self._obj.keys()) > 1: raise ValueError(("You must choose a datastream when there are 2 " "or more datasets in the TimeSeriesDisplay " "object.")) elif dsname is None: dsname = list(self._obj.keys())[0] # Get data and dimensions data = self._obj[dsname][field] dim = list(self._obj[dsname][field].dims) xdata = self._obj[dsname][dim[0]] if 'units' in data.attrs: ytitle = ''.join(['(', data.attrs['units'], ')']) else: ytitle = field # Get the current plotting axis, add day/night background and plot data if self.fig is None: self.fig = plt.figure() if self.axes is None: self.axes = np.array([plt.axes()]) self.fig.add_axes(self.axes[0]) # Set ax to appropriate axis if secondary_y is False: ax = self.axes[subplot_index] else: ax = self.axes[subplot_index].twinx() ax.fill_between(xdata.values, data, **kwargs) # Set X Format if len(subplot_index) == 1: days = (self.xrng[subplot_index, 1] - self.xrng[subplot_index, 0]) else: days = (self.xrng[subplot_index[0], subplot_index[1], 1] - self.xrng[subplot_index[0], subplot_index[1], 0]) myFmt = common.get_date_format(days) ax.xaxis.set_major_formatter(myFmt) # Set X format - We want the same time axes for all subplots if not hasattr(self, 'time_fmt'): self.time_fmt = myFmt # Put on an xlabel, but only if we are making the bottom-most plot if subplot_index[0] == self.axes.shape[0] - 1: self.axes[subplot_index].set_xlabel('Time [UTC]') # Set YTitle ax.set_ylabel(ytitle) # Set Title if set_title is None: set_title = ' '.join([dsname, field, 'on', dt_utils.numpy_to_arm_date( self._obj[dsname].time.values[0])]) if secondary_y is False: ax.set_title(set_title) return self.axes[subplot_index]
StarcoderdataPython
122327
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Huawei Technologies Co., Ltd. 2020-2021. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless REQUIRED by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """main function to convert user scripts""" import os import pandas as pd import util_global from conver_by_ast import conver_ast from file_op import mkdir from file_op import mkdir_and_copyfile from file_op import write_report_terminator from file_op import abs_join from file_op import get_api_statistic from file_op import adjust_index from util import check_path_length from util import log_warning def conver(): """The entry point to convert Tensorflow script""" print("Begin conver, input file: " + util_global.get_value('input') + '\n') out_path = util_global.get_value('output') dst_path = os.path.split(util_global.get_value('input').rstrip('\\/'))[-1] dst_path_new = dst_path + util_global.get_value('timestap') conver_path = os.walk(util_global.get_value('input')) report_dir = util_global.get_value('report') mkdir(report_dir) report_xlsx = os.path.join(report_dir, 'api_analysis_report.xlsx') util_global.set_value('generate_dir_report', pd.DataFrame()) for path, _, file_list in conver_path: for file_name in file_list: out_path_dst = abs_join(dst_path_new, path.split(util_global.get_value('input'))[1]) file_path = os.path.join(path, file_name).replace('\\', '/') if not check_path_length(file_path): content = "".join(["The file:", file_path, " length is invalid, skip convert."]) log_warning(content) continue content = "".join(["Begin conver file: ", file_path]) print(content) threshold_file_size = 10 * 1024 * 1024 if file_name.endswith(".py"): if os.path.getsize(file_path) > threshold_file_size: content = "".join(["The file:", file_path, " size is over 10M, skip convert."]) log_warning(content) continue util_global.set_value('path', file_path) mkdir(os.path.join(out_path, out_path_dst)) conver_ast(path, out_path_dst, file_name) if util_global.get_value('need_conver', False): content = "".join(["Finish conver file: ", file_path, '\n']) print(content) write_report_terminator(content) else: mkdir_and_copyfile(path, abs_join(out_path, out_path_dst), file_name) else: mkdir_and_copyfile(path, abs_join(out_path, out_path_dst), file_name) adjust_index() analysis_report = util_global.get_value('generate_dir_report') if analysis_report.empty: print('No api data in the report') else: analysis_report.to_excel(report_xlsx, index=True) get_api_statistic(analysis_report) print("Finish conver, output file: " + out_path + "; report file: " + util_global.get_value('report'))
StarcoderdataPython
3276216
<gh_stars>0 from pygolang.io_callback import IO from pygolang.errors import StopPyGoLangInterpreterError class FakeIO(IO): def __init__(self, stdin_as_str_list): """ :param list[str] stdin_as_str_list: list(or iterable) of strings, to simulate the lines from stdin """ self.stdin = stdin_as_str_list self.stdout = [] self.stderr = [] self.input_generator = None # super().__init__() def from_stdin(self): def iterate_over_stdin(): for line in self.stdin: yield line raise StopPyGoLangInterpreterError if not self.input_generator: self.input_generator = iterate_over_stdin() return next(self.input_generator) def to_stdout(self, stuff): self.stdout.append(stuff) def to_stderr(self, stuff): self.stderr.append(stuff) def interpreter_prompt(self): pass def newline(self): pass def format_stderr_for_debugging(self): return '\n'.join(str(e) for e in self.stderr)
StarcoderdataPython
182200
from flask import Flask, render_template, request, redirect, url_for from joblib import load from auth import get_related_tweets pipeline = load("twitter_classification.joblib") def requestResults(name): tweets = get_related_tweets(name) tweets['prediction'] = pipeline.predict(tweets['tweet_text']) data = str(tweets.prediction.value_counts()) + '\n\n' return data + str(tweets) app = Flask(__name__) @app.route('/') def home(): return render_template('home.html') @app.route('/', methods=['POST', 'GET']) def get_data(): if request.method == 'POST': user = request.form['search'] return redirect(url_for('success', name=user)) @app.route('/success/<name>') def success(name): return "<xmp>" + str(requestResults(name)) + " </xmp> " if __name__ == '__main__' : app.run(debug=True)
StarcoderdataPython
1768706
<filename>memote/suite/tests/test_annotation.py<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2017 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests performed on the annotations of an instance of ``cobra.Model``.""" from __future__ import absolute_import, division from builtins import dict import pytest import memote.support.annotation as annotation from memote.utils import annotate, truncate, get_ids, wrapper @annotate(title="Presence of Metabolite Annotation", format_type="count") def test_metabolite_annotation_presence(model): """ Expect all metabolites to have a non-empty annotation attribute. This test checks if any annotations at all are present in the SBML annotations field for each metabolite, irrespective of the type of annotation i.e. specific database cross-references, ontology terms, additional information. For this test to pass the model is expected to have metabolites and each of them should have some form of annotation. Implementation: Check if the annotation attribute of each cobra.Metabolite object of the model is unset or empty. """ ann = test_metabolite_annotation_presence.annotation ann["data"] = get_ids(annotation.find_components_without_annotation( model, "metabolites")) ann["metric"] = len(ann["data"]) / len(model.metabolites) ann["message"] = wrapper.fill( """A total of {} metabolites ({:.2%}) lack any form of annotation: {}""".format(len(ann["data"]), ann["metric"], truncate(ann["data"]))) assert len(ann["data"]) == 0, ann["message"] @annotate(title="Presence of Reaction Annotation", format_type="count") def test_reaction_annotation_presence(model): """ Expect all reactions to have a non-empty annotation attribute. This test checks if any annotations at all are present in the SBML annotations field for each reaction, irrespective of the type of annotation i.e. specific database cross-references, ontology terms, additional information. For this test to pass the model is expected to have reactions and each of them should have some form of annotation. Implementation: Check if the annotation attribute of each cobra.Reaction object of the model is unset or empty. """ ann = test_reaction_annotation_presence.annotation ann["data"] = get_ids(annotation.find_components_without_annotation( model, "reactions")) ann["metric"] = len(ann["data"]) / len(model.reactions) ann["message"] = wrapper.fill( """A total of {} reactions ({:.2%}) lack any form of annotation: {}""".format(len(ann["data"]), ann["metric"], truncate(ann["data"]))) assert len(ann["data"]) == 0, ann["message"] @annotate(title="Presence of Gene Annotation", format_type="count") def test_gene_product_annotation_presence(model): """ Expect all genes to have a non-empty annotation attribute. This test checks if any annotations at all are present in the SBML annotations field (extended by FBC package) for each gene product, irrespective of the type of annotation i.e. specific database, cross-references, ontology terms, additional information. For this test to pass the model is expected to have genes and each of them should have some form of annotation. Implementation: Check if the annotation attribute of each cobra.Gene object of the model is unset or empty. """ ann = test_gene_product_annotation_presence.annotation ann["data"] = get_ids(annotation.find_components_without_annotation( model, "genes")) ann["metric"] = len(ann["data"]) / len(model.genes) ann["message"] = wrapper.fill( """A total of {} genes ({:.2%}) lack any form of annotation: {}""".format( len(ann["data"]), ann["metric"], truncate(ann["data"]))) assert len(ann["data"]) == 0, ann["message"] @pytest.mark.parametrize("db", list(annotation.METABOLITE_ANNOTATIONS)) @annotate(title="Metabolite Annotations Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_metabolite_annotation_overview(model, db): """ Expect all metabolites to have annotations from common databases. Specific database cross-references are paramount to mapping information. To provide references to as many databases as possible helps to make the metabolic model more accessible to other researchers. This does not only facilitate the use of a model in a broad array of computational pipelines, it also promotes the metabolic model itself to become an organism-specific knowledge base. For this test to pass, each metabolite annotation should contain cross-references to a number of databases. The currently selection is listed in `annotation.py`, but an ongoing discussion can be found at https://github.com/opencobra/memote/issues/332. For each database this test checks for the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e. they have to match those defined on https://identifiers.org/. Since each database is quite different and some potentially incomplete, it may not be feasible to achieve 100% coverage for each of them. Generally it should be possible, however, to obtain cross-references to at least one of the databases for all metabolites consistently. Implementation: Check if the keys of the annotation attribute of each cobra.Metabolite of the model match with a selection of common biochemical databases. The annotation attribute of cobrapy components is a dictionary of key:value pairs. """ ann = test_metabolite_annotation_overview.annotation ann["data"][db] = get_ids( annotation.generate_component_annotation_overview( model.metabolites, db)) ann["metric"][db] = len(ann["data"][db]) / len(model.metabolites) ann["message"][db] = wrapper.fill( """The following {} metabolites ({:.2%}) lack annotation for {}: {}""".format(len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @pytest.mark.parametrize("db", list(annotation.REACTION_ANNOTATIONS)) @annotate(title="Reaction Annotations Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_reaction_annotation_overview(model, db): """ Expect all reactions to have annotations from common databases. Specific database cross-references are paramount to mapping information. To provide references to as many databases as possible helps to make the metabolic model more accessible to other researchers. This does not only facilitate the use of a model in a broad array of computational pipelines, it also promotes the metabolic model itself to become an organism-specific knowledge base. For this test to pass, each reaction annotation should contain cross-references to a number of databases. The currently selection is listed in `annotation.py`, but an ongoing discussion can be found at https://github.com/opencobra/memote/issues/332. For each database this test checks for the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e. they have to match those defined on https://identifiers.org/. Since each database is quite different and some potentially incomplete, it may not be feasible to achieve 100% coverage for each of them. Generally it should be possible, however, to obtain cross-references to at least one of the databases for all reactions consistently. Implementation: Check if the keys of the annotation attribute of each cobra.Reaction of the model match with a selection of common biochemical databases. The annotation attribute of cobrapy components is a dictionary of key:value pairs. """ ann = test_reaction_annotation_overview.annotation ann["data"][db] = get_ids( annotation.generate_component_annotation_overview( model.reactions, db)) ann["metric"][db] = len(ann["data"][db]) / len(model.reactions) ann["message"][db] = wrapper.fill( """The following {} reactions ({:.2%}) lack annotation for {}: {}""".format(len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @pytest.mark.parametrize("db", list(annotation.GENE_PRODUCT_ANNOTATIONS)) @annotate(title="Gene Annotations Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_gene_product_annotation_overview(model, db): """ Expect all genes to have annotations from common databases. Specific database cross-references are paramount to mapping information. To provide references to as many databases as possible helps to make the metabolic model more accessible to other researchers. This does not only facilitate the use of a model in a broad array of computational pipelines, it also promotes the metabolic model itself to become an organism-specific knowledge base. For this test to pass, each gene annotation should contain cross-references to a number of databases. The currently selection is listed in `annotation.py`, but an ongoing discussion can be found at https://github.com/opencobra/memote/issues/332. For each database this test checks for the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e. they have to match those defined on https://identifiers.org/. Since each database is quite different and some potentially incomplete, it may not be feasible to achieve 100% coverage for each of them. Generally it should be possible, however, to obtain cross-references to at least one of the databases for all gene products consistently. Implementation: Check if the keys of the annotation attribute of each cobra.Gene of the model match with a selection of common genome databases. The annotation attribute of cobrapy components is a dictionary of key:value pairs. """ ann = test_gene_product_annotation_overview.annotation ann["data"][db] = get_ids( annotation.generate_component_annotation_overview( model.genes, db)) ann["metric"][db] = len(ann["data"][db]) / len(model.genes) ann["message"][db] = wrapper.fill( """The following {} genes ({:.2%}) lack annotation for {}: {}""".format(len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @pytest.mark.parametrize("db", list(annotation.METABOLITE_ANNOTATIONS)) @annotate(title="Metabolite Annotation Conformity Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_metabolite_annotation_wrong_ids(model, db): """ Expect all annotations of metabolites to be in the correct format. To identify databases and the identifiers belonging to them, computational tools rely on the presence of specific patterns. Only when these patterns can be identified consistently is an ID truly machine-readable. This test checks if the database cross-references in metabolite annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns are further outlined in `annotation.py`. This test does not carry out a web query for the composed URI, it merely controls that the regex patterns match the identifiers. Implementation: For those metabolites whose annotation keys match any of the tested databases, check if the corresponding values match the identifier pattern of each database. """ ann = test_metabolite_annotation_wrong_ids.annotation ann["data"][db] = total = get_ids( set(model.metabolites).difference( annotation.generate_component_annotation_overview( model.metabolites, db))) ann["metric"][db] = 1.0 ann["message"][db] = wrapper.fill( """There are no metabolite annotations for the {} database. """.format(db)) assert len(total) > 0, ann["message"][db] ann["data"][db] = get_ids( annotation.generate_component_annotation_miriam_match( model.metabolites, "metabolites", db)) ann["metric"][db] = len(ann["data"][db]) / len(total) ann["message"][db] = wrapper.fill( """A total of {} metabolite annotations ({:.2%}) do not match the regular expression patterns defined on identifiers.org for the {} database: {}""".format( len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @pytest.mark.parametrize("db", annotation.REACTION_ANNOTATIONS) @annotate(title="Reaction Annotation Conformity Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_reaction_annotation_wrong_ids(model, db): """ Expect all annotations of reactions to be in the correct format. To identify databases and the identifiers belonging to them, computational tools rely on the presence of specific patterns. Only when these patterns can be identified consistently is an ID truly machine-readable. This test checks if the database cross-references in reaction annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns are further outlined in `annotation.py`. This test does not carry out a web query for the composed URI, it merely controls that the regex patterns match the identifiers. Implementation: For those reaction whose annotation keys match any of the tested databases, check if the corresponding values match the identifier pattern of each database. """ ann = test_reaction_annotation_wrong_ids.annotation ann["data"][db] = total = get_ids( set(model.reactions).difference( annotation.generate_component_annotation_overview( model.reactions, db))) ann["metric"][db] = 1.0 ann["message"][db] = wrapper.fill( """There are no reaction annotations for the {} database. """.format(db)) assert len(total) > 0, ann["message"][db] ann["data"][db] = get_ids( annotation.generate_component_annotation_miriam_match( model.reactions, "reactions", db)) ann["metric"][db] = len(ann["data"][db]) / len(model.reactions) ann["message"][db] = wrapper.fill( """A total of {} reaction annotations ({:.2%}) do not match the regular expression patterns defined on identifiers.org for the {} database: {}""".format( len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @pytest.mark.parametrize("db", annotation.GENE_PRODUCT_ANNOTATIONS) @annotate(title="Gene Annotation Conformity Per Database", format_type="percent", message=dict(), data=dict(), metric=dict()) def test_gene_product_annotation_wrong_ids(model, db): """ Expect all annotations of genes/gene-products to be in the correct format. To identify databases and the identifiers belonging to them, computational tools rely on the presence of specific patterns. Only when these patterns can be identified consistently is an ID truly machine-readable. This test checks if the database cross-references in reaction annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns are further outlined in `annotation.py`. This test does not carry out a web query for the composed URI, it merely controls that the regex patterns match the identifiers. Implementation: For those genes whose annotation keys match any of the tested databases, check if the corresponding values match the identifier pattern of each database. """ ann = test_gene_product_annotation_wrong_ids.annotation ann["data"][db] = total = get_ids( set(model.genes).difference( annotation.generate_component_annotation_overview( model.genes, db))) ann["metric"][db] = 1.0 ann["message"][db] = wrapper.fill( """There are no gene annotations for the {} database. """.format(db)) assert len(total) > 0, ann["message"][db] ann["data"][db] = get_ids( annotation.generate_component_annotation_miriam_match( model.genes, "genes", db)) ann["metric"][db] = len(ann["data"][db]) / len(model.genes) ann["message"][db] = wrapper.fill( """A total of {} gene annotations ({:.2%}) do not match the regular expression patterns defined on identifiers.org for the {} database: {}""".format( len(ann["data"][db]), ann["metric"][db], db, truncate(ann["data"][db]))) assert len(ann["data"][db]) == 0, ann["message"][db] @annotate(title="Uniform Metabolite Identifier Namespace", format_type="count") def test_metabolite_id_namespace_consistency(model): """ Expect metabolite identifiers to be from the same namespace. In well-annotated models it is no problem if the pool of main identifiers for metabolites consists of identifiers from several databases. However, in models that lack appropriate annotations, it may hamper the ability of other researchers to use it. Running the model through a computational pipeline may be difficult without first consolidating the namespace. Hence, this test checks if the main metabolite identifiers can be attributed to one single namespace based on the regex patterns defined at https://identifiers.org/ Implementation: Generate a table with each column corresponding to one database from the selection and each row to a metabolite identifier. A Boolean entry indicates whether the identifier matches the regular expression of the corresponding database. Since the Biocyc pattern matches broadly, we assume that any instance of an identifier matching to Biocyc AND any other database pattern is a false positive match for Biocyc and thus set it to ``false``. Sum the positive matches for each database and assume that the largest set is the 'main' identifier namespace. """ ann = test_metabolite_id_namespace_consistency.annotation overview = annotation.generate_component_id_namespace_overview( model, "metabolites") distribution = overview.sum() cols = list(distribution.index) largest = distribution[cols].idxmax() # Assume that all identifiers match the largest namespace. ann["data"] = list(set(get_ids(model.metabolites)).difference( overview[overview[largest]].index.tolist())) ann["metric"] = len(ann["data"]) / len(model.metabolites) ann["message"] = wrapper.fill( """{} metabolite identifiers ({:.2%}) deviate from the largest found namespace ({}): {}""".format( len(ann["data"]), ann["metric"], largest, truncate(ann["data"]))) assert len(ann["data"]) == 0, ann["message"] @annotate(title="Uniform Reaction Identifier Namespace", format_type="count") def test_reaction_id_namespace_consistency(model): """ Expect reaction identifiers to be from the same namespace. In well-annotated models it is no problem if the pool of main identifiers for reactions consists of identifiers from several databases. However, in models that lack appropriate annotations, it may hamper the ability of other researchers to use it. Running the model through a computational pipeline may be difficult without first consolidating the namespace. Hence, this test checks if the main reaction identifiers can be attributed to one single namespace based on the regex patterns defined at https://identifiers.org/ Implementation: Generate a pandas.DataFrame with each column corresponding to one database from the selection and each row to the reaction ID. A boolean entry indicates whether the metabolite ID matches the regex pattern of the corresponding database. Since the Biocyc pattern matches quite, assume that any instance of an identifier matching to Biocyc AND any other DB pattern is a false positive match for Biocyc and then set the boolean to ``false``. Sum the positive matches for each database and assume that the largest set is the 'main' identifier namespace. """ ann = test_reaction_id_namespace_consistency.annotation overview = annotation.generate_component_id_namespace_overview( model, "reactions") distribution = overview.sum() cols = list(distribution.index) largest = distribution[cols].idxmax() # Assume that all identifiers match the largest namespace. ann["data"] = list(set(get_ids(model.reactions)).difference( overview[overview[largest]].index.tolist())) ann["metric"] = len(ann["data"]) / len(model.reactions) ann["message"] = wrapper.fill( """{} reaction identifiers ({:.2%}) deviate from the largest found namespace ({}): {}""".format( len(ann["data"]), ann["metric"], largest, truncate(ann["data"]))) assert len(ann["data"]) == 0, ann["message"]
StarcoderdataPython
3383384
<filename>test/with_server/test_server.py<gh_stars>1-10 # -*- coding: utf-8 -*- """ test/test_server.py ~~~~~~~~~~~~~~~~~~~ Tests the pyrc server by actually spinning up an actual server, and actually sending actual socket messages to it. This is integration testing, not unit testing, but it's suitably useful that it's the default testing mode. """ class TestServer(object): """ Test the pyrc server. """ def test_echo_ws_to_tcp(self, client): data = "Hi there sir.\r\n" # Perform the handshake. ws_conn, tcp_conn = client.establish_connections() # Send a message through the websocket. ws_conn.write_message(data) # Read it on the TCP socket. tcp_conn.read_until(b"\r\n", client.stop) received = client.wait() assert received.decode("utf-8") == data def test_echo_tcp_to_ws(self, client): data = "Hi there sir\r\n" # Perform the handshake. ws_conn, tcp_conn = client.establish_connections() # Send a message through the TCP connection. tcp_conn.write(data.encode("utf-8")) # Read it on the websocket. ws_conn.read_message(client.stop) received = client.wait().result() assert received == data
StarcoderdataPython
3278577
'''Forge URLs and utility functions''' from . import AFWExceptions AUTODESK_BASE_URL = "https://developer.api.autodesk.com" TOKENFLEX_API = AUTODESK_BASE_URL+"/tokenflex/v1" RECAP_API = AUTODESK_BASE_URL+"/photo-to-3d/v1" AUTH_API = AUTODESK_BASE_URL+"/authentication/v1" INFO_AUTH = AUTODESK_BASE_URL+"/userprofile/v1" DA_API = AUTODESK_BASE_URL+"/da/us-east/v3" # BIM360 and data management APIs are not consistent with their API urls def checkScopes(token, endpoint_scope: str): '''Checks scopes before making the request.''' token_scope = token.scope.split() endpoint_scope = endpoint_scope.split() result = all(elem in token_scope for elem in endpoint_scope) if result: return True else: raise AFWExceptions.AFWError("Missing required scopes:", endpoint_scope) def checkResponse(r): '''If the response raised an error, this will detect it''' if "code" in r and "message" in r: raise AFWExceptions.APIError("CODE {e1} - {e2}".format(e1=r["code"], e2=r["message"])) elif "developerMessage" in r and "errorCode" in r: raise AFWExceptions.APIError("CODE {e1} - {e2}".format(e1=r["errorCode"], e2=r["developerMessage"])) elif "code" in r and "msg" in r: raise AFWExceptions.APIError("CODE {e1} - {e2}".format(e1=r["code"], e2=r["msg"])) elif "jsonapi" in r and "errors" in r: # Check for dm errors, response returns a list of errors so raise that list raise AFWExceptions.APIError(r["errors"]) elif "Error" in r: # This is ReCap format... too many error formats raise AFWExceptions.APIError("CODE {e1} - {e2}".format(e1=r["Error"]["code"], e2=r["Error"]["msg"])) def batch(iterable, n=1): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] def allowed_kwargs_check(allowedKwgs, kwgs): '''Check kwargs''' for kwg in kwgs: if kwg not in allowedKwgs: raise AFWExceptions.AFWError("Invalid kwarg. See allowed kwargs in the docstring")
StarcoderdataPython
196178
import re from collections import defaultdict from django.db import migrations def add_users_to_groups_based_on_users_permissions(apps, schema_editor): """Add every user to group with "user_permissions" if exists, else create new one. For each user, if the group with the exact scope of permissions exists, add the user to it, else create a new group with this scope of permissions and add the user to it. """ User = apps.get_model("account", "User") Group = apps.get_model("auth", "Group") groups = Group.objects.all().prefetch_related("permissions") counter = get_counter_value(Group) mapping = create_permissions_mapping(User) for perms, users in mapping.items(): group = get_group_with_given_permissions(perms, groups) if group: group.user_set.add(*users) continue group = create_group_with_given_permissions(perms, counter, Group) group.user_set.add(*users) counter += 1 def get_counter_value(Group): """Get the number of next potential group.""" pattern = r"^Group (\d+)$" group = Group.objects.filter(name__iregex=pattern).order_by("name").last() if not group: return 1 return int(re.match(pattern, group.name).group(1)) + 1 def create_permissions_mapping(User): """Create mapping permissions to users and potential new group name.""" mapping = defaultdict(set) users = User.objects.filter(user_permissions__isnull=False).distinct().iterator() for user in users: permissions = user.user_permissions.all().order_by("pk") perm_pks = tuple([perm.pk for perm in permissions]) mapping[perm_pks].add(user.pk) user.user_permissions.clear() return mapping def get_group_with_given_permissions(permissions, groups): """Get group with given set of permissions.""" for group in groups: group_perm_pks = {perm.pk for perm in group.permissions.all()} if group_perm_pks == set(permissions): return group def create_group_with_given_permissions(perm_pks, counter, Group): """Create new group with given set of permissions.""" group_name = f"Group {counter:03d}" group = Group.objects.create(name=group_name) group.permissions.add(*perm_pks) return group class Migration(migrations.Migration): dependencies = [ ("account", "0040_auto_20200415_0443"), ] operations = [ migrations.RunPython( add_users_to_groups_based_on_users_permissions, migrations.RunPython.noop ), ]
StarcoderdataPython
4802523
<gh_stars>1-10 from django.conf.urls.defaults import patterns, url urlpatterns = patterns('challenges.views', url(r'$', 'show', name='challenge_show'), url(r'entries/$', 'entries_all', name='entries_all'), url(r'entries/add/$', 'create_entry', name='entry_create'), url(r'entries/(?P<entry_id>\d+)/$', 'entry_show', name='entry_show'), )
StarcoderdataPython
61642
<reponame>mjachowdhury/PracticalMachineLearning<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Mon Nov 9 15:24:36 2020 @author: Ted.Scully """ import numpy as np from sklearn.ensemble import IsolationForest from sklearn.linear_model import Lasso def main(): trainAll = np.genfromtxt("trainingData.csv", delimiter=",") testAll = np.genfromtxt("testData.csv", delimiter=",") # Extract feature data train_features = trainAll[:, :-1] train_labels = trainAll[:, -1] test_features = testAll[:, :-1] test_labels = testAll[:, -1] reg_model = Lasso() reg_model.fit(train_features, train_labels) print("R2 result for Lasso without removing outliers: ", reg_model.score(test_features, test_labels)) # Create an isolation forest to remove mutlivariate outliers clf = IsolationForest(contamination = 0.01) clf.fit(train_features) # Predict returns an array contains 1 (not outlier) and -1 (outlier) values results = clf.predict(train_features) # Exact only non-outlier instances normal_features = train_features[results == 1] normal_labels = train_labels[results == 1] # Rerun the Lasso regression model reg_model = Lasso() reg_model.fit(normal_features, normal_labels) print("R2 result for Lasso after removal of outliers: ",reg_model.score(test_features, test_labels)) main()
StarcoderdataPython
3244979
<reponame>StillScripts/react-generator # -*- coding: utf-8 -*- """ Created on Sun Jan 23 16:28:26 2022 @author: danie """ def create_file(path, content): index_file = open(path, 'w') index_file.write(content) index_file.close print(f"MAKING FILE - {path}")
StarcoderdataPython
3285679
# Generated by Django 3.1.6 on 2021-02-26 14:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("workstation_configs", "0001_squashed_0008_auto_20201001_0758"), ] operations = [ migrations.AddField( model_name="workstationconfig", name="image_context", field=models.CharField( blank=True, choices=[ ("PATH", "Pathology"), ("OPHTH", "Ophthalmology"), ("MPMRI", "Multiparametric MRI"), ], max_length=6, ), ), ]
StarcoderdataPython
1694605
import discord import os import yaml import random from datetime import datetime from discord.ext import commands from discord.utils import get from discord.ext.commands.errors import CommandNotFound, CommandInvokeError from dotenv import load_dotenv from os import system load_dotenv() TOKEN = os.getenv("DISCORD_TOKEN") BOT_PREFIX = "!" bot = commands.Bot(command_prefix=BOT_PREFIX) def commands_dict(): with open("commands.yaml", encoding="utf8") as infile: commands_dict = yaml.safe_load(infile) return commands_dict # delete from current chat the last <amount> + 1 messages(command included) async def clr(ctx, amount=0): if ctx.author == bot.user: return await ctx.channel.purge(limit=amount + 1) # send dick pic async def send_callback(ctx): if ctx.author == bot.user: return await ctx.channel.send(commands_dict[ctx.command.qualified_name]["text"]) # send random butthole async def random_send_callback(ctx): if ctx.author == bot.user: return await ctx.channel.send( random.choice(commands_dict[ctx.command.qualified_name]["choices"]) ) # play shit async def audio_callback(ctx): if ctx.message.author.voice == None: return global voice channel = ctx.message.author.voice.channel voice = get(bot.voice_clients, guild=ctx.guild) if voice and voice.is_connected(): await voice.move_to(channel) else: voice = await channel.connect() print( f"{datetime.now().strftime('%H:%M:%S')} The bot has connected to {channel} " f"[requested by {ctx.author.name} ({ctx.author})]" ) voice = get(bot.voice_clients, guild=ctx.guild) voice.play( discord.FFmpegPCMAudio(commands_dict[ctx.command.qualified_name]["file"]), after=lambda e: print( f"{datetime.now().strftime('%H:%M:%S')} Finished playing !{ctx.command.qualified_name}" ), ) voice.source = discord.PCMVolumeTransformer(voice.source) voice.source.volume = 0.65 while voice.is_playing() == True: continue if voice and voice.is_connected(): await voice.disconnect() print(f"{datetime.now().strftime('%H:%M:%S')} The bot has left {channel}\n") if ctx.author == bot.user: return # build all commands from dict def command_builder(commands_dict): command_list = [] for command_name in commands_dict: if commands_dict[command_name]["type"] == "send": func = send_callback elif commands_dict[command_name]["type"] == "audio": func = audio_callback elif commands_dict[command_name]["type"] == "random_choice": func = random_send_callback else: continue c = commands.Command( func, name=command_name, help=commands_dict[command_name]["help"] ) command_list.append(c) return command_list # display when the bot is connected to discord @bot.event async def on_ready(): print( f"{datetime.now().strftime('%H:%M:%S')} {bot.user.name} has connected to Discord!" ) # prevent CLI spam from non-existent commands @bot.event async def on_command_error(ctx, error): if isinstance(error, (CommandInvokeError, CommandNotFound)): return raise error if __name__ == "__main__": commands_dict = commands_dict() commands = command_builder(commands_dict) for c in commands: bot.add_command(c) bot.run(TOKEN)
StarcoderdataPython
161054
<reponame>krizex/fund #!/usr/bin/env python # -*- coding: utf-8 -*- import os import tensorflow as tf from fund.log.logger import log __author__ = '<NAME>' """ Created on 07/03/2017 @author: <NAME> """ # http://www.shareditor.com/blogshow/?blogId=94 class SoftmaxTrainer(object): def __init__(self, feature_count, label_count, learning_rate, iterate_count): self.x = tf.placeholder(tf.float32, [None, feature_count]) self.W = tf.Variable(tf.zeros([feature_count, label_count]), name='W') self.b = tf.Variable(tf.zeros([label_count]), name='b') self.y = tf.nn.softmax(tf.matmul(self.x, self.W) + self.b) self.y_ = tf.placeholder(tf.float32, [None, label_count]) # We should use `tf.reduce_mean` so learning rate could be independent with batch size self.cross_entropy = -tf.reduce_mean(self.y_ * tf.log(tf.clip_by_value(self.y, 1e-10, 1.0))) self.train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(self.cross_entropy) self.iterate_count = iterate_count self.session = tf.InteractiveSession() def train(self, training_pairs, verify_pairs): self.session.run(tf.global_variables_initializer()) xs = [p[0] for p in training_pairs] ys = [p[1] for p in training_pairs] recognize_accuracy = 0.0 for i in range(self.iterate_count): self.session.run(self.train_step, feed_dict={self.x: xs, self.y_: ys}) # cost = self.session.run(self.cross_entropy, feed_dict={self.x: xs, self.y_: ys}) # print 'Cost: %f' % cost correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) recognize_accuracy = accuracy.eval(feed_dict={ self.x: [p[0] for p in verify_pairs], self.y_: [p[1] for p in verify_pairs], }) log.debug('(%d)Recognize accuracy is %f' % (i, recognize_accuracy)) log.debug('Recognize accuracy is %f' % recognize_accuracy) return recognize_accuracy def save(self, filename): saver = tf.train.Saver() saver.save(self.session, filename) print self.b.eval() print self.W.eval() def restore(self, filename): ckpt = tf.train.get_checkpoint_state(os.path.dirname(filename)) saver = tf.train.Saver() saver.restore(self.session, ckpt.model_checkpoint_path) print self.b.eval() print self.W.eval() def recognize(self, feature): if not isinstance(feature[0], (list, tuple)): feature = [feature] return self.session.run(tf.argmax(self.y, 1), {self.x: feature}) # def init_recognizer(recognizer): # log.info('Init recognizer...') # from scv.datamanager.dataset import DataSet # dataset = DataSet() # training_set = dataset.get_training_set() # verify_set = dataset.get_verify_set() # recognizer.train(training_set, verify_set) if __name__ == '__main__': filename = data_file()
StarcoderdataPython
3341277
from model.utils import * from dataloader.util_func import * class LanguageModelsAgent(RetrievalBaseAgent): '''no train mode, only test''' def __init__(self, vocab, model, args): super(LanguageModelsAgent, self).__init__() self.args = args self.vocab, self.model = vocab, model self.cuda_models = ['gpt2lm'] if self.args['model'] in self.cuda_models: if torch.cuda.is_available(): self.model.cuda() @torch.no_grad() def rerank(self, batches): '''rerank scores''' if self.args['model'] in self.cuda_models: self.model.eval() scores = [] for batch in batches: # compatible for the predict function score = self.model.predict(batch) scores.append(score) return scores def load_model(self, path): pass @torch.no_grad() def inference(self, inf_iter, size=500000): self.model.eval() pbar = tqdm(inf_iter) ppls, texts = [], [] for batch in pbar: ppl = self.model.module.predict(batch) ppls.extend(ppl) texts.extend(batch['candidates']) torch.save( (ppls, texts), f'{self.args["root_dir"]}/data/{self.args["dataset"]}/inference_ppl_{self.args["local_rank"]}.pt' )
StarcoderdataPython
4807052
from pytest import mark from mysign_app.management.commands.seed import Command from mysign_app.models import Company, DoorDevice, User from mysign_app.tests.factories import CompanyFactory @mark.django_db def test_objects_are_seeded(): # Run seeds Command().handle() assert Company.objects.count() == 20 assert DoorDevice.objects.count() == 20 assert User.objects.filter(email='<EMAIL>').count() == 1 assert User.objects.filter(email='<EMAIL>').first().check_password('<PASSWORD>') assert User.objects.filter(email='<EMAIL>').count() == 1 assert User.objects.filter(email='<EMAIL>').first().check_password('<PASSWORD>') assert User.objects.filter(email='<EMAIL>').first().company_id assert User.objects.filter(email='<EMAIL>').count() == 1 assert User.objects.filter(email='<EMAIL>').first().check_password('<PASSWORD>') assert User.objects.filter(email='<EMAIL>').first().is_staff assert User.objects.filter(email='<EMAIL>').first().is_superuser @mark.django_db def test_database_is_cleared(): CompanyFactory.create(name="really awesome company") # Run seeds Command().handle() assert Company.objects.filter(name="really awesome company").count() == 0 @mark.django_db def test_production_seed(): Command().handle(production=True) assert Company.objects.count() == 0 assert DoorDevice.objects.count() == 0 assert User.objects.count() == 1 assert User.objects.first().check_password('<PASSWORD>')
StarcoderdataPython
3212185
<reponame>mcgreevy/chromium-infra #!/usr/bin/env python # This file mocks typical recipes.py that normally runs a recipe. import argparse import json import sys import shutil def main(): parser = argparse.ArgumentParser() parser.add_argument('--output-result-json') parser.add_argument('--properties-file') args, _ = parser.parse_known_args() assert args.output_result_json assert args.properties_file with open(args.properties_file) as f: properties = json.load(f) cfg = properties.pop('recipe_mock_cfg') with open(cfg['input_path'], 'w') as f: json.dump({ 'args': sys.argv, 'properties': properties, }, f) mocked_result_path = cfg.get('mocked_result_path') if mocked_result_path: shutil.copyfile(mocked_result_path, args.output_result_json) return cfg['exitCode'] if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
3229116
<gh_stars>1-10 #!/usr/bin/python # -*- coding: utf-8 -*- from PIL import Image, ImageDraw, ImageFont import random import sys import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email import encoders class crypto: def __init__(self): """the fuction creates a photo and splits it then to two with visual cryptography""" # Text_Pic img = Image.new('1', (150, 150), color=255) # creates a new image sized 150x150, black&white (mode 1) self.txt = '' for i in range(6): self.txt += chr(random.randint(97, 122)) ImageDraw.Draw(img).text(xy=(0, 50), text=self.txt, font=ImageFont.truetype('C:\WINDOWS\Fonts\ARLRDBD.TTF' , 37)) img.save('source_image.jpg') # Generate # my visual cryptography works with this concept (minimum): # when black pixel with a black pixel merged, the output will be a black pixel # when white pixel and black pixels merged or white pixel and white pixel - output will be white image = Image.open('source_image.jpg') image = image.convert('1') # mode 1 turns picture to black and white only! # now we will create two images in mode 1- black and white # size will be duplicated out1 = Image.new('1', [dimension * 2 for dimension in image.size]) # PIL.Image.new(mode, size, color=0), size is doubled out2 = Image.new('1', [dimension * 2 for dimension in image.size]) lists=[[255,0,255,0], [0,255,0,255]] for x in range(0, image.size[0]): # a loop from 0 to the x of the image for y in range(0, image.size[1]): # a loop from 0 to the y of the image pixel=image.getpixel((x,y)) # loops - for each x all the ys pattern=random.choice(lists) #Return a random list from the list of pattern lists if pixel==0: # if the pixel is black the pixel splits by the random pattern with an anti pattern out1.putpixel((x * 2, y * 2), pattern[0]) out1.putpixel((x * 2 + 1, y * 2), pattern[1]) out1.putpixel((x * 2, y * 2 + 1), pattern[2]) out1.putpixel((x * 2 + 1, y * 2 + 1), pattern[3]) out2.putpixel((x * 2, y * 2), 255-pattern[0]) out2.putpixel((x * 2 + 1, y * 2), 255-pattern[1]) out2.putpixel((x * 2, y * 2 + 1), 255-pattern[2]) out2.putpixel((x * 2 + 1, y * 2 + 1), 255-pattern[3]) else: # if the pixel is white the pixel splits by the random pattern with the same pattern out1.putpixel((x * 2, y * 2), pattern[0]) out1.putpixel((x * 2 + 1, y * 2), pattern[1]) out1.putpixel((x * 2, y * 2 + 1), pattern[2]) out1.putpixel((x * 2 + 1, y * 2 + 1), pattern[3]) out2.putpixel((x * 2, y * 2), pattern[0]) out2.putpixel((x * 2 + 1, y * 2), pattern[1]) out2.putpixel((x * 2, y * 2 + 1), pattern[2]) out2.putpixel((x * 2 + 1, y * 2 + 1), pattern[3]) # pictures saved out1.save(r'out1.jpg') out2.save('out2.jpg') def GetPassword(self): return self.txt def GetPicture(self): with open(r'out1.jpg', 'rb') as infile1: infile_read = infile1.read() infile1.close() return infile_read def Send_Out2_By_Email(self, email_addr): SMTP_SERVER = 'smtp.gmail.com' SMTP_PORT = 587 content = MIMEMultipart() content['From'] = '<EMAIL>' content['To'] = email_addr content['Subject'] = 'Password First Picture' content.attach(MIMEText('Here is the first picture of the password:' , 'plain')) filename = 'out2.jpg' attachment = open(filename, 'rb') part = MIMEBase('application', 'octet-stream') part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename= ' + filename) content.attach(part) content = content.as_string() mail = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) mail.starttls() mail.login('<EMAIL>', 'YOUR CREATED EMAIL"S PASSWORD') # To run the project you have to create an email (or use an existing one) # The email will send the out2.jpg file to the client try: mail.sendmail('<EMAIL>', [email_addr], content) except: print ("Unexpected Client Error 1.")
StarcoderdataPython
3315580
<gh_stars>10-100 from __future__ import print_function from lm import lm import sys import codecs stdin = codecs.getreader('utf-8')(sys.stdin) stdout = codecs.getwriter('utf-8')(sys.stdout) lm = lm.LM() lm.load('../data/') collationLM_sum = 0 ngramLM_sum = 0 count = 0 for line in stdin: line = line.rstrip('\n') sentence = line.split(' ') col_score = lm.collocationLM.score(sentence, debug=False) slm_score = lm.slm_score(sentence) print(line + "," + str(col_score) + "," + str(slm_score), file=stdout) collationLM_sum += col_score ngramLM_sum += slm_score count += 1 print("cross_entropy, " + str(collationLM_sum / count) + "," + str(ngramLM_sum / count))
StarcoderdataPython
1781294
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('payment', '0004_auto_20150415_2210'), ] operations = [ migrations.CreateModel( name='PaymentPrice', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('price', models.IntegerField(verbose_name='pris')), ('description', models.CharField(max_length=128, null=True, blank=True)), ('payment', models.ForeignKey(to='payment.Payment')), ], options={ 'verbose_name': 'pris', 'verbose_name_plural': 'priser', }, bases=(models.Model,), ), migrations.AlterModelOptions( name='paymentdelay', options={'verbose_name': 'betalingsutsettelse', 'verbose_name_plural': 'betalingsutsettelser'}, ), migrations.AddField( model_name='payment', name='stripe_key_index', field=models.SmallIntegerField(default=0, verbose_name='stripe key', choices=[(0, b'Arrkom'), (1, b'Prokom')]), preserve_default=False, ), migrations.AddField( model_name='paymentrelation', name='payment_price', field=models.ForeignKey(default=0, to='payment.PaymentPrice'), preserve_default=False, ), migrations.AddField( model_name='paymentrelation', name='refunded', field=models.BooleanField(default=False), preserve_default=True, ), migrations.AddField( model_name='paymentrelation', name='stripe_id', field=models.CharField(default=0, max_length=128), preserve_default=False, ), migrations.AlterField( model_name='payment', name='delay', field=models.SmallIntegerField(default=2, null=True, verbose_name='utsettelse', blank=True), preserve_default=True, ), migrations.AlterUniqueTogether( name='payment', unique_together=set([('content_type', 'object_id')]), ), migrations.RemoveField( model_name='payment', name='price', ), migrations.AlterUniqueTogether( name='paymentdelay', unique_together=set([('payment', 'user')]), ), ]
StarcoderdataPython
4819125
<reponame>Hadisalman/AirSim import copy import json import threading import numpy as np import torch from robustness import airsim from .sim_object import SimObject class AdversarialObjects(SimObject): def __init__(self, name='3DAdversary', car=None, **kwargs): super().__init__(name) assert 'resolution_coord_descent' in kwargs and 'num_iter' in kwargs and 'adv_config_path' in kwargs self.ped_detection_callback = car.detection.ped_detection_callback # TODO: un-hardcode this. self.ped_object_name = 'Adv_Ped2' self.thread = threading.Thread(target=self.coordinate_ascent_object_attack, args=(kwargs['resolution_coord_descent'], kwargs['num_iter'])) self.is_thread_active = False self.scene_objs = self.client.simListSceneObjects() self.adv_objects = [ 'Adv_House', 'Adv_Fence', 'Adv_Hedge', 'Adv_Car', 'Adv_Tree' ] self.adv_config_path = kwargs['adv_config_path'] for obj in self.adv_objects: print('{} exists? {}'.format(obj, obj in self.scene_objs)) for obj in ['BoundLowerLeft', 'BoundUpperRight']: print('{} exists? {}'.format(obj, obj in self.scene_objs)) self.BoundLowerLeft = self.client.simGetObjectPose('BoundLowerLeft') self.BoundUpperRight = self.client.simGetObjectPose('BoundUpperRight') self.x_range_adv_objects_bounds = (self.BoundLowerLeft.position.x_val, self.BoundUpperRight.position.x_val) self.y_range_adv_objects_bounds = (self.BoundLowerLeft.position.y_val, self.BoundUpperRight.position.y_val) def dump_env_config_to_json(self, path): def _populate_pose_dic(pose_dic, pose): pose_dic['X'] = pose.position.x_val pose_dic['Y'] = pose.position.y_val pose_dic['Z'] = pose.position.z_val euler_angles = airsim.to_eularian_angles(pose.orientation) pose_dic['Pitch'] = euler_angles[0] pose_dic['Roll'] = euler_angles[1] pose_dic['Yaw'] = euler_angles[2] with open(path, 'w') as f: output = {} output['Vehicle'] = {} pose = self.client.simGetVehiclePose() _populate_pose_dic(output['Vehicle'], pose) output[self.ped_object_name] = {} pose = self.client.simGetObjectPose(self.ped_object_name) _populate_pose_dic(output[self.ped_object_name], pose) for obj in self.adv_objects: output[obj] = {} pose = self.client.simGetObjectPose(obj) _populate_pose_dic(output[obj], pose) # print(output) json.dump(output, f, indent=2, sort_keys=False) def update_env_from_config(self, path): with open(path, 'r') as f: dic = json.load(f) for obj_name, obj_pose in dic.items(): pose = airsim.Pose(airsim.Vector3r(obj_pose['X'], obj_pose['Y'], obj_pose['Z']), airsim.to_quaternion(obj_pose['Pitch'], obj_pose['Roll'], obj_pose['Yaw'])) if obj_name == 'Vehicle': self.client.simSetVehiclePose(pose, ignore_collison=True) else: assert obj_name in self.scene_objs, 'Object {} is not found in the scene'.format(obj_name) self.client.simSetObjectPose(obj_name, pose) print('-->[Updated the position of the {}]'.format(obj_name)) def coordinate_ascent_object_attack(self, resolution=10, num_iter=1): x_range = np.linspace(self.x_range_adv_objects_bounds[0], self.x_range_adv_objects_bounds[1], resolution) y_range = np.linspace(self.y_range_adv_objects_bounds[0], self.y_range_adv_objects_bounds[1], resolution) xv, yv = np.meshgrid(x_range, y_range) self.adv_poses = [] best_loss = -1 for _ in range(num_iter): for obj in np.random.permutation(self.adv_objects).tolist(): pose = self.client.simGetObjectPose(obj) best_pose = copy.deepcopy(pose) grid2d_poses_list = zip(xv.flatten(), yv.flatten()) for grid2d_pose in grid2d_poses_list: pose.position.x_val = grid2d_pose[0] pose.position.y_val = grid2d_pose[1] self.client.simSetObjectPose(obj, pose) if not self.is_thread_active: print('-->[Saving whatever coniguration is reached]') self.dump_env_config_to_json(path=self.adv_config_path) return _, correct, loss = self.ped_detection_callback() if loss > best_loss: best_loss = loss best_pose = copy.deepcopy(pose) print('Best loss so far {}'.format(best_loss.item())) self.client.simSetObjectPose(obj, best_pose) # dump results into a json file after each iteration self.dump_env_config_to_json(path=self.adv_config_path) def spsa_object_attack(self, resolution=10, num_iter=1): def calc_est_grad(func, x, y, rad, num_samples): B, *_ = x.shape Q = num_samples//2 N = len(x.shape) - 1 with torch.no_grad(): # Q * B * C * H * W extender = [1]*N queries = x.repeat(Q, *extender) noise = torch.randn_like(queries) norm = noise.view(B*Q, -1).norm(dim=-1).view(B*Q, *extender) noise = noise / norm noise = torch.cat([-noise, noise]) queries = torch.cat([queries, queries]) y_shape = [1] * (len(y.shape) - 1) l = func(queries + rad * noise, y.repeat(2*Q, *y_shape)).view(-1, *extender) grad = (l.view(2*Q, B, *extender) * noise.view(2*Q, B, *noise.shape[1:])).mean(dim=0) return grad x_range = np.linspace(self.x_range_adv_objects_bounds[0], self.x_range_adv_objects_bounds[1], resolution) y_range = np.linspace(self.y_range_adv_objects_bounds[0], self.y_range_adv_objects_bounds[1], resolution) xv, yv = np.meshgrid(x_range, y_range) self.adv_poses = [] best_loss = -1 for _ in range(num_iter): for obj in np.random.permutation(self.adv_objects).tolist(): pose = self.client.simGetObjectPose(obj) best_pose = copy.deepcopy(pose) grid2d_poses_list = zip(xv.flatten(), yv.flatten()) for grid2d_pose in grid2d_poses_list: pose.position.x_val = grid2d_pose[0] pose.position.y_val = grid2d_pose[1] self.client.simSetObjectPose(obj, pose) if not self.is_thread_active: print('[-->[Saving whatever coniguration is reached]') self.dump_env_config_to_json(path=self.adv_config_path) return _, correct, loss = self.ped_detection_callback() if loss > best_loss: best_loss = loss best_pose = copy.deepcopy(pose) print('Best loss so far {}'.format(best_loss.item())) self.client.simSetObjectPose(obj, best_pose) # dump results into a json file after each iteration self.dump_env_config_to_json(path=self.adv_config_path) def attack(self): if not self.is_thread_active: self.is_thread_active = True self.thread.start() print("-->[Started adv thread]")
StarcoderdataPython
4822399
<gh_stars>0 ''' @description 86.【Python面向对象】重写父类的方法 2019/10/04 10:44 ''' class Person(object): def __init__(self, name, age): self.name = name self.age = age def eat(self): print('人在吃饭!....') class Student(Person): # 1.如果父类的方法不能满足子类的需求,那么可以重写这个方法,以后对象调用同名 # 方法的时候,就会执行子类的这个方法。 # 2.虽然父类的方法不能完全满足子类的需求,但是父类的方法的代码还是需要执行, # 那么可以通过super这个函数来调用父类的方法。 # 3.super函数的用法:super(类名,self).方法名([可选参数]) # 例:super(Student, self).__init__(name, age) # 例:super(Student, self).eat() def __init__(self, name, age): super(Student, self).__init__(name, age) # TODO: 重写父类Person的eat方法 def eat(self): # super(Student, self).eat() print('学生在吃饭!....') def greet(self): print('hello, my name is %s, my age is %s'%(self.name, self.age)) student = Student('zhiliao', 18) student.eat() student.greet()
StarcoderdataPython
1693217
"""Locations class module for Squaredown. """ from aracnid_logger import Logger from squaredown.connector import Connector # initialize logging logger = Logger(__name__).get_logger() class Locations(Connector): """Contains the code to connect and pull locations from Square to MongoDB. Environment Variables: None. Attributes: collection: Square Orders collection in MongoDB. collection_name: Name of the Square Orders collection in MongoDB. """ def __init__(self): """Initializes the Locations Connector. Establishes connections to Square and MongoDB. Sets up access to configuration properties. """ self.collection_name = 'square_locations' logger.debug(f'collection_name: {self.collection_name}') super().__init__(config_name=self.collection_name) # initialize MongoDB collection self.collection = self.read_collection(self.collection_name) def pull(self): """Retrieves a set of Square Locations and saves them in MongoDB. Args: None Returns: None """ logger.debug('pulling') result = self.api_locations.list_locations() locations = None if result.is_success(): locations = result.body.get('locations') elif result.is_error(): logger.error(result.errors) update_count = 0 if locations: for location in locations: self.update_location(location) update_count += 1 logger.debug(f'locations processed: {update_count}') def update_location(self, location): """Save the provided Square Location into MongoDB. Args: location: Square Location object Returns: The MongoDB representation of the Square Location object. """ self.decode_location(location) # get the location properties location_id = location['id'] # update the database self.mdb.square_locations.find_one_and_replace( filter={'_id': location_id}, replacement=location, upsert=True ) return location
StarcoderdataPython
1695818
import math def nth_fact(nth): # Enter your code here return(math.factorial(nth))
StarcoderdataPython
4820974
<reponame>faraixyz/farais-code-graveyard from base64 import urlsafe_b64encode from hashlib import sha1 import hmac import json import pprint import secrets from urllib.parse import quote_plus, quote from time import time import requests with open('config.json', 'rb') as config_file: CONFIG = json.load(config_file) #Defaults oauth_consumer_key = CONFIG['consumer']['key'] oauth_signature_method = "HMAC-SHA1" oauth_token = CONFIG['user']['key'] oauth_version = '1.0' SIGN_KEY = bytes(CONFIG['consumer']['secret']+'&'+CONFIG['user']['secret'], 'utf-8') def signrequest(request): signer = hmac.new(SIGN_KEY, bytes(request,'utf-8'), sha1) digest = urlsafe_b64encode(signer.digest()) return digest.decode('utf-8') def make_oauth_obj(): oauth_nonce = secrets.token_urlsafe(16) oauth_timestamp = time() return { "oauth_consumer_key":oauth_consumer_key, "oauth_nonce":oauth_nonce, "oauth_signature_method":oauth_signature_method, "oauth_timestamp":oauth_timestamp, "oauth_token":oauth_token, "oauth_version":oauth_version, } def make_sign_str(method, url, oauth_obj, params): sign_str = f"{method}&{quote_plus(url)}&" for key, val in sorted([*oauth_obj.items(), *params.items()]): sign_str += f"{quote_plus(key)}%3D{quote_plus(str(val))}%26" return sign_str[:-3] def make_auth_header(oauth_obj): header = "OAUTH " oauth_prop = [f'{quote_plus(key)}="{quote_plus(str(value))}"' for key, value in sorted(oauth_obj.items())] header += ", ".join(oauth_prop) return header def get_friends(): url = 'https://api.twitter.com/1.1/friends/ids.json' method = "GET" oauth = make_oauth_obj() sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.get(url, headers=headers) ids = r.json()['ids'] return ids def get_friends_with_hidden_retweets(): url = 'https://api.twitter.com/1.1/friendships/no_retweets/ids.json' method = "GET" oauth = make_oauth_obj() sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.get(url, headers=headers) ids = r.json() return ids def hide_retweets_from_user(id): url = "https://api.twitter.com/1.1/friendships/update.json" method = "POST" oauth = make_oauth_obj() args = {"user_id":id, "retweets":False} sign_string = make_sign_str(method, url, oauth, args) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.post(url, data=args, headers=headers) return r def get_tweets(): url = 'https://api.twitter.com/1.1/statuses/user_timeline.json' method = 'GET' oauth = make_oauth_obj() args = {"trim_user": 1} sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.get(url, headers=headers) data = r.json() ids = list(map(lambda x: x['id_str'], data)) return ids def get_favorites(): url = 'https://api.twitter.com/1.1/favorites/list.json' method = 'GET' oauth = make_oauth_obj() sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.get(url, headers=headers) data = r.json() ids = list(map(lambda x: x['id_str'], data)) return ids def delete_tweet(id): url = f'https://api.twitter.com/1.1/statuses/destroy/{id}.json' method = 'POST' oauth = make_oauth_obj() sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.post(url, data={}, headers=headers) def make_fav(id): url = 'https://api.twitter.com/1.1/favorites/create.json' method = 'POST' oauth = make_oauth_obj() args = {'id':id} sign_string = make_sign_str(method, url, oauth, args) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.post(url, data=args, headers=headers) def delete_fav(id): url = 'https://api.twitter.com/1.1/favorites/destroy.json' method = 'POST' oauth = make_oauth_obj() args = {'id':id} sign_string = make_sign_str(method, url, oauth, args) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.post(url, data=args, headers=headers) def rate_limit(): url = 'https://api.twitter.com/1.1/application/rate_limit_status.json' method= 'GET' oauth = make_oauth_obj() sign_string = make_sign_str(method, url, oauth, {}) oauth["oauth_signature"] = signrequest(sign_string) headers = {"Authorization":make_auth_header(oauth)} r = requests.get(url, headers=headers) return r.json() def delete_tweets(): deleted = 0 while True: a = get_tweets() print(a) for i in a: delete_tweet(i) print('Deleted ' + i) deleted +=1 print(f'{deleted} tweets deleted so far') def hide_retweets_from_friends(): friends = get_friends() unretweeted = get_friends_with_hidden_retweets() retweeded = list(filter(lambda x:x not in unretweeted, friends)) log = [] print(retweeded) try: for user in retweeded: out = hide_retweets_from_user(user) log.append(out) except Exception as e: print("Something went Wrong") raise(e) print("All done!") def delete_favs(): for i in range(200): a = get_favorites() print(a) for i in a: make_fav(i) print(f'liked {i}') delete_fav(i) print(f'deleted {i}') print('eh') ''' # The following code was a more complex means of deleting favs # Takes forever and Twitter doesn't like it. with open('like','r') as likes: likes = likes.read().splitlines() try: deleted = 0 while True: tweet = likes.pop() print(tweet) make_favs(tweet) delete_favs(tweet) deleted += 1 except Exception as e: print(f"{deleted} tweets deleted.") with open('like','r') as new_likes: for like in likes: new_likes.write(like + '\n') print(e) '''
StarcoderdataPython
4838030
<gh_stars>0 class Dessin(): """docstring for Dessin.""" def __init__(self, nom): self.nom = nom self.liste = [] def add(self, obj): self.liste.append(obj) def affiche(self): print("===",self.nom,"===") for f in self.liste: f.affiche()
StarcoderdataPython
1611177
<reponame>RCTom168/Intro-to-Python-1<gh_stars>0 # Write a function is_even that will return true if the passed-in number is even. # YOUR CODE HERE def is_even(num): # Define the function if num % 2 == 0: return True # Read a number from the keyboard num = input("Enter a number: ") num = int(num) # Print out "Even!" if the number is even. Otherwise print "Odd" answer = is_even(num) # YOUR CODE HERE if answer is True: print("Even!") else: print("Odd!")
StarcoderdataPython
1644072
""" Defines upper bounds of YPD media for FBA """ from yeast.core.media.constants import reagents from yeast.core.media.yp.base import yp d = { reagents["D-glucose"]: 22.6, } ypd = {**yp, **d}
StarcoderdataPython
1757653
<reponame>Ljqiii/google_translate_api_python from .GetTKK import getTKK import time import ctypes import requests class GoogleTranslate(): def __init__(self, sl='', tl='', domainnames=""): """ A python wrapped free and unlimited API for Google Translate. :param sl:from Language :param tl:to Language :param domainnames: google domainnames, for example if domainnames="com" ,the url is "translate.google.com". In China the com domainnames is blocked by GFW,you can use "cn". """ self.sl = sl self.tl = tl self.hl = tl if(domainnames==""): self.domainnames ="com" else: self.domainnames = domainnames self.TKK = getTKK(domainnames=self.domainnames) def _returnintorzero(self,d): try: temp = int(d) except: temp = 0 return temp def _xr(self, a, b): size_b = len(b) c = 0 while c < size_b - 2: d = b[c + 2] d = ord(d[0]) - 87 if 'a' <= d else int(d) d = (a % 0x100000000) >> d if '+' == b[c + 1] else a << d a = a + d & 4294967295 if '+' == b[c] else a ^ d c += 3 return a def trans(self,text): """ translate text :param text: The text to be translate :return: """ tk=self._gettk(text) timeh = int(time.time() / 3600) if (self.TKK.split(".")[0]!=timeh): self.TKK = getTKK(domainnames=self.domainnames) data = { "client": 't', "sl": self.sl, "tl": self.tl, "hl": self.hl, "dt": ['at', 'bd', 'ex', 'ld', 'md', 'qca', 'rw', 'rm', 'ss', 't'], "ie": 'UTF-8', "oe": 'UTF-8', "otf": 1, "ssel": 0, "tsel": 0, "kc": 7, "q": text, "tk": tk }; url='https://translate.google.'+self.domainnames+'/translate_a/single'; jsonres=requests.get(url=url,params=data) return jsonres.json()[0][0][0] def _gettk(self,a): d = self.TKK.split(".") b = int(d[0]) e = [] for g in range(len(a)): l = ord(a[g]) if (128 > l): e.append(l) else: if (2048 > l): e.append(l >> 6 | 192) else: if (55296 == (l & 64512) and g + 1 < len(a) and 56320 == (ord(a[g + 1]) & 64512)): l = 65536 + ((l & 1023) << 10) + (a.charCodeAt(++g) & 1023) e.append(l >> 18 | 240) e.append(l >> 12 & 63 | 128) else: e.append(l >> 12 | 224) e.append(l >> 6 & 63 | 128) e.append(l & 63 | 128) a = b for f in range(len(e)): a = a + int(e[f]) a = self._xr(a, "+-a^+6") a = self._xr(a, "+-3^+b+-f"); a ^=self._returnintorzero(d[1]) if(0>a): a = (a & 2147483647) + 2147483648 a %= 1E6; return str(int(a))+ "." + str(int(a) ^ b) # a = GoogleTranslate(domainnames="cn",sl="en",tl="zh-CN") # print(a.trans("I am a boy and she is a girl.")) # print(a.trans("She is a girl."))
StarcoderdataPython
4839862
<gh_stars>100-1000 __all__ = ["filters", "generators"]
StarcoderdataPython
3279784
<gh_stars>1-10 """ This script is an example of benchmarking the continuous mlp baseline.""" import datetime import os import os.path as osp import random from baselines.bench import benchmarks import dowel from dowel import logger as dowel_logger import gym import pytest import tensorflow as tf from metarl.envs import normalize from metarl.experiment import deterministic from metarl.tf.algos import PPO from metarl.tf.baselines import ContinuousMLPBaseline from metarl.tf.envs import TfEnv from metarl.tf.experiment import LocalTFRunner from metarl.tf.policies import GaussianLSTMPolicy from tests.fixtures import snapshot_config policy_params = { 'policy_lr': 1e-3, 'policy_hidden_sizes': 32, 'hidden_nonlinearity': tf.nn.tanh } baseline_params = {'regressor_args': dict(hidden_sizes=(64, 64))} algo_params = { 'n_envs': 8, 'n_epochs': 20, 'n_rollout_steps': 2048, 'discount': 0.99, 'max_path_length': 100, 'gae_lambda': 0.95, 'lr_clip_range': 0.2, 'policy_ent_coeff': 0.02, 'entropy_method': 'max', 'optimizer_args': dict( batch_size=32, max_epochs=10, tf_optimizer_args=dict(learning_rate=policy_params['policy_lr']), ), 'center_adv': False } # number of processing elements to use for tensorflow num_proc = 4 * 2 # number of trials to run per environment num_trials = 3 @pytest.mark.huge def test_benchmark_ppo_continuous_mlp_baseline(): """ Compare benchmarks between CMB and potentially other baselines.""" mujoco1m = benchmarks.get_benchmark('Mujoco1M') timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f') benchmark_dir = osp.join(os.getcwd(), 'data', 'local', 'benchmarks', 'ppo_cmb', timestamp) for task in mujoco1m['tasks']: env_id = task['env_id'] env = gym.make(env_id) seeds = random.sample(range(100), num_trials) task_dir = osp.join(benchmark_dir, env_id) cmb_csvs = [] for trial in range(num_trials): seed = seeds[trial] trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed) cmb_dir = trial_dir + '/continuous_mlp_baseline' with tf.Graph().as_default(): env.reset() cmb_csv = ppo_cmb(env, seed, cmb_dir) cmb_csvs.append(cmb_csv) env.close() def ppo_cmb(env, seed, log_dir): """Create test continuous mlp baseline on ppo. Args: env (gym_env): Environment of the task. seed (int): Random seed for the trial. log_dir (str): Log dir path. Returns: str: training results in csv format. """ deterministic.set_seed(seed) config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=num_proc, inter_op_parallelism_threads=num_proc) sess = tf.Session(config=config) with LocalTFRunner(snapshot_config, sess=sess, max_cpus=num_proc) as runner: env = TfEnv(normalize(env)) policy = GaussianLSTMPolicy( env_spec=env.spec, hidden_dim=policy_params['policy_hidden_sizes'], hidden_nonlinearity=policy_params['hidden_nonlinearity'], ) baseline = ContinuousMLPBaseline( env_spec=env.spec, regressor_args=baseline_params['regressor_args'], ) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=algo_params['max_path_length'], discount=algo_params['discount'], gae_lambda=algo_params['gae_lambda'], lr_clip_range=algo_params['lr_clip_range'], entropy_method=algo_params['entropy_method'], policy_ent_coeff=algo_params['policy_ent_coeff'], optimizer_args=algo_params['optimizer_args'], center_adv=algo_params['center_adv'], stop_entropy_gradient=True) # Set up logger since we are not using run_experiment tabular_log_file = osp.join(log_dir, 'progress.csv') dowel_logger.add_output(dowel.StdOutput()) dowel_logger.add_output(dowel.CsvOutput(tabular_log_file)) dowel_logger.add_output(dowel.TensorBoardOutput(log_dir)) runner.setup(algo, env, sampler_args=dict(n_envs=algo_params['n_envs'])) runner.train(n_epochs=algo_params['n_epochs'], batch_size=algo_params['n_rollout_steps']) dowel_logger.remove_all() return tabular_log_file
StarcoderdataPython
66073
<filename>hazelcast/transaction.py import logging import threading import time import uuid from hazelcast.errors import TransactionError, IllegalStateError from hazelcast.invocation import Invocation from hazelcast.protocol.codec import ( transaction_create_codec, transaction_commit_codec, transaction_rollback_codec, ) from hazelcast.proxy.transactional_list import TransactionalList from hazelcast.proxy.transactional_map import TransactionalMap from hazelcast.proxy.transactional_multi_map import TransactionalMultiMap from hazelcast.proxy.transactional_queue import TransactionalQueue from hazelcast.proxy.transactional_set import TransactionalSet from hazelcast.util import thread_id _logger = logging.getLogger(__name__) _STATE_ACTIVE = "active" _STATE_NOT_STARTED = "not_started" _STATE_COMMITTED = "committed" _STATE_ROLLED_BACK = "rolled_back" _STATE_PARTIAL_COMMIT = "rolling_back" TWO_PHASE = 1 """ The two phase commit is separated in 2 parts. First it tries to execute the prepare; if there are any conflicts, the prepare will fail. Once the prepare has succeeded, the commit (writing the changes) can be executed. Hazelcast also provides three phase transaction by automatically copying the backlog to another member so that in case of failure during a commit, another member can continue the commit from backup. """ ONE_PHASE = 2 """ The one phase transaction executes a transaction using a single step at the end; committing the changes. There is no prepare of the transactions, so conflicts are not detected. If there is a conflict, then when the transaction commits the changes, some of the changes are written and others are not; leaving the system in a potentially permanent inconsistent state. """ RETRY_COUNT = 20 class TransactionManager: """Manages the execution of client transactions and provides Transaction objects.""" def __init__(self, context): self._context = context def _connect(self): connection_manager = self._context.connection_manager for count in range(0, RETRY_COUNT): connection = connection_manager.get_random_connection() if connection: return connection _logger.debug( "Could not get a connection for the transaction. Attempt %d of %d", count, RETRY_COUNT, exc_info=True, ) if count + 1 == RETRY_COUNT: raise IllegalStateError("No active connection is found") def new_transaction( self, timeout: float, durability: int, transaction_type: int ) -> "Transaction": """Creates a Transaction object with given timeout, durability and transaction type. Args: timeout: The timeout in seconds determines the maximum lifespan of a transaction. durability: The durability is the number of machines that can take over if a member fails during a transaction commit or rollback. transaction_type: the transaction type which can be ``hazelcast.transaction.TWO_PHASE`` or ``hazelcast.transaction.ONE_PHASE``. Returns: New created Transaction. """ connection = self._connect() return Transaction(self._context, connection, timeout, durability, transaction_type) class Transaction: """Provides transactional operations: beginning/committing transactions, but also retrieving transactional data-structures like the TransactionalMap. """ state = _STATE_NOT_STARTED id: uuid.UUID = None start_time: float = None _locals = threading.local() thread_id: int = None def __init__(self, context, connection, timeout, durability, transaction_type): self._context = context self.connection = connection self.timeout = timeout self.durability = durability self.transaction_type = transaction_type self._objects = {} def begin(self) -> None: """Begins this transaction.""" if hasattr(self._locals, "transaction_exists") and self._locals.transaction_exists: raise TransactionError("Nested transactions are not allowed.") if self.state != _STATE_NOT_STARTED: raise TransactionError("Transaction has already been started.") self._locals.transaction_exists = True self.start_time = time.time() self.thread_id = thread_id() try: request = transaction_create_codec.encode_request( timeout=int(self.timeout * 1000), durability=self.durability, transaction_type=self.transaction_type, thread_id=self.thread_id, ) invocation = Invocation( request, connection=self.connection, response_handler=lambda m: m ) invocation_service = self._context.invocation_service invocation_service.invoke(invocation) response = invocation.future.result() self.id = transaction_create_codec.decode_response(response) self.state = _STATE_ACTIVE except: self._locals.transaction_exists = False raise def commit(self) -> None: """Commits this transaction.""" self._check_thread() if self.state != _STATE_ACTIVE: raise TransactionError("Transaction is not active.") try: self._check_timeout() request = transaction_commit_codec.encode_request(self.id, self.thread_id) invocation = Invocation(request, connection=self.connection) invocation_service = self._context.invocation_service invocation_service.invoke(invocation) invocation.future.result() self.state = _STATE_COMMITTED except: self.state = _STATE_PARTIAL_COMMIT raise finally: self._locals.transaction_exists = False def rollback(self) -> None: """Rollback of this current transaction.""" self._check_thread() if self.state not in (_STATE_ACTIVE, _STATE_PARTIAL_COMMIT): raise TransactionError("Transaction is not active.") try: if self.state != _STATE_PARTIAL_COMMIT: request = transaction_rollback_codec.encode_request(self.id, self.thread_id) invocation = Invocation(request, connection=self.connection) invocation_service = self._context.invocation_service invocation_service.invoke(invocation) invocation.future.result() self.state = _STATE_ROLLED_BACK finally: self._locals.transaction_exists = False def get_list(self, name: str) -> TransactionalList: """Returns the transactional list instance with the specified name. Args: name: The specified name. Returns: The instance of Transactional List with the specified name. """ return self._get_or_create_object(name, TransactionalList) def get_map(self, name: str) -> TransactionalMap: """Returns the transactional map instance with the specified name. Args: name: The specified name. Returns: The instance of Transactional Map with the specified name. """ return self._get_or_create_object(name, TransactionalMap) def get_multi_map(self, name: str) -> TransactionalMultiMap: """Returns the transactional multimap instance with the specified name. Args: name: The specified name. Returns: The instance of Transactional MultiMap with the specified name. """ return self._get_or_create_object(name, TransactionalMultiMap) def get_queue(self, name: str) -> TransactionalQueue: """Returns the transactional queue instance with the specified name. Args: name: The specified name. Returns: The instance of Transactional Queue with the specified name. """ return self._get_or_create_object(name, TransactionalQueue) def get_set(self, name: str) -> TransactionalSet: """Returns the transactional set instance with the specified name. Args: name: The specified name. Returns: The instance of Transactional Set with the specified name. """ return self._get_or_create_object(name, TransactionalSet) def _get_or_create_object(self, name, proxy_type): if self.state != _STATE_ACTIVE: raise TransactionError("Transaction is not in active state.") self._check_thread() key = (proxy_type, name) try: return self._objects[key] except KeyError: proxy = proxy_type(name, self, self._context) self._objects[key] = proxy return proxy def _check_thread(self): if not thread_id() == self.thread_id: raise TransactionError("Transaction cannot span multiple threads.") def _check_timeout(self): if time.time() > self.timeout + self.start_time: raise TransactionError("Transaction has timed out.") def __enter__(self): self.begin() return self def __exit__(self, type, value, traceback): if not type and not value and self.state == _STATE_ACTIVE: self.commit() elif self.state in (_STATE_PARTIAL_COMMIT, _STATE_ACTIVE): self.rollback()
StarcoderdataPython
122108
<filename>examples/distributed/simple_sync_distributed.py #!/usr/bin/env python """ Simple example of using leap_ec.distrib.synchronous """ import os import multiprocessing.popen_spawn_posix # Python 3.9 workaround for Dask. See https://github.com/dask/distributed/issues/4168 from distributed import Client import toolz from leap_ec import context, test_env_var from leap_ec import ops from leap_ec.decoder import IdentityDecoder from leap_ec.binary_rep.initializers import create_binary_sequence from leap_ec.binary_rep.ops import mutate_bitflip from leap_ec.binary_rep.problems import MaxOnes from leap_ec.distrib import DistributedIndividual from leap_ec.distrib import synchronous from leap_ec.probe import AttributesCSVProbe ############################## # Entry point ############################## if __name__ == '__main__': # We've added some additional state to the probe for DistributedIndividual, # so we want to capture that. probe = AttributesCSVProbe(attributes=['hostname', 'pid', 'uuid', 'birth_id', 'start_eval_time', 'stop_eval_time'], do_fitness=True, do_genome=True, stream=open('simple_sync_distributed.csv', 'w')) # Just to demonstrate multiple outputs, we'll have a separate probe that # will take snapshots of the offspring before culling. That way we can # compare the before and after to see what specific individuals were culled. offspring_probe = AttributesCSVProbe(attributes=['hostname', 'pid', 'uuid', 'birth_id', 'start_eval_time', 'stop_eval_time'], do_fitness=True, stream=open('simple_sync_distributed_offspring.csv', 'w')) with Client() as client: # create an initial population of 5 parents of 4 bits each for the # MAX ONES problem parents = DistributedIndividual.create_population(5, # make five individuals initialize=create_binary_sequence( 4), # with four bits decoder=IdentityDecoder(), problem=MaxOnes()) # Scatter the initial parents to dask workers for evaluation parents = synchronous.eval_population(parents, client=client) # probes rely on this information for printing CSV 'step' column context['leap']['generation'] = 0 probe(parents) # generation 0 is initial population offspring_probe(parents) # generation 0 is initial population # When running the test harness, just run for two generations # (we use this to quickly ensure our examples don't get bitrot) if os.environ.get(test_env_var, False) == 'True': generations = 2 else: generations = 5 for current_generation in range(generations): context['leap']['generation'] += 1 offspring = toolz.pipe(parents, ops.tournament_selection, ops.clone, mutate_bitflip(expected_num_mutations=1), ops.uniform_crossover, # Scatter offspring to be evaluated synchronous.eval_pool(client=client, size=len(parents)), offspring_probe, # snapshot before culling ops.elitist_survival(parents=parents), # snapshot of population after culling # in separate CSV file probe) print('generation:', current_generation) [print(x.genome, x.fitness) for x in offspring] parents = offspring print('Final population:') [print(x.genome, x.fitness) for x in parents]
StarcoderdataPython
3244860
from __future__ import division import fire from pathlib import Path import torch from torchvision import transforms from tea.config.app_cfg import parse_cfg, print_cfg, get_epochs, get_data_in_dir, get_model_out_dir, get_device import tea.data.data_loader_factory as DLFactory import tea.models.factory as MFactory from tea.trainer.basic_learner import find_max_lr, build_trainer, create_optimizer from tea.plot.commons import plot_lr_losses from tea.data.tiny_imageset import TinyImageSet import matplotlib.pyplot as plt from fastai.basic_data import DataBunch from fastai.train import lr_find, fit_one_cycle, Learner from fastai.vision import accuracy def build_train_val_datasets(cfg, in_memory=False): data_in_dir = get_data_in_dir(cfg) normalize = transforms.Normalize((.5, .5, .5), (.5, .5, .5)) train_aug = transforms.Compose([ transforms.RandomResizedCrop(56), transforms.RandomHorizontalFlip(), # transforms.RandomRotation(10) ]) val_aug = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(56) ]) training_transform = transforms.Compose([ transforms.Lambda(lambda x: x.convert("RGB")), train_aug, transforms.ToTensor(), normalize ]) valid_transform = transforms.Compose([ transforms.Lambda(lambda x: x.convert("RGB")), val_aug, transforms.ToTensor(), normalize ]) train_ds = TinyImageSet(data_in_dir, 'train', transform=training_transform, in_memory=in_memory) valid_ds = TinyImageSet(data_in_dir, 'val', transform=valid_transform, in_memory=in_memory) return train_ds, valid_ds """ Like anything in life, it is good to follow pattern. In this case, any application starts with cfg file, with optional override arguments like the following: data_dir/path model_cfg model_out_dir epochs, lr, batch etc """ def run(ini_file='tinyimg.ini', data_in_dir='./../../dataset', model_cfg='../cfg/vgg-tiny.cfg', model_out_dir='./models', epochs=30, lr=3.0e-5, batch_sz=256, num_worker=4, log_freq=20, use_gpu=True): # Step 1: parse config cfg = parse_cfg(ini_file, data_in_dir=data_in_dir, model_cfg=model_cfg, model_out_dir=model_out_dir, epochs=epochs, lr=lr, batch_sz=batch_sz, log_freq=log_freq, num_worker=num_worker, use_gpu=use_gpu) print_cfg(cfg) # Step 2: create data sets and loaders train_ds, val_ds = build_train_val_datasets(cfg, in_memory=True) train_loader, val_loader = DLFactory.create_train_val_dataloader(cfg, train_ds, val_ds) # Step 3: create model model = MFactory.create_model(cfg) # Step 4: train/valid # This demos our approach can be easily intergrate with our app framework device = get_device(cfg) data = DataBunch(train_loader, val_loader, device=device) learn = Learner(data, model, loss_func=torch.nn.CrossEntropyLoss(), metrics=accuracy) # callback_fns=[partial(EarlyStoppingCallback, monitor='accuracy', min_delta=0.01, patience=2)]) # lr_find(learn, start_lr=1e-7, end_lr=10) # learn.recorder.plot() # lrs_losses = [(lr, loss) for lr, loss in zip(learn.recorder.lrs, learn.recorder.losses)] # min_lr = min(lrs_losses[10:-5], key=lambda x: x[1])[0] # lr = min_lr/10.0 # plt.show() # print(f'Minimal lr rate is {min_lr} propose init lr {lr}') # fit_one_cycle(learn, epochs, lr) learn.fit(epochs, lr) if __name__ == '__main__': fire.Fire(run)
StarcoderdataPython
119420
<filename>core/migrations/0025_course_welcome_email.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0024_coursestudent_is_active'), ] operations = [ migrations.AddField( model_name='course', name='welcome_email', field=models.TextField(verbose_name='Welcome Email', blank=True), ), ]
StarcoderdataPython
3371955
from bank_bot.bankbot.core import bot, client_factory, safe_send_message from bank_bot import settings from bank_bot.banking_system import UserError, TransactionError, Database, HackerError, MessageError, AddressRecordError @bot.message_handler(regexp=r"\/message [a-zA-Z0-9]{10} [\w\W]+") def send_message(message): # Generic messaging command; allows to send any message to another user registered in bot # Only user's unique hash is required to send message; message is signed by sender's hash client = client_factory.create_client(message) try: reciever_chat_id, sent_message = client.prepare_message(message.text) except (UserError, MessageError) as err: bot.send_message(client.chat_id, err) return safe_send_message(bot, client.chat_id, f"{settings.MESSAGE_SEND_RESULT} {sent_message}") safe_send_message(bot, reciever_chat_id, f"{settings.INCOMING_MESSAGE} {sent_message}.\n{settings.MESSAGE_SENDER} {client.user.character_hash}") @bot.message_handler(commands=['history_messages_sent',]) def list_sent_messages(message): client = client_factory.create_client(message) try: message = client.inspect_messages(is_sender=True) except (UserError, MessageError) as err: message = err.message safe_send_message(bot, client.chat_id, message) @bot.message_handler(commands=['history_messages_recieved',]) def list_recieved_messages(message): client = client_factory.create_client(message) try: message = client.inspect_messages(is_sender=False) except (UserError, MessageError) as err: message = err.message safe_send_message(bot, client.chat_id, message) @bot.message_handler(commands=['history_messages',]) def list_all_messages(message): client = client_factory.create_client(message) try: message = client.inspect_all_messages() except (UserError, MessageError) as err: message = err.message safe_send_message(bot, client.chat_id, message) @bot.message_handler(regexp=r"^\/history_messages_pair [a-zA-Z0-9]{10}") def list_pair_messages(message): client = client_factory.create_client(message) try: message = client.inspect_pair_history_messages(message=message.text) except (UserError, MessageError) as err: message = err.message safe_send_message(bot, client.chat_id, message)
StarcoderdataPython
3300711
<filename>lieutenant/lieutenant/urls.py from django.conf.urls import patterns, include, url from django.contrib import admin from lieutenant.views import Home urlpatterns = patterns('', # Examples: # url(r'^$', 'lieutenant.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^$', Home.as_view(), name='home'), url(r'^admin/', include(admin.site.urls)), url(r'^accounts/', include('allauth.urls')), url(r'^api/', include('api.urls', namespace="api")), url(r'^entries/', include('entries.urls', namespace="entries")), url(r'^tags/', include('tags.urls', namespace="tags")), )
StarcoderdataPython
45518
<reponame>automation-liberation/deployment-helper from enum import Enum class ChangelogEntryEnum(Enum): ADDED = 'Added' CHANGED = 'Changed' FIXED = 'Fixed' REMOVED = 'Removed'
StarcoderdataPython
3399838
<gh_stars>0 def aoc(data): x, y, d = 0, 0, 0 moves = { "E": (1, 0, 0), "S": (0, 1, 0), "W": (-1, 0, 0), "N": (0, -1, 0), "R": (0, 0, 1), "L": (0, 0, -1), } for move, step in [(i[0], int(i[1:])) for i in data.split()]: if move == "F": x += list(moves.values())[d // 90 % 4][0] * step y += list(moves.values())[d // 90 % 4][1] * step else: x += moves[move][0] * step y += moves[move][1] * step d += moves[move][2] * step return abs(x) + abs(y)
StarcoderdataPython
4805177
<reponame>laffra/pava def add_native_methods(clazz): def selectAlternative__boolean__java_lang_invoke_MethodHandle__java_lang_invoke_MethodHandle__(a0, a1, a2): raise NotImplementedError() clazz.selectAlternative__boolean__java_lang_invoke_MethodHandle__java_lang_invoke_MethodHandle__ = staticmethod(selectAlternative__boolean__java_lang_invoke_MethodHandle__java_lang_invoke_MethodHandle__)
StarcoderdataPython
3369197
import pytest from pathlib import Path from pandas.testing import assert_frame_equal import pandas as pd from sqlalchemy.exc import DatabaseError from prestest.fixtures import container, start_container, db_manager, create_temporary_table from prestest.container import CONTAINER_NAMES resource_folder = Path(".").resolve() / "resources" @pytest.mark.prestest(container_folder=resource_folder) def test_container_set_docker_folder_correctly(container): assert container.docker_folder == resource_folder @pytest.mark.prestest(container_folder=resource_folder) def test_db_manager_set_docker_folder_correctly(db_manager): assert db_manager.container.docker_folder == resource_folder @pytest.mark.prestest(reset=True) def test_start_container_disable_table_modification_do_not_change_hive_properties(start_container, container, tmpdir): temp_download = Path(tmpdir.join("test_start_container_enable_table_modification_hive_properties")) container.download_from_container(from_container="/opt/presto-server-0.181/etc/catalog/hive.properties", to_local=temp_download, container_name=CONTAINER_NAMES["presto_coordinator"]) with open(temp_download, 'r') as f: result = set(l.strip() for l in f.readlines() if l.strip() != '') expected = {"hive.allow-drop-table=true", "hive.allow-rename-table=true", "hive.allow-add-column=true"} assert not result.intersection(expected) @pytest.mark.prestest(allow_table_modification=True, reset=True) def test_start_container_enable_table_modification_correctly(start_container, container, tmpdir): temp_download = Path(tmpdir.join("test_start_container_enable_table_modification_hive_properties")) container.download_from_container(from_container="/opt/presto-server-0.181/etc/catalog/hive.properties", to_local=temp_download, container_name=CONTAINER_NAMES["presto_coordinator"]) with open(temp_download, 'r') as f: result = set(l.strip() for l in f.readlines() if l.strip() != '') expected = {"hive.allow-drop-table=true", "hive.allow-rename-table=true", "hive.allow-add-column=true"} assert result.issuperset(expected) @pytest.mark.prestest(reset=True) def test_start_container_reset_correctly(start_container, container, tmpdir): temp_download = Path(tmpdir.join("test_start_container_enable_table_modification_hive_properties")) container.download_from_container(from_container="/opt/presto-server-0.181/etc/catalog/hive.properties", to_local=temp_download, container_name=CONTAINER_NAMES["presto_coordinator"]) with open(temp_download, 'r') as f: result = set(l.strip() for l in f.readlines() if l.strip() != '') expected = {"hive.allow-drop-table=true", "hive.allow-rename-table=true", "hive.allow-add-column=true"} assert not result.intersection(expected) @pytest.fixture() def clean_up_table(db_manager): table_name = "sandbox.test_table" db_manager.drop_table(table=table_name) db_manager.run_hive_query(f"CREATE DATABASE IF NOT EXISTS sandbox") yield table_name db_manager.drop_table(table=table_name) db_manager.run_hive_query(f"DROP DATABASE IF EXISTS sandbox") @pytest.mark.prestest(allow_table_modification=True, reset=True) def test_start_container_enable_table_modification_allow_presto_table_creation_and_drop( start_container, db_manager, clean_up_table): table_name = clean_up_table create_table = f""" CREATE TABLE IF NOT EXISTS {table_name} AS SELECT 1 AS col1, 'dummy' AS col2 """ db_manager.read_sql(create_table) select_table = f"SELECT * FROM {table_name}" result = db_manager.read_sql(select_table) expected = pd.DataFrame({"col1": [1], "col2": ["dummy"]}) assert_frame_equal(result, expected) db_manager.read_sql(f"DROP TABLE {table_name}") with pytest.raises(DatabaseError): db_manager.read_sql(select_table) create_temporary_table_query = """CREATE TABLE {table_name} ( col1 INTEGER, col2 STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE """ @pytest.mark.prestest(table_name="sandbox.test_temp_table", query=create_temporary_table_query, file=resource_folder / "sample_table.csv") def test_create_temporary_table_create_table_correctly(create_temporary_table, db_manager): result = db_manager.read_sql("SELECT * FROM sandbox.test_temp_table") expected = pd.DataFrame({"col1": [123, 456], "col2": ["abc", "cba"]}) assert_frame_equal(result, expected)
StarcoderdataPython
1776819
<filename>libs/pose_sphere.py<gh_stars>1-10 from __future__ import print_function import math import threading import time class PoseSphere: def __init__(self, name, priority=1): self.position = (0.0, 0.0, 0.0) self.p2 = (0.0, 0.0, 0.0) self.type = 'sphere' self.angle = 0.0 self.radius = 1.0 self.tolerance = 1.0 self.name = name self.time_check = None self.timer = 0 self.action = '' self.timeout_raised = False self.priority = priority def set_sphere(self, (x, y, z), angle, radius=5, tolerance=10): self.type = 'sphere' self.position = (x, y, z) self.angle = angle self.radius = radius self.tolerance = tolerance def set_block(self, (x1, y1, z1), (x2, y2, z2), angle, tolerance=10): self.type = 'block' self.position = (max([x1, x2]), max([y1, y2]), max([z1, z2])) self.p2 = (min([x1, x2]), min([y1, y2]), min([z1, z2])) self.angle = angle self.tolerance = tolerance def set_action(self, action, time): self.action = action self.timer = time def check(self, (x, y, z), angle): if self.type == 'sphere': distance = math.sqrt(math.pow(x - self.position[0], 2) + math.pow( y - self.position[1], 2) + math.pow(z - self.position[2], 2)) delta_angle = abs(angle - self.angle) if (distance <= self.radius) and (delta_angle < self.tolerance): if self.time_check == None: self.time_check = time.time() return True elif self.type == 'block': inside = (self.p2[0] <= x <= self.position[0]) and ( self.p2[1] <= y <= self.position[1]) and (self.p2[2] <= z <= self.position[2]) delta_angle = abs(angle - self.angle) if inside and (delta_angle < self.tolerance): if self.time_check == None: self.time_check = time.time() return True self.time_check = None self.timeout_raised = False return False def get_time(self): if self.time_check != None: return time.time() - self.time_check else: return 0.0 def timeout(self): if self.timer != 0: if self.get_time() >= self.timer and not self.timeout_raised: self.timeout_raised = True return True return False def skip(self): self.time_check = None self.timeout_raised = False
StarcoderdataPython
112915
<reponame>Farbfetzen/Advent_of_Code from unittest import TestCase from src.util.load_data import load_data from src.year2020.day13 import part_1, part_2, part_2_without_crt, prepare_data from test.decorators import sample data = load_data(2020, 13) @sample class Test2020Day13Samples(TestCase): prepared_data: list[str] @classmethod def setUpClass(cls) -> None: cls.prepared_data = prepare_data(data.samples[0]) def test_part_1(self) -> None: self.assertEqual(295, part_1(self.prepared_data)) def test_part_2(self) -> None: self.assertEqual(1068781, part_2(self.prepared_data)) def test_part_2_without_crt(self): self.assertEqual(1068781, part_2_without_crt(self.prepared_data)) class Test2020Day13(TestCase): prepared_data: list[str] @classmethod def setUpClass(cls) -> None: cls.prepared_data = prepare_data(data.input) def test_part_1(self) -> None: self.assertEqual(3882, part_1(self.prepared_data)) def test_part_2(self) -> None: self.assertEqual(867295486378319, part_2(self.prepared_data)) def test_part_2_without_crt(self) -> None: self.assertEqual(867295486378319, part_2_without_crt(self.prepared_data))
StarcoderdataPython
3296016
<gh_stars>0 #!/usr/bin/env python3 from collections import defaultdict from pgmpy.factors import TabularCPD, TreeCPD, RuleCPD import itertools import networkx as nx class DirectedGraph(nx.DiGraph): """ Base class for directed graphs. Directed graph assumes that all the nodes in graph are either random variables, factors or clusters of random variables and edges in the graph are dependencies between these random variables. Parameters ---------- data: input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list or any Networkx graph object. Examples -------- Create an empty DirectedGraph with no nodes and no edges >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph() G can be grown in several ways **Nodes:** Add one node at a time: >>> G.add_node('a') Add the nodes from any container (a list, set or tuple or the nodes from another graph). >>> G.add_nodes_from(['a', 'b']) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge('a', 'b') a list of edges, >>> G.add_edges_from([('a', 'b'), ('b', 'c')]) If some edges connect nodes not yet in the model, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Shortcuts:** Many common graph features allow python syntax for speed reporting. >>> 'a' in G # check if node in graph True >>> len(G) # number of nodes in graph 3 """ def __init__(self, ebunch=None): super().__init__(ebunch) def add_node(self, node, **kwargs): """ Add a single node to the Graph. Parameters ---------- node: node A node can be any hashable Python object. Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph() >>> G.add_node('A') """ super().add_node(node, **kwargs) def add_nodes_from(self, nodes, **kwargs): """ Add multiple nodes to the Graph. Parameters ---------- nodes: iterable container A container of nodes (list, dict, set, etc.). Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph() >>> G.add_nodes_from(['A', 'B', 'C']) """ for node in nodes: self.add_node(node, **kwargs) def add_edge(self, u, v, **kwargs): """ Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph Parameters ---------- u,v : nodes Nodes can be any hashable Python object. Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph() >>> G.add_nodes_from(['Alice', 'Bob', 'Charles']) >>> G.add_edge('Alice', 'Bob') """ super().add_edge(u, v, **kwargs) def add_edges_from(self, ebunch, **kwargs): """ Add all the edges in ebunch. If nodes referred in the ebunch are not already present, they will be automatically added. Node names should be strings. Parameters ---------- ebunch : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v). Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph() >>> G.add_nodes_from(['Alice', 'Bob', 'Charles']) >>> G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')]) """ for edge in ebunch: self.add_edge(*edge, **kwargs) def get_parents(self, node): """ Returns a list of parents of node. Parameters ---------- node: string, int or any hashable python object. The node whose parents would be returned. Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')]) >>> G.parents('grade') ['diff', 'intel'] """ return self.predecessors(node) def moralize(self): """ Removes all the immoralities in the DirectedGraph and creates a moral graph (UndirectedGraph). A v-structure X->Z<-Y is an immorality if there is no directed edge between X and Y. Examples -------- >>> from pgmpy.base import DirectedGraph >>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')]) >>> moral_graph = G.moralize() >>> moral_graph.edges() [('intel', 'grade'), ('intel', 'diff'), ('grade', 'diff')] """ from pgmpy.base import UndirectedGraph moral_graph = UndirectedGraph(self.to_undirected().edges()) for node in self.nodes(): moral_graph.add_edges_from(itertools.combinations( self.get_parents(node), 2)) return moral_graph
StarcoderdataPython
1727584
# https://codeforces.com/problemset/problem/479/A a = int(input()) b = int(input()) c = int(input()) a1=a+b*c a2=a*(b+c) a3=a*b*c a4=(a+b)*c a5=a+b+c print(max(a1,a2,a3,a4,a5))
StarcoderdataPython
1637985
<filename>map_label_tool/py_proto/cyber/proto/perception_pb2.py # Generated by the protocol buffer compiler. DO NOT EDIT! # source: cyber/proto/perception.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='cyber/proto/perception.proto', package='apollo.cyber.proto', syntax='proto2', serialized_pb=_b('\n\x1c\x63yber/proto/perception.proto\x12\x12\x61pollo.cyber.proto\"\x80\x01\n\nPerception\x12\x35\n\x06header\x18\x01 \x01(\x0b\x32%.apollo.cyber.proto.Perception.Header\x12\x0e\n\x06msg_id\x18\x02 \x01(\x04\x12\x0e\n\x06result\x18\x03 \x01(\x01\x1a\x1b\n\x06Header\x12\x11\n\ttimestamp\x18\x01 \x01(\x04') ) _PERCEPTION_HEADER = _descriptor.Descriptor( name='Header', full_name='apollo.cyber.proto.Perception.Header', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='timestamp', full_name='apollo.cyber.proto.Perception.Header.timestamp', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=154, serialized_end=181, ) _PERCEPTION = _descriptor.Descriptor( name='Perception', full_name='apollo.cyber.proto.Perception', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='header', full_name='apollo.cyber.proto.Perception.header', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='msg_id', full_name='apollo.cyber.proto.Perception.msg_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='result', full_name='apollo.cyber.proto.Perception.result', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_PERCEPTION_HEADER, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=53, serialized_end=181, ) _PERCEPTION_HEADER.containing_type = _PERCEPTION _PERCEPTION.fields_by_name['header'].message_type = _PERCEPTION_HEADER DESCRIPTOR.message_types_by_name['Perception'] = _PERCEPTION _sym_db.RegisterFileDescriptor(DESCRIPTOR) Perception = _reflection.GeneratedProtocolMessageType('Perception', (_message.Message,), dict( Header = _reflection.GeneratedProtocolMessageType('Header', (_message.Message,), dict( DESCRIPTOR = _PERCEPTION_HEADER, __module__ = 'cyber.proto.perception_pb2' # @@protoc_insertion_point(class_scope:apollo.cyber.proto.Perception.Header) )) , DESCRIPTOR = _PERCEPTION, __module__ = 'cyber.proto.perception_pb2' # @@protoc_insertion_point(class_scope:apollo.cyber.proto.Perception) )) _sym_db.RegisterMessage(Perception) _sym_db.RegisterMessage(Perception.Header) # @@protoc_insertion_point(module_scope)
StarcoderdataPython
3301302
<reponame>MrKomish/pymono<gh_stars>1-10 from cocos.director import director from cocos.text import Label from pymono.lib.cocos2d import * from pymono.lib.observable import Observable from pymono.models.cells.StreetCell import StreetCell, StreetPrices from pymono.config import rgba_colors from pymono.models.Cell import Cell class CellDetailsView(cocos.layer.Layer): def __init__(self, cell_details_ctrl): super(CellDetailsView, self).__init__() self.cell_details_ctrl = cell_details_ctrl self.cell_name_label = None self.owner_label = None self.current_income_label = None self.street_prices_labels = [None, None, None] self.street_prices_labels_order = ["land_price", "house_price", "hotel_price"] self.x = director.window.width - 150 self.y = 50 def build(self): self.cell_details_ctrl.current_cell.watch(self.set_cell) def remove_all_cell_details(self): if self.cell_name_label in self.get_children(): self.remove(self.cell_name_label) self.cell_name_label = None for street_price_label in self.street_prices_labels: if street_price_label in self.get_children(): self.remove(street_price_label) self.street_prices_labels = [None, None, None] if self.owner_label in self.get_children(): self.remove(self.owner_label) self.owner_label = None if self.current_income_label in self.get_children(): self.remove(self.current_income_label) self.current_income_label = None def set_cell(self, cell: Cell): self.remove_all_cell_details() if cell is None: return self.create_cell_name_label(cell.name) if isinstance(cell, StreetCell): self.create_street_cell_prices_labels(cell.prices) self.create_cell_owner_label(cell.owner) self.create_cell_street_current_income(cell.owner.get() is not None, cell.current_income) def create_cell_name_label(self, text): self.cell_name_label = Label(text, font_name='Calibri', color=(0, 0, 0, 255), font_size=24, anchor_x='center', anchor_y='center') self.cell_name_label.position = 0, 210 self.add(self.cell_name_label) def create_street_cell_prices_labels(self, prices: StreetPrices): for price_type, price in prices: view_index = self.street_prices_labels_order.index(price_type) price_label = Label("- " + price_type.replace("_", " ").title() + ": $%d" % price, font_name='Calibri', color=(0, 0, 0, 255), font_size=18, anchor_x='center', anchor_y='center') price_label.position = 0, 150 - view_index * 30 self.street_prices_labels[view_index] = price_label self.add(price_label) def create_cell_owner_label(self, owner_observable: Observable): owner = owner_observable.get() color = rgba_colors[owner.color if owner is not None else "black"] owner_text = owner.color.title() if owner is not None else "No One" self.owner_label = Label("Owner: " + owner_text, font_name='Calibri', color=color, font_size=20, anchor_x='center', anchor_y='center') self.owner_label.position = 0, 30 self.add(self.owner_label) def create_cell_street_current_income(self, has_owner, current_income): self.current_income_label = Label(("" if has_owner else "Potential ") + "Income: $%d" % current_income, font_name='Calibri', color=rgba_colors["black"], font_size=20, anchor_x='center', anchor_y='center') self.current_income_label.position = 0, 0 self.add(self.current_income_label)
StarcoderdataPython
194537
<gh_stars>0 """Append file.""" from os import getcwd from os.path import abspath, realpath, join, dirname content = 'Some text Lorem ipsum dolor sit amet |::|\n\t\t@treedbox' appendMe = '\n1º New bit of information' appendMeToo = '2º New bit of information' filename = 'filename.txt' dir = abspath(dirname(__file__)) absFilePathAutoSlash = abspath(join(dirname(__file__), filename)) chmod = 'a' # append openFile = open(absFilePathAutoSlash, chmod) openFile.write(content) openFile.write(appendMe) openFile.write('\n') openFile.write(appendMeToo) openFile.close()
StarcoderdataPython
1673000
<reponame>Winzarten/SecondMonitor import ac import acsys import sys import os.path import platform import configparser import ctypes from ctypes import * from smshared_mem import SecondMonitorShared sharedMem = SecondMonitorShared() pluginVersion = "1.0.0" timer = 0 def updateSharedMemory(): global sharedMem sharedmem = sharedMem.getsharedmem() sharedmem.numVehicles = ac.getCarsCount() sharedmem.focusVehicle = ac.getFocusedCar() #now we'll build the slots, so we later know every single (possible) car carIds = range(0, ac.getCarsCount(), 1) for carId in carIds: #first we'll check wether there is a car for this id; as soon it returns -1 #it's over if str(ac.getCarName(carId)) == '-1': break else: sharedmem.vehicleInfo[carId].carId = carId sharedmem.vehicleInfo[carId].driverName = ac.getDriverName(carId).encode('utf-8') sharedmem.vehicleInfo[carId].carModel = ac.getCarName(carId).encode('utf-8') sharedmem.vehicleInfo[carId].speedMS = ac.getCarState(carId, acsys.CS.SpeedMS) sharedmem.vehicleInfo[carId].bestLapMS = ac.getCarState(carId, acsys.CS.BestLap) sharedmem.vehicleInfo[carId].lapCount = ac.getCarState(carId, acsys.CS.LapCount) sharedmem.vehicleInfo[carId].currentLapInvalid = ac.getCarState(carId, acsys.CS.LapInvalidated) sharedmem.vehicleInfo[carId].currentLapTimeMS = ac.getCarState(carId, acsys.CS.LapTime) sharedmem.vehicleInfo[carId].lastLapTimeMS = ac.getCarState(carId, acsys.CS.LastLap) sharedmem.vehicleInfo[carId].worldPosition = ac.getCarState(carId, acsys.CS.WorldPosition) sharedmem.vehicleInfo[carId].isCarInPitline = ac.isCarInPitline(carId) sharedmem.vehicleInfo[carId].isCarInPit = ac.isCarInPit(carId) sharedmem.vehicleInfo[carId].carLeaderboardPosition = ac.getCarLeaderboardPosition(carId) sharedmem.vehicleInfo[carId].carRealTimeLeaderboardPosition = ac.getCarRealTimeLeaderboardPosition(carId) sharedmem.vehicleInfo[carId].spLineLength = ac.getCarState(carId, acsys.CS.NormalizedSplinePosition) sharedmem.vehicleInfo[carId].isConnected = ac.isConnected(carId) sharedmem.vehicleInfo[carId].finishStatus = ac.getCarState(carId, acsys.CS.RaceFinished) def acMain(ac_version): global appWindow,sharedMem appWindow = ac.newApp("SecondMonitorEx") ac.setTitle(appWindow, "SecondMonitorEx") ac.setSize(appWindow, 300, 40) ac.log("SecondMonitor Shared memory Initialized") ac.console("SecondMonitor Shared memory Initialized") sharedmem = sharedMem.getsharedmem() sharedmem.serverName = ac.getServerName().encode('utf-8') sharedmem.acInstallPath = os.path.abspath(os.curdir).encode('utf-8') sharedmem.pluginVersion = pluginVersion.encode('utf-8') return "SecondMonitorEx" def acUpdate(deltaT): global timer timer += deltaT if timer > 0.025: updateSharedMemory() timer = 0
StarcoderdataPython
129991
<filename>ganonymizer-v3/app/api/router.py<gh_stars>0 from flask import request from api import app from api import controller as controller from api import middleware as middleware from api.gano import load_config, load_model @app.before_first_request def init(): load_config() load_model() @app.route("/health") def health(): return controller.health() @app.route("/image", methods=["POST"]) @middleware.auth.login_required def image(): print(f"[INFO] User: {middleware.auth.current_user()}") img_b64 = request.json["image"] return controller.image(img_b64)
StarcoderdataPython
3263678
# Ultroid - UserBot # Copyright (C) 2020 TeamUltroid # # This file is a part of < https://github.com/TeamUltroid/Ultroid/ > # PLease read the GNU Affero General Public License in # <https://www.github.com/TeamUltroid/Ultroid/blob/main/LICENSE/>. import os import requests from asyncio import sleep from bs4 import BeautifulSoup as bs from . import * XX = "A servant appeared!" YY = "A qt waifu appeared!" @bot.on(events.NewMessage(incoming=True)) async def reverse(event): if not event.media: return if not event.sender_id==792028928 or event.sender_id==1232515770: return if not event.text==XX or event.text==YY: return dl = await bot.download_media(event.media) file = {"encoded_image": (dl, open(dl, "rb"))} grs = requests.post( "https://www.google.com/searchbyimage/upload", files=file, allow_redirects=False ) loc = grs.headers.get("Location") response = requests.get( loc, headers={ "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0" }, ) xx = bs(response.text, "html.parser") div = xx.find("div", {"class": "r5a77d"}) alls = div.find("a") text = alls.text send = await @bot.on.send_message(event.chat_id, f"/protecc {text}") await sleep(2) await send.delete() os.remove(dl)
StarcoderdataPython
190700
import inspect from importlib import import_module from .base import BaseState, INIT_REMOTE_API from ..transport import new_session def create_class(pkg_class: str): """Create a class from a package.module.class string :param pkg_class: full class location, e.g. "sklearn.model_selection.GroupKFold" """ splits = pkg_class.split(".") clfclass = splits[-1] pkg_module = splits[:-1] class_ = getattr(import_module(".".join(pkg_module)), clfclass) return class_ def create_function(pkg_func: list): """Create a function from a package.module.function string :param pkg_func: full function location, e.g. "sklearn.feature_selection.f_classif" """ splits = pkg_func.split(".") pkg_module = ".".join(splits[:-1]) cb_fname = splits[-1] pkg_module = __import__(pkg_module, fromlist=[cb_fname]) function_ = getattr(pkg_module, cb_fname) return function_ class TaskState(BaseState): kind = 'task' _dict_fields = ['kind', 'name', 'class_name', 'class_params', 'handler', 'next', 'resource', 'transport', 'subpath', 'full_event'] def __init__(self, name=None, class_name=None, class_params=None, handler=None, next=None, resource=None, transport=None, subpath=None, full_event=None): super().__init__(name, next) if callable(handler) and (class_name or class_params): raise ValueError('cannot specify function pointer (handler) and class name/params') self._class_object = None self.class_name = class_name if class_name and not isinstance(class_name, str): self.class_name = class_name.__name__ self._class_object = class_name self.class_params = class_params or {} self._object = None self.full_event = full_event self.handler = handler self.resource = resource self.transport = transport self.subpath = subpath def _init_object(self, context, namespace): # link to function if self.handler and not self.class_name: if callable(self.handler): self._fn = self.handler self.handler = self.handler.__name__ elif self.handler in namespace: self._fn = namespace[self.handler] else: try: self._fn = create_function(self.handler) except (ImportError, ValueError) as e: raise ImportError(f'state {self.name} init failed, function {self.handler} not found') context.logger.debug(f'init function {self.handler} in {self.name}') return if not self.class_name: raise ValueError('valid class_name and/or handler must be specified') if not self._class_object: if self.class_name in namespace: self._class_object = namespace[self.class_name] else: try: self._class_object = create_class(self.class_name) except (ImportError, ValueError) as e: raise ImportError(f'state {self.name} init failed, class {self.class_name} not found') # init and link class/function context.logger.debug(f'init class {self.class_name} in {self.name}') self._object = init_class(self._class_object, context, self, **self.class_params) handler = self.handler or 'do' if not self.handler and hasattr(self._object, 'do_event'): handler = 'do_event' self.full_event = True if not hasattr(self._object, handler): raise ValueError(f'handler {handler} not found in class {self._object.__name__}') self._fn = getattr(self._object, handler) def _post_init(self): if self._object and hasattr(self._object, 'post_init'): self._object.post_init() def run(self, context, event, *args, **kwargs): context.logger.debug(f'running state {self.fullname}, type: {self._object_type}') if not self._fn: raise RuntimeError(f'state {self.name} run failed, function ' ' or remote session not initialized') try: if self.full_event or self._object_type == INIT_REMOTE_API: event = self._fn(event) else: event.body = self._fn(event.body) except Exception as e: fullname = self.fullname context.logger.error(f'step {fullname} run failed, {e}') event.add_trace(event.id, fullname, 'fail', e, verbosity=context.root.trace) raise RuntimeError(f'step {fullname} run failed, {e}') event.add_trace(event.id, self.fullname, 'ok', event.body, verbosity=context.root.trace) resp_status = getattr(event.body, 'status_code', 0) if self.next and not getattr(event, 'terminated', None) and resp_status < 300: next_obj = self._parent[self.next] return next_obj.run(context, event, *args, **kwargs) return event def init_class(object, context, state, **params): args = inspect.signature(object.__init__).parameters if 'context' in args: params['context'] = context if 'state' in args: params['state'] = state if 'name' in args: params['name'] = state.name return object(**params)
StarcoderdataPython
3287772
<reponame>niemela/problemtools from __future__ import print_function import os import re import os.path import glob import tempfile import shutil # For backwards compatibility, remove in bright and shiny future. def detect_version(problemdir, problemtex): # Check for 0.1 - lack of \problemname if open(problemtex).read().find('\problemname') < 0: return '0.1' return '' # Current class Template: filename = None problemset_cls = None copy_cls = True def __init__(self, problemdir, language='', title='Problem Title', force_copy_cls=False): if not os.path.isdir(problemdir): raise Exception('%s is not a directory' % problemdir) if problemdir[-1] == '/': problemdir = problemdir[:-1] stmtdir = os.path.join(problemdir, 'problem_statement') langs = [] if glob.glob(os.path.join(stmtdir, 'problem.tex')): langs.append('') for f in glob.glob(os.path.join(stmtdir, 'problem.[a-z][a-z].tex')): langs.append(re.search("problem.([a-z][a-z]).tex$", f).group(1)) if len(langs) == 0: raise Exception('No problem statements available') dotlang = '' # If language unspec., use first available one (will be # problem.tex if exists) if language == '': language = langs[0] if language != '': if len(language) != 2 or not language.isalpha(): raise Exception('Invalid language code "%s"' % language) if language not in langs: raise Exception('No problem statement for language "%s" available' % language) dotlang = '.' + language # Used in the template.tex variable substitution. language = dotlang problemtex = os.path.join(stmtdir, 'problem' + dotlang + '.tex') if not os.path.isfile(problemtex): raise Exception('Unable to find problem statement, was looking for "%s"' % problemtex) templatefile = 'template.tex' clsfile = 'problemset.cls' timelim = 1 # Legacy for compatibility with v0.1 version = detect_version(problemdir, problemtex) if version != '': print('Note: problem is in an old version (%s) of problem format, you should consider updating it' % version) templatefile = 'template_%s.tex' % version clsfile = 'problemset_%s.cls' % version templatepaths = [os.path.join(os.path.dirname(__file__), 'templates/latex'), os.path.join(os.path.dirname(__file__), '../templates/latex'), '/usr/lib/problemtools/templates/latex'] templatepath = None for p in templatepaths: if os.path.isdir(p) and os.path.isfile(os.path.join(p, templatefile)): templatepath = p break if templatepath == None: raise Exception('Could not find directory with latex template "%s"' % templatefile) basedir = os.path.dirname(problemdir) shortname = os.path.basename(problemdir) samples = [os.path.splitext(os.path.basename(f))[0] for f in sorted(glob.glob(os.path.join(problemdir, 'data', 'sample', '*.in')))] self.problemset_cls = os.path.join(basedir, 'problemset.cls') if os.path.isfile(self.problemset_cls) and not force_copy_cls: print('%s exists, will not copy it -- in case of weirdness this is likely culprit' % self.problemset_cls) self.copy_cls = False if self.copy_cls: shutil.copyfile(os.path.join(templatepath, clsfile), self.problemset_cls) (templout, self.filename) = tempfile.mkstemp(suffix='.tex', dir=basedir) templin = open(os.path.join(templatepath, templatefile)) for line in templin: try: out = line % locals() os.write(templout, out) except: # This is a bit ugly I guess for sample in samples: out = line % locals() os.write(templout, out) os.close(templout) templin.close() def get_file_name(self): assert os.path.isfile(self.filename) return self.filename def cleanup(self): if self.problemset_cls is not None and self.copy_cls and os.path.isfile(self.problemset_cls): os.remove(self.problemset_cls) if self.filename is not None: for f in glob.glob(os.path.splitext(self.filename)[0] + '.*'): if os.path.isfile(f): os.remove(f) def __del__(self): self.cleanup()
StarcoderdataPython
4810424
<reponame>lundholmx/advent-of-code-2021 from collections import defaultdict from itertools import pairwise def parse_input(lines: list[str]) -> tuple[str, dict]: template = lines[0] rules = {} for line in lines[2:]: [a, b] = line.split(" -> ") rules[a] = b return template, rules def calc(template: str, rules: dict[str, str], nsteps: int) -> int: formula = defaultdict(int) for a, b in pairwise(template): formula[a + b] += 1 counter = defaultdict(int) for c in template: counter[c] += 1 for _ in range(nsteps): next = defaultdict(int) for p, count in formula.items(): r = rules[p] next[p[0] + r] += count next[r + p[1]] += count counter[r] += count formula = next values = counter.values() return max(values) - min(values) if __name__ == "__main__": with open("input.txt") as f: template, rules = parse_input([l.strip() for l in f.readlines()]) print(f"part 1: {calc(template, rules, 10)}") print(f"part 2: {calc(template, rules, 40)}")
StarcoderdataPython