id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3207573
<reponame>gatsby-sahani/svGPFA<filename>scripts/demoUtils.py import sys import os import torch sys.path.append(os.path.expanduser("../src")) import myMath.utils def getLegQuadPointsAndWeights(nQuad, trialsLengths, dtype=torch.double): nTrials = len(trialsLengths) legQuadPoints = torch.empty((nTrials, nQuad, 1), dtype=dtype) legQuadWeights = torch.empty((nTrials, nQuad, 1), dtype=dtype) for r in range(nTrials): legQuadPoints[r,:,0], legQuadWeights[r,:,0] = myMath.utils.leggaussVarLimits(n=nQuad, a=0, b=trialsLengths[r]) return legQuadPoints, legQuadWeights def getIndPointLocs0(nIndPointsPerLatent, trialsLengths, firstIndPoint): nLatents = len(nIndPointsPerLatent) nTrials = len(trialsLengths) Z0 = [None]*nLatents for i in range(nLatents): Z0[i] = torch.empty((nTrials, nIndPointsPerLatent[i], 1), dtype=torch.double) for i in range(nLatents): for j in range(nTrials): Z0[i][j,:,0] = torch.linspace(firstIndPoint, trialsLengths[j], nIndPointsPerLatent[i]) return Z0 def getSVPosteriorOnIndPointsParams0(nIndPointsPerLatent, nLatents, nTrials, scale): qMu0 = [None]*nLatents qSVec0 = [None]*nLatents qSDiag0 = [None]*nLatents for i in range(nLatents): qMu0[i] = torch.zeros(nTrials, nIndPointsPerLatent[i], 1, dtype=torch.double) qSVec0[i] = scale*torch.eye(nIndPointsPerLatent[i], 1, dtype=torch.double).repeat(nTrials, 1, 1) qSDiag0[i] = scale*torch.ones(nIndPointsPerLatent[i], 1, dtype=torch.double).repeat(nTrials, 1, 1) return qMu0, qSVec0, qSDiag0 def getKernelsParams0(kernels, noiseSTD): nTrials = len(kernels) nLatents = len(kernels[0]) kernelsParams0 = [[] for r in range(nTrials)] for r in range(nTrials): kernelsParams0[r] = [[] for r in range(nLatents)] for k in range(nLatents): trueParams = kernels[r][k].getParams() kernelsParams0[r][k] = noiseSTD*torch.randn(len(trueParams))+trueParams return kernelsParams0
StarcoderdataPython
3396000
<reponame>robert-giaquinto/survae_flows import math import torch from torch import nn class Distribution(nn.Module): """Distribution base class.""" def log_prob(self, x): """Calculate log probability under the distribution. Args: x: Tensor, shape (batch_size, ...) Returns: log_prob: Tensor, shape (batch_size,) """ raise NotImplementedError() def sample(self, num_samples, temperature): """Generates samples from the distribution. Args: num_samples: int, number of samples to generate. Returns: samples: Tensor, shape (num_samples, ...) """ raise NotImplementedError() def interpolate(self, num_samples, z1=None, z2=None): """ Generates samples from the distribution, interpolating between z1 and z2. If z1 and z2 are None then it interpolates between 0 and a point on the shell (tails). Args: num_samples: int, number of samples to interpolate along. z1: first point to interpolate from. z2: final point to interpolate to. Returns: samples: Tensor, shape (num_samples, ...) """ raise NotImplementedError() def sample_with_log_prob(self, num_samples): """Generates samples from the distribution together with their log probability. Args: num_samples: int, number of samples to generate. Returns: samples: Tensor, shape (num_samples, ...) log_prob: Tensor, shape (num_samples,) """ samples = self.sample(num_samples) log_prob = self.log_prob(samples) return samples, log_prob def forward(self, *args, mode, **kwargs): ''' To allow Distribution objects to be wrapped by DataParallelDistribution, which parallelizes .forward() of replicas on subsets of data. DataParallelDistribution.log_prob() calls DataParallel.forward(). DataParallel.forward() calls Distribution.forward() for different data subsets on each device and returns the combined outputs. ''' if mode == 'log_prob': return self.log_prob(*args, **kwargs) else: raise RuntimeError("Mode {} not supported.".format(mode))
StarcoderdataPython
38267
<filename>mainpages/views.py<gh_stars>0 from django.shortcuts import render from django.shortcuts import redirect from django.http import HttpResponseRedirect from .forms import RegisterForm, LoginForm from django.urls import reverse from .datebase_func import make_bd, check_car_wash, add_car_wash, time_by_id, update_time_by_id, get_info_about from django.contrib.auth import get_user_model from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.core.exceptions import ValidationError from django.core.validators import validate_email import requests from pprint import pprint from datetime import datetime def time_to_seconds(time): time = time.split(':') hh = 0 mm = 0 ss = 0 if len(time) == 2: hh = int(time[0]) mm = int(time[1]) if len(time) == 3: hh = int(time[0]) mm = int(time[1]) ss = int(time[2]) return hh * 3600 + mm * 60 + ss def second_to_str(time): hh = time // 3600 % 24 mm = time // 60 % 60 ss = time % 60 result = f"{hh}:{mm}:{ss}" return result def fast_search_car_wash(data, u=None): data = dict(data) current_time = datetime.now() cur_pos = data.get('pos')[0] count = int(data.get('count')[0]) make_bd() winner_id = wash_id = data.get('0id')[0] pohui = 99999999999 time_to_wash = 15*60 for i in range(count): name = data.get(str(i) + 'name')[0] wash_id = data.get(str(i) + 'id')[0] wash_cord = data.get(str(i) + 'coords')[0] if not check_car_wash(wash_id): add_car_wash(wash_id, name, wash_cord) request_body = 'https://api.distancematrix.ai/maps/api/distancematrix/json?' request_body += f'origins={cur_pos}&' request_body += f'destinations={wash_cord}&' request_body += 'key=<KEY>mLF76mUkqYyaJI5UiDc6g' response = requests.get(request_body) print(response.text) trip_time = response.json()['rows'][0]['elements'][0]['duration']['value'] trip_minutes = trip_time // 60 trip_seconds = trip_time % 60 trip_hours = trip_time // 3600 #pprint(f'{trip_hours}:{trip_minutes}:{trip_seconds}') current_minutes = int(current_time.strftime('%M')) current_seconds = int(current_time.strftime('%S')) current_hours = int(current_time.strftime('%H')) arrive_seconds = trip_seconds + current_seconds arrive_minutes = trip_minutes + current_minutes arrive_hours = trip_hours + current_hours days = 0 if arrive_seconds // 60 != 0: arrive_minutes += arrive_seconds // 60 arrive_seconds %= 60 if arrive_minutes // 60 != 0: arrive_hours += arrive_minutes // 60 % 60 arrive_minutes %= 60 if arrive_hours // 24 != 0: days = arrive_hours // 24 arrive_hours %= 24 #pprint(f'{days} {arrive_hours}:{arrive_minutes}:{arrive_seconds}') arrive_time = str(arrive_hours) + ':' + str(arrive_minutes) + ':' + str(arrive_seconds) open_time, close_time, free_time = time_by_id(wash_id) if days == 0: if time_to_seconds(arrive_time) + time_to_wash < time_to_seconds(close_time): start_time = max(time_to_seconds(arrive_time), time_to_seconds(free_time)) #pprint(second_to_str(start_time)) if start_time < pohui: pohui = start_time winner_id = wash_id #pprint(second_to_str(pohui)) update_time_by_id(winner_id, second_to_str(pohui + time_to_wash)) result = {} response = get_info_about(winner_id) coords_xy = response[2].split(',') result['coords_x'] = coords_xy[0] result['coords_y'] = coords_xy[1] pos_xy = cur_pos.split(',') result['pos_x'] = pos_xy[0] result['pos_y'] = pos_xy[1] if u is not None: print('NICE') u.email_user(subject='Талон на автомойку', message=f'Вы записаны на автомойку, приезжайте к {second_to_str(pohui)}', from_email='<EMAIL>' ) return result def main_page(request): u = request.user flag = u.is_authenticated data = '' if request.method == 'POST' and request.is_ajax: if request.POST.get('pos') is not None: print("hui") u = request.user if u.is_authenticated: data = fast_search_car_wash(request.POST, u) print(data) request.session['data'] = data return HttpResponseRedirect('/main/road_map') #return redirect('mainpages:road_map') if flag: data = { 'button_1': 'logout_user', 'flag': flag, } return render( request, 'main_page.html', context=data ) else: data = { 'button_1': 'auth', 'flag': flag, } return render( request, 'main_page.html', context=data ) def auth_page(request): data = { 'button_1' : 'login', 'button_2': 'registration' } return render( request, 'authorization.html', context=data ) def login_page(request): if request.method == 'POST': username = request.POST.get("login") password = request.POST.get("password") pprint(username) pprint(password) if password is not None: username = request.POST.get("login") password = request.POST.get("password") user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('/main') else: form = LoginForm() data = { "text": "Неверный логин или пароль", } return render( request, 'login.html', context=data, ) else: return render( request, 'login.html', ) def registration_page(request): if request.method == 'POST': username = request.POST.get("login") password = request.POST.get("password") re_password = request.POST.get("re_password") mail = request.POST.get("mail") pprint(username) pprint(password) if re_password is not None: if password != re_password: data = { 'text': 'Пароли не совпадают', } return render( request, 'registration.html', context=data, ) try: validate_email(mail) except ValidationError as e: data = { 'text': 'Неверный формат email' + str(e) } return render( request, 'registration.html', context=data, ) names = get_user_model() names = list(names.objects.all()) for name in names: if username in str(name): form = RegisterForm() data = { "text": "Пользователь с таким логином уже существует", } return render( request, 'registration.html', context=data, ) user = User.objects.create_user( username=username, password=password, email=mail ) user.save() user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('/main') else: return render( request, 'registration.html', ) def logout_user(request): u = request.user if u.is_authenticated: logout(request) return redirect('/') def road_map(request): data = request.session['data'] print(data) print('PIZDA') print(request.GET) return render( request, 'map.html', context=data )
StarcoderdataPython
1715040
<reponame>evestidor/svc-stock-manager<filename>src/operations/update_stock_price.py from src import interfaces from src.domain import Stock class UpdateStockPriceOperation(interfaces.Operation): def __init__(self, storage: interfaces.StockStorage): self._storage = storage def execute(self, symbol: str, price: float) -> Stock: stock = Stock(symbol=symbol, price=price) return self._storage.update_price(stock)
StarcoderdataPython
3229340
<reponame>imaginal/openprocurement.storage.files from openprocurement.storage.files.storage import FilesStorage def includeme(config): settings = config.registry.settings config.registry.storage = FilesStorage(settings)
StarcoderdataPython
174686
# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys if sys.version_info >= (3, 0, 0): from urllib.parse import urlparse else: from urlparse import urlparse if sys.version_info >= (3, 5, 0): def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) else: from math import isclose import json from django.shortcuts import render, get_object_or_404, render from django.http import HttpResponseRedirect, HttpResponse from django.template import RequestContext from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django.views.decorators.cache import never_cache from django.contrib import auth from django.contrib.auth import get_user_model User = get_user_model() from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from guardian.decorators import permission_required, permission_required_or_403 from django.utils.decorators import method_decorator from spmo.common import Common from spmo.data_serialize import DataSerialize from spcc.views.common import list_data, del_model_items, display_confirm_msg from spcc.models.common import del_model_data from spcc.views.common import Ajax from appxs.account.models.user import Menu, Role from appxs.account.forms.permission import AddResourceForm co = Common() def app_info(): app = { "name": "account", "fun": "permission", "edit_url": 'account:edit_permission', "del_url": 'account:del_permission' } return app def get_all_resource(r_type='all'): resources = list(Menu.objects.values( 'id', 'name', 'url', 'url_target', 'icon', 'code', 'parent', 'type', 'level', 'view_name', 'desc', 'order', ).distinct()) # 按order字段重新排序 resources = sorted(resources, key=lambda y: str(y['order'])) if r_type == 'menu': r_menu = [r for r in resources if r['permissions__type'] == 'menu'] else: r_menu = resources return r_menu def get_resource_from_role(role_id=None, r_type='all'): # try: resources = list(Role.objects.get(id=role_id).permissions.values( 'id', 'name', 'url', 'url_target', 'icon', 'code', 'parent', 'type', 'level', 'view_name', 'desc', 'order', ).distinct()) resources = sorted(resources, key=lambda y: str(y['order'])) if r_type == 'menu': r_menu = [r for r in resources if r['permissions__type'] == 'menu'] else: r_menu = resources return r_menu def get_resource_by_user(user=None): if isinstance(user, User) is False: user = get_object_or_404(User, pk=user) resources = list(user.roles.values( 'permissions__id', 'permissions__name', 'permissions__url', 'permissions__url_target', 'permissions__icon', 'permissions__code', 'permissions__parent', 'permissions__type', 'permissions__level', 'permissions__view_name', 'permissions__desc', 'permissions__order', ).distinct()) resources = sorted(resources, key=lambda y: str(y['permissions__order'])) o_resources = [] for item in resources: resource = { 'id': item['permissions__id'], 'name': item['permissions__name'], 'url': item['permissions__url'], 'url_target': item['permissions__url_target'], 'icon': item['permissions__icon'], 'code': item['permissions__code'], 'type': item['permissions__type'], 'parent': item['permissions__parent'], 'level': item['permissions__level'], 'view_name': item['permissions__view_name'], 'desc': item['permissions__desc'], 'order': item['permissions__order'], } o_resources.append(resource) return o_resources @csrf_exempt # 禁用csrf @login_required def index(request, ): app = app_info() app['location'] = 'index' return render(request, 'account/permission.html', {'app': app}) @csrf_exempt # 禁用csrf @login_required def grant_perm(request, role_id): app = app_info() app['location'] = 'grant_perm' role_ins = get_object_or_404(Role, pk=role_id) return render(request, 'account/grant_permission.html', {'app': app, 'role_id': role_ins.id, 'role_name': role_ins.name}, ) @csrf_exempt # 禁用csrf @login_required def grant_perm_min(request, role_id): app = app_info() app['location'] = 'grant_perm_min' role_ins = get_object_or_404(Role, pk=role_id) return render(request, 'account/grant_perm_min.html', {'app': app, 'role_id': role_ins.id, 'role_name': role_ins.name}, ) @csrf_exempt # 禁用csrf @login_required def show_user_perm(request, user_id): app = app_info() app['location'] = 'show_user_perm' user_ins = get_object_or_404(User, pk=user_id) return render(request, 'account/show_user_perm.html', {'app': app, 'user_id': user_ins.id, 'user_name': user_ins.__str__}, ) @csrf_exempt # 禁用csrf @login_required def get_user_perm_tree(request, user_id): perm_data = [] user_ins = get_object_or_404(User, pk=user_id) all_roles_ins = list(user_ins.roles.all()) perm_rolenames = {} for role_ins in all_roles_ins: all_resources = get_resource_from_role(role_id=role_ins.id) for a_resource in all_resources: pid = a_resource['parent'] r_id = a_resource['id'] checked = "true" if pid is None: pid = 0 if r_id in perm_rolenames: role_name = '%s, %s' % (perm_rolenames[r_id], role_ins.name) else: role_name = role_ins.name perm_rolenames[r_id] = role_name perm_i = {'id': r_id, 'pId': pid, 'name': '%s[%s]<-[%s]' % (a_resource['view_name'], a_resource['type'], role_name), 'checked': checked} perm_data.append(perm_i) if request.method == "GET": tree_res = {'data': perm_data} html = json.dumps(tree_res) return HttpResponse(html, content_type="application/json") @csrf_exempt # 禁用csrf @login_required def get_resource_tree(request, ): perm_data = [] all_resources = get_all_resource() for a_resource in all_resources: pid = a_resource['parent'] if pid is None: pid = 0 perm_i = {'id': a_resource['id'], 'pId': pid, 'name': '%s[%s]' % (a_resource['view_name'], a_resource['type']), 'order': a_resource['order'], } perm_data.append(perm_i) if request.method == "GET": tree_res = {'data': perm_data} html = json.dumps(tree_res) return HttpResponse(html, content_type="application/json") def sort_nodes(nodes=[], is_recursion=True): ''' 更新所有节点的位置、排序、层级信息 :param nodes: :param is_recursion: :return: ''' has_done = {} nodes_count = len(nodes) init_max_order_num = 2.0 init_min_order_num = 1.0 node_order_step = 0.0 if nodes_count > 0: node_order_step = round((init_max_order_num - init_min_order_num) / nodes_count, 5) # 保留5位小数 curr_order_num = 0.0 curr_node_num = 0 for node in nodes: if is_recursion and node['isParent']: sort_nodes(nodes=node['children'], is_recursion=True) if node['id'] not in has_done: n_ins = get_object_or_404(Menu, pk=node['id']) curr_order_num = init_min_order_num + node_order_step * curr_node_num if curr_node_num == nodes_count - 1: t_order = init_max_order_num elif curr_node_num == 0: t_order = init_min_order_num else: t_order = curr_order_num n_ins.level = node['level'] n_ins.order = t_order is_update_pid = False if n_ins.parent is not None: # 非根节点 if node['pId'] is None: # 非根节点 --> 根节点 n_ins.parent = None elif n_ins.parent.id != node['pId']: # 非根节点 --> 非根节点(父节点有变化) is_update_pid = True elif node['pId'] is not None and n_ins.parent is None: # 根节点 --> 非根节点 is_update_pid = True else: is_update_pid = False if is_update_pid: n_ins.parent = get_object_or_404(Menu, pk=node['pId']) n_ins.save() curr_node_num = curr_node_num + 1 has_done[node['id']] = 'done' del n_ins def sort_subnodes(parent_ins): ''' 更新父节点下的所有子节点排序 :param parent_ins: Menu instance :return: nothing ''' nodes = Menu.objects.filter(parent=parent_ins) nodes_count = len(nodes) init_max_order_num = 2.0 init_min_order_num = 1.0 node_order_step = 0.0 curr_order_num = 0.0 curr_node_num = 0 if nodes_count > 0: node_order_step = round((init_max_order_num - init_min_order_num) / nodes_count, 5) # 保留5位小数 for n_ins in nodes: curr_order_num = init_min_order_num + node_order_step * curr_node_num if curr_node_num == nodes_count - 1: t_order = init_max_order_num elif curr_node_num == 0: t_order = init_min_order_num else: t_order = curr_order_num # print('n_ins_name: %s, n_ins_view_name: %s, t_order: %s' % (n_ins.name, n_ins.view_name, t_order)) n_ins.order = t_order # 更新节点的level if n_ins.parent is None: n_ins.level = 0 else: n_ins.level = n_ins.parent.level + 1 n_ins.save() curr_node_num = curr_node_num + 1 # del n_ins @csrf_exempt # 禁用csrf @login_required def save_resource_tree(request): ''' 保存所有节点的位置、排序、层级信息 :param request: :return: ''' if request.method == "POST": ds = DataSerialize() tree_data = request.POST.get('tree_data') tree_data = ds.deserialize(tree_data) sort_nodes(nodes=tree_data) rs_data = {'timestamp': ds.get_create_date()} html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json") @csrf_exempt # 禁用csrf @login_required def update_resource_position(request): ''' 更新资源节点的位置、排序、层级信息 :param request: :return: ''' if request.method == "POST": ds = DataSerialize() node_data = request.POST.get('node_data') node_data = ds.deserialize(node_data) # co.DD(node_data) node = node_data['curr_node'] pre_node = node_data['pre_node'] next_node = node_data['next_node'] n_ins = get_object_or_404(Menu, pk=node['id']) old_parent_ins = n_ins.parent init_max_order_num = 2.0 init_min_order_num = 1.0 is_update_pid = False if n_ins.parent is not None: # 非根节点 if node['pId'] is None: # 非根节点 --> 根节点 n_ins.parent = None elif n_ins.parent.id != node['pId']: # 非根节点 --> 非根节点(父节点有变化) is_update_pid = True elif node['pId'] is not None and n_ins.parent is None: # 根节点 --> 非根节点 is_update_pid = True else: is_update_pid = False if is_update_pid: n_ins.parent = get_object_or_404(Menu, pk=node['pId']) # 更新节点的level if n_ins.parent is None: n_ins.level = 0 else: n_ins.level = n_ins.parent.level + 1 else: n_ins.level = node['level'] if pre_node is not None and next_node is not None: # 夹在中间位 t_order = round((pre_node['order'] + next_node['order']) / 2, 5) elif pre_node is None and next_node is None: # 第一位或最后一位(有且只有一个元素) t_order = init_min_order_num elif pre_node is None and next_node is not None: # 第一位 t_order = round(next_node['order'] / 2, 5) elif pre_node is not None and next_node is None: # 最后一位 t_order = round((pre_node['order'] + 1), 5) n_ins.order = t_order n_ins.save() # 重新整理同级所有节点排序,使得序号范围在init_min_order_num -- init_max_order_num之间, # 同级的序号间距也重新规整为:round(init_max_order_num-init_min_order_num/subnodes_count, 5) new_parent_ins = n_ins.parent if new_parent_ins != old_parent_ins: sort_subnodes(parent_ins=new_parent_ins) sort_subnodes(parent_ins=old_parent_ins) rs_data = {'timestamp': ds.get_create_date()} html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json") @csrf_exempt # 禁用csrf @login_required def get_perm_tree(request, role_id): perm_data = [] role_perm = {} role_resources = get_resource_from_role(role_id=role_id) for r_resource in role_resources: role_perm[r_resource['id']] = r_resource all_resources = get_all_resource() for a_resource in all_resources: pid = a_resource['parent'] checked = "false" if pid is None: pid = 0 if a_resource['id'] in role_perm.keys(): checked = "true" perm_i = {'id': a_resource['id'], 'pId': pid, 'name': '%s[%s]' % (a_resource['view_name'], a_resource['type']), 'checked': checked} perm_data.append(perm_i) if request.method == "GET": tree_res = {'data': perm_data} html = json.dumps(tree_res) return HttpResponse(html, content_type="application/json") @csrf_exempt # 禁用csrf @login_required def save_perm_tree(request, role_id): if request.method == "POST": ds = DataSerialize() tree_data = request.POST.get('tree_data') tree_data = ds.deserialize(tree_data) role_id = request.POST.get('role_id') rs_data = {'timestamp': ds.get_create_date()} role_ins = get_object_or_404(Role, pk=role_id) for td in tree_data: if td['checked'] is True and td['checkedOld'] is False: role_ins.permissions.add(Menu.objects.get(pk=td['id'])) elif td['checked'] is False and td['checkedOld'] is True: role_ins.permissions.remove(Menu.objects.get(pk=td['id'])) role_ins.save() html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json") @csrf_exempt # 禁用csrf @login_required def add_resource(request, resource_pid=None): if request.method == 'POST': ds = DataSerialize() form = AddResourceForm(model=Menu, data=request.POST) if form.is_valid(): new_resource = form.save() r_parent = new_resource.parent if r_parent is not None: new_resource.level = new_resource.parent.level - 1 elif r_parent is None: new_resource.level = 0 new_resource.save() sort_subnodes(parent_ins=r_parent) rs_data = {'timestamp': ds.get_create_date(), 'result': 'success'} html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json") else: if resource_pid is None or resource_pid == '' or int(resource_pid) == 0: form = AddResourceForm(model=Menu, ) else: form = AddResourceForm(model=Menu, instance=Menu(parent_id=resource_pid)) app = app_info() app['name'] = "permission" app['location'] = 'add' return render(request, 'add_data2_not_nav.html', {'form': form, 'app': app}) @csrf_exempt # 禁用csrf @login_required def edit_resource(request, resource_id): resource = get_object_or_404(Menu, pk=resource_id) ds = DataSerialize() if request.method == 'POST': form = AddResourceForm(model=Menu, instance=resource, data=request.POST) if form.is_valid(): new_resource = form.save() r_parent = new_resource.parent sort_subnodes(parent_ins=r_parent) rs_data = {'timestamp': ds.get_create_date(), 'result': 'success'} html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json") else: form = AddResourceForm(model=Menu, instance=resource) app = app_info() app['name'] = "m_account" app['location'] = 'edit' return render(request, 'edit_data2_not_nav.html', {'form': form, 'app': app}) @csrf_exempt # 禁用csrf @login_required def del_resource(request, resource_id): ds = DataSerialize() if request.method == "POST": new_resource = get_object_or_404(Menu, pk=resource_id) r_parent = new_resource.parent sub_menus = Menu.objects.filter(parent=new_resource) for sm in sub_menus: sm.parent = r_parent sm.save() del_res = del_model_data(model=Menu, id=resource_id) sort_subnodes(parent_ins=r_parent) rs_data = {'timestamp': ds.get_create_date(), 'result': 'success'} html = json.dumps(rs_data) return HttpResponse(html, content_type="application/json")
StarcoderdataPython
3245409
import re import string from nltk.tokenize import word_tokenize from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords import itertools from nltk.collocations import BigramCollocationFinder from nltk.metrics import BigramAssocMeasures class FeatureFinder: def __init__(self): self.featureVector = [] self.features = {} #end def extract_features(self , tweet, featureList): tweet_words = set(tweet) self.features = {} for word in featureList: self.features['contains(%s)' % word] = (word in tweet_words) return self.features #end def getBigrams(self): #A bigram is every sequence of two adjacent elements in a string of tokens #find only featured bigrams using pmi test score_fn=BigramAssocMeasures.pmi n=100 bigram_finder = BigramCollocationFinder.from_words(self.featureVector) bigrams = bigram_finder.nbest(score_fn, n) #featureVector = [ngram for ngram in itertools.chain(featureVector, bigrams)] featVector = [] for ngram in itertools.chain(self.featureVector, bigrams): if(',' in str(ngram)): ngram =' '.join(ngram) featVector.append(ngram) return featVector #end def replaceTwoOrMore(self ,s): #look for 2 or more repetitions of character and replace with the character itself pattern = re.compile(r"(.)\1{1,}", re.DOTALL) return pattern.sub(r"\1\1", s) #end def getFeatureVector(self ,tweet): self.featureVector = [] p = PorterStemmer() operators1 = set(('lt','gt','F','etc','facebook','fb','apple','aapl','amp','inc','ltd','twitter','blackberry','twtr','bbry','microsoft','msft','yahoo','yhoo')) operators2 = set(('down', 'nor', 'not', 'above', 'very', 'before', 'up', 'after', 'again', 'too', 'few', 'over')) stopWords = set(stopwords.words('english')) | operators1 stopWords = stopWords - operators2 #tokenize all words / split tweet into words for w in word_tokenize(tweet): w = self.replaceTwoOrMore(w) #check if the word stats with an alphabet val = re.search(r"^[a-zA-Z][a-zA-Z0-9]*$", w) #ignore if it is a stop word if(w in stopWords or val is None): continue else: #perform stemming eg removing ing from the end of word w = p.stem(w) self.featureVector.append(w) self.featureVector = self.getBigrams() return self.featureVector #end def replaceWords(self, tweet): f = open('data/replaceWord.txt') for l in f: s = l.split('*') tweet = re.sub(r"\b%s\b" % s[0] , s[1], tweet) return tweet #end def processTweet(self , tweet): # process the tweets #Convert to lower case tweet = tweet.lower() #Remove www.* or https?://* tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+))',' ',tweet) #Remove @username tweet = re.sub('@[^\s]+',' ',tweet) #Remove $companytag tweet = re.sub('\$[^\s]+',' ',tweet) #Replace #word with word tweet = re.sub(r'#([^\s]+)', r'\1', tweet) #remove punctuation tweet = tweet.replace('\'','') tweet = re.sub('[%s]' % re.escape(string.punctuation), ' ', tweet) #replace words like thats to that is, isnt to is not tweet = self.replaceWords(tweet) #Remove additional white spaces tweet = re.sub('[\s]+', ' ', tweet) return tweet #end def processReqFeatTweet(self, tweet): #Remove newlines tweet = tweet.strip('\n') #Remove www.* or https?://* tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+)|f.processReqFeatTweet(text))',' ',tweet) #Remove additional white spaces tweet = re.sub('[\s]+', ' ', tweet) return tweet #end
StarcoderdataPython
1786717
# 源程序文件名 SOURCE_FILE = "{filename}.hs" # 输出程序文件名 OUTPUT_FILE = "{filename}.out" # 编译命令行 COMPILE = "ghc {source} -o {output} {extra}" # 运行命令行 RUN = 'sh -c "./{program} {redirect}"' # 显示名 DISPLAY = "Haskell" # 版本 VERSION = "GHC 8.0.2" # Ace.js模式 ACE_MODE = "haskell"
StarcoderdataPython
1732575
import random a1 = str(input('Digite o nome do aluno 1:')) a2 = str(input('Digite o nome do aluno 2:')) a3 = str(input('Digite o nome do aluno 3:')) al = [a1, a2, a3] print(f'O sorteado para o ir ao quadro foi {random.choice(al)}')
StarcoderdataPython
1782972
<reponame>rsmonteiro2021/execicios_python<gh_stars>1-10 """ Upgrade de bateria: User a última versão de Electric.car.py desta seção. Acrescente um método chamado upgrade_battery() na classe Battery. Esse método deve verificar a capacidade da bateria e defini-la como 85 se o valor for diferente. Crie um carro elétrico com uma capacidade de bateria default, chame get_range() uma vez e em, seguida chame get_ranger() uma segunda vez após fazer um upgrade da bateria. Você deverá ver um aumento na distância que o carro é capaz de percorrer. """ class Car(): """Tentativa simples de modelar um carro.""" def __init__(self, make, model, year): """Inicializa os atributos de um carro.""" self.make = make self.model = model self.year = year self.odometer_reading = 0 def get_descriptive_name(self): """ Retonra o nome do veículo de modo formatado.""" long_name = str(self.year) + ', ' + self.make.title() + ', ' + self.model.title() return long_name def read_odometer(self): """ Exibe uma frase que mostra a milhagem do carro.""" odometer = 'This car has a ' + str(self.odometer_reading) + ' miles on it.' return odometer def update_odometer(self, mileage): """ Define o valor de leitura do odometro do veículo.""" if mileage >= self.odometer_reading: self.odometer_reading = mileage else: print("You don't roll back an odometer.") def increment_odometer(self, miles): """Atualiza o valor do odômetro do veículo.""" self.odometer_reading += miles return self.odometer_reading class Battery(): """Tentativa simples de modelar uma bateria para veículos elétrico.""" def __init__(self, battery_size = 70): """Inicializa os atributos de uma bateria para carro elétrico.""" self.battery_size = battery_size def describe_battery(self): """Retorna uma mensagem com a capacidade da bateria.""" print('\tThis car has a ' + str(self.battery_size) + ' kwh battery.') def get_range(self): """Exibe uma frase acerca da distância que o carro é capaz de percorrer com essa bateria.""" if self.battery_size == 70: range = 240 elif self.battery_size == 85: range = 270 message = 'This car can go approximately ' + str(range) + ' miles on a full charge.' print('\t' + message) def upgrade_battery(self, battery_size = 85): """Exibe a capacidade da bateria.""" self.battery_size = battery_size return self.battery_size class EletricCar(Car): """Tetantiva simples de modelar um veículo elétrico.""" def __init__(self, make, model, year): """Inicializa os atributos da classe pai. Em seguida, inicializa os atributos específicos de um carro elétrico.""" super().__init__(make, model, year) self.battery = Battery() self.details_car = 'details_car' def describe_battery(self): """Exibe uma frase que descreve a capacidade da bateria.""" battery = "This car has a " + str(self.battery_size) + " -kwh battery." return battery def describe_details(self): """Retorna detalhes do carro elétrico.""" while True: disponible_color = {1: 'White', 2: 'Black', 3: 'Silver', 4: 'Red'} print('Escolha a cor do seu Tesla Eletric Car. \nDisponible Color:') for number, color in disponible_color.items(): print('\t' + str(number) + ': ' + color + '.') color = int(input('Digite aqui sua cor favorita:\n')) if color in disponible_color: if color == 1: your_car = {'Color': 'White', 'Horse Power': '126 hp', 'Torque': '14 kNm', 'Style': 'Sedan'} print('Congratulations!!!!\nDetails of the your Tesla Electric Car:') for value, key in your_car.items(): print('\t' + value + ': ' + key) break elif color == 2: your_car = {'Color': 'Black', 'Horse Power': '136 hp', 'Torque': '14 kNm', 'Style': 'Hatch'} print('Congratulations!!!!\nDetails of the your Tesla Electric Car:') for value, key in your_car.items(): print('\t' + value + ': ' + key) break elif color == 3: your_car = {'Color': 'Silver', 'Horse Power': '126 hp', 'Torque': '16 kNm', 'Style': 'SUV'} print('Congratulations!!!!\nDetails of the your Tesla Electric Car:') for value, key in your_car.items(): print('\t' + value + ': ' + key) break else: your_car = {'Color': 'Red', 'Power': '150 hp', 'Torque': '18 kNm', 'Style': 'Cupê'} print('Congratulations!!!!\nDetails of the your Tesla Electric Car:') for value, key in your_car.items(): print('\t' + value + ': ' + key) break else: print('Não estamos personalizando o carro elétrico no momento!') """my_new_car = Car('audi', 'a4', 2016) print(my_new_car.get_descriptive_name()) my_new_car.update_odometer(23) my_new_car.read_odometer() my_new_car.increment_odometer(100) my_new_car.read_odometer() """ my_tesla = EletricCar("tesla", "model's", 2022) my_tesla.describe_details() my_tesla.battery.describe_battery() my_tesla.battery.get_range() print('\t' + my_tesla.get_descriptive_name()) my_tesla.battery.upgrade_battery() my_tesla.battery.describe_battery() my_tesla.battery.get_range()
StarcoderdataPython
1785095
<reponame>ceddlyburge/unit-testing-calculations<filename>tests/test_construction_margin_calculator_isolate_partial_values.py from tests.construction_margin_calculator_mockable_abstraction_builder import ConstructionMarginCalculatorMockableAbstractionBuilder from tests.cash_flow_step_builder import CashFlowStepBuilder # The full calculation for `construction_profit` is quite long and complicated, # but we can simplify by setting some "additive" properties to 0, and some # "multiplicative" properties to 1, so that they don't effect the result. # This test sets balance_of_plant_costs_at_financial_close to 0, so that we can # concentrate on the turbine_costs. This again means that the test code is # simpler than the system under test, which helps with "tests as documentation" # and the "Obscure Test" smell. # There should obvioulsy be more tests like this, but only one is shown for # simplicity. def test_construction_profit_includes_turbine_costs(): turbine_costs = 10 balance_of_plant_costs_at_financial_close = 0 fraction_of_spend = 0.3 epc_margin = 0.1 inflation = 1.2 sut = ConstructionMarginCalculatorMockableAbstractionBuilder() \ .with_balance_of_plant_costs_at_financial_close(balance_of_plant_costs_at_financial_close) \ .with_turbine_costs(turbine_costs) \ .with_inflation(inflation) \ .with_epc_margin(epc_margin) \ .in_selling_mode() \ .build() cash_flow_step = CashFlowStepBuilder().build() sut.calculate_step(cash_flow_step, fraction_of_spend) assert cash_flow_step.construction_profit == -1 * turbine_costs * inflation * fraction_of_spend * epc_margin # The test for the CashFlowStepsCalculator is no longer shown
StarcoderdataPython
1636438
import yaml import six script_out = """all: children: ungrouped: hosts: foobar: should_be_artemis_here: !vault | $ANSIBLE_VAULT;1.2;AES256;alan 30386264646430643536336230313232653130643332356531633437363837323430663031356364 3836313935643038306263613631396136663634613066650a303838613532313236663966343433 37636234366130393131616631663831383237653761373533363666303361333662373664336261 6136313463383061330a633835643434616562633238383530356632336664316366376139306135 3534""" # --- the YAML docs --- # class Monster(yaml.YAMLObject): # yaml_tag = u'!vault' # def __init__(self, node): # print ' args kwargs ' + str(node)# + str(kwargs) # self.node = node # # def __repr__(self): # return str(self.node) # second example class Dice(tuple): def __new__(cls, a, b): return tuple.__new__(cls, [a, b]) def __repr__(self): return "Dice(%s,%s)" % self def dice_representer(dumper, data): return dumper.represent_scalar(u'!dice', u'%sd%s' % data) def dice_constructor(loader, node): value = loader.construct_scalar(node) a, b = map(int, value.split('d')) return Dice(a, b) yaml.add_representer(Dice, dice_representer) yaml.add_constructor(u'!dice', dice_constructor) print yaml.dump({'gold': Dice(10,6)}) print yaml.load("""initial hit points: !dice 8d4""") class NaiveVault: def __init__(self, data): self.data = data def __repr__(self): return six.text_type(self.data) print NaiveVault('hello world') def vault_representer(dumper, data): return dumper.represent_scalar(u'!vault', six.text_type(data)) def vault_constructor(loader, node): value = loader.construct_scalar(node) return NaiveVault(value) yaml.add_representer(NaiveVault, vault_representer) yaml.add_constructor(u'!vault', vault_constructor) # --- the Ansible method --- # from yaml.constructor import SafeConstructor # # class AnsibleConstructor(SafeConstructor): # # def construct_vault_encrypted_unicode(self, node): # value = self.construct_scalar(node) # return str(value) # # yaml.add_constructor( # u'!vault', # AnsibleConstructor.construct_vault_encrypted_unicode) python_out = yaml.load(script_out) print ' python output ' print python_out print ' dumped output ' print yaml.dump(python_out, default_flow_style=False) print ' original script out ' print script_out print ' again, using safe_load ' yaml.SafeLoader.add_constructor(u'!vault', vault_constructor) python_out = yaml.safe_load(script_out)
StarcoderdataPython
136557
# -*- coding: utf-8 -*- u""" Levenshtein Distance The Levenshtein distance between two words is the minimal number of edits that turn one word into the other. Here, "edit" means a single-letter addition, single-letter deletion, or exchange of a letter with another letter. http://en.wikipedia.org/wiki/Levenshtein_distance EXAMPLES:: >>> from sage_bootstrap.levenshtein import Levenshtein >>> Levenshtein(5)(u'Queensryche', u'Queensrÿche') 1 """ #***************************************************************************** # Copyright (C) 2015 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** class DistanceExceeded(Exception): pass class Levenshtein(object): def __init__(self, limit): """ Levenshtein Distance with Maximum Distance Cutoff Args: limit (int): if the distance exceeds the limit, a :class:`DistanceExceeded` is raised and the computation is aborted. EXAMPLES:: >>> from sage_bootstrap.levenshtein import Levenshtein >>> lev3 = Levenshtein(3) >>> lev3(u'saturday', u'sunday') 3 >>> lev3(u'kitten', u'sitting') 3 >>> lev2 = Levenshtein(2) >>> lev2(u'kitten', u'sitting') Traceback (most recent call last): ... DistanceExceeded """ self._limit = limit def __call__(self, a, b): """ calculate the levenshtein distance args: a,b (str): the two strings to compare returns: int: the Levenshtein distance if it is less or equal to the distance limit. Example:: >>> from app.scoring.levenshtein import Levenshtein >>> lev3 = Levenshtein(3) >>> lev3(u'Saturday', u'Sunday') 3 """ n, m = len(a), len(b) if n > m: # Optimization to use O(min(n,m)) space a, b, n, m = b, a, m, n curr = range(n+1) for i in range(1, m+1): prev, curr = curr, [i]+[0]*n for j in range(1, n+1): cost_add, cost_del = prev[j]+1, curr[j-1]+1 cost_change = prev[j-1] if a[j-1] != b[i-1]: cost_change += 1 curr[j] = min(cost_add, cost_del, cost_change) if min(curr) > self._limit: raise DistanceExceeded if curr[n] > self._limit: raise DistanceExceeded return curr[n]
StarcoderdataPython
3247384
<gh_stars>1-10 from get_current_pose_joints import get_current_pose_joints from get_current_pose_cartesian import get_current_pose_cartesian from stop import stop
StarcoderdataPython
3262570
<filename>Code/Python/RiskyContrib.py # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:percent # notebook_metadata_filter: all # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.0 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # language_info: # codemirror_mode: # name: ipython # version: 3 # file_extension: .py # mimetype: text/x-python # name: python # nbconvert_exporter: python # pygments_lexer: ipython3 # version: 3.8.8 # latex_envs: # LaTeX_envs_menu_present: true # autoclose: false # autocomplete: false # bibliofile: RiskyContrib-Add.bib # cite_by: apalike # current_citInitial: 1 # eqLabelWithNumbers: true # eqNumInitial: 1 # hotkeys: # equation: Ctrl-E # itemize: Ctrl-I # labels_anchors: false # latex_user_defs: true # report_style_numbering: false # user_envs_cfg: false # --- # %% [markdown] # <h1><center>A Two-Asset Savings Model with an Income-Contribution Scheme</center></h1> # <h2><center><NAME></center></h2> # <h3><center> <EMAIL> </center></h3> # <h2><center> Johns Hopkins University </center></h2> # # This notebook demonstrates the use of the `RiskyContrib` agent type # of the [HARK Toolkit](https://econ-ark.org/toolkit). The model represents an agent who can # save using two different assets---one risky and the other risk-free---to insure # against fluctuations in his income, but faces frictions to transferring funds between # assets. The flexibility of its implementation and its inclusion in the HARK # toolkit will allow users to adapt the model to realistic life-cycle calibrations, and # also to embedded it in heterogeneous-agents macroeconomic models. # %% code_folding=[0] # Preamble from HARK.ConsumptionSaving.ConsRiskyContribModel import ( RiskyContribConsumerType, init_risky_contrib_lifecycle, ) from time import time from copy import copy import numpy as np import seaborn as sns import pandas as pd from Simulations.tools import pol_funcs_dframe, age_profiles import os # This is a jupytext paired notebook that autogenerates a .py file # which can be executed from a terminal command line # But a terminal does not permit inline figures, so we need to test jupyter vs terminal # Google "how can I check if code is executed in the ipython notebook" from IPython import get_ipython # In case it was run from python instead of ipython # If the ipython process contains 'terminal' assume not in a notebook def in_ipynb(): try: if 'terminal' in str(type(get_ipython())): return False else: return True except NameError: return False # Determine whether to make the figures inline (for spyder or jupyter) # vs whatever is the automatic setting that will apply if run from the terminal if in_ipynb(): # # %matplotlib inline generates a syntax error when run from the shell # so do this instead get_ipython().run_line_magic('matplotlib', 'inline') else: get_ipython().run_line_magic('matplotlib', 'auto') # %% [markdown] # ## Model Description # # I now discuss the main components of the model informally, and leave its full # recursive mathematical representation for Section \ref{sec:recursive}. # # ### Time, mortality, and utility # # Time advances in discrete steps that I will index with $t$. The model can # be used in both infinite and finite-horizon versions. # # Agents face an exogenous risk of death $\delta_t$ each period, which becomes certain at the # maximum age of the finite-horizon version. There are no intentional bequests; agents # will consume all of their resources if they reach the last period, but they can leave # accidental bequests upon premature death. # # In each period, agents derive utility from consumption only. Their utility function # follows a constant relative risk aversion specification. Formally, for a level of # consumption $C$, the agent derives instant utility # \begin{equation} # u(C) = \frac{C^{1-\rho}}{1- \rho}. # \end{equation} # # #### Income process # # Agents supply labor inelastically. Their labor earnings $Y_{i,t}$ are the product of a # permanent component $P_{i,t}$ and a transitory stochastic component $\theta_{i,t}$ as # in \cite{Carroll1997qje}, where $i$ indexes different agents. Formally, # \begin{equation*} # \begin{split} # \ln Y_{i,t} &= \ln P_{i,t} + \ln \theta_{i,t} \\ # \ln P_{i,t} &= \ln P_{i,t-1} + \ln \Gamma_{i,t} + \ln \psi_{i,t} # \end{split} # \end{equation*} # where $\Gamma_{i,t}$ is a deterministic growth factor that can capture # life-cycle patterns in earnings, and # $\ln \psi_{i,t}\sim \mathcal{N}(-\sigma^2_{\psi,t}/2, \sigma_{\psi,t})$ # is a multiplicative shock to permanent income\footnote{The mean of the shock is set so that $E[\psi_{i,t}] = 1$.}. # # The transitory component $\theta_{i,t}$ is a mixture that models unemployment and # other temporal fluctuations in income as # \begin{equation*} # \ln\theta_{i,t} = \begin{cases} # \ln \mathcal{U}, & \text{With probability } \mho\\ # \ln \tilde{\theta}_{i,t}\sim\mathcal{N}(-\sigma^2_{\theta,t}/2, \sigma_{\theta,t}), & \text{With probability } 1-\mho, # \end{cases} # \end{equation*} # with $\mho$ representing the probability of unemployment and $\mathcal{U}$ the replacement # factor of unemployment benefits. # # This specification of the income process is parsimonious and flexible enough to accommodate # life-cycle patterns in income growth and volatility, transitory unemployment and exogenous # retirement. Introduced by \cite{Carroll1997qje}, this income specification is common in studies # of life-cycle wealth accumulation and portfolio choice; see e.g., # \cite{Cagetti2003jbes,Cocco2005rfs,Fagereng2017jof}. The specification has # also been used in studies of income volatility such as \cite{Carroll1992bpea,Carroll1997jme,Sabelhaus2010jme}, which have yielded calibrations of its stochastic shocks' distributions. # # #### Financial assets and frictions # # Agents smooth their consumption by saving and have two assets # available for this purpose. The first is a risk-free liquid account with # constant per-period return factor $R$. The second has a stochastic return # factor $\tilde{R}$ that is log-normally distributed and independent across # time. Various interpretations such as stocks, a retirement fund, or entrepreneurial # capital could be given to the risky asset. Importantly, consumption must be paid for # using funds from the risk-free account. The levels of risk-free and risky assets # owned by the agent will both be state variables, denoted with $M_{i,t}$ and $N_{i,t}$ # respectively. # # Portfolio rebalancing takes place by moving funds between the risk-free # and risky accounts. These flows are one of the agents' control variables # and are denoted as $D_{i,t}$, with $D_{i,t}>0$ representing a movement of # funds from the risk-free to the risky account. Withdrawals from the risky # account are subject to a constant-rate tax $\tau$ which can represent, for # instance, capital-gains realization taxes or early retirement-fund withdrawal # penalties. In sum, denoting post-rebalancing asset levels with $\tilde{\cdot}$, # \begin{equation*} # \begin{split} # \tilde{M}_{i,t} &= M_{i,t} - D_{i,t}(1 - 1_{[D_{i,t}\leq0]}\tau)\\ # \tilde{N}_{i,t} &= N_{i,t} + D_{i,t}. # \end{split} # \end{equation*} # # At any given period, an agent might not be able to rebalance his portfolio. # This ability is governed by an exogenous stochastic shock that is realized # at the start of the period # # \begin{equation*} # \Adj_t \sim \text{Bernoulli}(p_t), # \end{equation*} # # with $\Adj_t=1$ meaning that the agent can rebalance and $\NAdj_t=1$ ($\Adj_t = 0$) # forcing him to set $D_{i,t} = 0$. This friction is a parsimonious way to capture # the fact that portfolio rebalancing is costly and households do it sporadically. # Recent studies have advocated for \cite{Giglio2021aer} and used # \cite{Luetticke2021aej_macro} this kind of rebalancing friction. # # To partially evade the possibility of being unable to rebalance their accounts, agents # can use an income deduction scheme. By default, labor income ($Y_{i,t}$) is deposited to # the risk-free liquid account at the start of every period. However, agents can pre-commit # to have a fraction $\Contr_t\in[0,1]$ of their income diverted to their risky account instead. # This fraction can be tweaked by the agent whenever $\Adj_t = 1$; otherwise it stays at its # previous value, $\Contr_{t+1} = \Contr_t$. # %% [markdown] # #### Timing # # <div> # <img src="Figures/Timing_diagram.PNG" width="600"/> # </div> # # The previous figure summarizes the timing of stochastic shocks and # optimizing decisions that occur within a period of the life cycle model. # %% [markdown] # ### Recursive representation of the model # # Individual subscripts $i$ are dropped for simplicity. The value function for # an agent who is not allowed to rebalance his portfolio at time $t$ is # # \begin{equation*} # \begin{split} # V^{\NAdj}_{t}(M_t, N_t, P_t, \Contr_t) = \max_{C_t} u(C_t) # + p_{t+1} &\beta\delta_{t+1} E_t \left[ V^{\Adj}_{t+1}\left( M_{t+1}, N_{t+1}, # P_{t+1} \right)\right] +\\ # \left(1-p_{t+1}\right) &\beta\delta_{t+1} E_t\left[V^{\NAdj}_{t+1}\left(M_{t+1}, # N_{t+1}, P_{t+1}, \Contr_{t+1}\right) \right]\\ # \text{Subject to:} \quad &\\ # 0\leq& C_t \leq M_t \\ # A_t =& M_t - C_t \\ # M_{t+1} =& R A_t + (1-\Contr_{t+1}) Y_{t+1}\\ # N_{t+1} =& \tilde{R}_{t+1}N_t + \Contr_{t+1}Y_{t+1}\\ # P_{t+1} =& \Gamma_{t+1} \psi_{t+1} P_{t}\\ # Y_{t+1} =& \theta_{t+1} P_{t+1}\\ # \Contr_{t+1} =& \Contr_t # \end{split} # \end{equation*} # # and that of agent who is allowed to rebalance is # # \begin{equation*} # \begin{split} # V^{\Adj}_{t}(M_t, N_t, P_t) = \max_{C_t,D_t,\Contr_{t+1}} # u(C_t) + p_{t+1} &\beta\delta_{t+1} E_t \left[ V^{\Adj}_{t+1}\left( M_{t+1}, # N_{t+1}, P_{t+1} \right)\right] +\\ # \left(1-p_{t+1}\right) &\beta\delta_{t+1} E_t\left[V^{\NAdj}_{t+1}\left(M_{t+1}, # N_{t+1}, P_{t+1}, \Contr_{t+1}\right) \right]\\ # \text{Subject to:} \quad &\\ # \quad -N_t \leq D_t \leq M_t, \quad \Contr_{t+1} \in& [0,1], \quad 0 \leq C_t \leq \tilde{M}_t\\ # \hfill\\ # \tilde{M}_t =& M_t - D_t\left(1-1_{[D_t\leq0]}\tau\right)\\ # \tilde{N}_t =& N_t + D_t\\ # A_t =& \tilde{M}_t - C_t \\ # M_{t+1} =& R A_t + (1-\Contr_{t+1}) Y_{t+1}\\ # N_{t+1} =& \tilde{R}_{t+1} \tilde{N}_t + \Contr_{t+1}Y_{t+1}\\ # P_{t+1} =& \Gamma_{t+1}\psi_{t+1} P_{t}\\ # Y_{t+1} =& \theta_{t+1} P_{t+1} # \end{split} # \end{equation*} # %% [markdown] # ## Parametrizations # %% [markdown] # This notebook will only demonstrate a life-cycle calibration of the model. However, the current implementation of the model is able to find and use the solution to infinite-horizon formulations (see the document in this repository for details). # # For the present exercise, I calibrate the model's mortality and income paths to represent individuals who enter the model at age 25, retire exogenously at 65, and live to a maximum age of 90. Survival probabilities ($\delta$) come from the 2004 SSA life-tables for males. Income growth factors and volatilities ($\Gamma$, $\sigma_\psi$, $\sigma_\theta$) come from the calibration for high-school graduates in \cite{Cagetti2003jbes}. # # To highlight the effect of different financial frictions on wealth accumulation and portfolio choice, I consider different configurations for the risky-withdrawal tax $\tau$ and the probability of being able to rebalance $p$: # # \begin{itemize} # \item \textbf{Base}: the probability of being able to rebalance is $p = 1$ # and the risky withdrawal tax rate is $\tau = 0$, both constant throughout the agents' lives. # # \item \textbf{Tax}: the risky withdrawal tax is constant at $10\%$ and the agents # can always rebalance their portfolios. # # \item \textbf{Calvo}: there is no risky withdrawal tax, but there is only a $25\%$ chance # that agents can rebalance their portfolios every year. # # \item \textbf{Retirement}: there is no risky withdrawal tax, but the agents' ability # to rebalance their portfolio is time-varying; they can rebalance their assets and pick # their income-deduction scheme for certain when they enter the model at age 25, but # then they have no chance of doing so again ($p=0$) until they retire. After retirement # at age 65, they can always rebalance their portfolio ($p=1$). # \end{itemize} # # The rest of the parameters take the following values # # | Name in HARK | Mathematical Symbol | Value | # |--------------|-----------------------|---------| # | `CRRA` | $\rho$ | $5.0$ | # | `Rfree` | $R$ | $1.03$ | # | `DiscFac` | $\beta$ | $0.9$ | # | `UnempPrb` | $\mho$ | $0.05$ | # | `IncUnemp` | $\mathcal{U}$ | $0.3$ | # | `RiskyAvg` | $E[\tilde{R}]$ | $1.08$ | # | `RiskyStd` | $\sqrt{V[\tilde{R}]}$ | $0.18$ | # # # # # %% Base parametrization code_folding=[0] # Base calibration setup # Make the problem life-cycle par_LC_base = init_risky_contrib_lifecycle.copy() # Turn off aggregate growth par_LC_base['PermGroFacAgg'] = 1.0 # and frictionless to start par_LC_base["AdjustPrb"] = 1.0 par_LC_base["tau"] = 0.0 # Make contribution shares a continuous choice par_LC_base["DiscreteShareBool"] = False par_LC_base["vFuncBool"] = False # Make grids go up to higher levels of resources # (one of the calibration produces high levels of nNrm) par_LC_base.update({"mNrmMax": 500, "nNrmMax":1000}) # %% A version with the tax code_folding=[0] # Alternative calibrations # Tax par_LC_tax = copy(par_LC_base) par_LC_tax["tau"] = 0.1 # Calvo par_LC_calvo = copy(par_LC_base) par_LC_calvo["AdjustPrb"] = 0.25 # Retirement par_LC_retirement = copy(par_LC_base) par_LC_retirement["AdjustPrb"] = [1.0] + [0.0]*39 + [1.0]*25 par_LC_retirement["tau"] = [0.0]*41 + [0.0]*24 par_LC_retirement["UnempPrb"] = 0.0 # %% [markdown] # ## Solution # # With the parametrizations created, I now create and solve the agents. # %% Create and solve agents with all the parametrizations agents = { "Base": RiskyContribConsumerType(**par_LC_base), "Tax": RiskyContribConsumerType(**par_LC_tax), "Calvo": RiskyContribConsumerType(**par_LC_calvo), "Retirement": RiskyContribConsumerType(**par_LC_retirement), } for agent in agents: print("Now solving " + agent) t0 = time() agents[agent].solve(verbose=True) t1 = time() print("Solving " + agent + " took " + str(t1 - t0) + " seconds.") # %% [markdown] # ## Policy function inspection # # Once agents have been solved, we can use their policy functions $\dFrac_t(m,n)$, $\Contr_t(\tilde{m},\tilde{n})$, and $c_t(\tilde{m},\tilde{n}, \Contr)$ for any period $t$. # %% # Example calib = "Base" t = 0 print(agents[calib].solution[t].stage_sols["Reb"].dfracFunc_Adj(1,1)) print(agents[calib].solution[t].stage_sols["Sha"].ShareFunc_Adj(1.2,0.8)) print(agents[calib].solution[t].stage_sols["Cns"].cFunc(1.2,0.8,0.5)) # %% [markdown] # I now illustrate the policy functions of different calibrations for an arbitrary period graphically. # # Note that the solution algorithm represents the three simultaneous decisions that an agent can take as happening sequentially in ''stages'', in the order `Rebalancing` -> `Income deduction share` -> `Consumption`. See the document in this repository for more details. # %% code_folding=[0] # Setup from HARK.utilities import ( determine_platform, test_latex_installation, setup_latex_env_notebook, ) pf = determine_platform() try: latexExists = test_latex_installation(pf) except ImportError: # windows and MacOS requires manual install latexExists = False setup_latex_env_notebook(pf, latexExists) # General aesthetics sns.set_style("whitegrid") sns.set_context("paper", font_scale=1.5, rc={"lines.linewidth": 2.5}) # Parameters to feed to policy functions t = 10 age = t + 24 mNrmGrid = np.linspace(0, 40, 100) nNrm_vals = np.array([0.0, 20.0, 40]) Share_vals = np.array([0.0, 0.5]) # Evaluate policy functions polfuncs = pol_funcs_dframe(agents, t, mNrmGrid, nNrm_vals, Share_vals) # %% [markdown] # ### Rebalancing # # The solution to this stage problem will be the policy function $d_t(\cdot, \cdot)$ # that gives the optimal flow from risk-free to risky assets, which can be negative. # However, it is convenient to define a normalized policy function $\dFrac_t$ as # \begin{equation*} # \dFrac_t(m, n) = \begin{cases} # d_t(m,n)/m, & \text{ if } d_t(m,n) \geq 0 \\ # d_t(m,n)/n, & \text{ if } d_t(m,n) < 0 # \end{cases} # \end{equation*} # so that $-1 \leq \dFrac(m,n) \leq 1$ for all $(m,n)$. # %% code_folding=[0] # Rebalancing fraction polfuncs["$n$"] = polfuncs["n"] g = sns.FacetGrid( polfuncs[polfuncs.control == "dfrac"], col="$n$", hue="model", height=3, aspect=(7 / 3) * 1 / 3, ) g.map(sns.lineplot, "m", "value", alpha=0.7) g.add_legend(bbox_to_anchor=[0.5, 0.0], ncol=4, title="") g.set_axis_labels("$m$", "Rebalancing fraction: $\dFrac$") # %% [markdown] # ### Income deduction share # %% code_folding=[0] # After rebalancing, m and n turn to their "tilde" versions. Create ntilde # just for seaborn's grid labels. polfuncs["$\\tilde{n}$"] = polfuncs["n"] polfuncs["$\\Contr$"] = polfuncs["Share"] # Share fraction g = sns.FacetGrid( polfuncs[polfuncs.control == "Share"], col="$\\tilde{n}$", hue="model", height=3, aspect=(7 / 3) * 1 / 3, ) g.map(sns.lineplot, "m", "value", alpha=0.7) g.add_legend(bbox_to_anchor=[0.5, 0.0], ncol=4, title="") g.set_axis_labels("$\\tilde{m}$", r"Deduction Share: $\Contr$") # %% [markdown] # ### Consumption # %% code_folding=[0] # Consumption g = sns.FacetGrid( polfuncs[polfuncs.control == "c"], col="$\\tilde{n}$", row="$\\Contr$", hue="model", height=3, aspect=(7 / 3) * 1 / 3, ) g.map(sns.lineplot, "m", "value", alpha=0.7) g.add_legend(bbox_to_anchor=[0.5, 0.0], ncol=4, title="") g.set_axis_labels("$\\tilde{m}$", "Consumption: $c$") # %% [markdown] # ## Simulation and average life-cycle profiles # %% [markdown] # With the policy functions, it is easy to simulate populations of agents. I now simulate many agents for every calibration to obtain the average lifetime profiles of relevant variables like consumption, income, and wealth in its different components. # %% Solve and simulate code_folding=[0] # Simulation n_agents = 100 t_sim = 200 profiles = [] for agent in agents: agents[agent].AgentCount = n_agents agents[agent].T_sim = t_sim agents[agent].track_vars = ['pLvl','t_age','Adjust', 'mNrm','nNrm','mNrmTilde','nNrmTilde','aNrm', 'cNrm', 'Share', 'dfrac'] agents[agent].initialize_sim() agents[agent].simulate() profile = age_profiles(agents[agent]) profile['Model'] = agent profiles.append(profile) # %% Plot life-cycle means code_folding=[0] # Plot simdata = pd.concat(profiles) # Latex names simdata = simdata.rename(columns = {'pLvl': 'Perm. Income $P$', 'Mtilde': 'Risk-free Assets $\\tilde{M}$', 'Ntilde': 'Risky Assets $\\tilde{N}$', 'C': 'Consumption $C$', 'StockShare': 'Risky Share of Savings', 'Share': 'Deduct. Share $\\Contr$'}) lc_means = pd.melt(simdata, id_vars = ['t_age', 'Model'], value_vars = ['Perm. Income $P$', 'Risk-free Assets $\\tilde{M}$', 'Risky Assets $\\tilde{N}$', 'Consumption $C$', 'Risky Share of Savings','Deduct. Share $\\Contr$']) lc_means['Age'] = lc_means['t_age'] + 24 # Drop the last year, as people's behavior is substantially different. lc_means = lc_means[lc_means['Age']<max(lc_means['Age'])] # General aesthetics sns.set_style("whitegrid") sns.set_context("paper", font_scale=1.5, rc={"lines.linewidth": 2.5}) g = sns.FacetGrid( lc_means, col="variable", col_wrap = 3, hue="Model", height=3, aspect=(7 / 3) * 1 / 3, sharey=False ) g.map(sns.lineplot, "Age", "value", alpha=0.7) g.add_legend(bbox_to_anchor=[0.5, 0.0], ncol=4, title="") g.set_axis_labels("Age", "") g.set_titles(col_template = '{col_name}') # %% [markdown] # # References # # (<a id="cit-Carroll1997qje" href="#call-Carroll1997qje">Carroll, 1997</a>) <NAME>., ``_Buffer-Stock Saving and the Life Cycle/Permanent Income Hypothesis*_'', The Quarterly Journal of Economics, vol. 112, number 1, pp. 1-55, 02 1997. [online](https://doi.org/10.1162/003355397555109) # # (<a id="cit-Cagetti2003jbes" href="#call-Cagetti2003jbes">Cagetti, 2003</a>) <NAME>, ``_Wealth Accumulation Over the Life Cycle and Precautionary Savings_'', Journal of Business \& Economic Statistics, vol. 21, number 3, pp. 339-353, 2003. [online](https://doi.org/10.1198/073500103288619007 # # ) # # (<a id="cit-Cocco2005rfs" href="#call-Cocco2005rfs"><NAME> <em>et al.</em>, 2005</a>) <NAME>\~<NAME>., <NAME>. and <NAME>., ``_Consumption and Portfolio Choice over the Life Cycle_'', The Review of Financial Studies, vol. 18, number 2, pp. 491-533, 02 2005. [online](https://doi.org/10.1093/rfs/hhi017) # # (<a id="cit-Fagereng2017jof" href="#call-Fagereng2017jof">Fagereng, Gottlieb <em>et al.</em>, 2017</a>) <NAME>, <NAME> and <NAME>, ``_Asset Market Participation and Portfolio Choice over the # Life-Cycle_'', The Journal of Finance, vol. 72, number 2, pp. 705-750, 2017. [online](https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12484) # # (<a id="cit-Carroll1992bpea" href="#call-Carroll1992bpea">Carroll, 1992</a>) <NAME>., ``_The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence_'', Brookings Papers on Economic Activity, vol. 1992, number 2, pp. 61--156, 1992. [online](http://www.jstor.org/stable/2534582) # # (<a id="cit-Carroll1997jme" href="#call-Carroll1997jme">Carroll and Samwick, 1997</a>) Carroll <NAME>. and <NAME>., ``_The nature of precautionary wealth_'', Journal of Monetary Economics, vol. 40, number 1, pp. 41-71, 1997. [online](https://www.sciencedirect.com/science/article/pii/S0304393297000366) # # (<a id="cit-Sabelhaus2010jme" href="#call-Sabelhaus2010jme">Sabelhaus and Song, 2010</a>) <NAME> and <NAME>, ``_The great moderation in micro labor earnings_'', Journal of Monetary Economics, vol. 57, number 4, pp. 391-403, 2010. [online](https://www.sciencedirect.com/science/article/pii/S0304393210000358) # # (<a id="cit-Giglio2021aer" href="#call-Giglio2021aer">Giglio, Maggiori <em>et al.</em>, 2021</a>) <NAME>, <NAME>, <NAME> <em>et al.</em>, ``_Five Facts about Beliefs and Portfolios_'', American Economic Review, vol. 111, number 5, pp. 1481-1522, May 2021. [online](https://www.aeaweb.org/articles?id=10.1257/aer.20200243) # # (<a id="cit-Luetticke2021aej_macro" href="#call-Luetticke2021aej_macro">Luetticke, 2021</a>) <NAME>, ``_Transmission of Monetary Policy with Heterogeneity in Household Portfolios_'', American Economic Journal: Macroeconomics, vol. 13, number 2, pp. 1-25, April 2021. [online](https://www.aeaweb.org/articles?id=10.1257/mac.20190064) # #
StarcoderdataPython
3380289
<reponame>JakeGinnivan/pulumi-aws # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetSecretsResult: """ A collection of values returned by getSecrets. """ def __init__(__self__, id=None, plaintext=None, secrets=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ The provider-assigned unique ID for this managed resource. """ if plaintext and not isinstance(plaintext, dict): raise TypeError("Expected argument 'plaintext' to be a dict") __self__.plaintext = plaintext """ Map containing each `secret` `name` as the key with its decrypted plaintext value """ if secrets and not isinstance(secrets, list): raise TypeError("Expected argument 'secrets' to be a list") __self__.secrets = secrets class AwaitableGetSecretsResult(GetSecretsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSecretsResult( id=self.id, plaintext=self.plaintext, secrets=self.secrets) def get_secrets(secrets=None,opts=None): """ Decrypt multiple secrets from data encrypted with the AWS KMS service. :param list secrets: One or more encrypted payload definitions from the KMS service. See the Secret Definitions below. The **secrets** object supports the following: * `context` (`dict`) - An optional mapping that makes up the Encryption Context for the secret. * `grantTokens` (`list`) - An optional list of Grant Tokens for the secret. * `name` (`str`) - The name to export this secret under in the attributes. * `payload` (`str`) - Base64 encoded payload, as returned from a KMS encrypt operation. """ __args__ = dict() __args__['secrets'] = secrets if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:kms/getSecrets:getSecrets', __args__, opts=opts).value return AwaitableGetSecretsResult( id=__ret__.get('id'), plaintext=__ret__.get('plaintext'), secrets=__ret__.get('secrets'))
StarcoderdataPython
112989
<gh_stars>0 import os import sys from numpy.lib import utils sys.path.append(".") import json from http import HTTPStatus from fastapi import FastAPI, Path from fastapi.responses import RedirectResponse from pydantic import BaseModel from dogapp import dogconfig, predict, models, utils app = FastAPI( title="Dog Identification App", description="", version="1.0.0", ) @utils.construct_response @app.get("/") async def _index(): response = { "message": HTTPStatus.OK.phrase, "status-code": HTTPStatus.OK, "data": {}, } dogconfig.logger.info(json.dumps(response, indent=2)) return response class PredictPayload(BaseModel): # experiment_id: str = "latest" # inputs: list = [{"url": ""}] urls: list = [""] @utils.construct_response @app.post("/predict") async def _predict(payload: PredictPayload): # Get run components for prediction model = models.DogCNN() model.summary(input_shape=(7, 7, 2048)) # build it model_path = os.path.join(os.getcwd(), "embeddings/weights.best.Xception.hdf5") model.load_weights(model_path) prediction = [] for url in payload.urls: try: data = utils.loadImage(url) prediction.append(predict.predict(url=url, data=data, model=model)[0]) response = { "message": HTTPStatus.OK.phrase, "status-code": HTTPStatus.OK, "data": {"prediction": prediction}, } dogconfig.logging.getLogger('infologger').info(json.dumps(response, indent=2)) except Exception as pe: dogconfig.logging.getLogger('errorlogger').error("Error making predictions", exc_info=pe) return response
StarcoderdataPython
19564
<gh_stars>0 from netsuitesdk.internal.utils import PaginatedSearch from .base import ApiBase import logging logger = logging.getLogger(__name__) class CustomRecords(ApiBase): def __init__(self, ns_client): ApiBase.__init__(self, ns_client=ns_client, type_name='CustomRecordType') def get_all_by_id(self, internalId): cr_type = self.ns_client.CustomRecordSearchBasic( recType=self.ns_client.CustomRecordType( internalId=internalId ) ) ps = PaginatedSearch(client=self.ns_client, type_name='CustomRecordType', search_record=cr_type, pageSize=20) return list(self._paginated_search_to_generator(paginated_search=ps))
StarcoderdataPython
3350422
<gh_stars>0 from datetime import datetime from elasticsearch import Elasticsearch class Searcher(object): """ Class for searching results using parameters :param location: location string :param start_date: start date calendar :param end_date: end date calendar :param k: total num of documents to retrieve """ def __init__(self, location, start_date='2020-12-21', end_date='2021-03-21', k=300): self.k = k self.start_date = start_date self.end_date = end_date self.index_name = "airbnb_" + location self.num_hits = 0 self.es = Elasticsearch() def get_all_docs(self): """ Get a list of documents ordered by id """ res = self.es.search( index=self.index_name, body={ "size": self.k, "query": { "match_all": {} } } ) self.num_hits = res['hits']['total']['value'] docs = res['hits']['hits'] return docs def get_docs_ord_by_overall_rating(self): """ Get a list of documents in descending order by overall rating """ res = self.es.search( index=self.index_name, body={"size": self.k, "sort" : [{ "overall_rating" : "desc" }, "_score"], "query": {"match_all": {}}} ) self.num_hits = res['hits']['total']['value'] docs = res['hits']['hits'] return docs def get_docs_by_availability30(self): """ Get a list of documents by availability 30 """ res = self.es.search(index=self.index_name, body={ "size": self.k, "sort" : [ { "overall_rating" : "desc" }, "_score" ], "query": { "bool": { "filter": [ { "range": { "availability_30": { "gt": 0 } } } ]} } }) self.num_hits = res['hits']['total']['value'] docs = res['hits']['hits'] return docs if __name__ == "__main__": s = Searcher(location='boston') # Ranker 1. Return all documents and order by id docs = s.get_all_docs() hits = s.num_hits print("Total num docs ordered by id: ", hits) print("/n") # Ranker 2. Return all documents and order descendingly by overall_rating, id docs = s.get_docs_ord_by_overall_rating() hits = s.num_hits print("Total num docs ordered by overall_rating, id: ", hits) print("/n") # Ranker 3. Return all documents with availability > 0 and order descendingly by overall_rating, id docs = s.get_docs_by_availability30() hits = s.num_hits print("Total num docs by availability30: ", hits)
StarcoderdataPython
3206035
import unittest from main import * class StringsTests(unittest.TestCase): def test_main(self): self.assertIsInstance(fccSet, set) self.assertEqual(len(fccSet), 14)
StarcoderdataPython
44915
import datetime import functools import io import os import zipfile import httpx import pytest from coverage_comment import coverage as coverage_module from coverage_comment import github_client, settings @pytest.fixture def base_config(): def _(**kwargs): defaults = { # GitHub stuff "GITHUB_TOKEN": "foo", "GITHUB_PR_RUN_ID": 123, "GITHUB_REPOSITORY": "ewjoachim/foobar", # Action settings "MERGE_COVERAGE_FILES": True, "VERBOSE": False, } return settings.Config(**(defaults | kwargs)) return _ @pytest.fixture def push_config(base_config): def _(**kwargs): defaults = { # GitHub stuff "GITHUB_BASE_REF": "", "GITHUB_REF": "refs/heads/main", "GITHUB_EVENT_NAME": "push", } return base_config(**(defaults | kwargs)) return _ @pytest.fixture def pull_request_config(base_config): def _(**kwargs): defaults = { # GitHub stuff "GITHUB_BASE_REF": "main", "GITHUB_REF": "refs/pull/2/merge", "GITHUB_EVENT_NAME": "pull_request", } return base_config(**(defaults | kwargs)) return _ @pytest.fixture def workflow_run_config(base_config): def _(**kwargs): defaults = { # GitHub stuff "GITHUB_BASE_REF": "", "GITHUB_REF": "refs/heads/main", "GITHUB_EVENT_NAME": "workflow_run", } return base_config(**(defaults | kwargs)) return _ @pytest.fixture def coverage_json(): return { "meta": { "version": "1.2.3", "timestamp": "2000-01-01T00:00:00", "branch_coverage": True, "show_contexts": False, }, "files": { "codebase/code.py": { "executed_lines": [1, 2, 5, 6, 9], "summary": { "covered_lines": 5, "num_statements": 6, "percent_covered": 75.0, "missing_lines": 1, "excluded_lines": 0, "num_branches": 2, "num_partial_branches": 1, "covered_branches": 1, "missing_branches": 1, }, "missing_lines": [7, 9], "excluded_lines": [], } }, "totals": { "covered_lines": 5, "num_statements": 6, "percent_covered": 75.0, "missing_lines": 1, "excluded_lines": 0, "num_branches": 2, "num_partial_branches": 1, "covered_branches": 1, "missing_branches": 1, }, } @pytest.fixture def diff_coverage_json(): return { "report_name": "XML", "diff_name": "master...HEAD, staged and unstaged changes", "src_stats": { "codebase/code.py": { "percent_covered": 80.0, "violation_lines": [9], "violations": [[9, None]], } }, "total_num_lines": 5, "total_num_violations": 1, "total_percent_covered": 80, "num_changed_lines": 39, } @pytest.fixture def coverage_obj(): return coverage_module.Coverage( meta=coverage_module.CoverageMetadata( version="1.2.3", timestamp=datetime.datetime(2000, 1, 1), branch_coverage=True, show_contexts=False, ), info=coverage_module.CoverageInfo( covered_lines=5, num_statements=6, percent_covered=0.75, missing_lines=1, excluded_lines=0, num_branches=2, num_partial_branches=1, covered_branches=1, missing_branches=1, ), files={ "codebase/code.py": coverage_module.FileCoverage( path="codebase/code.py", executed_lines=[1, 2, 5, 6, 9], missing_lines=[7, 9], excluded_lines=[], info=coverage_module.CoverageInfo( covered_lines=5, num_statements=6, percent_covered=0.75, missing_lines=1, excluded_lines=0, num_branches=2, num_partial_branches=1, covered_branches=1, missing_branches=1, ), ) }, ) @pytest.fixture def coverage_obj_no_branch(): return coverage_module.Coverage( meta=coverage_module.CoverageMetadata( version="1.2.3", timestamp=datetime.datetime(2000, 1, 1), branch_coverage=False, show_contexts=False, ), info=coverage_module.CoverageInfo( covered_lines=5, num_statements=6, percent_covered=0.75, missing_lines=1, excluded_lines=0, num_branches=None, num_partial_branches=None, covered_branches=None, missing_branches=None, ), files={ "codebase/code.py": coverage_module.FileCoverage( path="codebase/code.py", executed_lines=[1, 2, 5, 6, 9], missing_lines=[7], excluded_lines=[], info=coverage_module.CoverageInfo( covered_lines=5, num_statements=6, percent_covered=0.75, missing_lines=1, excluded_lines=0, num_branches=None, num_partial_branches=None, covered_branches=None, missing_branches=None, ), ) }, ) @pytest.fixture def diff_coverage_obj(): return coverage_module.DiffCoverage( total_num_lines=5, total_num_violations=1, total_percent_covered=0.8, num_changed_lines=39, files={ "codebase/code.py": coverage_module.FileDiffCoverage( path="codebase/code.py", percent_covered=0.8, violation_lines=[7, 9], ) }, ) @pytest.fixture def session(): """ You get a session object. Register responses on it: session.register(method="GET", path="/a/b")(status_code=200) or session.register(method="GET", path="/a/b", json=checker)(status_code=200) (where checker is a function receiving the json value, and returning True if it matches) if session.request(method="GET", path="/a/b") is called, it will return a response with status_code 200. Also, if not called by the end of the test, it will raise. """ class Session: responses = [] # List[Tuples[request kwargs, response kwargs]] def request(self, method, path, **kwargs): request_kwargs = {"method": method, "path": path} | kwargs for i, (match_kwargs, response_kwargs) in enumerate(self.responses): match = True for key, match_value in match_kwargs.items(): if key not in request_kwargs: match = False break request_value = request_kwargs[key] if hasattr(match_value, "__call__"): try: assert match_value(request_value) except Exception: match = False break else: if not match_value == request_value: match = False break if match: self.responses.pop(i) return httpx.Response( **response_kwargs, request=httpx.Request(method=method, url=path), ) assert ( False ), f"No response found for kwargs {request_kwargs}\nExpected answers are {self.responses}" def __getattr__(self, value): if value in ["get", "post", "patch", "delete", "put"]: return functools.partial(self.request, value.upper()) raise AttributeError(value) def register(self, method, path, **request_kwargs): request_kwargs = {"method": method, "path": path} | request_kwargs def _(**response_kwargs): response_kwargs.setdefault("status_code", 200) self.responses.append((request_kwargs, response_kwargs)) return _ session = Session() yield session assert not session.responses @pytest.fixture def gh(session): return github_client.GitHub(session=session) @pytest.fixture def get_logs(caplog): caplog.set_level("DEBUG") def get_logs(level=None, match=None): return [ log.message for log in caplog.records if (level is None or level == log.levelname) and (match is None or match in log.message) ] return get_logs @pytest.fixture def in_tmp_path(tmp_path): curdir = os.getcwd() os.chdir(tmp_path) yield tmp_path os.chdir(curdir) @pytest.fixture def zip_bytes(): def _(filename, content): file = io.BytesIO() with zipfile.ZipFile(file, mode="w") as zipf: with zipf.open(filename, "w") as subfile: subfile.write(content.encode("utf-8")) zip_bytes = file.getvalue() assert zip_bytes.startswith(b"PK") return zip_bytes return _
StarcoderdataPython
139971
from django.db import models ''' activity datetime user (FK) type ''' class Log(models.Model): activity = models.CharField(max_length=50, null=False, default='') datetime = models.DateTimeField(auto_now=True) user = models.ForeignKey( to='users.User' ,on_delete=models.CASCADE ) class Meta: verbose_name = 'Log' verbose_name_plural = 'Logs'
StarcoderdataPython
5802
<filename>orrinjelo/aoc2021/day_11.py from orrinjelo.utils.decorators import timeit import numpy as np def parse(lines): return np.array([[int(c) for c in line.strip()] for line in lines]) visited = [] def flash(a, x, y): global visited if (x,y) in visited: return for dx in range(-1,2): for dy in range(-1,2): if dx == 0 and dy == 0: continue if x+dx < 0 or x+dx >= a.shape[0]: continue if y+dy < 0 or y+dy >= a.shape[1]: continue a[x+dx, y+dy] += 1 visited.append((x,y)) if a[x+dx, y+dy] > 9: flash(a, x+dx, y+dy) def progress(a): global visited a += 1 x,y = np.where(a > 9) visited = [] for i in range(len(x)): flash(a,x[i],y[i]) count = np.sum(a > 9) # print('a:\n', a) a[a > 9] = 0 return a, count @timeit("Day 11 Part 1") def part1(input_str, use_rust=False): octomap = parse(input_str) total_count = 0 for i in range(100): octomap, count = progress(octomap) total_count += count return total_count @timeit("Day 11 Part 2") def part2(input_str, use_rust=False): octomap = parse(input_str) step = 0 while True: step += 1 octomap, count = progress(octomap) if count == octomap.shape[0]*octomap.shape[1]: break return step # = Test ================================================ inputlist = [ '5483143223', '2745854711', '5264556173', '6141336146', '6357385478', '4167524645', '2176841721', '6882881134', '4846848554', '5283751526', ] def test_part1(): # import matplotlib.pyplot as plt # plt.imshow(parse(inputlist)) # plt.show() assert part1(inputlist) == 1656 def test_part2(): assert part2(inputlist) == 195 import pygame import sys def plot(input_str): # octomap = parse(input_str) octomap = np.random.randint(0,9,(100,100)) pygame.init() clock = pygame.time.Clock() scale = 5 screen = pygame.display.set_mode((octomap.shape[0]*scale,octomap.shape[1]*scale)) surface = pygame.Surface((octomap.shape[0]*scale,octomap.shape[1]*scale)) frame = 0 history = [] for i in range(500): print('Generating frame #', i) octomap, _ = progress(octomap) history.append(np.copy(octomap)) input() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit(); sys.exit(); # erase the screen screen.fill((255,0,0)) try: octomap = history[frame] except: frame = 0 for i in range(octomap.shape[0]): for j in range(octomap.shape[1]): if octomap[i,j] == 0: brightness = 255 else: brightness = int(255.0 * octomap[i,j]/10.0) print(i*scale, j*scale, brightness) pygame.draw.rect( screen, (brightness,brightness,brightness), pygame.Rect(i*scale, j*scale, scale, scale) ) pygame.display.update() # surface.blit(screen, (0,0)) clock.tick(30) frame += 1
StarcoderdataPython
3234055
<reponame>MIklgr500/bowl TRAIN_PATH = 'input/train' TEST_PATH = 'input/test2' FILE_PATH = 'output/' RANDOM_STATE = 31 IMG_HEIGHT = 128 IMG_WIDTH = 128 IMG_CHAN = 3 MERG_RATION = 1 NU = 1. MU = 0. BATCH_SIZE = 32 EPOCHS = 20
StarcoderdataPython
71183
################################ A Library of Functions ################################## ################################################################################################## #simple function which displays a matrix def matrixDisplay(M): for i in range(len(M)): for j in range(len(M[i])): print((M[i][j]), end = " ") print() ################################################################################################## #matrix product def matrixProduct(L, M): if len(L[0]) != len(M): #ensuring the plausiblity print("Matrix multiplication not possible.") else: print("Multiplying the two matrices: ") P=[[0 for i in range(len(M[0]))] for j in range(len(L))] #initializing empty matrix for i in range(len(L)): #iterating rows for j in range(len(M[0])): #iterating columns for k in range(len(M)): #iterating elements and substituing them P[i][j] = P[i][j] + (L[i][k] * M[k][j]) matrixDisplay(P) ################################################################################################## #the gauss-jordan elimination code def gaussj(a, b): n = len(b) #defining the range through which the loops will run for k in range(n): #loop to index pivot rows and eliminated columns #partial pivoting if abs(a[k][k]) < 1.0e-12: for i in range(k+1, n): if abs(a[i][k]) > abs(a[k][k]): for j in range(k, n): a[k][j], a[i][j] = a[i][j], a[k][j] #swapping of rows b[k], b[i] = b[i], b[k] break #division of the pivot row pivot = a[k][k] if pivot == 0: print("There is no unique solution to this system of equations.") return for j in range(k, n): #index of columns of the pivot row a[k][j] /= pivot b[k] /= pivot #elimination loop for i in range(n): #index of subtracted rows if i == k or a[i][k] == 0: continue factor = a[i][k] for j in range(k, n): #index of columns for subtraction a[i][j] -= factor * a[k][j] b[i] -= factor * b[k] print(b) ################################################################################################# #calculation of determinant using gauss-jordan elimination def determinant(a): n = len(a) #defining the range through which the loops will run if n != len(a[0]): #checking if determinant is possible to calculate print("The matrix must be a square matrix.") else: s = 0 #code to obtain row echelon matrix using partial pivoting for k in range(n-1): if abs(a[k][k]) < 1.0e-12: for i in range(k+1, n): if abs(a[i][k]) > abs(a[k][k]): for j in range(k, n): a[k][j], a[i][j] = a[i][j], a[k][j] #swapping s = s + 1 #counting the number of swaps happened for i in range(k+1, n): if a[i][k] == 0: continue factor = a[i][k]/a[k][k] for j in range(k, n): a[i][j] = a[i][j] - factor * a[k][j] d = 1 for i in range(len(a)): d = d * a[i][i] #enlisting the diagonal elements d = d*(-1)**s print(d) ################################################################################################# #calculating inverse def inverse(a): n = len(a) #defining the range through which loops will run #constructing the n X 2n augmented matrix P = [[0.0 for i in range(len(a))] for j in range(len(a))] for i in range(3): for j in range(3): P[j][j] = 1.0 for i in range(len(a)): a[i].extend(P[i]) #main loop for gaussian elimination begins here for k in range(n): if abs(a[k][k]) < 1.0e-12: for i in range(k+1, n): if abs(a[i][k]) > abs(a[k][k]): for j in range(k, 2*n): a[k][j], a[i][j] = a[i][j], a[k][j] #swapping of rows break pivot = a[k][k] #defining the pivot if pivot == 0: #checking if matrix is invertible print("This matrix is not invertible.") return else: for j in range(k, 2*n): #index of columns of the pivot row a[k][j] /= pivot for i in range(n): #index the subtracted rows if i == k or a[i][k] == 0: continue factor = a[i][k] for j in range(k, 2*n): #index the columns for subtraction a[i][j] -= factor * a[k][j] for i in range(len(a)): #displaying the matrix for j in range(n, len(a[0])): print("{:.2f}".format(a[i][j]), end = " ") #printing upto 2 places in decimal. print()
StarcoderdataPython
1713656
import rospy class BaseDataModule: def __init__(self): pass def get(self): raise NotImplementedError def get_time(self): return rospy.Time.now() class LocalDataModule(BaseDataModule): def __init__(self, rospy, msg_topic, msg_type): self.msg_topic = msg_topic self.msg_type = msg_type self.data = self.msg_type() self.sub = rospy.Subscriber(self.msg_topic, self.msg_type, self.data_cb) self.last_time = self.get_time() def data_cb(self, msg): self.data = msg self.last_time = self.get_time() def get(self): return self.data, (self.get_time() - self.last_time).to_sec() class RemoteDataModule(BaseDataModule): def __init__(self, rospy, srv_topic, srv_type, extract_fn=lambda msg: msg): self.srv_topic = srv_topic self.srv_type = srv_type self.extract_fn = extract_fn print("Connecting to %s..." % self.srv_topic) rospy.wait_for_service(self.srv_topic) self.proxy = rospy.ServiceProxy(self.srv_topic, self.srv_type) print("Connected") def get(self): t1 = self.get_time() ret = self.proxy() t2 = self.get_time() return self.extract_fn(ret), (t2 - t1).to_sec()
StarcoderdataPython
98999
<gh_stars>0 import platform from dataclasses import dataclass from modulefinder import ModuleFinder from pathlib import Path from pkgutil import ModuleInfo from types import ModuleType from unittest import mock from cucumber_tag_expressions import parse from tests.utilities import make_project from ward import fixture, test from ward._collect import ( PackageData, _build_package_data, _get_module_path, _handled_within, _is_excluded_module, _remove_excluded_paths, filter_fixtures, filter_tests, is_test_module, ) from ward.fixtures import Fixture from ward.testing import Test, each, skip def named(): assert "fox" == "fox" @fixture def named_test(): return Test(fn=named, module_name="my_module") @fixture def tests_to_search(named_test=named_test): return [named_test] @test("__filter_tests__ matches on qualified test name") def _(tests=tests_to_search, named=named_test): results = filter_tests(tests, query="my_module.named") assert list(results) == [named] @test("filter_tests matches on test name alone") def _(tests=tests_to_search, named=named_test): results = filter_tests(tests, query="named") assert list(results) == [named] @test("filter_tests `query='fox'` returns tests with `'fox'` in the body") def _(tests=tests_to_search, named=named_test): results = filter_tests(tests, query="fox") assert list(results) == [named] @test("filter_tests returns an empty list when no tests match query") def _(tests=tests_to_search): assert [] == filter_tests(tests, query="92qj3f9i") @test("filter_tests when tags match simple tag expression") def _(): apples = Test(fn=named, module_name="", tags=["apples"]) bananas = Test(fn=named, module_name="", tags=["bananas"]) results = list(filter_tests([apples, bananas], tag_expr=parse("apples"))) assert results == [apples] @test("filter_tests when tags match complex tag expression") def _(): one = Test(fn=named, module_name="", tags=["apples", "bananas"]) two = Test(fn=named, module_name="", tags=["bananas", "carrots"]) three = Test(fn=named, module_name="", tags=["bananas"]) tag_expr = parse("apples or bananas and not carrots") results = list(filter_tests([one, two, three], tag_expr=tag_expr)) assert results == [one, three] @test("filter_tests when both query and tag expression match a test") def _(): one = Test(fn=named, module_name="one", tags=["apples"]) two = Test(fn=named, module_name="two", tags=["apples"]) tag_expr = parse("apples") results = list(filter_tests([one, two], query="two", tag_expr=tag_expr)) # Both tests match the tag expression, but only two matches the search query # because the query matches the module name for the test. assert results == [two] @test("filter_tests when a test is defined with an empty tag list doesnt match") def _(): t = Test(fn=named, module_name="", tags=[]) tag_expr = parse("apples") results = list(filter_tests([t], tag_expr=tag_expr)) assert results == [] @test("filter_tests matches all tags when a tag expression is an empty string") def _(): t = Test(fn=named, module_name="", tags=["apples"]) tag_expr = parse("") results = list(filter_tests([t], tag_expr=tag_expr)) assert results == [t] @test("filter_tests returns [] when the tag expression matches no tests") def _(): one = Test(fn=named, module_name="one", tags=["apples"]) two = Test(fn=named, module_name="two", tags=["bananas"]) tag_expr = parse("carrots") results = list(filter_tests([one, two], tag_expr=tag_expr)) assert results == [] @fixture def named_fixture(): pass @fixture def marker_fixture(): return "marker" @test("filter_fixtures on empty list returns empty list") def _(): assert list(filter_fixtures([])) == [] @test("filter_fixtures matches anything with empty query and paths") def _(): fixtures = [Fixture(f) for f in [named_fixture, marker_fixture]] assert list(filter_fixtures(fixtures)) == fixtures @test("filter_fixtures matches 'named_fixture' by name query {query!r}") def _(query=each("named_fixture", "named", "fixture", "med_fix")): fixtures = [Fixture(f) for f in [named_fixture]] assert list(filter_fixtures(fixtures, query=query)) == fixtures @test("filter_fixtures matches 'named_fixture' by module name query on {query!r}") def _(query=each("test", "test_collect", "collect", "t_coll")): fixtures = [Fixture(f) for f in [named_fixture]] assert list(filter_fixtures(fixtures, query=query)) == fixtures @test("filter_fixtures matches fixture by source query on {query!r}") def _(query=each("marker", "mark", "ret", "return", '"')): fixtures = [Fixture(f) for f in [named_fixture, marker_fixture]] assert list(filter_fixtures(fixtures, query=query)) == [Fixture(marker_fixture)] @test("filter_fixtures excludes fixtures when querying for {query!r}") def _(query=each("echo", "foobar", "wizbang")): fixtures = [Fixture(f) for f in [named_fixture, marker_fixture]] assert list(filter_fixtures(fixtures, query=query)) == [] THIS_FILE = Path(__file__) @test("filter_fixtures matches fixture by path on {path}") def _(path=each(THIS_FILE, THIS_FILE.parent, THIS_FILE.parent.parent)): fixtures = [Fixture(f) for f in [named_fixture]] assert list(filter_fixtures(fixtures, paths=[path])) == fixtures @test("filter_fixtures excludes by path on {path}") def _(path=each(THIS_FILE.parent / "the-fixture-is-not-in-this-file.py")): fixtures = [Fixture(f) for f in [named_fixture]] assert list(filter_fixtures(fixtures, paths=[path])) == [] @test("is_test_module(<module: '{module_name}'>) returns {rv}") def _(module_name=each("test_apples", "apples"), rv=each(True, False)): module = ModuleInfo(ModuleFinder(), module_name, False) assert is_test_module(module) == rv PATH = Path("path/to/test_mod.py") class StubModuleFinder: def find_module(self, module_name: str): return StubSourceFileLoader() @dataclass class StubSourceFileLoader: path: str = PATH @fixture def test_module(): return ModuleInfo(StubModuleFinder(), PATH.stem, False) @test("get_module_path returns the path of the module") def _(mod=test_module): assert _get_module_path(mod) == PATH @test("is_excluded_module({mod.name}) is True for {excludes}") def _( mod=test_module, excludes=str(PATH), ): assert _is_excluded_module(mod, [excludes]) @test("is_excluded_module({mod.name}) is False for {excludes}") def _(mod=test_module, excludes=each("abc", "/path/to", "/path")): assert not _is_excluded_module(mod, exclusions=[excludes]) @fixture def paths_to_py_files(): return [ Path("/a/b/c.py"), Path("/a/b/d/e.py"), Path("/a/b/d/f/g/h.py"), ] for path_to_exclude in ["/a", "/a/", "/a/b", "/a/b/"]: @test("remove_excluded_paths removes {exclude} from list of paths") def _(exclude=path_to_exclude, paths=paths_to_py_files): assert _remove_excluded_paths(paths, [exclude]) == [] @test( "remove_excluded_paths removes correct files when exclusions relative to each other" ) def _(paths=paths_to_py_files): assert _remove_excluded_paths(paths, ["/a/b/d", "/a/b/d/", "/a/b/d/f"]) == [ Path("/a/b/c.py") ] @test("remove_excluded_paths removes individually specified files") def _(paths=paths_to_py_files): assert _remove_excluded_paths(paths, ["/a/b/d/e.py", "/a/b/d/f/g/h.py"]) == [ Path("/a/b/c.py") ] @test("remove_excluded_paths can remove mixture of files and dirs") def _(paths=paths_to_py_files): assert _remove_excluded_paths(paths, ["/a/b/d/e.py", "/a/b/d/f/g/"]) == [ Path("/a/b/c.py") ] @fixture def project(): yield from make_project("module.py") @test("handled_within({mod}, {search}) is True") def _( root: Path = project, search=each("", "/", "a", "a/b", "a/b/c"), mod="a/b/c/d/e.py" ): module_path = root / mod assert _handled_within(module_path, [root / search]) @test("handled_within({mod}, {search}) is False") def _( root: Path = project, search=each("x/y/z", "test_a.py", "a/b.py", "a/b/c/d/e.py"), mod="a/b/c/d/e.py", ): module_path = root / mod assert not _handled_within(module_path, [root / search]) @skip("Skipped on Windows", when=platform.system() == "Windows") @test("_build_package_data constructs correct package data") def _(): from ward._collect import Path as ImportedPath m = ModuleType(name="") m.__file__ = "/foo/bar/baz/test_something.py" patch_is_dir = mock.patch.object(ImportedPath, "is_dir", return_value=True) # The intention of the side_effects below is to make `baz` and `bar` directories # contain __init__.py files. It's not clean, but it does test the behaviour well. patch_exists = mock.patch.object( ImportedPath, "exists", side_effect=[True, True, False] ) with patch_is_dir, patch_exists: assert _build_package_data(m) == PackageData( pkg_name="bar.baz", pkg_root=Path("/foo") ) @skip("Skipped on Unix", when=platform.system() != "Windows") @test("_build_package_data constructs package name '{pkg}' from '{path}'") def _(): from ward._collect import Path as ImportedPath m = ModuleType(name="") m.__file__ = "\\foo\\bar\\baz\\test_something.py" patch_is_dir = mock.patch.object(ImportedPath, "is_dir", return_value=True) patch_exists = mock.patch.object( ImportedPath, "exists", side_effect=[True, True, False] ) with patch_is_dir, patch_exists: pkg_data = _build_package_data(m) assert pkg_data.pkg_name == "bar.baz" assert str(pkg_data.pkg_root).endswith("foo")
StarcoderdataPython
5171
from xagents import a2c, acer, ddpg, dqn, ppo, td3, trpo from xagents.a2c.agent import A2C from xagents.acer.agent import ACER from xagents.base import OffPolicy from xagents.ddpg.agent import DDPG from xagents.dqn.agent import DQN from xagents.ppo.agent import PPO from xagents.td3.agent import TD3 from xagents.trpo.agent import TRPO from xagents.utils.cli import play_args, train_args, tune_args from xagents.utils.common import register_models __author__ = 'schissmantics' __email__ = '<EMAIL>' __license__ = 'MIT' __version__ = '1.0.1' agents = { 'a2c': {'module': a2c, 'agent': A2C}, 'acer': {'module': acer, 'agent': ACER}, 'dqn': {'module': dqn, 'agent': DQN}, 'ppo': {'module': ppo, 'agent': PPO}, 'td3': {'module': td3, 'agent': TD3}, 'trpo': {'module': trpo, 'agent': TRPO}, 'ddpg': {'module': ddpg, 'agent': DDPG}, } register_models(agents) commands = { 'train': (train_args, 'fit', 'Train given an agent and environment'), 'play': ( play_args, 'play', 'Play a game given a trained agent and environment', ), 'tune': ( tune_args, '', 'Tune hyperparameters given an agent, hyperparameter specs, and environment', ), }
StarcoderdataPython
3354632
import numpy as np import theano import theano.tensor as T try: import cPickle as pickle except: import pickle import sys #list for converting index to character dic = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',\ 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z',\ '1','2','3','4','5','6','7','8','9','0','-','.',',','!','?','(',')','\'','"',' '] #load preprocessed numpy array text = np.load('hhgttg.npy') #characters to process per iteration batch = 160 #increase recursion limit for lstm sys.setrecursionlimit(10000) #lstm class class lstm(object): def __init__(self): #nn architecture self.input = T.matrix() self.Wi = theano.shared(self.ortho_weight(256)[:72,:]) self.Wf = theano.shared(self.ortho_weight(256)[:72,:]) self.Wc = theano.shared(self.ortho_weight(256)[:72,:]) self.Wo = theano.shared(self.ortho_weight(256)[:72,:]) self.Ui = theano.shared(self.ortho_weight(256)) self.Uf = theano.shared(self.ortho_weight(256)) self.Uc = theano.shared(self.ortho_weight(256)) self.Uo = theano.shared(self.ortho_weight(256)) self.bi = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.bf = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.bc = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.bo = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.C0 = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.h0 = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(256)),dtype=theano.config.floatX)) self.W2 = theano.shared(self.ortho_weight(256)[:,:72]) self.b2 = theano.shared(np.asarray(np.random.uniform(low=-0.1,high=0.1,size=(72)),dtype=theano.config.floatX)) self.target = T.matrix() #nn functions self.params = [self.Wi,self.Wf,self.Wc,self.Wo,self.Ui,self.Uf,self.Uc,self.Uo,self.bi,self.bf,self.bc,self.bo,self.h0,self.C0,self.W2,self.b2] [self.c,self.h_output],_ = theano.scan(fn=self.step,sequences=self.input,outputs_info=[self.C0,self.h0],non_sequences=self.params[:-4]) self.output = T.nnet.softmax(T.dot(self.h_output,self.W2)+self.b2)[40:,:] self.cost = T.nnet.categorical_crossentropy(self.output,self.target).mean() self.updates = self.adam(self.cost,self.params) self.train = theano.function([self.input,self.target],self.cost,updates=self.updates,allow_input_downcast=True) self.predict = theano.function([self.input],self.output,allow_input_downcast=True) def step(self,input,h0,C0,Wi,Wf,Wc,Wo,Ui,Uf,Uc,Uo,bi,bf,bc,bo): ''' lstm memory cell functions ''' i = T.nnet.sigmoid(T.dot(input,Wi)+T.dot(h0,Ui)+bi) cand = T.tanh(T.dot(input,Wc)+T.dot(h0,Uc)+bc) f = T.nnet.sigmoid(T.dot(input,Wf)+T.dot(h0,Uf)+bf) c = cand*i+C0*f o = T.nnet.sigmoid(T.dot(input,Wo)+T.dot(h0,Uo)+bo) h = o*T.tanh(c) return c,h def ortho_weight(self,ndim): ''' orthogonal weight initialiation ''' bound = np.sqrt(1./ndim) W = np.random.randn(ndim, ndim)*bound u, s, v = np.linalg.svd(W) return u.astype(theano.config.floatX) def adam(self, cost, params, lr=0.0002, b1=0.1, b2=0.01, e=1e-8): ''' adam gradient descent updates ''' updates = [] grads = T.grad(cost, params) self.i = theano.shared(np.float32(0.)) i_t = self.i + 1. fix1 = 1. - (1. - b1)**i_t fix2 = 1. - (1. - b2)**i_t lr_t = lr * (T.sqrt(fix2) / fix1) for p, g in zip(params, grads): self.m = theano.shared(p.get_value() * 0.) self.v = theano.shared(p.get_value() * 0.) m_t = (b1 * g) + ((1. - b1) * self.m) v_t = (b2 * T.sqr(g)) + ((1. - b2) * self.v) g_t = m_t / (T.sqrt(v_t) + e) p_t = p - (lr_t * g_t) updates.append((self.m, m_t)) updates.append((self.v, v_t)) updates.append((p, p_t)) updates.append((self.i, i_t)) return updates #open previous lowest training cost if it exists try: with open("nn_cost.dat","rb") as c: min_cost = float(c.readline()) except: min_cost = 1000 #open previous saved lstm if it exists try: with open("nn.dat","rb") as pickle_nn: NN = pickle.load(pickle_nn) print "saved neural network loaded" except: print "pickle load failed, creating new NN" NN = lstm() with open("nn.dat","wb") as f: pickle.dump(NN,f,pickle.HIGHEST_PROTOCOL) #save all generated text to file for archiving generated = open('generated.txt','w') #train lstm for i in range(1000000): #select random starting point in text start = np.random.randint(40,text.shape[0]-batch-1) X_train = text[start-40:start+batch,:] y_train = text[start+1:start+1+batch,:] cost = NN.train(X_train,y_train) print "step %i training error:" % (i+1), cost #try generating text every 500 iterations if (i+1) % 500 == 0: string = "" start = np.random.randint(text.shape[0]-41) X_test = text[start:start+41,:] for j in range(40): row = X_test[j,:] max = np.argmax(row) string += dic[max] out = NN.predict(X_test) for j in range(160): max = np.argmax(out) string += dic[max] next = np.zeros((1,72)) next[0,max] = 1 X_test = np.vstack((X_test[1:,:],next)) out = NN.predict(X_test) print string generated.write((str(i+1)+": "+string+"\n")) #checkpoint #save lstm if current checkpoint cost is lower than previous checkpoint cost #else load previous saved lstm if cost < min_cost: print "pickling neural network" min_cost = cost with open("nn_cost.dat","wb") as c: c.write(str(min_cost)) with open("nn.dat","wb") as f: pickle.dump(NN,f,pickle.HIGHEST_PROTOCOL) elif cost < min_cost+0.2: print "pickling neural network" with open("nn_cost.dat","wb") as c: c.write(str(min_cost)) with open("nn.dat","wb") as f: pickle.dump(NN,f,pickle.HIGHEST_PROTOCOL) elif cost > min_cost+0.5: print "reloading last good NN" with open("nn.dat","rb") as pickle_nn: NN = pickle.load(pickle_nn) generated.close()
StarcoderdataPython
68105
<gh_stars>10-100 #!/usr/bin/python # BSD LICENSE # # Copyright(c) 2010-2014 Intel Corporation. All rights reserved. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Script that uses either test app or qemu controlled by python-pexpect import sys, autotest_data, autotest_runner def usage(): print"Usage: autotest.py [test app|test iso image]", print "[target] [whitelist|-blacklist]" if len(sys.argv) < 3: usage() sys.exit(1) target = sys.argv[2] test_whitelist=None test_blacklist=None # get blacklist/whitelist if len(sys.argv) > 3: testlist = sys.argv[3].split(',') testlist = [test.lower() for test in testlist] if testlist[0].startswith('-'): testlist[0] = testlist[0].lstrip('-') test_blacklist = testlist else: test_whitelist = testlist cmdline = "%s -c f -n 4"%(sys.argv[1]) print cmdline runner = autotest_runner.AutotestRunner(cmdline, target, test_blacklist, test_whitelist) for test_group in autotest_data.parallel_test_group_list: runner.add_parallel_test_group(test_group) for test_group in autotest_data.non_parallel_test_group_list: runner.add_non_parallel_test_group(test_group) num_fails = runner.run_all_tests() sys.exit(num_fails)
StarcoderdataPython
3215735
<reponame>rekhabiswal/sage<gh_stars>0 """ Root system data for dual Cartan types """ #***************************************************************************** # Copyright (C) 2008-2009 <NAME> <anne at math.ucdavis.edu> # Copyright (C) 2008-2013 <NAME> <nthiery at users.sf.net> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function from __future__ import absolute_import from sage.misc.misc import attrcall from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.combinat.root_system import cartan_type from sage.combinat.root_system.root_lattice_realizations import RootLatticeRealizations from sage.combinat.root_system import ambient_space class CartanType(cartan_type.CartanType_decorator, cartan_type.CartanType_crystallographic): r""" A class for dual Cartan types. The dual of a (crystallographic) Cartan type is a Cartan type with the same index set, but all arrows reversed in the Dynkin diagram (otherwise said, the Cartan matrix is transposed). It shares a lot of properties in common with its dual. In particular, the Weyl group is isomorphic to that of the dual as a Coxeter group. EXAMPLES: For all finite Cartan types, and in particular the simply laced ones, the dual Cartan type is given by another preexisting Cartan type:: sage: CartanType(['A',4]).dual() ['A', 4] sage: CartanType(['B',4]).dual() ['C', 4] sage: CartanType(['C',4]).dual() ['B', 4] sage: CartanType(['F',4]).dual() ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} So to exercise this class we consider some non simply laced affine Cartan types and also create explicitely `F_4^*` as a dual cartan type:: sage: from sage.combinat.root_system.type_dual import CartanType as CartanTypeDual sage: F4d = CartanTypeDual(CartanType(['F',4])); F4d ['F', 4]^* sage: G21d = CartanType(['G',2,1]).dual(); G21d ['G', 2, 1]^* They share many properties with their original Cartan types:: sage: F4d.is_irreducible() True sage: F4d.is_crystallographic() True sage: F4d.is_simply_laced() False sage: F4d.is_finite() True sage: G21d.is_finite() False sage: F4d.is_affine() False sage: G21d.is_affine() True TESTS:: sage: TestSuite(F4d).run(skip=["_test_pickling"]) sage: TestSuite(G21d).run() .. NOTE:: F4d is pickled by construction as F4.dual() hence the above failure. """ def __init__(self, type): """ INPUT: - ``type`` -- a Cartan type EXAMPLES:: sage: ct = CartanType(['F',4,1]).dual() sage: TestSuite(ct).run() TESTS:: sage: ct1 = CartanType(['B',3,1]).dual() sage: ct2 = CartanType(['B',3,1]).dual() sage: ct3 = CartanType(['D',4,1]).dual() sage: ct1 == ct2 True sage: ct1 == ct3 False Test that the produced Cartan type is in the appropriate abstract classes (see :trac:`13724`):: sage: from sage.combinat.root_system import cartan_type sage: ct = CartanType(['B',3,1]).dual() sage: TestSuite(ct).run() sage: isinstance(ct, cartan_type.CartanType_simple) True sage: isinstance(ct, cartan_type.CartanType_finite) False sage: isinstance(ct, cartan_type.CartanType_affine) True sage: isinstance(ct, cartan_type.CartanType_crystallographic) True sage: isinstance(ct, cartan_type.CartanType_simply_laced) False By default, the dual of a reducible and finite type is not constructed as such:: sage: ct = CartanType([['B',4],['A',2]]).dual(); ct C4xA2 In order to exercise the dual infrastructure we force the construction as a dual:: sage: from sage.combinat.root_system import type_dual sage: ct = type_dual.CartanType(CartanType([['B',4],['A',2]])); ct B4xA2^* sage: isinstance(ct, type_dual.CartanType) True sage: TestSuite(ct).run(skip=["_test_pickling"]) sage: isinstance(ct, cartan_type.CartanType_finite) True sage: isinstance(ct, cartan_type.CartanType_simple) False sage: isinstance(ct, cartan_type.CartanType_affine) False sage: isinstance(ct, cartan_type.CartanType_crystallographic) True sage: isinstance(ct, cartan_type.CartanType_simply_laced) False """ if not type.is_crystallographic(): raise NotImplementedError("only implemented for crystallographic Cartan types") cartan_type.CartanType_decorator.__init__(self, type) # TODO: design an appropriate infrastructure to handle this # automatically? Maybe using categories and axioms? # See also type_relabel.CartanType.__init__ if type.is_finite(): self.__class__ = CartanType_finite elif type.is_affine(): self.__class__ = CartanType_affine abstract_classes = tuple(cls for cls in self._stable_abstract_classes if isinstance(type, cls)) if abstract_classes: self._add_abstract_superclass(abstract_classes) # For each class cls in _stable_abstract_classes, if ct is an # instance of A then ct.relabel(...) is put in this class as well. # The order is relevant to avoid MRO issues! _stable_abstract_classes = [ cartan_type.CartanType_simple] def _repr_(self, compact = False): """ EXAMPLES:: sage: CartanType(['F', 4, 1]).dual() ['F', 4, 1]^* sage: CartanType(['F', 4, 1]).dual()._repr_(compact = True) 'F4~*' """ dual_str = self.options.dual_str if self.is_affine() and self.options.notation == "Kac": if self._type.type() == 'B': if compact: return 'A%s^2'%(self.classical().rank()*2-1) return "['A', %s, 2]"%(self.classical().rank()*2-1) elif self._type.type() == 'BC': dual_str = '+' elif self._type.type() == 'C': if compact: return 'D%s^2'%(self.rank()) return "['D', %s, 2]"%(self.rank()) elif self._type.type() == 'F': if compact: return 'E6^2' return "['E', 6, 2]" return self.dual()._repr_(compact)+(dual_str if compact else "^"+dual_str) def _latex_(self): r""" EXAMPLES:: sage: latex(CartanType(['F', 4, 1]).dual()) F_4^{(1)\vee} """ return self._type._latex_()+"^"+self.options.dual_latex def __reduce__(self): """ TESTS:: sage: CartanType(['F', 4, 1]).dual().__reduce__() (*.dual(), (['F', 4, 1],)) """ return (attrcall("dual"), (self._type,)) def _latex_dynkin_diagram(self, label=lambda i: i, node=None, node_dist=2): r""" EXAMPLES:: sage: print(CartanType(['F',4,1]).dual()._latex_dynkin_diagram()) \draw (0 cm,0) -- (2 cm,0); { \pgftransformxshift{2 cm} \draw (0 cm,0) -- (2 cm,0); \draw (2 cm, 0.1 cm) -- +(2 cm,0); \draw (2 cm, -0.1 cm) -- +(2 cm,0); \draw (4.0 cm,0) -- +(2 cm,0); \draw[shift={(2.8, 0)}, rotate=180] (135 : 0.45cm) -- (0,0) -- (-135 : 0.45cm); \draw[fill=white] (0 cm, 0 cm) circle (.25cm) node[below=4pt]{$1$}; \draw[fill=white] (2 cm, 0 cm) circle (.25cm) node[below=4pt]{$2$}; \draw[fill=white] (4 cm, 0 cm) circle (.25cm) node[below=4pt]{$3$}; \draw[fill=white] (6 cm, 0 cm) circle (.25cm) node[below=4pt]{$4$}; } \draw[fill=white] (0 cm, 0 cm) circle (.25cm) node[below=4pt]{$0$}; """ if node is None: node = self._latex_draw_node return self._type._latex_dynkin_diagram(label, node, node_dist, dual=True) def ascii_art(self, label=lambda i: i, node=None): """ Return an ascii art representation of this Cartan type (by hacking the ascii art representation of the dual Cartan type) EXAMPLES:: sage: print(CartanType(["B", 3, 1]).dual().ascii_art()) O 0 | | O---O=<=O 1 2 3 sage: print(CartanType(["C", 4, 1]).dual().ascii_art()) O=<=O---O---O=>=O 0 1 2 3 4 sage: print(CartanType(["G", 2, 1]).dual().ascii_art()) 3 O=>=O---O 1 2 0 sage: print(CartanType(["F", 4, 1]).dual().ascii_art()) O---O---O=<=O---O 0 1 2 3 4 sage: print(CartanType(["BC", 4, 2]).dual().ascii_art()) O=>=O---O---O=>=O 0 1 2 3 4 """ if node is None: node = self._ascii_art_node res = self._type.ascii_art(label, node) # swap, like a computer science freshman! # This assumes that the oriented multiple arrows are always ascii arted as =<= or =>= res = res.replace("=<=", "=?=") res = res.replace("=>=", "=<=") res = res.replace("=?=", "=>=") return res def __eq__(self, other): """ Return whether ``self`` is equal to ``other``. EXAMPLES:: sage: B41 = CartanType(['B', 4, 1]) sage: B41dual = CartanType(['B', 4, 1]).dual() sage: F41dual = CartanType(['F', 4, 1]).dual() sage: F41dual == F41dual True sage: F41dual == B41dual False sage: B41dual == B41 False """ if not isinstance(other, CartanType): return False return self._type == other._type def __ne__(self, other): """ Return whether ``self`` is equal to ``other``. EXAMPLES:: sage: B41 = CartanType(['B', 4, 1]) sage: B41dual = CartanType(['B', 4, 1]).dual() sage: F41dual = CartanType(['F', 4, 1]).dual() sage: F41dual != F41dual False sage: F41dual != B41dual True sage: B41dual != B41 True """ return not (self == other) def __hash__(self): """ Compute the hash of ``self``. EXAMPLES:: sage: B41 = CartanType(['B', 4, 1]) sage: B41dual = CartanType(['B', 4, 1]).dual() sage: h = hash(B41dual) """ return hash(self._type) def dual(self): """ EXAMPLES:: sage: ct = CartanType(['F', 4, 1]).dual() sage: ct.dual() ['F', 4, 1] """ return self._type def dynkin_diagram(self): """ EXAMPLES:: sage: ct = CartanType(['F', 4, 1]).dual() sage: ct.dynkin_diagram() O---O---O=<=O---O 0 1 2 3 4 F4~* """ return self._type.dynkin_diagram().dual() ########################################################################### class AmbientSpace(ambient_space.AmbientSpace): """ Ambient space for a dual finite Cartan type. It is constructed in the canonical way from the ambient space of the original Cartan type by switching the roles of simple roots, fundamental weights, etc. .. NOTE:: Recall that, for any finite Cartan type, and in particular the a simply laced one, the dual Cartan type is constructed as another preexisting Cartan type. Furthermore the ambient space for an affine type is constructed from the ambient space for its classical type. Thus this code is not actually currently used. It is kept for cross-checking and for reference in case it could become useful, e.g., for dual of general Kac-Moody types. For the doctests, we need to explicitly create a dual type. Subsequently, since reconstruction of the dual of type `F_4` is the relabelled Cartan type, pickling fails on the ``TestSuite`` run. EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4])) sage: L = ct.root_system().ambient_space(); L Ambient space of the Root system of type ['F', 4]^* sage: TestSuite(L).run(skip=["_test_elements","_test_pickling"]) """ @lazy_attribute def _dual_space(self): """ The dual of this ambient space. EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4])) sage: L = ct.root_system().ambient_space(); L Ambient space of the Root system of type ['F', 4]^* sage: L._dual_space Ambient space of the Root system of type ['F', 4] The basic data for this space is fetched from the dual space:: sage: L._dual_space.simple_root(1) (0, 1, -1, 0) sage: L.simple_root(1) (0, 1, -1, 0) """ K = self.base_ring() return self.cartan_type().dual().root_system().ambient_space(K) #return self.root_system.dual.ambient_space() def dimension(self): """ Return the dimension of this ambient space. .. SEEALSO:: :meth:`sage.combinat.root_system.ambient_space.AmbientSpace.dimension` EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4])) sage: L = ct.root_system().ambient_space() sage: L.dimension() 4 """ # Can't yet use _dual_space for the base ring (and the Cartan type?) is not yet initialized return self.root_system.dual.ambient_space().dimension() @cached_method def simple_root(self, i): """ Return the ``i``-th simple root. It is constructed by looking up the corresponding simple coroot in the ambient space for the dual Cartan type. EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4])) sage: ct.root_system().ambient_space().simple_root(1) (0, 1, -1, 0) sage: ct.root_system().ambient_space().simple_roots() Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2), 4: (1, -1, -1, -1)} sage: ct.dual().root_system().ambient_space().simple_coroots() Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2), 4: (1, -1, -1, -1)} Note that this ambient space is isomorphic, but not equal, to that obtained by constructing `F_4` dual by relabelling:: sage: ct = CartanType(['F',4]).dual(); ct ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} sage: ct.root_system().ambient_space().simple_roots() Finite family {1: (1/2, -1/2, -1/2, -1/2), 2: (0, 0, 0, 1), 3: (0, 0, 1, -1), 4: (0, 1, -1, 0)} """ dual_coroot = self._dual_space.simple_coroot(i) return self.sum_of_terms(dual_coroot) @cached_method def fundamental_weights(self): """ Return the fundamental weights. They are computed from the simple roots by inverting the Cartan matrix. This is acceptable since this is only about ambient spaces for finite Cartan types. Also, we do not have to worry about the usual `GL_n` vs `SL_n` catch because type `A` is self dual. An alternative would have been to start from the fundamental coweights in the dual ambient space, but those are not yet implemented. EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4])) sage: L = ct.root_system().ambient_space() sage: L.fundamental_weights() Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3, 1, 1, 1), 4: (2, 0, 0, 0)} Note that this ambient space is isomorphic, but not equal, to that obtained by constructing `F_4` dual by relabelling:: sage: ct = CartanType(['F',4]).dual(); ct ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} sage: ct.root_system().ambient_space().fundamental_weights() Finite family {1: (1, 0, 0, 0), 2: (3/2, 1/2, 1/2, 1/2), 3: (2, 1, 1, 0), 4: (1, 1, 0, 0)} """ return self.fundamental_weights_from_simple_roots() @lazy_attribute def _plot_projection(self): """ Return the default plot projection for ``self``. If an ambient space uses barycentric projection, then so does its dual. .. SEEALSO:: - :meth:`sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods._plot_projection` EXAMPLES:: sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['G',2])) sage: L = ct.root_system().ambient_space() sage: L._plot_projection == L._plot_projection_barycentric True sage: L = RootSystem(['G',2]).coambient_space() sage: L._plot_projection == L._plot_projection_barycentric True """ dual_space = self.cartan_type().dual().root_system().ambient_space(self.base_ring()) if dual_space._plot_projection == dual_space._plot_projection_barycentric: return self._plot_projection_barycentric else: RootLatticeRealizations.ParentMethods.__dict__["_plot_projection"] class CartanType_finite(CartanType, cartan_type.CartanType_finite): AmbientSpace = AmbientSpace ########################################################################### class CartanType_affine(CartanType, cartan_type.CartanType_affine): def classical(self): """ Return the classical Cartan type associated with self (which should be affine). EXAMPLES:: sage: CartanType(['A',3,1]).dual().classical() ['A', 3] sage: CartanType(['B',3,1]).dual().classical() ['C', 3] sage: CartanType(['F',4,1]).dual().classical() ['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} sage: CartanType(['BC',4,2]).dual().classical() ['B', 4] """ return self.dual().classical().dual() def basic_untwisted(self): r""" Return the basic untwisted Cartan type associated with this affine Cartan type. Given an affine type `X_n^{(r)}`, the basic untwisted type is `X_n`. In other words, it is the classical Cartan type that is twisted to obtain ``self``. EXAMPLES:: sage: CartanType(['A', 7, 2]).basic_untwisted() ['A', 7] sage: CartanType(['E', 6, 2]).basic_untwisted() ['E', 6] sage: CartanType(['D', 4, 3]).basic_untwisted() ['D', 4] """ from . import cartan_type if self.dual().type() == 'B': return cartan_type.CartanType(['A', self.classical().rank()*2-1]) elif self.dual().type() == 'BC': return cartan_type.CartanType(['A', self.classical().rank()*2]) elif self.dual().type() == 'C': return cartan_type.CartanType(['D', self.classical().rank()+1]) elif self.dual().type() == 'F': return cartan_type.CartanType(['E', 6]) elif self.dual().type() == 'G': return cartan_type.CartanType(['D', 4]) def special_node(self): """ Implement :meth:`CartanType_affine.special_node` The special node of the dual of an affine type `T` is the special node of `T`. EXAMPLES:: sage: CartanType(['A',3,1]).dual().special_node() 0 sage: CartanType(['B',3,1]).dual().special_node() 0 sage: CartanType(['F',4,1]).dual().special_node() 0 sage: CartanType(['BC',4,2]).dual().special_node() 0 """ return self.dual().special_node() def _repr_(self, compact=False): """ EXAMPLES:: sage: CartanType(['F', 4, 1]).dual() ['F', 4, 1]^* sage: CartanType(['F', 4, 1]).dual()._repr_(compact = True) 'F4~*' """ dual_str = self.options.dual_str if self.options.notation == "Kac": if self._type.type() == 'B': if compact: return 'A%s^2'%(self.classical().rank()*2-1) return "['A', %s, 2]"%(self.classical().rank()*2-1) elif self._type.type() == 'BC': dual_str = '+' elif self._type.type() == 'C': if compact: return 'D%s^2'%(self.rank()) return "['D', %s, 2]"%(self.rank()) elif self._type.type() == 'F': if compact: return 'E6^2' return "['E', 6, 2]" return CartanType._repr_(self, compact) def _latex_(self): r""" Return a latex representation of ``self``. EXAMPLES:: sage: latex(CartanType(['B',4,1]).dual()) B_{4}^{(1)\vee} sage: latex(CartanType(['BC',4,2]).dual()) BC_{4}^{(2)\vee} sage: latex(CartanType(['G',2,1]).dual()) G_2^{(1)\vee} sage: CartanType.options['notation'] = 'Kac' sage: latex(CartanType(['A',7,2])) A_{7}^{(2)} sage: latex(CartanType(['B',4,1]).dual()) A_{7}^{(2)} sage: latex(CartanType(['A',8,2])) A_{8}^{(2)} sage: latex(CartanType(['A',8,2]).dual()) A_{8}^{(2)\dagger} sage: latex(CartanType(['E',6,2])) E_6^{(2)} sage: latex(CartanType(['D',5,2])) D_{5}^{(2)} sage: CartanType.options._reset() """ if self.options('notation') == "Kac": if self._type.type() == 'B': return "A_{%s}^{(2)}"%(self.classical().rank()*2-1) elif self._type.type() == 'BC': return "A_{%s}^{(2)\\dagger}"%(2*self.classical().rank()) elif self._type.type() == 'C': return "D_{%s}^{(2)}"%(self.rank)() elif self._type.type() == 'F': return "E_6^{(2)}" result = self._type._latex_() import re if re.match(".*\^{\(\d\)}$", result): return "%s%s}"%(result[:-1], self.options('dual_latex')) else: return "{%s}^%s"%(result, self.options('dual_latex')) def _default_folded_cartan_type(self): """ Return the default folded Cartan type. EXAMPLES:: sage: CartanType(['A', 6, 2]).dual()._default_folded_cartan_type() ['BC', 3, 2]^* as a folding of ['A', 5, 1] sage: CartanType(['A', 5, 2])._default_folded_cartan_type() ['B', 3, 1]^* as a folding of ['D', 4, 1] sage: CartanType(['D', 4, 2])._default_folded_cartan_type() ['C', 3, 1]^* as a folding of ['A', 5, 1] sage: CartanType(['E', 6, 2])._default_folded_cartan_type() ['F', 4, 1]^* as a folding of ['E', 6, 1] sage: CartanType(['G', 2, 1]).dual()._default_folded_cartan_type() ['G', 2, 1]^* as a folding of ['D', 4, 1] """ from sage.combinat.root_system.type_folded import CartanTypeFolded letter = self._type.type() if letter == 'BC': # A_{2n}^{(2)\dagger} n = self._type.classical().rank() return CartanTypeFolded(self, ['A', 2*n - 1, 1], [[0]] + [[i, 2*n-i] for i in range(1, n)] + [[n]]) if letter == 'B': # A_{2n-1}^{(2)} n = self._type.classical().rank() return CartanTypeFolded(self, ['D', n + 1, 1], [[i] for i in range(n)] + [[n, n+1]]) if letter == 'C': # D_{n+1}^{(2)} n = self._type.classical().rank() return CartanTypeFolded(self, ['A', 2*n-1, 1], [[0]] + [[i, 2*n-i] for i in range(1, n)] + [[n]]) if letter == 'F': # E_6^{(2)} return CartanTypeFolded(self, ['E', 6, 1], [[0], [2], [4], [3, 5], [1, 6]]) if letter == 'G': # D_4^{(3)} return CartanTypeFolded(self, ['D', 4, 1], [[0], [1, 3, 4], [2]]) return super(CartanType, self)._default_folded_cartan_type()
StarcoderdataPython
3289558
<reponame>gschivley/GenX-helpers "Calculate region-specific costs from imports/exports/RPS/CES" import os from pathlib import Path import pandas as pd import yaml def find_results_folders(year): cwd = Path.cwd() results_folders = list((cwd / f"{year}").rglob("Results")) results_folders.sort() return results_folders def clean_case_name(name): clean_name = " ".join(name.split("_")[2:]).replace("with", "w/").strip() return clean_name def find_years(): years = [ int(f.name) for f in os.scandir(Path.cwd()) if f.is_dir() and "__" not in f.name and "." not in f.name ] return years def find_region_lines(): "Returns a dictionary of zone number: list of " network_file_path = list(Path.cwd().rglob("Network.csv"))[0] network_df = pd.read_csv(network_file_path) network_df = network_df.set_index("Network_lines") # Zones should be of form "z<x>" where x is an integer zones = network_df["Network_zones"].dropna().to_list() if "Region description" in network_df.columns: zone_names = network_df["Region description"].dropna().to_list() else: zone_names = zones zone_lines = {} for zone, name in zip(zones, zone_names): zone_lines[name] = network_df.loc[network_df[zone] != 0, :].index.to_list() return zone_lines def calc_import_export_costs(year, zone, lines): zone_num = int(zone[1:]) results_folders = find_results_folders(year) input_folders = [folder.parent / "Inputs" for folder in results_folders] # col_order = [clean_case_name(folder.parent.stem) for folder in results_folders] imports_dict = {} exports_dict = {} for i_folder, r_folder in zip(input_folders, results_folders): case_name = clean_case_name(i_folder.parent.stem) flow = pd.read_csv(r_folder / "flow.csv", index_col=0) prices = pd.read_csv(r_folder / "prices.csv", index_col=0) network = pd.read_csv(i_folder / "Network.csv") network_direction = network.set_index("Network_lines")[zone] imports = 0 exports = 0 # print(case_name) for line in lines: line_imports = flow.loc[ network_direction[line] * flow[f"{line}"] < 0, f"{line}" ] line_exports = flow.loc[ network_direction[line] * flow[f"{line}"] > 0, f"{line}" ] line_import_costs = ( -1 * network_direction[line] * (line_imports * prices[f"{zone_num}"]).dropna().sum() ) imports += line_import_costs line_export_revenues = ( -1 * network_direction[line] * (line_exports * prices[f"{zone_num}"]).dropna().sum() ) exports += line_export_revenues imports_dict[case_name] = imports exports_dict[case_name] = exports import_export_df = pd.DataFrame( [imports_dict, exports_dict], index=["Import Costs", "Export Revenues"] ).T import_export_df["Net Trade Costs"] = import_export_df.sum(axis=1) import_export_df = import_export_df.astype(int) # import_export_df["Zone"] = year return import_export_df def calc_rps_ces_costs(year, zone): zone_num = int(zone[1:]) results_folders = find_results_folders(year) input_folders = [folder.parent / "Inputs" for folder in results_folders] # col_order = [clean_case_name(folder.parent.stem) for folder in results_folders] rps_dict = {} ces_dict = {} for i_folder, r_folder in zip(input_folders, results_folders): case_name = clean_case_name(i_folder.parent.stem) # print(case_name, year) genx_settings_path = i_folder.parent / "GenX_settings.yml" with open(genx_settings_path, "r") as f: settings = yaml.safe_load(f) rps_adjustment = settings["RPS_Adjustment"] ces_adjustment = settings["CES_Adjustment"] rps_ces_prices = pd.read_csv(r_folder / "RPS_CES.csv", index_col=0) rps_price = rps_ces_prices.loc[zone_num, "RPS_Price"] ces_price = rps_ces_prices.loc[zone_num, "CES_Price"] generators = pd.read_csv(i_folder / "Generators_data.csv") resource_rps_value = generators.loc[generators["zone"] == zone_num, "RPS"] resource_ces_value = generators.loc[generators["zone"] == zone_num, "CES"] energy = pd.read_csv(r_folder / "Power.csv", index_col=0) # Calculate the weighted generation for every resources weighted_gen = energy.loc["Sum", :].reset_index(drop=True) # Credits from in-region generation by qualifying resources region_rps_credits = (weighted_gen * resource_rps_value).sum() region_ces_credits = (weighted_gen * resource_ces_value).sum() network = pd.read_csv(i_folder / "Network.csv", index_col=1) # Calculate how many credits are needed in a region qualifying_resources = generators.loc[ (generators["zone"] == zone_num) & (generators["STOR"] == 0) & (generators["DR"] == 0) & (generators["HEAT"] == 0), :, ].index qualifying_energy = weighted_gen.loc[qualifying_resources].sum() region_rps_requirement = ( network.loc[zone, "RPS"] * qualifying_energy ) - rps_adjustment region_ces_requirement = ( network.loc[zone, "CES"] * qualifying_energy ) - ces_adjustment rps_credit_difference = region_rps_requirement - region_rps_credits ces_credit_difference = region_ces_requirement - region_ces_credits rps_cost = rps_credit_difference * rps_price ces_cost = ces_credit_difference * ces_price rps_dict[case_name] = rps_cost ces_dict[case_name] = ces_cost rps_ces_df = ( pd.DataFrame([rps_dict, ces_dict], index=["RPS Costs", "CES Costs"]) .T.fillna(0) .astype(int) ) # rps_ces_df["Zone"] = zone return rps_ces_df def calc_all_costs(): years = find_years() zone_dict = find_region_lines() results_list = [] for year in years: for zone, zone_lines in zone_dict.item(): import_export_df = calc_import_export_costs(year, zone, zone_lines) rps_ces_df = calc_rps_ces_costs(year, zone) combined_df = pd.concat([import_export_df, rps_ces_df], axis=1) combined_df["Total Extra Costs"] = combined_df[ ["Net Trade Costs", "RPS Costs", "CES Costs"] ].sum(axis=1) combined_df["Year"] = year combined_df["Zone"] = zone results_list.append(combined_df) final_costs = pd.concat(results_list) final_costs.index.name = "Case" final_costs = final_costs.reset_index().set_index(["Year", "Case"]) return final_costs def main(): final_costs = calc_all_costs() final_costs.to_csv("Zone specific costs.csv") if __name__ == "__main__": main()
StarcoderdataPython
156493
<reponame>yaogdu/xiaozu_spider DB={'address':'127.0.0.1:27017','db':'douban','col':'posts','replicaSet':'dmmongo'} skip = [',','.',':',';','<','>','/','&','#'] url = 'https://www.douban.com/group/fangzi/discussion?start=100' print url.split('=').pop(0)
StarcoderdataPython
3290352
<gh_stars>1-10 import cv2 from imagepy.core.engine import Simple import numpy as np class MatchTemplate(Simple): title = 'Match Template' note = ['all'] para = {'mat':'cv2.TM_CCOEFF','img':None} view = [(list, 'mat', ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'], str, 'match', ''), ('img', 'img', 'image', '')] def run(self, ips, imgs, para=None): down, up = ips.range ips2 = self.app.get_img(para['img']) ips.snapshot() sl1, sl2 = ips.slices, ips2.slices cn1, cn2 = ips.channels, ips2.channels if ips.dtype != ips2.dtype: return self.app.alert('Two stack must be equal dtype!') elif sl1 > 1 and sl2 > 1 and sl1 != sl2: return self.app.alert('Two stack must have equal slices!') elif cn1 > 1 and cn2 > 1 and cn1 != cn2: return self.app.alert('Two stack must have equal channels!') imgs1, imgs2 = ips.subimg(), ips2.subimg() ''' if len(imgs1) == 1: imgs1 = imgs1 * len(imgs2) if len(imgs2) == 1: imgs2 = imgs2 * len(imgs1) if imgs1[0].shape[:2] != imgs2[0].shape[:2]: return self.app.alert('Two image must be in equal shape') ''' for i in range(len(imgs1)): im1, im2 = imgs1[i], imgs2[i] if cn1 == 1 and cn2 > 1: im2 = im2.mean(axis=-1, dtype=np.float32) if cn2 == 1 and cn1 > 1: im2 = im2[:, :, None] * np.ones(cn1) # 模板匹配 res = cv2.matchTemplate(im1, im2, method=eval(para['mat'])) # 寻找最值 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) if para['mat'] in ['cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']: top_left = min_loc else: top_left = max_loc #彩色图 cn1, cn2 = ips.channels, ips2.channels if cn2 == 3 and cn1 == 3: w, h, c = im2.shape[::] if cn2 == 1 and cn1 == 1: w, h = im2.shape[::] bottom_right = (top_left[0] + h, top_left[1] + w) cv2.rectangle(im1, top_left, bottom_right, 255, 2) plgs = [MatchTemplate]
StarcoderdataPython
152825
<filename>hap-monitor-cron.py #!/usr/bin/env python # Copyright European Organization for Nuclear Research (CERN) 2013 # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - <NAME> <<EMAIL>>, 2014 import argparse import socket import traceback import logging import sys import time from sys import stdout # Define logger logging.basicConfig(stream=stdout, level=logging.ERROR, format='%(asctime)s\t%(process)d\t%(levelname)s\t%(message)s') logger = logging.getLogger(__name__) def monitor_haproxy(socket_name): data = {} INCLUDE_INFO = ['Process_num', 'Idle_pct'] INCLUDE_STAT = ['scur', 'qcur', 'chkfail', 'status', 'hrsp_1xx', 'hrsp_2xx', 'hrsp_3xx', 'hrsp_4xx', 'hrsp_5xx', 'req_rate', 'qtime', 'ctime', 'rtime', 'ttime'] # Request data from socket logger.debug('Connecting to socket: %s' % socket_name) try: s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.connect(socket_name) logger.debug('Requesting info') s.send('show info\n') raw_info = s.recv(4096) s.close() # Note: socket is not reusable logger.debug('Requesting stat') s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.connect(socket_name) s.send('show stat\n') raw_stat = s.recv(8192) s.close() except Exception as e: logger.error('Failed requesting data from socket %s with execption %s' % (socket_name, e)) logger.debug(traceback.format_exc(e)) return None logger.debug('Successfully requested data from socket.') # Transforming info response into dictonary logger.debug('Parsing info response') for entry in raw_info.split('\n'): tmp = entry.split(': ') try: if tmp[0] in INCLUDE_INFO: data[tmp[0]] = float(tmp[1]) except Exception as e: logger.error('Entry: %s failed with exception: %s' % (tmp, e)) logger.debug(traceback.format_exc(e)) logger.debug('Done parsing info response.') # Transforming stat response into dictonary logger.debug('Parsing stat response') raw_stat = raw_stat.split('\n') headers = raw_stat.pop(0).split(',')[2:-1] # Get the column headers and remove pxname and svname for stat in raw_stat: stat = stat.split(',') if len(stat) == 1: logger.debug('Ignored line: %s' % stat[0]) continue # Line is something else than stats prefix = '%s.%s' % (stat.pop(0), stat.pop(0)) # Build metric prefix using pxname and svname for column in range(len(headers)): try: if headers[column] in INCLUDE_STAT: if (headers[column] == 'status') and (stat[column] in ['UP', 'DOWN', 'MAINT']) and (data['Process_num'] == 1.0): for s in ['UP', 'DOWN', 'MAINT']: data[prefix+'.'+headers[column]+'.'+s] = 0 # set all status to zero to support gauge values data[prefix+'.'+headers[column]+'.'+stat[column]] = 1 else: data[prefix+'.'+headers[column]] = float(stat[column]) except Exception as e: logger.warning('Ignoring data: %s -> %s' % (headers[column], stat[column])) logger.debug('Done parsing stat response.') return data def backend_graphite(url, stats, prefix): process_num = stats['Process_num'] del(stats['Process_num']) server_name = socket.getfqdn().split('.')[0] prefix = '%s.%s.%s' % (prefix, server_name, int(process_num)) logger.debug('Reporting to prefix: %s' % prefix) server, port = url.split(':') try: sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) except Exception, e: logger.error('Unable to connect to Graphite backend %s: %s' % (url, e)) raise for s in stats: try: sock.sendto('%s.%s %s %s\n' % (prefix, s, float(stats[s]), int(time.time())), (server, int(port))) logger.debug('Message: %s.%s %s %s\n' % (prefix, s, float(stats[s]), int(time.time()))) except Exception as e: logger.error('Failed reporting %s.%s %s %s\n' % (prefix, s, float(stats[s]), time.time())) logger.error(traceback.format_exc(e)) def backend_statsd(url, stats, prefix): from pystatsd import Client process_num = stats['Process_num'] del(stats['Process_num']) server_name = socket.getfqdn().split('.')[0] prefix = '%s.%s.%s' % (prefix, server_name, int(process_num)) logger.debug('Reporting to prefix: %s' % prefix) server, port = url.split(':') try: pystatsd_client = Client(host=server, port=port, prefix=prefix) except Exception, e: logger.error('Unable to connect to statsd backend %s: %s' % (url, e)) raise for s in stats: try: pystatsd_client.gauge(s, float(stats[s])) logger.debug('%s.%s => %s' % (prefix, s, float(stats[s]))) except Exception as e: logger.error('Failed reporting %s (%s): %s' % (s, stats[s], e)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--backend', metavar='B', type=str, nargs=1, help='Backend server URL[:port][::scope] to which the script will report to. E.g. --backend my.graphite.host:8025/listen/now::rucio.loadbalancer') parser.add_argument('--type', metavar='T', type=str, nargs=1, help='Type of the backend server. Supported values are: G (Graphite) and S (statsd)') parser.add_argument('--sockets', metavar='S', type=str, nargs='+', help='a list of socket files e.g. /var/run/haproxy_admin_process_no_1.sock') parser.add_argument('--verbose', help='makes it chatty', action="store_true") args = parser.parse_args() if args.verbose: logger.setLevel(level=logging.DEBUG) if args.sockets is None: print 'At least one input socket must be defined. Run --help for further information.' sys.exit(1) if args.backend is None: print 'No backend information provided. Run --help for further information.' sys.exit(1) print args type = 'g' if ((args.type is not None) and (args.type[0].lower() == 'g')) else 's' # If not Graphite, statsd is used args = vars(args) try: url, prefix = args['backend'][0].split('::') logger.debug('Reporting to backend (type: %s) => URL: %s\tPrefix: %s' % (type, url, prefix)) except ValueError: logger.critical('Can not unpack backend information: %s' % args['backend'][0]) sys.exit(1) for socket_name in args['sockets']: try: data = monitor_haproxy(socket_name) if type == 'g': backend_graphite(url, data, prefix) else: backend_statsd(url, data, prefix) except Exception as e: logger.error(e) sys.exit(1) sys.exit(0)
StarcoderdataPython
46995
def pct_inc(p1, p2) : return ((p2-p1)/p1)*100
StarcoderdataPython
1690093
<filename>show_architecture.py<gh_stars>0 from resnet_imagenet import resnet18 from resnet import resnet20 # model = resnet18() # print(model) model = resnet20().cpu() import copy import torch fused_model = copy.deepcopy(model) # print(fused_model) # fuse the layers in the frontend fused_model = torch.quantization.fuse_modules(fused_model, [["conv_1_3x3", "bn_1", "relu"]], inplace=True) # print(fused_model) for module_name, module in fused_model.named_children(): if "stage" in module_name: for basic_block_name, basic_block in module.named_children(): torch.quantization.fuse_modules( basic_block, [["conv_a", "bn_a", "relu_a"], ["conv_b", "bn_b"]], inplace=True) # for sub_block_name, sub_block in basic_block.named_children(): # if sub_block_name == "downsample": # print(sub_block_name) # print(fused_model)
StarcoderdataPython
167166
<filename>server/stylegan2_hypotheses_explorer/logic/model_loader/model_loader.py from ...models import ModelsArray from ..evaluator import Evaluator from ..generator import Generator from ..paths import MODELS_PATH, MODELS_SCHEMA_PATH from ..util import load_and_validate from .evaluator_loader import EvaluatorLoader from .generator_loader import GeneratorLoader class ModelLoader: @classmethod def get_generator(cls, id: int) -> Generator: return GeneratorLoader.get_generator(id) @classmethod def get_evaluator(cls, id: int) -> Evaluator: return EvaluatorLoader.get_evaluator(id) @classmethod def list_all_models(cls) -> ModelsArray: return ModelsArray( GeneratorLoader.list_generator_models(), EvaluatorLoader.list_evaluator_models() ) def __init__(self, step_size: float, offline_mode: bool): self._step_size = step_size self._offline_mode = offline_mode def load_models(self): models = load_and_validate(MODELS_PATH, MODELS_SCHEMA_PATH) EvaluatorLoader(self._step_size, self._offline_mode).load(models["evaluators"]) GeneratorLoader(self._step_size, self._offline_mode).load(models["generators"])
StarcoderdataPython
1659013
<filename>venv/Lib/site-packages/PyQt4/examples/designer/plugins/widgets/counterlabel.pyw #!/usr/bin/env python """ counterlabel.py A PyQt custom widget example for Qt Designer. Copyright (C) 2006 <NAME> <<EMAIL>> Copyright (C) 2005-2006 Trolltech ASA. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ from PyQt4 import QtCore, QtGui class CounterLabel(QtGui.QWidget): """CounterLabel(QtGui.QWidget) Provides a custom label widget to be used as a counter, with signals similar to those provided by QAbstractSlider subclasses and properties similar to those provided by QLabel. """ # We define two signals that are used to indicate changes to the status # of the widget. valueChanged = QtCore.pyqtSignal((int, ), (str, )) def __init__(self, parent=None): super(CounterLabel, self).__init__(parent) self.setAutoFillBackground(False) self._font = QtGui.QFont() self._minimum = 1 self._maximum = 1 self._value = 1 self._offset = 0 self.rescale() self.reposition() def paintEvent(self, event): p = QtGui.QPainter() p.begin(self) p.setRenderHint(QtGui.QPainter.Antialiasing) p.setFont(self._font) p.translate(self.width()/2.0, self.height()/2.0) p.scale(self._scale, self._scale) p.drawText(self._xpos, self._ypos, str(self._value)) p.end() def sizeHint(self): return QtCore.QSize(32, 32) def rescale(self): fm = QtGui.QFontMetricsF(self._font, self) maxRect = fm.boundingRect(QtCore.QRectF(self.rect()), QtCore.Qt.AlignCenter, str(self._maximum)) xscale = float(self.width())/maxRect.width() yscale = float(self.height())/maxRect.height() self._scale = min(xscale, yscale) def reposition(self): fm = QtGui.QFontMetricsF(self._font, self) rect = fm.boundingRect(QtCore.QRectF(self.rect()), QtCore.Qt.AlignCenter, str(self._value)) self._xpos = -rect.width()/2.0 self._ypos = rect.height()/2.0 - fm.descent() self.update() # Provide getter and setter methods for the font property. def getFont(self): return self._font def setFont(self, font): self._font = font self.rescale() self.reposition() font = QtCore.pyqtProperty(QtGui.QFont, getFont, setFont) # Provide getter and setter methods for the minimum and maximum properties. def getMinimum(self): return self._minimum def setMinimum(self, value): self._minimum = value if self._minimum > self._maximum: self.setMaximum(self._minimum) if self._minimum > self._value: self.setValue(self._minimum) minimum = QtCore.pyqtProperty(int, getMinimum, setMinimum) def getMaximum(self): return self._maximum def setMaximum(self, value): self._maximum = value self._minimum = min(self._minimum, self._maximum) if self._maximum < self._value: self.setValue(self._maximum) self.rescale() self.reposition() maximum = QtCore.pyqtProperty(int, getMaximum, setMaximum) # We provide an offset property to allow the value shown to differ from # the internal value held by the widget. def getOffset(self): return self._offset def setOffset(self, value): self._offset = value offset = QtCore.pyqtProperty(int, getOffset, setOffset) # The value property is implemented using the getValue() and setValue() # methods. def getValue(self): return self._value # The setter method for the value property can also be used as a slot. @QtCore.pyqtSlot(int) def setValue(self, value): if not self._minimum <= value <= self._maximum: return self._value = value self.valueChanged[int].emit(value + self._offset) self.valueChanged[str].emit(str(value + self._offset)) self.reposition() value = QtCore.pyqtProperty(int, getValue, setValue) # Like QAbstractSpinBox, we provide stepUp() and stepDown() slots to # enable the value to be incremented and decremented. @QtCore.pyqtSlot() def stepUp(self): self.setValue(self._value + 1) @QtCore.pyqtSlot() def stepDown(self): self.setValue(self._value - 1) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) widget = CounterLabel() widget.setValue(123) widget.show() sys.exit(app.exec_())
StarcoderdataPython
1672194
<filename>examples/geomopt/01-pyberny.py #!/usr/bin/env python ''' Use pyberny to get the molecular equilibrium geometry. ''' from pyscf import gto, scf from pyscf.geomopt.berny_solver import optimize mol = gto.M(atom='N 0 0 0; N 0 0 1.2', basis='ccpvdz') mf = scf.RHF(mol) # # geometry optimization for HF. There are two entries to invoke the berny # geometry optimization. # # method 1: import the optimize function from pyscf.geomopt.berny_solver mol_eq = optimize(mf) print(mol_eq.atom_coords()) # method 2: create the optimizer from Gradients class mol_eq = mf.Gradients().optimizer(solver='berny').kernel() # # geometry optimization for CASSCF # from pyscf import mcscf mf = scf.RHF(mol) mc = mcscf.CASSCF(mf, 4, 4) conv_params = { 'gradientmax': 6e-3, # Eh/AA 'gradientrms': 2e-3, # Eh/AA 'stepmax': 2e-2, # AA 'steprms': 1.5e-2, # AA } # method 1 mol_eq = optimize(mc, **conv_params) # method 2 mol_eq = mc.Gradients().optimizer(solver='berny').kernel(conv_params)
StarcoderdataPython
3392683
## Count characters in your string ## 6 kyu ## https://www.codewars.com/kata/52efefcbcdf57161d4000091 def count(string): list1 = {} for item in string: if item not in list1: list1[item] = 0 list1[item] += 1 return list1
StarcoderdataPython
3329922
<filename>orttrainer/huggingface-gpt2/ort_addon/ort_supplement/src/transformers/trainer_ort.py import json import time import logging import os import random import re import shutil from contextlib import contextmanager from pathlib import Path from typing import Callable, Dict, List, NamedTuple, Optional, Tuple import numpy as np import torch from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler from tqdm import tqdm, trange import onnxruntime from onnxruntime.training import _utils, amp, checkpoint, optim, orttrainer, TrainStepInfo from .data.data_collator import DataCollator, DefaultDataCollator from .modeling_utils import PreTrainedModel from .training_args import TrainingArguments from .trainer import PredictionOutput, TrainOutput, EvalPrediction, set_seed, Trainer from azureml.core.run import Run # get the Azure ML run object run = Run.get_context() try: from torch.utils.tensorboard import SummaryWriter _has_tensorboard = True except ImportError: try: from tensorboardX import SummaryWriter _has_tensorboard = True except ImportError: _has_tensorboard = False def is_tensorboard_available(): return _has_tensorboard logger = logging.getLogger(__name__) PREFIX_CHECKPOINT_DIR = "ort_checkpoint" class OrtTrainer(Trainer): """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for Transformers. """ model: PreTrainedModel args: TrainingArguments data_collator: DataCollator train_dataset: Optional[Dataset] eval_dataset: Optional[Dataset] compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None prediction_loss_only: bool tb_writer: Optional["SummaryWriter"] = None def __init__( self, model: PreTrainedModel, args: TrainingArguments, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, prediction_loss_only=False, ): """ OrtTrainer is a simple but feature-complete training and eval loop for ORT, optimized for Transformers. Args: prediction_loss_only: (Optional) in evaluation and prediction, only return the loss """ super().__init__(model, args, data_collator, train_dataset, eval_dataset, compute_metrics, prediction_loss_only) onnxruntime.set_seed(self.args.seed) torch.cuda.set_device(self.args.local_rank) def update_torch_model(self,): if self.ort_model: logger.info( "Updating weights of torch model from ORT model." ) ort_state_dict = checkpoint.experimental_state_dict(self.ort_model) self.model.load_state_dict(ort_state_dict, strict=False) else: logger.warning( "No ORT model found to update weights from, assuming torch model is up to date." ) def gpt2_model_description(self, n_head, vocab_size, n_hidden, n_layer, n_ctx, batch_size): logger.info("****num of head is: {}".format(n_head)) logger.info("****vocab size is: {}".format(vocab_size)) logger.info("****num of hidden layer is: {}".format(n_hidden)) logger.info("****num of layer is: {}".format(n_layer)) logger.info("****seq length is: {}".format(n_ctx)) # We are using hard-coded values for batch size and sequence length in order to trigger # memory planning in ORT, which would reduce the memory footprint during training. # Alternatively, one can set these as symbolic dims 'batch_size' and 'n_ctx' to be able # to use dynamic input sizes. model_desc = {'inputs': [('input_ids', [batch_size, n_ctx]), ('labels', [batch_size, n_ctx])], 'outputs': [('loss', [], True)]} return model_desc def get_train_dataloader(self) -> DataLoader: if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_sampler = ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) return DataLoader( self.train_dataset, batch_size=self.args.per_gpu_train_batch_size, sampler=train_sampler, collate_fn=self.data_collator.collate_batch, ) def train(self, model_path: Optional[str] = None): """ Main training entry point. Args: model_path: (Optional) Local path to model if model to train has been instantiated from a local path If present, we will try reloading the optimizer/scheduler states from there. """ train_dataloader = self.get_train_dataloader() if self.args.max_steps > 0: t_total = self.args.max_steps num_train_epochs = ( self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1 ) else: t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs) num_train_epochs = self.args.num_train_epochs config = self.model.config model_desc = self.gpt2_model_description(config.n_head, config.vocab_size, config.n_embd, config.n_layer, config.n_ctx, self.args.per_gpu_train_batch_size) from onnxruntime.capi._pybind_state import set_arena_extend_strategy, ArenaExtendStrategy set_arena_extend_strategy(ArenaExtendStrategy.kSameAsRequested) param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'gamma', 'beta', 'LayerNorm'] optim_config = optim.AdamConfig(params=[{'params' : [n for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'lambda_coef': 0.0 }], lr=self.args.learning_rate, alpha=0.9, beta=0.999, lambda_coef=self.args.weight_decay, epsilon=self.args.adam_epsilon) warmup = self.args.warmup_steps / t_total lr_scheduler = optim.lr_scheduler.LinearWarmupLRScheduler(total_steps=t_total, warmup=warmup) loss_scaler = amp.DynamicLossScaler(automatic_update=True, loss_scale=float(1 << 20), up_scale_window=2000, min_loss_scale=1.0, max_loss_scale=float(1 << 24)) if self.args.fp16 else None opts = orttrainer.ORTTrainerOptions({ 'device': {'id': str(self.args.device)}, 'distributed': { 'world_rank': self.args.world_rank, 'world_size': self.args.world_size, 'local_rank': self.args.local_rank, 'allreduce_post_accumulation': True}, 'mixed_precision': {'enabled': self.args.fp16, 'loss_scaler': loss_scaler}, 'batch': {'gradient_accumulation_steps': self.args.gradient_accumulation_steps}, 'lr_scheduler': lr_scheduler}) self.ort_model = orttrainer.ORTTrainer(self.model, model_desc, optim_config, None, options=opts) logger.info("****************************Model converted to ORT") model = self.ort_model if self.tb_writer is not None: self.tb_writer.add_text("args", self.args.to_json_string()) # Train! if self.is_world_master(): logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataloader.dataset)) logger.info(" Num Epochs = %d", num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", self.args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", self.args.train_batch_size * self.args.gradient_accumulation_steps * (self.args.world_size if self.args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if model_path is not None: # set global_step to global_step of last saved checkpoint from model path try: global_step = int(model_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // self.args.gradient_accumulation_steps ) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: global_step = 0 logger.info(" Starting fine-tuning.") tr_loss = 0.0 logging_loss = 0.0 global_batch_train_start = time.time() train_iterator = trange( epochs_trained, int(num_train_epochs), desc="Epoch", disable=self.args.local_rank not in [-1, 0], ) for epoch in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=self.args.local_rank not in [-1, 0]) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue if len(inputs['input_ids']) < self.args.per_gpu_train_batch_size: # skip incomplete batch logger.info('Skipping incomplete batch...') continue tr_loss += self._training_step(model, inputs) if (step + 1) % self.args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps len(epoch_iterator) <= self.args.gradient_accumulation_steps and (step + 1) == len(epoch_iterator) ): global_step += 1 global_batch_train_duration = time.time() - global_batch_train_start global_batch_train_start = time.time() if self.args.local_rank in [-1, 0]: if (self.args.logging_steps > 0 and global_step % self.args.logging_steps == 0) or ( global_step == 1 and self.args.logging_first_step ): logs = {} loss_avg = (tr_loss - logging_loss) / (self.args.logging_steps * self.args.gradient_accumulation_steps) logs["learning_rate"] = lr_scheduler.get_last_lr()[0] logs["loss"] = loss_avg.item() logs["global_step"] = global_step logs["global_step_time"] = global_batch_train_duration logging_loss = tr_loss.clone() if self.tb_writer: for k, v in logs.items(): self.tb_writer.add_scalar(k, v, global_step) run.log(k, v) epoch_iterator.write(json.dumps({**logs, **{"step": global_step}})) if self.args.save_steps > 0 and global_step % self.args.save_steps == 0: # In all cases (even distributed/parallel), self.model is always a reference # to the model we want to save. if hasattr(model, "module"): assert model.module is self.ort_model else: assert model is self.ort_model # Save model checkpoint output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{global_step}") self.save_model(output_dir) self._rotate_checkpoints() if self.args.max_steps > 0 and global_step > self.args.max_steps: epoch_iterator.close() break if self.args.max_steps > 0 and global_step > self.args.max_steps: train_iterator.close() break if self.tb_writer: self.tb_writer.close() self.update_torch_model() logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") return TrainOutput(global_step, tr_loss / global_step) def _training_step( self, model: nn.Module, inputs: Dict[str, torch.Tensor]) -> float: loss = model.train_step(**inputs) return loss def _save(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info("Saving model checkpoint to %s", output_dir) self.update_torch_model() # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): raise ValueError("Trainer.model appears to not be a PreTrainedModel") self.model.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def evaluate_in_ORT( self, eval_dataset: Optional[Dataset] = None) -> Dict[str, float]: """ Run evaluation and return metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent. Args: eval_dataset: (Optional) Pass a dataset if you wish to override the one on the instance. Returns: A dict containing: - the eval loss """ self.infer_sess = None onnx_model_path = os.path.join(self.args.output_dir, "final_model.onnx") output_names = [o_desc.name for o_desc in self.ort_model.model_desc.outputs] # The eval batch size should be the same as finetuned onnx model's batch size # as the graph exported for training is being used for inference # Alternatively, we can export the onnx graph again to use a symbolic batch size assert self.args.per_gpu_eval_batch_size == self.args.per_gpu_train_batch_size # save the onnx graph self.ort_model.save_as_onnx(onnx_model_path) # delete the training model to free up GPU memory del(self.ort_model) self.ort_model = None # create the inference session self.infer_sess = onnxruntime.InferenceSession(onnx_model_path) # load the eval dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) description = "Evaluation" if self.is_world_master(): logger.info("***** Running %s *****", description) logger.info(" Num examples = %d", len(eval_dataloader.dataset)) logger.info(" Batch size = %d", eval_dataloader.batch_size) eval_losses: List[float] = [] for inputs in tqdm(eval_dataloader, desc=description): # for the last batch, pad to the batch size. if len(inputs['input_ids']) < self.args.per_gpu_eval_batch_size: pad_len = self.args.per_gpu_eval_batch_size - inputs['input_ids'].size()[0] inputs['input_ids'] = torch.nn.functional.pad(inputs['input_ids'], (0,0,0,pad_len)) inputs['labels'] = torch.nn.functional.pad(inputs['labels'], (0,0,0,pad_len)) step_eval_loss = self.infer_sess.run(output_names, {"input_ids": inputs["input_ids"].numpy(), "labels": inputs["labels"].numpy() }) eval_losses += [step_eval_loss[0]] metrics = {} if len(eval_losses) > 0: metrics["loss"] = np.mean(eval_losses) return metrics def evaluate( self, eval_dataset: Optional[Dataset] = None, prediction_loss_only: Optional[bool] = None ) -> Dict[str, float]: """ Run evaluation and return metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent. Args: eval_dataset: (Optional) Pass a dataset if you wish to override the one on the instance. Returns: A dict containing: - the eval loss - the potential metrics computed from the predictions """ eval_dataloader = self.get_eval_dataloader(eval_dataset) # update the torch model weights and delete the ort training model to free up GPU memory self.update_torch_model() del(self.ort_model) self.ort_model = None output = self._prediction_loop(eval_dataloader, description="Evaluation") return output.metrics
StarcoderdataPython
1730592
from rl.featurizer.featurizer import DiscreteFeaturizer
StarcoderdataPython
3321185
from influxdb import InfluxDBClient, DataFrameClient import numpy as np import pandas as pd import requests import datetime import time import json import os import sys import logging def readOutput(): # Set some boolean success variables for timer success = False ## Go up one directory and to the output folder using shitty path functions output_path = os.path.join(os.getcwd(),'output') # Archive Path is where files are moved to after processing archive_path = os.path.join(os.getcwd(),'archive') #Read CSV Inventory of address names corresponding to user IDs df_sensors = pd.read_csv('mbientInventory.csv') df_sensors.set_index('serialNumber', inplace = True) # get list of csv file previous downloaded from the mbient sensor filenames = os.listdir(output_path) # filter the csvs csv_filenames = list(filter(lambda x: x.split('.')[-1] =="csv", filenames)) # Itterate through csv files in output folder for filename in csv_filenames: print(filename) # Get device address address = filename.split('_')[2] # Get correspondinguserid user_id = df_sensors.loc[address, 'participantID'] sensor_location = df_sensors.loc[address, 'sensorLocation'] #Read Data try: current_dataframe = pd.read_csv(os.path.join(output_path,filename)) except pd.errors.EmptyDataError: print("WARNING: Empty CSV! Skipping") print(filename, "has no data, pease delete manually") continue #Set name of df to device address - may not be useful current_dataframe.name = address #--Time-- #Get timestamp in correct format from epoch time timestamp = pd.to_datetime(current_dataframe["epoc (ms)"], unit = 'ms') #Convert to Singapore time timestamp = timestamp.dt.tz_localize('utc').dt.tz_convert('Asia/Singapore') # use proper timezone #set index to timestamp and change name current_dataframe.index = timestamp current_dataframe.index.names = ["timestamp"] # Resampling data to average values of the same minute, and padding the rest with NANs current_dataframe = current_dataframe.resample("1min").mean() # make readings evenly #Remove spaces, brackets and symbols from title column_names = current_dataframe.columns new_column_names = [] for name in column_names: #remove unit new_name = name.split(' ')[: -1] #join with underscores new_name = "_".join(new_name) new_column_names.append(new_name) #reset column names with new tidier names current_dataframe.columns = new_column_names #Drop Epoch and Elapsed time from measurement current_dataframe = current_dataframe.drop(['epoc', 'elapsed'], axis = 1) print(current_dataframe) #Just in case we end up importing funcitons from this file if __name__ == "__main__": readOutput()
StarcoderdataPython
3301410
<reponame>rolker/project11_navigation #!/usr/bin/python3 ''' Written by <NAME> with contributions from <NAME> ''' import rospy import tf2_ros import tf2_geometry_msgs from nav_msgs.msg import OccupancyGrid from geographic_visualization_msgs.msg import GeoVizItem, GeoVizPointList, GeoVizPolygon from geometry_msgs.msg import PoseStamped from geometry_msgs.msg import PointStamped from geographic_msgs.msg import GeoPoint import project11 def costmap_callback(data): origin = PointStamped() origin.point = data.info.origin.position origin.header = data.header height_meters = data.info.resolution*data.info.height width_meters = data.info.resolution*data.info.width opposite = PointStamped() opposite.point.x = origin.point.x+height_meters opposite.point.y = origin.point.y+width_meters opposite.point.z = origin.point.z opposite.header = data.header corners_ll = earth.pointListToGeoPointList((origin, opposite)) if len(corners_ll) == 2 and corners_ll[0] is not None and corners_ll[1] is not None: origin_ll = corners_ll[0].position opposite_ll = corners_ll[1].position vizItem = GeoVizItem() vizItem.id = 'occupency_grid' plist = GeoVizPointList() plist.color.r = 0.0 plist.color.g = 0.5 plist.color.b = 1.0 plist.color.a = 1.0 corners = [origin_ll,opposite_ll] for i in ( (0,0), (0,1), (1,1), (1,0), (0,0) ): gp = GeoPoint() gp.latitude = corners[i[0]].latitude gp.longitude = corners[i[1]].longitude plist.points.append(gp) vizItem.lines.append(plist) dlat = (opposite_ll.latitude - origin_ll.latitude)/float(data.info.width) dlong = (opposite_ll.longitude - origin_ll.longitude)/float(data.info.height) for row in range(data.info.height): for col in range(data.info.width): if data.data[row*data.info.width+col] > 0: intensity = data.data[row*data.info.width+col]/255.0 p = GeoVizPolygon() p.fill_color.r = 0.1 p.fill_color.g = 0.1 p.fill_color.b = 0.1 p.fill_color.a = intensity for i in ( (0,0), (0,1), (1,1), (1,0), (0,0) ): gp = GeoPoint() gp.latitude = origin_ll.latitude+dlat*(row+i[0]) gp.longitude = origin_ll.longitude+dlong*(col+i[1]) p.outer.points.append(gp) vizItem.polygons.append(p) display_publisher.publish(vizItem) grid_sub = None # allow tf_buffer to fill up a bit before asking for a grid def delayed_subscribe(data): global grid_sub grid_sub = rospy.Subscriber('occupancy_grid', OccupancyGrid, costmap_callback, queue_size=1) rospy.init_node("occupancy_to_camp") earth = project11.nav.EarthTransforms() tf_buffer = tf2_ros.Buffer() tf_listener = tf2_ros.TransformListener(tf_buffer) display_publisher = rospy.Publisher('project11/display', GeoVizItem, queue_size = 10) rospy.Timer(rospy.Duration(2), delayed_subscribe, oneshot=True) rospy.spin()
StarcoderdataPython
3331561
<filename>src/ui/views/paragraphs.py import Tkinter as tk from . import ViewBase, ViewWithUpdate from decorators import register_view from functools import partial from lxml import etree @register_view('paragraph', 'interpParagraph') class ParagraphView(ViewBase, ViewWithUpdate): def __init__(self, *args, **kwargs): ViewBase.__init__(self, *args, **kwargs) row = 0 label = tk.Label(self, text='Label') self.label_var = tk.StringVar(self) self.label = tk.Entry(self, textvariable=self.label_var, width=40) label.grid(row=row, column=0) self.label.grid(row=row, column=1, sticky='e') self.update_view_attribute('label', self.label_var, str) self.label_var.trace('w', partial(self.update_model_attribute, 'label', self.label_var)) row += 1 if self.model.tag == 'interpParagraph': label = tk.Label(self, text='Target') self.target_var = tk.StringVar(self) self.target = tk.Entry(self, textvariable=self.target_var, width=40) label.grid(row=row, column=0) self.target.grid(row=row, column=1, sticky='e') self.update_view_attribute('target', self.target_var, str) self.target_var.trace('w', partial(self.update_model_attribute, 'target', self.target_var)) row += 1 label = tk.Label(self, text='Marker') self.marker_var = tk.StringVar(self) self.marker = tk.Entry(self, textvariable=self.marker_var, width=10) label.grid(row=row, column=0) self.marker.grid(row=row, column=1, sticky='e') self.update_view_attribute('marker', self.marker_var, str) self.marker_var.trace('w', partial(self.update_model_attribute, 'marker', self.marker_var)) row += 1 if self.model.find('title') is not None: label = tk.Label(self, text='Title') self.title_var = tk.StringVar(self) self.title = tk.Entry(self, textvariable=self.title_var, width=80) label.grid(row=row, column=0) self.title.grid(row=row, column=1, sticky='e') self.update_view('title', self.title_var, str) self.title_var.trace('w', partial(self.update_model, 'title', self.title_var)) row += 1 label = tk.Label(self, text='Content', borderwidth=1) self.content = tk.Text(self, wrap=tk.WORD, height=35) label.grid(row=row, column=0) self.content.grid(row=row, column=1, sticky='e') self.content.bind('<KeyRelease>', self.update_content) if self.model.find('content') is None: content = etree.SubElement(self.model, 'content') content.text = '' self.content.insert(1.0, self.model.find('content').text.strip()) row += 1 def update_content(self, *args): content_text = self.content.get(1.0, tk.END).strip() #print 'setting text to:', content_text self.model.find('content').text = content_text
StarcoderdataPython
131437
<reponame>Ramossvitor/PYTHON import math num1 = float(input('Digite um numero: ')) print('O numero {} tem a parte inteira {:.0f}'.format(num1, math.trunc(num1)))
StarcoderdataPython
1749353
from neupy import layers from neupy.exceptions import LayerConnectionError from base import BaseTestCase class InputTestCase(BaseTestCase): def test_input_exceptions(self): layer = layers.Input(10) error_message = "Input layer got unexpected input" with self.assertRaisesRegexp(LayerConnectionError, error_message): layer.get_output_shape((10, 15)) def test_output_shape_merging(self): layer = layers.Input(10) self.assertShapesEqual(layer.get_output_shape((None, 10)), (None, 10)) self.assertShapesEqual(layer.get_output_shape((5, 10)), (5, 10)) layer = layers.Input((None, None, 3)) self.assertShapesEqual( layer.get_output_shape((None, 28, 28, 3)), (None, 28, 28, 3), ) self.assertShapesEqual( layer.get_output_shape((None, None, 28, 3)), (None, None, 28, 3), ) self.assertShapesEqual( layer.get_output_shape((10, 28, 28, None)), (10, 28, 28, 3), ) def test_merged_inputs(self): network = layers.join( layers.Input((10, 2)), layers.Input((None, 2)), ) self.assertShapesEqual(network.input_shape, (None, 10, 2)) self.assertShapesEqual(network.output_shape, (None, 10, 2)) def test_input_layers_connected(self): network = layers.join(layers.Input(1), layers.Input(1)) self.assertShapesEqual(network.input_shape, (None, 1)) self.assertShapesEqual(network.output_shape, (None, 1)) def test_input_repr(self): self.assertEqual( str(layers.Input(10)), "Input(10, name='input-1')", ) self.assertEqual( str(layers.Input((10, 3))), "Input((10, 3), name='input-2')", ) self.assertEqual( str(layers.Input((None, None, 3))), "Input((None, None, 3), name='input-3')", ) self.assertEqual( str(layers.Input(None)), "Input(None, name='input-4')", ) def test_input_with_tensor_shape(self): network = layers.join( layers.Input(10), layers.Relu(5), ) network_2 = layers.join( layers.Input(network.output_shape[1:]), layers.Relu(3), ) self.assertEqual(network_2.layers[0].shape, (5,)) self.assertShapesEqual(network_2.input_shape, (None, 5)) self.assertShapesEqual(network_2.output_shape, (None, 3))
StarcoderdataPython
52346
import _init_paths import tensorflow as tf from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from fast_rcnn.nms_wrapper import nms from utils.timer import Timer #import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os, sys, cv2 import argparse from networks.factory import get_network CLASSES = ('__background__', # always index 0 'Acura', 'Alpha-Romeo', 'Aston-Martin', 'Audi', 'Bentley', 'Benz', 'BMW', 'Bugatti', 'Buick', 'nike', 'adidas', 'vans', 'converse', 'puma', 'nb', 'anta', 'lining', 'pessi', 'yili', 'uniquo', 'coca', 'Haier', 'Huawei', 'Apple', 'Lenovo', 'McDonalds', 'Amazon') def vis_detections(im, class_name, dets,ax, image_name,fc7, brands,thresh=0.0): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return print(len(inds)) for i in inds: print(i) param = fc7[i] param = np.array(param) np.save('/home/CarLogo/features/'+image_name[:-4]+'.npy', param) bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') brands.append(class_name) ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.savefig('/home/CarLogo/detect/'+class_name+'_'+image_name) plt.axis('off') plt.tight_layout() plt.draw() class extractor(): def __init__(self): cfg.TEST.HAS_RPN = True # Use RPN for proposals # init session gpu_options = tf.GPUOptions(allow_growth=True) self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # load network self.net = get_network('VGGnet_test') # load model self.saver = tf.train.Saver(write_version=tf.train.SaverDef.V1) # model = '/home/CarLogo/Faster_RCNN_TF/output/default/car_logo_train_list_27/VGGnet_fast_rcnn_iter_70000_test.ckpt' model = '/home/CarLogo/Faster_RCNN_TF/output/default/car_logo_train_list_all/VGGnet_fast_rcnn_iter_70000.ckpt' self.saver.restore(self.sess, model) #sess.run(tf.initialize_all_variables()) print '\n\nLoaded network {:s}'.format(model) im = 128 * np.ones((300, 300, 3), dtype=np.uint8) for i in xrange(2): _, _, _= im_detect(self.sess, self.net, im) def get_feature(self,image_name): #im_file = os.path.join(cfg.DATA_DIR, sys.argv[1], image_name) im_file = os.path.join(cfg.DATA_DIR,'demo', image_name) im = cv2.imread(im_file) timer = Timer() timer.tic() scores, boxes,fc7 = im_detect(self.sess, self.net, im) print(fc7.shape) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') CONF_THRESH = 0.8 NMS_THRESH = 0.3 brands=[] for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] # brands.append(cls) vis_detections(im, cls, dets, ax, image_name, fc7,brands, thresh=CONF_THRESH) return brands if __name__ == '__main__': e = extractor() filename= os.path.join(cfg.DATA_DIR,sys.argv[1]) print('loading files from {}'.format(filename)) im_names=[] for root, dirs, files in os.walk(filename): print(files) im_names = files im_names = ['0024.jpg', '0075.jpg', '0084.jpg', '0093.jpg'] for image_name in im_names: brands = e.get_feature(image_name) print(brands)
StarcoderdataPython
1728194
<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from collections import deque, namedtuple import warnings import random from utils.helpers import Experience def sample_batch_indexes(low, high, size): if high - low >= size: # We have enough data. Draw without replacement, that is each index is unique in the # batch. We cannot use `np.random.choice` here because it is horribly inefficient as # the memory grows. See https://github.com/numpy/numpy/issues/2764 for a discussion. # `random.sample` does the same thing (drawing without replacement) and is way faster. try: r = xrange(low, high) except NameError: r = range(low, high) batch_idxs = random.sample(r, size) else: # Not enough data. Help ourselves with sampling from the range, but the same index # can occur multiple times. This is not good and should be avoided by picking a # large enough warm-up phase. warnings.warn('Not enough entries to sample without replacement. Consider increasing your warm-up phase to avoid oversampling!') batch_idxs = np.random.random_integers(low, high - 1, size=size) assert len(batch_idxs) == size return batch_idxs def zeroed_observation(observation): if hasattr(observation, 'shape'): return np.zeros(observation.shape) elif hasattr(observation, '__iter__'): out = [] for x in observation: out.append(zeroed_observation(x)) return out else: return 0. class RingBuffer(object): def __init__(self, maxlen): self.maxlen = maxlen self.start = 0 self.length = 0 self.data = [None for _ in range(maxlen)] def __len__(self): return self.length def __getitem__(self, idx): if idx < 0 or idx >= self.length: raise KeyError() return self.data[(self.start + idx) % self.maxlen] def append(self, v): if self.length < self.maxlen: # We have space, simply increase the length. self.length += 1 elif self.length == self.maxlen: # No space, "remove" the first item. self.start = (self.start + 1) % self.maxlen else: # This should never happen. raise RuntimeError() self.data[(self.start + self.length - 1) % self.maxlen] = v class Memory(object): def __init__(self, window_length, ignore_episode_boundaries=False): self.window_length = window_length self.ignore_episode_boundaries = ignore_episode_boundaries self.recent_observations = deque(maxlen=window_length) self.recent_terminals = deque(maxlen=window_length) def sample(self, batch_size, batch_idxs=None): raise NotImplementedError() def append(self, observation, action, reward, terminal, training=True): self.recent_observations.append(observation) self.recent_terminals.append(terminal) def get_recent_state(self, current_observation): # This code is slightly complicated by the fact that subsequent observations might be # from different episodes. We ensure that an experience never spans multiple episodes. # This is probably not that important in practice but it seems cleaner. state = [current_observation] idx = len(self.recent_observations) - 1 for offset in range(0, self.window_length - 1): current_idx = idx - offset current_terminal = self.recent_terminals[current_idx - 1] if current_idx - 1 >= 0 else False if current_idx < 0 or (not self.ignore_episode_boundaries and current_terminal): # The previously handled observation was terminal, don't add the current one. # Otherwise we would leak into a different episode. break state.insert(0, self.recent_observations[current_idx]) while len(state) < self.window_length: state.insert(0, zeroed_observation(state[0])) return state def get_config(self): config = { 'window_length': self.window_length, 'ignore_episode_boundaries': self.ignore_episode_boundaries, } return config
StarcoderdataPython
3349809
from __future__ import print_function #%matplotlib inline import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from IPython.display import HTML from beginner_source.dcgan_faces_tutorial import ( dataset, dataloader, device, real_batch, fixed_noise, netG, ) PATH = "DCGAN-trained-8x8-full.pickle" img_list = [] netG.load_state_dict(torch.load(PATH)) with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() img_list.append(vutils.make_grid(fake, padding=2, normalize=True)) # Plot the real images plt.figure(figsize=(15,15)) plt.subplot(1,2,1) plt.axis("off") plt.title("Real Images") plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0))) plt.savefig("real-images") # Plot the fake images from the last epoch plt.subplot(1,2,2) plt.axis("off") plt.title("Fake Images") plt.imshow(np.transpose(img_list[-1],(1,2,0))) plt.savefig("fake-images")
StarcoderdataPython
192869
<reponame>franklinzhanggis/model-interoperable-engine from .utils import HttpHelper class Service: def __init__(self, ip, port): self.ip = ip self.port = port def getBaseURL(self): return "http://" + self.ip + ":" + str(self.port) + "/" def connect(self): strData = HttpHelper.Request_get_str_sync(self.ip, self.port, "/ping") if strData == "OK": return True else: return False
StarcoderdataPython
3276863
<filename>8-recursion-and-dynamic-programming/2-robot-in-grid/dp_solution.py """ Problem: 8.2 Robot in a Grid: Imagine a robot sitting on the upper left corner of grid with r rows and c columns. The robot can only move in two directions, right and down, but certain cells are "off limits" such that the robot cannot step on them. Design an algorithm to find a path for the robot from the top left to the bottom right. Hints: #331, #360, #388 -- Questions: - Is there always a valid solution? That is, the robot can always get to the bottom right? No. Take care of this case. - Is it safe to assume that it cannot walk through the walls of the grid? Yes. - Can we return any path? Does it make sense to try to find the shortest one? I am going to assume any path is valid, since any path will have the same number of steps. -- Algorithm: [r,0,0,0,0] [0,0,x,0,0] [0,x,0,0,0]< [0,0,0,0,0] ^ To reach the bottom right cell (r, c), the robot needs to be able to reach the cells to the left (r, c-1) and move right or the cell above it (r-1, c) and move down. That means that we can break this into subproblems. By removing a row or column, we try to find if the robot can reach the new point (r, c). So, we recursively try to see if a robot in the origin can reach this new point. -- Optimizing it -- Notice that we are going through some cells more than one time. Ex: (r-1, c-1) is reached when we go to (r-1,c) and (r, c-1). So, we could mark it as reachable or not to prevent duplicate work. """ def robot_in_grid_points(grid): path = [] height = len(grid) width = len(grid[0]) def find_path(grid, row, col, path): if row == 0 and col == 0: path.append((0, 0)) return True if not is_path(grid, row, col): return False if find_path(grid, row, col - 1, path) or find_path(grid, row - 1, col, path): path.append((row, col)) return True return False def is_path(grid, row, col): if row < 0 or col < 0 or grid[row][col] == "x": return False return True find_path(grid, height - 1, width - 1, path) return path def robot_in_grid_points_memo(grid): path = [] height = len(grid) width = len(grid[0]) memo = dict() def find_path(grid, row, col, path, memo): if row == 0 and col == 0: path.append((0, 0)) return True if (row, col) in memo: return memo[(row, col)] if not is_path(grid, row, col): memo[(row, col)] = False return False if find_path(grid, row, col - 1, path, memo) or find_path( grid, row - 1, col, path, memo ): memo[(row, col)] = True path.append((row, col)) return True memo[(row, col)] = False return False def is_path(grid, row, col): if row < 0 or col < 0 or grid[row][col] == "x": return False return True find_path(grid, height - 1, width - 1, path, memo) return path def test(grid, expected_answer): answer = robot_in_grid_points_memo(grid) if answer != expected_answer: raise Exception( f"Answer {answer} is wrong. Expected answer is {expected_answer}" ) if __name__ == "__main__": test([["r"]], [(0, 0)]) test( [ ["r", "0", "0"], ["0", "0", "0"], ], [(0, 0), (1, 0), (1, 1), (1, 2)], ), test( [ ["r", "x", "0"], ["x", "0", "0"], ], [], ) test( [ ["r", "x", "0"], ["0", "x", "0"], ["0", "0", "0"], ], [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2)], ) test( [ ["r", "x", "0"], ["0", "0", "0"], ["x", "0", "0"], ], [(0, 0), (1, 0), (1, 1), (2, 1), (2, 2)], ), test( [ ["r", "0", "0", "0", "0", "0", "0"], ["0", "x", "x", "x", "x", "x", "x"], ["0", "0", "0", "0", "0", "0", "0"], ["0", "x", "x", "x", "x", "x", "x"], ["0", "0", "0", "0", "0", "0", "0"], ["0", "x", "x", "x", "x", "x", "x"], ["0", "0", "0", "0", "0", "0", "x"], ["0", "0", "0", "0", "0", "0", "0"], ], [ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), ], ) test( [ ["r", "0", "0", "x", "0"], ["0", "0", "0", "x", "x"], ["x", "x", "0", "0", "0"], ["x", "x", "x", "x", "0"], ], [(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4)], ) print("All tests passed!")
StarcoderdataPython
3356866
""" Functions for saving experiment data """ from os.path import join import torch from torch.nn import Module from src.metrics.metric_recollector import MetricRecollector DATA_PROCESSED_FOLDER = 'data/processed' MODELS_FOLDER = 'models' def save_experiment_data( experiment: str, model: Module, metrics: MetricRecollector) -> None: """Function to save experiment data""" experiment_folder = join(DATA_PROCESSED_FOLDER, experiment.lower()) metrics.save_metrics(experiment_folder) torch.save(model.state_dict(), join(MODELS_FOLDER, f'{experiment.lower()}.pt'))
StarcoderdataPython
1669442
from collections import deque class Solution: def findOrder(self, numCourses: int, prerq: list) -> list: # build an adjcaent list graph = {} for e in prerq: if e[1] in graph: graph[e[1]].append(e[0]) else: graph[e[1]] = [e[0]] indegree = [0 for _ in range(numCourses)] for course in range(numCourses): if course in graph: for neighbor in graph[course]: indegree[neighbor] += 1 queue = deque() res = [] # push all of nodes that has 0 in-degree for course in range(numCourses): if indegree[course] == 0: queue.append(course) while len(queue) > 0: popped = queue.popleft() res.append(popped) if popped in graph: for neighbor in graph[popped]: indegree[neighbor] -= 1 if indegree[neighbor] == 0: queue.append(neighbor) if len(res) < numCourses: return [] return res
StarcoderdataPython
4818323
#!/usr/bin/env python from __future__ import print_function import os import ecflow # When no arguments specified uses ECF_HOST and/or ECF_PORT, # Explicitly set host and port using the same client # For alternative argument list see ecflow.Client.set_host_port() HOST = os.getenv("ECF_HOST", "localhost") PORT = int(os.getenv("ECF_PORT", "%d" % (1500 + os.getuid()))) CLIENT = ecflow.Client(HOST + ":%d" % PORT) try: CLIENT.ping() except RuntimeError as err: print("ping failed: " + str(err)) try: CLIENT.restart_server() print("Server was restarted") except RuntimeError as err: print("Server could not be restarted") try: NAME = os.getenv("SUITE", "elearning") CLIENT.begin_suite("/%s" % NAME) print("Suite %s is now begun" % NAME) except RuntimeError as err: print("suite %s could not begin" % NAME)
StarcoderdataPython
79264
<filename>src/loadbalancer/job.py """The job class represents a job on the cluster.""" from datetime import datetime class Job: def __init__(self, job_id, requested_queue, assigned_queue, owner, state, predecessors, submit_timestamp): """Constructor Args: job_id (int) - The job ID. requested_queue (str) - The name of the queue this job is submitted on. assigned_queue (str) - The name of the queue this job is running on, or None. owner (str) - The owner of the job. state (str) - The state of the running job. predecessors ([int]) - List of job ids this job depends on. submit_timestamp (int) - The unix timestamp at which this job was submitted. """ self.job_id = job_id self.requested_queue = requested_queue self.assigned_queue = assigned_queue self.owner = owner self.state = state self.predecessors = predecessors self.submit_timestamp = submit_timestamp def running(self): """Is this job running or not.""" return self.assigned_queue is not None def has_predecessors(self): """Does this job depend on other jobs?""" return self.predecessors is not None and len(self.predecessors) > 0 def __str__(self): submit_date = datetime.utcfromtimestamp(self.submit_timestamp).strftime('%Y-%m-%d %H:%M:%S') return 'Job %d: %s on %s submitted by %s at %s' % ( self.job_id, self.state, self.requested_queue, self.owner, submit_date)
StarcoderdataPython
3348434
<filename>tests/api/test_webapplication.py<gh_stars>1-10 import pytest from bromine import WebApplication @pytest.fixture(name='app') def app_fixture(): app = WebApplication('https://www.example.com', object()) return app def test_base_url(app): assert app.base_url == 'https://www.example.com' def test_browser(app): assert hasattr(app, 'browser') def test_initial_current_page(app): assert app.current_page is None def test_current_page(app): page = object() app.current_page = page assert app.current_page is page
StarcoderdataPython
3354931
""" PyTest Configuration """ import mongoengine def pytest_configure(config): """setup configuration""" import sys sys._called_from_test = True from settings import settings mongoengine.connect(host=settings.MONGODB_URI) def pytest_unconfigure(config): """teardown configuration""" conn = mongoengine.connection.get_connection() conn.drop_database('test_badash') import sys del sys._called_from_test
StarcoderdataPython
139049
<reponame>FarhanAliRaza/django-sockpuppet from sockpuppet.reflex import Reflex class ExampleReflex(Reflex): def increment(self, step=1): self.session['count'] = int(self.element.dataset['count']) + step class DecrementReflex(Reflex): def decrement(self, step=1): self.session['otherCount'] = int(self.element.dataset['count']) - step class ParamReflex(Reflex): def change_word(self): self.word = 'space' self.success = True class FormReflex(Reflex): def submit(self): self.text_output = self.request.POST['text-input'] class ErrorReflex(Reflex): def increment(self, step=1): raise Exception('error happened') class UserReflex(Reflex): def get_user(self): context = self.get_context_data() self.user_reveal = context['object']
StarcoderdataPython
1629440
<gh_stars>0 #!/usr/bin/env python from collections import deque import numpy as np from numpy.random import choice, randint import matplotlib.pyplot as plt def maze(cells=(25, 25), start=(0, 0), exit=(-1, -1)): """Generates a binary numpy array that represents a maze. Values of 1 are colored and are representing walls, while values of 0 are not colored and represent path. """ if cells[0] <= 0 or cells[1] <= 0: # Just quit if invalid parameters are passed. raise ValueError('Invalid maze dimensions') # --- Lookup Table Data --- # Table of direction vectors mapped to wallflags. vdirtable = { 1: np.array([0, 1]), 2: np.array([1, 0]), 4: np.array([0, -1]), 8: np.array([-1, 0]), } # Table of opposing directions mapped to each other. odirtable = {1: 4, 2: 8, 4: 1, 8: 2} # Table of direction tuples mapped to wallflag sums. walltable = {i: tuple(j for j in (8, 4, 2, 1) if i & j) for i in range(16)} # --- Maze grid initialization --- # Build maze using an odd shape value to make walls their own cells. mgrid = np.ones((2*cells[0] + 1, 2*cells[1] + 1, 2), dtype=int) # Create the seed used to generate the maze from. mseed = np.fromiter((2*randint(0, size-1) + 1 for size in cells), int) # Initialize wallflag matrix. if cells == (1, 1): mgrid[1, 1, 1] = 0 elif cells[0] == 1: mgrid[1, 1, 1] = 1 mgrid[1, 3:-2:2, 1] = 5 mgrid[1, -2, 1] = 4 elif cells[1] == 1: mgrid[1, 1, 1] = 2 mgrid[3:-2:2, 1, 1] = 10 mgrid[-2, 1, 1] = 8 else: # Corners mgrid[1, 1, 1] = 3 mgrid[-2, 1, 1] = 9 mgrid[-2, -2, 1] = 12 mgrid[1, -2, 1] = 6 # Edges mgrid[1, 3:-2:2, 1] = 7 mgrid[3:-2:2, 1, 1] = 11 mgrid[-2, 3:-2:2, 1] = 13 mgrid[3:-2:2, -2, 1] = 14 # Centre mgrid[3:-2:2, 3:-2:2, 1] = 15 # The number of maze nodes specified. nsize = cells[0] * cells[1] def open_wall(npos): """Opens the wall of a maze to allow entry and exit.""" gpos = np.fromiter(map(lambda x: 2*x + int(x >= 0), npos), int) try: wallflag = walltable[mgrid[gpos[0], gpos[1], 1]] except IndexError: raise IndexError('Entrypoint cell outside of maze') for d in (i for i in (4, 1, 8, 2) if i not in wallflag): wpos = gpos + vdirtable[d] if mgrid[wpos[0], wpos[1], 0]: mgrid[wpos[0], wpos[1], 0] = False break else: raise ValueError('Entrypoint cell not on maze border') # Open the designated entrance and exit. open_wall(start) open_wall(exit) del open_wall # Current path stack. mpath = deque([mseed]) # Open the starting cell. mgrid[mseed[0], mseed[1], 0] = False # Debug counter. itercnt = 0 # Counts the number of nodecells opened in the maze. # When the number of open cells equals the original passed mazesize, # The algorithm has filled up the maze and may stop. cellcnt = 1 # If all of the original nodes have been visited, the maze is done. while cellcnt != nsize: itercnt += 1 # Obtain current cell. thispos = mpath[-1] thiscel = mgrid[thispos[0], thispos[1]] # print(mgrid[:,:,0]) while thiscel[1]: cdir = choice(walltable[thiscel[1]]) vdir = vdirtable[cdir] # Remove chosen direction from both templist and matrix. thiscel[1] -= cdir # Get the position of the next cell. nextpos = thispos + 2 * vdir nextcel = mgrid[nextpos[0], nextpos[1]] odir = odirtable[cdir] if nextcel[1] & odir: nextcel[1] -= odir if nextcel[0]: cellcnt += 1 # Get the position of the wall to open. wallpos = thispos + vdir # Add the next cell to the current path. if nextcel[1]: mpath.append(nextpos) # Open the path to the next cell. mgrid[nextpos[0], nextpos[1], 0] = False mgrid[wallpos[0], wallpos[1], 0] = False break else: # There are no more unexplored directions, backtrack. mpath.pop() print("Performed", itercnt, "iterations for maze of size", nsize) # Return only the binary array of walls and paths. return mgrid[:,:,0] if __name__ == '__main__': newmaze = maze((100, 100), (50, 0), (50, -1)) plt.imsave('maze.png', newmaze, cmap=plt.cm.binary) plt.figure(figsize=(9, 8)) plt.imshow(newmaze, cmap=plt.cm.binary, interpolation='nearest') plt.xticks([]) plt.yticks([]) plt.show()
StarcoderdataPython
67856
""" Miscellaneous utility functions """ import logging import os import pandas as pd logger = logging.getLogger(__name__) def load_df_from_dataset(file_name: str) -> pd.DataFrame: """ Loads cleaned dataframe from csv Fields with extra records get logged and dropped. """ df = pd.read_csv(file_name) bad_column = None bad_column_name = None for column in df.columns: if not column.startswith('Unnamed:'): # Only care about unnamed columns continue column_id = column.split(':')[-1].strip() if column_id == '0': # Ignore unnamed column if it is the very first one (eg index) continue bad_column_name = column bad_column = df[column] logger.warning('Found suspicious column "%s"' % column) if bad_column is not None: # Drop records that have entries in trailing unnamed column bad_records = df[bad_column.notna()] for record in bad_records.iterrows(): logger.warning('Skipping record: #%s' % record[0]) df = df.drop(bad_records.index) df = df.drop(columns=[bad_column_name]) return df def get_default_dataset_filename() -> str: """ Returns default dataset file name """ return os.environ.get('DATASET_NAME', 'data/movie_metadata.csv') def nan_to_none(value, default=None): """ Casts numpy/pandas nan values to none, or some other default """ if pd.isna(value): return default else: return value
StarcoderdataPython
1658355
<filename>pytype/tests/test_recovery.py<gh_stars>10-100 """Tests for recovering after errors.""" from pytype.tests import test_inference class RecoveryTests(test_inference.InferenceTest): """Tests for recovering after errors. The type inferencer can warn about bad code, but it should never blow up. These tests check that we don't faceplant when we encounter difficult code. """ def testBadSubtract(self): ty = self.Infer(""" def f(): t = 0.0 return t - ("bla" - t) """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ def f() -> ? """) def testBadCall(self): ty = self.Infer(""" def f(): return "%s" % chr("foo") """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ def f() -> str """) def testBadFunction(self): ty = self.Infer(""" import time def f(): return time.unknown_function(3) def g(): return '%s' % f() """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ time = ... # type: module def f() -> ? def g() -> str """) def testInheritFromInstance(self): ty = self.Infer(""" class Foo(3): pass """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ class Foo(?): pass """) def testNameError(self): ty = self.Infer(""" x = foobar class A(x): pass pow(A(), 2) """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ x = ... # type: ? class A(?): pass """) def testObjectAttr(self): self.assertNoCrash(""" object.bla(int) """) def testAttrError(self): ty = self.Infer(""" class A: pass x = A.x class B: pass y = "foo".foo() object.bar(int) class C: pass """, deep=True, report_errors=False) self.assertTypesMatchPytd(ty, """ class A: pass x = ... # type: ? class B: pass y = ... # type: ? class C: pass """) def testNoSelf(self): ty = self.Infer(""" class Foo(object): def foo(): pass """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ class Foo(object): def foo(): ... """) def testWrongCall(self): ty = self.Infer(""" def f(): pass f("foo") x = 3 """, deep=True, solve_unknowns=True, report_errors=False) self.assertTypesMatchPytd(ty, """ def f() -> None: ... x = ... # type: int """) def testDuplicateIdentifier(self): ty = self.Infer(""" class A(object): def __init__(self): self.foo = 3 def foo(self): pass """, deep=True) self.assertTypesMatchPytd(ty, """ from typing import Any class A(object): foo = ... # type: Any """) if __name__ == "__main__": test_inference.main()
StarcoderdataPython
1782630
# Generated by Django 2.2.1 on 2019-07-26 20:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0019_auto_20190617_0141'), ] operations = [ migrations.CreateModel( name='ClassTemp', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('year', models.IntegerField()), ('semester', models.IntegerField(choices=[(1, 'First'), (2, 'Second')])), ('name', models.CharField(max_length=50)), ('code', models.CharField(max_length=20)), ('professor', models.CharField(max_length=50)), ('place', models.CharField(max_length=50)), ('size', models.IntegerField()), ('grade', models.IntegerField(choices=[(0, 'Zero'), (1, 'One'), (2, 'Two'), (3, 'Three'), (4, 'Four')])), ('start1', models.TimeField(blank=True, null=True)), ('end1', models.TimeField(blank=True, null=True)), ('week1', models.CharField(blank=True, choices=[('mon', 'Monday'), ('tue', 'Tuesday'), ('wed', 'Wednesday'), ('thu', 'Thursday'), ('fri', 'Friday'), ('sat', 'Saturday'), ('sun', 'Sunday')], max_length=20, null=True)), ('start2', models.TimeField(blank=True, null=True)), ('end2', models.TimeField(blank=True, null=True)), ('week2', models.CharField(blank=True, choices=[('mon', 'Monday'), ('tue', 'Tuesday'), ('wed', 'Wednesday'), ('thu', 'Thursday'), ('fri', 'Friday'), ('sat', 'Saturday'), ('sun', 'Sunday')], max_length=20, null=True)), ('start3', models.TimeField(blank=True, null=True)), ('end3', models.TimeField(blank=True, null=True)), ('week3', models.CharField(blank=True, choices=[('mon', 'Monday'), ('tue', 'Tuesday'), ('wed', 'Wednesday'), ('thu', 'Thursday'), ('fri', 'Friday'), ('sat', 'Saturday'), ('sun', 'Sunday')], max_length=20, null=True)), ('start4', models.TimeField(blank=True, null=True)), ('end4', models.TimeField(blank=True, null=True)), ('week4', models.CharField(blank=True, choices=[('mon', 'Monday'), ('tue', 'Tuesday'), ('wed', 'Wednesday'), ('thu', 'Thursday'), ('fri', 'Friday'), ('sat', 'Saturday'), ('sun', 'Sunday')], max_length=20, null=True)), ('start5', models.TimeField(blank=True, null=True)), ('end5', models.TimeField(blank=True, null=True)), ('week5', models.CharField(blank=True, choices=[('mon', 'Monday'), ('tue', 'Tuesday'), ('wed', 'Wednesday'), ('thu', 'Thursday'), ('fri', 'Friday'), ('sat', 'Saturday'), ('sun', 'Sunday')], max_length=20, null=True)), ], ), ]
StarcoderdataPython
53163
<filename>Util.py # -*- coding:utf-8 -*- import random import string import base64 import hmac import hashlib import logging import sys import time import os TIME_FORMAT = '%a, %d %b %Y %H:%M:%S GMT' ISO8601 = '%Y%m%dT%H%M%SZ' ISO8601_MS = '%Y-%m-%dT%H:%M:%S.%fZ' RFC1123 = '%a, %d %b %Y %H:%M:%S %Z' class InitSSHRemoteHost: def __init__(self, ip, username, password, tools_path, tool_number): self.localIP = ip self.username = username self.password = password self.tools_path = tools_path self.tool_number = tool_number def random_string_create(string_length): if isinstance(string_length, int): return ''.join( [random.choice(string.ascii_letters + string.digits + string.punctuation.translate(None, '!,%&<>\'\\^`')) for n in range(string_length)]) else: print 'input error' def generate_image_format(image_format): """ 生成图片转码格式 :param image_format: :return: """ if str(image_format).find(',') != -1: format_array = image_format.split(',') return format_array[random.randint(0, len(format_array) - 1)] return image_format def generate_a_size(data_size_str): """ 返回对象大小,和是否是固定值,可必免反复请求。ifFixed = True :param data_size_str: :return: """ if str(data_size_str).find('~') != -1 and str(data_size_str).find(',') != -1: size_array = data_size_str.split(',') size_chosen = size_array[random.randint(0, len(size_array) - 1)] start_size = int(size_chosen.split('~')[0]) end_size = int(size_chosen.split('~')[1]) return random.randint(start_size, end_size), False elif str(data_size_str).find('~') != -1: start_size = int(data_size_str.split('~')[0]) end_size = int(data_size_str.split('~')[1]) return random.randint(start_size, end_size), False elif str(data_size_str).find(',') != -1: size_array = data_size_str.split(',') return int(size_array[random.randint(0, len(size_array) - 1)]), False else: return int(data_size_str), True def get_utf8_value(value): if not value: return '' if isinstance(value, str): return value if isinstance(value, unicode): return value.encode('utf-8') return str(value) def compare_version(v1, v2): v1 = v1.split('.') v2 = v2.split('.') try: for i in range(0, len(v1)): if len(v2) < i + 1: return 1 elif int(v1[i]) < int(v2[i]): return -1 elif int(v1[i]) > int(v2[i]): return 1 except: return -1 if len(v2) > len(v1): return -1 return 0 def generate_config_file(config_file): """ generate specific configuration file :param config_file: :return: config generated """ config = {} try: f = open(config_file, 'r') lines = f.readlines() for line in lines: line = line.strip() if line and line[0] != '#': config[line[:line.find('=')].strip()] = line[line.find('=') + 1:].strip() else: continue f.close() except Exception, e: print '[ERROR] Read config file %s error: %s' % (config_file, e) sys.exit() return config def read_distribute_config(config_file='distribute_config.dat'): """ read given distribute file configuration :param config_file: :return: """ config = generate_config_file(config_file) config['Slaves'] = config['Slaves'].replace(' ', '').replace(',,', ',') config['Usernames'] = config['Usernames'].replace(' ', '').replace(',,', ',') config['Passwords'] = config['Passwords'].replace(' ', '').replace(',,', ',') config['Toolpaths'] = config['Toolpaths'].replace(' ', '').replace(',,', ',') config['ToolNumberPerServer'] = config['ToolNumberPerServer'].replace(' ', '').replace(',,', ',') if config['Master'] is not None and config['Master'] and \ config['Slaves'] is not None and config['Slaves'] and \ config['Usernames'] is not None and config['Usernames'] and \ config['Passwords'] is not None and config['Passwords'] and \ config['Toolpaths'] is not None and config['Toolpaths'] and \ config['ToolNumberPerServer'] is not None and config['ToolNumberPerServer'] and \ config['RunTime'] is not None and config['RunTime']: pass else: raise Exception('Some config(s) is missed') return config def generate_slave_servers(config): """ initialize slave servers :param config: distribute configuration :return: generated slave servers """ slaves = [] slave_ips = config['Slaves'].split(',') slave_usernames = config['Usernames'].split(',') slave_passwords = config['Passwords'].split(',') slave_tool_paths = config['Toolpaths'].split(',') slave_tool_numbers = config['ToolNumberPerServer'].split(',') k = 0 for i in xrange(len(slave_ips)): for j in xrange(int(slave_tool_numbers[i])): ip = slave_ips[i] username = slave_usernames[i] if len(slave_usernames) > 1 else slave_usernames[0] password = slave_passwords[i] if len(slave_passwords) > 1 else slave_passwords[0] tool_path = slave_tool_paths[k] k += 1 tool_number = "1" slaves.append(InitSSHRemoteHost(ip, username, password, tool_path, tool_number)) return slaves def generate_connections(servers): """ generate provided servers' connections :param servers: :return: """ from long_ssh_connection import LongSSHConnection connects = [] for server in servers: connect = LongSSHConnection(server) # build the connection to provided server logging.debug("Build connection to server[%s]" % server.localIP) r = connect.execute_cmd('ssh %s@%s' % (server.username, server.localIP), timeout=10) if r.endswith('?'): connect.execute_cmd('yes', expect_end=':') connect.execute_cmd(server.password, expect_end='#') logging.debug("Successfully built the connection to server[%s]" % server.localIP) # go to provided tool path logging.debug("Go to provided tool path[%s] of server[%s]" % (server.tools_path, server.localIP)) connect.execute_cmd('cd %s' % server.tools_path, timeout=5) connects.append(connect) return connects def get_brief_file_name(connect): """ get brief file name :param connect: :return: """ logging.warn("try to get brief file from server: %s" % connect.ip) get_slave_brief_file_name_result = connect.execute_cmd(r"ls -t result/*_brief.txt | head -1") tmp = get_slave_brief_file_name_result.split('\r\n')[0] return tmp.split('/')[1] def start_tool(connect, test_case, run_time): """ start tool in server :param connect: :param test_case: :param run_time: :return: """ print "Start at %s, send run signal to slave[%s]" % (time.strftime('%X %x %Z'), connect.ip) logging.warn("send run signal to server %s" % connect.ip) connect.execute_cmd('python run.py %s' % test_case, timeout=10) def convert_time_format_str(time_sec): if time_sec < 0: return '--\'--\'--' if time_sec >= 8553600: return '>99 days' elif time_sec >= 86400: return '%2.2d Days %2.2d\'%2.2d\'%2.2d' % ( time_sec / (3600 * 24), time_sec % (3600 * 24) / 3600, (time_sec % 3600 / 60), (time_sec % 60)) else: ms = time_sec - int('%2.2d' % (time_sec % 60)) return '%2.2d\'%2.2d\'%2.2d.%d' % (time_sec / 3600, (time_sec % 3600 / 60), (time_sec % 60), ms * 1000) def generate_response(response): """ response of server always contains "\r\n", need to remove it :param response: response of server :return: """ if response is not None: resp = response.split('\r\n') resp = resp[0] return resp else: raise Exception("response of server is none, please confirm it.") def convert_to_size_str(size_bt): kb = 2 ** 10 mb = 2 ** 20 gb = 2 ** 30 tb = 2 ** 40 pb = 2 ** 50 if size_bt >= 100 * pb: return '>100 PB' elif size_bt >= pb: return "%.2f PB" % (size_bt / (pb * 1.0)) elif size_bt >= tb: return "%.2f TB" % (size_bt / (tb * 1.0)) elif size_bt >= gb: return "%.2f GB" % (size_bt / (gb * 1.0)) elif size_bt >= mb: return "%.2f MB" % (size_bt / (mb * 1.0)) elif size_bt >= kb: return "%.2f KB" % (size_bt / (kb * 1.0)) else: return "%.2f B" % size_bt
StarcoderdataPython
1782083
<filename>src/curt/curt/modules/vision/image_classification.py """ Copyright (C) Cortic Technology Corp. - All Rights Reserved Written by <NAME> <<EMAIL>>, 2021 """ import tvm from tvm.contrib import graph_runtime import numpy as np import time from scipy.special import expit, logit import cv2 import math import os import logging import logging from curt.modules.vision.utils import decode_image_byte, image_labels from curt.modules.vision.tvm_processing import TVMProcessing class ImageClassification(TVMProcessing): def __init__(self): super().__init__( "cpu", "tuned32_efficientnet_lite.json", "tuned32_efficientnet_lite_lib.tar", "tuned32_efficientnet_lite_param.params", "images", 1) self.input_width = 224 self.input_height = 224 self.friendly_name = "image_classification_pi" def preprocess_input(self, params): img = params[0] if img is None: logging.warning("Image Classification: " + "imgae is None") return None if isinstance(img, str): img = decode_image_byte(img) img = cv2.resize(img, (self.input_width, self.input_height), interpolation=cv2.INTER_NEAREST) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype("float32") img = cv2.normalize(img, None, -0.992188, 1, cv2.NORM_MINMAX) img = img[np.newaxis, :] return img def process_data(self, preprocessed_data): return self.tvm_process(preprocessed_data) def postprocess_result(self, data): inference_outputs = data[0][0].squeeze() top5 = (-inference_outputs).argsort()[:5] classified_results = [] for idx in top5: label = image_labels[idx] probability = inference_outputs[idx] if label.find(",") != -1: label = label[0:label.find(",")] classified_results.append([label, probability.astype(float)]) return classified_results
StarcoderdataPython
67653
<gh_stars>1000+ # Copyright ClusterHQ Inc. See LICENSE file for details. """ Subprocess utilities. """ from subprocess import PIPE, STDOUT, CalledProcessError, Popen from eliot import Message, start_action from pyrsistent import PClass, field class _CalledProcessError(CalledProcessError): """ Just like ``CalledProcessError`` except output is included in the string representation. """ def __str__(self): base = super(_CalledProcessError, self).__str__() lines = "\n".join(" |" + line for line in self.output.splitlines()) return base + " and output:\n" + lines class _ProcessResult(PClass): """ The return type for ``run_process`` representing the outcome of the process that was run. """ command = field(type=list, mandatory=True) output = field(type=bytes, mandatory=True) status = field(type=int, mandatory=True) def run_process(command, *args, **kwargs): """ Run a child process, capturing its stdout and stderr. :param list command: An argument list to use to launch the child process. :raise CalledProcessError: If the child process has a non-zero exit status. :return: A ``_ProcessResult`` instance describing the result of the child process. """ kwargs["stdout"] = PIPE kwargs["stderr"] = STDOUT action = start_action( action_type="run_process", command=command, args=args, kwargs=kwargs) with action: process = Popen(command, *args, **kwargs) output = process.stdout.read() status = process.wait() result = _ProcessResult(command=command, output=output, status=status) # TODO: We should be using a specific logging type for this. Message.new( command=result.command, output=result.output, status=result.status, ).write() if result.status: raise _CalledProcessError( returncode=status, cmd=command, output=output, ) return result
StarcoderdataPython
111823
#!/bin/env python import os import itk import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt from glob import glob from FemurSegmentation.IOManager import ImageReader from FemurSegmentation.IOManager import VolumeWriter from FemurSegmentation.filters import execute_pipeline from FemurSegmentation.filters import adjust_physical_space from FemurSegmentation.metrics import itk_label_overlapping_measures from FemurSegmentation.metrics import itk_hausdorff_distance from FemurSegmentation.metrics import itk_hausdorff_distance_map # %% def parse_args(): description = 'Automated CT Femur Segmentation' parser = argparse.ArgumentParser(description=description) parser.add_argument('--source', dest='source', required=True, type=str, action='store', help='Source Image Filename') parser.add_argument('--target', dest='target', required=True, type=str, action='store', help='Target Image Filename') parser.add_argument('--output', dest='output', required=True, type=str, action='store', help='output csv in which save the results') parser.add_argument('--distance_map', dest='distance_map', required=False, type=str, action='store', help='output filename for the distance map between source and target', default=None) args = parser.parse_args() return args def main(source_path, target_path, compute_distance_map=False): ImageType = itk.Image[itk.SS, 3] reader = ImageReader() name = os.path.basename(source_path) source = reader(source_path, ImageType) target = reader(target_path, ImageType) source = adjust_physical_space(source, target, ImageType) measures = itk_label_overlapping_measures(source, target) _ = measures.Update() hd = itk_hausdorff_distance(source, target) _ = hd.Update() distance_map = None if compute_distance_map: distance_map = itk_hausdorff_distance_map(source, target) dict = {'Patient Name' : [name], 'Dice Coefficient' : [measures.GetDiceCoefficient()], 'Jaccard Coefficient' : [measures.GetJaccardCoefficient()], 'Volume Similarity' : [measures.GetVolumeSimilarity()], 'Hausdorff Distance' : [hd.GetHausdorffDistance()], 'Average Hausdorff Distance' : [hd.GetAverageHausdorffDistance()]} df = pd.DataFrame.from_dict(dict) print('Processed Image: {}'.format(name), flush=True) print('Computed Metrics:', flush=True) print(df) return [df, distance_map] if __name__ == '__main__': args = parse_args() print('Source Image: {}'.format(args.source), flush=True) print('Target Image: {}'.format(args.target), flush=True) compute_distance_map=False if args.distance_map is not None: compute_distance_map=True df, distance_map = main(args.source, args.target, compute_distance_map=compute_distance_map) print('Writing the results to {}'.format(args.output), flush=True) df.to_csv(args.output, sep=',', index=False) if compute_distance_map: print('Writing the distance map to {}'.format(args.distance_map)) writer = VolumeWriter() _ = writer(args.distance_map, distance_map) print('[DONE]', flush=True)
StarcoderdataPython
4810125
<gh_stars>1-10 # Generated by Django 3.1.5 on 2021-05-02 10:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('hospital', '0015_remove_admin_status'), ] operations = [ migrations.RemoveField( model_name='charges', name='unitprice', ), migrations.AlterField( model_name='charges', name='commodity', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='AdmitDetails', to='hospital.medicines'), ), ]
StarcoderdataPython
53418
"""Load the Tatoeba dataset.""" import sys import os import csv import subprocess import time from multiprocessing import Pool, Lock, cpu_count from tqdm import tqdm from scipy.io import wavfile from python.params import MIN_EXAMPLE_LENGTH, MAX_EXAMPLE_LENGTH from python.dataset.config import CACHE_DIR, CORPUS_DIR from python.util.storage import delete_file_if_exists from python.dataset import download from python.dataset.txt_files import generate_txt # Path to the Taboeba dataset. __URL = 'https://downloads.tatoeba.org/audio/tatoeba_audio_eng.zip' __MD5 = 'd76252fd704734fc3d8bf5b44e029809' __NAME = 'tatoeba' __FOLDER_NAME = 'tatoeba_audio_eng' __SOURCE_PATH = os.path.join(CACHE_DIR, __FOLDER_NAME) __TARGET_PATH = os.path.realpath(os.path.join(CORPUS_DIR, __FOLDER_NAME)) def tatoeba_loader(keep_archive): """Download, extract and build the output strings that can be written to the desired TXT files. Args: keep_archive (bool): Keep or delete the downloaded archive afterwards. Returns: str: String containing the output string that can be written to TXT files. """ # Download and extract the dataset if necessary. download.maybe_download(__URL, md5=__MD5, cache_archive=keep_archive) if not os.path.isdir(__SOURCE_PATH): raise ValueError('"{}" is not a directory.'.format(__SOURCE_PATH)) # Download user ratings CSV file. csv_path = os.path.join(__SOURCE_PATH, 'users_sentences.csv') download.download_with_progress('http://downloads.tatoeba.org/exports/users_sentences.csv', csv_path) assert os.path.exists(csv_path) target = 'train' # Generate the WAV and a string for the `<target>.txt` file. output = __tatoeba_loader(target) # Generate the `<target>.txt` file. txt_path = generate_txt(__NAME, target, output) # Cleanup extracted folder. download.cleanup_cache(__FOLDER_NAME) return txt_path def __tatoeba_loader(target): """Build the output string that can be written to the desired TXT file. Args: target (str): Only 'train' is supported for the Tatoeba dataset. Returns: str: List containing the output string that can be written to TXT file. """ if not os.path.isdir(__SOURCE_PATH): raise ValueError('"{}" is not a directory.'.format(__SOURCE_PATH)) if target != 'train': raise ValueError('Invalid target. Tatoeba only has a train dataset.') validated_samples = set() # Set of all sample IDs that have been validated. # Parse dataset meta data information to filter out low ranked samples. with open(os.path.join(__SOURCE_PATH, 'users_sentences.csv'), 'r') as csv_handle: csv_reader = csv.reader(csv_handle, delimiter='\t') csv_lines = list(csv_reader) # print('csv_header: username\tsentence_id\trating\tdate_added\tdate_modified') for username, _id, rating, _, _ in csv_lines: rating = int(rating) if rating >= 1: path = os.path.join(__SOURCE_PATH, 'audio', username, _id) validated_samples.add(path) samples = [] # List of dictionaries of all files and labels and in the dataset. # Parse dataset meta data information to filter out low ranked samples. with open(os.path.join(__SOURCE_PATH, 'sentences_with_audio.csv'), 'r') as csv_handle: csv_reader = csv.reader(csv_handle, delimiter='\t') csv_lines = list(csv_reader) csv_lines = csv_lines[1:] # Remove CSV header. # print('csv_header: sentence_id\tusername\ttext') for _id, username, text in tqdm(csv_lines, desc='Loading Tatoeba CSV', total=len(csv_lines), file=sys.stdout, unit='entries', dynamic_ncols=True): path = os.path.join(__SOURCE_PATH, 'audio', username, _id) if path in validated_samples: samples.append({'path': path, 'text': text}) # Create target folder structure. for sample in samples: dir_path = os.path.join(__TARGET_PATH, os.path.relpath(sample['path'], __SOURCE_PATH)) if not os.path.exists(dir_path): os.makedirs(dir_path) lock = Lock() buffer = [] missing_mp3_counter = 0 with Pool(processes=cpu_count()) as pool: for result in tqdm(pool.imap_unordered(__tatoeba_loader_helper, samples, chunksize=1), desc='Converting Tatoeba MP3 to WAV', total=len(samples), file=sys.stdout, unit='files', dynamic_ncols=True): lock.acquire() if result is None: missing_mp3_counter += 1 else: buffer.append(result) lock.release() print('WARN: {} MP3 files listed in the CSV could not be found.' .format(missing_mp3_counter)) return buffer def __tatoeba_loader_helper(sample): path = sample['path'] text = sample['text'] mp3_path = '{}.mp3'.format(path) wav_path = '{}.wav'.format(path) wav_path = os.path.join(__TARGET_PATH, os.path.relpath(wav_path, __SOURCE_PATH)) # Check if audio file MP3 exists. if not os.path.isfile(mp3_path): # print('WARN: Audio file missing: {}'.format(mp3_path)) return None # Check if file isn't empty. try: if os.path.getsize(mp3_path) <= 4048: return None except OSError: return None delete_file_if_exists(wav_path) # Convert MP3 file into WAV file, reduce volume to 0.95, downsample to 16kHz mono sound. ret = subprocess.call(['sox', '-v', '0.95', mp3_path, '-r', '16k', wav_path, 'remix', '1']) if not os.path.isfile(wav_path): raise RuntimeError('Failed to create WAV file with error code={}: {}'.format(ret, wav_path)) # Validate that the example length is within boundaries. for i in range(5): try: (sr, y) = wavfile.read(wav_path) length_sec = len(y) / sr if not MIN_EXAMPLE_LENGTH <= length_sec <= MAX_EXAMPLE_LENGTH: return None break except ValueError: print('WARN: Could not load ({}/5) wavfile: {}'.format(i, wav_path)) if i == 4: raise time.sleep(1) # TODO: Copy used files to corpus dir wav_path = os.path.relpath(wav_path, CORPUS_DIR) return '{} {}\n'.format(wav_path, text.strip()) # Test download script. if __name__ == '__main__': print('Tatoeba txt_paths: ', tatoeba_loader(True)) print('\nDone.')
StarcoderdataPython
3247250
# -*- coding: utf-8 -*- """ Created on Wed Jul 4 10:48:58 2018 @author: <NAME> """ import numpy as np import pandas as pd from HelperFuncs import ppLFER, vant_conv, arr_conv, make_ppLFER from FugModel import FugModel class ppLFERMUM(FugModel): """ ppLFER based Multimedia Urban Model fugacity model object. Implementation of the model by Diamond et al (2001) as updated by Rodgers et al. (2018) Attributes: ---------- pplfer_system (df): (optional) ppLFER system parameters, with columns as systems(Kij or dUij) and the row index as l,s,a,b,v,c e.g pp = pd.DataFrame(index = ['l','s','a','b','v','c']) by default the system will define the ppLFER system as per Rodgers et al. (2018) ic input_calc (df): Dataframe describing the system up to the point of matrix solution. """ def __init__(self,locsumm,chemsumm,params,num_compartments = 7,name = None,pplfer_system = None): FugModel. __init__(self,locsumm,chemsumm,params,num_compartments,name) self.pp = pplfer_system self.ic = self.input_calc(self.locsumm,self.chemsumm,self.params,self.pp) def input_calc(self,locsumm,chemsumm,params,pp): """ Perform the initial calulations to set up the fugacity matrix. A steady state ppLFERMUM is an n compartment fugacity model solved at steady state using the compartment parameters from locsumm and the chemical parameters from chemsumm, other parameters from params, and a ppLFER system from pp, use pp = None to use the defaults. """ #pdb.set_trace() #Initialize used inputs dataframe with input properties ic_inp = pd.DataFrame.copy(chemsumm,deep=True) #Declare constants and calculate non-chemical dependent parameters #Should I make if statements here too? Many of the params.Value items could be here instead. R = 8.314 #Ideal gas constant, J/mol/K locsumm.loc[:,'V']= locsumm.Area*locsumm.Depth #Add volumes m³ params.loc['TempK','Value'] = params.Value['Temp'] +273.15 #°C to K #Calculate air density kg/m^3 locsumm.loc[['Lower_Air','Upper_Air'],'Density'] = 0.029 * 101325 / (R * params.Value.TempK) Y4 = locsumm.Depth.Soil/2 #Soil diffusion path length (m) Y5 = locsumm.Depth.Sediment/2 #Sediment diffusion path length (m) #Boundary layer depth - leaves & film (m) Nobel (1991) delta_blv = 0.004 * ((0.07 / params.Value.WindSpeed) ** 0.5) delta_blf = 0.006 * ((0.07 / params.Value.WindSpeed) ** 0.5) #Film to water MTC (m/h) kfw = params.Value.FilmThickness * params.Value.W #Dry deposition interception fraction (Diamond, Premiere, & Law 2001) Ifd = 1 - np.exp(-2.8 * params.Value.Beta) #Soil to groundwater leaching rate from Mackay & Paterson (1991) Usg = 0.4 * params.Value.RainRate #Fraction soil volume occupied by interstitial air and water ic_inp.loc[:,'Bea'] = ic_inp.AirDiffCoeff*locsumm.VFAir.Soil**(10/3) \ /(locsumm.VFAir.Soil +locsumm.VFWat.Soil)**2 ic_inp.loc[:,'Bew'] = ic_inp.WatDiffCoeff*locsumm.VFWat.Soil**(10/3) \ /(locsumm.VFAir.Soil +locsumm.VFWat.Soil)**2 #Fraction sediment volume occupied by water ic_inp.loc[:,'Bwx'] = ic_inp.WatDiffCoeff*locsumm.VFWat.Sediment**(4/3) #Airside MTCs for veg and film (m/h) ic_inp.loc[:,'k_av'] = ic_inp.AirDiffCoeff / delta_blv ic_inp.loc[:,'k_af'] = ic_inp.AirDiffCoeff / delta_blf #ppLFER system parameters - initialize defaults if not there already if pp is None: pp = pd.DataFrame(index = ['l','s','a','b','v','c']) pp = make_ppLFER(pp) #Check if partition coefficients & dU values have been provided, or only solute descriptors #add based on ppLFER if not, then adjust partition coefficients for temperature of system #Aerosol-Air (Kqa), use octanol-air enthalpy if 'LogKqa' not in ic_inp.columns: ic_inp.loc[:,'LogKqa'] = ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.logKqa.l,pp.logKqa.s,pp.logKqa.a,pp.logKqa.b,pp.logKqa.v,pp.logKqa.c) if 'dUoa' not in ic_inp.columns: #!!!This might be broken - need to check units & sign!!! ic_inp.loc[:,'dUoa'] = ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.dUoa.l,pp.dUoa.s,pp.dUoa.a,pp.dUoa.b,pp.dUoa.v,pp.dUoa.c) ic_inp.loc[:,'Kqa'] = vant_conv(ic_inp.dUoa,params.Value.TempK,10**ic_inp.LogKqa,T1 = 288.15) ic_inp.loc[:,'LogKqa'] = np.log10(ic_inp.Kqa) #Organic carbon-water (KocW), use octanol-water enthalpy (dUow) if 'LogKocW' not in ic_inp.columns: ic_inp.loc[:,'LogKocW'] = ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.logKocW.l,pp.logKocW.s,pp.logKocW.a,pp.logKocW.b,pp.logKocW.v,pp.logKocW.c) if 'dUow' not in ic_inp.columns: #!!!This might be broken - need to check units & sign!!! ic_inp.loc[:,'dUow'] = 1000 * ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.dUow.l,pp.dUow.s,pp.dUow.a,pp.dUow.b,pp.dUow.v,pp.dUow.c) ic_inp.loc[:,'KocW'] = vant_conv(ic_inp.dUow,params.Value.TempK,10**ic_inp.LogKocW) ic_inp.loc[:,'LogKocW'] = np.log10(ic_inp.KocW) #Storage Lipid Water (KslW), use ppLFER for dUslW (kJ/mol) convert to J/mol/K if 'LogKslW' not in ic_inp.columns: ic_inp.loc[:,'LogKslW'] = ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.logKslW.l,pp.logKslW.s,\ pp.logKslW.a,pp.logKslW.b,pp.logKslW.v,pp.logKslW.c) if 'dUslW' not in ic_inp.columns: ic_inp.loc[:,'dUslW'] = 1000 * ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.dUslW.l,pp.dUslW.s,pp.dUslW.a,pp.dUslW.b,pp.dUslW.v,pp.dUslW.c) ic_inp.loc[:,'KslW'] = vant_conv(ic_inp.dUslW,params.Value.TempK,10**ic_inp.LogKslW,T1 = 310.15) ic_inp.loc[:,'LogKslW'] = np.log10(ic_inp.KslW) #Air-Water (Kaw) use dUaw if 'LogKaw' not in ic_inp.columns: ic_inp.loc[:,'LogKaw'] = ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.logKaw.l,pp.logKaw.s,\ pp.logKaw.a,pp.logKaw.b,pp.logKaw.v,pp.logKaw.c) if 'dUaw' not in ic_inp.columns: #!!!This might be broken - need to check units & sign!!! ic_inp.loc[:,'dUaw'] = 1000 * ppLFER(ic_inp.L,ic_inp.S,\ ic_inp.A,ic_inp.B,ic_inp.V,pp.dUaw.l,pp.dUaw.s,pp.dUaw.a,pp.dUaw.b,pp.dUaw.v,pp.dUaw.c) ic_inp.loc[:,'Kaw'] = vant_conv(ic_inp.dUaw,params.Value.TempK,10**ic_inp.LogKaw) ic_inp.loc[:,'LogKaw'] = np.log10(ic_inp.Kaw) #Define storage lipid-air (KslA) and organic carbon-air (KocA) using the thermodynamic cycle #No need to adjust these for temperature as they are defined based on temeprature adjusted values ic_inp.loc[:,'KslA'] = ic_inp.KslW / ic_inp.Kaw ic_inp.loc[:,'KocA'] = ic_inp.KocW / ic_inp.Kaw #Calculate Henry's law constant (H, Pa m³/mol) ic_inp.loc[:,'H'] = ic_inp.Kaw * R * params.Value.TempK #Calculate temperature-corrected media reaction rates #Air (air_rrxn /hr), 3600 converts from /s ic_inp.loc[:,'air_rrxn'] = 3600 * \ arr_conv(params.Value.EaAir,params.Value.TempK,ic_inp.AirOHRateConst * params.Value.OHConc) #Air Particles (airq_rrxn) 3600 converts from /s, use 10% of AirOHRateConst if not present if 'AirQOHRateConst' not in ic_inp.columns: ic_inp.loc[:,'airq_rrxn'] = 0.1 * ic_inp.air_rrxn else: ic_inp.loc[:,'airq_rrxn'] = 3600 * \ arr_conv(params.Value.EaAir,params.Value.TempK,ic_inp.AirQOHRateConst * params.Value.OHConc) #Water (wat_rrxn) converted from half life (h) ic_inp.loc[:,'wat_rrxn'] = \ arr_conv(params.Value.Ea,params.Value.TempK,np.log(2)/ic_inp.WatHL) #Soil (soil_rrxn) converted from half life (h) ic_inp.loc[:,'soil_rrxn'] = arr_conv(params.Value.Ea,params.Value.TempK,np.log(2)/ic_inp.SoilHL) #Sediment (sed_rrxn) converted from half life ic_inp.loc[:,'sed_rrxn'] = arr_conv(params.Value.Ea,params.Value.TempK,np.log(2)/ic_inp.SedHL) #Vegetation is based off of air half life, this can be overridden if chemsumm contains a VegHL column if 'VegHL' in ic_inp.columns: ic_inp.loc[:,'veg_rrxn'] = arr_conv(params.Value.Ea,params.Value.TempK,np.log(2)/ic_inp.VegHL) else: ic_inp.loc[:,'veg_rrxn'] = 0.1*ic_inp.air_rrxn #Same for film if 'FilmHL' in ic_inp.columns: ic_inp.loc[:,'film_rrxn'] = arr_conv(params.Value.Ea,params.Value.TempK,np.log(2)/ic_inp.FilmHL) else: ic_inp.loc[:,'film_rrxn'] = ic_inp.air_rrxn/0.75 #Convert back to half lives (h), good for error checking ic_inp.loc[:,'AirHL'] = np.log(2)/(ic_inp.air_rrxn) ic_inp.loc[:,'AirQHL'] = np.log(2)/(ic_inp.airq_rrxn) ic_inp.loc[:,'WatHL'] = np.log(2)/(ic_inp.wat_rrxn) #Calculate Z-values (mol/m³/Pa) #Air lower and upper Zla and Zua, in case they are ever changed ic_inp.loc[:,'Zla'] = 1/(R*params.Value.TempK) ic_inp.loc[:,'Zua'] = 1/(R*params.Value.TempK) #Dissolved water Zw ic_inp.loc[:,'Zw'] = 1/(ic_inp.loc[:,'H']) #Soil Solids Zs, index is 3 in the locsumm file ic_inp.loc[:,'Zsoil'] = ic_inp.KocA*ic_inp.Zla*locsumm.Density.Soil*locsumm.FrnOC.Soil/1000 #Sediment Solids ic_inp.loc[:,'Zsed'] = ic_inp.KocW*ic_inp.Zw*locsumm.Density.Sediment*locsumm.FrnOC.Sediment/1000 #Plant Storage ic_inp.loc[:,'Zveg'] = ic_inp.KslA*ic_inp.Zla*locsumm.FrnOC.Vegetation #Dissolved Film ic_inp.loc[:,'Zfilm'] = ic_inp.KslA*ic_inp.Zla*locsumm.FrnOC.Film #Film Aerosol - Kqa is whole particle not just organic fraction ic_inp.loc[:,'Zqfilm'] = ic_inp.Kqa*ic_inp.Zla*locsumm.loc['Lower_Air','PartDensity']*1000 #Lower and Upper air Aerosol particles - composed of water and particle, with the water fraction defined #by hygroscopic growth of the aerosol. Growth is defined as per the Berlin Spring aerosol from Arp et al. (2008) if params.Value.RH > 100: #maximum RH = 100% params.Value.RH = 100 #Hardcoded hygroscopic growth factor (GF) not ideal but ¯\_(ツ)_/¯ GF = np.interp(params.Value.RH/100,xp = [0.12,0.28,0.77,0.92],fp = [1.0,1.08,1.43,2.2],\ left = 1.0,right = params.Value.RH/100*5.13+2.2) #Volume fraction of water in aerosol VFQW_la = (GF - 1) * locsumm.Density.Water / ((GF - 1) * \ locsumm.Density.Water + locsumm.loc['Lower_Air','PartDensity']) VFQW_ua = (GF - 1) * locsumm.Density.Water / ((GF - 1) * \ locsumm.Density.Water + locsumm.loc['Upper_Air','PartDensity']) #Volume fraction of nucleus VFQp_la = 1 - VFQW_la VFQp_ua = 1 - VFQW_ua #Calculate aerosol Z values ic_inp.loc[:,'Zq_la'] = ic_inp.loc[:,'Zla']*ic_inp.loc[:,'Kqa']*locsumm.loc['Lower_Air','PartDensity']\ *1000*VFQp_la+ic_inp.Zw*VFQW_la ic_inp.loc[:,'Zq_ua'] = ic_inp.loc[:,'Zua']*ic_inp.loc[:,'Kqa']*locsumm.loc['Upper_Air','PartDensity']\ *1000*VFQp_ua+ic_inp.Zw*VFQW_ua #Suspended Sediment in the water compartment (Z_qw) ic_inp.loc[:,'Z_qw'] = ic_inp.Zw*ic_inp.KocW*locsumm.PartFrnOC.Water * locsumm.PartDensity.Water/1000 #Bulk Z Value (Zb_j) #Air - consists of Zq and Za ic_inp.loc[:,'Zb_la'] = ic_inp.loc[:,'Zla'] + ic_inp.loc[:,'Zq_la'] * locsumm.VFPart.Lower_Air ic_inp.loc[:,'Zb_ua'] = ic_inp.loc[:,'Zua'] + ic_inp.loc[:,'Zq_ua'] * locsumm.VFPart.Upper_Air #Water ic_inp.loc[:,'Zb_wat'] = ic_inp.loc[:,'Zw'] + ic_inp.loc[:,'Z_qw'] * locsumm.VFPart.Water #Soil ic_inp.loc[:,'Zb_soil'] = ic_inp.loc[:,'Zla'] * locsumm.VFAir.Soil+\ ic_inp.loc[:,'Zw'] * locsumm.VFWat.Soil + \ ic_inp.loc[:,'Zsoil']* (1-locsumm.VFAir.Soil -locsumm.VFWat.Soil) #Sediment ic_inp.loc[:,'Zb_sed'] = ic_inp.loc[:,'Zw'] * locsumm.VFWat.Sediment + \ ic_inp.loc[:,'Zsed']* (1-locsumm.VFWat.Sediment) #Vegetation ic_inp.loc[:,'Zb_veg'] = ic_inp.loc[:,'Zla'] * locsumm.VFAir.Vegetation+\ ic_inp.loc[:,'Zw'] * locsumm.VFWat.Vegetation + \ ic_inp.loc[:,'Zveg']* (1-locsumm.VFAir.Vegetation -locsumm.VFWat.Vegetation) #Film ic_inp.loc[:,'Zb_film'] = ic_inp.loc[:,'Zqfilm'] * locsumm.VFPart.Film + \ ic_inp.loc[:,'Zfilm'] * params.Value.VFOCFilm #Partition dependent transport parameters #veg & Film side MTCs (m/h) ic_inp.loc[:,'k_vv'] = 10 ** (0.704 * ic_inp.LogKocW - 11.2 - ic_inp.LogKaw) ic_inp.loc[:,'k_ff'] = 10 ** (0.704 * ic_inp.LogKocW - 11.2 - ic_inp.LogKaw) #lower air particle fraction (phi) ic_inp.loc[:,'phi'] = (ic_inp.Zq_la*locsumm.VFPart.Lower_Air)/ic_inp.Zb_la #Calculate advective (G) inflows(mol/m³ * m³/h = mol/h) if 'LairInflow' in ic_inp.columns: ic_inp.loc[:,'Gcb_1'] = locsumm.AdvFlow.Lower_Air * ic_inp.LairInflow else: ic_inp.loc[:,'Gcb_1'] = 0 if 'UairInflow' in ic_inp.columns: ic_inp.loc[:,'Gcb_2'] = locsumm.AdvFlow.Upper_Air * ic_inp.UairInflow else: ic_inp.loc[:,'Gcb_2'] = 0 if 'WatInflow' in ic_inp.columns: ic_inp.loc[:,'Gcb_3'] = locsumm.AdvFlow.Water * ic_inp.WatInflow else: ic_inp.loc[:,'Gcb_3'] = 0 if 'SoilInflow' in ic_inp.columns: #add groundwater advective inflow ic_inp.loc[:,'Gcb_4'] = locsumm.AdvFlow.Soil * ic_inp.SoilInflow else: ic_inp.loc[:,'Gcb_4'] = 0 #D Values #Advection out from atmosphere and water ic_inp.loc[:,'D_adv_la'] = locsumm.AdvFlow.Lower_Air * ic_inp.Zb_la ic_inp.loc[:,'D_adv_ua'] = locsumm.AdvFlow.Upper_Air * ic_inp.Zb_la ic_inp.loc[:,'D_adv_w'] = locsumm.AdvFlow.Water * ic_inp.Zb_wat #Reaction- did not do a good job of indexing to make code smoother but this works ic_inp.loc[:,'D_rxn_la'] = locsumm.V.Lower_Air * ((1 - locsumm.VFPart.Lower_Air)\ * ic_inp.Zla * ic_inp.air_rrxn + locsumm.VFPart.Lower_Air * ic_inp.Zq_la * ic_inp.airq_rrxn) ic_inp.loc[:,'D_rxn_ua'] = locsumm.V.Upper_Air * ((1 - locsumm.VFPart.Upper_Air)\ * ic_inp.Zua * ic_inp.air_rrxn + locsumm.VFPart.Upper_Air * ic_inp.Zq_ua * ic_inp.airq_rrxn) ic_inp.loc[:,'D_rxn_wat'] = locsumm.V.Water * ic_inp.loc[:,'Zb_wat']*ic_inp.wat_rrxn ic_inp.loc[:,'D_rxn_soil'] = locsumm.V.Soil * ic_inp.loc[:,'Zb_soil']*ic_inp.soil_rrxn ic_inp.loc[:,'D_rxn_sed'] = locsumm.V.Sediment * ic_inp.loc[:,'Zb_sed']*ic_inp.sed_rrxn ic_inp.loc[:,'D_rxn_veg'] = locsumm.V.Vegetation * ic_inp.loc[:,'Zb_veg']*ic_inp.veg_rrxn #For film particles use a rxn rate 20x lower than the organic phase ic_inp.loc[:,'D_rxn_film'] = locsumm.V.Film * ((params.Value.VFOCFilm* ic_inp.Zfilm)\ * ic_inp.film_rrxn + locsumm.VFPart.Film * ic_inp.Zqfilm * ic_inp.film_rrxn/20) #Inter-compartmental Transport, matrix values are D_ij others are as noted #Lower and Upper Air ic_inp.loc[:,'D_12'] = params.Value.Ua * locsumm.Area.Lower_Air * ic_inp.Zb_la #Lower to Upper ic_inp.loc[:,'D_21'] = params.Value.Ua * locsumm.Area.Upper_Air * ic_inp.Zb_ua #Upper to lower ic_inp.loc[:,'D_st'] = params.Value.Ust * locsumm.Area.Upper_Air * ic_inp.Zb_ua #Upper to stratosphere #Lower Air to Water #Do we want to separate out the particle fraction here too? (1-ic_inp.phi) * ic_inp.loc[:,'D_vw'] = 1 / (1 / (params.Value.kma * locsumm.Area.Water \ * ic_inp.Zla) + 1 / (params.Value.kmw * locsumm.Area.Water * ic_inp.Zw)) #Dry dep of gas ic_inp.loc[:,'D_rw'] = locsumm.Area.Water * ic_inp.Zw * params.Value.RainRate * (1-ic_inp.phi) #Wet dep of gas ic_inp.loc[:,'D_qw'] = locsumm.Area.Water * params.Value.RainRate * params.Value.Q \ *locsumm.VFPart.Lower_Air * ic_inp.Zq_la * ic_inp.phi #Wet dep of aerosol ic_inp.loc[:,'D_dw'] = locsumm.Area.Water * params.Value.Up * locsumm.VFPart.Lower_Air\ * ic_inp.Zq_la #dry dep of aerosol ic_inp.loc[:,'D_13'] = ic_inp.D_vw + ic_inp.D_rw + ic_inp.D_qw + ic_inp.D_dw #Air to water ic_inp.loc[:,'D_31'] = ic_inp.D_vw #Water to air #Lair and Soil ic_inp.loc[:,'D_vs'] = 1/(1/(params.Value.ksa*locsumm.Area.Soil \ *ic_inp.Zla)+Y4/(locsumm.Area.Soil*ic_inp.Bea*ic_inp.Zla+locsumm.Area.Soil*ic_inp.Bew*ic_inp.Zw)) #Dry dep of gas ic_inp.loc[:,'D_rs'] = locsumm.Area.Soil * ic_inp.Zw * params.Value.RainRate \ * (1-params.Value.Ifw) * (1-ic_inp.phi) #Wet dep of gas ic_inp.loc[:,'D_qs'] = locsumm.Area.Soil * ic_inp.Zq_la * params.Value.RainRate \ * locsumm.VFPart.Lower_Air * params.Value.Q * (1-params.Value.Ifw) * ic_inp.phi #Wet dep of aerosol ic_inp.loc[:,'D_ds'] = locsumm.Area.Soil * ic_inp.Zq_la * params.Value.Up \ * locsumm.VFPart.Lower_Air * (1-Ifd) #dry dep of aerosol ic_inp.loc[:,'D_14'] = ic_inp.D_vs + ic_inp.D_rs + ic_inp.D_qs + ic_inp.D_ds #Air to soil ic_inp.loc[:,'D_41'] = ic_inp.D_vs #soil to air #Lair and Veg ic_inp.loc[:,'D_vv'] = 1/(1/(ic_inp.k_av*locsumm.Area.Vegetation\ *ic_inp.Zla)+1/(locsumm.Area.Vegetation*ic_inp.k_vv*ic_inp.Zveg)) #Dry dep of gas ic_inp.loc[:,'D_rv'] = locsumm.Area.Vegetation * ic_inp.Zw * params.Value.RainRate \ * params.Value.Ifw * (1-ic_inp.phi) #Wet dep of gas ic_inp.loc[:,'D_qv'] = locsumm.Area.Vegetation * ic_inp.Zq_la * params.Value.RainRate \ * params.Value.Q * params.Value.Ifw * locsumm.VFPart.Lower_Air * ic_inp.phi #Wet dep of aerosol ic_inp.loc[:,'D_dv'] = locsumm.Area.Vegetation * ic_inp.Zq_la * locsumm.VFPart.Lower_Air \ *params.Value.Up *Ifd #dry dep of aerosol ic_inp.loc[:,'D_16'] = ic_inp.D_vv + ic_inp.D_rv + ic_inp.D_qv + ic_inp.D_dv #Air to veg ic_inp.loc[:,'D_61'] = ic_inp.D_vv #veg to air #Lair and film ic_inp.loc[:,'D_vf'] = 1/(1/(ic_inp.k_af*locsumm.Area.Film\ *ic_inp.Zla)+1/(locsumm.Area.Film*ic_inp.k_ff*ic_inp.Zfilm)) #Dry dep of gas ic_inp.loc[:,'D_rf'] = locsumm.Area.Film*ic_inp.Zw*params.Value.RainRate*(1-ic_inp.phi) #Wet dep of gas ic_inp.loc[:,'D_qf'] = locsumm.Area.Film * ic_inp.Zq_la * params.Value.RainRate \ * params.Value.Q* locsumm.VFPart.Lower_Air*ic_inp.phi #Wet dep of aerosol ic_inp.loc[:,'D_df'] = locsumm.Area.Film * ic_inp.Zq_la * locsumm.VFPart.Lower_Air\ * params.Value.Up #dry dep of aerosol ic_inp.loc[:,'D_17'] = ic_inp.D_vf + ic_inp.D_rf + ic_inp.D_qf + ic_inp.D_df #Air to film ic_inp.loc[:,'D_71'] = ic_inp.D_vf #film to air #Zrain based on D values & DRain (total), used just for assessing rain concentrations ic_inp.loc[:,'DRain'] = ic_inp.D_rw + ic_inp.D_qw + ic_inp.D_rs + ic_inp.D_qs \ + ic_inp.D_rv + ic_inp.D_qv + ic_inp.D_rf + ic_inp.D_qf ic_inp.loc[:,'ZRain'] = ic_inp.DRain / (locsumm.Area.Lower_Air * params.Value.RainRate) #Water and Soil ic_inp.loc[:,'D_sw'] = locsumm.Area.Soil * ic_inp.Zsoil * params.Value.Usw #Solid run off to water ic_inp.loc[:,'D_ww'] = locsumm.Area.Soil * ic_inp.Zw * params.Value.Uww #Water run off to water ic_inp.loc[:,'D_43'] = ic_inp.D_sw + ic_inp.D_ww #Soil to water ic_inp.loc[:,'D_34'] = 0 #Water to soil ic_inp.loc[:,'D_sg'] = locsumm.Area.Soil * ic_inp.Zw * Usg #Soil to groundwater #Water and Sediment (x) ic_inp.loc[:,'D_tx'] = 1/(1/(params.Value.kxw*locsumm.Area.Sediment\ *ic_inp.Zw)+Y5/(locsumm.Area.Sediment*ic_inp.Bwx*ic_inp.Zw)) #Uptake by sediment ic_inp.loc[:,'D_dx'] = locsumm.Area.Sediment * ic_inp.Z_qw * params.Value.Udx #Sediment deposition - should we have VFpart.Water? ic_inp.loc[:,'D_rx'] = locsumm.Area.Sediment * ic_inp.Zsed * params.Value.Urx #Sediment resuspension ic_inp.loc[:,'D_35'] = ic_inp.D_tx + ic_inp.D_dx #Water to Sed ic_inp.loc[:,'D_53'] = ic_inp.D_tx + ic_inp.D_rx #Sed to Water ic_inp.loc[:,'D_bx'] = locsumm.Area.Sediment * ic_inp.Zsed * params.Value.Ubx #Sed burial #Water and Film ic_inp.loc[:,'D_73'] = locsumm.Area.Film * kfw * ic_inp.Zb_film #Soil to water ic_inp.loc[:,'D_37'] = 0 #Water to film #Soil and Veg ic_inp.loc[:,'D_cd'] = locsumm.Area.Vegetation * params.Value.RainRate \ *(params.Value.Ifw - params.Value.Ilw)*params.Value.lamb * ic_inp.Zq_la #Canopy drip ic_inp.loc[:,'D_we'] = locsumm.Area.Vegetation * params.Value.kwe * ic_inp.Zveg #Wax erosion ic_inp.loc[:,'D_lf'] = locsumm.V.Vegetation * ic_inp.Zb_veg * params.Value.Rlf #litterfall ic_inp.loc[:,'D_46'] = locsumm.V.Soil * params.Value.Rs * ic_inp.Zb_soil #Soil to veg ic_inp.loc[:,'D_64'] = ic_inp.D_cd + ic_inp.D_we + ic_inp.D_lf #Veg to soil #Total D-Values ic_inp.loc[:,'DT1'] = ic_inp.D_12 + ic_inp.D_13 + ic_inp.D_14 + ic_inp.D_16 + ic_inp.D_17 + ic_inp.D_adv_la + ic_inp.D_rxn_la #Lair ic_inp.loc[:,'DT2'] = ic_inp.D_21 + ic_inp.D_st + ic_inp.D_adv_ua + ic_inp.D_rxn_ua #Uair ic_inp.loc[:,'DT3'] = ic_inp.D_31 + ic_inp.D_35 + ic_inp.D_adv_w + ic_inp.D_rxn_wat #Water ic_inp.loc[:,'DT4'] = ic_inp.D_41 + ic_inp.D_43 + ic_inp.D_46 + + ic_inp.D_rxn_soil + ic_inp.D_sg #Soil ic_inp.loc[:,'DT5'] = ic_inp.D_53 + ic_inp.D_rxn_sed + ic_inp.D_bx #Sediment ic_inp.loc[:,'DT6'] = ic_inp.D_61 + ic_inp.D_64 + ic_inp.D_rxn_veg #Vegetation ic_inp.loc[:,'DT7'] = ic_inp.D_71 + ic_inp.D_73 + ic_inp.D_rxn_film #Film #Define total inputs (RHS of matrix) for each compartment #Note that if you run backwards calcs to calculate the inputs for a cell these are NOT overwritten, so these #should not be referenced except with that in mind. if 'LairEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_1'] = ic_inp.loc[:,'Gcb_1'] + ic_inp.loc[:,'LairEmiss'] else: ic_inp.loc[:,'inp_1'] = ic_inp.loc[:,'Gcb_1'] if 'UairEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_2'] = ic_inp.loc[:,'Gcb_2'] + ic_inp.loc[:,'UairEmiss'] else: ic_inp.loc[:,'inp_2'] = ic_inp.loc[:,'Gcb_2'] if 'WatEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_3'] = ic_inp.loc[:,'Gcb_3'] + ic_inp.loc[:,'WatEmiss'] else: ic_inp.loc[:,'inp_3'] = ic_inp.loc[:,'Gcb_3'] if 'SoilEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_4'] = ic_inp.loc[:,'Gcb_4'] + ic_inp.loc[:,'SoilEmiss'] else: ic_inp.loc[:,'inp_4'] = ic_inp.loc[:,'Gcb_4'] if 'SedEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_5'] = ic_inp.loc[:,'SedEmiss'] else: ic_inp.loc[:,'inp_5'] = 0 if 'VegEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_6'] = ic_inp.loc[:,'VegEmiss'] else: ic_inp.loc[:,'inp_6'] = 0 if 'FilmEmiss' in ic_inp.columns: ic_inp.loc[:,'inp_7'] = ic_inp.loc[:,'FilmEmiss'] else: ic_inp.loc[:,'inp_7'] = 0 #Define target fugacity in mol/m³/Pa. Note that the target should be a fugacity!! if 'LAirConc' in ic_inp.columns: ic_inp.loc[:,'targ_1'] = ic_inp.loc[:,'LAirConc']/ic_inp.MolMass/ic_inp.Zb_la if 'UAirConc' in ic_inp.columns: ic_inp.loc[:,'targ_2'] = ic_inp.loc[:,'UAirConc']/ic_inp.MolMass/ic_inp.Zb_ua if 'WatConc' in ic_inp.columns: ic_inp.loc[:,'targ_3'] = ic_inp.loc[:,'WatConc']/ic_inp.MolMass/ic_inp.Zb_wat if 'SoilConc' in ic_inp.columns: ic_inp.loc[:,'targ_4'] = ic_inp.loc[:,'SoilConc']/ic_inp.MolMass/ic_inp.Zb_soil if 'SedConc' in ic_inp.columns: ic_inp.loc[:,'targ_5'] = ic_inp.loc[:,'SedConc']/ic_inp.MolMass/ic_inp.Zb_sed if 'VegConc' in ic_inp.columns: ic_inp.loc[:,'targ_6'] = ic_inp.loc[:,'VegConc']/ic_inp.MolMass/ic_inp.Zb_veg if 'FilmConc' in ic_inp.columns: ic_inp.loc[:,'targ_7'] = ic_inp.loc[:,'FilmConc']/ic_inp.MolMass/ic_inp.Zb_film return ic_inp
StarcoderdataPython
50531
"""Model: A python model of RFC 5545. ===================================== """ __author__ = 'Jason' import datetime from icalendar import Calendar from icalendar import Event ARG_TYPE_INCORRECT = 'Argument should be of type {0}' REQ_PROP_MISSING = 'Required property {0} is missing' class CalendarModel(): """RFC 5545 - Section 3.4. (page 50).:: Code:: icalstream = 1*icalobject icalobject = "BEGIN" ":" "VCALENDAR" CRLF icalbody "END" ":" "VCALENDAR" CRLF icalbody = calprops component calprops = *( prodid version calscale? method? x-prop* iana-prop* ) component = 1*( eventc / todoc / journalc / freebusyc / timezonec / iana-comp / x-comp ) iana-comp = "BEGIN" ":" iana-token CRLF 1*contentline "END" ":" iana-token CRLF x-comp = "BEGIN" ":" x-name CRLF 1*contentline "END" ":" x-name CRLF """ def __init__(self, calendar): """ :param calendar: :return: None """ if not isinstance(calendar, Calendar): raise AssertionError(ARG_TYPE_INCORRECT.format(Calendar)) if not 'PRODID' in calendar.keys(): raise AssertionError(REQ_PROP_MISSING.format('PRODID')) if not 'VERSION' in calendar.keys(): raise AssertionError(REQ_PROP_MISSING.format('VERSION')) class EventModel(): def __init__(self, event): assert isinstance(event, Event),\ 'event is not of type {0}'.format(Event) self._uid = None self._time_stamp = None self._end = None self._duration = None self._from_event(event) def _from_event(self, event): assert 'uid' in event.keys(), REQ_PROP_MISSING.format('uid') @property def uid(self): """ :return: """ assert self._uid is not None @property def time_stamp(self): """dtstamp :return: """ assert type(self._time_stamp) is datetime.datetime @property def start(self): """start :return: datetime """ pass @property def event_class(self): """ :return: """ pass @property def created(self): """ :return: """ pass @property def description(self): """ :return: """ pass @property def geo(self): """ :return: """ pass @property def last_mod(self): """ :return: """ pass @property def location(self): """ :return: """ pass @property def organizer(self): """ :return: """ pass @property def priority(self): """ :return: """ pass @property def seq(self): """ :return: """ pass @property def status(self): """ :return: """ pass @property def summary(self): """ :return: """ pass @property def transp(self): """ :return: """ pass @property def url(self): """ :return: """ pass @property def recur_id(self): """ :return: """ pass @property def recurrence_rule(self): """rrule :return: <TODO> """ pass @property def end(self): """dtend :return: <TODO> """ assert self._end is None or self._duration is None @property def duration(self): """duration :return: <TODO> """ assert self._end is None or self._duration is None @property def attach(self): """rrule :return: <TODO> """ return [] @property def attendee(self): """rrule :return: <TODO> """ return [] @property def categories(self): """rrule :return: <TODO> """ return [] @property def comment(self): """rrule :return: <TODO> """ return [] @property def contact(self): """rrule :return: <TODO> """ return [] @property def exclude_dates(self): """rrule :return: <TODO> """ return [] @property def rs_status(self): """rrule :return: <TODO> """ return [] @property def related(self): """rrule :return: <TODO> """ return [] @property def resources(self): """rrule :return: <TODO> """ return [] @property def r_date(self): """rrule :return: <TODO> """ return [] @property def x_prop(self): """rrule :return: <TODO> """ return [] @property def iana_prop(self): """rrule :return: <TODO> """ return []
StarcoderdataPython
1761941
<gh_stars>1-10 """ ** 2 columns we visualize live stock market data and also get live news 1. live market data (stock list) 2. live news data """ #### IMPORTING REQUIRED MODULES from dash_bootstrap_components.themes import YETI try: #data analysis modules import pandas as pd import numpy as np #dash modules import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Output, Input import plotly.graph_objs as go #plotly modules import plotly.express as px #some other libraries that will be used from yahoo_fin.stock_info import * from pandas_datareader import data as web import yfinance as yf except Exception as e: print(e) ##SETTING THE BOOSTRAP THEME AND TITLE OF WEBSITE app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY]) app.title = "Live market: S&P live market data" ### TICKER SYMBOLS TO CSV FILE ticker = tickers_nasdaq() #df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True) SIDEBAR_STYLE = { "position": "fixed", "top": 0, "left": 0, "bottom": 0, "width": "16rem", "padding": "2rem 1rem", "background-color":"#22252B", } # the styles for the main content position it to the right of the sidebar and # add some padding. CONTENT_STYLE = { "margin-left": "18rem", "margin-right": "2rem", "padding": "2rem 1rem", } sidebar = html.Div( [ html.H2("Live market", className="display-3 title"), html.Hr(), html.P( "We visualize live market data with dash", className="lead" ), ], style=SIDEBAR_STYLE, ) content = html.Div([ dbc.Row([ dbc.Col([ html.H4('Live market data', className='top-title-text'), ]), dbc.Col([ html.Div( dcc.Dropdown( id="ticker-dropdown", options=[ {"label": Ticker, "value": Ticker} for Ticker in ticker ], value="AACG", clearable=False, searchable=False, ),className='dropdown' ), ]), ]), dbc.Row( html.Div(id='dd-output-container'), ), ],style=CONTENT_STYLE) app.layout = html.Div([sidebar, content]) ## we intialize app layout @app.callback( dash.dependencies.Output('dd-output-container', 'children'), [dash.dependencies.Input('ticker-dropdown', 'value')]) def update_graph(value): data = yf.download(tickers='{}'.format(value), period='1d', interval='1m') hovertext=[] for i in range(len(data['Open'])): hovertext.append('Open: '+str(data['Open'][i])+'<br>Close: '+str(data['Close'][i])) fig = go.Figure(data=go.Ohlc(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'])) fig.update(layout_xaxis_rangeslider_visible=False) return dbc.Card( [ dbc.CardBody( [ dcc.Graph(figure=fig) ] ), ], style={"width": "63rem", "height": "31rem"}, ) ### WE INITIALIZE THE APP if __name__ == '__main__': app.run_server(debug=True)
StarcoderdataPython
120463
<gh_stars>1-10 # -*- coding: utf-8 -*- # author : ysoftman # title : beautifulsoup test # python version : 2.x import sys # http://docs.python-requests.org/en/master/ import requests # https://www.crummy.com/software/BeautifulSoup/ # pip install beautifulsoup4 from bs4 import BeautifulSoup def parse_html(): print(parse_html.func_name) html = '''<html> <head> <title> ysoftman </title> </head> <body> <p class="title"> <b> ysfotman </b> </p> <p class="myclass1"> <a class="abc" href="http://ysoftman.com/abc" id="link1"> test abc </a> </p> </body> </html> ''' # print ("html =", html) result = BeautifulSoup(html, 'html.parser') # 파싱 결과 출력 print(result.title) print(result.title.string) print(result.a) def parse_url(url): print(parse_url.func_name) print("url =", url) resp = requests.get(url) # 컨텐츠에서 해당 파싱하기 result = BeautifulSoup(resp.content, 'html.parser') # 파싱 결과 출력 print(result.title) print(result.title.string) # selector 로 찾기 # <div class="navbar"> 하위에서 <a href="xxx"> 태그 부분만 selector = ".navbar a" result2 = result.select(selector) # 여러개의 a 태그중 첫번째의 텍스트부분 출력 print(result2[0].text) def parse_url2(url): print(parse_url2.func_name) print("url =", url) resp = requests.get(url) # 컨텐츠에서 해당 파싱하기 result = BeautifulSoup(resp.content, 'html.parser') # 파싱 결과 출력 print(result.title) print(result.title.string) # selector 로 찾기 # copy selector string using chrome dev tool # #mArticle > div.search_cont > div.card_word.\23 word.\23 eng > div.search_box.\23 box > div > ul > li:nth-child(1) > span.txt_search selector = ".search_cont .card_word div ul span.txt_search" result2 = result.select(selector) print(result2[0].text) if __name__ == '__main__': print("beautifulsoup test") parse_html() print("\n") parse_url("https://www.w3.org/TR/WD-html40-970917/htmlweb.html") print("\n") parse_url2("http://dic.daum.net/search.do?q=love")
StarcoderdataPython
1607838
<filename>scripts/mark_orphaned_guids.py """A number of GUIDs with invalid or missing referents were found during the mongo -> postgres migration. These GUIDS were parsed from the migration logs and written to scripts/orphaned_guids.json. This script adds a field, `is_orphaned` to these GUIDS and sets it to True so that they can be skipped during the mongo -> postgres migration. """ import json import sys import os import logging from scripts import utils as script_utils from framework.mongo import database logger = logging.getLogger(__name__) HERE = os.path.dirname(os.path.abspath(__file__)) def main(dry=True): with open(os.path.join(HERE, 'orphaned_guids.json'), 'r') as fp: orphaned_guids = json.load(fp) for collection_name, guids in orphaned_guids.iteritems(): logger.info('Updating {} GUIDs that point to the collection: {}'.format( len(guids), collection_name )) if not dry: database.guid.update( {'_id': {'$in': guids}}, {'$set': {'is_orphaned': True}}, multi=True ) if __name__ == '__main__': dry = '--dry' in sys.argv handler = logging.StreamHandler() formatter = logging.Formatter( '[%(name)s] %(levelname)s: %(message)s', ) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) if not dry: script_utils.add_file_logger(logger, __file__) main(dry=dry)
StarcoderdataPython
3347437
<reponame>sagar30051991/helpdesk<gh_stars>1-10 from __future__ import unicode_literals import json import frappe hierarchy = { 1: { "time":2, "role": "Administrator", "is_dept_escalation": 0 }, 2: { "time":2, "role": "Department Head", "is_dept_escalation": 0 } } roles_priority = ["Administrator","Department Head"] # subject = [] def after_install(): check_hod_role() create_escalation_settings_doc() setup_role_priority_settings() def check_hod_role(): if not frappe.db.get_value("Role", "Department Head", "name"): doc = frappe.new_doc("Role") doc.role_name = "Department Head" doc.save(ignore_permissions=True) def create_escalation_settings_doc(): if frappe.db.get_value("Ticket Escalation Settings","Default"): return def append_rows(doc): """Append Escalation Hierarchy""" doc.set("escalation_hierarchy",[]) for idx, ch_rec in hierarchy.items(): ch = doc.append("escalation_hierarchy", {}) ch.time = ch_rec.get("time") ch.role = ch_rec.get("role") ch.is_dept_escalation = ch_rec.get("is_dept_escalation") if not frappe.db.get_value("Priority","Default","name"): frappe.get_doc({ "doctype": "Priority", "priority": "Default" }).insert(ignore_permissions=True) esc = frappe.new_doc("Ticket Escalation Settings") esc.priority = "Default" esc.is_default = 1 append_rows(esc) esc.save(ignore_permissions=True) def setup_role_priority_settings(): doc = frappe.get_doc("Role Priority Settings", "Role Priority Settings") if not doc.roles_priority: for i, role in enumerate(roles_priority): rl = doc.append('roles_priority', {}) rl.role = role rl.priority = len(roles_priority) - i doc.save(ignore_permissions=True)
StarcoderdataPython
11341
<filename>Package/CONFIG.py import ops import iopc TARBALL_FILE="samba-4.8.4.tar.gz" TARBALL_DIR="samba-4.8.4" INSTALL_DIR="samba-bin" pkg_path = "" output_dir = "" tarball_pkg = "" tarball_dir = "" install_dir = "" install_tmp_dir = "" cc_host = "" tmp_include_dir = "" dst_include_dir = "" dst_lib_dir = "" dst_usr_local_lib_dir = "" def set_global(args): global pkg_path global output_dir global tarball_pkg global install_dir global install_tmp_dir global tarball_dir global cc_host global tmp_include_dir global dst_include_dir global dst_lib_dir global dst_usr_local_lib_dir global dst_usr_local_libexec_dir global dst_usr_local_share_dir global dst_usr_local_dir global src_pkgconfig_dir global dst_pkgconfig_dir global dst_bin_dir global dst_etc_dir global install_test_utils pkg_path = args["pkg_path"] output_dir = args["output_path"] tarball_pkg = ops.path_join(pkg_path, TARBALL_FILE) install_dir = ops.path_join(output_dir, INSTALL_DIR) install_tmp_dir = ops.path_join(output_dir, INSTALL_DIR + "-tmp") tarball_dir = ops.path_join(output_dir, TARBALL_DIR) cc_host_str = ops.getEnv("CROSS_COMPILE") cc_host = cc_host_str[:len(cc_host_str) - 1] tmp_include_dir = ops.path_join(output_dir, ops.path_join("include",args["pkg_name"])) dst_include_dir = ops.path_join("include",args["pkg_name"]) dst_lib_dir = ops.path_join(install_dir, "lib") dst_bin_dir = ops.path_join(install_dir, "bin") dst_etc_dir = ops.path_join(install_dir, "etc") dst_usr_local_lib_dir = ops.path_join(install_dir, "usr/local/lib") dst_usr_local_dir = ops.path_join(install_dir, "usr/local") dst_usr_local_libexec_dir = ops.path_join(install_dir, "usr/local/libexec") dst_usr_local_share_dir = ops.path_join(install_dir, "usr/local/share") src_pkgconfig_dir = ops.path_join(pkg_path, "pkgconfig") dst_pkgconfig_dir = ops.path_join(install_dir, "pkgconfig") if ops.getEnv("INSTALL_TEST_UTILS") == 'y': install_test_utils = True else: install_test_utils = False def MAIN_ENV(args): set_global(args) ops.exportEnv(ops.setEnv("CC", ops.getEnv("CROSS_COMPILE") + "gcc")) ''' ops.exportEnv(ops.setEnv("CXX", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("CPP", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("AR", ops.getEnv("CROSS_COMPILE") + "ar")) ops.exportEnv(ops.setEnv("RANLIB", ops.getEnv("CROSS_COMPILE") + "ranlib")) ops.exportEnv(ops.setEnv("CROSS", ops.getEnv("CROSS_COMPILE"))) ''' ops.exportEnv(ops.setEnv("DESTDIR", install_tmp_dir)) return False def MAIN_EXTRACT(args): set_global(args) ops.unTarGz(tarball_pkg, output_dir) return True def MAIN_PATCH(args, patch_group_name): set_global(args) for patch in iopc.get_patch_list(pkg_path, patch_group_name): if iopc.apply_patch(tarball_dir, patch): continue else: sys.exit(1) return True def MAIN_CONFIGURE(args): set_global(args) job_count = ops.getEnv("BUILD_JOBS_COUNT") extra_conf = [] ''' #extra_conf.append("--cross-compile") #extra_conf.append("-C -V") #extra_conf.append("--cross-answers=cc.txt") #extra_conf.append("--hostcc=" + cc_host) extra_conf.append("--abi-check-disable") extra_conf.append("--disable-rpath") extra_conf.append("--bundled-libraries=NONE") #extra_conf.append("--cross-execute='qemu-arm-static -L /usr/arm-linux-gnu'") extra_conf.append("--jobs=" + job_count) extra_conf.append("--disable-gnutls") #extra_conf.append("--private-libraries=NONE") extra_conf.append("--without-gettext") extra_conf.append("--without-systemd") extra_conf.append("--without-ad-dc") extra_conf.append("--without-ads") extra_conf.append("--without-winbind") extra_conf.append("--without-ldap") extra_conf.append("--without-pam") extra_conf.append("--without-pie") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-automount") extra_conf.append("--without-utmp") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-acl-support") extra_conf.append("--without-quotas") extra_conf.append("--without-cluster-support") extra_conf.append("--disable-glusterfs") extra_conf.append("--without-profiling-data") extra_conf.append("--without-libarchive") extra_conf.append("--without-regedit") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--disable-python") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") ''' extra_conf.append("--disable-python") extra_conf.append("--without-ad-dc") extra_conf.append("--without-acl-support") extra_conf.append("--without-ldap") extra_conf.append("--without-ads") extra_conf.append("--without-pam") extra_conf.append("--without-gettext") extra_conf.append("--jobs=" + job_count) extra_conf.append("--without-systemd") extra_conf.append("--without-regedit") extra_conf.append("--without-cluster-support") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--without-winbind") extra_conf.append("--disable-glusterfs") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") extra_conf.append("--without-automount") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-quotas") extra_conf.append("--without-profiling-data") extra_conf.append("--without-utmp") extra_conf.append("--without-libarchive") #extra_conf.append("--enable-developer") print extra_conf #iopc.waf(tarball_dir, extra_conf) iopc.configure(tarball_dir, extra_conf) return True def MAIN_BUILD(args): set_global(args) ops.mkdir(install_dir) ops.mkdir(install_tmp_dir) iopc.make(tarball_dir) iopc.make_install(tarball_dir) ops.mkdir(install_dir) ops.mkdir(dst_lib_dir) ops.mkdir(dst_bin_dir) ops.mkdir(dst_usr_local_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/nmbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/smbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-binding.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-samr.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-krb5pac.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-nbt.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr.so.0.1.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0.1") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-standard.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnetapi.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libnetapi.so.0", "libnetapi.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_winbind.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_winbind.so.2", "libnss_winbind.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_wins.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_wins.so.2", "libnss_wins.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-credentials.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-errors.so.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-errors.so.1", "libsamba-errors.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-hostconfig.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-passdb.so.0.27.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0.27") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamdb.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbclient.so.0.3.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0.3") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbconf.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbconf.so.0", "libsmbconf.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libtevent-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libwbclient.so.0.14"), dst_lib_dir) ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so.0") ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/winbind_krb5_locator.so"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/private/."), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/auth"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/idmap"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/ldb"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/nss_info"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/vfs"), dst_lib_dir) ops.ln(dst_usr_local_dir, "/tmp/samba", "samba") return True def MAIN_INSTALL(args): set_global(args) iopc.installBin(args["pkg_name"], ops.path_join(dst_lib_dir, "."), "lib") iopc.installBin(args["pkg_name"], ops.path_join(dst_bin_dir, "."), "usr/sbin") iopc.installBin(args["pkg_name"], ops.path_join(dst_usr_local_dir, "."), "usr/local") #iopc.installBin(args["pkg_name"], ops.path_join(tmp_include_dir, "."), dst_include_dir) #iopc.installBin(args["pkg_name"], ops.path_join(dst_pkgconfig_dir, '.'), "pkgconfig") return False def MAIN_SDKENV(args): set_global(args) return False def MAIN_CLEAN_BUILD(args): set_global(args) return False def MAIN(args): set_global(args)
StarcoderdataPython
55538
<filename>ownblock/ownblock/apps/storage/models.py import uuid import os import mimetypes from django.conf import settings from django.db import models from sorl.thumbnail import get_thumbnail, delete from ..buildings.models import Building class Place(models.Model): name = models.CharField(max_length=60) location = models.TextField(blank=True) building = models.ForeignKey(Building) def __str__(self): return self.name def has_permission(self, user, perm): return (user.role == 'manager' and user.site_id == self.building.site_id) def _upload_image_to(instance, filename): _, ext = os.path.splitext(filename) filename = uuid.uuid4().hex + ext return "storage/{}/{}".format(instance.place_id, filename) class Item(models.Model): description = models.CharField(max_length=100) serial_no = models.CharField(max_length=30, blank=True) resident = models.ForeignKey(settings.AUTH_USER_MODEL) place = models.ForeignKey(Place) photo = models.ImageField( upload_to=_upload_image_to, null=True, blank=True) def __str__(self): return self.description def has_permission(self, user, perm): if user.role == 'resident': return self.resident == user if user.role == 'manager': return self.place.building.site_id == user.site_id return False def get_photo_content_type(self): if not self.photo: return None return mimetypes.guess_type(self.photo.name)[0] @models.permalink def get_photo_url(self): return ('item-photo', [self.pk]) @models.permalink def get_thumbnail_url(self): return ('item-thumbnail', [self.pk]) def get_thumbnail(self): if not self.photo: return None return get_thumbnail(self.photo.file, '150x150', crop='center', quality=99) def delete_photo(self): delete(self.photo) self.photo = "" self.save()
StarcoderdataPython
3261778
""" Betty365 - Unofficial Bet365 WebSocket Stream Data Processor Author: @ElJaviLuki """ # DEPENDENCIES from random import random import websockets from readit import StandardProtocolConstants, ReaditMessage # Generate URIs def generate_uid(): return str(random())[2:] def generate_premws_uri(): return 'wss://premws-pt3.365lpodds.com/zap/?uid=' + generate_uid() def generate_pshudws_uri(): return 'wss://pshudws.365lpodds.com/zap/?uid=' + generate_uid() # WebSocket stuff class WebSocketWrapper: def __init__(self, socket, name): self.socket = socket self.name = name async def send(self, message): print(f"{self.name} <- {message}") await self.socket.send(message) async def recv(self): message = await self.socket.recv() print(f"{self.name} -> {message}") return message class SubscriptionStreamDataProcessor: """ Own implementation of Bet365's WebSocket Stream Data Processor. Note that other parts are directly ported from the original JS code. """ def __init__(self, session_id, d_token, *, user_agent): self.session_id = session_id self.d_token = d_token self.user_agent = user_agent async def handshake(self): """ Perform a handshake to both 'premws' and 'pshudws' websockets and return their respective responses. :return: Handshake response in the format [<premws Handshake Response>, <pshudws Handshake Response>] """ def get_handshake_data(session_id, d_token): handshake_data = "" handshake_data += chr(SubscriptionStreamDataProcessor.HANDSHAKE_PROTOCOL) handshake_data += chr(SubscriptionStreamDataProcessor.HANDSHAKE_VERSION) handshake_data += chr(SubscriptionStreamDataProcessor.HANDSHAKE_CONNECTION_TYPE) handshake_data += chr(SubscriptionStreamDataProcessor.HANDSHAKE_CAPABILITIES_FLAG) # Connection Details - Default Topic '__time' handshake_data += "__time" + "," handshake_data += "S_" + session_id if d_token: handshake_data += ",D_" + d_token handshake_data += chr(0) return handshake_data handshake_data = get_handshake_data(self.session_id, self.d_token) await self._premws.send(handshake_data) await self._pshudws.send(handshake_data) return [await self._premws.recv(), await self._pshudws.recv()] async def subscribe(self, batches): """ :param batches: Array of topics to subscribe to. :return: """ if batches not in [[], None]: data = "" data += chr(StandardProtocolConstants.CLIENT_SUBSCRIBE) data += chr(StandardProtocolConstants.NONE_ENCODING) data += ','.join(batches) data += StandardProtocolConstants.RECORD_DELIM return await self._premws.send(data) async def forward_nst(self): """ Read and decrypt NST from 'pshudws' and send it to 'premws'. Without this your session will be too short. :return: """ def decrypt_nst(data): char_map = [ ["A", "d"], ["B", "e"], ["C", "f"], ["D", "g"], ["E", "h"], ["F", "i"], ["G", "j"], ["H", "k"], ["I", "l"], ["J", "m"], ["K", "n"], ["L", "o"], ["M", "p"], ["N", "q"], ["O", "r"], ["P", "s"], ["Q", "t"], ["R", "u"], ["S", "v"], ["T", "w"], ["U", "x"], ["V", "y"], ["W", "z"], ["X", "a"], ["Y", "b"], ["Z", "c"], ["a", "Q"], ["b", "R"], ["c", "S"], ["d", "T"], ["e", "U"], ["f", "V"], ["g", "W"], ["h", "X"], ["i", "Y"], ["j", "Z"], ["k", "A"], ["l", "B"], ["m", "C"], ["n", "D"], ["o", "E"], ["p", "F"], ["q", "0"], ["r", "1"], ["s", "2"], ["t", "3"], ["u", "4"], ["v", "5"], ["w", "6"], ["x", "7"], ["y", "8"], ["z", "9"], ["0", "G"], ["1", "H"], ["2", "I"], ["3", "J"], ["4", "K"], ["5", "L"], ["6", "M"], ["7", "N"], ["8", "O"], ["9", "P"], ["\n", ":|~"], ["\r", ""] ] decrypted = "" for index in range(0, len(data)): new_char = data[index] for char_unit in char_map: if ":" == new_char and ":|~" == data[index:index + 3]: new_char = "\n" index += 2 break if new_char == char_unit[1]: new_char = char_unit[0] break decrypted += new_char return decrypted def to_readit_msg(data) -> list[ReaditMessage]: rd_msgs = [] if data: messages = data.split(StandardProtocolConstants.MESSAGE_DELIM) for message in messages: type = ord(message[0]) if type in [StandardProtocolConstants.INITIAL_TOPIC_LOAD, StandardProtocolConstants.DELTA]: records = message.split(StandardProtocolConstants.RECORD_DELIM) fields = records[0].split(StandardProtocolConstants.FIELD_DELIM) topic = fields[0][1:] payload = ''.join(records[1:]) user_headers = fields[1:] rd_msgs.append(ReaditMessage(str(type), topic, payload, user_headers)) elif type in [StandardProtocolConstants.CLIENT_ABORT, StandardProtocolConstants.CLIENT_CLOSE]: raise ( "Connection close/abort message type sent from publisher. Message type: " + str( type)) else: raise ("Unrecognised message type sent from publisher: " + str(type)) return rd_msgs async def read_encrypted_nst(socket: WebSocketWrapper): while True: rd_msgs = to_readit_msg(await socket.recv()) for rd_msg in rd_msgs: if rd_msg.topic[rd_msg.topic.rfind('_') + 1:] == "D23": return rd_msg.message def make_nst_message(decrypted_nst): data = "" data += chr(StandardProtocolConstants.CLIENT_SEND) data += chr(StandardProtocolConstants.NONE_ENCODING) data += "command" data += StandardProtocolConstants.RECORD_DELIM data += "nst" + StandardProtocolConstants.RECORD_DELIM + decrypted_nst + StandardProtocolConstants.FIELD_DELIM + "SPTBK" return data encrypted_nst = await read_encrypted_nst(self._pshudws) decrypted_nst = decrypt_nst(encrypted_nst) nst_message = make_nst_message(decrypted_nst) await self._premws.send(nst_message) async def coroutine(self): self._premws = WebSocketWrapper(await websockets.connect(uri=generate_premws_uri(), subprotocols=['zap-protocol-v1'], extra_headers={'User-Agent': self.user_agent}), 'PREMWS') self._pshudws = WebSocketWrapper(await websockets.connect(uri=generate_pshudws_uri(), subprotocols=['zap-protocol-v1'], extra_headers={'User-Agent': self.user_agent}), 'PSHUDWS') # zap-protocol-v1 Handshake await self.handshake() # Subscribe to topic(s) await self.subscribe( [ 'CONFIG_3_0', 'OVInPlay_3_0' ] ) # Decrypt 'pshudws' NST token and forward it to 'premws' await self.forward_nst() while True: recv = await self._premws.recv() #TODO Handle data TRAILING = "/zap/" CONNECTION_TIMEOUT_LIMIT = 15e3 HANDSHAKE_TIMEOUT_LIMIT = 15e3 HANDSHAKE_PROTOCOL = 35 HANDSHAKE_VERSION = 3 HANDSHAKE_CONNECTION_TYPE = 80 HANDSHAKE_CAPABILITIES_FLAG = 1 HANDSHAKE_STATUS_CONNECTED = "100" HANDSHAKE_STATUS_REJECTED = "111"
StarcoderdataPython
45642
from collections import namedtuple from itertools import chain from os import makedirs, rename, scandir, listdir from os.path import (join as p, exists, relpath, isdir, isfile, expanduser, expandvars, realpath) from struct import pack import errno import hashlib import json import logging import re import shutil from rdflib import plugin from rdflib.parser import Parser, create_input_source from rdflib.term import URIRef import six from textwrap import dedent import transaction import yaml from .. import OWMETA_PROFILE_DIR, connect from ..context import (DEFAULT_CONTEXT_KEY, IMPORTS_CONTEXT_KEY, CLASS_REGISTRY_CONTEXT_KEY, Context) from ..mapper import Mapper from ..context_common import CONTEXT_IMPORTS from ..data import Data from ..file_match import match_files from ..file_lock import lock_file from ..file_utils import hash_file from ..graph_serialization import write_canonical_to_file from ..rdf_utils import transitive_lookup, BatchAddGraph from ..utils import FCN, aslist from .archive import Unarchiver from .common import (find_bundle_directory, fmt_bundle_directory, BUNDLE_MANIFEST_FILE_NAME, BUNDLE_INDEXED_DB_NAME, validate_manifest, BUNDLE_MANIFEST_VERSION) from .exceptions import (NotADescriptor, BundleNotFound, NoRemoteAvailable, NoBundleLoader, NotABundlePath, MalformedBundle, NoAcceptableUploaders, FetchTargetIsNotEmpty, TargetIsNotEmpty, UncoveredImports) from .loaders import LOADER_CLASSES, UPLOADER_CLASSES, load_entry_point_loaders from urllib.parse import quote as urlquote, unquote as urlunquote L = logging.getLogger(__name__) DEFAULT_BUNDLES_DIRECTORY = p(OWMETA_PROFILE_DIR, 'bundles') ''' Default directory for the bundle cache ''' DEFAULT_REMOTES_DIRECTORY = p(OWMETA_PROFILE_DIR, 'remotes') ''' Default directory for descriptors of user-level remotes as opposed to project-specific remotes ''' class Remote(object): ''' A place where bundles come from and go to ''' def __init__(self, name, accessor_configs=()): ''' Parameters ---------- name : str The name of the remote accessor_configs : iterable of AccessorConfig Configs for how you access the remote ''' self.name = name ''' Name of the remote ''' self.accessor_configs = list(accessor_configs) ''' Configs for how you access the remote. One might configure mirrors or replicas for a given bundle repository as multiple accessor configs ''' self.file_name = None ''' If read from a file, the remote should have this attribute set to its source file's path ''' def add_config(self, accessor_config): ''' Add the given accessor config to this remote Parameters ---------- accessor_config : AccessorConfig The config to add Returns ------- bool `True` if the accessor config was added (meaning there's no equivalent one already set for this remote). Otherwise, `False`. ''' if accessor_config in self.accessor_configs: return False self.accessor_configs.append(accessor_config) return True def generate_loaders(self): ''' Generate the bundle loaders for this remote. Loaders are generated from `accessor_configs` and `LOADER_CLASSES` according with which type of `.Loader` can load a type of accessor ''' for ac in self.accessor_configs: for lc in LOADER_CLASSES: if lc.can_load_from(ac): loader = lc(ac) yield loader def generate_uploaders(self): ''' Generate the bundle uploaders for this remote ''' for ac in self.accessor_configs: for uc in UPLOADER_CLASSES: if uc.can_upload_to(ac): loader = uc(ac) yield loader def write(self, out): ''' Serialize the `Remote` and write to `out` Parameters ---------- out : :term:`file object` Target for writing the remote ''' yaml.dump(self, out) @classmethod def read(cls, inp): ''' Read a serialized `Remote` Parameters ---------- inp : :term:`file object` File-like object containing the serialized `Remote` ''' res = yaml.unsafe_load(inp) assert isinstance(res, cls) return res def __eq__(self, other): return (self.name == other.name and self.accessor_configs == other.accessor_configs) def __hash__(self): return hash((self.name, self.accessor_configs)) def __str__(self): if self.accessor_configs: accessors = '\n' + '\n'.join(' ' + '\n '.join(str(acc).split('\n')) for acc in self.accessor_configs) else: accessors = ' <none>' return dedent('''\ {name} Accessors:{accessors}''').format(name=self.name, accessors=accessors) def __repr__(self): return f'{FCN(type(self))}({repr(self.name)}, {repr(self.accessor_configs)})' class DependencyDescriptor(namedtuple('_DependencyDescriptor', ('id', 'version', 'excludes'))): __slots__ = () def __new__(cls, id, version=None, excludes=()): return super(DependencyDescriptor, cls).__new__(cls, id, version, excludes) class AccessorConfig(object): ''' Configuration for accessing a `Remote`. `Loaders <Loader>` are added to a remote according to which accessors are avaialble ''' def __eq__(self, other): raise NotImplementedError() def __hash__(self): raise NotImplementedError() class _DepList(list): def add(self, dd): self.append(dd) class URLConfig(AccessorConfig): ''' Configuration for accessing a remote with just a URL. Note that URLConfigs should be pickle-able since they are written to a YAML file as part of the `.Remote` they're apart of. ''' def __init__(self, url): self.url = url def __eq__(self, other): return isinstance(other, URLConfig) and self.url == other.url def __hash__(self): return hash(self.url) def __str__(self): return '{}(url={})'.format(FCN(type(self)), repr(self.url)) @classmethod def register(cls, scheme): URL_CONFIG_MAP[scheme] = cls __repr__ = __str__ URL_CONFIG_MAP = {} ''' `URLConfigs <URLConfig>` by scheme. Can be populated by pkg_resources entry points ''' class Descriptor(object): ''' Descriptor for a bundle. The descriptor is sufficient to build a distributable bundle directory tree from a `~rdflib.graph.ConjunctiveGraph` and a set of files (see `Installer`). ''' def __init__(self, ident, **kwargs): self.id = ident self._set(kwargs) @classmethod def make(cls, obj): ''' Makes a descriptor from the given object. Parameters ---------- obj : a `dict-like object <dict>` An object with parameters for the Descriptor. Typically a dict Returns ------- Descriptor The created descriptor ''' res = cls(ident=obj['id']) res._set(obj) return res @classmethod def load(cls, descriptor_source): ''' Load a descriptor from a YAML record Parameters ---------- descriptor_source : str or :term:`file object` The descriptor source. Handled by `yaml.safe_load <https://pyyaml.org/wiki/PyYAMLDocumentation#the-yaml-package>`_ Raises ------ .NotADescriptor Thrown when the object loaded from `descriptor_source` isn't a `dict` ''' dat = yaml.safe_load(descriptor_source) if isinstance(dat, dict): return cls.make(dat) else: raise NotADescriptor() def _set(self, obj): self.name = obj.get('name', self.id) self.version = obj.get('version', 1) self.description = obj.get('description', None) self.patterns = set(make_pattern(x) for x in obj.get('patterns', ())) self.includes = set(make_include_func(x) for x in obj.get('includes', ())) self.empties = {uri for uri, options in (inc.popitem() for inc in obj.get('includes', ()) if isinstance(inc, dict)) if options.get('empty', False) is True} deps_set = set() deps = _DepList() for x in obj.get('dependencies', ()): if isinstance(x, six.string_types): dd = DependencyDescriptor(x) elif isinstance(x, dict): dd = DependencyDescriptor(**x) else: dd = DependencyDescriptor(*x) if dd not in deps_set: deps.append(dd) deps_set.add(dd) self.dependencies = deps self.files = FilesDescriptor.make(obj.get('files', None)) def __str__(self): return (FCN(type(self)) + '(ident={},' 'name={},version={},description={},' 'patterns={},includes={},' 'files={},dependencies={})').format( repr(self.id), repr(self.name), repr(self.version), repr(self.description), repr(self.patterns), repr(self.includes), repr(self.files), repr(self.dependencies)) class Bundle(object): ''' Main entry point for using bundles Typical usage is something like this:: >>> with Bundle('example/bundleId', version=42) as bnd: ... for aDataObject in bnd(DataObject)().load(): ... # Do something with `aDataObject` ... print(aDataObject) DataObject(<http://example.org/entities#aDataObject>) ''' def __init__(self, ident, bundles_directory=DEFAULT_BUNDLES_DIRECTORY, version=None, conf=None, remotes=None, remotes_directory=DEFAULT_REMOTES_DIRECTORY): ''' .. note:: Paths, `bundles_directory` and `remotes_directory`, will have symbolic links, environment variables, and "~" (for the current user's home directory) expanded when the `Bundle` is initialized. To reflect changes to symbolic links or home directories, the `bundles_directory` or `remotes_directory` attributes must be updated directly or a new instance must be created. Parameters ---------- ident : str Bundle ID bundles_directory : str, optional Path to the bundles directory. Defaults to `.DEFAULT_BUNDLES_DIRECTORY` version : int, optional Bundle version to access. By default, the latest version will be used. conf : .Configuration or dict, optional Configuration to add to the one created for the bundle automatically. Values for the default imports context (`.IMPORTS_CONTEXT_KEY`), the default context (`.DEFAULT_CONTEXT_KEY`) and store (``'rdf.store'``, ``'rdf.source'``, and, ``'rdf.store_conf'``) will be ignored and overwritten. remotes : iterable of Remote or str, optional A subset of remotes and additional remotes to fetch from. See `Fetcher.fetch` remotes_directory : str, optional The directory to load `Remotes <Remote>` from in case a bundle is not in the bundle cache. Defaults to `.DEFAULT_REMOTES_DIRECTORY` ''' if not ident or not isinstance(ident, str): raise ValueError('ident must be a non-empty string') self.ident = ident if not bundles_directory: bundles_directory = DEFAULT_BUNDLES_DIRECTORY self.bundles_directory = realpath(expandvars(expanduser(bundles_directory))) if not conf: conf = {} conf.update({'rdf.source': 'default'}) self.version = version self.remotes = remotes # XXX: Look at how we bring in projects remotes directory if not remotes_directory: remotes_directory = DEFAULT_REMOTES_DIRECTORY self.remotes_directory = realpath(expandvars(expanduser(remotes_directory))) self._store_config_builder = \ BundleDependentStoreConfigBuilder( bundles_directory=bundles_directory, remotes_directory=remotes_directory, remotes=remotes) self._bundle_dep_mgr = BundleDependencyManager( bundles_directory=self.bundles_directory, remotes=self.remotes, remotes_directory=self.remotes_directory, dependencies=self.dependencies) self._given_conf = conf self.conf = None self._contexts = None self.connection = None ''' The owmeta_core connection to the bundle's indexed database ''' self._bundle_context = None self._loaded_dependencies = dict() @property def identifier(self): return self.ident def resolve(self): try: bundle_directory = self._get_bundle_directory() except BundleNotFound: bundle_directory = self._fetch_bundle(self.ident, self.version) return bundle_directory @property def manifest_data(self): bundle_directory = self.resolve() with open(p(bundle_directory, BUNDLE_MANIFEST_FILE_NAME)) as mf: return json.load(mf) def _get_bundle_directory(self): # - look up the bundle in the bundle cache # - generate a config based on the current config load the config # - make a database from the graphs, if necessary (similar to `owm regendb`). If # delete the existing database if it doesn't match the store config return find_bundle_directory(self.bundles_directory, self.ident, self.version) def initdb(self): ''' Initialize the bundle's `conf` `~owmeta_core.data.Data` instance ''' if self.conf is None: bundle_directory = self.resolve() self.conf = Data().copy(self._given_conf) with open(p(bundle_directory, BUNDLE_MANIFEST_FILE_NAME)) as mf: manifest_data = json.load(mf) self.conf[DEFAULT_CONTEXT_KEY] = manifest_data.get(DEFAULT_CONTEXT_KEY) self.conf[IMPORTS_CONTEXT_KEY] = manifest_data.get(IMPORTS_CONTEXT_KEY) self.conf[CLASS_REGISTRY_CONTEXT_KEY] = manifest_data.get(CLASS_REGISTRY_CONTEXT_KEY) indexed_db_path = p(bundle_directory, BUNDLE_INDEXED_DB_NAME) store_name, store_conf = self._store_config_builder.build( indexed_db_path, manifest_data.get('dependencies', ())) self.conf['rdf.store'] = store_name self.conf['rdf.store_conf'] = store_conf self.connection = connect(conf=self.conf) def _fetch_bundle(self, bundle_ident, version): remotes_list = list(retrieve_remotes(self.remotes_directory)) f = Fetcher(self.bundles_directory, remotes_list) return f.fetch(bundle_ident, version, self.remotes) @property def contexts(self): ''' `List <list>` of `str`. Context IDs in this bundle ''' # Since bundles are meant to be immutable, we won't need to add if self._contexts is not None: return self._contexts bundle_directory = self.resolve() contexts = list() graphs_directory = p(bundle_directory, 'graphs') idx_fname = p(graphs_directory, 'index') if not exists(idx_fname): raise Exception('Cannot find an index at {}'.format(repr(idx_fname))) with open(idx_fname, 'rb') as index_file: for l in index_file: l = l.strip() if not l: continue ctx, _ = l.split(b'\x00') contexts.append(ctx.decode('UTF-8')) self._contexts = frozenset(contexts) return self._contexts @property def rdf(self): self.initdb() return self.conf['rdf.graph'] def __str__(self): return f'Bundle({self.ident}' + (')' if self.version is None else f', {self.version})') def __enter__(self): self.initdb() return self def __exit__(self, exc_type, exc_value, traceback): # Close the database connection self.connection.disconnect() self.connection = None self.conf = None def dependencies(self): return self.manifest_data.get('dependencies', ()) def load_dependencies_transitive(self): ''' Load dependencies from this bundle transitively Yields ------ Bundle A direct or indirect dependency of this bundle ''' return self._bundle_dep_mgr.load_dependencies_transitive() def load_dependencies(self): ''' Load direct dependencies of this bundle Yields ------ Bundle A direct dependency of this bundle ''' return self._bundle_dep_mgr._load_dependencies() def _lookup_context_bundle(self, context_id): owner = self._bundle_dep_mgr.lookup_context_bundle( self.contexts, context_id) if owner is self._bundle_dep_mgr: return self def _load_dependency(self, dependencies_item): try: return self._bundle_dep_mgr._load_dependency(dependencies_item) except BundleDependencyConfigIsMalformed as e: bundle_directory = self.resolve() raise MalformedBundle(bundle_directory, str(e)) from e def __call__(self, target): if not target or not hasattr(target, 'contextualize'): return target self.initdb() if self._bundle_context is None: self._bundle_context = _BundleContext( None, conf=self.conf, bundle=self).stored return target.contextualize(self._bundle_context) class BundleDependencyManager(object): ''' Finds the bundle in which a context is defined. For a given bundle graph, that there is *one* Bundle that "owns" a given context. Although multiple bundles may provide that context, the one closest to the root of the graph which provides some statements in that context is called the owner. Note that this does not mean that bundles on which the owner depends do not also be queried; however, the exact behavior is up to the component that uses this component. ''' def __init__(self, dependencies, **common_bundle_arguments): self._loaded_dependencies = dict() self._common_bundle_arguments = common_bundle_arguments self.dependencies = dependencies def load_dependencies_transitive(self): ''' Load dependencies from this bundle transitively Yields ------ Bundle A direct or indirect dependency of this bundle ''' border = {None: self} seen = set() while border: new_border = {} for bnd in border.values(): for d_bnd in bnd.load_dependencies(): key = (d_bnd.ident, d_bnd.version) if key in seen: continue seen.add(key) new_border[key] = d_bnd yield d_bnd border = new_border def lookup_context_bundle(self, contexts, context_id): if context_id is None or str(context_id) in contexts: return self for d in self.dependencies(): d_excludes = frozenset(d.get('excludes', ())) if context_id in d_excludes: continue d_bnd = self._load_dependency(d) match = d_bnd._lookup_context_bundle(context_id) if match: return match return None def _load_dependencies(self): for d in self.dependencies(): yield self._load_dependency(d) load_dependencies = _load_dependencies def _load_dependency(self, dependencies_item): d_id = dependencies_item.get('id') if not d_id: raise BundleDependencyConfigIsMalformed('Dependency entry is missing an identifier') d_version = dependencies_item.get('version') if not d_version: raise BundleDependencyConfigIsMalformed(f'Dependency entry for {d_id} is' ' missing a version number') bundle = self._loaded_dependencies.get((d_id, d_version)) if not bundle: bundle = Bundle(d_id, version=d_version, **self._common_bundle_arguments) self._loaded_dependencies[(d_id, d_version)] = bundle return bundle class BundleDependencyConfigIsMalformed(Exception): pass class BundleDependentStoreConfigBuilder(object): ''' Builds an RDFLib store configuration that depends on bundles. The process of building the store configurationi requires traversing the graph of dependencies so that duplicate dependencies in the graph can be omitted. To support this process, this builder will fetch bundles as needed to resolve transitive dependencies ''' def __init__(self, bundles_directory=None, remotes_directory=None, remotes=None, read_only=True): if not bundles_directory: bundles_directory = DEFAULT_BUNDLES_DIRECTORY self.bundles_directory = realpath(expandvars(expanduser(bundles_directory))) if not remotes_directory: remotes_directory = DEFAULT_REMOTES_DIRECTORY self.remotes_directory = realpath(expandvars(expanduser(remotes_directory))) self.remotes = remotes self.read_only = read_only def build(self, indexed_db_path, dependencies, bundle_directory=None): ''' Builds the store configuration Parameters ---------- indexed_db_path : str Path to the indexed database of the store that depends on the listed dependenices dependencies : list of dict List of dependencies info at least including keys for 'id' and 'version' bundle_directory : str, optional Path to the bundle directory for the dependent store, if the dependent store is a bundle. Used for information in an exceptional path, but not otherwise used Returns ------- str The type of the store. This is the name used to look up the RDFLib store plugin object The configuration for the store. This is the object that will be passed to `rdflib.store.Store.open` to configure the store. ''' return 'agg', self._construct_store_config(indexed_db_path, dependencies, read_only=self.read_only) __call__ = build def _construct_store_config(self, indexed_db_path, dependencies, current_path=None, paths=None, bundle_directory=None, read_only=True): if paths is None: paths = set() if current_path is None: current_path = _BDTD() dependency_configs = self._gather_dependency_configs(dependencies, current_path, paths, bundle_directory) fs_store_config = dict(url=indexed_db_path, read_only=read_only) return [ ('FileStorageZODB', fs_store_config) ] + dependency_configs @aslist def _gather_dependency_configs(self, dependencies, current_path, paths, bundle_directory=None): for dd in dependencies: dep_path = current_path.merge_excludes(dd.get('excludes', ())) dep_ident = dd.get('id') dep_version = dd.get('version') if not dep_ident: if bundle_directory: raise MalformedBundle(bundle_directory, 'bundle dependency descriptor is lacking an identifier') else: raise ValueError('bundle dependency descriptor is lacking an identifier') if (dep_path, (dep_ident, dep_version)) in paths: return paths.add((dep_path, (dep_ident, dep_version))) tries = 0 while tries < 2: try: bundle_directory = find_bundle_directory(self.bundles_directory, dep_ident, dep_version) with open(p(bundle_directory, BUNDLE_MANIFEST_FILE_NAME)) as mf: manifest_data = json.load(mf) break except (BundleNotFound, FileNotFoundError): bundle_directory = self._fetch_bundle(dep_ident, dep_version) tries += 1 # We don't want to include items in the configuration that aren't specified by # the dependency descriptor. Also, all of the optionals have defaults that # BundleDependencyStore handles itself, so we don't want to impose them here. addl_dep_confs = {k: v for k, v in dd.items() if k in ('excludes',) and v} yield ('owmeta_core_bds', dict(type='agg', conf=self._construct_store_config( p(bundle_directory, BUNDLE_INDEXED_DB_NAME), manifest_data.get('dependencies', ()), dep_path, paths, bundle_directory), **addl_dep_confs)) def _fetch_bundle(self, bundle_ident, version): remotes_list = list(retrieve_remotes(self.remotes_directory)) f = Fetcher(self.bundles_directory, remotes_list) return f.fetch(bundle_ident, version, self.remotes) class _BDTD(namedtuple('_BDTD', ('excludes',))): ''' Bundle Dependency Traversal Data (BDTD) Holds data we use in traversing bundle dependencies. Looks a lot like a dependency descriptor, but without an ID and version ''' __slots__ = () def __new__(cls, *args, excludes=(), **kwargs): return super(_BDTD, cls).__new__(cls, *args, excludes=excludes, **kwargs) def merge_excludes(self, excludes): return self._replace(excludes=self.excludes + tuple(e for e in excludes if e not in self.excludes)) class _BundleContext(Context): ''' `Context` for a bundle. ''' def __init__(self, *args, bundle, **kwargs): super().__init__(*args, **kwargs) self.bundle = bundle self._mapper = None @property def mapper(self): if self._mapper is None: self._mapper = _BundleMapper(bundle=self.bundle) return self._mapper class _BundleMapper(Mapper): def __init__(self, bundle): try: bundle_conf = bundle.conf except AttributeError: raise Exception('Bundle connection has not been established.' ' Call `initdb` or use the bundle in a context manager') super().__init__(name=f'{bundle.ident}' + (f'@{bundle.version}' if bundle.version else ''), conf=bundle_conf) self.bundle = bundle self._resolved_classes = dict() def resolve_class(self, rdf_type, context): prev_resolved_class = self._resolved_classes.get((rdf_type, context.identifier)) if prev_resolved_class: return prev_resolved_class own_resolved_class = super().resolve_class(rdf_type, context) if own_resolved_class: self._resolved_classes[(rdf_type, context.identifier)] = own_resolved_class return own_resolved_class target_id = context.identifier target_bundle = self.bundle._lookup_context_bundle(target_id) deps = target_bundle.load_dependencies_transitive() for bnd in deps: crctx_id = bnd.manifest_data.get(CLASS_REGISTRY_CONTEXT_KEY, None) if not crctx_id: continue with bnd: resolved_class = bnd.connection.mapper.resolve_class(rdf_type, context) if resolved_class: self._resolved_classes[(rdf_type, context.identifier)] = resolved_class return resolved_class return None class _RemoteHandlerMixin(object): ''' Utility mixin for handling remotes The mixed-in class must have a `remotes` attribute which is a list of `Remote` ''' def __init__(self, load_entry_points=True, **kwargs): ''' Parameters ---------- load_entry_points : bool, optional If `False`, then entry points will not be loaded ''' super(_RemoteHandlerMixin, self).__init__(**kwargs) self.load_entry_points = load_entry_points def _get_remotes(self, remotes): '''' Get remotes Parameters ---------- remotes : iterable of Remote or str A subset of names of remotes to act on and additional remotes to act on ''' if self.load_entry_points: load_entry_point_loaders() instance_remotes = [] additional_remotes = [] if remotes: configured_remotes = {r.name: r for r in self.remotes} for r in remotes: if isinstance(r, six.text_type): instance_remotes.append(configured_remotes.get(r)) elif isinstance(r, Remote): additional_remotes.append(r) else: instance_remotes = self.remotes has_remote = False for rem in chain(additional_remotes, instance_remotes): has_remote = True yield rem if not has_remote: raise NoRemoteAvailable() class Fetcher(_RemoteHandlerMixin): ''' Fetches bundles from `Remotes <Remote>` A fetcher takes a list of remotes, a bundle ID, and, optionally, a version number and downloads the bundle to a local directory. `Deployer` is, functionally, the dual of this class. ''' def __init__(self, bundles_root, remotes, **kwargs): ''' Parameters ---------- bundles_root : str The root directory of the bundle cache remotes : list of Remote or str List of pre-configured remotes used in calls to `fetch` ''' super(Fetcher, self).__init__(**kwargs) self.bundles_root = bundles_root self.remotes = remotes def __call__(self, *args, **kwargs): ''' Calls `fetch` with the given arguments ''' return self.fetch(*args, **kwargs) def fetch(self, bundle_id, bundle_version=None, remotes=None, progress_reporter=None, triples_progress_reporter=None): ''' Retrieve a bundle by name from a remote and put it in the local bundle cache. The first remote that can retrieve the bundle will be tried. Each remote will be tried in succession until one downloads the bundle. Parameters ---------- bundle_id : str The id of the bundle to retrieve bundle_version : int The version of the bundle to retrieve. optional remotes : iterable of Remote or str A subset of remotes and additional remotes to fetch from. If an entry in the iterable is a string, then it will be looked for amongst the remotes passed in initially. progress_reporter : `tqdm.tqdm <https://tqdm.github.io/>`_-like object, optional Receives updates of progress in fetching and installing locally triples_progress_reporter : `tqdm.tqdm <https://tqdm.github.io/>`_-like object, optional Receives updates of progress for adding triples for an individual graph Returns ------- str returns the directory where the bundle has been placed Raises ------ .exceptions.NoBundleLoader Thrown when none of the loaders are able to download the bundle .FetchTargetIsNotEmpty Thrown when the requested bundle is already in the cache ''' if remotes: remotes = list(remotes) given_bundle_version = bundle_version loaders = self._get_bundle_loaders(bundle_id, given_bundle_version, remotes) loaders_list = list(loaders) if bundle_version is None: bundle_version = self._find_latest_remote_bundle_versions(bundle_id, loaders_list) bdir = fmt_bundle_directory(self.bundles_root, bundle_id, bundle_version) self._assert_target_is_empty(bdir) for loader in loaders_list: try: loader.base_directory = bdir loader(bundle_id, bundle_version) with open(p(bdir, BUNDLE_MANIFEST_FILE_NAME)) as mf: manifest_data = json.load(mf) for dd in manifest_data.get('dependencies', ()): try: find_bundle_directory(self.bundles_root, dd['id'], dd.get('version')) except BundleNotFound: self.fetch(dd['id'], dd.get('version'), remotes=remotes) dat = self._post_fetch_dest_conf(bdir) build_indexed_database(dat['rdf.graph'], bdir, progress_reporter, triples_progress_reporter) dat.close() return bdir except Exception: L.warning('Failed to load bundle %s with %s', bundle_id, loader, exc_info=True) shutil.rmtree(bdir) else: # no break raise NoBundleLoader(bundle_id, given_bundle_version) def _post_fetch_dest_conf(self, bundle_directory): res = Data().copy({ 'rdf.source': 'default', 'rdf.store': 'FileStorageZODB', 'rdf.store_conf': p(bundle_directory, BUNDLE_INDEXED_DB_NAME) }) res.init() if not exists(res['rdf.store_conf']): raise Exception('Could not create the database file at ' + res['rdf.store_conf']) return res def _find_latest_remote_bundle_versions(self, bundle_id, loaders_list): latest_bundle_version = 0 for loader in loaders_list: versions = loader.bundle_versions(bundle_id) if not versions: L.warning('Loader %s does not have any versions of the bundle %s', loader, bundle_id) continue loader_latest_version = max(versions) if loader_latest_version > latest_bundle_version: latest_bundle_version = loader_latest_version if latest_bundle_version <= 0: raise BundleNotFound(bundle_id, 'No versions of the requested bundle found from any remotes') return latest_bundle_version def _assert_target_is_empty(self, bdir): target_empty = True try: for _ in scandir(bdir): target_empty = False break except FileNotFoundError: return if not target_empty: raise FetchTargetIsNotEmpty(bdir) def _get_bundle_loaders(self, bundle_id, bundle_version, remotes): for rem in self._get_remotes(remotes): for loader in rem.generate_loaders(): if loader.can_load(bundle_id, bundle_version): yield loader class Deployer(_RemoteHandlerMixin): ''' Deploys bundles to `Remotes <Remote>`. A deployer takes a bundle directory tree or bundle archive and uploads it to a remote. `Fetcher` is, functionally, the dual of this class. Deployer is responsible for selecting remotes and corresponding uploaders among a set of options. `Uploaders <Uploader>` are responsible for actually doing the upload. ''' def __init__(self, remotes=(), **kwargs): super(Deployer, self).__init__(**kwargs) self.remotes = remotes def __call__(self, *args, **kwargs): return self.deploy(*args, **kwargs) def deploy(self, bundle_path, remotes=None): ''' Deploy a bundle Parameters ---------- bundle_path : str Path to a bundle directory tree or archive remotes : iterable of Remote or str A subset of remotes to deploy to and additional remotes to deploy to Raises ------ .NoAcceptableUploaders Thrown when none of the selected uploaders could upload the bundle ''' if not exists(bundle_path): raise NotABundlePath(bundle_path, 'the file does not exist') manifest_data = self._extract_manifest_data_from_bundle_path(bundle_path) validate_manifest(bundle_path, manifest_data) uploaded = False for uploader in self._get_bundle_uploaders(bundle_path, remotes=remotes): uploader(bundle_path) uploaded = True if not uploaded: raise NoAcceptableUploaders(bundle_path) def _extract_manifest_data_from_bundle_path(self, bundle_path): if isdir(bundle_path): return self._get_directory_manifest_data(bundle_path) elif isfile(bundle_path): return self._get_archive_manifest_data(bundle_path) else: raise NotABundlePath(bundle_path, 'path does not point to a file or directory') def _get_bundle_uploaders(self, bundle_directory, remotes=None): for rem in self._get_remotes(remotes): for uploader in rem.generate_uploaders(): if uploader.can_upload(bundle_directory): yield uploader def _get_directory_manifest_data(self, bundle_path): try: with open(p(bundle_path, BUNDLE_MANIFEST_FILE_NAME)) as mf: return json.load(mf) except (OSError, IOError) as e: if e.errno == errno.ENOENT: # FileNotFound raise MalformedBundle(bundle_path, 'no bundle manifest found') if e.errno == errno.EISDIR: # IsADirectoryError raise MalformedBundle(bundle_path, 'manifest is not a regular file') raise except json.decoder.JSONDecodeError: raise MalformedBundle(bundle_path, 'manifest is malformed: expected a' ' JSON file') def _get_archive_manifest_data(self, bundle_path): with Unarchiver().to_tarfile(bundle_path) as tf: try: mf0 = tf.extractfile(BUNDLE_MANIFEST_FILE_NAME) if mf0 is None: raise MalformedBundle(bundle_path, 'manifest is not a regular file') # Would like to pull the with mf0 as mf: return json.load(mf) except KeyError: raise MalformedBundle(bundle_path, 'no bundle manifest found') except json.decoder.JSONDecodeError: raise MalformedBundle(bundle_path, 'manifest is malformed: expected a' ' JSON file') class Cache(object): ''' Cache of bundles ''' def __init__(self, bundles_directory): ''' Parameters ---------- bundles_directory : str The where bundles are stored ''' self.bundles_directory = bundles_directory def list(self): ''' Returns a generator of summary bundle info ''' try: bundle_directories = scandir(self.bundles_directory) except (OSError, IOError) as e: if e.errno == errno.ENOENT: return raise for bundle_directory in bundle_directories: if not bundle_directory.is_dir(): continue # Ignore deletes out from under us try: version_directories = scandir(bundle_directory.path) except (OSError, IOError) as e: if e.errno == errno.ENOENT: continue raise def keyfunc(x): try: return int(x.name) except ValueError: return float('+inf') for version_directory in sorted(version_directories, key=keyfunc, reverse=True): if not version_directory.is_dir(): continue try: manifest_fname = p(version_directory.path, BUNDLE_MANIFEST_FILE_NAME) with open(manifest_fname) as mf: try: manifest_data = json.load(mf) bd_id = urlunquote(bundle_directory.name) bd_version = int(version_directory.name) if (bd_id != manifest_data.get('id') or bd_version != manifest_data.get('version')): L.warning('Bundle manifest at %s does not match bundle' ' directory', manifest_fname) continue yield manifest_data except json.decoder.JSONDecodeError: L.warning("Bundle manifest at %s is malformed", manifest_fname) except (OSError, IOError) as e: if e.errno != errno.ENOENT: raise def retrieve_remote_by_name(remotes_dir, name, **kwargs): for rem in retrieve_remotes(remotes_dir, **kwargs): if rem.name == name: return rem def retrieve_remotes(remotes_dir, load_entry_points=True): ''' Retrieve remotes from a project directory or user remotes directory Parameters ---------- owmdir : str path to the project directory load_entry_points : bool, optional if `True`, then the entry points for `~.loaders.Loader` and `~.loaders.Uploader` implementations that have been added as entry points ''' if not exists(remotes_dir): return if load_entry_points: load_entry_point_loaders() for r in listdir(remotes_dir): if r.endswith('.remote'): fname = p(remotes_dir, r) with open(fname) as inp: try: rem = Remote.read(inp) rem.file_name = fname yield rem except Exception: L.warning('Unable to read remote %s', r, exc_info=True) class Installer(object): ''' Installs a bundle locally ''' def __init__(self, source_directory, bundles_directory, graph, imports_ctx=None, default_ctx=None, class_registry_ctx=None, installer_id=None, remotes=(), remotes_directory=None): ''' Parameters ---------- source_directory : str Directory where files come from. All files for a bundle must be below this directory bundles_directory : str Directory where the bundles files go. Usually this is the bundle cache directory graph : rdflib.graph.ConjunctiveGraph The graph from which we source contexts for this bundle default_ctx : str, optional The ID of the default context -- the target of a query when not otherwise specified. imports_ctx : str, optional The ID of the imports context this installer should use. Imports relationships are selected from this graph according to the included contexts. class_registry_ctx : str, optional The ID of the class registry context this installer should use. Class registry entries are retrieved from this graph. installer_id : iterable of Remote or str, optional Name of this installer for purposes of mutual exclusion remotes : iterable of Remote, optional Remotes to be used for retrieving dependencies when needed during installation. If not provided, the remotes will be collected from `remotes_directory` remotes_directory : str, optional The directory to load `Remotes <Remote>` from in case a bundle is not in the bundle cache. Defaults to `.DEFAULT_REMOTES_DIRECTORY` ''' self.context_hash = hashlib.sha224 self.file_hash = hashlib.sha224 self.source_directory = source_directory self.bundles_directory = bundles_directory self.graph = graph self.installer_id = installer_id self.imports_ctx = imports_ctx self.default_ctx = default_ctx self.class_registry_ctx = class_registry_ctx self.remotes = list(remotes) self.remotes_directory = remotes_directory def install(self, descriptor, progress_reporter=None): ''' Given a descriptor, install a bundle Parameters ---------- descriptor : Descriptor The descriptor for the bundle progress_reporter : `tqdm.tqdm <https://tqdm.github.io/>`_-like object Used for reporting progress during installation. optional Returns ------- str The directory where the bundle is installed Raises ------ .TargetIsNotEmpty Thrown when the target directory for installation is not empty. ''' # Create the staging directory in the base directory to reduce the chance of # moving across file systems try: staging_directory = fmt_bundle_directory(self.bundles_directory, descriptor.id, descriptor.version) makedirs(staging_directory) except OSError: pass target_empty = True for _ in scandir(staging_directory): target_empty = False break if not target_empty: raise TargetIsNotEmpty(staging_directory) with lock_file(p(staging_directory, '.lock'), unique_key=self.installer_id): try: self._install(descriptor, staging_directory, progress_reporter=progress_reporter) return staging_directory except Exception: self._cleanup_failed_install(staging_directory) raise def _cleanup_failed_install(self, staging_directory): shutil.rmtree(p(staging_directory, 'graphs')) shutil.rmtree(p(staging_directory, 'files')) def _install(self, descriptor, staging_directory, progress_reporter=None): graphs_directory, files_directory = self._set_up_directories(staging_directory) self._write_file_hashes(descriptor, files_directory) self._write_context_data(descriptor, graphs_directory) self._generate_bundle_class_registry_ctx(descriptor, graphs_directory) self._generate_bundle_imports_ctx(descriptor, graphs_directory) self._write_manifest(descriptor, staging_directory) self._initdb(staging_directory) self._build_indexed_database(staging_directory, progress_reporter) def _set_up_directories(self, staging_directory): graphs_directory = p(staging_directory, 'graphs') files_directory = p(staging_directory, 'files') try: makedirs(graphs_directory) makedirs(files_directory) except OSError as e: if e.errno != errno.EEXIST: raise return graphs_directory, files_directory def _write_file_hashes(self, descriptor, files_directory): with open(p(files_directory, 'hashes'), 'wb') as hash_out: for fname in _select_files(descriptor, self.source_directory): hsh = self.file_hash() source_fname = p(self.source_directory, fname) hash_file(hsh, source_fname) self._write_hash_line(hash_out, fname.encode('UTF-8'), hsh) shutil.copy2(source_fname, p(files_directory, fname)) def _write_context_data(self, descriptor, graphs_directory): contexts = _select_contexts(descriptor, self.graph) imports_ctxg = None if self.imports_ctx: imports_ctxg = self.graph.get_context(self.imports_ctx) included_context_ids = set() for ctxid in self._write_graphs(graphs_directory, *contexts): included_context_ids.add(ctxid) # Compute imported contexts imported_contexts = set() for ctxid in included_context_ids: if imports_ctxg is not None: imported_contexts |= transitive_lookup(imports_ctxg, ctxid, CONTEXT_IMPORTS, seen=imported_contexts) uncovered_contexts = imported_contexts - included_context_ids if self.class_registry_ctx: uncovered_contexts.discard(URIRef(self.class_registry_ctx)) uncovered_contexts = self._cover_with_dependencies(uncovered_contexts, descriptor) if uncovered_contexts: raise UncoveredImports(uncovered_contexts) def _write_manifest(self, descriptor, staging_directory): manifest_data = {} if self.default_ctx: manifest_data[DEFAULT_CONTEXT_KEY] = self.default_ctx if self.imports_ctx: # If an imports context was specified, then we'll need to generate an # imports context with the appropriate imports. We don't use the source # imports context ID for the bundle's imports context because the bundle # imports that we actually need are a subset of the total set of imports manifest_data[IMPORTS_CONTEXT_KEY] = fmt_bundle_imports_ctx_id(descriptor.id, descriptor.version) if self.class_registry_ctx: manifest_data[CLASS_REGISTRY_CONTEXT_KEY] = fmt_bundle_class_registry_ctx_id(descriptor.id, descriptor.version) manifest_data['id'] = descriptor.id manifest_data['version'] = descriptor.version manifest_data['manifest_version'] = BUNDLE_MANIFEST_VERSION mf_deps = [] for dd in descriptor.dependencies: bnd = self._dd_to_bundle(dd) # Fetch the dependency if necessary and get the version of the latest from the # bundle manifest. Usually, the bundle will already be on the system since it # *should have* been used for testing. # # (It's probably possible to do something like just grabbing the bundle # manifest data in the case there is not a local copy of the bundle, but that # should be unusual enough that it's probably not justified considering the # overhead of having an alternative to fetching that bundle loaders might be # expected to support.) dd_version = bnd.manifest_data['version'] mf_deps.append({'version': dd_version, 'id': dd.id, 'excludes': dd.excludes}) manifest_data['dependencies'] = mf_deps self.manifest_data = manifest_data with open(p(staging_directory, BUNDLE_MANIFEST_FILE_NAME), 'w') as mf: json.dump(manifest_data, mf, separators=(',', ':')) def _generate_bundle_imports_ctx(self, descriptor, graphs_directory): if not self.imports_ctx: return imports_ctxg = self.graph.get_context(self.imports_ctx) # select all of the imports for all of the contexts in the bundle and serialize contexts = [] idx_fname = p(graphs_directory, 'index') with open(idx_fname) as index_file: for l in index_file: ctx, _ = l.strip().split('\x00') contexts.append(URIRef(ctx)) for c in descriptor.empties: contexts.append(URIRef(c)) ctxgraph = imports_ctxg.triples_choices((contexts, CONTEXT_IMPORTS, None)) if self.class_registry_ctx: cr_ctxid = URIRef(fmt_bundle_class_registry_ctx_id(descriptor.id, descriptor.version)) contexts.append(cr_ctxid) old_ctxgraph = ctxgraph def replace_cr_ctxid(): src_cr_ctxid = URIRef(self.class_registry_ctx) for t in old_ctxgraph: if t[0] == src_cr_ctxid: yield (cr_ctxid, t[1], t[2]) elif t[2] == src_cr_ctxid: yield (t[0], t[1], cr_ctxid) else: yield t ctxgraph = replace_cr_ctxid() ctxid = fmt_bundle_imports_ctx_id(descriptor.id, descriptor.version) self._write_graph(graphs_directory, ctxid, ctxgraph) def _generate_bundle_class_registry_ctx(self, descriptor, graphs_directory): if not self.class_registry_ctx: return ctx_id = fmt_bundle_class_registry_ctx_id(descriptor.id, descriptor.version) class_registry_ctxg = self.graph.get_context(self.class_registry_ctx) self._write_graph(graphs_directory, ctx_id, class_registry_ctxg) def _write_graph(self, graphs_directory, ctxid, ctxgraph): for _ in self._write_graphs(graphs_directory, (ctxid, ctxgraph)): pass def _write_graphs(self, graphs_directory, *graphs_sequence): with open(p(graphs_directory, 'hashes'), 'ab') as hash_out,\ open(p(graphs_directory, 'index'), 'ab') as index_out: for ctxid, ctxgraph in graphs_sequence: ctxidb = ctxid.encode('UTF-8') gbname, hsh = self._write_graph_to_file(ctxgraph, graphs_directory) self._write_hash_line(hash_out, ctxidb, hsh) self._write_index_line(index_out, ctxidb, gbname) yield ctxid hash_out.flush() index_out.flush() def _write_graph_to_file(self, ctxgraph, graphs_directory): hsh = self.context_hash() temp_fname = p(graphs_directory, 'graph.tmp') write_canonical_to_file(ctxgraph, temp_fname) hash_file(hsh, temp_fname) gbname = hsh.hexdigest() + '.nt' ctx_file_name = p(graphs_directory, gbname) rename(temp_fname, ctx_file_name) return gbname, hsh def _write_hash_line(self, hash_out, key, hsh): hash_out.write(key + b'\x00' + pack('B', hsh.digest_size) + hsh.digest() + b'\n') def _write_index_line(self, index_out, ctxidb, gbname): index_out.write(ctxidb + b'\x00' + gbname.encode('UTF-8') + b'\n') def _initdb(self, staging_directory): self.conf = Data().copy({ 'rdf.source': 'default', 'rdf.store': 'FileStorageZODB', 'rdf.store_conf': p(staging_directory, BUNDLE_INDEXED_DB_NAME) }) # Create the database file and initialize some needed data structures self.conf.init() if not exists(self.conf['rdf.store_conf']): raise Exception('Could not create the database file at ' + self.conf['rdf.store_conf']) def _build_indexed_database(self, staging_directory, progress=None): try: dest = self.conf['rdf.graph'] build_indexed_database(dest, staging_directory, progress) finally: self.conf.close() def _dd_to_bundle(self, dependency_descriptor): return Bundle(dependency_descriptor.id, version=dependency_descriptor.version, bundles_directory=self.bundles_directory, remotes=self.remotes, remotes_directory=self.remotes_directory) def _cover_with_dependencies(self, uncovered_contexts, descriptor): # XXX: Will also need to check for the contexts having a given ID being consistent # with each other across dependencies dependencies = descriptor.dependencies for d in dependencies: bnd = self._dd_to_bundle(d) for c in bnd.contexts: uncovered_contexts.discard(URIRef(c)) if not uncovered_contexts: break for c in descriptor.empties: uncovered_contexts.discard(URIRef(c)) if not uncovered_contexts: break return uncovered_contexts def fmt_bundle_imports_ctx_id(id, version): return fmt_bundle_ctx_id('generated_imports_ctx', id, version) def fmt_bundle_class_registry_ctx_id(id, version): return fmt_bundle_ctx_id('generated_class_registry_ctx', id, version) def fmt_bundle_class_registry_ctx_list_id(id, version): return fmt_bundle_ctx_id('generated_class_registry_ctx_list', id, version) def fmt_bundle_ctx_id(kind, id, version): return f'http://data.openworm.org/bundle/{kind}?bundle_id={urlquote(id)}&bundle_version={version}' class FilesDescriptor(object): ''' Descriptor for files ''' def __init__(self): self.patterns = set() self.includes = set() @classmethod def make(cls, obj): if not obj: return res = cls() res.patterns = set(obj.get('patterns', ())) res.includes = set(obj.get('includes', ())) return res def make_pattern(s): if s.startswith('rgx:'): return RegexURIPattern(s[4:]) else: return GlobURIPattern(s) def make_include_func(s): if isinstance(s, str): return URIIncludeFunc(s) elif isinstance(s, dict): uri = None for k in s.keys(): if uri is not None: raise ValueError('Context "includes" entry must have one key--the URI of' f' the context to include. Extra key is "{k}"') uri = k return URIIncludeFunc(uri) else: raise ValueError('Context "includes" entry must be a str or a dict') class URIIncludeFunc(object): def __init__(self, include): self.include = URIRef(include.strip()) def __hash__(self): return hash(self.include) def __call__(self, uri): return URIRef(uri.strip()) == self.include def __str__(self): return '{}({})'.format(FCN(type(self)), repr(self.include)) __repr__ = __str__ class URIPattern(object): def __init__(self, pattern): self._pattern = pattern def __hash__(self): return hash(self._pattern) def __call__(self, uri): return False def __str__(self): return '{}({})'.format(FCN(type(self)), self._pattern) class RegexURIPattern(URIPattern): def __init__(self, pattern): super(RegexURIPattern, self).__init__(re.compile(pattern)) def __call__(self, uri): # Cast the pattern match result to a boolean return not not self._pattern.match(str(uri)) class GlobURIPattern(RegexURIPattern): def __init__(self, pattern): replacements = [ ['*', '.*'], ['?', '.?'], ['[!', '[^'] ] for a, b in replacements: pattern = pattern.replace(a, b) super(GlobURIPattern, self).__init__(re.compile(pattern)) def _select_files(descriptor, directory): fdescr = descriptor.files if not fdescr: return for f in fdescr.includes: if not exists(p(directory, f)): raise Exception('Included file in bundle does not exist', f) yield f for f in fdescr.patterns: for match in match_files(directory, p(directory, f)): yield relpath(match, directory) def _select_contexts(descriptor, graph): for context in graph.contexts(): ctx = context.identifier for inc in descriptor.includes: if inc(ctx): yield ctx, context break for pat in descriptor.patterns: if pat(ctx): yield ctx, context break def build_indexed_database(dest, bundle_directory, progress=None, trip_prog=None): ''' Build the indexed database from a bundle directory ''' idx_fname = p(bundle_directory, 'graphs', 'index') # This code was copied from OWM._load_all_graphs, but we don't have a specific # reason for projects and bundles to have the same format, so keeping the logic # separate triples_read = 0 with open(idx_fname) as index_file: cnt = 0 for l in index_file: cnt += 1 index_file.seek(0) if progress is not None: progress.total = cnt with transaction.manager: bag = BatchAddGraph(dest, batchsize=10000) for l in index_file: ctx, fname = l.strip().split('\x00') parser = plugin.get('nt', Parser)() graph_fname = p(bundle_directory, 'graphs', fname) with open(graph_fname, 'rb') as f, bag.get_context(ctx) as g: parser.parse(create_input_source(f), g) if progress is not None: progress.update(1) if trip_prog is not None: trip_prog.update(bag.count - triples_read) triples_read = g.count if progress is not None: progress.write('Finalizing writes to database...') if progress is not None: progress.write('Loaded {:,} triples'.format(triples_read))
StarcoderdataPython
1746339
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from novaclient import api_versions from novaclient.tests.unit import utils from novaclient.tests.unit.v2 import fakes from novaclient.v2 import migrations class MigrationsTest(utils.TestCase): def setUp(self): super(MigrationsTest, self).setUp() self.cs = fakes.FakeClient(api_versions.APIVersion("2.1")) def test_list_migrations(self): ml = self.cs.migrations.list() self.assert_request_id(ml, fakes.FAKE_REQUEST_ID_LIST) self.cs.assert_called('GET', '/os-migrations') for m in ml: self.assertIsInstance(m, migrations.Migration) self.assertRaises(AttributeError, getattr, m, "migration_type") def test_list_migrations_v223(self): cs = fakes.FakeClient(api_versions.APIVersion("2.23")) ml = cs.migrations.list() self.assert_request_id(ml, fakes.FAKE_REQUEST_ID_LIST) cs.assert_called('GET', '/os-migrations') for m in ml: self.assertIsInstance(m, migrations.Migration) self.assertEqual(m.migration_type, 'live-migration') @mock.patch('novaclient.v2.migrations.warnings.warn') def test_list_migrations_with_cell_name(self, mock_warn): ml = self.cs.migrations.list(cell_name="abc") self.assert_request_id(ml, fakes.FAKE_REQUEST_ID_LIST) self.cs.assert_called('GET', '/os-migrations?cell_name=abc') for m in ml: self.assertIsInstance(m, migrations.Migration) self.assertTrue(mock_warn.called) def test_list_migrations_with_filters(self): ml = self.cs.migrations.list('host1', 'finished', 'child1') self.assert_request_id(ml, fakes.FAKE_REQUEST_ID_LIST) self.cs.assert_called( 'GET', '/os-migrations?cell_name=child1&host=host1&status=finished') for m in ml: self.assertIsInstance(m, migrations.Migration) def test_list_migrations_with_instance_uuid_filter(self): ml = self.cs.migrations.list('host1', 'finished', 'child1', 'instance_id_456') self.assert_request_id(ml, fakes.FAKE_REQUEST_ID_LIST) self.cs.assert_called( 'GET', ('/os-migrations?cell_name=child1&host=host1&' 'instance_uuid=instance_id_456&status=finished')) self.assertEqual(1, len(ml)) self.assertEqual('instance_id_456', ml[0].instance_uuid)
StarcoderdataPython
3266869
<gh_stars>0 from typing import Union, List, Tuple import numpy as np import pandas as pd from scipy import optimize from matplotlib import pyplot as plt from pyquil.api import QuantumComputer from pyquil.gates import RX, RZ, CZ, MEASURE from pyquil.quil import Program from pyquil.quilbase import Pragma MILLISECOND = 1e-6 # A millisecond (ms) is an SI unit of time MICROSECOND = 1e-6 # A microsecond (us) is an SI unit of time NANOSECOND = 1e-9 # A nanosecond (ns) is an SI unit of time # A Hertz (Hz) is a derived unit of frequency in SI Units; 1 Hz is defined as one cycle per second. KHZ = 1e3 # kHz MHZ = 1e6 # MHz GHZ = 1e9 # GHz # ================================================================================================== # T1 # ================================================================================================== def generate_single_t1_experiment(qubits: Union[int, List[int]], time: float, n_shots: int = 1000) -> Program: """ Return a t1 program in native Quil for a single time point. :param qubits: Which qubits to measure. :param time: The decay time before measurement. :param n_shots: The number of shots to average over for the data point. :return: A T1 Program. """ program = Program() try: len(qubits) except TypeError: qubits = [qubits] ro = program.declare('ro', 'BIT', len(qubits)) for q in qubits: program += RX(np.pi, q) program += Pragma('DELAY', [q], str(time)) for i in range(len(qubits)): program += MEASURE(qubits[i], ro[i]) program.wrap_in_numshots_loop(n_shots) return program def generate_t1_experiments(qubits: Union[int, List[int]], stop_time: float, n_shots: int = 1000, n_points: int = 15) -> pd.DataFrame: """ Return a DataFrame containing programs which ran in sequence constitute a t1 experiment to measure the decay time from the excited state to ground state. :param qubits: Which qubits to measure. :param stop_time: The maximum decay time to measure at. :param n_shots: The number of shots to average over for each data point. :param num_points: The number of points for each t1 curve. :return: A dataframe with columns: time, t1 program """ start_time = 0 time_and_programs = [] for t in np.linspace(start_time, stop_time, n_points): t = round(t, 7) # try to keep time on 100ns boundaries time_and_programs.append({ 'Time': t, 'Program': generate_single_t1_experiment(qubits, t, n_shots) }) return pd.DataFrame(time_and_programs) def acquire_data_t1(qc: QuantumComputer, t1_experiment: pd.DataFrame, ) -> pd.DataFrame: """ Execute experiments to measure the T1 decay time of 1 or more qubits. :param qc: The QuantumComputer to run the experiment on :param t1_experiment: A pandas DataFrame with columns: time, t1 program :return: pandas DataFrame """ results = [] for index, row in t1_experiment.iterrows(): t = row['Time'] program = row['Program'] executable = qc.compiler.native_quil_to_executable(program) bitstrings = qc.run(executable) qubits = list(program.get_qubits()) for i in range(len(qubits)): avg = np.mean(bitstrings[:, i]) results.append({ 'Qubit': qubits[i], 'Time': t, 'Num_bitstrings': len(bitstrings), 'Average': float(avg), 'Program': program, }) df = pd.DataFrame(results) return df def estimate_t1(df: pd.DataFrame): """ Estimate T1 from experimental data. :param df: A pandas DataFrame of experimental T1 results to plot :return: pandas DataFrame """ results = [] for q in df['Qubit'].unique(): df2 = df[df['Qubit'] == q].sort_values('Time') x_data = df2['Time'] y_data = df2['Average'] try: fit_params, fit_params_errs = fit_to_exponential_decay_curve(x_data, y_data) results.append({ 'Qubit': q, 'T1': fit_params[1] / MICROSECOND, 'Fit_params': fit_params, 'Fit_params_errs': fit_params_errs, 'Message': None, }) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") results.append({ 'Qubit': q, 'T1': None, 'Fit_params': None, 'Fit_params_errs': None, 'Message': 'Could not fit to experimental data for qubit' + str(q), }) return results def plot_t1_estimate_over_data(df: pd.DataFrame, qubits: list = None, filename: str = None) -> None: """ Plot T1 experimental data and estimated value of T1 as and exponential decay curve. :param df: A pandas DataFrame experimental results to plot and fit exponential decay curve to. :param qubits: A list of qubits that you actually want plotted. The default is all qubits. :param qc_type: String indicating whether QVM or QPU was used to collect data. :return: None """ if qubits is None: qubits = df['Qubit'].unique().tolist() # check the user specified valid qubits for qbx in qubits: if qbx not in df['Qubit'].unique(): raise ValueError("The list of qubits does not match the ones you experimented on.") for q in qubits: df2 = df[df['Qubit'] == q].sort_values('Time') x_data = df2['Time'] y_data = df2['Average'] plt.plot(x_data / MICROSECOND, y_data, 'o-', label=f"QC{q} T1 data") try: fit_params, fit_params_errs = fit_to_exponential_decay_curve(x_data, y_data) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") else: plt.plot(x_data / MICROSECOND, exponential_decay_curve(x_data, *fit_params), label=f"QC{q} fit: T1={fit_params[1] / MICROSECOND:.2f}us") plt.xlabel("Time [us]") plt.ylabel("Pr(measuring 1)") plt.title("T1 decay") plt.legend(loc='best') plt.tight_layout() if filename is not None: plt.savefig(filename) plt.show() # ================================================================================================== # T2 star and T2 echo functions # ================================================================================================== def generate_single_t2_star_experiment(qubits: Union[int, List[int]], time: float, detuning: float, n_shots: int = 1000) -> Program: """ Return a T2 star program in native Quil for a single time point. :param qubits: Which qubits to measure. :param time: The decay time before measurement. :param detuning: The additional detuning frequency about the z axis. :param n_shots: The number of shots to average over for the data point. :return: A T2 Program. """ program = Program() try: len(qubits) except TypeError: qubits = [qubits] ro = program.declare('ro', 'BIT', len(qubits)) for q in qubits: program += RX(np.pi / 2, q) program += Pragma('DELAY', [q], str(time)) program += RZ(2 * np.pi * time * detuning, q) program += RX(np.pi / 2, q) for i in range(len(qubits)): program += MEASURE(qubits[i], ro[i]) program.wrap_in_numshots_loop(n_shots) return program def generate_t2_star_experiments(qubits: Union[int, List[int]], stop_time: float, detuning: float = 5e6, n_shots: int = 1000, num_points: int = 15) -> pd.DataFrame: """ Return a DataFrame containing programs which ran in sequence constitute a T2 star experiment to measure the T2 star coherence decay time. :param qubits: Which qubits to measure. :param stop_time: The maximum decay time to measure at. :param detuning: The additional detuning frequency about the z axis. :param n_shots: The number of shots to average over for each data point. :param num_points: The number of points for each T2 curve. :return: pandas DataFrame with columns: time, program, detuning """ start_time = 0 time_and_programs = [] for t in np.linspace(start_time, stop_time, num_points): # TODO: avoid aliasing while being mindful of the 20ns resolution in the QCS stack time_and_programs.append({ 'Time': t, 'Program': generate_single_t2_star_experiment(qubits, t, detuning, n_shots=n_shots), 'Detuning': detuning, }) return pd.DataFrame(time_and_programs) def generate_single_t2_echo_experiment(qubits: Union[int, List[int]], time: float, detuning: float, n_shots: int = 1000) -> Program: """ Return a T2 echo program in native Quil for a single time point. :param qubits: Which qubits to measure. :param time: The decay time before measurement. :param detuning: The additional detuning frequency about the z axis. :param n_shots: The number of shots to average over for the data point. :return: A T2 Program. """ program = Program() try: len(qubits) except TypeError: qubits = [qubits] ro = program.declare('ro', 'BIT', len(qubits)) for q in qubits: # prepare plus state |+> program += RX(np.pi / 2, q) # wait half of the delay program += Pragma('DELAY', [q], str(time / 2)) # apply an X gate compiled out of RX(90) program += RX(np.pi / 2, q) program += RX(np.pi / 2, q) # wait the other half of the delay program += Pragma('DELAY', [q], str(time / 2)) program += RZ(2 * np.pi * time * detuning, q) program += RX(np.pi / 2, q) for i in range(len(qubits)): program += MEASURE(qubits[i], ro[i]) program.wrap_in_numshots_loop(n_shots) return program def generate_t2_echo_experiments(qubits: Union[int, List[int]], stop_time: float, detuning: float = 5e6, n_shots: int = 1000, num_points: int = 15) -> pd.DataFrame: """ Return a DataFrame containing programs which ran in sequence constitute a T2 echo experiment to measure the T2 echo coherence decay time. :param qubits: Which qubits to measure. :param stop_time: The maximum decay time to measure at. :param detuning: The additional detuning frequency about the z axis. :param n_shots: The number of shots to average over for each data point. :param num_points: The number of points for each T2 curve. :return: pandas DataFrame with columns: time, program, detuning """ start_time = 0 time_and_programs = [] for t in np.linspace(start_time, stop_time, num_points): # TODO: avoid aliasing while being mindful of the 20ns resolution in the QCS stack time_and_programs.append({ 'Time': t, 'Program': generate_single_t2_echo_experiment(qubits, t, detuning, n_shots=n_shots), 'Detuning': detuning, }) return pd.DataFrame(time_and_programs) def acquire_data_t2(qc: QuantumComputer, t2_experiment: pd.DataFrame, ) -> pd.DataFrame: """ Execute experiments to measure the T2 star or T2 echo decay time of 1 or more qubits. :param qc: The QuantumComputer to run the experiment on :param t2_experiment: A pandas DataFrame containing: time, T2 program :param detuning: The additional detuning frequency about the z axis. :return: pandas DataFrame containing T2 results, and detuning used in creating experiments for those results. """ results = [] for index, row in t2_experiment.iterrows(): t = row['Time'] program = row['Program'] detuning = row['Detuning'] executable = qc.compiler.native_quil_to_executable(program) bitstrings = qc.run(executable) qubits = list(program.get_qubits()) for i in range(len(qubits)): avg = np.mean(bitstrings[:, i]) results.append({ 'Qubit': qubits[i], 'Time': t, 'Num_bitstrings': len(bitstrings), 'Average': float(avg), 'Detuning': float(detuning), }) return pd.DataFrame(results) def estimate_t2(df: pd.DataFrame) -> pd.DataFrame: """ Estimate T2 star or T2 echo from experimental data. :param df: A pandas DataFrame with experimental T2 results :param detuning: Detuning frequency used in experiment creation :return: pandas DataFrame """ results = [] for q in df['Qubit'].unique(): df2 = df[df['Qubit'] == q].sort_values('Time') x_data = df2['Time'] y_data = df2['Average'] detuning = df2['Detuning'].values[0] try: fit_params, fit_params_errs = fit_to_exponentially_decaying_sinusoidal_curve(x_data, y_data, detuning) results.append({ 'Qubit': q, 'T2': fit_params[1] / MICROSECOND, 'Freq': fit_params[2] / MHZ, 'Fit_params': fit_params, 'Fit_params_errs': fit_params_errs, 'Message': None, }) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") results.append({ 'Qubit': q, 'T2': None, 'Freq': None, 'Fit_params': None, 'Fit_params_errs': None, 'Message': 'Could not fit to experimental data for qubit' + str(q), }) return pd.DataFrame(results) def plot_t2_estimate_over_data(df: pd.DataFrame, qubits: list = None, t2_type: str = 'unknown', filename: str = None) -> None: """ Plot T2 star or T2 echo experimental data and estimated value of T1 as and exponential decay curve. :param df: A pandas DataFrame containing experimental results to plot. :param qubits: A list of qubits that you actually want plotted. The default is all qubits. :param detuning: Detuning frequency used in experiment creation. :param type: String either 'star' or 'echo'. :param filename: String. :return: None """ if qubits is None: qubits = df['Qubit'].unique().tolist() # check the user specified valid qubits for qbx in qubits: if qbx not in df['Qubit'].unique(): raise ValueError("The list of qubits does not match the ones you experimented on.") for q in qubits: df2 = df[df['Qubit'] == q].sort_values('Time') x_data = df2['Time'] y_data = df2['Average'] detuning = df2['Detuning'].values[0] plt.plot(x_data / MICROSECOND, y_data, 'o-', label=f"Qubit {q} T2 data") try: fit_params, fit_params_errs = fit_to_exponentially_decaying_sinusoidal_curve(x_data, y_data, detuning) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") else: plt.plot(x_data / MICROSECOND, exponentially_decaying_sinusoidal_curve(x_data, *fit_params), label=f"QC{q} fit: freq={fit_params[2] / MHZ:.2f}MHz, " f""f"T2={fit_params[1] / MICROSECOND:.2f}us") plt.xlabel("Time [µs]") plt.ylabel("Pr(measuring 1)") if t2_type.lower() == 'star': plt.title("$T_2^*$ (Ramsey) decay") elif t2_type.lower() == 'echo': plt.title("$T_2$ (Echo) decay") else: plt.title("$T_2$ (unknown) decay") plt.legend(loc='best') plt.tight_layout() if filename is not None: plt.savefig(filename) plt.show() # ================================================================================================== # TODO CPMG # ================================================================================================== # ================================================================================================== # Rabi # ================================================================================================== def generate_single_rabi_experiment(qubits: Union[int, List[int]], theta: float, n_shots: int = 1000) -> Program: """ Return a Rabi program in native Quil rotated through the given angle. Rabi oscillations are observed by applying successively larger rotations to the same initial state. :param qubits: Which qubits to measure. :param theta: The angle of the Rabi RX rotation. :param n_shots: The number of shots to average over for the data point. :return: A Program that rotates through a given angle about the X axis. """ program = Program() try: len(qubits) except TypeError: qubits = [qubits] ro = program.declare('ro', 'BIT', len(qubits)) for q in qubits: program += RX(theta, q) for i in range(len(qubits)): program += MEASURE(qubits[i], ro[i]) program.wrap_in_numshots_loop(n_shots) return program def generate_rabi_experiments(qubits: Union[int, List[int]], n_shots: int = 1000, num_points: int = 15) -> pd.DataFrame: """ Return a DataFrame containing programs which, when run in sequence, constitute a Rabi experiment. Rabi oscillations are observed by applying successively larger rotations to the same initial state. :param qubits: Which qubits to measure. :param n_shots: The number of shots to average over for each data point :param num_points: The number of points for each Rabi curve :return: pandas DataFrame with columns: angle, program """ angle_and_programs = [] for theta in np.linspace(0.0, 2 * np.pi, num_points): angle_and_programs.append({ 'Angle': theta, 'Program': generate_single_rabi_experiment(qubits, theta, n_shots), }) return pd.DataFrame(angle_and_programs) def acquire_data_rabi(qc: QuantumComputer, rabi_experiment: pd.DataFrame, filename: str = None) -> pd.DataFrame: """ Execute experiments to measure Rabi flop one or more qubits. :param qc: The QuantumComputer to run the experiment on :param rabi_experiment: pandas DataFrame: (theta, Rabi program) :return: DataFrame with Rabi results """ results = [] for index, row in rabi_experiment.iterrows(): theta = row['Angle'] program = row['Program'] executable = qc.compiler.native_quil_to_executable(program) bitstrings = qc.run(executable) qubits = list(program.get_qubits()) for i in range(len(qubits)): avg = np.mean(bitstrings[:, i]) results.append({ 'Qubit': qubits[i], 'Angle': theta, 'Num_bitstrings': len(bitstrings), 'Average': float(avg), }) if filename: pd.DataFrame(results).to_json(filename) return pd.DataFrame(results) def estimate_rabi(df: pd.DataFrame): """ Estimate Rabi oscillation from experimental data. :param df: Experimental Rabi results to estimate :return: pandas DataFrame """ results = [] for q in df['Qubit'].unique(): df2 = df[df['Qubit'] == q].sort_values('Angle') angles = df2['Angle'] prob_of_one = df2['Average'] try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(angles, prob_of_one) results.append({ 'Qubit': q, 'Angle': fit_params[1], 'Prob_of_one': fit_params[2], 'Fit_params': fit_params, 'Fit_params_errs': fit_params_errs, 'Message': None, }) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") results.append({ 'Qubit': q, 'Angle': None, 'Prob_of_one': None, 'Fit_params': None, 'Fit_params_errs': None, 'Message': 'Could not fit to experimental data for qubit' + str(q), }) return pd.DataFrame(results) def plot_rabi_estimate_over_data(df: pd.DataFrame, qubits: list = None, filename: str = None) -> None: """ Plot Rabi oscillation experimental data and estimated curve. :param df: Experimental results to plot and fit curve to. :param qubits: A list of qubits that you actually want plotted. The default is all qubits. :param filename: String. :return: None """ if qubits is None: qubits = df['Qubit'].unique().tolist() # check the user specified valid qubits for qbx in qubits: if qbx not in df['Qubit'].unique(): raise ValueError("The list of qubits does not match the ones you experimented on.") for q in qubits: df2 = df[df['Qubit'] == q].sort_values('Angle') angles = df2['Angle'] prob_of_one = df2['Average'] # plot raw data plt.plot(angles, prob_of_one, 'o-', label=f"qubit {q} Rabi data") try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(angles, prob_of_one) except RuntimeError: print(f"Could not fit to experimental data for qubit {q}") else: # overlay fitted sinusoidal curve plt.plot(angles, sinusoidal_waveform(angles, *fit_params), label=f"qubit {q} fitted line") plt.xlabel("RX angle [rad]") plt.ylabel("Pr($|1\langle)") plt.title("Rabi flop") plt.legend(loc='best') plt.tight_layout() if filename is not None: plt.savefig(filename) plt.show() # ================================================================================================== # CZ phase Ramsey # ================================================================================================== def generate_cz_phase_ramsey_program(qb: int, other_qb: int, n_shots: int = 1000) -> Program: """ Generate a single CZ phase Ramsey experiment at a given phase. :param qb: The qubit to move around the Bloch sphere and measure the incurred RZ on. :param other_qb: The other qubit that constitutes a two-qubit pair along with `qb`. :param n_shots: The number of shots to average over for each data point. :param phase: The phase kick to supply after playing the CZ pulse on the equator. :param num_shots: The number of shots to average over for the data point. :return: A parametric Program for performing a CZ Ramsey experiment. """ program = Program() # NOTE: only need readout register for `qb` not `other_qb` since `other_qb` is only # needed to identify which CZ gate we're using ro = program.declare('ro', 'BIT', 1) theta = program.declare('theta', 'REAL') # go to the equator program += Program(RX(np.pi / 2, qb)) # apply the CZ gate - note that CZ is symmetric, so the order of qubits doesn't matter program += Program(CZ(qb, other_qb)) # go to |1> after a phase kick program += Program(RZ(theta, qb), RX(np.pi / 2, qb)) program += MEASURE(qb, ro[0]) program.wrap_in_numshots_loop(n_shots) return program def generate_cz_phase_ramsey_experiment(edges: List[Tuple[int, int]], start_phase: float = 0.0, stop_phase: float = 2 * np.pi, num_points: int = 15, num_shots: int = 1000): ''' Returns a DataFrame of parameters and programs that constitute a CZ phase ramsey experiment. :param edges: List of Tuples containing edges that one can perform a CZ on. :param start_phase: The starting phase for the CZ phase Ramsey experiment. :param stop_phase: The stopping phase for the CZ phase Ramsey experiment. :param num_points: The number of points to sample at between the starting and stopping phase. :param num_shots: The number of shots to average over for each data point. :return: pandas DataFrame ''' cz_expriment = [] rz_qubit = [] # this is the qubit to which the RZ is applied for edge in edges: qubit, other_qubit = edge # first qubit gets RZ cz_expriment.append({ 'Edge': tuple(edge), 'Rz_qubit': qubit, 'Program': generate_cz_phase_ramsey_program(qubit, other_qubit, num_shots), 'Start_phase': start_phase, 'Stop_phase': stop_phase, 'Num_points': num_points, 'Num_shots': num_shots, }) # second qubit gets RZ cz_expriment.append({ 'Edge': tuple(edge), 'Rz_qubit': other_qubit, 'Program': generate_cz_phase_ramsey_program(other_qubit, qubit, num_shots), 'Start_phase': start_phase, 'Stop_phase': stop_phase, 'Num_points': num_points, 'Num_shots': num_shots, }) return pd.DataFrame(cz_expriment) def acquire_data_cz_phase_ramsey(qc: QuantumComputer, cz_experiment: pd.DataFrame, filename: str = None) -> pd.DataFrame: """ Execute experiments to measure the RZ incurred as a result of a CZ gate. :param qc: The qubit to move around the Bloch sphere and measure the incurred RZ on :param cz_experiment: pandas DataFrame :param filename: The name of the file to write JSON-serialized results to :return: pandas DataFrame """ results = [] for index, row in cz_experiment.iterrows(): parametric_ramsey_prog = row['Program'] edge = row['Edge'] rz_qb = row['Rz_qubit'] start_phase = row['Start_phase'] stop_phase = row['Stop_phase'] num_points = row['Num_points'] num_shots = row['Num_shots'] binary = compile_parametric_program(qc, parametric_ramsey_prog, num_shots=num_shots) qc.qam.load(binary) for theta in np.linspace(start_phase, stop_phase, num_points): qc.qam.write_memory(region_name='theta', value=theta) qc.qam.run() qc.qam.wait() bitstrings = qc.qam.read_from_memory_region(region_name="ro") avg = np.mean(bitstrings[:, 0]) results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Phase': theta, 'Num_bitstrings': len(bitstrings), 'Average': float(avg), }) if filename: pd.DataFrame(results).to_json(filename) return pd.DataFrame(results) def estimate_cz_phase_ramsey(df: pd.DataFrame) -> pd.DataFrame: """ Estimate CZ phase ramsey experimental data. :param df: Experimental results to plot and fit exponential decay curve to. :param detuning: Detuning frequency used in experiment creation. :return: List of dicts. """ results = [] edges = df['Edge'].unique() for id_row, edge in enumerate(edges): for id_col, qubit in enumerate(edge): qubit_df = df[(df['Rz_qubit'] == qubit) & (df['Edge'] == edge)].sort_values('Phase') phases = qubit_df['Phase'] prob_of_one = qubit_df['Average'] rz_qb = qubit_df['Rz_qubit'].values[0] try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(phases, prob_of_one) results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Angle': fit_params[1], 'Prob_of_one': fit_params[2], 'Fit_params': fit_params, 'Fit_params_errs': fit_params_errs, 'Message': None, }) except RuntimeError: print(f"Could not fit to experimental data for edge {edge}") results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Angle': None, 'Prob_of_one': None, 'Fit_params': None, 'Fit_params_errs': None, 'Message': 'Could not fit to experimental data for edge' + str(edge), }) return pd.DataFrame(results) def plot_cz_phase_estimate_over_data(df: pd.DataFrame, filename: str = None) -> None: """ Plot Ramsey experimental data, the fitted sinusoid, and the maximum of that sinusoid. :param df: Experimental results to plot and fit exponential decay curve to. :return: None """ edges = df['Edge'].unique() if len(edges) == 1: # this deals with the one edge case, then plot will have an empty row # if you don't do this you get `axes.shape = (2,)` fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(24, 30)) else: fig, axes = plt.subplots(nrows=len(edges), ncols=2, figsize=(24, 10 * len(edges))) for id_row, edge in enumerate(edges): for id_col, qubit in enumerate(edge): qubit_df = df[(df['Rz_qubit'] == qubit) & (df['Edge'] == edge)].sort_values('Phase') phases = qubit_df['Phase'] prob_of_one = qubit_df['Average'] # plot raw data axes[id_row, id_col].plot(phases, prob_of_one, 'o', label=f"qubit{qubit} CZ Ramsey data") try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(phases, prob_of_one) except RuntimeError: print(f"Could not fit to experimental data for qubit {qubit}") else: # find max excited state visibility (ESV) and propagate error from fit params max_ESV, max_ESV_err = get_peak_from_fit_params(fit_params, fit_params_errs) # overlay fitted curve and vertical line at maximum ESV axes[id_row, id_col].plot(phases, sinusoidal_waveform(phases, *fit_params), label=f"QC{qubit} fitted line") axes[id_row, id_col].axvline(max_ESV, label=f"QC{qubit} max ESV={max_ESV:.3f}+/-{max_ESV_err:.3f} rad") axes[id_row, id_col].set_xlabel("Phase on second +X/2 gate [rad]") axes[id_row, id_col].set_ylabel("Pr($|1\langle)") axes[id_row, id_col].set_title(f"CZ Phase Ramsey fringes on QC{qubit}\n" f"due to CZ_{edge[0]}_{edge[1]} application") axes[id_row, id_col].legend(loc='best') if filename is not None: plt.savefig(filename) plt.show() # ================================================================================================== # Fits and so forth # ================================================================================================== def exponential_decay_curve(t: Union[float, np.ndarray], amplitude: float, time_decay_constant: float, t_offset: float = 0.0) -> Union[float, np.ndarray]: """ Calculate exponential decay at a series of points. :param t: The independent variable with respect to which decay is calculated. :param amplitude: The amplitude of the decay curve. :param time_decay_constant: The time decay constant - in this case T1 - of the decay curve. :param t_offset: The time offset of the curve, assumed to be 0.0. :return: The exponential decay at the point(s) in time. """ return amplitude * np.exp(-1 * (t - t_offset) / time_decay_constant) def fit_to_exponential_decay_curve(x_data: np.ndarray, y_data: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to exponential decay curve. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :return: Arrays of fitted decay curve parameters and their errors """ params, params_covariance = optimize.curve_fit(exponential_decay_curve, x_data, y_data, p0=[1.0, 15e-6, 0.0]) # parameter error extraction from # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html params_errs = np.sqrt(np.diag(params_covariance)) return params, params_errs def sinusoidal_waveform(x: float, amplitude: float, baseline: float, frequency: float, x_offset: float) -> np.ufunc: """ Calculate sinusoidal response at a series of points. :param x: The independent variable with respect to which the sinusoidal response is calculated. :param amplitude: The amplitude of the sinusoid. :param baseline: The baseline of the sinusoid. :param frequency: The frequency of the sinusoid. :param x_offset: The x offset of the sinusoid. :return: The sinusoidal response at the given phases(s). """ return amplitude * np.sin(frequency * x + x_offset) + baseline def fit_to_sinusoidal_waveform(x_data: np.ndarray, y_data: List[float], displayflag: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to sinusoid. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :param displayflag: If True displays results from scipy curve fit analysis. :return: Arrays of fitted decay curve parameters and their standard deviations """ params, params_covariance = optimize.curve_fit(sinusoidal_waveform, x_data, y_data, p0=[0.5, 0.5, 1.0, np.pi / 2]) # parameter error extraction from # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html params_errs = np.sqrt(np.diag(params_covariance)) # interleave params and params_errs print_params = [] for idx in range(len(params)): print_params.append(params[idx]) print_params.append(params_errs[idx]) if displayflag: print("scipy curve fitting analysis returned\n" "amplitude:\t{:.5f} +/- {:.5f}\n" "baseline:\t{:.5f} +/- {:.5f}\n" "frequency:\t{:.5f} +/- {:.5f}\n" "x offset:\t{:.5f} +/- {:.5f}".format(*print_params)) return params, params_errs def get_peak_from_fit_params(fit_params: np.ndarray, fit_params_errs: np.ndarray) -> Tuple[float, float]: """ Extract peak from the fit parameters returned by scipy.optimize.curve_fit. :param fit_params: fit parameters out of scipy.optimize.curve_fit :param fit_params_errs: standard deviations on the fit parameters from scipy.optimize.curve_fit :return: The phase corresponding the to the maximum excited state visibility and its st. dev. """ # TODO: do away with hard-coded indices for fit params x0 = fit_params[-1] x0_err = fit_params_errs[-1] freq = fit_params[-2] freq_err = fit_params_errs[-2] print("propagating error using x_0 = {} +/- {} and freq = {} +/- {}".format(x0, x0_err, freq, freq_err)) # find the phase corresponding to maximum excited state visibility (ESV) using the fit params max_ESV = (np.pi / 2 - x0) / freq # max_ESV_err obtained by applying error propagation formula to max_ESV max_ESV_err = np.sqrt((x0_err / freq) ** 2 + ((np.pi / 2 - x0) * (freq_err / freq ** 2)) ** 2) print("\nmaximum excited state visibility observed at x = {} +/- {}".format(max_ESV, max_ESV_err)) return max_ESV, max_ESV_err def exponentially_decaying_sinusoidal_curve(t: Union[float, np.ndarray], amplitude: float, time_decay_constant: float, frequency: float, baseline: float, sin_t_offset: float = 0.0) -> Union[float, np.ndarray]: """ Calculate exponentially decaying sinusoid at a series of points. :param t: The independent variable with respect to which decay is calculated. :param amplitude: The amplitude of the decay curve. :param time_decay_constant: The time decay constant - in this case T2 - of the decay curve. :param frequency: The frequency to fit to the Ramsey fringes. :param baseline: The baseline of the Ramsey fringes. :param sin_t_offset: The time offset of the sinusoidal curve, assumed to be 0.0. :return: The exponentially decaying sinusoid evaluated at the point(s) in time. """ return amplitude * np.exp(-1 * t / time_decay_constant) * \ np.sin(frequency * (t - sin_t_offset)) + baseline def fit_to_exponentially_decaying_sinusoidal_curve(x_data: np.ndarray, y_data: np.ndarray, detuning: float = 5e6) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to exponential decay curve. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :param detuning: Detuning frequency used in experiment creation. :return: Arrays of fitted decay curve parameters and their errors """ params, params_covariance = optimize.curve_fit(exponentially_decaying_sinusoidal_curve, x_data, y_data, p0=[0.5, 15e-6, detuning, 0.5, 0.0]) # parameter error extraction from # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html params_errs = np.sqrt(np.diag(params_covariance)) return params, params_errs def compile_parametric_program(qc: QuantumComputer, parametric_prog: Program, num_shots: int = 1000) -> None: """ Compile the parametric program, and transfer the binary to the quantum device. :param qc: The QuantumComputer to run the experiment on. :param parametric_prog: The parametric program to compile and transfer to the quantum device. :param num_shots: The number of shots to average over for each data point. :return: The binary from the compiled parametric program. """ parametric_prog.wrap_in_numshots_loop(shots=num_shots) binary = qc.compiler.native_quil_to_executable(parametric_prog) return binary def remove_qubits_from_qubit_list(qubit_list: List[int], qubits_to_remove: Union[int, List[int]]) -> Union[int, List[int]]: """ Remove the selected qubits from the given list and return the pruned list. :param qubit_list: The qubit list to remove the selected qubits from. :param qubits_to_remove: The qubits to remove from the selected list. :return: The given qubit list with the selected qubits removed """ # cast qubits_to_remove as a list try: len(qubits_to_remove) except TypeError: qubits_to_remove = [qubits_to_remove] # remove list of qubits_to_remove new_qubit_list = list(set(qubit_list) - set(qubits_to_remove)) # return an int or a list, as appropriate if len(new_qubit_list) == 1: return new_qubit_list[0] else: return new_qubit_list
StarcoderdataPython
4800847
# vim: fileencoding=utf-8 import fnmatch import os import werkzeug from docutils import nodes from docutils.core import publish_parts from docutils.parsers.rst import Directive, directives from pygments import highlight from pygments.formatters import HtmlFormatter from pygments.lexers import LEXERS, guess_lexer_for_filename, TextLexer from blikit import utils from blikit.models import BlobObject from blikit.docutilsext import Writer class Document(object): title = None description = None body = None author_name = None last_modified = None created = None def __init__(self, **attrs): for name, value in attrs.iteritems(): if name.startswith('_'): continue setattr(self, name, value) renderer_map = [] def register_for(*pats): def _register_for(func): for p in pats: renderer_map.append((p, func)) return func return _register_for def render_blob(ctx, blob_obj): u'''render BlobObject as HTML portion using proper render function return <Document object> if there is no render function for this object, return None ''' if blob_obj.commit.sha is None: # IndexObject # don't cache pass else: cache_key = 'render.render_blob:%s:%s' % \ (blob_obj.commit.sha, blob_obj.abs_name) cached = ctx.app.cache.get(cache_key) if cached is not None: return cached if not isinstance(blob_obj, BlobObject): # TODO: raise proper exception # XXX: may this function treat TreeObject? raise Exception for p, func in renderer_map: if fnmatch.fnmatch(blob_obj.name, p): result = func(ctx, blob_obj) break else: result = None if isinstance(result, Document): if result.author_name is None: result.author_name = blob_obj.author_name if result.last_modified is None: result.last_modified = blob_obj.last_modified if result.created is None: result.created = blob_obj.created if blob_obj.commit.sha is not None: ctx.app.cache.set(cache_key, result) return result @register_for('*.txt') def render_text(ctx, blob_obj): udata = blob_obj.data.decode('utf-8', 'replace') return Document(title=blob_obj.name, body=u'<pre>' + werkzeug.escape(udata) + u'</pre>') @register_for('*.rst') def render_rst(ctx, blob_obj): parts = publish_parts(blob_obj.data, writer=Writer(), settings_overrides={'initial_header_level': 2, 'syntax_highlight': 'short', 'ctx': ctx, 'obj': blob_obj}) parts['description'] = parts['title'] return Document(**parts) @register_for('*.png', '*.jpg', '*.jpeg', '*.gif') def render_images(ctx, blob_obj): w, h = utils.calc_thumb_size(blob_obj.data, (640, 480)) url = ctx.url_for('view_obj', rev=blob_obj.commit.name, path=blob_obj.root_path) raw_url = url + '?raw=1' body = '<a href="%s"><img src="%s" width="%d" height="%s"></a>' % \ (raw_url, raw_url, w, h) return Document(title=blob_obj.name, body=body) formatter = HtmlFormatter(noclasses=True, linenos=True) @register_for(*[p for l in LEXERS.values() for p in l[3]]) def render_sourcecode(ctx, blob_obj): try: data = blob_obj.data.decode('utf-8') except UnicodeDecodeError: data = blob_obj.data try: lexer = guess_lexer_for_filename(blob_obj.name, data) except ValueError: # no lexer found - use the text one instead of an exception lexer = TextLexer() return Document(title=blob_obj.name, description=lexer.name, body=highlight(data, lexer, formatter)) @register_for('*') def render_default(ctx, blob_obj): if '\x00' in blob_obj.data: # maybe binary file # display download link escaped = werkzeug.escape(blob_obj.name) body = '<a href="%s?raw=1">download "%s"</a>' % (escaped, escaped) return Document(title=blob_obj.name, body=body) else: # maybe some text file # render like *.txt return render_text(ctx, blob_obj)
StarcoderdataPython
3253940
<gh_stars>0 #!/usr/bin/env python from multi_circle_2 import Multi_circle_2 if __name__ == '__main__': multi_circle_2 = Multi_circle_2( [ #x , y, z, yaw, sleep [0.0 , 0.0, 1.0, 0, 8], [0.0 , 0.0 ,1.0, 0, 3], [-0.3 , -1.4, 0.0, 0, 0], ] ) multi_circle_2.run()
StarcoderdataPython
1786055
<filename>ThirdParty/incremental/vtkincremental/src/incremental/__init__.py<gh_stars>1-10 # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Versions for Python packages. See L{Version}. """ from __future__ import division, absolute_import import os import sys import warnings # # Compat functions # if sys.version_info < (3, 0): _PY3 = False else: _PY3 = True unicode = str def _nativeString(s): """ Convert C{bytes} or C{unicode} to the native C{str} type, using ASCII encoding if conversion is necessary. @raise UnicodeError: The input string is not ASCII encodable/decodable. @raise TypeError: The input is neither C{bytes} nor C{unicode}. """ if not isinstance(s, (bytes, unicode)): raise TypeError("%r is neither bytes nor unicode" % s) if _PY3: if isinstance(s, bytes): return s.decode("ascii") else: # Ensure we're limited to ASCII subset: s.encode("ascii") else: if isinstance(s, unicode): return s.encode("ascii") else: # Ensure we're limited to ASCII subset: s.decode("ascii") return s try: _cmp = cmp except NameError: def _cmp(a, b): """ Compare two objects. Returns a negative number if C{a < b}, zero if they are equal, and a positive number if C{a > b}. """ if a < b: return -1 elif a == b: return 0 else: return 1 def _comparable(klass): """ Class decorator that ensures support for the special C{__cmp__} method. On Python 2 this does nothing. On Python 3, C{__eq__}, C{__lt__}, etc. methods are added to the class, relying on C{__cmp__} to implement their comparisons. """ # On Python 2, __cmp__ will just work, so no need to add extra methods: if not _PY3: return klass def __eq__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c == 0 def __ne__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c != 0 def __lt__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c < 0 def __le__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c <= 0 def __gt__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c > 0 def __ge__(self, other): c = self.__cmp__(other) if c is NotImplemented: return c return c >= 0 klass.__lt__ = __lt__ klass.__gt__ = __gt__ klass.__le__ = __le__ klass.__ge__ = __ge__ klass.__eq__ = __eq__ klass.__ne__ = __ne__ return klass # # Versioning # @_comparable class _inf(object): """ An object that is bigger than all other objects. """ def __cmp__(self, other): """ @param other: Another object. @type other: any @return: 0 if other is inf, 1 otherwise. @rtype: C{int} """ if other is _inf: return 0 return 1 _inf = _inf() class IncomparableVersions(TypeError): """ Two versions could not be compared. """ @_comparable class Version(object): """ An encapsulation of a version for a project, with support for outputting PEP-440 compatible version strings. This class supports the standard major.minor.micro[rcN] scheme of versioning, with support for "local versions" which may include a SVN revision or Git SHA1 hash. """ def __init__(self, package, major, minor, micro, release_candidate=None, prerelease=None, dev=None): """ @param package: Name of the package that this is a version of. @type package: C{str} @param major: The major version number. @type major: C{int} or C{str} (for the "NEXT" symbol) @param minor: The minor version number. @type minor: C{int} @param micro: The micro version number. @type micro: C{int} @param release_candidate: The release candidate number. @type release_candidate: C{int} @param prerelease: The prerelease number. (Deprecated) @type prerelease: C{int} @param dev: The development release number. @type dev: C{int} """ if release_candidate and prerelease: raise ValueError("Please only return one of these.") elif prerelease and not release_candidate: release_candidate = prerelease warnings.warn(("Passing prerelease to incremental.Version was " "deprecated in Incremental 16.9.0. Please pass " "release_candidate instead."), DeprecationWarning, stacklevel=2) if major == "NEXT": if minor or micro or release_candidate or dev: raise ValueError(("When using NEXT, all other values except " "Package must be 0.")) self.package = package self.major = major self.minor = minor self.micro = micro self.release_candidate = release_candidate self.dev = dev @property def prerelease(self): warnings.warn(("Accessing incremental.Version.prerelease was " "deprecated in Incremental 16.9.0. Use " "Version.release_candidate instead."), DeprecationWarning, stacklevel=2), return self.release_candidate def short(self): """ Return a string in canonical short version format, <major>.<minor>.<micro>[+rSVNVer/+gitsha1]. """ s = self.base() gitver = self._getGitVersion() if not gitver: svnver = self._getSVNVersion() if svnver: s += '+r' + _nativeString(svnver) else: s += '+' + gitver return s def local(self): """ Return a PEP440-compatible "local" representation of this L{Version}. This includes a SVN revision or Git commit SHA1 hash, if available. Examples: - 14.4.0+r1223 - 1.2.3rc1+rb2e812003b5d5fcf08efd1dffed6afa98d44ac8c - 12.10.1 - 3.4.8rc2 - 11.93.0rc1dev3 """ return self.short() def public(self): """ Return a PEP440-compatible "public" representation of this L{Version}. Examples: - 14.4.0 - 1.2.3rc1 - 14.2.1rc1dev9 - 16.04.0dev0 """ return self.base() def base(self): """ Like L{short}, but without the +rSVNVer or @gitsha1. """ if self.major == "NEXT": return self.major if self.release_candidate is None: rc = "" else: rc = "rc%s" % (self.release_candidate,) if self.dev is None: dev = "" else: dev = "dev%s" % (self.dev,) return '%r.%d.%d%s%s' % (self.major, self.minor, self.micro, rc, dev) def __repr__(self): # Git repr gitver = self._formatGitVersion() if gitver: gitver = ' #' + gitver # SVN repr svnver = self._formatSVNVersion() if svnver: svnver = ' #' + svnver if self.release_candidate is None: release_candidate = "" else: release_candidate = ", release_candidate=%r" % ( self.release_candidate,) if self.dev is None: dev = "" else: dev = ", dev=%r" % (self.dev,) return '%s(%r, %r, %d, %d%s%s)%s' % ( self.__class__.__name__, self.package, self.major, self.minor, self.micro, release_candidate, dev, gitver or svnver) def __str__(self): return '[%s, version %s]' % ( self.package, self.short()) def __cmp__(self, other): """ Compare two versions, considering major versions, minor versions, micro versions, then release candidates. Package names are case insensitive. A version with a release candidate is always less than a version without a release candidate. If both versions have release candidates, they will be included in the comparison. @param other: Another version. @type other: L{Version} @return: NotImplemented when the other object is not a Version, or one of -1, 0, or 1. @raise IncomparableVersions: when the package names of the versions differ. """ if not isinstance(other, self.__class__): return NotImplemented if self.package.lower() != other.package.lower(): raise IncomparableVersions("%r != %r" % (self.package, other.package)) if self.major == "NEXT": major = _inf else: major = self.major if self.release_candidate is None: release_candidate = _inf else: release_candidate = self.release_candidate if self.dev is None: dev = _inf else: dev = self.dev if other.major == "NEXT": othermajor = _inf else: othermajor = other.major if other.release_candidate is None: otherrc = _inf else: otherrc = other.release_candidate if other.dev is None: otherdev = _inf else: otherdev = other.dev x = _cmp((major, self.minor, self.micro, release_candidate, dev), (othermajor, other.minor, other.micro, otherrc, otherdev)) return x def _parseGitDir(self, directory): headFile = os.path.abspath(os.path.join(directory, 'HEAD')) with open(headFile, "r") as f: headContent = f.read().strip() if headContent.startswith("ref: "): with open(os.path.abspath( os.path.join(directory, headContent.split(" ")[1]))) as f: commit = f.read() return commit.strip() return headContent def _getGitVersion(self): """ Given a package directory, walk up and find the git commit sha. """ mod = sys.modules.get(self.package) if mod: basepath = os.path.dirname(mod.__file__) upOne = os.path.abspath(os.path.join(basepath, '..')) if ".git" in os.listdir(upOne): return self._parseGitDir(os.path.join(upOne, '.git')) while True: upOneMore = os.path.abspath(os.path.join(upOne, '..')) if upOneMore == upOne: return None if ".git" in os.listdir(upOneMore): return self._parseGitDir(os.path.join(upOneMore, '.git')) upOne = upOneMore def _parseSVNEntries_4(self, entriesFile): """ Given a readable file object which represents a .svn/entries file in format version 4, return the revision as a string. We do this by reading first XML element in the document that has a 'revision' attribute. """ from xml.dom.minidom import parse doc = parse(entriesFile).documentElement for node in doc.childNodes: if hasattr(node, 'getAttribute'): rev = node.getAttribute('revision') if rev is not None: return rev.encode('ascii') def _parseSVNEntries_8(self, entriesFile): """ Given a readable file object which represents a .svn/entries file in format version 8, return the revision as a string. """ entriesFile.readline() entriesFile.readline() entriesFile.readline() return entriesFile.readline().strip() # Add handlers for version 9 and 10 formats, which are the same as # version 8 as far as revision information is concerned. _parseSVNEntries_9 = _parseSVNEntries_8 _parseSVNEntriesTenPlus = _parseSVNEntries_8 def _getSVNVersion(self): """ Figure out the SVN revision number based on the existence of <package>/.svn/entries, and its contents. This requires discovering the format version from the 'format' file and parsing the entries file accordingly. @return: None or string containing SVN Revision number. """ mod = sys.modules.get(self.package) if mod: svn = os.path.join(os.path.dirname(mod.__file__), '.svn') if not os.path.exists(svn): # It's not an svn working copy return None formatFile = os.path.join(svn, 'format') if os.path.exists(formatFile): # It looks like a less-than-version-10 working copy. with open(formatFile, 'rb') as fObj: format = fObj.read().strip() parser = getattr(self, '_parseSVNEntries_' + format.decode('ascii'), None) else: # It looks like a version-10-or-greater working copy, which # has version information in the entries file. parser = self._parseSVNEntriesTenPlus if parser is None: return b'Unknown' entriesFile = os.path.join(svn, 'entries') entries = open(entriesFile, 'rb') try: try: return parser(entries) finally: entries.close() except: return b'Unknown' def _formatSVNVersion(self): ver = self._getSVNVersion() if ver is None: return '' return ' (SVN r%s)' % (ver,) def _formatGitVersion(self): ver = self._getGitVersion() if ver is None: return '' return ' (Git %s)' % (ver,) def getVersionString(version): """ Get a friendly string for the given version object. @param version: A L{Version} object. @return: A string containing the package and short version number. """ result = '%s %s' % (version.package, version.short()) return result def _get_version(dist, keyword, value): """ Get the version from the package listed in the Distribution. """ if not value: return from distutils.command import build_py sp_command = build_py.build_py(dist) sp_command.finalize_options() for item in sp_command.find_all_modules(): if item[1] == "_version": version_file = {} with open(item[2]) as f: exec(f.read(), version_file) dist.metadata.version = version_file["__version__"].public() return None raise Exception("No _version.py found.") from ._version import __version__ # noqa __all__ = ["__version__", "Version", "getVersionString"]
StarcoderdataPython
3359
def modify(y): return y # returns same reference. No new object is created x = [1, 2, 3] y = modify(x) print("x == y", x == y) print("x == y", x is y)
StarcoderdataPython
196575
import re from datetime import datetime from moto.core import get_account_id, BaseBackend from moto.core.utils import iso_8601_datetime_without_milliseconds, BackendDict from .exceptions import ( InvalidInputException, ResourceAlreadyExistsException, ResourceNotFoundException, ValidationException, ) class DatasetGroup: accepted_dataset_group_name_format = re.compile(r"^[a-zA-Z][a-z-A-Z0-9_]*") accepted_dataset_group_arn_format = re.compile(r"^[a-zA-Z0-9\-\_\.\/\:]+$") accepted_dataset_types = [ "INVENTORY_PLANNING", "METRICS", "RETAIL", "EC2_CAPACITY", "CUSTOM", "WEB_TRAFFIC", "WORK_FORCE", ] def __init__( self, region_name, dataset_arns, dataset_group_name, domain, tags=None ): self.creation_date = iso_8601_datetime_without_milliseconds(datetime.now()) self.modified_date = self.creation_date self.arn = ( "arn:aws:forecast:" + region_name + ":" + str(get_account_id()) + ":dataset-group/" + dataset_group_name ) self.dataset_arns = dataset_arns if dataset_arns else [] self.dataset_group_name = dataset_group_name self.domain = domain self.tags = tags self._validate() def update(self, dataset_arns): self.dataset_arns = dataset_arns self.last_modified_date = iso_8601_datetime_without_milliseconds(datetime.now()) def _validate(self): errors = [] errors.extend(self._validate_dataset_group_name()) errors.extend(self._validate_dataset_group_name_len()) errors.extend(self._validate_dataset_group_domain()) if errors: err_count = len(errors) message = str(err_count) + " validation error" message += "s" if err_count > 1 else "" message += " detected: " message += "; ".join(errors) raise ValidationException(message) def _validate_dataset_group_name(self): errors = [] if not re.match( self.accepted_dataset_group_name_format, self.dataset_group_name ): errors.append( "Value '" + self.dataset_group_name + "' at 'datasetGroupName' failed to satisfy constraint: Member must satisfy regular expression pattern " + self.accepted_dataset_group_name_format.pattern ) return errors def _validate_dataset_group_name_len(self): errors = [] if len(self.dataset_group_name) >= 64: errors.append( "Value '" + self.dataset_group_name + "' at 'datasetGroupName' failed to satisfy constraint: Member must have length less than or equal to 63" ) return errors def _validate_dataset_group_domain(self): errors = [] if self.domain not in self.accepted_dataset_types: errors.append( "Value '" + self.domain + "' at 'domain' failed to satisfy constraint: Member must satisfy enum value set " + str(self.accepted_dataset_types) ) return errors class ForecastBackend(BaseBackend): def __init__(self, region_name): super().__init__() self.dataset_groups = {} self.datasets = {} self.region_name = region_name def create_dataset_group(self, dataset_group_name, domain, dataset_arns, tags): dataset_group = DatasetGroup( region_name=self.region_name, dataset_group_name=dataset_group_name, domain=domain, dataset_arns=dataset_arns, tags=tags, ) if dataset_arns: for dataset_arn in dataset_arns: if dataset_arn not in self.datasets: raise InvalidInputException( "Dataset arns: [" + dataset_arn + "] are not found" ) if self.dataset_groups.get(dataset_group.arn): raise ResourceAlreadyExistsException( "A dataset group already exists with the arn: " + dataset_group.arn ) self.dataset_groups[dataset_group.arn] = dataset_group return dataset_group def describe_dataset_group(self, dataset_group_arn): try: dataset_group = self.dataset_groups[dataset_group_arn] except KeyError: raise ResourceNotFoundException("No resource found " + dataset_group_arn) return dataset_group def delete_dataset_group(self, dataset_group_arn): try: del self.dataset_groups[dataset_group_arn] except KeyError: raise ResourceNotFoundException("No resource found " + dataset_group_arn) def update_dataset_group(self, dataset_group_arn, dataset_arns): try: dsg = self.dataset_groups[dataset_group_arn] except KeyError: raise ResourceNotFoundException("No resource found " + dataset_group_arn) for dataset_arn in dataset_arns: if dataset_arn not in dsg.dataset_arns: raise InvalidInputException( "Dataset arns: [" + dataset_arn + "] are not found" ) dsg.update(dataset_arns) def list_dataset_groups(self): return [v for (_, v) in self.dataset_groups.items()] def reset(self): region_name = self.region_name self.__dict__ = {} self.__init__(region_name) forecast_backends = BackendDict(ForecastBackend, "forecast")
StarcoderdataPython
1690005
<filename>tests/api/controller/test_controller.py # (c) Copyright 2015-2016 Hewlett Packard Enterprise Development LP # (c) Copyright 2017 SUSE LLC from datetime import datetime import json import logging import mock import time from bll import api from bll.api.controllers import app_controller from bll.api.controllers.v1 import V1 from bll.common.job_status import get_job_status from tests.util import TestCase, log_level @mock.patch.object(app_controller, 'response') @mock.patch.object(app_controller, 'request') class Test(TestCase): def test_post_no_txn_id(self, _mock_request, _mock_response): _mock_request.body = json.dumps({ api.TARGET: 'general', api.DATA: { api.OPERATION: 'null', } }) reply = app_controller.AppController().post() self.assertEqual(reply[api.STATUS], api.COMPLETE) def test_status_update_no_txn_id(self, _mock_request, _mock_response): _mock_request.body = json.dumps({ api.TARGET: 'general', api.DATA: { api.OPERATION: 'null', }, api.JOB_STATUS_REQUEST: True }) with log_level(logging.CRITICAL, 'bll'): reply = app_controller.AppController().post() self.assertEqual(reply[api.STATUS], api.STATUS_ERROR) self.assertIn("No txn_id", reply[api.DATA][0][api.DATA]) self.assertTrue(_mock_response.status, 400) def test_post_request_fail(self, _mock_request, _mock_response): _mock_request.body = json.dumps({api.TARGET: 'general', api.DATA: {api.OPERATION: 'failhandle'}}) # Suppress the expected exception message with log_level(logging.CRITICAL, 'bll'): reply = app_controller.AppController().post() self.assertEqual(reply[api.STATUS], api.STATUS_ERROR) self.assertTrue(_mock_response.status, 400) def test_post_complete_fail(self, _mock_request, _mock_response): _mock_request.body = json.dumps({api.TARGET: 'general', api.DATA: {api.OPERATION: 'failcomplete'}}) # Suppress the expected exception message from service with log_level(logging.CRITICAL, 'bll.plugins.service'): reply = app_controller.AppController().post() time.sleep(0.1) txn_id = reply.get(api.TXN_ID) reply = get_job_status(txn_id) self.assertEqual(reply[api.STATUS], 'error') def test_post_complete_error(self, _mock_request, _mock_response): _mock_request.body = json.dumps({api.TARGET: 'general', api.DATA: {api.OPERATION: 'errorcomplete'}}) # Suppress the expected exception message from service with log_level(logging.CRITICAL, 'bll.plugins.service'): reply = app_controller.AppController().post() time.sleep(0.1) txn_id = reply.get(api.TXN_ID) reply = get_job_status(txn_id) self.assertEqual(reply[api.STATUS], 'error') self.assertEqual(reply[api.DATA][0][api.DATA], 'some error happened') class TestV1(TestCase): @classmethod def setUpClass(cls): super(TestCase, cls).setUpClass() cls.load_test_app() def testIndex(self): assert self.app.get('/').status_int == 200 def testV1Index(self): assert self.app.get('/v1/').status_int == 200 @mock.patch('bll.api.controllers.v1.login', return_value=type('X', (object,), dict(auth_token='foo', expires=datetime.utcnow()))) def testLogin(self, mock_login): body = {'username': 'user', 'password': '<PASSWORD>'} response = self.app.post_json('/v1/auth_token', body) self.assertEqual(200, response.status_code) @mock.patch('bll.api.controllers.v1.login', side_effect=Exception('foo')) def testFailLogin(self, _): body = {'username': 'user', 'password': '<PASSWORD>'} response = self.app.post_json('/v1/auth_token', body, expect_errors=True) self.assertEqual(401, response.status_code) def testBypassPermissions(self): # Create a request object for eula, which bypasses permission checks request = type('Request', (object,), dict(body='{"target": "eula"}')) with mock.patch('bll.api.controllers.v1.request', request): self.assertTrue(V1.check_permissions()) def testPermissionsWithoutToken(self): # Create a request object without a token request = type('Request', (object,), dict(body='{"target": "foo"}', headers='{}')) with mock.patch('bll.api.controllers.v1.request', request): self.assertFalse(V1.check_permissions()) @mock.patch('bll.api.controllers.v1.validate', return_value=True) def testPermissionsWithToken(self, _): # Create a request object with a token request = type('Request', (object,), dict(body='{"target": "foo"}', headers={"X-Auth-Token": "sometoken"})) with mock.patch('bll.api.controllers.v1.request', request): self.assertTrue(V1.check_permissions()) @mock.patch('bll.api.controllers.v1.validate', return_value=True) def testBackwardCompat(self, _): # Create an old token blob as a json string headers = """ {"management_appliance" : {"tokens": [{"auth_token" : "blah" }]}} """ # Create a bogus request object request = type('Request', (object,), dict(body='{"target": "plugins"}', headers={"X-Auth-Token": headers})) with mock.patch('bll.api.controllers.v1.request', request): self.assertTrue(V1.check_permissions()) @mock.patch('bll.api.controllers.v1.validate', return_value=True) def test_missing_service(self, _): # Suppress the expected exception message from service body = {'target': 'bogus-service'} response = self.app.post_json('/v1/bll', body, expect_errors=True) self.assertEqual(401, response.status_code)
StarcoderdataPython
54741
<reponame>Jimmy-INL/SKDMD<gh_stars>1-10 import sys import numpy as np sys.path.insert(0, '../../../') from SKDMD.MODEL_SRC.kdmd import KDMD from SKDMD.PREP_DATA_SRC.source_code.lib.utilities import timing class CKDMD(KDMD): """ Class for Kernel DMD with kernel as * Gaussian kernel * polynomial kernel * linear kernel DMD """ def __init__(self, config): super(CKDMD, self).__init__(config) self.type = 'c' self.model_dir = self.case_dir + '/' + self.type + '-kdmd-s' + str(config['sigma']) + '-r' + str(config['reduced_rank']) self.makedir(self.model_dir) def compute_deigphi_dt(self, x, xdot): # compute Ahat between x and self.X if self.kernel == 'linear': Ahat = self.computeKernelArray(xdot, self.X) elif self.kernel == 'gaussian': # dot_x^i_k * (x^i_k - x^j_k) scalar field from inner product Ahat_1 = np.tensordot(np.ones(self.X.shape[0]), xdot, axes=0) Z = np.tensordot(np.ones(self.X.shape[0]), x, axes=0) Z2 = np.tensordot(np.ones(x.shape[0]), self.X, axes=0) ZT = np.transpose(Z2,axes=(1,0,2)) ZV = Z - ZT Ahat_2 = np.einsum('ijk,ijk->ji',Ahat_1,ZV) # elementwise multiplication with the last kernel thing newGhat = self.computeKernelArray(x, self.X) Ahat = Ahat_2 * newGhat * -2.0 / (self.sigma_gaussian**2) elif self.kernel == 'polynomial': Ahat_1 = np.matmul(xdot, np.transpose(self.X)) newGhat = self.computeKernelArray(x, self.X) Ahat = self.power * np.power(newGhat, (self.power - 1)/self.power) * Ahat_1 else: raise NotImplementedError("this kernel: " + str(self.kernel) + " is not implemented!") # then compute deigen_phi_dt deigen_phi_dt = np.matmul(np.matmul(np.matmul(Ahat, self.Q), self.inverse_sigma), self.Koopman['eigenvectorHat']) return deigen_phi_dt def computeAhat(self, X, Xdot): if self.kernel == 'linear': Ahat = np.matmul(Xdot, np.transpose(X)) elif self.kernel == 'gaussian': # dot_x^i_k * (x^i_k - x^j_k) scalar field from inner product Ahat_1 = np.tensordot(np.ones(Xdot.shape[0]), Xdot, axes=0) Z = np.tensordot(np.ones(X.shape[0]), X, axes=0) ZT = np.transpose(Z,axes=(1,0,2)) ZV = Z - ZT Ahat_2 = np.einsum('ijk,ijk->ji',Ahat_1,ZV) # elementwise multiplication with the last kernel thing Ahat = Ahat_2 * self.Ghat * -2.0 / (self.sigma_gaussian**2) elif self.kernel == 'polynomial': Ahat_1 = np.matmul(Xdot, np.transpose(X)) Ahat = self.power * np.power(self.Ghat, (self.power - 1)/self.power) * Ahat_1 else: raise NotImplementedError("this kernel: " + str(self.kernel) + " is not implemented!") return Ahat @timing def train(self, X, Xdot): """ Given X and Xdot, training for Koopman eigenfunctions, eigenvalues, eigenvectors, and Koopman modes :type X: np.ndarray :param X: state of the system :type Xdot: np.ndarray :param Xdot: time derivative of the state of the system """ self.X = X self.Xdot = Xdot # prepare scaler self.prepare_scaler(self.X) # compute Koopman tuples self.compute_Koopman_analysis()
StarcoderdataPython
154705
from .mobilenetv2 import QuantizableMobileNetV2, mobilenet_v2, __all__ as mv2_all from .mobilenetv3 import QuantizableMobileNetV3, mobilenet_v3_large, mobilenet_v3_small, __all__ as mv3_all __all__ = mv2_all + mv3_all
StarcoderdataPython
1701468
<reponame>skurob/cgas from .constants import DEFAULT_SUCCESS, SUCCESS_KEY, MESSAGE_KEY, DATA_KEY, DEFAULT_FAILURE from telethon.tl.types import User from typing import Any class UserModels: @staticmethod def success(message: str = None, data: Any = None) -> dict: if message != None and data != None: return { SUCCESS_KEY : True, MESSAGE_KEY : message, DATA_KEY : data } elif message != None: return { SUCCESS_KEY : True, MESSAGE_KEY : message, } elif data != None: return { SUCCESS_KEY : True, DATA_KEY : data, } return DEFAULT_SUCCESS @staticmethod def failure(message: str = None) -> dict: if message != None: return { SUCCESS_KEY: False, MESSAGE_KEY: message } return DEFAULT_FAILURE @staticmethod def needs2FA(message: str): return { SUCCESS_KEY: False, MESSAGE_KEY: message, DATA_KEY: { "needs2fa": True } } @staticmethod def userDetails(userDetails: User) -> dict: return { SUCCESS_KEY: True, DATA_KEY: { "userId" : userDetails.id, "username" : userDetails.username, "firstName" : userDetails.first_name, "lastName" : userDetails.last_name, "phoneNumber" : userDetails.phone } } @staticmethod def unauthorized() -> dict: return { SUCCESS_KEY: False, MESSAGE_KEY: "Invalid phone number or session expired!" }
StarcoderdataPython
3318169
<reponame>larsoner/beamformer_simulation import warnings import mne import numpy as np import pandas as pd from mne.beamformer import make_dics, apply_dics_csd from mne.forward.forward import _restrict_forward_to_src_sel from mne.time_frequency import csd_morlet import config from config import fname, dics_settings from spatial_resolution import get_nearest_neighbors from time_series import simulate_raw, add_source_to_raw, create_epochs # Don't be verbose mne.set_log_level(False) #fn_report_h5 = fname.report(vertex=config.vertex) fn_report_h5 = None # Don't make reports. ############################################################################### # Simulate raw data ############################################################################### print('simulate data') info = mne.io.read_info(fname.sample_raw) info = mne.pick_info(info, mne.pick_types(info, meg=True, eeg=False)) fwd_disc_true = mne.read_forward_solution(fname.fwd_discrete_true) fwd_disc_true = mne.pick_types_forward(fwd_disc_true, meg=True, eeg=False) er_raw = mne.io.read_raw_fif(fname.ernoise, preload=True) raw, stc_signal = simulate_raw(info=info, fwd_disc_true=fwd_disc_true, signal_vertex=config.vertex, signal_freq=config.signal_freq, n_trials=config.n_trials, noise_multiplier=0, random_state=config.random, n_noise_dipoles=0, er_raw=er_raw) del info, er_raw # Read in forward solution fwd_disc_man = mne.read_forward_solution(fname.fwd_discrete_man) ############################################################################### # Get nearest neighbors ############################################################################### nearest_neighbors, distances = get_nearest_neighbors(config.vertex, signal_hemi=0, src=fwd_disc_true['src']) corrs = [] n_settings = len(dics_settings) do_break = np.zeros(shape=n_settings, dtype=bool) for i, (nb_vertex, nb_dist) in enumerate(np.column_stack((nearest_neighbors, distances))[:config.n_neighbors_max]): print(f'Processing neighbour {i}/{config.n_neighbors_max}', flush=True) # after column_stack nb_vertex is float nb_vertex = int(nb_vertex) ############################################################################### # Simulate second dipole ############################################################################### raw2, stc_signal2 = add_source_to_raw(raw, fwd_disc_true=fwd_disc_true, signal_vertex=nb_vertex, signal_freq=config.signal_freq2, trial_length=config.trial_length, n_trials=config.n_trials, source_type='chirp') ############################################################################### # Create epochs ############################################################################### title = 'Simulated evoked for two signal vertices' epochs = create_epochs(raw2, title=title, fn_simulated_epochs=None, fn_report_h5=fn_report_h5) epochs_grad = epochs.copy().pick_types(meg='grad') epochs_mag = epochs.copy().pick_types(meg='mag') epochs_joint = epochs.copy().pick_types(meg=True) # Make CSDs csd = csd_morlet(epochs, [config.signal_freq, config.signal_freq2], tmin=0, tmax=1, decim=5) noise_csd = csd_morlet(epochs, [config.signal_freq, config.signal_freq2], tmin=-1, tmax=0, decim=5) ############################################################################### # Compute DICS beamformer results ############################################################################### # Speed things up by restricting the forward solution to only the two # relevant source points. src_sel = np.sort(np.array([config.vertex, nb_vertex])) fwd = _restrict_forward_to_src_sel(fwd_disc_man, src_sel) for idx_setting, setting in enumerate(dics_settings): if do_break[idx_setting]: print(setting, '(skip)') continue reg, sensor_type, pick_ori, inversion, weight_norm, normalize_fwd, real_filter, use_noise_cov, reduce_rank = setting try: if sensor_type == 'grad': info = epochs_grad.info elif sensor_type == 'mag': info = epochs_mag.info elif sensor_type == 'joint': info = epochs_joint.info else: raise ValueError('Invalid sensor type: %s', sensor_type) filters = make_dics(info, fwd, csd, reg=reg, pick_ori=pick_ori, inversion=inversion, weight_norm=weight_norm, noise_csd=noise_csd if use_noise_cov else None, normalize_fwd=normalize_fwd, reduce_rank=reduce_rank, real_filter=real_filter) stc, freqs = apply_dics_csd(csd, filters) vert1_idx = np.searchsorted(src_sel, config.vertex) vert2_idx = np.searchsorted(src_sel, nb_vertex) ratio1 = stc.data[vert1_idx, 1] / stc.data[vert1_idx, 0] ratio2 = stc.data[vert2_idx, 0] / stc.data[vert2_idx, 1] ratio = np.sqrt(ratio1 * ratio2) corrs.append(list(setting) + [nb_vertex, nb_dist, ratio]) print(setting, nb_dist, ratio) if ratio < 0.5 ** 0.5: do_break[idx_setting] = True except Exception as e: print(e) corrs.append(list(setting) + [nb_vertex, nb_dist, np.nan]) if do_break.all(): break else: warnings.warn('Reached max number of sources, but still some parameter combinations have large correlations.') ############################################################################### # Save everything to a pandas dataframe ############################################################################### df = pd.DataFrame(corrs, columns=['reg', 'sensor_type', 'pick_ori', 'inversion', 'weight_norm', 'normalize_fwd', 'real_filter', 'use_noise_cov', 'reduce_rank', 'nb_vertex', 'nb_dist', 'ratio']) df.to_csv(fname.dics_results_2s(vertex=config.vertex)) print('OK!')
StarcoderdataPython
1633837
<reponame>knuu/competitive-programming<filename>atcoder/arc/arc079_b.py K = int(input()) L = 50 N = K // L + L - 1 res = K - (N - L + 1) * L assert(res < 50) ans = [N] * L for i in range(res): ans[i] += L - res + 1 for i in range(res, L): ans[i] -= res print(L) print(*ans)
StarcoderdataPython
3385512
from django.urls import path from main import views from django.db import connection from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('',views.index, name="index-1"), path('services', views.services, name='services'), path('contact-us', views.contact_us, name='contact-us'), path('about-us', views.about_us, name='about-us'), path('login',views.login,name='login'), path('loginrequest',views.loginaccess,name='loginrequest'), path('paralegal',views.paralegal, name='paralegal'), path('customer',views.customer,name='customer'), path('form_lawyer',views.user_search_lawyer_query, name='form_lawyer'), path('lawyer',views.lawyer,name='lawyer'), path('otherstaff',views.otherstaff,name='otherstaff'), path('managing_partner',views.managing_partner,name='managing_partner'), path('meeting_form',views.meeting_form,name='meeting_form'), path('customer_client',views.customer_client,name='customer_client') ]
StarcoderdataPython
1660004
# # Copyright (c) 2019, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import tempfile import matplotlib.pyplot as plt import neptune import skopt.plots as sk_plots from neptunecontrib.monitoring.utils import axes2fig class NeptuneMonitor: """Logs hyperparameter optimization process to Neptune. Examples: Initialize NeptuneMonitor:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') monitor = sk_utils.NeptuneMonitor() Run skopt training passing monitor as a a callback:: ... results = skopt.forest_minimize(objective, space, callback=[monitor], base_estimator='ET', n_calls=100, n_random_starts=10) """ def __init__(self, experiment=None): self._exp = experiment if experiment else neptune self._iteration = 0 def __call__(self, res): self._exp.send_metric('run_score', x=self._iteration, y=res.func_vals[-1]) self._exp.send_text('run_parameters', x=self._iteration, y=NeptuneMonitor._get_last_params(res)) self._iteration += 1 @staticmethod def _get_last_params(res): param_vals = res.x_iters[-1] named_params = _format_to_named_params(param_vals, res) return str(named_params) def send_runs(results, experiment=None): """Logs runs results and parameters to neptune. Text channel `hyperparameter_search_score` is created and a list of tuples (name, value) of best paramters is logged to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send best parameters to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_best_parameters(results) """ _exp = experiment if experiment else neptune for i, (loss, params) in enumerate(zip(results.func_vals, results.x_iters)): _exp.send_metric('run_score', x=i, y=loss) named_params = _format_to_named_params(params, results) _exp.send_text('run_parameters', str(named_params)) def send_best_parameters(results, experiment=None): """Logs best_parameters list to neptune. Text channel `best_parameters` is created and a list of tuples (name, value) of best paramters is logged to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send best parameters to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_best_parameters(results) """ _exp = experiment if experiment else neptune named_params = _format_to_named_params(results.x, results) _exp.set_property('best_parameters', str(named_params)) def send_plot_convergence(results, experiment=None, channel_name='convergence'): """Logs skopt plot_convergence figure to neptune. Image channel `convergence` is created and the output of the plot_convergence function is first covented to `neptune.Image` and then sent to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send skopt plot_convergence figure to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_plot_convergence(results) """ _exp = experiment if experiment else neptune fig, ax = plt.subplots(figsize=(16, 12)) sk_plots.plot_convergence(results, ax=ax) with tempfile.NamedTemporaryFile(suffix='.png') as f: fig.savefig(f.name) _exp.send_image(channel_name, f.name) def send_plot_evaluations(results, experiment=None, channel_name='evaluations'): """Logs skopt plot_evaluations figure to neptune. Image channel `evaluations` is created and the output of the plot_evaluations function is first covented to `neptune.Image` and then sent to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send skopt plot_evaluations figure to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_plot_evaluations(results) """ _exp = experiment if experiment else neptune fig = plt.figure(figsize=(16, 12)) fig = axes2fig(sk_plots.plot_evaluations(results, bins=10), fig=fig) with tempfile.NamedTemporaryFile(suffix='.png') as f: fig.savefig(f.name) _exp.send_image(channel_name, f.name) def send_plot_objective(results, experiment=None, channel_name='objective'): """Logs skopt plot_objective figure to neptune. Image channel `objective` is created and the output of the plot_objective function is first covented to `neptune.Image` and then sent to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send skopt plot_objective figure to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_plot_objective(results) """ _exp = experiment if experiment else neptune fig = plt.figure(figsize=(16, 12)) try: fig = axes2fig(sk_plots.plot_objective(results), fig=fig) with tempfile.NamedTemporaryFile(suffix='.png') as f: fig.savefig(f.name) _exp.send_image(channel_name, f.name) except Exception as e: print('Could not create ans objective chart due to error: {}'.format(e)) def _format_to_named_params(params, result): return ([(dimension.name, param) for dimension, param in zip(result.space, params)])
StarcoderdataPython
1682213
import torch from torch.nn import Dropout import torch.nn.functional as F import math class PositionalEncoding(torch.nn.Module): def __init__(self, d_model, dropout=0.1, max_len=500, identical_sizes = True ): super(PositionalEncoding, self).__init__() self.identical_sizes = identical_sizes self.d_model = d_model self.dropout = Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) if identical_sizes: pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x, batch): if self.identical_sizes: return self.forward_identical_sizes(x, batch) else: return self.forward_different_sizes(x, batch) def forward_different_sizes(self, x, batch): num = batch.max() for graph in torch.arange(0,num): idxs = batch == graph x[idxs,:] = x[idxs,:] + self.pe[:torch.sum(idxs), :] return self.dropout(x) def forward_identical_sizes(self, x, batch): size = torch.sum(batch == 0).item() x = x.view(size,-1,self.d_model).float() x = x + self.pe[:x.size(0), :] x = x.view(-1, self.d_model) return self.dropout(x) class GRU(torch.nn.Module): """ Wrapper class for the GRU used by the GNN framework, nn.GRU is used for the Gated Recurrent Unit itself """ def __init__(self, input_size, hidden_size): super(GRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.gru = torch.nn.GRU(input_size=input_size, hidden_size=hidden_size) def forward(self, x, y): """ :param x: shape: (B, N, Din) where Din <= input_size (difference is padded) :param y: shape: (B, N, Dh) where Dh <= hidden_size (difference is padded) :return: shape: (B, N, Dh) """ x = x.unsqueeze(1) y = y.unsqueeze(1) assert (x.shape[-1] <= self.input_size and y.shape[-1] <= self.hidden_size) (B, N,_) = x.shape x = x.reshape(1, B * N, -1).contiguous() y = y.reshape(1, B * N, -1).contiguous() # padding if necessary if x.shape[-1] < self.input_size: x = F.pad(input=x, pad=[0, self.input_size - x.shape[-1]], mode='constant', value=0) if y.shape[-1] < self.hidden_size: y = F.pad(input=y, pad=[0, self.hidden_size - y.shape[-1]], mode='constant', value=0) x = self.gru(x, y)[1] x = x.reshape(B, N, -1) return x[:,0,:] def reset(nn): def _reset(item): if hasattr(item, 'reset_parameters'): item.reset_parameters() if nn is not None: if hasattr(nn, 'children') and len(list(nn.children())) > 0: for item in nn.children(): _reset(item) else: _reset(nn)
StarcoderdataPython
102812
<gh_stars>0 import pathlib import random from absl import app from absl import flags import tensorflow as tf import tensorflow_federated as tff from data_helpers import make_client_ids from data_helpers import provide_client_data_fn from model_helpers import build_vgg16 # Hyperparams flags.DEFINE_integer("num_rounds", default=10, help="Number of rounds of federated averaging.") flags.DEFINE_integer("clients_per_round", default=10, help="Number of clients to sample for training per round.") flags.DEFINE_float("client_learning_rate", default=.02, help="Learning rate for client optimizers.") flags.DEFINE_float("server_learning_rate", default=1.0, help="Learning rate for client optimizers.") flags.DEFINE_bool("freeze_model", default=True, help="Freeze early layers in the model (if its builder fn allows)") flags.DEFINE_integer("image_width", default=224, help="Width dimension of input radiology images.") flags.DEFINE_integer("image_height", default=224, help="Height dimension of input radiology images.") flags.DEFINE_integer("batch_size", default=4, help="Local batch size for each client.") flags.DEFINE_enum("model", default="vgg16", enum_values=["vgg16"], help="Which model to use. Must have a builder in model_helpers.") # Data flags flags.DEFINE_string("data_root", default="./data", help="Path to the root folder containing chest xray data") flags.DEFINE_string("train_clients_subdir", default="train_clients", help="Subdirectory of `data_root` containing data allocated to the " "training subset of clients.") flags.DEFINE_string("test_clients_subdir", default="test_clients", help="Subdirectory of `data-root` containing data allocated to the " "evaluation subset of clients.") FLAGS = flags.FLAGS def main(argv): dataroot = pathlib.Path(FLAGS.data_root) train_path = dataroot.joinpath(FLAGS.train_clients_subdir) test_path = dataroot.joinpath(FLAGS.test_clients_subdir) train_client_ids = make_client_ids(train_path) test_client_ids = make_client_ids(test_path) img_dims = (FLAGS.image_width, FLAGS.image_height) train_client_fn = provide_client_data_fn(train_path, *img_dims, FLAGS.batch_size) test_client_fn = provide_client_data_fn(test_path, *img_dims, FLAGS.batch_size) train_clients = tff.simulation.ClientData.from_clients_and_fn( train_client_ids, train_client_fn) test_clients = tff.simulation.ClientData.from_clients_and_fn( test_client_ids, test_client_fn) federated_train_data = [ train_clients.create_tf_dataset_for_client(client_id) for client_id in train_client_ids ] federated_test_data = [ test_clients.create_tf_dataset_for_client(client_id) for client_id in test_client_ids ] client_opt_fn = lambda: tf.keras.optimizers.SGD(FLAGS.client_learning_rate) server_opt_fn = lambda: tf.keras.optimizers.SGD(FLAGS.server_learning_rate) iterative_process = tff.learning.build_federated_averaging_process( model_fn, client_opt_fn, server_opt_fn) state = iterative_process.initialize() for rnd in range(FLAGS.num_rounds): round_clients = random.sample(federated_train_data, FLAGS.clients_per_round) state, metrics = iterative_process.next(state, round_clients) print('round {rnd}, metrics={metrics}'.format(rnd=rnd, metrics=metrics)) def model_fn(): x_spec = (tf.float32, [None, 224, 224, 3]) y_spec = (tf.int64, [None]) input_spec = (x_spec, y_spec) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model = build_vgg16(freeze=FLAGS.freeze_model) return tff.learning.from_keras_model( model, loss_fn, input_spec=input_spec, metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) if __name__ == "__main__": app.run(main)
StarcoderdataPython
173823
<reponame>CrazyAZ/BLSS-Input-Viewer # This Pro Controller driver code is based on https://github.com/yvbbrjdr/procon/blob/master/src/procon.py import math import time import hid def to_int16(uint16): return -((uint16 ^ 0xFFFF) + 1) if uint16 & 0x8000 else uint16 class ProCon: VENDOR_ID = 0x057E PRODUCT_ID = 0x2009 PACKET_SIZE = 64 CALIBRATION_OFFSET = 0x603D CALIBRATION_LENGTH = 0x12 COMMAND_RETRIES = 10 RUMBLE_NEUTRAL = (0x00, 0x01, 0x40, 0x40) RUMBLE = (0x74, 0xBE, 0xBD, 0x6F) DEFAULT_IMU_SENSITIVITY = (0x03, 0x00, 0x00, 0x01) class OutputReportID: RUMBLE_SUBCOMMAND = 0x01 RUMBLE = 0x10 COMMAND = 0x80 class InputReportID: SUBCOMMAND_REPLY = 0x21 CONTROLLER_STATE = 0x30 COMMAND_ACK = 0x81 class CommandID: HANDSHAKE = 0x02 HIGH_SPEED = 0x03 FORCE_USB = 0x04 class SubcommandID: SET_INPUT_REPORT_MODE = 0x03 SPI_FLASH_READ = 0x10 SET_PLAYER_LIGHTS = 0x30 SET_HOME_LIGHT = 0x38 ENABLE_IMU = 0x40 SET_IMU_SENSITIVITY = 0x41 ENABLE_VIBRATION = 0x48 class Button: A = 'A' B = 'B' X = 'X' Y = 'Y' UP = 'Up' DOWN = 'Down' LEFT = 'Left' RIGHT = 'Right' MINUS = '-' PLUS = '+' SCREENSHOT = 'Screenshot' HOME = 'Home' L = 'L' ZL = 'ZL' R = 'R' ZR = 'ZR' LS = 'LS' RS = 'RS' def __init__(self): self.subcommand_counter = 0 self.dev = hid.device() self.dev.open(ProCon.VENDOR_ID, ProCon.PRODUCT_ID) self.handshake() self.high_speed() self.handshake() self.rumble_low = self.rumble_high = ProCon.RUMBLE_NEUTRAL self.rumble_expire = 0 self.load_stick_calibration() self.enable_vibration(True) self.set_input_report_mode(ProCon.InputReportID.CONTROLLER_STATE) self.force_usb() self.set_player_lights(True, False, False, False) self.enable_imu(True) self.set_imu_sensitivity(ProCon.DEFAULT_IMU_SENSITIVITY) run = True def start(self, callback): while self.run: state = self.recv() if state[0] != ProCon.InputReportID.CONTROLLER_STATE: continue buttons = { ProCon.Button.A: state[3] & 0x08 > 0, ProCon.Button.B: state[3] & 0x04 > 0, ProCon.Button.X: state[3] & 0x02 > 0, ProCon.Button.Y: state[3] & 0x01 > 0, ProCon.Button.UP: state[5] & 0x02 > 0, ProCon.Button.DOWN: state[5] & 0x01 > 0, ProCon.Button.LEFT: state[5] & 0x08 > 0, ProCon.Button.RIGHT: state[5] & 0x04 > 0, ProCon.Button.MINUS: state[4] & 0x01 > 0, ProCon.Button.PLUS: state[4] & 0x02 > 0, ProCon.Button.SCREENSHOT: state[4] & 0x20 > 0, ProCon.Button.HOME: state[4] & 0x10 > 0, ProCon.Button.L: state[5] & 0x40 > 0, ProCon.Button.ZL: state[5] & 0x80 > 0, ProCon.Button.R: state[3] & 0x40 > 0, ProCon.Button.ZR: state[3] & 0x80 > 0, ProCon.Button.LS: state[4] & 0x08 > 0, ProCon.Button.RS: state[4] & 0x04 > 0 } l_x = state[6] | ((state[7] & 0xF) << 8) l_y = (state[7] >> 4) | (state[8] << 4) r_x = state[9] | ((state[10] & 0xF) << 8) r_y = (state[10] >> 4) | (state[11] << 4) l_x = self.apply_stick_calibration(l_x, 0, 0) l_y = self.apply_stick_calibration(l_y, 0, 1) r_x = self.apply_stick_calibration(r_x, 1, 0) r_y = self.apply_stick_calibration(r_y, 1, 1) l_stick = (l_x, l_y) r_stick = (r_x, r_y) accel = (state[13] | state[14] << 8, state[15] | state[16] << 8, state[17] | state[18] << 8) gyro = (state[19] | state[20] << 8, state[21] | state[22] << 8, state[23] | state[24] << 8) accel = tuple(map(to_int16, accel)) gyro = tuple(map(to_int16, gyro)) battery = (state[2] & 0xF0) >> 4 callback(buttons, l_stick, r_stick, accel, gyro, battery) if self.rumble_expire and int(time.time() * 1000) >= self.rumble_expire: self.send_rumble(False, False, 0) def stop(self): self.run = False def load_stick_calibration(self): ok, reply = self.spi_flash_read(ProCon.CALIBRATION_OFFSET, ProCon.CALIBRATION_LENGTH) if not ok: raise RuntimeError('cannot load stick calibration') self.stick_calibration = [ [ [ ((reply[27] & 0xF) << 8) | reply[26], ((reply[24] & 0xF) << 8) | reply[23], ((reply[21] & 0xF) << 8) | reply[20] ], [ (reply[28] << 4) | (reply[27] >> 4), (reply[25] << 4) | (reply[24] >> 4), (reply[22] << 4) | (reply[21] >> 4) ] ], [ [ ((reply[33] & 0xF) << 8) | reply[32], ((reply[30] & 0xF) << 8) | reply[29], ((reply[36] & 0xF) << 8) | reply[35] ], [ (reply[34] << 4) | (reply[33] >> 4), (reply[31] << 4) | (reply[30] >> 4), (reply[37] << 4) | (reply[36] >> 4) ] ] ] for i in range(len(self.stick_calibration)): for j in range(len(self.stick_calibration[i])): for k in range(len(self.stick_calibration[i][j])): if self.stick_calibration[i][j][k] == 0xFFF: self.stick_calibration[i][j][k] = 0 self.stick_extends = [ [ [ -int(self.stick_calibration[0][0][0] * 0.7), int(self.stick_calibration[0][0][2] * 0.7) ], [ -int(self.stick_calibration[0][1][0] * 0.7), int(self.stick_calibration[0][1][2] * 0.7) ] ], [ [ -int(self.stick_calibration[1][0][0] * 0.7), int(self.stick_calibration[1][0][2] * 0.7) ], [ -int(self.stick_calibration[1][1][0] * 0.7), int(self.stick_calibration[1][1][2] * 0.7) ] ] ] def apply_stick_calibration(self, value, stick, axis): value -= self.stick_calibration[stick][axis][1] if value < self.stick_extends[stick][axis][0]: self.stick_extends[stick][axis][0] = value if value > self.stick_extends[stick][axis][1]: self.stick_extends[stick][axis][1] = value if value > 0: return int(value * 0x7FFF / self.stick_extends[stick][axis][1]) return int(value * -0x7FFF / self.stick_extends[stick][axis][0]) def send(self, data): return self.dev.write(data) == len(data) def recv(self): return self.dev.read(ProCon.PACKET_SIZE) def send_command(self, id, wait_for_reply=True): data = (ProCon.OutputReportID.COMMAND, id) for _ in range(ProCon.COMMAND_RETRIES): if not self.send(data): continue if not wait_for_reply: return True reply = self.recv() if reply[0] == ProCon.InputReportID.COMMAND_ACK and reply[1] == id: return True return False def send_subcommand(self, id, param, wait_for_reply=True): data = (ProCon.OutputReportID.RUMBLE_SUBCOMMAND, self.subcommand_counter) + self.rumble_low + self.rumble_high + (id,) + param self.subcommand_counter = (self.subcommand_counter + 1) & 0xFF for _ in range(ProCon.COMMAND_RETRIES): if not self.send(data): continue if not wait_for_reply: return True, [] reply = self.recv() if reply[0] == ProCon.InputReportID.SUBCOMMAND_REPLY and reply[14] == id: return True, reply return False, [] def send_rumble(self, low, high, duration): self.rumble_low = ProCon.RUMBLE if low else ProCon.RUMBLE_NEUTRAL self.rumble_high = ProCon.RUMBLE if high else ProCon.RUMBLE_NEUTRAL self.rumble_expire = int(time.time() * 1000) + duration if (low or high) and duration else 0 data = (ProCon.OutputReportID.RUMBLE, self.subcommand_counter) + self.rumble_low + self.rumble_high self.subcommand_counter = (self.subcommand_counter + 1) & 0xFF for _ in range(ProCon.COMMAND_RETRIES): if self.send(data): return True return False def handshake(self): return self.send_command(ProCon.CommandID.HANDSHAKE) def high_speed(self): return self.send_command(ProCon.CommandID.HIGH_SPEED) def force_usb(self): return self.send_command(ProCon.CommandID.FORCE_USB, False) def set_input_report_mode(self, mode): return self.send_subcommand(ProCon.SubcommandID.SET_INPUT_REPORT_MODE, (mode,)) def spi_flash_read(self, addr, l): param = (addr & 0x000000FF, (addr & 0x0000FF00) >> 8, (addr & 0x00FF0000) >> 16, (addr & 0xFF000000) >> 24, l) return self.send_subcommand(ProCon.SubcommandID.SPI_FLASH_READ, param) def set_player_lights(self, one, two, three, four): param = (one << 0) | (two << 1) | (three << 2) | (four << 3) return self.send_subcommand(ProCon.SubcommandID.SET_PLAYER_LIGHTS, (param,)) def set_home_light(self, brightness): intensity = 0 if brightness > 0: if brightness < 65: intensity = (brightness + 5) // 10 else: intensity = math.ceil(0xF * ((brightness / 100) ** 2.13)) intensity = (intensity & 0xF) << 4 param = (0x01, intensity, intensity, 0x00) return self.send_subcommand(ProCon.SubcommandID.SET_HOME_LIGHT, param) def enable_imu(self, enable): return self.send_subcommand(ProCon.SubcommandID.ENABLE_IMU, (int(enable),)) def set_imu_sensitivity(self, sensitivity): return self.send_subcommand(ProCon.SubcommandID.SET_IMU_SENSITIVITY, sensitivity) def enable_vibration(self, enable): return self.send_subcommand(ProCon.SubcommandID.ENABLE_VIBRATION, (int(enable),)) def print_state(buttons, l_stick, r_stick, accel, gyro, battery): print('\33[2JButtons:') for k, v in buttons.items(): if v: print('[{}]'.format(k), end=' ') else: print(' {} '.format(k), end=' ') print() print('L Stick: ({:6}, {:6})'.format(l_stick[0], l_stick[1])) print('R Stick: ({:6}, {:6})'.format(r_stick[0], r_stick[1])) print('Accelerometer: ({:6}, {:6}, {:6})'.format(accel[0], accel[1], accel[2])) print('Gyroscope: ({:6}, {:6}, {:6})'.format(gyro[0], gyro[1], gyro[2])) print('Battery: {}/9'.format(battery)) if __name__ == '__main__': try: ProCon().start(print_state) except KeyboardInterrupt: print('\rGoodbye!')
StarcoderdataPython
4807535
<reponame>victoria-cds-sig/explore_mimiciv import bqutils.auth as auth import bqutils.ibis as iq def main(): client = iq.get_client(*auth.get_gcreds()) db = client.database("bigquery-public-data.stackoverflow") expression = db.table("posts_questions").projection(["creation_date", "answer_count"]).limit(5) df = expression.execute() for _, r in df.iterrows(): print(r) if __name__ == "__main__": main()
StarcoderdataPython
88261
# Authors: <NAME> <<EMAIL>> # License: BSD 3 clause # functions shared across transformers def _define_variables(variables): # Check that variable names are passed in a list. # Can take None as value if not variables or isinstance(variables, list): variables = variables else: variables = [variables] return variables def _find_numerical_variables(X, variables=None): # Find numerical variables in a data set or check that # the variables entered by the user are numerical. if not variables: variables = list(X.select_dtypes(include='number').columns) else: if len(X[variables].select_dtypes(exclude='number').columns) != 0: raise TypeError("Some of the variables are not numerical. Please cast them as numerical " "before calling this transformer") return variables def _find_categorical_variables(X, variables=None): # Find categorical variables in a data set or check that # the variables entered by user are categorical. if not variables: variables = list(X.select_dtypes(include='O').columns) else: # variables indicated by user if len(X[variables].select_dtypes(exclude='O').columns) != 0: raise TypeError("Some of the variables are not categorical. Please cast them as object " "before calling this transformer") return variables
StarcoderdataPython