dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
543
3a90801895934115ab29dea816c2ffc3
[ "2020~2021学年9月湖北宜昌伍家岗区宜昌英杰学校初一上学期月考(英杰教育集团)第11题3分", "初一上学期单元测试《解读绝对值》第3题", "2017年湖南长沙天心区初二竞赛长郡教育集团抵达杯第1题5分", "2019~2020学年河南郑州金水区郑州市第八中学初一上学期期中第8题3分" ]
1
single_choice
$$a$$,$$b$$,$$c$$是非零有理数,且$$a+b+c=0$$,则$$\frac{a}{\textbar a\textbar}+\frac{b}{\textbar b\textbar}+\frac{c}{\textbar c\textbar}+\frac{abc}{\textbar abc\textbar}$$可能的值为.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$或$$-1$$ " } ], [ { "aoVal": "C", "content": "$$2$$或$$-2$$ " } ], [ { "aoVal": "D", "content": "$$0$$或$$-2$$ " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->绝对值综合", "课内体系->能力->推理论证能力" ]
[ "∵$$a+b+c=0$$且$$a$$、$$b$$、$$c$$均$$\\ne 0$$, ∴$$a$$、$$b$$、$$c$$三数符号为两正一负或两负一正, 不妨设, ①$$a$$,$$b$$为正,$$c$$为负,此时$$abc$$为负: $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=1+1+(-1)+(-1)$$ $$=0$$. ②$$a$$,$$b$$为负,$$c$$为正,此时$$abc$$为正, $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=-1+(-1)+1+1$$ $$=0$$. 综上原式$$=0$$,故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1494
c62fbbba557448b0825048e223c8dafe
[ "2002年第19届全国初中数学联赛竞赛第6题7分" ]
3
single_choice
如果对于不小于$$8$$的自然数$$n$$,当$$3n+1$$是一个完全平方数时,$$n+1$$都能表示成$$k$$个完全平方数的和,那么$$k$$的最小值为(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->数论->同余->完全平方数" ]
[ "$$3n+1$$是一个完全平方数,那这个完全平方数$$a$$显然不是$$3$$的倍数. 设$$a=3t\\pm 1$$,则$${{a}^{2}}=9{{t}^{2}}\\pm 6t+1$$, $${{a}^{2}}=3n+1=9{{t}^{2}}\\pm 6t+1$$,$$\\textasciitilde\\Rightarrow n=3{{t}^{2}}\\pm 2t$$, $$n+1=3{{t}^{2}}\\pm 2t+1={{(t\\pm 1)}^{2}}+{{t}^{2}}+{{t}^{2}}$$. 而若$$k$$为$$1$$,当$$n=21$$时$$3n+1=64$$是完全平方数,但是$$n+1=22$$不能写成一个或两个完全平方数的和,故$$k$$最小为$$3$$,选择$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
58
0465e7938e634c3f87d9dd27426112c5
[ "初一上学期单元测试《解读绝对值》第3题", "2017年湖南长沙天心区初二竞赛长郡教育集团抵达杯第1题5分", "2020~2021学年9月湖北宜昌伍家岗区宜昌英杰学校初一上学期月考(英杰教育集团)第11题3分", "2019~2020学年河南郑州金水区郑州市第八中学初一上学期期中第8题3分" ]
1
single_choice
$$a$$,$$b$$,$$c$$是非零有理数,且$$a+b+c=0$$,那么$$\frac{a}{\textbar a\textbar}+\frac{b}{\textbar b\textbar}+\frac{c}{\textbar c\textbar}+\frac{abc}{\textbar abc\textbar}$$的所有可能的值为.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$或$$-1$$ " } ], [ { "aoVal": "C", "content": "$$2$$或$$-2$$ " } ], [ { "aoVal": "D", "content": "$$0$$或$$-2$$ " } ] ]
[ "课内体系->能力->推理论证能力", "课内体系->知识点->数->有理数->绝对值->绝对值综合" ]
[ "∵$$a+b+c=0$$且$$a$$、$$b$$、$$c$$均$$\\ne 0$$, ∴$$a$$、$$b$$、$$c$$三数符号为两正一负或两负一正, 不妨设, ①$$a$$,$$b$$为正,$$c$$为负,此时$$abc$$为负: $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=1+1+(-1)+(-1)$$ $$=0$$. ②$$a$$,$$b$$为负,$$c$$为正,此时$$abc$$为正, $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=-1+(-1)+1+1$$ $$=0$$. 综上原式$$=0$$,故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
269
26ad98dcef294cf9b741c7d789f2af0a
[ "1999年第10届希望杯初二竞赛第2试第3题" ]
1
single_choice
已知实数$$x$$满足条件$$x\textgreater\sqrt{2}x+1$$,那么$$\sqrt{{{(x+2)}^{2}}}+\sqrt[3]{{{(x-3)}^{3}}}$$的值等于.
[ [ { "aoVal": "A", "content": "$$2x-1$$ " } ], [ { "aoVal": "B", "content": "$$-2x+1$$ " } ], [ { "aoVal": "C", "content": "$$-5$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的加减以及混合运算" ]
[ "由$$x\\textgreater\\sqrt{2}x+1$$所以$$(\\sqrt{2}-1)x\\textless{}-1$$, 所以$$x\\textless{}-\\frac{1}{\\sqrt{2}-1}=-(\\sqrt{2}+1)\\textless{}-2$$, 所以$$x\\textless{}-2$$,$$x+2\\textless{}0$$, 所以原式$$=-(x+2)+(x-3)=-5$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
215
265070ef5f124727995d90bdb347e33c
[ "初二下学期单元测试《二次根式》二次根式的运算第43题", "2002年第19届全国初中数学联赛竞赛第1题7分" ]
2
single_choice
已知$$a=\sqrt{2}-1$$,$$b=\sqrt{3}-\sqrt{2}$$,$$c=\sqrt{6}-2$$,那么$$a$$,$$b$$,$$c$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textless{}b\\textless{}c$$ " } ], [ { "aoVal": "B", "content": "$$a\\textless{}c\\textless{}b$$ " } ], [ { "aoVal": "C", "content": "$$b\\textless{}a\\textless{}c$$ " } ], [ { "aoVal": "D", "content": "$$b\\textless{}c\\textless{}a$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的运算->二次根式比较大小" ]
[ "∵$$a-b$$ $$=\\sqrt{2}-1-\\left( 2\\sqrt{2}-\\sqrt{6} \\right)$$ $$=\\sqrt{6}-\\left( 1+\\sqrt{2} \\right)$$ $$\\approx 2.449-2.414\\textgreater0$$, ∴$$a\\textgreater b$$; ∵$$a-c$$ $$=\\sqrt{2}-1-\\left( \\sqrt{6}-2 \\right)$$ $$=\\sqrt{2}+1-\\sqrt{6}$$ $$\\approx 2.414-2.449\\textless{}0$$, ∴$$a\\textless{}c$$; 于是$$b\\textless{}a\\textless{}c$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
586
b9d8daf27a2f41c080ab0b5e0b64361d
[ "2000年第11届希望杯初二竞赛第2试第4题" ]
1
single_choice
设$$a+b+c=0$$,$$abc\textgreater0$$,则$$\frac{b+c}{\left\textbar{} a \right\textbar}+\frac{c+a}{\left\textbar{} b \right\textbar}+\frac{a+b}{\left\textbar{} c \right\textbar}$$的值是.
[ [ { "aoVal": "A", "content": "$$-3$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$3$$或$$-1$$ " } ], [ { "aoVal": "D", "content": "$$-3$$或$$1$$ " } ] ]
[ "竞赛->知识点->数与式->数的运算->有理数运算问题" ]
[ "因为 $$a+b+c=0$$,$$abc\\textgreater0$$, 所以$$a$$,$$b$$,$$c$$中有两个负数. 由$$a+b+c=0$$,可得$$b+c=-a$$,$$c+a=-b$$,$$a+b=-c$$, 所以原式变形为$$\\frac{-a}{\\left\\textbar{} a \\right\\textbar}+\\frac{-b}{\\left\\textbar{} b \\right\\textbar}+\\frac{-c}{\\left\\textbar{} c \\right\\textbar}$$ . 而$$\\frac{-a}{\\left\\textbar{} a \\right\\textbar}$$ , $$\\frac{-b}{\\left\\textbar{} b \\right\\textbar}$$ ,$$\\frac{-c}{\\left\\textbar{} c \\right\\textbar}$$ , 必有两个式子的值为$$1$$,另一个式子的值为$$-1$$, 所以原式的值为$$1$$. ", "\n<p>特殊值法.</p>\n<p>由$$a+b+c=0$$,$$abc&gt;0$$,</p>\n<p>可设$$a=2$$,$$b=c=-1$$,</p>\n<p>将其代入原式,得原式$$=\\frac{-2}{2}+\\frac{1}{1}+\\frac{1}{1}=1$$ .</p>\n<p>故选$$\\text{B}$$.</p>" ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1437
bca8f824ea0c47dea1953dfca62fd670
[ "1998年竞赛(全国初中数学竞赛)第1题6分", "2015~2016学年浙江温州乐清市乐清市育英寄宿学校初三上学期期中实验A班第2题5分" ]
1
single_choice
已知$$a$$,$$b$$,$$c$$都是实数,并且$$a\textgreater b\textgreater c$$,那么下列式子中正确的是.
[ [ { "aoVal": "A", "content": "$$ab\\textgreater bc$$ " } ], [ { "aoVal": "B", "content": "$$a+b\\textgreater b+c$$ " } ], [ { "aoVal": "C", "content": "$$a-b\\textgreater b-c$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{a}{c}\\textgreater\\frac{b}{c}$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质" ]
[ "根据不等式性质: ∵$$a\\textgreater b\\textgreater c$$, ∴$$a+b\\textgreater b+c$$,故$$\\text{B}$$正确, ∵$$a$$、$$b$$、$$c$$的符号不确定,∴$$\\text{A}$$、$$\\text{C}$$、$$\\text{D}$$不成立, 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
500
24acb477fc8743189b1224d2c70292c5
[ "2005年第16届希望杯初二竞赛复赛第10题4分", "初一下学期其它第17题" ]
2
single_choice
已知整数$$x$$,$$y$$,$$z$$满足$$x\leqslant y\leqslant z$$,且$$\begin{cases}\left\textbar{} x+y \right\textbar+\left\textbar{} y+z \right\textbar+\left\textbar{} z+x \right\textbar=4 ① \left\textbar{} x-y \right\textbar+\left\textbar{} y-z \right\textbar+\left\textbar{} z-x \right\textbar=2 ②\end{cases}$$,那么$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}$$的值等于.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$2$$或$$14$$ " } ], [ { "aoVal": "D", "content": "$$14$$或$$17$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->解含绝对值的方程组" ]
[ "由②可知$$\\left\\textbar{} x-y \\right\\textbar$$、$$\\left\\textbar{} y-z \\right\\textbar$$、$$\\left\\textbar{} z-x \\right\\textbar$$中必须有一个为$$0$$,只有$$x-y=0$$,$$x=y$$,代入②中得$$\\left\\textbar{} z-x \\right\\textbar=1$$ $$z=x+1$$将$$x=y$$,$$z=x+1$$代入①中,得$$\\left\\textbar{} x \\right\\textbar+\\left\\textbar{} 2x+1 \\right\\textbar=2$$,$$\\left\\textbar{} x \\right\\textbar=0$$,$$1$$,$$2$$.经检验$$\\left\\textbar{} x \\right\\textbar=1$$,依据题意得. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1301
c072e5e3171e484e9e75a36e418ae0c6
[ "2005年第16届希望杯初二竞赛初赛第2题4分" ]
2
single_choice
已知$$x=3$$是不等式$$mx+2\textless{}1-4m$$的一个解,如果$$m$$是整数,那么$$m$$的最大值是.
[ [ { "aoVal": "A", "content": "$$-1$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$-2$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->一元一次不等式的解集", "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->解一元一次不等式", "课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的解集求参数的范围" ]
[ "因为$$x=3$$满足不等式$$mx+2\\textless{}1-4m$$,所以$$3m+2\\textless{}1-4m$$, 解得$$m\\textless{}-\\frac{1}{7}$$, 又$$m$$为整数,所以$$m$$的最大值是$$-1$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
146
0c2a69b222d14f25adf5c04a0b98113b
[ "1997年第14届全国初中数学联赛竞赛第1题" ]
0
single_choice
下述四个命题中,假命题的个数是(~ ). ①)一个数的倒数等于自身,那么这个数是$$1$$; ②对角线互相垂直且相等的四边形是正方形; ③$${{a}^{2}}$$的平方根是$$\pm \left\textbar{} a \right\textbar$$; ④大于直角的角一定是钝角.
[ [ { "aoVal": "A", "content": "$$1$$个 " } ], [ { "aoVal": "B", "content": "$$2$$个 " } ], [ { "aoVal": "C", "content": "$$3$$个 " } ], [ { "aoVal": "D", "content": "$$4$$个 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->四边形->特殊平行四边形->正方形->正方形的判定" ]
[ "($$1$$)$$-1$$的倒数也是他本身,所以这个命题不对. ($$2$$)对角线互要垂直且相等的平行四边形才是正方形,所以这个命题也不对. ($$3$$)$${{a}^{2}}$$的平方根是$$\\pm \\left\\textbar{} a \\right\\textbar$$,这是对的. ($$4$$)大于直角的角一定是钝角,钝角是$$90-180$$度之间的角. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
654
4d3afa6f7a8e4b07a4fab7c8168dd442
[ "2011年第22届全国希望杯初二竞赛复赛第3题4分" ]
1
single_choice
一个凸四边形的四个内角可以(~ ).
[ [ { "aoVal": "A", "content": "都是锐角 " } ], [ { "aoVal": "B", "content": "都是直角 " } ], [ { "aoVal": "C", "content": "都是钝角 " } ], [ { "aoVal": "D", "content": "有三个是直角,另一个是锐角或钝角 " } ] ]
[ "课内体系->知识点->三角形->三角形及多边形->多边形->多边形的内角和定理", "课内体系->知识点->三角形->三角形及多边形->多边形->正多边形->求正多边形的内角" ]
[ "凸四边形的四个内角的和是$$360{}^{}\\circ $$. 若四个内角都是锐角,则内角和小于$$360{}^{}\\circ $$; 若四个内角都是钝角,则内角和大于$$360{}^{}\\circ $$; 若有三个是直角,另一个是锐角或钝角,则内角和不为$$360{}^{}\\circ $$; 若四个内角都是直角,则内角和等于$$360{}^{}\\circ $$,这时可以构成凸四边形,符合题意. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
429
35549ffcaa8f4b07b6d53fee6f9cb8c2
[ "2020~2021学年四川德阳初一上学期期末第11题7分", "2000年第11届希望杯初一竞赛第8题" ]
1
single_choice
若四个有理数$$a$$,$$b$$,$$c$$,$$d$$满足$$\frac{1}{a-1997}=\frac{1}{b+1998}=\frac{1}{c-1999}=\frac{1}{d+2000}$$,则$$a$$,$$b$$,$$c$$,$$d$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textgreater c\\textgreater b\\textgreater d$$ " } ], [ { "aoVal": "B", "content": "$$b\\textgreater d\\textgreater a\\textgreater c$$ " } ], [ { "aoVal": "C", "content": "$$c\\textgreater a\\textgreater b\\textgreater d$$ " } ], [ { "aoVal": "D", "content": "$$d\\textgreater b\\textgreater a\\textgreater c$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性" ]
[ "由$$\\frac{1}{a-1997}=\\frac{1}{b+1998}=\\frac{1}{c-1999}=\\frac{1}{d+2000}$$, 可知$$a-1997=b+1998=c-1999=d+2000$$, 由这个连等式可得:$$a\\textgreater b$$,$$a\\textless{}c$$,$$a\\textgreater d$$;$$b\\textless{}c$$,$$b\\textgreater d$$,$$c\\textless{}d$$, 由此可得$$c\\textgreater a\\textgreater b\\textgreater d$$, 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1226
db985128eba54f0c86cf02390cb731ed
[ "2018年第29届希望杯初一竞赛初赛第16题4分" ]
1
single_choice
将一个棱长是整数厘米的长方体的各表面都刷成红色,然后将这个长方体分割成若干个棱长为$$1$$厘米的小正方体,若任何一面都没有涂色的小正方体有$$11$$个,则原来的长方体的体积是~\uline{~~~~~~~~~~}~立方厘米. Brush each surface of a box with integral centimeter of edge length into red, and then divide the box into several small cubes with an edge length of $$1$$ cm. If there are $$11$$ cubes without color on any face, the volume of the original box is~\uline{~~~~~~~~~~}~cubic centimeter.
[ [ { "aoVal": "A", "content": "$$117$$ " } ], [ { "aoVal": "B", "content": "$$99$$ " } ], [ { "aoVal": "C", "content": "$$96$$ " } ], [ { "aoVal": "D", "content": "$$84$$ " } ], [ { "aoVal": "E", "content": "$$48$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->能力->分析和解决问题能力", "课内体系->知识点->几何图形初步->几何图形->立体图形与平面图形->正方体堆积图形的问题" ]
[ "设该长方体的棱长分别为$$a$$厘米,$$b$$厘米,$$c$$厘米,$$(a\\geqslant b\\geqslant c)$$, 则由题意得$$(a-2)(b-2)(c-2)=11$$, ∵$$11$$为质数, ∴$$a-2=11$$,$$b-2=1$$,$$c-2=1$$, ∴$$a=13$$,$$b=3$$,$$c=3$$, ∴长方体的体积$$V=abc=117$$立方厘米. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1168
8aac49074e023206014e2017ad9d64fe
[ "1994年第5届全国希望杯初一竞赛初赛第3题" ]
1
single_choice
$$\frac{\left\textbar{} 1-9 \right\textbar-\left\textbar{} 9-4 \right\textbar}{1-9-9+4}$$的值的负倒数是(~ ).
[ [ { "aoVal": "A", "content": "$$4\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$-\\frac{3}{13}$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$-1$$ " } ] ]
[ "课内体系->知识点->数->有理数->倒数与负倒数->负倒数的定义" ]
[ "$$\\frac{\\left\\textbar{} 1-9 \\right\\textbar-\\left\\textbar{} 9-4 \\right\\textbar}{1-9-9+4}=\\frac{8-5}{-13}=-\\frac{3}{13}$$,其负倒数为$$\\frac{13}{3}=4\\frac{1}{3}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1060
ff8080814d7978b9014d88b7a7372a25
[ "1991年第2届全国希望杯初一竞赛复赛第1题" ]
1
single_choice
设$$a$$,$$b$$为正整数$$(a\textgreater b)$$.$$p$$是$$a$$,$$b$$的最大公约数,$$q$$是$$a$$,$$b$$的最小公倍数.则$$p$$,$$q$$,$$a$$,$$b$$的大小关系是(~ ~ ~).
[ [ { "aoVal": "A", "content": "$$p\\geqslant q\\geqslant a\\textgreater b$$ " } ], [ { "aoVal": "B", "content": "$$q\\geqslant a\\textgreater b\\geqslant p$$ " } ], [ { "aoVal": "C", "content": "$$q\\geqslant p\\geqslant a\\textgreater b$$ " } ], [ { "aoVal": "D", "content": "$$p\\geqslant a\\textgreater b\\geqslant q$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小", "竞赛->知识点->数论->整除->因数与倍数" ]
[ "两个自然数的最小公倍数一定不小于两数中较大者. 两个自然数的最大公约数一定不大于两数中较小者. 所以$$q\\geqslant a\\textgreater b\\geqslant p$$. 选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1506
d85fc5cc49164212b8236e749866fbb3
[ "2013年第24届全国希望杯初二竞赛初赛第7题4分" ]
2
single_choice
若$$-12≤{}x≤{}300$$,且$$m=\left\textbar{} \left\textbar{} x \right\textbar-100 \right\textbar$$的值为整数,则$$m$$的值有.
[ [ { "aoVal": "A", "content": "$$100$$个 " } ], [ { "aoVal": "B", "content": "$$101$$个 " } ], [ { "aoVal": "C", "content": "$$201$$个 " } ], [ { "aoVal": "D", "content": "$$203$$个 " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->已知范围化简绝对值", "课内体系->能力->运算能力" ]
[ "此题暂无解析 " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
158
8f6d876a816f4b76ac39bdd0ec63aae5
[ "2007年全美数学竞赛(AMC)竞赛" ]
1
single_choice
从写有$$A$$、$$B$$、$$C$$、$$D$$的四张红牌和$$A$$、$$B$$、$$C$$、$$D$$的四张绿牌中抽取两张.获胜对子为两张相同花色或相同数字的.则抽到获胜对子的概率是?
[ [ { "aoVal": "A", "content": "$$\\frac 27$$ " } ], [ { "aoVal": "B", "content": "$$\\frac 38$$ " } ], [ { "aoVal": "C", "content": "$$\\frac 12$$ " } ], [ { "aoVal": "D", "content": "$$\\frac 47$$ " } ], [ { "aoVal": "E", "content": "$$\\frac 58$$ " } ] ]
[ "美国AMC8->Knowledge Point->Counting, Probability and Statistics->Classical Probability", "课内体系->知识点->统计与概率" ]
[ "从写有$$A$$、$$B$$、$$C$$、$$D$$的四张红牌和$$A$$、$$B$$、$$C$$、$$D$$的四张绿牌中抽取两张.获胜对子为两张相同花色或相同数字的.则抽到获胜对子的概率是? 有四种方法可以选择同一个字母的一对,并且$$2\\left( \\left( \\begin{matrix}4 2 \\end{matrix} \\right) \\right)=12$$方法去选择一对相同颜色.一共有$$\\left( \\begin{matrix}8 2 \\end{matrix} \\right)=28$$方法去选择一对,所以概率是$$\\frac{4+12}{28}=\\frac{4}{7}$$. 故选$$\\text{D}$$. There are $$4$$ ways of choosing a winning pair of the same letter, and $$2\\left( \\left( \\begin{matrix}4 2 \\end{matrix} \\right) \\right)=12$$ ways to choose a pair of the same color. There\\textquotesingle s a total of $$\\left( \\begin{matrix}8 2 \\end{matrix} \\right)=28$$ ways to choose a pair, so the probability is $$\\frac{4+12}{28}=\\frac{4}{7}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
873
b620a93731de4354b60909cb45ba5e04
[ "2019年第1届广东深圳罗湖区深圳中学初中部初一竞赛(凤凰木杯)第6题3分" ]
1
single_choice
若$$a$$,$$b$$都是正整数,且满足$$a_{{}}^{2}-b_{{}}^{2}+9=2018$$,则$$a+b$$的值为.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$46$$ " } ], [ { "aoVal": "D", "content": "$$49$$ " } ] ]
[ "课内体系->知识点->式->整式的乘除->乘法公式->平方差公式的计算", "课内体系->能力->运算能力" ]
[ "∵$$a_{{}}^{2}-b_{{}}^{2}+9-2018$$, ∴$$a_{{}}^{2}-b_{{}}^{2}=2009$$, ∴$$(a+b)(a-b)=2009$$, ∵$$2009=7\\times 7\\times 41=41\\times 49$$, ∵$$a\\cdot b$$都是正整数, ∴$$a+b$$为正整数,且$$a+b\\textgreater a-b$$, ∴$$a+b=49$$, 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1427
dc4507f3c6e4423bbf1d61c25028ca9c
[ "2011年第22届全国希望杯初一竞赛初赛第3题4分" ]
0
single_choice
对有理数$$a$$,$$b$$,有以下四个判断: ①若$$\left\textbar{} a \right\textbar=b$$,则$$a=b$$; ②若$$\left\textbar{} a \right\textbar\textgreater b$$,则$$\left\textbar{} a \right\textbar\textgreater\left\textbar{} b \right\textbar$$; ③若$$a=-b$$,则$${{\left( -a \right)}^{2}}={{b}^{2}}$$; ④若$$\left\textbar{} a \right\textbar\textless{}\left\textbar{} b \right\textbar$$,则$$a\textless{}b$$. 其中正确的判断的个数是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->绝对值综合", "课内体系->知识点->数->有理数->绝对值->绝对值的几何意义", "课内体系->知识点->数->有理数->绝对值->绝对值的非负性" ]
[ "①令$$a=-2$$,$$b=2$$,则①错误; ②令$$a=2$$,$$b=-3$$,则②错误; ③若$$a=-b$$,则$${{\\left( -a \\right)}^{2}}={{\\left[ -(-b) \\right]}^{2}}={{b}^{2}}$$,则③正确; ④令$$a=-1$$,$$b=-2$$,则④错误. 故正确的判断的个数是$$1$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1113
c46ecf0a3cbf4fad9d667cd7b189a900
[ "2020~2021学年四川成都金牛区成都外国语学校初二上学期期中模拟第8题3分", "2018~2019学年广东深圳罗湖区深圳中学初中部初一下学期期中(竞赛班)第5题2分" ]
1
single_choice
设$$x=\frac{4}{\sqrt{5}+3}$$,$$y=\sqrt{5}-3$$,则$$x$$,$$y$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$x\\textgreater y$$ " } ], [ { "aoVal": "B", "content": "$$x\\geqslant y$$ " } ], [ { "aoVal": "C", "content": "$$x\\textless{}y$$ " } ], [ { "aoVal": "D", "content": "$$x=y$$ " } ] ]
[ "课内体系->知识点->数->实数->无理数有关的计算->无理数大小的比较" ]
[ "∵$$x=\\frac{4}{\\sqrt{5}+3}=\\frac{4(\\sqrt{5}-3)}{(\\sqrt{5}+3)(\\sqrt{5}-3)}=-(\\sqrt{5}-3)=3-\\sqrt{5}\\textgreater0$$, $$y=\\sqrt{5}-3\\textless{}0$$, ∴$$x\\textgreater y$$, 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
682
4d770b275d5b4c5092e11ea0d3bb814d
[ "2007年竞赛第2题6分" ]
2
single_choice
口袋中有$$20$$个球,其中白球$$9$$个,红球$$5$$个,黑球$$6$$个,现从中任取$$10$$个球,使得白球不少于$$2$$个但不多于$$8$$个,红球不少于$$2$$个,黑球不多于$$3$$个,那么上述取法的种数是(~ ).
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "竞赛->知识点->组合->计数问题-枚举法" ]
[ "用枚举法: 红球个数 白球个数 黑球个数 种数 $$5$$ $$2$$,$$3$$,$$4$$,$$5$$ $$3$$,$$2$$,$$1$$,$$0$$ $$4$$ $$4$$ $$3$$,$$4$$,$$5$$,$$6$$ $$3$$,$$2$$,$$1$$,$$0$$ $$4$$ $$3$$ $$4$$,$$5$$,$$6$$,$$7$$ $$3$$,$$2$$,$$1$$,$$0$$ $$4$$ $$2$$ $$5$$,$$6$$,$$7$$,$$8$$ $$3$$,$$2$$,$$1$$,$$0$$ $$4$$ 所以共$$16$$种.故选$$B$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1256
8aac50a74e023208014e3f487f4a18de
[ "1995年第6届全国希望杯初一竞赛初赛第1题" ]
1
single_choice
有理数$$-\frac{95}{a-19}$$的值一定不是(~ ).
[ [ { "aoVal": "A", "content": "$$19$$ " } ], [ { "aoVal": "B", "content": "$$-19$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "课内体系->知识点->式->整式的加减->整式有关的概念->代数式->代数式的定义", "课内体系->知识点->式->整式的加减->整式有关的概念->代数式->列代数式" ]
[ "当$$a=14$$时,$$-\\frac{95}{a-19}=19$$,排除$$\\text{A}$$; 当$$a=24$$时,$$-\\frac{95}{a-19}=-19$$,排除$$\\text{B}$$; 当$$a=-76$$时,$$-\\frac{95}{a-19}=1$$,排除$$\\text{D}$$; 因此,选$$\\text{C}$$.事实上,对任意$$a\\ne 19$$,$$-\\frac{95}{a-19}$$一定不是$$0$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
346
2bb3c3e7b6854cb8bb2431ae3e19e14f
[ "1993年第4届希望杯初二竞赛第14题" ]
1
single_choice
若方程$$9{{x}^{2}}-6(a+1)x+{{a}^{2}}-3=0$$的两根之积等于$$1$$,则$$a$$的值是( ).
[ [ { "aoVal": "A", "content": "$$\\pm 2\\sqrt{3}$$ " } ], [ { "aoVal": "B", "content": "$$2\\sqrt{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\pm 2\\sqrt{2}$$ " } ], [ { "aoVal": "D", "content": "$$2\\sqrt{2}$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->一元二次方程->根与系数的关系->一元二次方程根与系数的关系", "课内体系->知识点->方程与不等式->一元二次方程->根的判别式的应用->一元二次方程根的判别式" ]
[ "因为$$\\Delta \\geqslant 0$$,所以$$36{{(a+1)}^{2}}-36({{a}^{2}}-3)\\geqslant 0$$,所以$$a\\geqslant -2$$,又$${{x}_{1}}\\cdot {{x}_{2}}=1$$,所以$$\\frac{{{a}^{2}}-3}{9}=1$$,解得$$a=\\pm 2\\sqrt{3}$$.又由$$a\\geqslant -2$$,所以$$a=2\\sqrt{3}$$.故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
284
19d3f2be250940fd9fc1b77ea8707f71
[ "2019~2020学年12月四川资阳雁江区资阳市雁江区第二中学初三上学期周测D卷第10题3分", "2016~2017学年3月湖北武汉武昌区武汉初级中学初二下学期月考第10题3分", "2016~2017学年9月湖北武汉武昌区武汉初级中学初二上学期月考第10题3分", "2001年第18届全国初中数学联赛竞赛第1题" ]
2
single_choice
$$a$$、$$b$$、$$c$$、为有理数,且等式$$a+b\sqrt{2}+c\sqrt{3}=\sqrt{5+2\sqrt{6}}$$成立,则$$2a+999b+1001c$$的值是.
[ [ { "aoVal": "A", "content": "$$1999$$ " } ], [ { "aoVal": "B", "content": "$$2000$$ " } ], [ { "aoVal": "C", "content": "$$2001$$ " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算", "课内体系->知识点->方程与不等式->等式与方程->等式->等式的性质->等式性质1", "课内体系->能力->运算能力" ]
[ "本题需要比较等式两边的各项,利用有理数部分等于理数部分,无理数部分等于无理数部分来求$$a$$、$$b$$、$$c$$的值,由于: $$5+2\\sqrt{6}={{\\left( \\sqrt{3}+\\sqrt{2} \\right)}^{2}}$$. 所以:$$a+b\\sqrt{2}+c\\sqrt{3}=\\sqrt{2}+\\sqrt{3}$$. 则$$a=0$$,$$b=1$$,$$c=1$$,∴$$2a+999b+1001c=2000$$. 所以选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
820
4ec153fa24bd4c7585cf399ce3b4490b
[ "1992年第9届全国初中数学联赛竞赛第3题", "初一上学期其它" ]
2
single_choice
若$${{x}^{2}}-13x+1=0$$,则$${{x}^{4}}-{{x}^{-4}}$$的个位数字是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式", "课内体系->能力->运算能力" ]
[ "由$${{x}^{2}}-13x+1$$可得到$$x+\\dfrac{1}{x}=13$$,所以$${{x}^{2}}+\\dfrac{1}{{{x}^{2}}}={{(x+\\dfrac{1}{x})}^{2}}-2={{13}^{2}}-2=167$$. 同样的$${{x}^{4}}+\\dfrac{1}{{{x}^{4}}}={{({{x}^{2}}+\\dfrac{1}{{{x}^{2}}})}^{2}}-2$$,可以根据个位数字可以直接判断结果的个位数字为$$7$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1497
cab476bd1c4f4eae94bc6e2c1d7c9692
[ "1991年第2届希望杯初二竞赛第10题" ]
2
single_choice
一个两位数,用它的个位、十位上的两个数之和的$$3$$倍减去$$-2$$,仍得原数,这个两位数是.
[ [ { "aoVal": "A", "content": "$$26$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ] ]
[ "竞赛->知识点->数与式->数的运算->有理数运算问题" ]
[ "设这个两位数为$$\\overline{ab}$$,则$$3(a+b)+2=10a+b$$, 即$$7a=2b+2$$, 可见$$a$$只能为偶数,$$b+1$$是$$7$$的倍数. ∴这个两位数是$$28$$, 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
850
4f0830a901d84618a08517b3535cf5e7
[ "2010年第21届希望杯初二竞赛第1试第6题", "北京初二上学期单元测试《二次根式的运算》第22题" ]
3
single_choice
设$$p=\sqrt[3]{7a+1}+\sqrt[3]{7b+1}+\sqrt[3]{7c+1}+\sqrt[3]{7d+1}$$,其中$$a$$、$$b$$、$$c$$、$$d$$是正实数,且$$a+b+c+d=1$$,则.
[ [ { "aoVal": "A", "content": "$$p\\textgreater5$$ " } ], [ { "aoVal": "B", "content": "$$p\\textless{}5$$ " } ], [ { "aoVal": "C", "content": "$$p\\textless{}4$$ " } ], [ { "aoVal": "D", "content": "$$p=5$$ " } ] ]
[ "课内体系->能力->推理论证能力", "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质", "课内体系->知识点->式->因式分解->公式法->利用立方和与立方差公式因式分解", "课内体系->知识点->式->整式的乘除->乘法公式->和与差的立方公式" ]
[ "∵$$a$$、$$b$$、$$c$$、$$d$$是正实数,且$$a+b+c+d=1$$, ∴$$0\\textless{}a\\textless{}1$$, ∴$$a\\textgreater{{a}^{2}}\\textgreater{{a}^{3}}$$, ∴$$7a+1=a+3a+3a+1\\textgreater{{a}^{3}}+3{{a}^{2}}+3a+1={{(a+1)}^{3}}$$, ∴$$\\sqrt[3]{7a+1}\\textgreater\\sqrt[3]{{{(a+1)}^{3}}}=a+1$$, 同理$$\\sqrt[3]{7b+1}\\textgreater b+1\\sqrt[3]{7c+1}\\textgreater c+1\\sqrt[3]{7d+1}\\textgreater d+1$$, ∴$$p=\\sqrt[3]{7a+1}+\\sqrt[3]{7b+1}+\\sqrt[3]{7c+1}+\\sqrt[3]{7d+1}$$, $$\\textgreater a+1+b+1+c+1+d+1$$, $$=a+b+c+d+4=5$$, ∴$$p\\textgreater5$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
931
65d4c99313444a55a3b7403dabcd11ff
[ "1994年第11届全国初中数学联赛竞赛第4题6分", "初一下学期其它" ]
1
single_choice
\textbf{2021-2022年南昌二中期末考试第$$2$$题} 当$$x=\frac{1+\sqrt{1994}}{2}$$时,多项式$${{(4{{x}^{3}}-1997x-1994)}^{2001}}$$的值为.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$${{2}^{2001}}$$ " } ], [ { "aoVal": "D", "content": "$$-{{2}^{2001}}$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式化简求值->二次根式的化简求值——利用完全平方" ]
[ "∵$$x=\\frac{1+\\sqrt{1994}}{2}$$, ∴$${{(2x-1)}^{2}}=1994$$, 即$$4{{x}^{2}}-4x-1993=0$$, ∴$${{(4{{x}^{3}}-1997x-1994)}^{2001}}$$ $$={{[(4{{x}^{2}}-4x-1993)x+(4{{x}^{2}}-4x-1993)-1]}^{2001}}$$ $$={{(-1)}^{2001}}$$ $$=-1$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
251
b0060b5d894f42f392614af886ad7646
[ "2003年第14届希望杯初二竞赛第2试第7题" ]
2
single_choice
凸$$n$$边形($$n\geqslant 4$$)中,不算两个最大的内角,其余内角的和为$$1100{}^{}\circ $$,则$$n$$等于.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$10$$或$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "课内体系->能力->推理论证能力", "课内体系->知识点->三角形->三角形及多边形->多边形->多边形的内角和定理", "课内体系->知识点->三角形->三角形及多边形->多边形->求多边形的内角和" ]
[ "因为,在四边形中,两个最大的内角的和大于等于$$180{}^{}\\circ $$, 所以,凸$$n$$边形($$n\\geqslant 4$$)中,两个最大的内角和也大于等于$$180{}^{}\\circ $$,同时小于$$360{}^{}\\circ $$, 设两个最大的内角的和为$$k{}^{}\\circ $$,则$$1100+180\\leqslant 1100+k=(n-2)\\times 180 ~\\textless{} ~1100+360$$, 所以$$7\\frac{1}{9}\\leqslant n-2 ~\\textless{} ~8\\frac{1}{9}$$,$$9\\frac{1}{9}\\leqslant n ~\\textless{} ~10\\frac{1}{9}$$,$$n=10$$. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
988
ff8080814cfa9b24014d02bbcad3135e
[ "2006年第17届希望杯初二竞赛第2试第5题", "初二其它" ]
1
single_choice
若$$m={{2006}^{2}}+{{2006}^{2}}\times {{2007}^{2}}+{{2007}^{2}}$$,则$$m$$(~ ~ ~).
[ [ { "aoVal": "A", "content": "是完全平方数,还是奇数 " } ], [ { "aoVal": "B", "content": "是完全平方数,还是偶数 " } ], [ { "aoVal": "C", "content": "不是完全平方数,但是奇数 " } ], [ { "aoVal": "D", "content": "不是完全平方数,但是偶数 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->因式分解->十字相乘法->二次项系数为±1的十字相乘" ]
[ "$$m={{2006}^{2}}+{{2006}^{2}}\\times {{2007}^{2}}+{{2007}^{2}}$$ $$={{2006}^{2}}+{{2006}^{2}}{{\\left( 2006+1 \\right)}^{2}}+{{\\left( 2006+1 \\right)}^{2}}$$ $$={{2006}^{4}}+2\\times {{2006}^{3}}+3\\times {{2006}^{2}}+2\\times 2006+1$$ $$={{\\left( {{2006}^{2}}+2006+1 \\right)}^{2}}$$ ∴$$m$$是奇数. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1127
d22cc70b85cb44b3a538b90ddeb04ad8
[ "1990年第1届希望杯初二竞赛第7题" ]
1
single_choice
把二次根式$$a\sqrt{-\frac{1}{a}}$$化为最简二次根式,结果是.
[ [ { "aoVal": "A", "content": "$$\\sqrt{-a}$$ " } ], [ { "aoVal": "B", "content": "$$-\\sqrt{a}$$ " } ], [ { "aoVal": "C", "content": "$$-\\sqrt{-a}$$ " } ], [ { "aoVal": "D", "content": "$$\\sqrt{a}$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的基础->最简二次根式" ]
[ "因为$$a\\textless{}0$$,所以$$a\\sqrt{-\\frac{1}{a}}=-\\sqrt{{{(-a)}^{2}}\\frac{1}{-a}}=-\\sqrt{-a}$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
831
607f0eccb7594bba808621281385dccf
[ "2016年第27届全国希望杯初一竞赛复赛第3题4分" ]
1
single_choice
在一家水果店,小明买了$$1$$斤苹果,$$4$$斤西瓜,$$2$$斤橙子,$$1$$斤葡萄,共付$$27.6$$元;小惠买了$$2$$斤苹果,$$6$$斤西瓜,$$2$$斤橙子,$$2$$斤葡萄,共付$$32.2$$元,则买$$1$$斤西瓜和$$1$$斤橙子需付(~ ).
[ [ { "aoVal": "A", "content": "$$16$$元 " } ], [ { "aoVal": "B", "content": "$$14.8$$元 " } ], [ { "aoVal": "C", "content": "$$11.5$$元 " } ], [ { "aoVal": "D", "content": "$$10.7$$元 " } ] ]
[ "课内体系->知识点->方程与不等式->二元一次方程(组)->二元一次方程组应用题->二元一次方程组的经济问题", "课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->加减消元法解二元一次方程组" ]
[ "设$$1$$斤苹果$$x$$元,$$1$$斤西瓜$$y$$元,$$1$$斤橙子$$z$$元,$$1$$斤葡萄$$w$$元. 由题意,得$$\\left { \\begin{matrix}x+4y+2z+w=27.6\\&① 2x+6y+2z+2w=32.2 \\&② \\end{matrix} \\right.\\begin{matrix} \\end{matrix}$$, $$2\\times $$①$$-$$②,得$$2y+2z=23$$, ∴$$y+z=11.5$$. 答:买$$1$$斤西瓜和$$1$$斤橙子需付$$11.5$$元. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
787
4e6843c4e15e46249f597d5f2b9f315a
[ "1993年第4届希望杯初二竞赛第2题" ]
1
single_choice
已知四个命题:①$$-1$$是$$1$$的平方根.②负数没有立方根.③无限小数不一定是无理数.④$$\sqrt{3a}$$一定没有意义.其中正确的命题的个数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->知识点->数->实数->无理数有关的计算->无理数的定义", "课内体系->知识点->数->实数->立方根->平方根和立方根综合", "课内体系->知识点->数->实数->平方根", "课内体系->知识点->几何图形初步->命题与证明" ]
[ "命题①,③是正确的,②,④不正确. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
534
4c64b07e8c934609a6ec061eb34ca8cb
[ "2001年竞赛(全国初中数学竞赛)第3题5分" ]
3
single_choice
如果$$a$$,$$b$$是质数,且$${{a}^{2}}-13a+m=0$$,$${{b}^{2}}-13b+m=0$$那么$$\frac{b}{a}+\frac{a}{b}$$的值为( )
[ [ { "aoVal": "A", "content": "$$\\frac{123}{22}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{125}{22}$$或$$2$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{125}{22}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{123}{22}$$或$$2$$ " } ] ]
[ "课内体系->知识点->式->分式->分式化简求值->分式化简求值-条件化简求值", "课内体系->思想->分类讨论思想" ]
[ "有两种情况: ①若$$a=b$$,则$$\\frac{b}{a}+\\frac{a}{b}=2$$; ②若$$a\\ne b$$,根据题意,$$a$$、$$b$$是方程$${{x}^{2}}-13x+m=0$$的根, 则$$a+b=13$$,因为$$a$$,$$b$$是质数且和为奇数,所以两数分别为$$2$$和$$11$$.此时$$\\frac{b}{a}+\\frac{a}{b}=\\frac{2}{11}+\\frac{11}{2}=\\frac{125}{22}$$. 方法二:两式相减,消$$m$$,$${{a}^{2}}-{{b}^{2}}-13a+13b=0$$,$$\\left( a-b \\right)\\left( a+b-13 \\right)=0$$,所以有$$a=b$$或$$a+b=13$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1374
a5a4cbf96ce649b58abb2b961d2d5394
[ "2020~2021学年10月湖南长沙天心区长郡外国语实验中学初一上学期周测A卷", "1996年第7届希望杯初二竞赛第2题4分" ]
0
single_choice
已知:$$-1 ~\textless{} ~b ~\textless{} ~a ~\textless{} ~0$$,那么$$a+b$$,$$a-b$$,$$a+1$$,$$a-1$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a+b ~\\textless{} ~a-b ~\\textless{} ~a-1 ~\\textless{} ~a+1$$ " } ], [ { "aoVal": "B", "content": "$$a+1\\textgreater a+b\\textgreater a-b\\textgreater a-1$$ " } ], [ { "aoVal": "C", "content": "$$a-1 ~\\textless{} ~a+b ~\\textless{} ~a-b ~\\textless{} ~a+1$$ " } ], [ { "aoVal": "D", "content": "$$a+b\\textgreater a-b\\textgreater a+1\\textgreater a-1$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质" ]
[ "因为$$-1 ~\\textless{} ~b ~\\textless{} ~a ~\\textless{} ~0$$,所以$$a+b ~\\textless{} ~a-b$$. 因为$$b\\textgreater-1$$,所以$$a-1 ~\\textless{} ~a+b$$. 又因为$$-b ~\\textless{} ~1$$,所以$$a-b ~\\textless{} ~a+1$$. 综上得$$a-1 ~\\textless{} ~a+b ~\\textless{} ~a-b ~\\textless{} ~a+1$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1171
8aac49074e023206014e201d01216530
[ "1994年第5届全国希望杯初一竞赛初赛第8题" ]
1
single_choice
如果$$x:y=3:2$$并且$$x+3y=27$$,则$$x$$,$$y$$中较小的是(~ ).
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "课内体系->知识点->方程与不等式->等式与方程->等式->等式的定义", "课内体系->知识点->方程与不等式->二元一次方程(组)->二元一次方程->二元一次方程的解" ]
[ "由$$x:y=3:2$$得$$x=1.5y$$, 代入$$x+3y=27$$得$$4.5y=27$$, 于是$$y=6$$,$$x=9$$, 所以$$x$$,$$y$$中较小的那个数是$$6$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
461
243c5b94cf5a48a6ba60d7d45f1b9f7d
[ "2007年第12届华杯赛初一竞赛初赛第6题" ]
1
single_choice
已知$$a$$是整数,则以下四个代数式中,不可能得整数值的是.
[ [ { "aoVal": "A", "content": "$$\\frac{3a+2}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2-a}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3a+1}{6}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5a-2}{7}$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数基础运算->有理数减法->有理数加减混合运算", "课内体系->能力->运算能力" ]
[ "取$$a=1$$,$$\\frac{3a+2}{5}$$,否定$$\\text{A}$$. 取$$a=5$$,$$\\frac{2-a}{3}=-1$$,否定$$\\text{B}$$. 取$$a=-1$$,$$\\frac{5a-2}{7}=-1$$,否定$$\\text{D}$$. 又当$$a$$是整数时,$$3a+1$$表示被$$3$$除余$$1$$的整数,故不可能是$$6$$的倍数. 所以$$\\frac{3a+1}{6}$$不可能得整数值. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
957
b1edd5f8eaf14806ab2edbf63e458d7f
[ "2022~2023学年浙江宁波初三月考(六校强基竞赛)第6题" ]
1
single_choice
二次函数$y=x^{2}+2x+c$的图象与\emph{x}轴的两个交点为$A\left(x_{1},0\right)$,$B\left(x_{2},0\right)$,且$x_{1}\textless{} x_{2}$,点$P\left(m,n\right)$是图象上一点,那么下列判断正确的是(~~~~~~~)
[ [ { "aoVal": "A", "content": "当$n\\textgreater{} 0$时,$m\\textless{} x_{1}$ " } ], [ { "aoVal": "B", "content": "当$n\\textgreater{} 0$时,$m\\textgreater{} x_{2}$ " } ], [ { "aoVal": "C", "content": "当$n\\textless{} 0$时,$m\\textless{} 0$ " } ], [ { "aoVal": "D", "content": "当$n\\textless{} 0$时,$x_{1}\\textless{} m\\textless{} x_{2}$ " } ] ]
[ "课内体系->知识点->函数->二次函数" ]
[ "\\hfill\\break 【分析】\\\\ 根据二次函数的图象与性质可进行排除选项.\\\\ 【详解】\\\\ 解:由二次函数$y=x^{2}+2x+c$可知开口向上,对称轴为直线$x=-1$,\\\\ 当$x\\textless{} -1$时,$y$随$x$的增大而减小,当$x\\textgreater{} -1$时,\\emph{y}随\\emph{x}的增大而增大;\\\\ ∵$A\\left(x_{1},0\\right)$,$B\\left(x_{2},0\\right)$是二次函数与\\emph{x}轴的交点,点$P\\left(m,n\\right)$是图象上的一点,\\\\ ∴当$n\\textgreater{} 0$时,则$m\\textless{} x_{1}$或$m\\textgreater{} x_{2}$;故$\\mathrm{A}$、$\\mathrm{B}$选项错误;\\\\ 当$n\\textless{} 0$时,则$x_{1}\\textless{} m\\textless{} x_{2}$,故$\\mathrm{D}$正确;当$x_{2}\\textgreater{} 0$且$n\\textless{} 0$时,此时有可能$m\\textgreater{} 0$,故$\\mathrm{C}$错误;\\\\ 故选$\\mathrm{D}$.\\\\ 【点睛】\\\\ 本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
767
456c005c61ec467595ce123d18f888b2
[ "2016年全美数学竞赛(AMC)竞赛" ]
1
single_choice
数字$$N$$是个两位数. $$N$$除以$$9$$,余数为$$1$$. $$N$$除以$$10$$,余数为$$3$$. 则$$N$$除以$$11$$时,余数为几?
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "课内体系->知识点->式->因式分解->十字相乘法->二次项系数为±1的十字相乘", "美国AMC8->Knowledge Point->Number Theory->Remainder Problems->Remainder Characteristics" ]
[ "数字$$N$$是个两位数. $$N$$除以$$9$$,余数为$$1$$. $$N$$除以$$10$$,余数为$$3$$. 则$$N$$除以$$11$$时,余数为几? 从第二个子弹开始,我们知道第二个数字必须是$$3$$,因为除以$$9$$还有一个余数$$1$$,$$9$$的倍数必须以$$2$$结束,我们找到: $$9\\left( 1 \\right)=9$$ $$9\\left( 2 \\right)=18$$ $$9\\left( 3 \\right)=27$$ $$9\\left( 4 \\right)=36$$ $$9\\left( 5 \\right)=45$$ $$9\\left( 6 \\right)=54$$ $$9\\left( 7 \\right)=63$$ $$9\\left( 8 \\right)=72$$ 这个上数字$$71+1=73$$都满足条件,我们减去$$11$$的小于$$73$$的最大倍数得到剩余的,也就是$$73-11\\left( 6 \\right)=73-66=7$$. 故选$$\\text{E}$$. From the second bullet point, we know that the second digit must be $$3$$. Because there is a remainder of $$1$$ when it is divided by $$9$$ the multiple of $$9$$ must end in a $$2$$. We now look for this one: $$9(1) = 9$$ $$9(2) =18$$ $$9(3) = 27$$ $$9(4) = 36$$ $$9(5) = 45$$ $$9(6) =54$$ $$9(8) = 72$$ The number $$72 +1= 73$$ satisfies both conditions. We subtract the biggest multiple of $$11$$ less than $$73$$ to get the remainder. Thus, $$73- 11(6) = 73 - 66 =\\boxed{(\\rm E) 7 }$$. " ]
E
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1095
ff8080814d9539f1014d9b61d3560a50
[ "1992年第3届全国希望杯初一竞赛初赛第8题", "2019~2020学年辽宁沈阳皇姑区沈阳市33中学初一上学期期中第5题2分" ]
1
single_choice
从$$2a+5b$$减去$$4a-4b$$的一半,应当得到(~ ~ ~).
[ [ { "aoVal": "A", "content": "$$4a-b$$ " } ], [ { "aoVal": "B", "content": "$$b-a$$ " } ], [ { "aoVal": "C", "content": "$$a-9b$$ " } ], [ { "aoVal": "D", "content": "$$7b$$ " } ] ]
[ "课内体系->知识点->式->整式的加减->整式的加减运算->整式加减", "课内体系->能力->运算能力" ]
[ "$$(2a+5b)-\\frac{1}{2}(4a-4b)=2a+5b-2a+2b=7b$$,选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
611
dedec3331c4b49029aae50b6c3a85fb6
[ "2005年第16届希望杯初二竞赛复赛第1题4分", "其它" ]
1
single_choice
若$$a$$,$$b$$均为正整数,且$$m=ab(a+b)$$,则(~ ).
[ [ { "aoVal": "A", "content": "$$m$$一定是奇数 " } ], [ { "aoVal": "B", "content": "$$m$$一定是偶数 " } ], [ { "aoVal": "C", "content": "只有$$a$$,$$b$$当均为偶数时,$$m$$是偶数 " } ], [ { "aoVal": "D", "content": "只有$$a$$,$$b$$当一个为偶数、另一个为奇数时,$$m$$是偶数 ~ " } ] ]
[ "竞赛->知识点->数论->同余->奇数与偶数", "课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数四则混合运算" ]
[ "$$m=ab(a+b)$$ 若$$a$$,$$b$$中有一个为偶数,$$m$$必为偶数. 若$$a$$,$$b$$均为奇数,$$a+b$$为偶数,$$m$$必为偶数. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
750
45401202750b4d4b8a3a2a44553606ae
[ "2016年第27届全国希望杯初一竞赛初赛第5题4分" ]
2
single_choice
若非零自然数$$a$$,$$b$$的最大公约数与最小公倍数之和恰等于$$a$$,$$b$$的乘积,则$${{\left( \frac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \right)}^{10}}=$$(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$1024$$ " } ], [ { "aoVal": "C", "content": "$$2104$$ " } ], [ { "aoVal": "D", "content": "$$2016$$ " } ] ]
[ "课内体系->能力->推理论证能力", "课内体系->能力->运算能力", "课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数四则混合运算", "竞赛->知识点->数论->整除->因数与倍数" ]
[ "设$$a$$,$$b$$的最大公约数是$$c$$, 则它们的最小公倍数为$$c\\cdot \\frac{a}{c}\\cdot \\frac{b}{c}=\\frac{ab}{c}$$, 由题意,得$$c+\\frac{ab}{c}=ab$$, ∴$$ab=\\frac{{{c}^{2}}}{c-1}$$. 若$$c$$为奇数,则$${{c}^{2}}$$为奇数,$$c-1$$为偶数,$$\\frac{{{c}^{2}}}{c-1}$$不是整数,舍去. 若$$c$$为偶数,则$${{c}^{2}}$$为偶数,$$c-1$$为奇数,当且仅当$$c=2$$时,$$\\frac{{{c}^{2}}}{c-1}$$为整数. ∴$$ab=\\frac{{{2}^{2}}}{2-1}=4$$. 又∵$$a$$,$$b$$均为正整数,且它们的最大公约数为$$2$$, ∴$$a=b=2$$, ∴$${{\\left( \\frac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\right)}^{10}}={{\\left( \\frac{16}{8} \\right)}^{10}}={{2}^{10}}=1024$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
113
824eef26e9214a5d9267c8195d5264e7
[ "2009年第20届希望杯初二竞赛第1试第10题" ]
1
single_choice
已知在代数式$$a+bx+c{{x}^{2}}$$中,$$a$$,$$b$$,$$c$$都是整数,当$$x=3$$时,该式的值是$$2008$$;当$$x=7$$时,该式的值是$$2009$$,这样的代数式有.
[ [ { "aoVal": "A", "content": "$$0$$个 " } ], [ { "aoVal": "B", "content": "$$1$$个 " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "无穷多个 " } ] ]
[ "课内体系->知识点->式->整式的加减->整式的加减运算->整式加减" ]
[ "当$$x=3$$时,$$a+3b+9c=2008$$,① 当$$x=7$$时,$$a+7b+49c=2009$$, ② ②$$-$$①得,$$4b+40c=1$$. 当$$b$$,$$c$$都是整数时,上式左边总为偶数,不可能等于$$1$$,所以不存在这样的代数式. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
459
358e5a5e75ce425cbe27cf9d551207c1
[ "2014年第25届全国希望杯初一竞赛复赛第10题4分" ]
1
single_choice
水池$$A$$和$$B$$都是深$$1.2$$米,底部是$$3$$米$$\times 2$$米的长方体.$$1$$号阀门$$18$$分钟可将无水的$$A$$池注满,$$2$$号阀门$$24$$分钟可将$$A$$池中满池的水注入$$B$$池.最初$$A$$、$$B$$均为空池,若同时打开$$1$$号,$$2$$号阀门,当$$A$$池水深$$0.4$$米时,同时关闭两个阀门,这时$$B$$池中有水(~ )立方米.
[ [ { "aoVal": "A", "content": "$$0.9$$ " } ], [ { "aoVal": "B", "content": "$$1.8$$ " } ], [ { "aoVal": "C", "content": "$$3.6$$ " } ], [ { "aoVal": "D", "content": "$$7.2$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->能力->分析和解决问题能力", "课内体系->知识点->数->有理数->有理数与实际问题" ]
[ "由已知条件可得,$$1$$号阀门每分钟注入$$\\frac{1}{18}$$池水,而$$2$$号阀门每分钟放出$$\\frac{1}{24}$$池水. 到$$A$$池深$$0.4$$米时,$$A$$池中正好留存了$$\\frac{1}{3}$$池水, 则注水时间为$$\\frac{1}{3}\\div \\left( \\frac{1}{18}-\\frac{1}{24} \\right)=24$$(分钟), 故同时关闭阀门时,恰好放了$$24$$分钟水,正好把$$B$$池放满, 故$$B$$水池中有水$$3\\times 2\\times 1.2=7.2$$(立方米). " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
770
7b21b04006b240a68ce5ad0f29fc41e5
[ "1999年第10届希望杯初一竞赛第10题" ]
1
single_choice
定义:一个工厂一年的生产增长率就是: $$\frac{当年产值 - 前一年产值}{前一年产值}\times 100 \%$$ 如果该工厂$$2000$$年的产值要达到$$1998$$年产值的$$1.44$$倍,而且每年的生产增长率都是$$x$$,则$$x$$等于.
[ [ { "aoVal": "A", "content": "$$5 \\%$$ " } ], [ { "aoVal": "B", "content": "$$10 \\%$$ " } ], [ { "aoVal": "C", "content": "$$15 \\%$$ " } ], [ { "aoVal": "D", "content": "$$20 \\%$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程->一元二次方程与实际问题->一元二次方程的增长率问题" ]
[ "设$$1998$$年的产值为$$1$$,则$$1999$$年产值为$$1+x$$,$$2000$$年产值为$$(1+x)+(1+x)x={{(1+x)}^{2}}$$.依题意,应当$${{(1+x)}^{2}}=1.44$$. 因为$${{(\\pm 1.2)}^{2}}=1.44$$,且$$x\\textgreater0$$, 所以$$1+x=1.2$$,$$x=0.2=20 \\%$$. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
322
5db5e22431124ee0959658d3c9c44596
[ "2001年第6届华杯赛初一竞赛决赛第19题" ]
2
single_choice
将$$100$$以内的质数从小到大排成一个数字串,依次完成以下五项工作叫做一次操作: ($$1$$)将左边第一个数码移到数字串的最右边; ($$2$$)从左到右两位一节组成若干个两位数; ($$3$$)从这些两位数中划去合数; ($$4$$)所剩的两位质数中有相同者,保留左边的一个,其余划去; ($$5$$)所余的两位质数保持数码次序又组成一个新的数字串. 问:经过$$1997$$次操作,所得到数字串是什么?
[ [ { "aoVal": "A", "content": "$$1173$$ " } ], [ { "aoVal": "B", "content": "$$1731$$ " } ], [ { "aoVal": "C", "content": "$$7311$$ " } ], [ { "aoVal": "D", "content": "$$3117$$ " } ], [ { "aoVal": "E", "content": "$$1713$$ " } ] ]
[ "竞赛->知识点->组合->操作与游戏", "课内体系->知识点->综合与实践->规律探究与程序框图->规律探究->数列找规律->数列找规律-具有周期规律的数列" ]
[ "第$$1$$次操作得数字串$$711131737$$;第$$2$$次操作得数字串$$11133173$$;第$$3$$次操作得数字串$$111731$$;第$$4$$次操作得数字串$$1173$$;第$$5$$次操作得数字串$$1731$$;第$$6$$次操作得数字串$$7311$$;第$$7$$次操作得数字串$$3117$$;第$$8$$次操作得数字串$$1173$$,以下以$$4$$为周期循环,即$$4k$$次操作所得数字串均为$$1173$$.$$1996=4\\times 499$$,所以第$$1996$$次操作得数字串$$1173$$,因此,第$$1997$$次操作得数字串$$1731$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
387
3982b468c8bc41cc9f3a23f358a8e0f0
[ "1998年第9届希望杯初一竞赛第4题" ]
1
single_choice
有下面$$4$$个命题: ①两个数的差一定是正数. ②两个整式的和一定是整式. ③两个同类项的数字系数相同. ④若两个角的和等于$$180{}^{}\circ $$,则这两个角互为邻补角. 其中真命题的个数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->几何图形初步->角->角的基础问题" ]
[ "由$$3-4=-1$$,知命题①不真; $$3a{{b}^{2}}$$与$$5a{{b}^{2}}$$是同类项,但数字系数不同,③不真; 由于两条平行线被第三条直线所截,同旁内角之和为$$180{}^{}\\circ $$,但它们并不互为邻补角.命题④不真. 易知,两个整式的和仍是整式是真命题. 所以只有$$1$$个真命题,选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1344
ffe0640a91794ccf943c1a3a585e9d49
[ "2006年第17届希望杯初二竞赛第2试第1题" ]
1
single_choice
下列四组根式中,是同类二次根式的一组是.
[ [ { "aoVal": "A", "content": "$$\\sqrt{2.5}$$和$$2\\sqrt{0.5}$$ " } ], [ { "aoVal": "B", "content": "$$3a\\sqrt{a}$$和$$3b\\sqrt{b}$$ " } ], [ { "aoVal": "C", "content": "$$\\sqrt{{{a}^{2}}b}$$和$$\\sqrt{a{{b}^{2}}}$$ " } ], [ { "aoVal": "D", "content": "$$\\sqrt{a{{b}^{7}}{{c}^{3}}}$$和$$\\sqrt{\\frac{{{c}^{3}}}{ab}}$$ " } ] ]
[ "竞赛->知识点->数与式->二次根式->二次根式的性质与运算" ]
[ "$$\\sqrt{a{{b}^{7}}{{c}^{3}}}={{b}^{3}}c\\sqrt{abc}$$,$$\\sqrt{\\frac{{{c}^{3}}}{ab}}=\\frac{c}{ab}\\sqrt{abc}$$,它们是同类二次根式. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
347
875ed1005b3d465fb10cd609fd6128f7
[ "2009年第20届希望杯初一竞赛第1试第5题4分" ]
1
single_choice
在$$\triangle ABC$$中,$$2\angle A=3\angle B$$,且$$\angle C-30{}^{}\circ =\angle A+\angle B$$,则$$\triangle ABC$$是.
[ [ { "aoVal": "A", "content": "锐角三角形 " } ], [ { "aoVal": "B", "content": "钝角三角形 " } ], [ { "aoVal": "C", "content": "有一个角是$$30{}^{}\\circ $$的直角三角形 " } ], [ { "aoVal": "D", "content": "等腰直角三角形 " } ] ]
[ "课内体系->能力->分析和解决问题能力", "课内体系->知识点->三角形->三角形及多边形->三角形的基础->三角形的分类", "课内体系->知识点->三角形->三角形及多边形->与三角形有关的角->三角形内角和的应用" ]
[ "由题意得:$$\\begin{cases}\\angle A=\\dfrac{3}{2}\\angle B \\angle C=\\angle A+\\angle B+30{}^{}\\circ \\angle A+\\angle B+\\angle C=180{}^{}\\circ \\end{cases}$$, 解得$$\\angle A=45{}^{}\\circ $$,$$\\angle B=30{}^{}\\circ $$,$$\\angle C=105{}^{}\\circ $$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
452
55155eddb05e4362a11e55f1bde32222
[ "2001年第12届希望杯初二竞赛第1试第4题" ]
1
single_choice
设$$y={{x}^{4}}-4{{x}^{3}}+8{{x}^{2}}-8x+5$$,其中$$x$$为任意实数,则$$y$$的取值范围是.
[ [ { "aoVal": "A", "content": "一切实数 " } ], [ { "aoVal": "B", "content": "一切正实数 " } ], [ { "aoVal": "C", "content": "一切大于或等于$$5$$的实数 " } ], [ { "aoVal": "D", "content": "一切大于或等于$$2$$的实数 " } ] ]
[ "竞赛->知识点->函数->二次函数->二次函数的最大值与最小值" ]
[ "$$y={{x}^{4}}-4{{x}^{3}}+8{{x}^{2}}-8x+5$$ $$={{x}^{4}}+4{{x}^{2}}+4-4{{x}^{3}}+4{{x}^{2}}-8x+1$$ $$={{({{x}^{2}}+2)}^{2}}-4x({{x}^{2}}+2)+{{(2x)}^{2}}+1$$ $$={{[({{x}^{2}}+2)-2x]}^{2}}+1$$ $$={{[{{(x-1)}^{2}}+1]}^{2}}+1$$. 因为$${{(x-1)}^{2}}\\geqslant 0$$,所以$${{(x-1)}^{2}}+1\\geqslant 1$$. 所以 当$$x=1$$时,$$y$$取得最小值$$2$$, 即$$y$$的取值范围是一切大于或等于$$2$$的实数.故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1280
8aac50a74e724b3f014e83231e553c2a
[ "1996年第7届全国希望杯初一竞赛初赛第4题" ]
1
single_choice
如果一个方程的解都能满足另一个方程,那么,这两个方程(~ ).
[ [ { "aoVal": "A", "content": "是同解方程 " } ], [ { "aoVal": "B", "content": "不是同解方程 " } ], [ { "aoVal": "C", "content": "是同一个方程 " } ], [ { "aoVal": "D", "content": "可能不是同解方程 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->一元一次方程->解一元一次方程->方程解的关系" ]
[ "当另一个方程的解也都满足第一个方程时,这两个方程才是同解方程,因此排除$$\\text{B}$$. 但另一个方程的解不都满足第一个方程时,它们不是同解方程,所以排除$$\\text{A}$$、$$\\text{C}$$, 因此选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
482
2481ca16aa1040a59b9de9463d8015a2
[ "2011年第16届华杯赛初一竞赛初赛第1题" ]
1
single_choice
船在江中顺水航行与逆水航行的速度之比为$$7:2$$,那么它在两港间往返一次的平均速度与顺水速度之比为.
[ [ { "aoVal": "A", "content": "$$\\frac{7}{14}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{9}{14}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2}{9}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{4}{9}$$ " } ] ]
[ "竞赛->知识点->方程与不等式->方程应用" ]
[ "由已知条件可设船顺水航行的速度是$$7v$$,逆水航行的速度是$$2v$$,设两港之间的距离为$$s$$,则船往返一次的平均速度为$$\\frac{2s}{\\frac{s}{7v}+\\frac{s}{2v}}=\\frac{28}{9}v$$,从而平均速度与顺水速度之比为$$\\frac{28}{9}v:7v=\\frac{4}{9}$$. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1381
984ad06b86174492b6a781f012cdc9d9
[ "2008年第19届希望杯初一竞赛第2试第4题4分" ]
1
single_choice
$$a$$,$$b$$,$$c$$是前$$3$$个质数,并且$$a\textless{}b\textless{}c$$,现给出下列四个判断: ①$${{(a+b)}^{2}}$$不能被$$c$$整除; ②$${{a}^{2}}+{{b}^{2}}$$不能被$$c$$整除; ③$${{(b+c)}^{2}}$$不能被$$a$$整除; ④$${{a}^{2}}+{{c}^{2}}$$不能被$$b$$整除. 其中不正确的判断是.
[ [ { "aoVal": "A", "content": "①、② " } ], [ { "aoVal": "B", "content": "①、③ " } ], [ { "aoVal": "C", "content": "②、③ " } ], [ { "aoVal": "D", "content": "③、④ " } ] ]
[ "竞赛->知识点->数论->整除->整除的概念与基本性质" ]
[ "由题意,得$$a=2$$,$$b=3$$,$$c=5$$, $${{(a+b)}^{2}}=25$$,$$c=5$$,①不正确; $${{a}^{2}}+{{b}^{2}}=13$$,$$c=5$$,②正确; $${{(b+c)}^{2}}=64$$,$$a=2$$,③不正确; $${{a}^{2}}+{{c}^{2}}=29$$,$$b=3$$,④正确; 不正确的判断是①、③. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1259
8aac50a74e023208014e3f51e1ed190a
[ "1995年第6届全国希望杯初一竞赛初赛第5题" ]
1
single_choice
如果由四舍五入得到的近似数是$$35$$,那么在下列各数中不可能是真值的数是(~ ).
[ [ { "aoVal": "A", "content": "$$34.49$$ " } ], [ { "aoVal": "B", "content": "$$34.51$$ " } ], [ { "aoVal": "C", "content": "$$34.99$$ " } ], [ { "aoVal": "D", "content": "$$35.01$$ " } ] ]
[ "课内体系->知识点->数->有理数->近似数与有效数字->精确数位" ]
[ "由于$$34.51$$,$$34.99$$,$$35.01$$四舍五入的近似值都可能是$$35$$, 而只有$$34.49$$不可能是真值,选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
990
ff8080814cfa9b24014d02c616cf13b3
[ "2012年竞赛第5题3分", "初二其它" ]
4
single_choice
黑板上写有$$1$$,$$\frac{1}{2}$$,$$\cdots$$,$$\frac{1}{100}$$共$$100$$个数字,每次操作先从黑板上的数中选取两个数$$a$$,$$b$$,然后删去$$a$$,$$b$$,并在黑板上写上数$$a+b+ab$$,则经过$$99$$次操作后黑板上剩下的数是.
[ [ { "aoVal": "A", "content": "$$2012$$ " } ], [ { "aoVal": "B", "content": "$$101$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$99$$ " } ] ]
[ "课内体系->知识点->式->因式分解->因式分解的应用", "课内体系->能力->运算能力" ]
[ "由$$a+b+ab+1=(a+1)(b+1)$$得,每次操作前和操作后,黑板上的每个数加$$1$$后的乘积不变, 设经过$$99$$次操作后黑板上剩下的数为$$x$$, 则$$x+1=(1+1)( \\frac{1}{2}+1)(\\frac{1}{3}+1)\\cdots (\\frac{1}{100}+1)$$, 解得$$x=100$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
473
900d596c8cfe47c98bab74b84dd1c179
[ "2016年全国华杯赛初一竞赛" ]
2
single_choice
已知$$x+y+z=5$$,$$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=5$$,$$xyz=1$$,则$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}=$$ .
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式", "课内体系->知识点->式->分式->分式的运算->分式加减混合运算" ]
[ "∵$$\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z}=5$$,$$xyz=1$$, ∴$$\\frac{yz+xz+xy}{xyz}=5$$,即$$xy+yz+xz=5$$. ∵$$x+y+z=5$$, ∴$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{\\left( x+y+z \\right)}^{2}}-2\\left( xy+yz+xz \\right)=15$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
650
8848e375733645e691b00629b1e92ba9
[ "2006年第17届希望杯初二竞赛第1试第9题" ]
2
single_choice
对实数$$a$$,$$b$$,定义运算``$$*$$''如下: $$a*b=\begin{cases}{{a}^{2}}b\quad a\geqslant b a{{b}^{2}}\quad a\textless{}b \end{cases}$$. 现已知$$3*m=36$$,则实数$$m$$等于.
[ [ { "aoVal": "A", "content": "$$2\\sqrt{3}$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$\\pm 2\\sqrt{3}$$ " } ], [ { "aoVal": "D", "content": "$$4$$或$$\\pm 2\\sqrt{3}$$ " } ] ]
[ "课内体系->知识点->式->整式的乘除->整式的乘除运算->单项式乘单项式", "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算", "课内体系->能力->运算能力", "课内体系->思想->分类讨论思想" ]
[ "当$$3\\geqslant m$$时,有 $$3*m={{3}^{2}}\\cdot m=9m=36$$, 解得$$m=4$$,与$$3\\geqslant m$$予盾,舍去. 当$$3\\textless{}m$$时,有$$3*m=3{{m}^{2}}=36$$, 解得$$m=\\pm 2\\sqrt{3}$$,因为$$3\\textless{}m$$,因此舍去$$m=-2\\sqrt{3}$$. 所以选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
265
2fac29f13d514cd5903083fe6adb7b67
[ "2019~2020学年10月江苏无锡梁溪区东林中学初一上学期月考第10题3分", "1995年第6届全国希望杯初一竞赛复赛第1题", "2017~2018学年10月江苏扬州高邮市高邮市南海中学初一上学期月考第6题3分" ]
1
single_choice
若$$y$$是正数,且$$x+y\textless{}0$$,则在下列结论中,错误的一个是. If $$y$$ is a positive number and $$x+y\textless{}0$$, then which of the following conclusions is wrong ?.
[ [ { "aoVal": "A", "content": "$${{x}^{3}}y\\textgreater0$$ " } ], [ { "aoVal": "B", "content": "$$x+\\left\\textbar{} y \\right\\textbar\\textless{}0$$ " } ], [ { "aoVal": "C", "content": "$$\\left\\textbar{} x \\right\\textbar+y\\textgreater0$$ " } ], [ { "aoVal": "D", "content": "$$x-{{y}^{2}}\\textless{}0$$ " } ], [ { "aoVal": "E", "content": "Both A and C " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质" ]
[ "∵$$y\\textgreater0$$,若$$x\\geqslant 0$$则$$x+y\\textgreater0$$,与$$x+y\\textless{}0$$矛盾. 所以由$$y\\textgreater0$$,$$x+y\\textless{}0$$必有$$x\\textless{}0$$. 因此,$${{x}^{3}}\\textless{}0$$,$${{x}^{3}}y\\textless{}0$$,即$$\\text{A}$$是错误的. 事实上,$$y\\textgreater0$$,$$x+y\\textless{}0$$,即$$x+\\left\\textbar{} y \\right\\textbar\\textless{}0$$,$$\\text{B}$$成立. $$\\left\\textbar{} x \\right\\textbar+y\\textgreater0$$,$$\\text{C}$$成立.$$x\\textless{}0$$,$${{y}^{2}}\\textgreater0$$,$$x-{{y}^{2}}\\textless{}0$$,$$\\text{D}$$成立.因此,选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
925
fb4e78e3bd044a47beab37ba5a36cbba
[ "2000年第17届全国初中数学联赛竞赛第1题7分" ]
2
single_choice
计算:$$\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}$$的值是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{5}$$ " } ], [ { "aoVal": "C", "content": "$$2\\sqrt{5}$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算", "课内体系->知识点->式->二次根式->二次根式的运算->多重二次根式" ]
[ "$$\\sqrt{14+6\\sqrt{5}}-\\sqrt{14-6\\sqrt{5}}=\\sqrt{14+2\\sqrt{45}}-\\sqrt{14-2\\sqrt{45}}=\\sqrt{{{(\\sqrt{9}+\\sqrt{5})}^{2}}}-\\sqrt{{{(\\sqrt{9}-\\sqrt{5})}^{2}}}$$, $$=\\sqrt{9}+\\sqrt{5}-\\sqrt{9}+\\sqrt{5}=2\\sqrt{5}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
330
301caada2b9045bdb54d8159a1fe68b1
[ "2001年第12届希望杯初二竞赛第1试第2题" ]
1
single_choice
代数式$$\sqrt{x}+\sqrt{x-1}+\sqrt{x-2}$$的最小值是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1+\\sqrt{2}$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "不存在的 " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的基础->二次根式有意义的条件", "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的加减以及混合运算", "课内体系->知识点->式->二次根式->二次根式化简求值" ]
[ "要使代数式$$\\sqrt{x}+\\sqrt{x-1}+\\sqrt{x-2}$$有意义,需满足条件: 当$$\\begin{cases}x\\geqslant 0 x-1\\geqslant 0 x-2\\geqslant 0 \\end{cases}$$,所以$$x\\geqslant 2$$, 当$$x\\geqslant 2$$时, 即$$\\sqrt{x}+\\sqrt{x-1}+\\sqrt{x-2}\\geqslant \\sqrt{2}+\\sqrt{2-1}+\\sqrt{2-2}=\\sqrt{2}+1$$, 即$$x=2$$时,原代数式取得最小值$$\\sqrt{2}+1$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1535
cb254cd9d4ec483e9a9378591a650cbf
[ "2014年第25届全国希望杯初二竞赛初赛第10题4分" ]
3
single_choice
将$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$这$$8$$个数排成一行,要使$$8$$的两边各数的和相等,那么不同的排法一共有.
[ [ { "aoVal": "A", "content": "$$1152$$种 " } ], [ { "aoVal": "B", "content": "$$576$$种 " } ], [ { "aoVal": "C", "content": "$$288$$种 " } ], [ { "aoVal": "D", "content": "$$144$$种 " } ] ]
[ "课内体系->能力->分析和解决问题能力", "竞赛->知识点->组合->排列与组合" ]
[ "因为去掉$$8$$以后,余下$$7$$个数的和是$$1+2+3+4+5+6+7=28$$, 所以$$8$$的两边各数的和分别是$$14$$. 因为$$7+6=13$$, 所以$$14$$至少是由$$3$$个数相加而成的, 所以$$8$$的两边分别有$$3$$个数和$$4$$个数. 因为$$(7,6,1)$$,$$(7,5,2)$$,$$(7,4,3)$$,$$(6,5,3)$$这四组数的和都是$$14$$, 每组中的数的排列方法有$$3\\times 2\\times 1=6$$种, 与其对应的另外$$4$$个数($$8$$除外)有$$4\\times 3\\times 2\\times 1=24$$种排列方法, 当排成横行时,这$$4$$组数有排在$$8$$的左边和右边两种排列方法, 因此,每组数的排列方法有$$2\\times 6\\times 24=288$$(种). 所以,满足题意的排列方法有$$4\\times 288=1152$$(种). " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1098
e91191e9fbb5487ebe9cbb3b7e4b357a
[ "初二上学期其它", "2002年竞赛第1题5分", "2015年山东青岛黄岛区山东省青岛第九中学自主招生", "2016~2017学年江西景德镇初二下学期期中景德镇一中1班第1题4分" ]
1
single_choice
设$$a\textless{}b\textless{}0$$,$${{a}^{2}}+{{b}^{2}}=4ab$$,则$$\frac{a+b}{a-b}$$的值为 .
[ [ { "aoVal": "A", "content": "$$\\sqrt{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{6}$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "知识标签->题型->式->分式->分式化简求值->题型:分式条件化简求值", "知识标签->学习能力->运算能力", "知识标签->知识点->式->分式->分式的运算->分式的混合运算" ]
[ "$$a+b=-\\sqrt{6ab}$$,$$a-b=-\\sqrt{2ab}$$. ∵$${{a}^{2}}+{{b}^{2}}=4ab$$, ∴$${{a}^{2}}+{{b}^{2}}+2ab={{\\left( a+b \\right)}^{2}}=6ab$$① ∴$${{a}^{2}}+{{b}^{2}}-2ab={{\\left( a-b \\right)}^{2}}=2ab$$② $$\\frac{①}{②}$$,得~~$$\\frac{{{\\left( a+b \\right)}^{2}}}{{{\\left( a-b \\right)}^{2}}}=\\frac{6ab}{2ab}$$ ∵$$a\\textless{}b\\textless{}0$$, ∴$$ab\\textgreater0$$,$$a+b\\textless{}0$$,$$a-b\\textless{}0$$, ∴$$\\frac{{{\\left( a+b \\right)}^{2}}}{{{\\left( a-b \\right)}^{2}}}={{\\left( \\frac{a+b}{a-b} \\right)}^{2}}=3$$, ∴$$\\frac{a+b}{a-b}=\\sqrt{3}$$. 故选:$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
784
4e5e27c12c124757acb8bfd97e1f00ad
[ "2016年山东青岛竞赛二中杯", "初二其它" ]
3
single_choice
✩✩✩✩✩黑板上写有$$1$$,$$\frac{1}{2}$$,$$\cdots$$,$$\frac{1}{100}$$共$$100$$个数字,每次操作先从黑板上的数中选取两个数$$a$$,$$b$$,然后删去$$a$$,$$b$$,并在黑板上写上数$$a+b+ab$$,则经过$$99$$次操作后黑板上剩下的数是.
[ [ { "aoVal": "A", "content": "$$2012$$ " } ], [ { "aoVal": "B", "content": "$$101$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$99$$ " } ] ]
[ "课内体系->知识点->式->因式分解->其他方法", "课内体系->知识点->式->因式分解->因式分解的应用" ]
[ "由$$a+b+ab+1=(a+1)(b+1)$$得,每次操作前和操作后,黑板上的每个数加$$1$$后的乘积不变, 设经过$$99$$次操作后黑板上剩下的数为$$x$$, 则$$x+1=(1+1)( \\frac{1}{2}+1)(\\frac{1}{3}+1)\\cdots (\\frac{1}{100}+1)$$, 解得$$x=100$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1425
d7b513c56a9d4544b6cc57352ca6e46e
[ "2002年第13届希望杯初一竞赛第2试第2题" ]
0
single_choice
~下列四个命题: ①如果两个角是对顶角,则这两个角相等. ②如果两个角相等,则这两个角是对顶角. ③如果两个角不是对顶角,则这两个角不相等. ④如果两个角不相等,则这两个角不是对顶角. 其中正确的命题有( ~).
[ [ { "aoVal": "A", "content": "1个 " } ], [ { "aoVal": "B", "content": "2个 " } ], [ { "aoVal": "C", "content": "3个 " } ], [ { "aoVal": "D", "content": "4个 " } ] ]
[ "课内体系->知识点->几何图形初步->相交线与平行线->相交线->对顶角的定义与性质", "课内体系->知识点->几何图形初步->相交线与平行线->相交线->计算对顶角、邻补角度数" ]
[ "②两个角相等,不一定为对顶角; ③两个角不是对项角,也可以相等. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1282
8aac50a74e724b3f014e83287fc93c4a
[ "1996年第7届全国希望杯初一竞赛初赛第7题" ]
1
single_choice
线段$$AB=1996$$厘米,$$P$$、$$Q$$是线段$$AB$$上的两个点,线段$$AQ=1200$$厘米,线段$$BP=1050$$厘米,则线段$$PQ=$$(~ ).
[ [ { "aoVal": "A", "content": "$$254$$厘米 " } ], [ { "aoVal": "B", "content": "$$150$$厘米 " } ], [ { "aoVal": "C", "content": "$$127$$厘米 " } ], [ { "aoVal": "D", "content": "$$871$$厘米 " } ] ]
[ "课内体系->知识点->几何图形初步->直线、射线、线段->直线、射线、线段的运算->线段和差的计算问题->线段和差-需要分类讨论" ]
[ "$$PQ=AQ+PB-AB=1200+1050-1996=254$$(厘米),选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
233
de62b1a47b3948ffbf19ec2db2051e6c
[ "2013年第18届华杯赛初一竞赛初赛第2题" ]
1
single_choice
从$$-6$$、$$-4$$、$$-3$$、$$-2$$、$$-1$$、$$3$$、$$6$$中选择任意两个数字,然后将它们相乘,得到的乘积的最大值为$$a$$,最小值为$$b$$,则$$\frac{a}{b}$$的值为。 Pick any two numbers from $$-6$$, $$-4$$, $$-3$$, $$-2$$, $$-1$$, $$3$$, $$6$$ and multiply them, the maximum value of the resulting product is $$a$$, and the minimum value is $$b$$, then the value of $$\frac{a}{b}$$ is .
[ [ { "aoVal": "A", "content": "$$-\\frac{2}{3}$$ " } ], [ { "aoVal": "B", "content": "$$-\\frac{3}{4}$$ " } ], [ { "aoVal": "C", "content": "$$-1$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "E", "content": "$$-\\frac{1}{3}$$ " } ] ]
[ "竞赛->知识点->数与式->整式->整式的乘除运算", "课内体系->知识点->数->有理数->分数" ]
[ "由条件可知,$$a=(-6)\\times (-4)=24$$,$$b=(-6)\\times 6=-36$$,所以 $$\\frac{a}{b}=-\\frac{24}{36}=-\\frac{2}{3}$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1490
bd26af76fd284ff6b163facd5c4725fd
[ "1998年第9届希望杯初二竞赛第1试第10题" ]
2
single_choice
已知$${{a}_{1}}$$,$${{a}_{2}}$$,$${{b}_{1}}$$,$${{b}_{2}}$$均为正数,且$${{a}_{1}}\geqslant {{a}_{2}}$$,$${{a}_{1}}\leqslant {{b}_{1}}$$,$${{a}_{1}}{{a}_{2}}\leqslant {{b}_{1}}{{b}_{2}}$$,则$${{a}_{1}}+{{a}_{2}}$$与$${{b}_{1}}+{{b}_{2}}$$的大小关系是.
[ [ { "aoVal": "A", "content": "$${{a}_{1}}+{{a}_{2}}\\leqslant {{b}_{1}}+{{b}_{2}}$$ " } ], [ { "aoVal": "B", "content": "$${{a}_{1}}+{{a}_{2}}\\geqslant {{b}_{1}}+{{b}_{2}}$$ " } ], [ { "aoVal": "C", "content": "$${{a}_{1}}+{{a}_{2}}={{b}_{1}}+{{b}_{2}}$$ " } ], [ { "aoVal": "D", "content": "无法确定的 " } ] ]
[ "课内体系->能力->分析和解决问题能力", "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质" ]
[ "因为$${{a}_{1}}$$,$${{a}_{2}}$$,$${{b}_{1}}$$,$${{b}_{2}}$$均为正数,且$${{a}_{1}}{{a}_{2}}\\leqslant {{b}_{1}}{{b}_{2}}$$. 所以$${{b}_{2}}\\geqslant \\frac{{{a}_{1}}{{a}_{2}}}{{{b}_{1}}}$$, 所以$${{b}_{1}}+{{b}_{2}}\\geqslant {{b}_{1}}+\\frac{{{a}_{1}}{{a}_{2}}}{{{b}_{1}}}$$, 所以$$({{b}_{1}}+{{b}_{2}})-({{a}_{1}}+{{a}_{2}})\\geqslant {{b}_{1}}+\\frac{{{a}_{1}}{{a}_{2}}}{{{b}_{1}}}-{{a}_{1}}-{{a}_{2}}$$ $$=({{b}_{1}}-{{a}_{1}})+\\frac{{{a}_{2}}({{a}_{1}}-{{b}_{1}})}{{{b}_{1}}}=({{b}_{1}}-{{a}_{1}})\\left( 1-\\frac{{{a}_{2}}}{{{b}_{1}}} \\right)$$. 因为$${{a}_{1}}\\leqslant {{b}_{1}}$$,$${{a}_{2}}\\leqslant {{a}_{1}}$$, 所以$$0\\textless{}{{a}_{2}}\\leqslant {{b}_{1}}$$,$$0\\textless{}\\frac{{{a}_{2}}}{{{b}_{1}}}\\leqslant 1$$. 所以$${{b}_{1}}-{{a}_{1}}\\geqslant 0$$,$$\\left( 1-\\frac{{{a}_{2}}}{{{b}_{1}}} \\right)\\geqslant 0$$. 所以$${{b}_{1}}+{{b}_{2}}\\geqslant {{a}_{1}}+{{a}_{2}}$$. 又当$${{a}_{1}}$$,$${{a}_{2}}$$,$${{b}_{1}}$$,$${{b}_{2}}$$均相等时,等号成立. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1001
811f79ab954a40b0a3ebfe0681de12eb
[ "1999年竞赛(全国初中数学竞赛)第2题5分" ]
1
single_choice
某城市按以下规定收取煤气费:($$1$$)每月所用煤气按整立方米数计算.($$2$$)若每月用煤气不超过$$60$$立方米,按每立方米$$0.8$$元收费;若超过$$60$$立方米,超过部分按每立方米$$1.2$$元收费.已知某户人家某月的煤气费平均每立方米$$0.88$$元,则这户人家需要交煤气费.
[ [ { "aoVal": "A", "content": "$$60$$元 " } ], [ { "aoVal": "B", "content": "$$66$$元 " } ], [ { "aoVal": "C", "content": "$$70$$元 " } ], [ { "aoVal": "D", "content": "$$75$$元 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->能力->推理论证能力", "课内体系->能力->分析和解决问题能力", "课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的梯度计价问题" ]
[ "由于$$0.88\\textgreater0.8$$,所以这户人家用的煤气超过$$60$$立方米.设用了$$x$$立方米,则 $$60\\cdot 0.8+1.2\\left( x-60 \\right)=0.88x$$, 解得$$x=75$$, $$75\\times 0.88=66$$(元). 故选:$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
121
08c9a902b82a4712906b52444ae5b23d
[ "初二下学期单元测试《二次根式》二次根式的运算第43题", "2002年第19届全国初中数学联赛竞赛第1题7分" ]
2
single_choice
已知$$a=\sqrt{2}-1$$,$$b=2\sqrt{2}-\sqrt{6}$$,$$c=\sqrt{6}-2$$,那么$$a$$,$$b$$,$$c$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textless{}b\\textless{}c$$ " } ], [ { "aoVal": "B", "content": "$$a\\textless{}c\\textless{}b$$ " } ], [ { "aoVal": "C", "content": "$$b\\textless{}a\\textless{}c$$ " } ], [ { "aoVal": "D", "content": "$$b\\textless{}c\\textless{}a$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的运算->二次根式比较大小" ]
[ "∵$$a-b$$ $$=\\sqrt{2}-1-\\left( 2\\sqrt{2}-\\sqrt{6} \\right)$$ $$=\\sqrt{6}-\\left( 1+\\sqrt{2} \\right)$$ $$\\approx 2.449-2.414\\textgreater0$$, ∴$$a\\textgreater b$$; ∵$$a-c$$ $$=\\sqrt{2}-1-\\left( \\sqrt{6}-2 \\right)$$ $$=\\sqrt{2}+1-\\sqrt{6}$$ $$\\approx 2.414-2.449\\textless{}0$$, ∴$$a\\textless{}c$$; 于是$$b\\textless{}a\\textless{}c$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1385
e08dfe5a7ea2428ea576d4182352e676
[ "2010年第21届全国希望杯初一竞赛初赛第10题4分", "2019~2020学年浙江宁波镇海区宁波市镇海蛟川书院初一上学期期中第8题3分" ]
2
single_choice
已知$$a$$和$$b$$是有理数,若$$a+b=0$$,$${{a}^{2}}+{{b}^{2}}\ne 0$$,则在$$a$$和$$b$$之间一定(~ ).
[ [ { "aoVal": "A", "content": "存在负整数 " } ], [ { "aoVal": "B", "content": "存在正整数 " } ], [ { "aoVal": "C", "content": "存在负分数 " } ], [ { "aoVal": "D", "content": "不存在正分数 " } ] ]
[ "课内体系->知识点->数->有理数->相反数->相反数的性质" ]
[ "由可知$$a\\ne 0$$且$$b\\ne 0$$. 再由$$a+b=0$$,可知$$a=-b$$. 不妨设$$a\\textgreater b$$,则$$a\\textgreater0\\textgreater b$$, 则在$$a$$和$$b$$之间一定存在负分数. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1105
ff8080814d9efd56014da55d10ad0783
[ "1992年第3届全国希望杯初一竞赛复赛第7题" ]
2
single_choice
已知$$p$$为偶数,$$q$$为奇数,方程组$$\left { \begin{matrix}x-1992y=p 1993x+3y=q \end{matrix} \right.$$的解是整数,那么(~ ).
[ [ { "aoVal": "A", "content": "$$x$$是奇数,$$y$$是偶数 " } ], [ { "aoVal": "B", "content": "$$x$$是偶数,$$y$$是奇数 " } ], [ { "aoVal": "C", "content": "$$x$$是偶数,$$y$$是偶数 " } ], [ { "aoVal": "D", "content": "$$x$$是奇数,$$y$$是奇数 " } ] ]
[ "课内体系->思想->方程思想", "课内体系->思想->整体思想", "课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->二元一次方程组的定义" ]
[ "∵$$p$$为偶数,$$q$$为奇数,其解$$x$$,$$y$$又是整数, 由$$x-1992y=p$$可知$$x$$为偶数,由$$1993x+3y=q$$可知$$y$$是奇数,选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1159
a963448b95b344979d84234fb52c0bcd
[ "2000年第11届希望杯初一竞赛第6题" ]
0
single_choice
某件商品,若按标价的八折出售,可获利$$20 \%$$,若按原价出售,则可获利( ~)
[ [ { "aoVal": "A", "content": "$$25 \\%$$ " } ], [ { "aoVal": "B", "content": "$$40 \\%$$ " } ], [ { "aoVal": "C", "content": "$$50 \\%$$ " } ], [ { "aoVal": "D", "content": "$$66.7 \\%$$ " } ] ]
[ "课内体系->能力->分析和解决问题能力", "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的经济问题->一元一次方程的经济问题-打折" ]
[ "设标价为$$x$$,进价为$$a$$,由题意得$$0.8x-a=0.2a$$解得$$x=1.5a$$,按原价出售可获利$$\\frac{1.5a-a}{a}=0.5$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1190
8aac49074e023206014e25c1b67272c1
[ "1997年第8届全国希望杯初一竞赛初赛第10题" ]
2
single_choice
有理数$$b$$满足$$\left\textbar{} b \right\textbar\textless{}3$$,并且有理数$$a$$使得$$a\textless{}b$$恒能成立,则$$a$$的取值范围是(~ ).
[ [ { "aoVal": "A", "content": "小于或等于$$3$$的有理数 " } ], [ { "aoVal": "B", "content": "小于$$3$$的有理数 " } ], [ { "aoVal": "C", "content": "小于或等于$$-3$$的有理数 " } ], [ { "aoVal": "D", "content": "小于$$-3$$的有理数 " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->绝对值的非负性", "课内体系->知识点->数->有理数->绝对值->绝对值的代数意义", "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->解一元一次不等式" ]
[ "$$\\left\\textbar{} b \\right\\textbar\\textless{}3$$就是$$-3\\textless{}b\\textless{}3$$,只有当$$a\\leqslant -3$$时,$$a\\textless{}b$$恒成立,选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
266
2b1dbf618f5d42acb952995257c36471
[ "2018年第29届希望杯初一竞赛初赛第7题4分" ]
1
single_choice
$$A$$、 $$B$$ 两家商店的笔记本定价都是$$10$$元一本.已知在$$A$$商店每购$$5$$本赠一本,在$$B$$商店,超过$$5$$本(含$$5$$本),每本八五折.小明需要购买$$32$$本笔记本,则他至少花元.
[ [ { "aoVal": "A", "content": "$$267$$ " } ], [ { "aoVal": "B", "content": "$$268$$ " } ], [ { "aoVal": "C", "content": "$$270$$ " } ], [ { "aoVal": "D", "content": "$$272$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->能力->分析和解决问题能力", "课内体系->知识点->数->有理数->有理数与实际问题->有理数乘除法与实际问题" ]
[ "在$$\\text{A}$$商店每购$$5$$本赠一本,$$5\\div6 \\approx0.83$$,低于八五折, 所以可以在$$\\text{A}$$商店购买$$24$$本,在$$\\text{B}$$商店购买$$8$$本; 或者在$$\\text{A}$$商店购买直接购买$$32$$本. 在$$\\text{A}$$商店购买$$24$$本,在$$\\text{B}$$商店购买$$8$$本, 花费$$20\\times10+8\\times10\\times0.85=268$$(元); 在$$\\text{A}$$商店购买直接购买$$32$$本,花费$$25\\times10+2\\times10=270$$(元). 综上,小明需要购买$$32$$本笔记本,则他至少花$$268$$元. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
23
098ecdea94bf4c8b9a2512aebc91ebdf
[ "2000年第11届希望杯初二竞赛第1试第8题" ]
2
single_choice
互不相等的三个正数$$a$$、$$b$$、$$c$$恰为一个三角形的三条边长,则以下列三数为长度的线段一定能做成三角形的是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{a}$$,$$\\frac{1}{b}$$,$$\\frac{1}{c}$$ " } ], [ { "aoVal": "B", "content": "$$a^{2}$$,$$ b^{2}$$,$$c^{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\sqrt{a}$$,$$\\sqrt{b}$$,$$ \\sqrt{c}$$ " } ], [ { "aoVal": "D", "content": "$$\\textbar a-b\\textbar$$,$$\\textbar b-c\\textbar$$,$$\\textbar c-a\\textbar$$ " } ] ]
[ "竞赛->知识点->三角形->三角形基础" ]
[ "如$$2$$,$$4$$,$$5$$为边可以组成三角形,而$$\\frac{1}{2}$$,$$ \\frac{1}{4}$$,$$ \\frac{1}{5}$$不能构成三角形,排除$$\\text{A}$$. 如$$3$$,$$4$$,$$5$$为边可以组成三角形,而$$3^{2}$$,$$ 4^{2}$$,$$ 5^{2}$$不能构成三角形,排除$$\\text{B}$$. 如$$2$$,$$3$$,$$4$$为边可以组成三角形,而$$\\textbar2-3\\textbar$$,$$\\textbar3-4\\textbar$$,$$\\textbar4-2\\textbar$$不能构成三角形,排除$$\\text{D}$$. 不妨设$$a\\textgreater b\\textgreater c\\textgreater0$$,满足$$a\\textless b+c$$, 所以$$(\\sqrt{b}+\\sqrt{c})^{2}=b+2 \\sqrt{b c}+c\\textgreater a$$, 所以$$\\sqrt{b}+\\sqrt{c}\\textgreater\\sqrt{a}$$, 所以$$\\sqrt{a}$$,$$ \\sqrt{b}$$,$$ \\sqrt{c}$$可以构成三角形. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1484
c61bb6f52c064154bde99c7da1a63c43
[ "2016年第27届全国希望杯初二竞赛初赛第5题4分" ]
1
single_choice
若关于$$x$$的不等式$$\left { \begin{matrix}2x-1\textgreater3(x-2) 2x+m-1\textgreater0 \end{matrix} \right.$$,只有四个整数解,则$$m$$的取值范围是(~ ).
[ [ { "aoVal": "A", "content": "$$-1\\textless{}m\\textless{}1$$ " } ], [ { "aoVal": "B", "content": "$$-1\\leqslant m\\textless{}1$$ " } ], [ { "aoVal": "C", "content": "$$-1\\textless{}m\\leqslant 1$$ " } ], [ { "aoVal": "D", "content": "$$-1\\leqslant m\\leqslant 1$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->解一元一次不等式", "课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的整数解情况求参数范围" ]
[ "解$$2x-1\\textgreater3(x-2)$$,得$$x\\textless{}5$$; 解$$2x+m-1\\textgreater0$$,得$$x\\textgreater\\frac{1-m}{2}$$. ∵不等式组只有四个整数解, ∴$$0\\leqslant \\frac{1-m}{2}\\textless{}1$$, 解得$$-1\\textless{}m\\leqslant 1$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
916
bf74d980ac604d3fb07486b5ee780bbe
[ "初二下学期其它", "1996年第7届希望杯初二竞赛第4题" ]
1
single_choice
设$$a=\dfrac{19961995}{1995}$$,$$b=\dfrac{19951996}{1996}$$,$$c=\dfrac{19951996}{1995}$$,$$d=\dfrac{19961995}{1996}$$,则下列不等关系中成立的是( ~).
[ [ { "aoVal": "A", "content": "$$a\\textgreater b\\textgreater c\\textgreater d$$ " } ], [ { "aoVal": "B", "content": "$$c\\textgreater a\\textgreater d\\textgreater b$$ " } ], [ { "aoVal": "C", "content": "$$a\\textgreater d\\textgreater c\\textgreater b$$ " } ], [ { "aoVal": "D", "content": "$$a\\textgreater c\\textgreater d\\textgreater b$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性", "课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数除法运算", "课内体系->能力->运算能力" ]
[ "$$a=10001+\\dfrac{10000}{1995}$$,$$b=10001-\\dfrac{10000}{1996}$$,$$c=10001+\\dfrac{1}{1995}$$,$$d=10001-\\dfrac{1}{1996}$$. 所以$$a\\textgreater c\\textgreater d\\textgreater b$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
619
b5591c917b91452690f4ef563e35cd8a
[ "1994年第5届希望杯初二竞赛第7题" ]
1
single_choice
直角三角形的三条边的长度是正整数,其中一条直角的长度是$$13$$,那么它的周长为.
[ [ { "aoVal": "A", "content": "$$182$$ " } ], [ { "aoVal": "B", "content": "$$180$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "竞赛->知识点->三角形->特殊三角形->直角三角形" ]
[ "设另一条直角边的长度为$$x$$,斜边的长度为$$z$$,则$${{z}^{2}}-{{x}^{2}}={{13}^{2}}$$, 由于$$x$$,$$z$$均为正整数,且$$z\\textgreater x$$, 于是由$$\\left( z+x \\right)\\left( z-x \\right)=169\\times 1$$. 可得$$\\begin{cases}z+x=169 z-x=1 \\end{cases}$$. 所以三角形的周长为$$169+13=182$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
613
2e56e107a7cc46bb932171a4b3ee3573
[ "1998年第9届希望杯初二竞赛第1试第1题" ]
1
single_choice
将多项式$${{x}^{2}}-4{{y}^{2}}-9{{z}^{2}}-12yz$$分解成因式的积,结果是.
[ [ { "aoVal": "A", "content": "$$(x+2y-3z)(x-2y-3z)$$ " } ], [ { "aoVal": "B", "content": "$$(x-2y-3z)(x-2y+3z)$$ " } ], [ { "aoVal": "C", "content": "$$(x+2y+3z)(x+2y-3z)$$ " } ], [ { "aoVal": "D", "content": "$$(x+2y+3z)(x-2y-3z)$$ " } ] ]
[ "竞赛->知识点->数与式->因式分解->因式分解:公式法" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde{{x}^{2}}-4{{y}^{2}}-9{{z}^{2}}-12yz$$ $$={{x}^{2}}-(4{{y}^{2}}+12yz+9{{z}^{2}})$$ $$={{x}^{2}}-{{(2y+3z)}^{2}}$$ $$=[x+(2y+3z)][x-(2y+3z)]$$ $$=(x+2y+3z)(x-2y-3z)$$. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1453
a67bdc2b5f054819a6f18dc4fee38cdd
[ "1991年第2届希望杯初二竞赛第2题" ]
1
single_choice
两个正数$$m$$,$$n$$的比是$$t\left( t~ \textgreater~ 1 \right)$$.若$$m+n=s$$,则$$m$$,$$n$$中较小的数可以表示为.
[ [ { "aoVal": "A", "content": "$$ts$$ " } ], [ { "aoVal": "B", "content": "$$s-ts$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{ts}{1+s}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{s}{1+t}$$ " } ] ]
[ "竞赛->知识点->数与式->数的运算->有理数运算问题" ]
[ "设$$m=3$$,$$n=1$$,则$$t=3$$,$$s=4$$,只有$$\\frac{s}{1+t}=\\frac{4}{1+3}=1=n$$. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1595
fea977030c3248a8bf85e46e06663be9
[ "2014年全美数学竞赛(AMC)竞赛" ]
1
single_choice
昨天,四个孩子在城市医院出生。假设每个孩子是男孩或女孩的可能性是相等的。以下哪种结果最有可能? Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely?.
[ [ { "aoVal": "A", "content": "all $$4$$ are boys 4个都是男孩 " } ], [ { "aoVal": "B", "content": "all $$4$$ are girls 四个都是女孩 " } ], [ { "aoVal": "C", "content": "$$2$$ are girls and $$2$$ are boys 2个女孩和$$2$$个男孩 " } ], [ { "aoVal": "D", "content": "$$3$$ are of one gender and $$1$$ is of the other gender 3个是同一种性别,$$1$$个是另一种性别 " } ], [ { "aoVal": "E", "content": "all of these outcomes are equally likely 所有这些结果都有同样的可能性 " } ] ]
[ "美国AMC8->Knowledge Point->Counting, Probability and Statistics->Statistical Distribution", "课内体系->知识点->统计与概率->概率->可能性的大小" ]
[ "城市医院昨日诞下四名婴儿.假设每个婴儿各可能有一半几率为男孩或女孩.则下列哪个事件最有可能? A.$$4$$个男婴 B.$$4$$个女婴 C.$$2$$男婴$$2$$女婴 D.$$3$$个为一种性别,另一个为异性 E.以上事件皆等可能 我们先把例子分析一下.$$A$$发生的概率为$${{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{16}$$,$$B$$发生的概率为$${{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{16}$$.$$C$$发生的概率为$$\\left( \\begin{matrix}4 2 \\end{matrix} \\right)\\cdot {{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{3}{8}$$.因为我们需要从$$4$$个孩子中选择$$2$$个成为女孩. $$D$$方面,有两种可能的情况,即$$3$$个女孩和$$1$$个男孩或$$3$$个男孩和$$1$$个女孩.第一种情况的概率就$$\\left( \\begin{matrix}4 1 \\end{matrix} \\right)\\cdot {{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{4}$$.因为我们需要从四个孩子中选择一个成为男孩.但是,第二种情况也有同样的可能性,因为我们在$$4$$个孩子中选择了$$1$$个是女孩,所以总的可能性是$$\\frac{1}{4}\\cdot 2=\\frac{1}{2}$$. 所以在四个分数中,$$D$$就最大的.所以我们的答案是$$3$$ are of one gender and $$1$$ is of the other gender. 故选$$\\text{D}$$. 可能性列在帕斯卡三角形的第四行,最左边的$$1$$是所有男孩的可能性,最右边的$$1$$是所有女孩的可能性.由于 pascal 的三角形第四行为$$1$$,$$4$$,$$6$$,$$4$$,$$1$$,$$6$$,均为每个性别的两个孩子的可能性,因此共有$$8$$个可能性,其中一个性别的三个孩子和另一个性别的一个孩子.由于总共有$$2^{4}=16$$个儿童性别的可能性. 故选$$\\text{D}$$. We\\textquotesingle ll just start by breaking cases down. The probability of $$A$$ occurring is $${{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{16}$$. The probability of $$B$$ occurring is $${{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{16}$$. The probability of $$C$$ occurring is $$\\left( \\begin{matrix}4 2 \\end{matrix} \\right)\\cdot {{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{3}{8}$$, because we need to choose $$2$$ of the $$4$$ children to be girls. For $$D$$, there are two possible cases, $$3$$ girls and $$1$$ boy or $$3$$ boys and $$1$$ girl. The probability of the first case is $$\\left( \\frac{4}{1} \\right)\\cdot {{\\left( \\frac{1}{2} \\right)}^{4}}=\\frac{1}{4}$$ because we need to choose $$1$$ of the $$4$$ children to be a boy. However, the second case has the same probability because we are choosing $$1$$ of the $$4$$ children to be a girl, so the total probability is $$\\frac{1}{4}\\cdot 2=\\frac{1}{2}$$. So out of the four fractions, $$D$$ is the largest. So our answer is $$\\left( \\text{D} \\right)$$ $$3$$ of one gender and $$1$$ of the other. The possibilities are listed out in the fourth row of Pascal\\textquotesingle s triangle, with the leftmost $$1$$ being the possibility of all boys and the rightmost $$1$$ being the possibility of all girls. Since the fourth row of Pascal\\textquotesingle s Triangle goes $$1$$, $$4$$, $$6$$, $$4$$, $$1$$ and $$6$$ are all the possibilities of two children from each gender, there are a total of $$8$$ possibilities of three children from one gender and one from the other. Since there are a total of $${{2}^{4}}=16$$ total possibilities for the gender of the children, $$\\text{D}$$ has the highest probability. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1593
fa070c2944804de882b68bceed8d78f1
[ "2018~2019学年9月湖南长沙雨花区中雅培粹学校初一上学期月考第12题3分", "1999年第10届希望杯初一竞赛第10题" ]
2
single_choice
若$$n$$是奇自然数,$${{a}_{1}}$$,$${{a}_{2}}$$,\ldots,$${{a}_{n}}$$是$$n$$个互不相同的负整数,则.
[ [ { "aoVal": "A", "content": "$$({{a}_{1}}+1)({{a}_{2}}+2)\\cdots ({{a}_{n}}+n)$$是正整数 " } ], [ { "aoVal": "B", "content": "$$({{a}_{1}}-1)({{a}_{2}}-2)\\cdots ({{a}_{n}}-n)$$是正整数 " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{{{a}_{1}}}+1 \\right)\\left( \\frac{1}{{{a}_{2}}}+2 \\right)\\cdots \\left( \\frac{1}{{{a}_{n}}}+n \\right)$$是正数 " } ], [ { "aoVal": "D", "content": "$$\\left( 1-\\frac{1}{{{a}_{1}}} \\right)\\left( 2-\\frac{1}{{{a}_{2}}} \\right)\\cdots \\left( n-\\frac{1}{{{a}_{n}}} \\right)$$是正数 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->能力->抽象概括能力", "课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->含乘方的有理数混合运算", "课内体系->知识点->综合与实践->规律探究与程序框图->规律探究->算式找规律" ]
[ "$${{a}_{1}}$$,$${{a}_{2}}$$,\\ldots,$${{a}_{n}}$$是$$n$$个互不相同的负整数,其中$$n$$是奇自然数. 若$${{a}_{1}}=-1$$,$$({{a}_{1}}+1)=0$$,则$$({{a}_{1}}+1)({{a}_{2}}+2)\\cdots ({{a}_{n}}+n)=0$$,排除$$\\text{A}$$. 若$${{a}_{1}}=-1$$,$${{a}_{2}}=-2$$,$${{a}_{3}}=-3$$,\\ldots,$${{a}_{n}}=-n$$时, $$({{a}_{1}}-1)({{a}_{2}}-2)\\cdots ({{a}_{n}}-n)=(-2)(-4)(-6)\\cdots (-2n)$$$$={{(-1)}^{n}}2\\times 4\\times 6\\times \\cdots \\times (2n) ~\\textless{} ~0$$(因为$$n$$是奇数).故排除$$\\text{B}$$. 若$${{a}_{1}}=-1$$时,$$\\left( \\frac{1}{{{a}_{1}}}+1 \\right)=0$$, 故$$\\left( \\frac{1}{{{a}_{1}}}+1 \\right)\\left( \\frac{1}{{{a}_{2}}}+2 \\right)\\cdots \\left( \\frac{1}{{{a}_{n}}}+n \\right)=0$$, 排除$$\\text{C}$$.所以应选$$\\text{D}$$. 事实上,若$${{a}_{1}} ~\\textless{} ~0$$,$${{a}_{2}} ~\\textless{} ~0$$,\\ldots,$${{a}_{n}} ~\\textless{} ~0$$,则$$-\\frac{1}{{{a}_{1}}}\\textgreater0$$,$$-\\frac{1}{{{a}_{2}}}\\textgreater0$$,\\ldots,$$-\\frac{1}{{{a}_{n}}}\\textgreater0$$. 所以$$1-\\frac{1}{{{a}_{1}}}\\textgreater0$$,$$2-\\frac{1}{{{a}_{2}}}\\textgreater0$$,\\ldots,$$n-\\frac{1}{{{a}_{n}}}\\textgreater0$$. 所以$$\\left( 1-\\frac{1}{{{a}_{1}}} \\right)\\left( 2-\\frac{1}{{{a}_{2}}} \\right)\\cdots \\left( n-\\frac{1}{{{a}_{n}}} \\right)\\textgreater0$$,选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
127
6fc13c40b9114d42a80d7f27649f042b
[ "2017~2018学年福建泉州丰泽区泉州实验中学(圣湖校区)初一下学期期中第8题4分", "1995年第6届全国希望杯初一竞赛复赛第10题", "2015~2016学年北京海淀区清华大学附属中学初一下学期期中第10题3分" ]
3
single_choice
某项球类规则达标测验,规定满分$$100$$分,$$60$$分及格,模拟考试与正式考试形式相同,都是$$25$$道选择题,每题答对记$$4$$分,答错或不答记$$0$$分,并规定正式考试中要有$$80$$分的试题就是模拟考试中的原题.假设某人在模拟考试中答对的试题,在正式考试中仍能答对,某人欲在正式考试中确保及格,则他在模拟考试中,至少要得.
[ [ { "aoVal": "A", "content": "$$80$$分 " } ], [ { "aoVal": "B", "content": "$$76$$分 " } ], [ { "aoVal": "C", "content": "$$75$$分 " } ], [ { "aoVal": "D", "content": "$$64$$分 " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式组应用->不等式组的其他实际问题" ]
[ "设在模拟考试中至少要得$$x$$分,则在模拟考试中至少做对$$\\frac{x}{4}$$道题, 做错或不会做的题至多是$$25-\\frac{x}{4}$$道题. 在正式考试中要出现模拟考试中$$80$$分的试题,即$$\\frac{80}{4}=20$$道题. 如果最坏的可能,即其余$$20$$分题($$5$$道新题)某人全不会做, 而且模拟考试中$$25-\\frac{x}{4}$$道失分的题又全出现在正式考试试题之中, 并且该生在模拟考试后也没能复习纠错,仍按错误答案在正规考试中失分, 这时该生只能从$$\\frac{80}{4}-(25-\\frac{x}{4})$$道题中取得及格分, 即$$\\left[ \\frac{80}{4}-(25-\\frac{x}{4}) \\right]\\times 4\\geqslant 60$$,解得$$x\\geqslant 80$$. 即某人欲在正式考试中确保及格,则他在模拟考试中至少要得$$80$$分.选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
851
5c32c3cb23154fcb821ffac061a3e73b
[ "2011年第22届全国希望杯初二竞赛初赛第4题4分" ]
1
single_choice
在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知$$k$$为整数,若函数$$y=2x-1$$与$$y=kx+k$$的图象的交点是整点,则$$k$$的值有(~ ).
[ [ { "aoVal": "A", "content": "$$2$$个 " } ], [ { "aoVal": "B", "content": "$$3$$个 " } ], [ { "aoVal": "C", "content": "$$4$$个 " } ], [ { "aoVal": "D", "content": "$$5$$个 " } ] ]
[ "课内体系->知识点->函数->一次函数->一次函数基础" ]
[ "解方程组$$\\left { \\begin{matrix}y=2x-1 y=kx+k \\end{matrix} \\right.$$, 得$$x=\\frac{-1-k}{k-2}=-1-\\frac{3}{k-2}$$. 因为交点的横坐标$$x$$的值为整数(此时交点的纵坐标$$y$$也一定为整数), 则$$k-2$$应该是$$3$$的约数, 即$$k-2$$的值可以是$$1$$,$$-1$$,$$3$$,$$-3$$, 所以$$k$$的值可以是$$3$$,$$1$$,$$5$$,$$-1$$,共有$$4$$个. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1587
f088b9b741f7482ba86047ecb51fe4cb
[ "2001年第12届希望杯初一竞赛第10题", "初一上学期单元测试《一元一次方程》第20题" ]
1
single_choice
若$$k$$为整数,则使得方程$$(k-1999)x=2001-2000x$$的解也是整数的$$k$$值有.
[ [ { "aoVal": "A", "content": "$$4$$个 " } ], [ { "aoVal": "B", "content": "$$8$$个 " } ], [ { "aoVal": "C", "content": "$$12$$个 " } ], [ { "aoVal": "D", "content": "$$16$$个 " } ] ]
[ "课内体系->知识点->方程与不等式->一元一次方程->含参一元一次方程->一元一次方程的含参整数解" ]
[ "$$x=\\frac{2001}{k+1}$$为整数,又因为$$2001=1\\times 3\\times 23\\times 29$$,$$k+1$$可取$$\\pm 1$$、$$\\pm 3$$、$$\\pm 23$$、$$\\pm 29$$、$$\\pm (3\\times 23)$$、$$\\pm (3\\times 29)$$、$$\\pm (23\\times 29)$$、$$\\pm 2001$$共$$16$$个值,对应的$$k$$值也有$$16$$个. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
256
794952a2416841128d80d9a479aec9b3
[ "2012年第23届全国希望杯初一竞赛初赛第9题4分" ]
2
single_choice
如图,$$\triangle ABC$$的面积是$$60$$,$$AD:DC=1:3$$,$$BE:ED=4:1$$,$$EF:FC=4:5$$,则$$\triangle BEF$$的面积是(~ ).
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "课内体系->知识点->三角形->三角形及多边形->与三角形有关的线段->判断三角形的高,中线和角平分线", "课内体系->知识点->几何图形初步->直线、射线、线段->直线、射线、线段的运算->线段中点与等分点" ]
[ "因为$$AD:DC=1:3$$,且$${{S}_{\\triangle ABC}}=60$$, 所以$${{S}_{\\triangle BCD}}=\\frac{3}{4}{{S}_{\\triangle ABC}}=45$$. 因为$$BE:ED=4:1$$, 所以$${{S}_{\\triangle BCE}}=\\frac{4}{5}{{S}_{\\triangle BCD}}=\\frac{4}{5}\\times 45=36$$. 因为$$EF:FC=4:5$$, 所以$${{S}_{\\triangle BEF}}=\\frac{4}{9}{{S}_{\\triangle BCE}}=\\frac{4}{9}\\times 36=16$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
566
7592cea638e84bb1bb8481c06ad899b0
[ "2010年第21届全国希望杯初一竞赛初赛第5题4分" ]
1
single_choice
$$8$$个人用$$35$$天完成了某项工程的$$\frac{1}{3}$$.此时,又增加$$6$$个人,那么要完成剩余的工程,还需要的天数是(~ ).
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$35$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数与实际问题->有理数乘除法与实际问题" ]
[ "总工程量的$$\\frac{1}{3}$$为$$8\\times 35=280$$(人$$\\cdot $$天), 还有$$\\frac{2}{3}$$,即$$2\\times 280=560$$(人$$\\cdot $$天), 要完成剩余的工程,还需要$$\\frac{560}{8+6}=40$$(天). " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
890
a3e7019f6ac94de2bbe662a43b633835
[ "2009年第20届希望杯初一竞赛第1试第3题4分" ]
1
single_choice
在数轴上,坐标是整数的点称为``整点''.设数轴的单位长度是$$1$$厘米,在这个数轴上随意画出一条长为$$2008$$厘米的线段$$AB$$,则线段$$AB$$盖住的整点至少有.
[ [ { "aoVal": "A", "content": "$$2006$$个 " } ], [ { "aoVal": "B", "content": "$$2007$$个 " } ], [ { "aoVal": "C", "content": "$$2008$$个 " } ], [ { "aoVal": "D", "content": "$$2009$$个 " } ] ]
[ "课内体系->知识点->数->有理数->数轴->数轴上整点覆盖问题", "课内体系->能力->运算能力" ]
[ "当画的线段的两个端点都在整点上时,线段$$AB$$盖住$$2009$$个整点;当画的线段的两个端点都不在整点上时,线段$$AB$$盖住$$2008$$个整点;所以长为$$2008$$厘米的线段$$AB$$,至少可盖住数轴上$$2008$$个整点. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1373
a127093d424e43548f4c680444b49b9d
[ "2015年第32届全国全国初中数学联赛竞赛A卷第6题7分" ]
3
single_choice
设$$n$$是小于$$100$$的正整数且使$$5{{n}^{2}}+3n-5$$是$$15$$的倍数,则符合条件的所有正整数$$n$$的和是(~ ~ ~).
[ [ { "aoVal": "A", "content": "$$285$$ " } ], [ { "aoVal": "B", "content": "$$350$$ " } ], [ { "aoVal": "C", "content": "$$540$$ " } ], [ { "aoVal": "D", "content": "$$635$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数四则混合运算", "课内体系->能力->运算能力", "竞赛->知识点->数论->同余->剩余系及其应用", "竞赛->知识点->数论->整除->整除的概念与基本性质" ]
[ "∵$$5{{n}^{2}}+3n-5$$是$$15$$的倍数, ∴$$5\\textbar(5{{n}^{2}}+3n-5)$$, ∴$$5\\textbar3n$$, ∴$$5\\textbar n$$. 设$$n=5m$$($$m$$是正整数), 则$$5{{n}^{2}}+3n-5=125{{m}^{2}}+15m-5=120{{m}^{2}}+15m+5({{m}^{2}}-1)$$. 又∵$$5{{n}^{2}}+3n-5$$是$$15$$的倍数, ∴$${{m}^{2}}-1$$是$$3$$的倍数, ∴$$m=3k+1$$或$$m=3k+2$$,其中$$k$$是非负整数, ∴$$n=5(3k+1)=15k+5$$或$$n=5(3k+2)=15k+10$$,其中$$k$$是非负整数, ∴符合条件的所有正整数$$n$$的和为 $$(5+20+35+50+65+80+95)+(10+25+40+55+70+85)=635$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
869
e40962f4fcf142f19faea625d3b48852
[ "2016年第27届全国希望杯初一竞赛初赛第2题4分" ]
0
single_choice
若$$n$$个人完成一项工程需要$$m$$天,则$$(m+n)$$个人完成这项工程需要(~ )天.
[ [ { "aoVal": "A", "content": "$$\\frac{mn}{m+n}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{m-n}{m+n}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{m+n}{mn}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{mn}{m+2n}$$ " } ] ]
[ "课内体系->知识点->式->整式的加减->整式有关的概念->代数式->列代数式", "课内体系->能力->分析和解决问题能力" ]
[ "$$n$$个人完成一项工程需要$$m$$天, 则$$1$$个人完成这项工程需要$$mn$$天, ∴$$(m+n)$$个人完成这项工程需要$$\\frac{mn}{m+n}$$天. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1258
8aac50a74e023208014e3f4bf65b18f2
[ "1995年第6届全国希望杯初一竞赛初赛第3题" ]
1
single_choice
若$$a\textless{}0$$,则下列结论中不成立的是(~ ).
[ [ { "aoVal": "A", "content": "$${{a}^{2}}={{(-a)}^{2}}$$ " } ], [ { "aoVal": "B", "content": "$${{a}^{3}}={{(-a)}^{3}}$$ " } ], [ { "aoVal": "C", "content": "$${{a}^{2}}=\\left\\textbar{} {{a}^{2}} \\right\\textbar$$ " } ], [ { "aoVal": "D", "content": "$${{a}^{3}}=-\\left\\textbar{} {{a}^{3}} \\right\\textbar$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->数->有理数->绝对值->绝对值的非负性", "课内体系->知识点->数->有理数->绝对值->绝对值的定义", "课内体系->知识点->数->有理数->有理数基础运算->有理数乘法->有理数乘法运算", "课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->有理数乘方运算" ]
[ "以特殊值$$a=-2$$代入检验,易知$${{(-2)}^{2}}={{(-(-2))}^{2}}$$,$${{(-2)}^{3}}\\ne {{(-(-2))}^{3}}$$,$${{(-2)}^{2}}=\\left\\textbar{} {{(-2)}^{2}} \\right\\textbar$$,$${{(-2)}^{3}}=-\\left\\textbar{} {{(-2)}^{3}} \\right\\textbar$$,所以选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1556
e21607ebeae94670a29be9be2185d7ed
[ "1993年第10届全国初中数学联赛竞赛第1题" ]
1
single_choice
多项式$${{x}^{12}}-{{x}^{6}}+1$$除以$${{x}^{2}}-1$$的余式是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$x-1$$ " } ], [ { "aoVal": "D", "content": "$$x+1$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->整式的乘除->整式的乘除运算->综合除法和余数定理 ", "课内体系->知识点->式->整式的乘除->整式的乘除运算->大除法" ]
[ "直接利用整式除法比较繁琐,将原式变形得 $${{x}^{12}}-{{x}^{6}}+1={{x}^{6}}({{x}^{6}}-1)+1$$, $$={{x}^{6}}({{x}^{2}}-1)({{x}^{4}}+{{x}^{2}}+1)+1$$. 所以余式为$$1$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
541
2d7397681ca74e4eb65e0dc0b71279bc
[ "2014年第25届全国希望杯初二竞赛初赛第4题4分", "2016~2017学年安徽安庆潜山市潜山第四中学初三上学期期末模拟第2题4分", "2018~2019学年广东深圳福田区深圳实验学校中学部初三上学期开学考试第4题3分", "2015~2016学年江苏苏州相城区初二下学期期中第7题3分", "2018年陕西西安碑林区西安市第六中学初三中考一模第6题3分", "2016~2017学年12月北京海淀区北方交通大学附属中学分校初三上学期月考第6题3分", "2017~2018学年10月山东济南历下区济南燕山学校初三上学期月考第10题3分", "2016~2017学年安徽合肥肥西县肥西县烧脉中学初三上学期期中第4题4分" ]
1
single_choice
反比例函数$$y=\frac{6}{x}$$的图象上有三个点$$({{x}_{1}},{{y}_{1}})$$,$$({{x}_{2}},{{y}_{2}})$$,$$\left( {{x}_{3}},{{y}_{3}} \right)$$,其中$${{x}_{1}}\textless{}{{x}_{2}}\textless{}0\textless{}{{x}_{3}}$$,则$${{y}_{1}}$$、$${{y}_{2}}$$、$${{y}_{3}}$$的大小关系是.
[ [ { "aoVal": "A", "content": "$${{y}_{1}}\\textless{}{{y}_{2}}\\textless{}{{y}_{3}}$$ " } ], [ { "aoVal": "B", "content": "$${{y}_{2}}\\textless{}{{y}_{1}}\\textless{}{{y}_{3}}$$ " } ], [ { "aoVal": "C", "content": "$${{y}_{3}}\\textless{}{{y}_{1}}\\textless{}{{y}_{2}}$$ " } ], [ { "aoVal": "D", "content": "$${{y}_{3}}\\textless{}{{y}_{2}}\\textless{}{{y}_{1}}$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->函数->反比例函数->反比例函数图象与性质->反比例函数增减性" ]
[ "∵反比例函数$$y=\\frac{6}{x}$$中,$$k=6\\textgreater0$$, ∴此反比例函数图象的两个分支在一、三象限, ∵$${{x}_{3}}\\textgreater0$$, ∴点$$\\left( {{x}_{3}},{{y}_{3}} \\right)$$在第一象限,$${{y}_{3}}\\textgreater0$$, ∵$${{x}_{1}} ~\\textless{} ~{{x}_{2}} ~\\textless{} ~0$$, ∴点$$\\left( {{x}_{1}},{{y}_{1}} \\right)$$,$$\\left( {{x}_{2}},{{y}_{2}} \\right)$$在第三象限,$$y$$随$$x$$的增大而减小,故$${}{{y}_{2}} ~\\textless{} {} {{y}_{1}}\\textless0$$,于是$${{y}_{2}} ~\\textless{} ~{{y}_{1}} ~\\textless{} ~{{y}_{3}}$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
609
5eed8813ab244a7d8208aa35e598193a
[ "2018年重庆中考真题A卷第12题4分", "2018年四川绵阳涪城区绵阳东辰国际学校初三自主招生第3题4分", "2019~2020学年重庆合川区西南大学银翔实验中学初一下学期期末模拟(一)第12题4分", "2018~2019学年广东深圳南山区桃苑学校初二下学期期末第11题3分", "2019年浙江杭州拱墅区杭州市文澜中学初二竞赛第7题3分", "2019~2020学年江苏苏州姑苏区苏州市振华中学校初三下学期单元测试《方程与不等式》第10题3分" ]
2
single_choice
若数$$a$$使关于$$x$$的不等式组$$\begin{cases}\dfrac{x-1}{2}\textless{}\dfrac{1+x}{3} 5x-2\geqslant x+a \end{cases}$$有且只有四个整数解,且使关于$$y$$的方程$$\frac{y+a}{y-1}+\frac{2a}{1-y}=2$$的解为非负数,则符合条件的所有整数$$a$$的和为.
[ [ { "aoVal": "A", "content": "$$-3$$ " } ], [ { "aoVal": "B", "content": "$$-2$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "课内体系->知识点->方程与不等式->分式方程->分式方程的解与解分式方程->分式方程与不等式综合", "课内体系->能力->运算能力" ]
[ "$$\\begin{cases}\\dfrac{x-1}{2}\\textless{}\\dfrac{1+x}{3} 5x-2\\geqslant x+a \\end{cases}$$, 不等式组整理得:$$\\begin{cases}x\\textless{}5 x\\geqslant \\dfrac{a+2}{4} \\end{cases}$$, 由不等式组有且只有四个整数解,得到$$0\\textless{}\\frac{a+2}{4}\\leqslant 1$$, 解得:$$-2\\textless{}a\\leqslant 2$$,即整数$$a=-1$$,$$0$$,$$1$$,$$2$$, $$\\frac{y+a}{y-1}+\\frac{2a}{1-y}=2$$, 分式方程去分母得:$$y+a-2a=2(y-1)$$, 解得:$$y=2-a$$, 由分式方程的解为非负数以及分式有意义的条件,得到$$a$$为$$-1$$,$$0$$,$$2$$,之和为$$1$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1368
aa24b36269f44abc847573cf60190c0c
[ "2017~2018学年浙江宁波鄞州区宁波市鄞州蓝青学校初二下学期期末第7题3分", "1991年第8届全国初中数学联赛竞赛(第一试)第1题" ]
2
single_choice
设等式$$\sqrt{a\left( x-a \right)}+\sqrt{a\left( y-a \right)}=\sqrt{x-a}-\sqrt{a-y}$$在实数范围内成立,其中$$a$$,$$x$$,$$y$$是两两不同的实数,则$$\frac{3{{x}^{2}}+xy-{{y}^{2}}}{{{x}^{2}}-xy+{{y}^{2}}}$$的值是(~ ).
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "~$$\\frac{1}{3}$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{3}$$ " } ] ]
[ "课内体系->知识点->式->分式->分式化简求值->分式化简求值-条件化简求值", "课内体系->知识点->数->实数->平方根->算术平方根的双重非负性", "课内体系->能力->运算能力" ]
[ "据算术根性质,由右端知$$y\\leqslant a\\leqslant x$$, 又由左端知$$a\\geqslant 0$$且$$a\\leqslant 0$$,故$$a=0$$. 由此得$$x=-y$$,代入所求式算值为$$\\frac{1}{3}$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1200
8aac49074e724b45014e87bf170c50d5
[ "1996年第7届全国希望杯初一竞赛复赛第1题" ]
1
single_choice
当$$a=-0.01$$时,在$$-{{\left( -a \right)}^{2}}$$,$$-\left\textbar{} -a \right\textbar$$,$$-{{a}^{2}}$$,$$-\left( -{{a}^{2}} \right)$$中,其值为正数的是(~ ).
[ [ { "aoVal": "A", "content": "$$-{{\\left( -a \\right)}^{2}}$$ " } ], [ { "aoVal": "B", "content": "$$-\\left\\textbar{} -a \\right\\textbar$$ " } ], [ { "aoVal": "C", "content": "$$-{{a}^{2}}$$ " } ], [ { "aoVal": "D", "content": "$$-\\left( -{{a}^{2}} \\right)$$ " } ] ]
[ "课内体系->知识点->数->有理数->正数和负数->正数、负数定义" ]
[ "当$$a\\textless{}0$$时,$${{\\left( -a \\right)}^{2}}\\textgreater0$$,$$\\left\\textbar{} -a \\right\\textbar\\textgreater0$$,$${{a}^{2}}\\textgreater0$$, 所以$$-{{\\left( -a \\right)}^{2}}\\textless{}0$$,$$-\\left\\textbar{} -a \\right\\textbar\\textless{}0$$,$$-{{a}^{2}}\\textless{}0$$,因此排除$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$,选$$\\text{D}$$. 事实上,$$a\\textless{}0$$时,$${{a}^{2}}\\textgreater0$$,$$-\\left( -{{a}^{2}} \\right)\\textgreater0$$.当然$$a=-0.01$$时更是如此. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1462
c5ee1beca0b2467cb8d890cff13ac4d7
[ "2017~2018学年浙江金华金东区初二上学期期末第10题3分", "2017~2018学年9月安徽安庆潜山市潜山第四中学初二上学期月考第6题4分", "2017~2018学年浙江宁波镇海区宁波市镇海蛟川书院初二上学期期中第9题4分", "2017~2018学年12月陕西西安碑林区西北工业大学附属中学初二上学期月考第7题3分", "2018~2019学年辽宁大连甘井子区初一下学期期末第10题3分", "2018年湖南长沙初二竞赛长郡教育集团(觉园杯)第1题4分", "2018~2019学年浙江宁波镇海区宁波市镇海蛟川书院初二上学期期中第4题4分", "2017年广西贵港中考真题第6题3分", "2020~2021学年4月浙江杭州上城区杭州市建兰中学初三下学期周测A卷第1题4分", "2018~2019学年湖北武汉武昌区初一下学期期中(十五校联考)第8题3分" ]
1
single_choice
在平面直角坐标系中,点$$P(m-3,4-2m)$$不可能在.
[ [ { "aoVal": "A", "content": "第一象限 " } ], [ { "aoVal": "B", "content": "第二象限 " } ], [ { "aoVal": "C", "content": "第三象限 " } ], [ { "aoVal": "D", "content": "第四象限 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->函数->平面直角坐标系->坐标系基础->象限内坐标的特征", "课内体系->思想->分类讨论思想" ]
[ "①$$m-3\\textgreater0$$,即$$m\\textgreater3$$时, $$-2m\\textless{}-6$$,$$4-2m\\textless{}-2$$, 所以,点$$P(m-3,4-2m)$$在第四象限,不可能在第一象限. ②$$m-3\\textless{}0$$,即$$m\\textless{}3$$时, $$-2m\\textgreater-6$$,$$4-2m\\textgreater-2$$, 点$$P(m-3,4-2m)$$可能在第二或三象限, 综上所述,点$$P$$不可能在第一象限. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
454
5e3b1209c18a418d9e833e9f8c64cc41
[ "1991年第8届全国初中数学联赛竞赛(第一试)第4题" ]
2
single_choice
已知:$$x=\frac{1}{2}\left( {{1991}^{\frac{1}{n}}}-{{1991}^{-\frac{1}{n}}} \right)$$($$n$$是自然数).那么$${{\left( x-\sqrt{1+{{x}^{2}}} \right)}^{n}}$$的值是(~ ~ ).
[ [ { "aoVal": "A", "content": "$${{1991}^{-1}}$$ " } ], [ { "aoVal": "B", "content": "$$-{{1991}^{-1}}$$ " } ], [ { "aoVal": "C", "content": "$${{\\left( -1 \\right)}^{n}}1991$$ " } ], [ { "aoVal": "D", "content": "$${{\\left( -1 \\right)}^{n}}{{1991}^{-1}}$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->二次根式->二次根式化简求值", "课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式" ]
[ "$$1+{{x}^{2}}=1+\\frac{1}{4}\\left( {{1991}^{\\frac{2}{n}}}-2+{{1991}^{-\\frac{2}{n}}} \\right)=\\frac{1}{4}{{\\left( {{1991}^{\\frac{1}{n}}}+{{1991}^{-\\frac{1}{n}}} \\right)}^{2}}$$, 原式$$={{\\left[ \\frac{1}{2}\\left( {{1991}^{\\frac{1}{n}}}-{{1991}^{-\\frac{1}{n}}} \\right)-\\frac{1}{2}\\left( {{1991}^{\\frac{1}{n}}}+{{1991}^{-\\frac{1}{n}}} \\right) \\right]}^{n}}={{\\left( -1 \\right)}^{n}}{{1991}^{-1}}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
10
173009f9de154f9482ecc4e79afc9134
[ "1999年第10届希望杯初二竞赛第2试第1题" ]
1
single_choice
下列五个多项式: ①$${{a}^{2}}{{b}^{2}}-{{a}^{2}}-{{b}^{2}}-1$$; ②$${{x}^{3}}-9a{{x}^{2}}+27{{a}^{2}}x-27{{a}^{3}}$$; ③$$x(b+c-d)-y(d-b-c)-2c+2d-2b$$; ④$$3m(m-n)+6n(n-m)$$; ⑤$${{(x-2)}^{2}}+4x$$. 其中在有理数范围内可以进行因式分解的有.
[ [ { "aoVal": "A", "content": "①,②,③ " } ], [ { "aoVal": "B", "content": "②,③,④ " } ], [ { "aoVal": "C", "content": "③,④,⑤ " } ], [ { "aoVal": "D", "content": "①,②,④ " } ] ]
[ "课内体系->知识点->式->因式分解->公式法->提公因式+平方差", "课内体系->知识点->式->因式分解->提公因式法" ]
[ "②式$$={{(x-3a)}^{3}}$$, ③式$$=x(b+c-d)+y(b+c-d)-2(b+c-d)$$ $$=(b+c-d)(x+y-2)$$, ④式$$=(m-n)(3m-6n)=3(m-n)(m-2n)$$. 所以,②、③、④式合乎要求. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1502
ef0ec64b8f9b4c11a9cbd02ec364cc1e
[ "2008年第19届希望杯初二竞赛第2试第6题" ]
2
single_choice
有面值为$$10$$元、$$20$$元,$$50$$元的人民币(每种至少一张)共$$24$$张,合计$$1000$$元,那么其中面值为$$20$$元的人民币的张数为.
[ [ { "aoVal": "A", "content": "$$2$$或$$4$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$4$$或$$8$$ " } ], [ { "aoVal": "D", "content": "$$2$$到$$46$$之间的任意偶数 " } ] ]
[ "竞赛->知识点->方程与不等式->一次方程->方程组" ]
[ "设$$10$$元、$$20$$元、$$50$$元分别有$$x$$,$$y$$,$$24-\\left( x+y \\right)$$张, 则$$10x+20y+50\\left( 24-x-y \\right)=1000$$, 即$$40x+30y=200$$,$$4x+3y=20$$, 其中$$x$$,$$y$$都是正整数,由$$x\\geqslant 1$$知$$3y\\leqslant 16$$, 所以$$1\\leqslant y\\leqslant \\frac{16}{3}$$, 所以,$$y$$只能从$$1$$,$$2$$,$$3$$,$$4$$,$$5$$中取, 又$$3y=4\\left( 5-x \\right)$$,其中$$5-x$$是正整数,$$3$$与$$4$$是互质的, 所以,$$y$$中一定有一个因数$$4$$, 因此$$y$$只能取$$4$$, 故选$$\\text{B}$$. " ]
B