dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
list
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
list
answer_analysis
list
answer_value
stringclasses
7 values
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
90
258acd0ce78d4125ab22c0739b27d907
[ "1994年第5届希望杯初二竞赛第2题" ]
2
single_choice
已知$$y=a{{x}^{7}}+b{{x}^{5}}+c{{x}^{3}}+dx+e$$,其中$$a,b,c,d,e$$为常数,当$$x=2$$时,$$y=23$$;当$$x=-2$$时,$$y=-35$$,那么$$e$$的值是.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$-6$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$-12$$ " } ] ]
[ "课内体系->知识点->方程与不等式->二元一次方程(组)->含参二元一次方程组->根据解的等量关系解含参的二元一次方程组", "课内体系->能力->运算能力" ]
[ "由题设知,当$$x=2$$时, $$23={{2}^{7}}a+{{2}^{5}}b+{{2}^{3}}c+2d+e$$ 当$$x=-2$$时, $$-35={{\\left( -2 \\right)}^{7}}a+{{\\left( -2 \\right)}^{5}}b+{{\\left( -2 \\right)}^{3}}c+\\left( -2 \\right)d+e$$ 由①+②,则得$$2e=-12$$,所以$$e=-6$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
728
ac6ec3620e924e609ef65fa41355bcbc
[ "2017~2018学年5月四川成都天府新区 成都市实验外国语学校(西区)初二下学期月考第10题3分", "2019~2020学年3月浙江杭州滨江区杭二中白马湖学校初一下学期周测C卷第9题", "初二其它", "1996年第7届希望杯初二竞赛第3题4分" ]
0
single_choice
【SZ】已知$${{x}^{2}}+ax-12$$能分解成两个整系数的一次因式的乘积,则符合条件的整数$$a$$的个数是.
[ [ { "aoVal": "A", "content": "$$3$$个 " } ], [ { "aoVal": "B", "content": "$$4$$个 " } ], [ { "aoVal": "C", "content": "$$6$$个 " } ], [ { "aoVal": "D", "content": "$$8$$个 " } ] ]
[ "课内体系->知识点->式->因式分解->因式分解的基础->已知因式分解结果求参数" ]
[ "设$${{x}^{2}}+ax-12=(x+m)(x+n)$$($$m$$,$$n$$为整数), 则$$a=m+n$$,$$mn=-12$$共有$$6$$种结果. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
358
7e27544af0044292b5d9bcede847ed9b
[ "2018~2019学年浙江宁波鄞州区宁波市鄞州蓝青学校初二下学期期末第4题3分", "2019年浙江温州瓯海区浙江省温州中学初三自主招生", "2011年竞赛第1题4分", "2019年浙江温州瓯海区浙江省温州中学初三自主招生第1题5分" ]
2
single_choice
设$$x=\frac{\sqrt{5}-3}{2}$$,则代数式$$x\left( x+1 \right)\left( x+2 \right)\left( x+3 \right)$$的值为.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$-1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式化简求值" ]
[ "解:$$\\because x=\\frac{\\sqrt{5}-3}{2}$$, $$\\therefore 2x=\\sqrt{5}-3$$, $$2x+3=\\sqrt{5}$$ $${{\\left( 2x+3 \\right)}^{2}}={{\\left( \\sqrt{5} \\right)}^{2}}$$, $$4{{x}^{2}}+12x+9=5$$, $$\\therefore {{x}^{2}}+3x=-1$$, $$\\therefore $$原式$$=\\left( {{x}^{2}}+3x \\right)\\left( {{x}^{2}}+3x+2 \\right)$$ $$=-1\\times \\left( -1+2 \\right)$$ $$=-1$$; 故选:$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1170
8aac49074e023206014e201bd95d6526
[ "1994年第5届全国希望杯初一竞赛初赛第7题" ]
1
single_choice
$$n$$是整数,那么被$$3$$整除并且商恰为$$n$$的那个数是(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{n}{3}$$ " } ], [ { "aoVal": "B", "content": "$$n+3$$ " } ], [ { "aoVal": "C", "content": "$$3n$$ " } ], [ { "aoVal": "D", "content": "$${{n}^{3}}$$ " } ] ]
[ "课内体系->能力->分析和解决问题能力", "课内体系->知识点->式->整式的加减->整式有关的概念->代数式->列代数式" ]
[ "被$$3$$整除的商恰好为$$n$$的数是$$3n$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
943
89c9a2e3de67465cb5c5ccdb62745f3f
[ "1996年第7届希望杯初二竞赛第7题4分" ]
1
single_choice
暑假里父亲、儿子、女儿准备外出旅行,咨询时了解到,甲旅行社规定:若大人买一张全票,则两个孩子的费用可按全票价的七折优惠;乙旅行社规定:三人旅行可按团体票计价,即按原价的$$80 \%$$收费,若两家旅行社的原价相同,则当实际收费时.
[ [ { "aoVal": "A", "content": "甲比乙低 " } ], [ { "aoVal": "B", "content": "乙比甲低 " } ], [ { "aoVal": "C", "content": "甲、乙相同 " } ], [ { "aoVal": "D", "content": "是甲低还是乙低,视原价而定 " } ] ]
[ "课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的经济问题->一元一次方程的经济问题-打折" ]
[ "设原价为$$a$$元,则 甲旅行社收费$$=a+2\\cdot70 \\%a=2.4a$$, 乙旅行社收费$$=3\\cdot 80 \\%a=2.4a$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
236
4666c24514ff48728513e85c45f7a9b4
[ "2013年第24届全国希望杯初一竞赛复赛第7题4分" ]
1
single_choice
方程$$\left\textbar{} x+1 \right\textbar+\left\textbar{} 2x-1 \right\textbar=1$$的整数解的个数为(~ ).
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->一元一次方程->解一元一次方程->含绝对值的一元一次方程" ]
[ "由$$\\left\\textbar{} x+1 \\right\\textbar$$依次取$$0$$,$$1$$, 可得方程组$$\\left { \\begin{matrix}x+1=0 2x-1=\\pm 1 \\end{matrix} \\right.$$或$$\\left { \\begin{matrix}x+1=1 2x-1=0 \\end{matrix} \\right.$$, 解之,可得两方程均无解. 所以,原方程整数解的个数为$$0$$ " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1141
d6cd11f3c2ec40368f8ef9199713456a
[ "2009年第20届希望杯初二竞赛第2试第7题4分" ]
1
single_choice
若三角形的三边长$$a$$,$$b$$,$$c$$满足$$a\textless{}b\textless{}c$$,且$${{a}^{2}}+bc=t_{1}^{2}$$,$${{b}^{2}}+ca=t_{2}^{2}$$,$${{c}^{2}}+ab=t_{3}^{2}$$,则$$t_{1}^{2}$$、$$t_{2}^{2}$$、$$t_{3}^{2}$$中.
[ [ { "aoVal": "A", "content": "$$t_{1}^{2}$$最大 " } ], [ { "aoVal": "B", "content": "$$t_{2}^{2}$$最大 " } ], [ { "aoVal": "C", "content": "$$t_{3}^{2}$$最大 " } ], [ { "aoVal": "D", "content": "$$t_{3}^{2}$$最小 " } ] ]
[ "知识标签->学习能力->运算能力", "知识标签->题型->三角形->三角形及多边形->与三角形有关的线段->题型:与三边关系有关的证明", "知识标签->题型->式->整式的乘除->乘法公式->题型:利用平方差公式计算", "知识标签->题型->式->因式分解->提公因式法与公式法->题型:提公因式法", "知识标签->方法->作差法", "知识标签->知识点->式->整式的乘除->乘法公式->平方差公式", "知识标签->知识点->式->因式分解->因式分解:提公因式法", "知识标签->知识点->三角形->三角形及多边形->与三角形有关的线段->三角形的三边关系" ]
[ "由$$t_{1}^{2}-t_{2}^{2}=({{a}^{2}}+bc)-({{b}^{2}}+ca)=(a-b)(a+b-c)\\textless{}0$$,得$$t_{1}^{2}\\textless{}t_{2}^{2}$$, 由$$t_{2}^{2}-t_{3}^{2}=({{b}^{2}}+ca)-({{c}^{2}}+ab)=(b-c)(b+c-a)\\textless{}0$$, 得$$t_{2}^{2}\\textless{}t_{3}^{2}$$,所以$$t_{1}^{2}\\textless{}t_{2}^{2}\\textless{}t_{3}^{2}$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1504
c1cee196695047bfb1bd528eaf1181fd
[ "2017年湖南长沙天心区湘郡培粹实验中学初二竞赛(觉园杯)第1题4分", "2019年湖南长沙天心区湘郡培粹实验中学初二竞赛初赛(觉园杯)第1题4分" ]
1
single_choice
已知$$x\ne-1$$,$$0$$,$$1$$,则$$\frac{x-1}{\textbar x-1\textbar}+\frac{\textbar x\textbar}{x}+\frac{x+1}{\textbar x+1\textbar}$$的值可能是( ~).
[ [ { "aoVal": "A", "content": "比$$3$$大的数 " } ], [ { "aoVal": "B", "content": "比$$-3$$小的数 " } ], [ { "aoVal": "C", "content": "$$\\pm1$$,$$\\pm3$$ " } ], [ { "aoVal": "D", "content": "比$$-3$$大,并且比$$3$$小的数 " } ] ]
[ "课内体系->思想->分类讨论思想", "课内体系->知识点->数->有理数->绝对值->绝对值的非负性", "课内体系->知识点->数->有理数->绝对值->绝对值综合", "课内体系->能力->运算能力" ]
[ "当$$x ~\\textless{} ~-1$$时,$$\\frac{x-1}{\\textbar x-1\\textbar}+\\frac{\\textbar x\\textbar}{x}+\\frac{x+1}{\\textbar x+1\\textbar}=-1-1-1=-3$$, 当$$-1 ~\\textless{} ~x ~\\textless{} ~0$$时,$$\\frac{x-1}{\\textbar x-1\\textbar}+\\frac{\\textbar x\\textbar}{x}+\\frac{x+1}{\\textbar x+1\\textbar}=-1-1+1=-1$$, 当$$x\\textgreater1$$时,$$\\frac{x-1}{\\textbar x-1\\textbar}+\\frac{\\textbar x\\textbar}{x}+\\frac{x+1}{\\textbar x+1\\textbar}=1+1+1=3$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1255
a0adba9c44d045aabf497eb2fa3a7fbb
[ "2023年浙江宁波鄞州区初三竞赛联考学校:鄞实、曙光、鄞外、高桥、雅戈尔、集士港第4题6分" ]
1
single_choice
若关于$$x$$的不等式组$$\begin{cases} 3-2x \geq 1 x \geq m+1 \end{cases}$$共有$$2$$个整数解,则$$m$$的取值范围是
[ [ { "aoVal": "A", "content": "$\\quad m=-1 $ " } ], [ { "aoVal": "B", "content": "$-2\\lt m\\leqslant-1$ " } ], [ { "aoVal": "C", "content": "$-2\\leqslant m\\leqslant-1$ " } ], [ { "aoVal": "D", "content": "$m\\textless-1$ " } ] ]
[ "课内体系->思想->方程思想", "课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的整数解情况求参数范围", "课内体系->方法->代入法", "课内体系->能力->运算能力" ]
[ "解:$解不等式3-2x\\geqslant1,得:x\\leqslant1.$ $\\because不等式组共有2个整数解,$ $\\therefore不等式组的整数解为1,0;$ 则$-1\\lt m\\leqslant0,$ 解得$-2\\lt m\\leqslant-1,$ 故选$B.$ " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1533
c69c8cf026b14bc1af3e8042e3aa11e2
[ "1999年第16届全国初中数学联赛竞赛第4题7分" ]
3
single_choice
若函数$$y=\frac{1}{2}({{x}^{2}}-100x+196+\textbar{{x}^{2}}-100x+196\textbar)$$,则当自变量$$x$$取$$1$$,$$2$$,$$3$$,$$\ldots$$,$$100$$这$$100$$个自然数时,函数值的和是.
[ [ { "aoVal": "A", "content": "$$540$$ " } ], [ { "aoVal": "B", "content": "$$390$$ " } ], [ { "aoVal": "C", "content": "$$194$$ " } ], [ { "aoVal": "D", "content": "$$195$$ " } ], [ { "aoVal": "E", "content": "$$197$$ " } ] ]
[ "课内体系->知识点->函数", "竞赛->知识点->函数->二次函数->二次函数应用" ]
[ "$${{x}^{2}}-100x+196=(x-2)(x-98)$$, ∴当$$2\\leqslant x\\leqslant 98$$时,$${{x}^{2}}-100x+196\\textless{}0$$,$$\\textbar{{x}^{2}}-100x+196\\textbar=-({{x}^{2}}-100x+196)$$. ∴当自变量$$x$$取$$2$$,$$3$$,$$\\ldots$$,$$98$$时,函数值都为$$0$$. 而当$$x$$取$$1$$,$$99$$,$$100$$时,$$\\textbar{{x}^{2}}-100x+196\\textbar={{x}^{2}}-100x+196$$, 故所求的和为:$$y(1)+y(99)+y(100)=390$$,故选择$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
45
4f19f2e6a7c343cd9dd0685f4acefa9a
[ "1995年第6届希望杯初二竞赛第4题" ]
1
single_choice
已知$$a$$是非零实数,那么$$\frac{a}{\textbar a\textbar}+\frac{{{a}^{2}}}{\textbar{{a}^{2}}\textbar}+\frac{{{a}^{3}}}{\textbar{{a}^{3}}\textbar}$$的值是.
[ [ { "aoVal": "A", "content": "$$3$$或$$-1$$ " } ], [ { "aoVal": "B", "content": "$$-3$$或$$1$$ " } ], [ { "aoVal": "C", "content": "$$3$$或$$1$$ " } ], [ { "aoVal": "D", "content": "$$-3$$或$$-1$$ " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->|a|/a的化简", "竞赛->知识点->数与式->绝对值->给定范围绝对值化简" ]
[ "当$$a\\textgreater0$$时,$$\\textbar a\\textbar=a$$, ∴原式$$=1+1+1=3$$; 当$$a\\textless{}0$$时,$$\\textbar a\\textbar=-a$$,$$\\textbar{{a}^{3}}\\textbar=-{{a}^{3}}$$, ∴原式$$=-1+1-1=-1$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1294
8aac50a74ed448af014efdff86131c36
[ "初一上学期单元测试《整式的加减》整式及相关概念第29题", "2001年第12届希望杯初一竞赛第2试第10题" ]
2
single_choice
已知有如下一组$$x$$,$$y$$和$$z$$的单项式: $$7{{x}^{3}}{{z}^{2}}$$,$$8{{x}^{3}}y$$,$$\frac{1}{2}{{x}^{2}}yz$$,$$-3x{{y}^{2}}z$$,$$9{{x}^{4}}yz$$,$$z{{y}^{2}}$$,$$-\frac{1}{5}xyz$$,$$9{{y}^{3}}z$$,$$x{{z}^{2}}y$$,$$0.3{{z}^{3}}$$ 我们用下面的方法确定它们的先后次序:对任意两个单项式,先看$$x$$的幂次,规定$$x$$的幂次高的单项式排在$$x$$的幂次低的单项式的前面;再看$$y$$的幂次.规定$$y$$的幂次高的排在$$y$$的幂次低的前面;再看$$z$$的幂次,规定$$z$$的幂次高的排在$$z$$的幂次低的前面.将这组单项式按上述法则排序,那么$$9{{y}^{3}}z$$应排在(~ ).
[ [ { "aoVal": "A", "content": "第$$2$$位 " } ], [ { "aoVal": "B", "content": "第$$4$$位 " } ], [ { "aoVal": "C", "content": "第$$6$$位 " } ], [ { "aoVal": "D", "content": "第$$8$$位 " } ] ]
[ "课内体系->能力->推理论证能力", "课内体系->知识点->式->整式的加减->整式有关的概念->单项式->单项式的定义" ]
[ "按照题意把这几个单项式排列如下: $$9{{x}^{4}}zy$$,$$8{{x}^{3}}y$$,$$7{{x}^{3}}{{z}^{2}}$$,$$\\frac{1}{2}{{x}^{2}}yz$$,$$-3x{{y}^{2}}z$$,$$-\\frac{1}{5}xyz$$,$$x{{z}^{2}}y$$,$$9{{y}^{3}}z$$,$$z{{y}^{2}}$$,$$3{{z}^{3}}$$,$$0$$. ∴$$9{{y}^{3}}z$$应排在第$$8$$位. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1091
ff8080814d9539f1014d9b5a53790a02
[ "1992年第3届全国希望杯初一竞赛初赛第4题" ]
2
single_choice
两个$$10$$次多项式的和是(~ ~ ).
[ [ { "aoVal": "A", "content": "$$20$$次多项式 " } ], [ { "aoVal": "B", "content": "$$10$$次多项式 " } ], [ { "aoVal": "C", "content": "$$100$$次多项式 " } ], [ { "aoVal": "D", "content": "不高于$$10$$次的多项式 " } ] ]
[ "课内体系->知识点->式->整式的加减->整式有关的概念->多项式->多项式的定义" ]
[ "多项式$${{x}^{10}}+x$$与$$-{{x}^{10}}+{{x}^{2}}$$之和为$${{x}^{2}}+x$$是个次数低于$$10$$次的多项式,选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1447
b8488fb9a0eb4eabb3ddcb487f79cb1d
[ "2003年第14届希望杯初二竞赛第1试第4题" ]
1
single_choice
$$a$$,$$b$$,$$c$$为三角形的三边长,化简$$\textbar a+b+c\textbar-\textbar a-b-c\textbar-\textbar a-b+c\textbar-\textbar a+b-c\textbar$$,结果是( ~ ~).
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2a+2b+2c$$ " } ], [ { "aoVal": "C", "content": "$$4a$$ " } ], [ { "aoVal": "D", "content": "$$2b-2c$$ " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->利用题设条件推理化简绝对值", "课内体系->知识点->三角形->三角形及多边形->与三角形有关的线段->三角形的三边关系" ]
[ "因为三角形的任意两边之和大于第三边, 所以$$a+b+c\\textgreater0$$,$$a-b-c\\textless{}0$$,$$a-b+c\\textgreater0$$,$$a+b-c\\textgreater0$$, 所以原式$$=a+b+c+(a-b-c)-(a-b+c)-(a+b-c)=0$$, 选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
951
66178d35010d4d5485e5e13dabaa1087
[ "2000年第17届全国初中数学联赛竞赛第4题7分" ]
2
single_choice
正整数$$n$$小于$$100$$,并满足等式$$\left\lfloor \frac{n}{2} \right\rfloor +\left\lfloor \frac{n}{3} \right\rfloor +\left\lfloor \frac{n}{6} \right\rfloor =n$$,其中$$\left\lfloor x \right\rfloor $$表示不超过$$x$$的最大整数,这样的正整数$$n$$有( )个.
[ [ { "aoVal": "A", "content": "$$2$$个 " } ], [ { "aoVal": "B", "content": "$$3$$个 " } ], [ { "aoVal": "C", "content": "$$12$$个 " } ], [ { "aoVal": "D", "content": "$$16$$个 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算" ]
[ "分析:利用$$\\left\\lfloor x \\right\\rfloor $$表示不超过$$x$$的最大整数的性质,求出$$\\left\\lfloor \\frac{n}{2} \\right\\rfloor +\\left\\lfloor \\frac{n}{3} \\right\\rfloor +\\left\\lfloor \\frac{n}{6} \\right\\rfloor $$的范围. $$\\because \\left\\lfloor \\frac{n}{2} \\right\\rfloor \\leqslant \\frac{n}{2}$$,$$\\left\\lfloor \\frac{n}{3} \\right\\rfloor \\leqslant \\frac{n}{3}$$,$$\\left\\lfloor \\frac{n}{6} \\right\\rfloor \\leqslant \\frac{n}{6}$$$$\\therefore \\left\\lfloor \\frac{n}{2} \\right\\rfloor +\\left\\lfloor \\frac{n}{3} \\right\\rfloor +\\left\\lfloor \\frac{n}{6} \\right\\rfloor \\leqslant \\frac{n}{2}+\\frac{n}{3}+\\frac{n}{6}=n$$. 又$$\\because \\left\\lfloor \\frac{n}{2} \\right\\rfloor +\\left\\lfloor \\frac{n}{3} \\right\\rfloor +\\left\\lfloor \\frac{n}{6} \\right\\rfloor =n$$ $$\\therefore \\left\\lfloor \\frac{n}{2} \\right\\rfloor =\\frac{n}{2}$$,$$\\left\\lfloor \\frac{n}{3} \\right\\rfloor =\\frac{n}{3}$$,$$\\left\\lfloor \\frac{n}{6} \\right\\rfloor =\\frac{n}{6}$$ $$\\therefore n$$的个数有$$\\left\\lfloor \\frac{100}{6} \\right\\rfloor =16$$个,选D. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1574
fe06f2ad8a844b91af23c94a1248a6ad
[ "1999年第10届希望杯初二竞赛第1试第15题" ]
1
single_choice
若$${{x}^{3}}+3{{x}^{2}}-3x+k$$有一个因式是$$x+1$$,则$$k=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$-1$$ " } ], [ { "aoVal": "B", "content": "$$-3$$ " } ], [ { "aoVal": "C", "content": "$$-5$$ " } ], [ { "aoVal": "D", "content": "$$-7$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->方法->待定系数法", "课内体系->知识点->式->因式分解->其他方法->待定系数法" ]
[ "依题意,原多项式当$$x=-1$$时,其值等于$$0$$,即$${{\\left( -1 \\right)}^{3}}+3{{\\left( -1 \\right)}^{2}}-3\\left( -1 \\right)+k=0$$,从而$$k=-5$$. 依题意$$x+1$$也是多项式, $${{\\left( x+1 \\right)}^{3}}-\\left( {{x}^{3}}+3{{x}^{2}}-3x+k \\right)=6x+\\left( 1-k \\right)$$的因式,故$$1-k=6$$,即$$k=-5$$. 依题意可设$${{x}^{3}}+3{{x}^{2}}-3x+k=\\left( x+1 \\right)\\left( {{x}^{2}}+ax+b \\right)={{x}^{3}}+\\left( a+1 \\right){{x}^{2}}+\\left( a+b \\right)x+b$$. 比较同次幂系数得$$\\begin{cases}a+1=3 a+b=-3 k=b \\end{cases}$$, ∴$$\\begin{cases}a=2 b=-5 k=-5 \\end{cases}$$. 故$$k=-5$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1370
8f42f9e84ff44b629058d08ff53c8551
[ "初一上学期单元测试《解读绝对值》第6题", "2013年第24届全国希望杯初一竞赛初赛第8题4分" ]
1
single_choice
有理数$$a$$,$$b$$,$$c$$,$$d$$满足$$a\textless{}b\textless{}0\textless{}c\textless{}d$$,并且$$\left\textbar{} b \right\textbar\textless{}c\textless{}\left\textbar{} a \right\textbar\textless{}d$$,则$$a+b+c+d$$的值.
[ [ { "aoVal": "A", "content": "大于$$0$$ " } ], [ { "aoVal": "B", "content": "等于$$0$$ " } ], [ { "aoVal": "C", "content": "小于$$0$$ " } ], [ { "aoVal": "D", "content": "与$$0$$的大小关系不确定 " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质", "课内体系->能力->运算能力" ]
[ "方法一: ∵$$b\\textless{}0\\textless{}c$$,$$\\left\\textbar{} b \\right\\textbar\\textless{}c$$, ∴$$-b\\textless{}c$$, ∴$$b+c\\textgreater0$$. ∵$$a\\textless{}0\\textless{}d$$,$$\\left\\textbar{} a \\right\\textbar\\textless{}d$$, ∴$$-a\\textless{}d$$, ∴$$a+d\\textgreater0$$. ∴$$a+b+c+d\\textgreater0$$. 方法二: 取特殊值,依题设,可假定$$b=-2$$,$$c=3$$,$$a=-4$$,$$d=5$$, 则$$a+b+c+d=2\\textgreater0$$, 所以$$a+b+c+d$$的值大于$$0$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1094
ff8080814d9539f1014d9b60d5570a3c
[ "1992年第3届全国希望杯初一竞赛初赛第7题" ]
1
single_choice
若$$a\textless{}0$$,$$b\textgreater0$$,且$$\left\textbar{} a \right\textbar\textless{}\left\textbar{} b \right\textbar$$,那么下列式子中结果是正数的是(~ ).
[ [ { "aoVal": "A", "content": "$$(a-b)(ab+a)$$ " } ], [ { "aoVal": "B", "content": "$$(a+b)(a-b)$$ " } ], [ { "aoVal": "C", "content": "$$(a+b)(ab+a)$$ " } ], [ { "aoVal": "D", "content": "$$(ab-b)(a+b)$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数基础运算->有理数乘法->有理数的乘法法则", "课内体系->知识点->数->有理数->绝对值->利用题设条件推理化简绝对值" ]
[ "因为$$a\\textless{}0$$,$$b\\textgreater0$$.所以$$\\left\\textbar{} a \\right\\textbar=-a$$,$$\\left\\textbar{} b \\right\\textbar=b$$. 由于$$\\left\\textbar{} a \\right\\textbar\\textless{}\\left\\textbar{} b \\right\\textbar$$得$$-a\\textless{}b$$,因此$$a+b\\textgreater0$$,$$a-b\\textless{}0$$. $$ab+a\\textless{}0$$,$$ab-b\\textless{}0$$. 所以应有$$(a-b)(ab+a)\\textgreater0$$成立,选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1002
8a1b784b6f28450e98f6848b1afa8e96
[ "2013年第18届华杯赛初一竞赛初赛第6题", "其它" ]
3
single_choice
满足不等式$$\frac{2}{3}\textless{}\frac{5}{n}\textless{}\frac{3}{m}$$的有序整数对$$(m,n)$$的个数是(~ ).
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式组->一元一次不等式组的整数解" ]
[ "由$$\\frac{2}{3}\\textless{}\\frac{5}{n}\\textless{}\\frac{3}{m}$$,得到$$\\frac{m}{3}\\textless{}\\frac{n}{5}\\textless{}\\frac{3}{2}$$,即$$\\frac{5}{3}m\\textless{}n\\textless{}\\frac{15}{2}$$,因此$$n\\leqslant 7$$. $$n=7\\Rightarrow m\\textless{}\\frac{3}{5}n=\\frac{21}{5}$$,$$m=1,2,3,4$$, $$n=6\\Rightarrow m\\textless{}\\frac{3}{5}n=\\frac{18}{5}$$,$$m=1,2,3$$, $$n=5\\Rightarrow m\\textless{}\\frac{3}{5}n=3$$,$$m=1,2$$, $$n=4\\Rightarrow m\\textless{}\\frac{3}{5}n=\\frac{12}{5}$$,$$m=1,2$$, $$n=3\\Rightarrow m\\textless{}\\frac{3}{5}n=\\frac{9}{5}$$,$$m=1$$, $$n=2\\Rightarrow m\\textless{}\\frac{3}{5}n=\\frac{6}{5}$$,$$m=1$$, ∴满足不等式的$$(m,n)$$一共有$$4+3+2+2+1+1=13$$对. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
447
79cd910b28164674bf72e119496f35fa
[ "初一上学期单元测试《解读绝对值》第6题", "2013年第24届全国希望杯初一竞赛初赛第8题4分" ]
1
single_choice
有理数$$a$$,$$b$$,$$c$$,$$d$$满足$$a\textless{}b\textless{}0\textless{}c\textless{}d$$,并且$$\left\textbar{} b \right\textbar\textless{}c\textless{}\left\textbar{} a \right\textbar\textless{}d$$,则$$a+b+c+d$$的值.
[ [ { "aoVal": "A", "content": "大于$$0$$ " } ], [ { "aoVal": "B", "content": "等于$$0$$ " } ], [ { "aoVal": "C", "content": "小于$$0$$ " } ], [ { "aoVal": "D", "content": "与$$0$$的大小关系不确定 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质" ]
[ "方法一: ∵$$b\\textless{}0\\textless{}c$$,$$\\left\\textbar{} b \\right\\textbar\\textless{}c$$, ∴$$-b\\textless{}c$$, ∴$$b+c\\textgreater0$$. ∵$$a\\textless{}0\\textless{}d$$,$$\\left\\textbar{} a \\right\\textbar\\textless{}d$$, ∴$$-a\\textless{}d$$, ∴$$a+d\\textgreater0$$. ∴$$a+b+c+d\\textgreater0$$. 方法二: 取特殊值,依题设,可假定$$b=-2$$,$$c=3$$,$$a=-4$$,$$d=5$$, 则$$a+b+c+d=2\\textgreater0$$, 所以$$a+b+c+d$$的值大于$$0$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
140
25ceeec57a544c428b9670a3df11cc4f
[ "2021年福建竞赛(\"大梦杯”青少年水平测试)第3~3题" ]
2
single_choice
将形如3\emph{m}和$${{2}^{n}}$$(\emph{m,n}为正整数)的正整数从小到大排列,并依次记为$${{a}_{1}},{{a}_{2}},{{a}_{3}}\cdots $$若第\emph{k}个数$${{a}_{k}}=2022$$,则\emph{k}的值为(~~~~~~~)
[ [ { "aoVal": "A", "content": "682 " } ], [ { "aoVal": "B", "content": "683 " } ], [ { "aoVal": "C", "content": "684 " } ], [ { "aoVal": "D", "content": "685 " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 先确定$$3m$$和$${{2}^{n}}$$不等,考虑在从小到大排列的形如$$3m$$($$m$$为正整数)的正整数3,6,9,27,\\ldots 中,从小到大添加形如$${{2}^{n}}$$($$n$$为正整数)的数.再根据$$2022=3\\times 674$$即可.\\\\ 【详解】\\\\ 易知形如$$3m$$和$${{2}^{n}}$$($$m$$,$$n$$为正整数)的正整数不可能相等.\\\\ 考虑在从小到大排列的形如$$3m$$($$m$$为正整数)的正整数3,6,9,27,\\ldots 中,从小到大添加形如$${{2}^{n}}$$($$n$$为正整数)的数.\\\\ 由$$2022=3\\times 674$$知,将形如$$3m$$($$m$$为正整数)的正整数从小到大排列,2022是第674个数.\\\\ 由于$${{2}^{10}}=1024\\textless{} 2022$$,$${{2}^{11}}=2048\\textgreater2022$$,所以有10个形如$${{2}^{n}}$$($$n$$为正整数)的数小于2022,这10个数排在2022前面.\\\\ 所以$$k=674+10=684$$.\\\\ 【点睛】\\\\ 本题考查数字排列规律问题,掌握因数分解方法,有理数大小比较是解题关键. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
267
66c6af2c892b45489ce1255366f67b4a
[ "1998年第9届希望杯初一竞赛第1题" ]
2
single_choice
数$${{(-1)}^{1998}}$$是.
[ [ { "aoVal": "A", "content": "最大的负数 " } ], [ { "aoVal": "B", "content": "最小的非负数 " } ], [ { "aoVal": "C", "content": "最小的正整数 " } ], [ { "aoVal": "D", "content": "绝对值最小的整数 " } ] ]
[ "课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类", "课内体系->能力->运算能力" ]
[ "$${{(-1)}^{1998}}=+1$$.排除$$\\text{A}$$.由于最小的非负数是$$0$$,排除$$\\text{B}$$. 绝对值最小的整数也是$$0$$,排除$$\\text{D}$$.显然应选$$\\text{C}$$.事实上$$+1$$是最小的正整数. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
309
1a26b825e0a84b25a3df7c409a6bdd79
[ "初一单元测试《分式的概念、性质及运算》第18题", "2013年第24届全国希望杯初二竞赛复赛第18题4分" ]
2
single_choice
已知$${{x}^{2}}-x-1=0$$,则$$\frac{{{x}^{3}}+x+1}{{{x}^{4}}}$$的值为 .
[ [ { "aoVal": "A", "content": "$$-2$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算", "课内体系->知识点->式->分式->分式化简求值->分式化简求值-整体代入求值" ]
[ "由条件得$${{x}^{2}}=x+1$$,原式$$=\\frac{{{x}^{3}}+{{x}^{2}}}{{{x}^{4}}}=\\frac{{{x}^{2}}\\left( x+1 \\right)}{{{x}^{4}}}=\\frac{x+1}{{{x}^{2}}}=1$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
960
92200b71e01648248b9ee0528c859385
[ "1999年第10届希望杯初一竞赛第3题" ]
1
single_choice
若$$\left\textbar{} a \right\textbar=1$$,则$${{a}^{4}}$$等于.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "课内体系->方法->整体法", "课内体系->知识点->数->有理数->绝对值->绝对值的非负性", "课内体系->知识点->数->有理数->绝对值->绝对值的代数意义" ]
[ "因为$$\\left\\textbar{} a \\right\\textbar=1$$,所以$$a=\\pm 1$$,因此$${{a}^{4}}=1$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
382
1b2b75c8e4f643119f82d09ca5536926
[ "2018年全国竞赛" ]
2
single_choice
解方程:$$\frac{x+6}{x+1}-\frac{3{{x}^{2}}+10x+4}{{{x}^{2}}+3x+2}+\frac{2x+1}{x+2}=0$$的解为.
[ [ { "aoVal": "A", "content": "$$x=9$$ " } ], [ { "aoVal": "B", "content": "$$x=-9$$ " } ], [ { "aoVal": "C", "content": "无解 " } ], [ { "aoVal": "D", "content": "$$x=-\\frac{1}{9}$$ " } ] ]
[ "知识标签->学习能力->运算能力", "知识标签->知识点->方程与不等式->分式方程->解分式方程", "知识标签->题型->方程与不等式->分式方程->分式方程的解与解分式方程->题型:解可化为一元一次方程的分式方程" ]
[ "原方程可变为$$1+\\frac{5}{x+1}-\\left( 3+\\frac{x-2}{{{x}^{2}}+3x+2} \\right)+2-\\frac{3}{x+2}=0$$, 整理得$$\\frac{5}{x+1}-\\frac{3}{x+2}-\\frac{x-2}{{{x}^{2}}+3x+2}=0$$, 去分母、整理得$$x+9=0$$, 计算得出$$x=-9$$. 经检验知,$$x=-9$$是原方程的根. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
235
15148aa5e85c4ef89858dcce3d23a7f3
[ "2016年第33届全国全国初中数学联赛竞赛第6题7分" ]
2
single_choice
设实数$$x$$,$$y$$,$$z$$,满足$$x+y+z=1$$,则$$M=xy+2yz+3xz$$的最大值为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "知识标签->题型->式->整式加减->整式加减化简求值->题型:整体代入化简求值", "知识标签->知识点->式->整式的加减->整式的定义", "知识标签->知识点->式->整式的乘除->乘法公式->完全平方公式", "知识标签->方法->配方法" ]
[ "$$M=xy+(2y+3x)z$$ $$=xy+(2y+3x)(1-x-y)$$ $$=-3{{x}^{2}}-4xy-2{{y}^{2}}+3x+2y$$ $$=-2\\left[ {{y}^{2}}+2\\left( x-\\frac{1}{2} \\right)y+{{\\left( x-\\frac{1}{2} \\right)}^{2}} \\right]-3{{x}^{2}}+3x+2{{\\left( x-\\frac{1}{2} \\right)}^{2}}$$ $$=-2{{\\left( y+x-\\frac{1}{2} \\right)}^{2}}-{{x}^{2}}+x+\\frac{1}{2}$$ $$=-2{{\\left( y+x-\\frac{1}{2} \\right)}^{2}}-{{\\left( x-\\frac{1}{2} \\right)}^{2}}+\\frac{3}{4}$$ $$\\leqslant \\frac{3}{4}$$. 当且仅当$$x=\\frac{1}{2}$$,$$y=0$$时,不等式取等号, 故$${{M}_{\\max }}=\\frac{3}{4}$$. 令$$y=1-x-z$$,代入$$M$$,则: $$M=x\\left( 1-x-z \\right)+2\\left( 1-x-z \\right)z+3xz=x-{{x}^{2}}-xz+2z-2xz-2{{z}^{2}}+3xz$$ $$=-{{x}^{2}}+x-2{{z}^{2}}+2z=-{{\\left( x-\\frac{1}{2} \\right)}^{2}}-2{{\\left( z-\\frac{1}{2} \\right)}^{2}}+\\frac{3}{4}$$,$${{M}_{\\min }}=\\frac{3}{4}$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
397
ec78c5693d6249b7a0d89578b1b13baa
[ "1995年第12届全国初中数学联赛竞赛第2题" ]
2
single_choice
方程组$$\begin{cases}xy+yz=63 xz+yz=23 \end{cases}$$的正整数解的组数是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->知识点->方程与不等式->其他方程->多元二次方程(组)", "课内体系->能力->运算能力" ]
[ "先由第二个方程确定$$z=1$$,进而原方程组可化为$$\\begin{cases}xy+y=63 x+y=23 \\end{cases}$$, 消去$$y$$可得:$$\\left( 23-x \\right)\\left( x+1 \\right)=63$$,即$${{x}^{2}}-22x+40=0$$. 解得:$${{x}_{1}}=20$$,$${{x}_{2}}=2$$. 所以,原方程组有两组解:($$2$$,$$21$$ ,$$1$$),($$20$$,$$3$$ ,$$1$$). " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1291
a0c3451673124664ba01ad46618003f6
[ "初一下学期其它第2题", "2003年竞赛第1题6分" ]
1
single_choice
若$$4x-3y-6z=0$$,$$x+2y-7z=0(xyz\ne 0)$$,则代数式$$\frac{5{{x}^{2}}+2{{y}^{2}}-{{z}^{2}}}{2{{x}^{2}}-3{{y}^{2}}-10{{z}^{2}}}$$的值是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$-\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$-\\frac{19}{2}$$ " } ], [ { "aoVal": "C", "content": "$$-15$$ " } ], [ { "aoVal": "D", "content": "$$-13$$ " } ] ]
[ "课内体系->知识点->式->分式->分式化简求值->分式化简求值-条件化简求值", "课内体系->能力->运算能力" ]
[ "视$$z$$为常数,将两个方程转化为关于$$x$$,$$y$$的二元一次方程组$$\\begin{cases}4x-3y=6z x+2y=7z \\end{cases}$$②$$\\times 4-$$①得的$$11y=22z$$, $$y=2z$$,把$$y=2z$$代入①得$$4x-6z=6z$$,解得$$x=3z$$, 所以原式$$=\\frac{5{{x}^{2}}+2{{y}^{2}}-{{z}^{2}}}{2{{x}^{2}}-3{{y}^{2}}-10{{z}^{2}}}=\\frac{5{{(3z)}^{2}}+2{{(2z)}^{2}}-{{z}^{2}}}{2{{(3z)}^{2}}-3{{(2z)}^{2}}-10{{z}^{2}}}=-\\frac{52}{4}=-13$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1250
9798a701e9f147faa7bdfae663281355
[ "2012年第23届全国希望杯初二竞赛初赛第18题4分" ]
2
single_choice
已知$$a+{{x}^{2}}=2011$$,$$b+{{x}^{2}}=2012$$,$$c+{{x}^{2}}=2013$$,且$$abc=24$$,则$$\frac{a}{bc}+\frac{c}{ab}+\frac{b}{ac}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "frac{1}{8}$$ " } ], [ { "aoVal": "D", "content": "frac{1}{16}$$ " } ] ]
[ "课内体系->方法->配方法", "课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式" ]
[ "由$$a+{{x}^{2}}=2011$$,$$b+{{x}^{2}}=2012$$,$$c+{{x}^{2}}=2013$$, 得$$b-a=1$$,$$c-b=1$$,$$c-a=2$$. $$\\frac{a}{bc}+\\frac{c}{ab}+\\frac{b}{ac}-\\frac{1}{a}-\\frac{1}{b}-\\frac{1}{c}$$ $$=\\frac{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac}{abc}$$ $$=\\frac{{{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(a-c)}^{2}}}{2abc}$$ $$=\\frac{1+1+4}{2\\times 24}$$ $$=\\frac{1}{8}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
318
1651703ed1424d9b8770e5484980f1e1
[ "2019年四川南充初三自主招生", "竞赛2021年宁波小强基第3题" ]
2
single_choice
设$$a$$,$$b$$是方程$${{x}^{2}}+20x+1=0$$的两个根,$$c$$,$$d$$是方程$${{x}^{2}}-17x+1=0$$的两个根,则代数式$$\left( a+c \right)\left( b+c \right)\left( a-d \right)\left( b-d \right)$$的值为.
[ [ { "aoVal": "A", "content": "$$-2017$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$340$$ " } ], [ { "aoVal": "D", "content": "$$-111$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程->一元二次方程的基础->一元二次方程的根" ]
[ "解:由题意可得$$a+b=-20$$,$$ab=1$$,$$c+d=17$$,$$cd=1$$ $$\\therefore \\left( a+c \\right)\\left( b+c \\right)\\left( a-d \\right)\\left( b-d \\right)$$ $$=\\left[ ab+\\left( a+b \\right)c+{{c}^{2}} \\right]\\left[ ab-\\left( a+b \\right)d+{{d}^{2}} \\right]$$ $$=\\left( 1-20c+{{c}^{2}} \\right)\\left( 1+20d+{{d}^{2}} \\right)$$ $$=1+20d+{{d}^{2}}-20c-400-20d+{{c}^{2}}+20c+1$$ $$={{d}^{2}}+{{c}^{2}}+2-400$$ $$={{\\left( c+d \\right)}^{2}}-400$$ $$={{17}^{2}}-400$$ $$=-111$$, 故选:$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
987
ff8080814cfa9b24014cff6b19470fb8
[ "初二上学期单元测试《分解方法的延拓(1)》第21题", "2002年第13届希望杯初二竞赛第2试第2题", "初二其它" ]
2
single_choice
已知$$a\textgreater b\textgreater c$$,$$M={{a}^{2}}b+{{b}^{2}}c+{{c}^{2}}a$$,$$N=a{{b}^{2}}+b{{c}^{2}}+c{{a}^{2}}$$,则$$M$$与$$N$$的大小关系是(~ ).
[ [ { "aoVal": "A", "content": "$$M\\textless{}N$$ " } ], [ { "aoVal": "B", "content": "$$M\\textgreater N$$ " } ], [ { "aoVal": "C", "content": "$$M=N$$ " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "课内体系->知识点->式->因式分解->因式分解的应用", "课内体系->能力->运算能力" ]
[ "$$M-N={{a}^{2}}b+{{b}^{2}}c+{{c}^{2}}a-(a{{b}^{2}}+b{{c}^{2}}+c{{a}^{2}})$$ $$=(b-c){{a}^{2}}-({{b}^{2}}-{{c}^{2}})a+({{b}^{2}}c-b{{c}^{2}})$$ $$=(b-c){{a}^{2}}-(b+c)(b-c)a+bc(b-c)$$ $$=(b-c)\\left[ {{a}^{2}}-(b+c)a+bc \\right]$$ $$=(b-c)(a-b)(a-c)$$, ∵$$a\\textgreater b\\textgreater c$$, ∴$$b-c\\textgreater0$$,$$a-b\\textgreater0$$,$$a-c\\textgreater0$$, ∴$$M-N=(b-c)(a-b)(a-c)\\textgreater0$$, ∴$$M\\textgreater N$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1501
c1c5fc21baae486b9b0df7fdd41986b9
[ "2018年全美数学竞赛(AMC)竞赛" ]
2
single_choice
计算 $$1+3+5+\cdots +2021+2023-2-4-6-\cdots -2020-2022$$?
[ [ { "aoVal": "A", "content": "$$-1012$$ " } ], [ { "aoVal": "B", "content": "$$-1011$$ " } ], [ { "aoVal": "C", "content": "$$1010$$ " } ], [ { "aoVal": "D", "content": "$$1011$$ " } ], [ { "aoVal": "E", "content": "$$1012$$ " } ] ]
[ "美国amc8->知识点->数与运算->数列与数表->等差数列" ]
[ "计算 $$1+3+5+\\cdots +2021+2023-2-4-6-\\cdots -2020-2022$$? 我们可以将给定的表达式重写为$$1+\\left( 3-2 \\right)+\\left( 5-4 \\right)+\\cdot \\cdot \\cdot +\\left( 2023-2022 \\right)+\\left( 2021-2020 \\right)=1+1+1+\\cdot \\cdot \\cdot +1$$,$$1\\text{s}$$的数与$$1$$,$$3$$,$$5$$,7$$\\cdot \\cdot \\cdot $$,$$2021$$,$$2023$$中的数是相同,因此答案是$$1012$$. 故选$$\\text{E}$$. " ]
E
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1275
8ec5611bfd964d6a8a14bfe0d4ae67ed
[ "2011年竞赛第1题3分" ]
1
single_choice
\textbf{(难)}设$$a=\sqrt{7}-1$$,则代数式$$3{{a}^{3}}+12{{a}^{2}}-6a-12$$的值为.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$4\\sqrt{7}+10$$ " } ], [ { "aoVal": "D", "content": "$$4\\sqrt{7}+12$$ " } ] ]
[ "课内体系->方法->代入法", "课内体系->知识点->式->整式的乘除->整式的乘除运算->整式乘除的综合", "课内体系->知识点->式->整式的乘除->整式乘除化简求值", "课内体系->能力->运算能力" ]
[ "由题意得$$a+1=\\sqrt{7}$$,即$${{a}^{2}}=6-2a$$, 所以$$3{{a}^{3}}+12{{a}^{2}}-6a-12=3a\\left( 6-2a \\right)+12\\left( 6-2a \\right)-6a-12$$ $$=-6{{a}^{2}}-12a+60$$ $$=-6\\left( 6-2a \\right)-12a+60$$ $$=24$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
693
ac57432147ab40fe808124b1453b3ae7
[ "2007年第12届华杯赛初一竞赛初赛第3题" ]
0
single_choice
如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式.例如:$${{x}^{3}}+2x{{y}^{2}}+2xyz+{{y}^{3}}$$是$$3$$次齐次多项式.若$${{x}^{m+2}}{{y}^{2}}+3x{{y}^{3}}{{z}^{2}}$$是齐次多项式,则$$m$$等于.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->数与式->整式->整式的乘除运算" ]
[ "因为$${{x}^{m+2}}{{y}^{2}}+3x{{y}^{3}}{{z}^{2}}$$是齐次多项式,并且第二个单项式的次数为$$6$$, 所以$$m+2+2=6$$,即$$m=2$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1444
fc712cf520584ea3b6401b1c79cb2584
[ "2006年第17届希望杯初二竞赛第2试第5题", "初二其它" ]
1
single_choice
若$$m={{2006}^{2}}+{{2006}^{2}}\times {{2007}^{2}}+{{2007}^{2}}$$,则$$m$$.
[ [ { "aoVal": "A", "content": "是完全平方数,还是奇数 " } ], [ { "aoVal": "B", "content": "是完全平方数,还是偶数 " } ], [ { "aoVal": "C", "content": "不是完全平方数,但是奇数 " } ], [ { "aoVal": "D", "content": "不是完全平方数,但是偶数 " } ] ]
[ "课内体系->知识点->式->因式分解->十字相乘法->二次项系数为±1的十字相乘", "课内体系->能力->运算能力" ]
[ "$$m={{2006}^{2}}+{{2006}^{2}}\\times {{2007}^{2}}+{{2007}^{2}}$$ $$={{2006}^{2}}+{{2006}^{2}}{{\\left( 2006+1 \\right)}^{2}}+{{\\left( 2006+1 \\right)}^{2}}$$ $$={{2006}^{4}}+2\\times {{2006}^{3}}+3\\times {{2006}^{2}}+2\\times 2006+1$$ $$={{\\left( {{2006}^{2}}+2006+1 \\right)}^{2}}$$ ∴$$m$$是奇数. 所以选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
460
2436caeb223041db8fc8aa427fdb0c7f
[ "2007年第12届华杯赛初一竞赛初赛第1题" ]
1
single_choice
计算:$$1-{{(-1)}^{2}}+\frac{-1\times {{(-1)}^{3}}-2}{2\times (-1)+1}=$$.
[ [ { "aoVal": "A", "content": "$$-2$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "竞赛->知识点->数与式->数的运算->有理数运算问题" ]
[ "原式$$=1-1+\\frac{-1\\times (-1)-2}{-2+1}$$ $$=\\frac{1-2}{-1}$$ $$=1$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
962
dfb31ec6198b4030978d74a2d89f9bcf
[ "2004年第15届希望杯初二竞赛第1试第6题" ]
1
single_choice
某出版社计划出版一套百科全书,固定成本为$$8$$万元,每印刷一套需增加成本$$20$$元.如果每套书定价$$100$$元,卖出后有$$3$$成收入给承销商,出版社要盈利$$10 \%$$,那么该书至少应发行.(精确到千位)
[ [ { "aoVal": "A", "content": "$$2$$千套 " } ], [ { "aoVal": "B", "content": "$$3$$千套 " } ], [ { "aoVal": "C", "content": "$$4$$千套 " } ], [ { "aoVal": "D", "content": "$$5$$千套 " } ] ]
[ "竞赛->知识点->方程与不等式->一次方程->一元一次方程" ]
[ "设出版社发行$$x$$套书, 则$$100\\left( 1-0.3 \\right)x\\geqslant \\left( 80000+20x \\right)\\left( 1+10 \\% \\right)$$, $$70x\\geqslant 88000+22x$$, $$x\\geqslant 1833\\frac{1}{3}$$, 至少应发行$$2$$千套. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
157
1875d515f00c4e1e9cb4ccc865a1612b
[ "2012年竞赛第1题3分" ]
1
single_choice
如果$$a=-2+\sqrt{2}$$,那么$$1+\frac{1}{2+\dfrac{1}{3+a}}$$的值为(~ ~ ).
[ [ { "aoVal": "A", "content": "$$-\\sqrt{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{2}$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$2\\sqrt{2}$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算" ]
[ "$$1+\\frac{1}{2+\\dfrac{1}{3+a}}=1+\\frac{1}{2+\\dfrac{1}{1+\\sqrt{2}}}$$ $$=1+\\frac{1}{2+\\sqrt{2}-1}=1+\\frac{1}{\\sqrt{2}+1}=1+\\sqrt{2}-1=\\sqrt{2}$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
114
0b5a5995283f4782949dbaca86e6a0ca
[ "2002年第13届希望杯初二竞赛第1试第2题" ]
1
single_choice
下列各式分解因式后,可表示为一次因式乘积的是.
[ [ { "aoVal": "A", "content": "$${{x}^{3}}-9{{x}^{2}}+27x-27$$ " } ], [ { "aoVal": "B", "content": "$${{x}^{3}}-{{x}^{2}}+27x-27$$ " } ], [ { "aoVal": "C", "content": "$${{x}^{4}}-{{x}^{3}}+27x-27$$ " } ], [ { "aoVal": "D", "content": "$${{x}^{3}}-3{{x}^{2}}+9x-27$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->因式分解->公式法->提公因式+平方差", "课内体系->知识点->式->因式分解->提公因式法" ]
[ "因为$${{x}^{3}}-9{{x}^{2}}+27x-27=({{x}^{3}}-27)+27x-9{{x}^{2}}$$ $$=(x-3)({{x}^{2}}+3x+9)-9x(x-3)$$ $$=(x-3)({{x}^{2}}+3x+9-9x)$$ $$={{(x-3)}^{3}}$$, 故$$\\text{A}$$正确; 又因为$${{x}^{3}}-{{x}^{2}}+27x-27=(x-1)({{x}^{2}}+27)$$ $${{x}^{4}}-{{x}^{3}}+27x-27=(x-1)(x+3)({{x}^{2}}-3x+9)$$ $${{x}^{3}}-3{{x}^{2}}+9x-27=(x-3)({{x}^{2}}+9)$$, 故$$\\text{BCD}$$错误. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1454
d7f841ddfd7f4bb78da306f6e608f38b
[ "2012年第29届全国全国初中数学联赛竞赛第1题7分" ]
1
single_choice
9.已知$$a=\sqrt{2}-1$$,$$b=\sqrt{3}-\sqrt{2}$$,$$c=\sqrt{10}-2$$,那么$$a$$、$$b$$、$$c$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textless b\\textless c$$ " } ], [ { "aoVal": "B", "content": "$$a\\textless c\\textless b$$ " } ], [ { "aoVal": "C", "content": "$$b\\textless a\\textless c$$ " } ], [ { "aoVal": "D", "content": "$$b\\textless c\\textless a$$ " } ] ]
[ "知识标签->学习能力->运算能力", "知识标签->题型->数->实数->无理数有关的计算->题型:无理数大小的比较", "知识标签->知识点->式->二次根式->二次根式的运算->二次根式的混合运算" ]
[ "$$a=\\sqrt{2}-1=\\frac{\\sqrt{2}-1}{1}=\\frac{1}{\\sqrt{2}+1}$$, $$b=\\sqrt{3}-\\sqrt{2}=\\frac{1}{\\sqrt{3}+\\sqrt{2}}$$, $$c=\\sqrt{6}-2=\\frac{2}{\\sqrt{6}+2}=\\frac{1}{\\sqrt{\\frac{3}{2}}+1}$$, 由$$\\sqrt{\\frac{3}{2}}+1\\textless{}\\sqrt{2}+1\\textless{}\\sqrt{3}+\\sqrt{2}$$,显然:$$b\\textless{}a\\textless{}c$$. 估算或作差 $$a-b=2\\sqrt{2}-\\sqrt{3}-1$$,$$2\\sqrt{2}\\approx 2.828$$,$$\\sqrt{3}+1\\approx 2.732$$,故$$2\\sqrt{2}\\textgreater\\sqrt{3}+1$$∴$$a\\textgreater b$$; $$c-a=\\sqrt{6}-\\sqrt{2}-1$$,$${{\\left( \\sqrt{6} \\right)}^{2}}=6$$,$${{\\left( \\sqrt{2}+1 \\right)}^{2}}\\approx {{2.414}^{2}} ~\\textless{} ~6$$,故$$\\sqrt{6}\\textgreater\\sqrt{2}+1$$,∴$$c\\textgreater a$$; ∴$$b ~\\textless{} ~a ~\\textless{} ~c$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
148
5d3adc2a63984a488b0222d7d96fc126
[ "2011年第28届全国全国初中数学联赛竞赛第1题7分", "初一单元测试《有条件的分式化解与求值》第22题" ]
1
single_choice
已知$$a+b=2$$,$$\frac{{{(1-a)}^{2}}}{b}+\frac{{{(1-b)}^{2}}}{a}=-4$$,则$$ab$$的值为(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$-\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{2}$$ " } ] ]
[ "课内体系->知识点->方程与不等式->其他方程->二元二次方程(组)", "课内体系->能力->运算能力" ]
[ "由$$\\frac{{{(1-a)}^{2}}}{b}+\\frac{{{(1-b)}^{2}}}{a}=-4$$可得$$a{{(1-a)}^{2}}+b{{(1-b)}^{2}}=-4ab$$, 即$$(a+b)-2({{a}^{2}}+{{b}^{2}})+{{a}^{3}}+{{b}^{3}}+4ab=0$$, 即$$2-2({{a}^{2}}+{{b}^{2}})+2({{a}^{2}}-ab+{{b}^{2}})+4ab=0$$, 即$$2-2ab+4ab=0$$, 所以$$ab=-1$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
474
a72b35b753d945d6b685f835f61b49a8
[ "2018~2019学年3月河南洛阳西工区洛阳外国语学校初二下学期月考第6题3分", "2018~2019学年3月天津南开区天津市南开翔宇学校初二下学期月考第8题3分", "2019~2020学年山东枣庄峄城区初二上学期期末第2题3分", "2020~2021学年10月四川成都彭州市成都七中嘉祥外国语学校北城分校初二上学期月考第6题3分", "2018~2019学年山东青岛市南区青岛大学附属中学初二上学期期末第3题3分", "2020~2021学年9月四川成都青羊区四川师范大学实验外国语学校初二上学期周测C卷第3题3分", "2020~2021学年3月天津南开区天津美达菲国际学校初二下学期月考第8题3分", "2018~2019学年3月天津河西区天津市新华中学初二下学期月考第3题3分", "2019~2020学年3月江西南昌东湖区南昌市百树学校初二下学期月考第6题3分", "2018~2019学年5月广东深圳罗湖区深圳市罗湖区翠园中学(初中部)初一下学期周测B卷(竞赛班)第2题2分" ]
1
single_choice
下列结论中,错误的有. ①在$$\text{Rt}\triangle ABC$$中,已知两边长分别为$$3$$和$$4$$,则第三边的长为$$5$$; ②$$\triangle ABC$$的三边长分别为$$AB$$,$$BC$$,$$AC$$,若$$B{{C}^{2}}+A{{C}^{2}}=A{{B}^{2}}$$,则$$\angle A=90{}^{}\circ $$; ③ 在$$\triangle ABC$$中,若$$\angle A:\angle B:\angle C=1:5:6$$,则$$\triangle ABC$$是直角三角形; ④若三角形的三边长之比为$$3:4:5$$,则该三角形是直角三角形.
[ [ { "aoVal": "A", "content": "$$0$$个 " } ], [ { "aoVal": "B", "content": "$$1$$个 " } ], [ { "aoVal": "C", "content": "$$2$$个 " } ], [ { "aoVal": "D", "content": "$$3$$个 " } ] ]
[ "课内体系->知识点->三角形->勾股定理及应用->勾股定理基础->勾股逆定理的应用", "课内体系->能力->推理论证能力" ]
[ "①在$$\\text{Rt}\\triangle ABC$$中,已知两边长分别为$$3$$和$$4$$,则第三边的长为$$5$$或$$\\sqrt{7}$$,错误; ②$$\\triangle ABC$$的三边长分别为$$AB$$,$$BC$$,$$AC$$,若$$B{{C}^{2}}+A{{C}^{2}}=A{{B}^{2}}$$,则$$\\angle A=90{}^{}\\circ $$,错误; ③在$$\\triangle ABC$$中,若若$$\\angle A:\\angle B:\\angle C=1:5:6$$,则$$\\triangle ABC$$是直角三角形,正确; ④若三角形的三边长之比为$$3:4:5$$,则该三角形是直角三角形,正确. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1547
e1efb646307a4796b1c72c12425084b4
[ "2013年第18届华杯赛初一竞赛初赛第4题" ]
1
single_choice
如果$$a$$,$$b$$,$$c$$都是大于$$-\frac{1}{2}$$的负数,那么下列式子成立的是.
[ [ { "aoVal": "A", "content": "$$a+c-b ~\\textless{} ~0$$ " } ], [ { "aoVal": "B", "content": "$${{a}^{2}}-{{b}^{2}}-{{c}^{2}}\\textgreater0$$ " } ], [ { "aoVal": "C", "content": "$$abc\\textgreater-\\frac{1}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\left\\textbar{} abc \\right\\textbar\\textgreater\\frac{1}{8}$$ " } ] ]
[ "竞赛->知识点->数与式->数的运算->有理数运算问题" ]
[ "$$\\text{A}$$.取$$a=c=-\\frac{1}{12}$$,$$b=-\\frac{1}{3}$$,则有:$$a+c+b=-\\frac{1}{12}-\\frac{1}{12}+\\frac{1}{3}=\\frac{1}{6}\\textgreater0$$,故$$\\text{A}$$错误; $$\\text{BD}$$.取$$a=b=c=-\\frac{1}{3}$$,则有:$${{a}^{2}}-{{b}^{2}}-{{c}^{2}}=-\\frac{1}{9} ~\\textless{} ~0$$,$$\\left\\textbar{} abc \\right\\textbar=\\frac{1}{27} ~\\textless{} ~\\frac{1}{8}$$,故$$\\text{BD}$$错误; 因为$$a$$,$$b$$为负数,所以$$ab\\textgreater0$$.因为$$c\\textgreater-\\frac{1}{2}$$,所以$$abc\\textgreater-\\frac{1}{2}ab$$. 又因为$$b\\textgreater-\\frac{1}{2}$$,所以$$-\\frac{1}{2}ab ~\\textless{} ~\\frac{1}{4}$$,所以$$-\\frac{1}{2}ab\\textgreater\\frac{1}{4}a\\textgreater-\\frac{1}{8}$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
416
1bba0daca2e2422cb8a3cb057c131510
[ "2003年第20届全国初中数学联赛竞赛第10题7分" ]
2
single_choice
已知正整数$$a$$,$$b$$之差为$$120$$,它们的最小公倍数是其最大公约数的$$105$$倍,那么$$a$$,$$b$$中较大的数是.
[ [ { "aoVal": "A", "content": "$$125$$ " } ], [ { "aoVal": "B", "content": "$$175$$ " } ], [ { "aoVal": "C", "content": "$$225$$ " } ], [ { "aoVal": "D", "content": "$$275$$ " } ] ]
[ "课内体系->知识点->数->有理数->数的特征->整除的条件", "竞赛->知识点->数论->整除->因数与倍数" ]
[ "设两个数的最大公约数为$$d$$,大数为$$md$$,小数为$$nd$$,其中$$m$$,$$n$$互质,则最小公倍数为$$mnd$$.由已知得$$mn=105$$,$$(m-n)d=120$$. 由于$$m\\textgreater n$$,所以$$m$$只可能是$$105$$,$$35$$,$$21$$,$$15$$. 对应的$$n$$分别为$$1$$,$$3$$,$$5$$,$$7$$. 只有在$$m=15$$,$$n=7$$时$$d$$为整数,$$d=15$$. 所以大数为$$md=225$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
756
9592fb29be7a485790d29679b43b86d6
[ "2002年第13届希望杯初二竞赛第2试第5题" ]
2
single_choice
已知$$a=\frac{\sqrt[3]{3}}{\sqrt{2}}$$,$$b=\frac{\sqrt[3]{2}+m}{\sqrt{3}+m}$$,$$c=\frac{\sqrt[3]{3}+m}{\sqrt{2}+m}$$,其中$$m\textgreater0$$,那$$a$$,$$b$$,$$c$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textgreater b\\textgreater c$$ " } ], [ { "aoVal": "B", "content": "$$c\\textgreater a\\textgreater b$$ " } ], [ { "aoVal": "C", "content": "$$a\\textgreater c\\textgreater b$$ " } ], [ { "aoVal": "D", "content": "$$b\\textgreater c\\textgreater a$$ " } ] ]
[ "竞赛->知识点->数与式->二次根式->二次根式的性质与运算" ]
[ "因为$$\\sqrt[3]{3}=\\sqrt[6]{9}$$,$$\\sqrt{2}=\\sqrt[6]{8}$$. 因而$$\\sqrt[3]{3}\\textgreater\\sqrt{2}$$,$$a=\\frac{\\sqrt[3]{3}}{\\sqrt{2}}\\textgreater1$$,$$c=\\frac{\\sqrt[3]{3}+m}{\\sqrt{2}+m}\\textgreater1$$. 于是$$a-c=\\frac{\\sqrt[3]{3}}{\\sqrt{2}}-\\frac{\\sqrt[3]{3}+m}{\\sqrt{2}+m}$$ $$=\\frac{\\sqrt[3]{3}\\cdot \\sqrt{2}+m\\sqrt[3]{3}-\\sqrt{2}\\cdot \\sqrt[3]{3}-m\\sqrt{2}}{\\sqrt{2}\\left( \\sqrt{2}+m \\right)}\\textgreater0$$, 所以$$a\\textgreater c\\textgreater1$$, 又$$b=\\frac{\\sqrt[3]{2}+m}{\\sqrt{3}+m} ~\\textless{} ~1$$, 故$$a\\textgreater c\\textgreater b$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
702
492372173e1d40478568c594a806abd9
[ "2002年第13届希望杯初一竞赛第2试第4题" ]
2
single_choice
当$$x$$取$$1$$到$$10$$之间的质数时,四个整式:$${{x}^{2}}+2$$,$${{x}^{2}}+4$$,$${{x}^{2}}+6$$和$${{x}^{2}}+8$$的值中,共有质数个.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "竞赛->知识点->数论->整除->素数与合数" ]
[ "因为$$1\\sim 10$$之间的质数有$$2$$,$$3$$,$$5$$,$$7$$共$$4$$个. 当$$x=2$$时,四个整式的值都是大于$$2$$的偶数,不是质数; 当$$x=3$$时,四个整式的值分别为$$11$$,$$13$$,$$15$$,$$17$$; 当$$x=5$$时,四个整式的值分别为$$27$$,$$29$$,$$31$$,$$33$$; 当$$x=7$$时,四个整式的值分别为$$51$$,$$53$$,$$55$$,$$57$$. 其中只有$$11$$,$$13$$,$$17$$,$$29$$,$$31$$,$$53$$为质数,共$$6$$个. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
187
2619520d5faf413daedbaf2619cde7fc
[ "2014年第25届全国希望杯初二竞赛初赛第10题4分" ]
3
single_choice
将$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$这$$8$$个数排成一行,使$$8$$的两边各数的和相等,则不同的排法有.
[ [ { "aoVal": "A", "content": "$$144$$种 " } ], [ { "aoVal": "B", "content": "$$288$$种 " } ], [ { "aoVal": "C", "content": "$$576$$种 " } ], [ { "aoVal": "D", "content": "$$1152$$种 " } ] ]
[ "课内体系->能力->分析和解决问题能力", "竞赛->知识点->组合->排列与组合" ]
[ "因为去掉$$8$$以后,余下$$7$$个数的和是$$1+2+3+4+5+6+7=28$$, 所以$$8$$的两边各数的和分别是$$14$$. 因为$$7+6=13$$, 所以$$14$$至少是由$$3$$个数相加而成的, 所以$$8$$的两边分别有$$3$$个数和$$4$$个数. 因为$$(7,6,1)$$,$$(7,5,2)$$,$$(7,4,3)$$,$$(6,5,3)$$这四组数的和都是$$14$$, 每组中的数的排列方法有$$3\\times 2\\times 1=6$$种, 与其对应的另外$$4$$个数($$8$$除外)有$$4\\times 3\\times 2\\times 1=24$$种排列方法, 当排成横行时,这$$4$$组数有排在$$8$$的左边和右边两种排列方法, 因此,每组数的排列方法有$$2\\times 6\\times 24=288$$(种). 所以,满足题意的排列方法有$$4\\times 288=1152$$(种). " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1313
c07e939daabc4e19b4d0f95df0ea021d
[ "2011年第16届华杯赛初一竞赛初赛第3题", "2018~2019学年甘肃兰州城关区兰州市第三十五中学初二下学期期中第12题4分", "初一下学期单元测试《不等式与不等式组》一元一次不等式及其应用第28题" ]
2
single_choice
设$$a$$,$$b$$是常数,不等式$$\frac{x}{a}+\frac{1}{b}\textgreater0$$的解集为$$x\textless{}\frac{1}{5}$$,则关于$$x$$的不等式$$bx-a\textgreater0$$的解集是.
[ [ { "aoVal": "A", "content": "$$x\\textgreater\\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$x\\textless{}-\\frac{1}{5}$$ " } ], [ { "aoVal": "C", "content": "$$x\\textgreater-\\frac{1}{5}$$ " } ], [ { "aoVal": "D", "content": "$$x\\textless{}\\frac{1}{5}$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->解一元一次不等式" ]
[ "原不等式变形得:$$\\frac{x}{a}\\textgreater-\\frac{1}{b}$$, ∵$$x\\textless{}\\frac{1}{5}$$, ∴$$a\\textless{}0$$. 解不等式得:$$x\\textless{}-\\frac{a}{b}$$,$$-\\frac{a}{b}=\\frac{1}{5}$$,即$$b=-5a$$. ∴$$-5ax-a\\textgreater0$$, ∴$$x\\textgreater-\\frac{1}{5}$$. 因为不等式等$$\\frac{x}{a}+\\frac{1}{b}\\textgreater0$$的解集为$$x ~\\textless{} ~\\frac{1}{5}$$,故必有$$a ~\\textless{} ~0$$,所以$$\\frac{-a}{b}=\\frac{1}{5}$$,并且$$b\\textgreater0$$,所以由$$bx-a\\textgreater0$$得到$$x\\textgreater-\\frac{1}{5}$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
257
74a562c360f6460a8b159aa224a3e5e9
[ "2006年第17届希望杯初一竞赛初赛第6题4分" ]
1
single_choice
对于数$$x$$,符号[$$x$$]表示不大于$$x$$的最大整数.例如$$[3.14]=3$$,$$[-7.59]=-8$$,则满足关系式$$\left[ \frac{3x+7}{7} \right]=4$$的$$x$$的整数值有.
[ [ { "aoVal": "A", "content": "$$6$$个 " } ], [ { "aoVal": "B", "content": "$$5$$个 " } ], [ { "aoVal": "C", "content": "$$4$$个 " } ], [ { "aoVal": "D", "content": "$$3$$个 " } ] ]
[ "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算", "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式组->解一元一次不等式组", "课内体系->能力->推理论证能力" ]
[ "根据题意可得不等式$$4\\leqslant \\frac{3x+7}{7} \\textless{} 5$$,得$$7\\leqslant x \\textless{} \\frac{28}{3}$$因为$$x$$取整数值,解得$$x=7$$,$$8$$,$$9$$,故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1469
eecc141d5048458cbbe77817a9d2d1d5
[ "2012年第23届全国希望杯初一竞赛初赛第6题4分" ]
1
single_choice
若两位数$$\overline{ab}$$是质数,交换数字后得到的两位数$$\overline{ba}$$也是质数,则称$$\overline{ab}$$为绝对质数,在大于$$11$$的两位数中绝对质数有(~ ~ )个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类" ]
[ "大于$$11$$的两位数中绝对质数有$$13$$,$$17$$,$$31$$,$$37$$,$$71$$,$$73$$,$$79$$,$$97$$,共$$8$$个. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1544
e667c3e59e894a6992f63ce143382a78
[ "2018~2019学年浙江绍兴初一上学期期末第8题3分", "2020年湖南长沙天心区湘郡培粹实验中学初一竞赛初赛(9月)第2题4分" ]
1
single_choice
有$$m$$辆客车及$$n$$个人,若每辆客车乘$$40$$人,则还有$$25$$人不能上车;若每辆客车乘$$45$$人,则还有$$5$$人不能上车.有下列四个等式:①$$40m+25=45m+5$$;②$$\frac{n-25}{40}=\frac{n-5}{45}$$;③$$\frac{n+25}{40}=\frac{n+5}{45}$$;④$$40m+25=45m-5$$.其中正确的是.
[ [ { "aoVal": "A", "content": "①③ " } ], [ { "aoVal": "B", "content": "①② " } ], [ { "aoVal": "C", "content": "②④ " } ], [ { "aoVal": "D", "content": "③④ " } ] ]
[ "课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的调配问题", "课内体系->能力->运算能力" ]
[ "根据人数不变,列出方程:$$40m+25=45m+5$$; 根据客车数不变,列出方程:$$\\frac{n-25}{40}=\\frac{n-5}{45}$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
228
389c594b7cbc4121b03497f3f928d93c
[ "2016年第27届全国希望杯初一竞赛初赛第15题4分" ]
2
single_choice
若$$x$$,$$y$$都是正整数,且$${{x}^{2}}-{{y}^{2}}=45$$,这样的$$(x,y)$$共有 组.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->知识点->方程与不等式->其他方程->不定方程" ]
[ "∵$$x$$是$$6$$的倍数, 设$$x=6m$$,则$${{y}^{2}}=36{{m}^{2}}-2016=36({{m}^{2}}-56)$$, ∴$$y$$也能被$$6$$整除, 设$$y=6n$$,其中$$n\\textless{}m$$, ∴$$36({{m}^{2}}-{{n}^{2}})=36\\times 56$$, ∴$$(m+n)(m-n)=56$$. ∵$$m+n$$与$$m-n$$有相同的奇偶性, 且$$56=7\\times 8=14\\times 4=28\\times 2=56\\times 1$$, ∴$$\\begin{cases}m+n=14 m-n=4 \\end{cases}$$或$$\\begin{cases}m+n=28 m-n=2 \\end{cases}$$, ∴$$\\begin{cases}m=9 n=5 \\end{cases}$$或$$\\begin{cases}m=15 n=13 \\end{cases}$$, ∴$$\\begin{cases}x=54 y=30 \\end{cases}$$或$$\\begin{cases}x=90 y=78 \\end{cases}$$. 故这样的$$(x,y)$$共有$$2$$组. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1153
81ae35c209914096a2b7303aab8e463f
[ "2007年第18届希望杯初一竞赛复赛第6题4分" ]
1
single_choice
在$$9$$个数中:$$-5$$,$$-4$$,$$-3$$,$$-2$$,$$-1$$,$$0$$,$$1$$,$$2$$,$$3$$中,能使不等式$$-3{{x}^{2}}\textless{}-14$$成立的数的个数是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质", "课内体系->能力->运算能力" ]
[ "不等式$$-3{{x}^{2}}\\textless{}-14$$等价于$$3{{x}^{2}}\\textgreater14$$,逐一代入检验知:当$$x=-5$$,$$-4$$,$$-3$$,$$3$$时成立,即满足不等式$$-3{{x}^{2}}\\textless{}-14$$的数有$$4$$个. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
845
f1dac1e4cbcd4d9d98fdc2df5b2bf911
[ "2017年第19届浙江宁波余姚市余姚市实验学校初三竞赛(实验杯)第1题4分" ]
0
single_choice
已知$$x+y=3$$,则点$$\left( x,y \right)$$一定不在.
[ [ { "aoVal": "A", "content": "第一象限 " } ], [ { "aoVal": "B", "content": "第二象限 " } ], [ { "aoVal": "C", "content": "第三象限 " } ], [ { "aoVal": "D", "content": "第四象限 " } ] ]
[ "课内体系->知识点->函数->平面直角坐标系->坐标系基础->象限内坐标的特征" ]
[ "因为$$x+y=3$$, 所以$$x$$和$$y$$中至少有一点大于$$0$$, 所以点$$(x,y)$$一定不在第三象限. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
842
5c1ae934b1aa4fda834fb2389d44c8e4
[ "2009年第20届希望杯初一竞赛第1试第1题4分" ]
1
single_choice
在$$2005$$,$$2007$$,$$2009$$这三个数中,质数有.
[ [ { "aoVal": "A", "content": "$$0$$个 " } ], [ { "aoVal": "B", "content": "$$1$$个 " } ], [ { "aoVal": "C", "content": "$$2$$个 " } ], [ { "aoVal": "D", "content": "$$3$$个 " } ] ]
[ "竞赛->知识点->数论->整除->素数与合数" ]
[ "显然,$$2005$$能被$$5$$整除,$$2007$$能被$$3$$整除,它们都是合数.$$2009={{7}^{2}}\\times 41$$,也是合数. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1330
8aac50a751148307015114dce1e903c7
[ "2015年第26届全国希望杯初二竞赛复赛第5题" ]
2
single_choice
$$y=(k-\frac{1}{k})x+\frac{1}{k}(0\textless{}k\textless{}1)$$是关于$$x$$的一次函数,当$$1\leqslant x\leqslant 2$$时,$$y$$的最大值是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$k$$ " } ], [ { "aoVal": "D", "content": "$$2k-\\frac{1}{k}$$ " } ] ]
[ "课内体系->知识点->函数->一次函数->一次函数基础->一次函数的增减性" ]
[ "当$$0\\textless{}k\\textless{}1$$时,$$k-\\frac{1}{k}\\textless{}0$$,$$y$$随$$x$$的增大而减小,故在$$1\\leqslant x\\leqslant 2$$时,$$y$$在$$x=1$$时最大,为$$k$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1104
ff8080814d9efd56014da55b58280779
[ "1992年第3届全国希望杯初一竞赛复赛第6题" ]
2
single_choice
四个互不相等的正数$$a$$,$$b$$,$$c$$,$$d$$中,$$a$$最大,$$d$$最小,且$$\frac{a}{b}=\frac{c}{d}$$,则$$a+d$$与$$b+c$$的大小关系是(~ ).
[ [ { "aoVal": "A", "content": "$$a+d\\textless{}b+c$$ " } ], [ { "aoVal": "B", "content": "$$a+d\\textgreater b+c$$ " } ], [ { "aoVal": "C", "content": "$$a+d=b+c$$ " } ], [ { "aoVal": "D", "content": "不确定的 " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性" ]
[ "在四个互不相等的正数$$a$$,$$b$$,$$c$$,$$d$$中,$$a$$最大,$$d$$最小, 因此有$$a\\textgreater b$$,$$a\\textgreater c$$,$$a\\textgreater d$$,$$b\\textgreater d$$,$$c\\textgreater d$$. 由$$\\frac{a}{b}=\\frac{c}{d}\\Leftrightarrow \\frac{a}{b}-1=\\frac{c}{d}-1\\Leftrightarrow \\frac{a-b}{b}=\\frac{c-d}{d}\\Leftrightarrow \\frac{a-b}{c-d}=\\frac{b}{d}$$. 因为$$b\\textgreater d\\textgreater0$$,所以$$\\frac{a-b}{c-d}=\\frac{b}{d}\\textgreater1$$, 所以$$a-b\\textgreater c-d$$, 所以$$a+b\\textgreater b+c$$成立,选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
420
1bc3f60399c24acab04618331e135c61
[ "2002年第13届希望杯初二竞赛第1试第21题" ]
1
single_choice
方程$${{x}^{2}}-xy-5x+5y-1=0$$的整数解有几组??
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ], [ { "aoVal": "E", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->方程与不等式->二次方程->二元二次方程组", "课内体系->知识点->式->整式的加减->整式有关的概念->代数式" ]
[ "由$${{x}^{2}}-xy-5x+5y-1=0$$可得$$x\\left( x-y \\right)-5\\left( x-y \\right)-1=0$$, 即有$$\\left( x-y \\right)\\left( x-5 \\right)=1$$. 因为$$x$$,$$y$$都是整数, 所以$$\\begin{cases}x-y=1 x-5=1 \\end{cases}$$或$$\\begin{cases}x-y=-1 x-5=-1 \\end{cases}$$. 即$$\\begin{cases}x=6 y=5 \\end{cases}$$或$$\\begin{cases}x=4 y=5 \\end{cases}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
313
1e5f973e56024445812adfbfcb56bf96
[ "2006年第17届希望杯初二竞赛第1试第9题" ]
2
single_choice
对实数$$a$$,$$b$$,定义运算``$$*$$''如下: $$a*b=\begin{cases}{{a}^{2}}b\quad a\geqslant b a{{b}^{2}}\quad a\textless{}b \end{cases}$$. 现已知$$3*m=36$$,则实数$$m$$等于.
[ [ { "aoVal": "A", "content": "$$2\\sqrt{3}$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$\\pm 2\\sqrt{3}$$ " } ], [ { "aoVal": "D", "content": "$$4$$或$$\\pm 2\\sqrt{3}$$ " } ] ]
[ "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算", "课内体系->知识点->式->整式的乘除->整式的乘除运算->单项式乘单项式", "课内体系->思想->分类讨论思想", "课内体系->能力->运算能力" ]
[ "当$$3\\geqslant m$$时,有 $$3*m={{3}^{2}}\\cdot m=9m=36$$, 解得$$m=4$$,与$$3\\geqslant m$$予盾,舍去. 当$$3\\textless{}m$$时,有$$3*m=3{{m}^{2}}=36$$, 解得$$m=\\pm 2\\sqrt{3}$$,因为$$3\\textless{}m$$,故舍去$$m=-2\\sqrt{3}$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
194
147b270734ec4a629835a8e591538cc2
[ "2008年第19届希望杯初一竞赛第1试第4题4分" ]
1
single_choice
正方形内有一点$$A$$,到各边的距离从小到大依次是$$1$$,$$2$$,$$5$$,$$6$$,则正方形的面积是.
[ [ { "aoVal": "A", "content": "$$33$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$49$$ " } ] ]
[ "竞赛->知识点->四边形->特殊平行四边形" ]
[ "由于$$A$$在正方形内, 所以$$A$$到两组对边的距离之和相等, 由于只有$$1+6=2+5$$, 于是,正方形的边长只能为$$7$$, 故面积是$${{7}^{2}}=49$$, 故选:$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
816
7264a252206a415d80857d335800c768
[ "2013年竞赛第4题4分", "初三上学期其它" ]
2
single_choice
设函数$$y=\left( \sqrt{4+x}+\sqrt{4-x}+1 \right)\left( \sqrt{16-{{x}^{2}}}+2 \right)$$,则$$y$$的取值范围是( ).
[ [ { "aoVal": "A", "content": "$$2\\leqslant y\\leqslant 20$$ " } ], [ { "aoVal": "B", "content": "$$2\\leqslant y\\leqslant 30$$ " } ], [ { "aoVal": "C", "content": "$$4\\sqrt{2}+2\\leqslant y\\leqslant 20$$ " } ], [ { "aoVal": "D", "content": "$$4\\sqrt{2}+2\\leqslant y\\leqslant 30$$ " } ] ]
[ "课内体系->知识点->式->二次根式->二次根式的基础->二次根式有意义的条件" ]
[ "因为$$\\begin{matrix}y=\\left( \\sqrt{\\left( 4+x \\right)+\\left( 4-x \\right)+2\\sqrt{16-{{x}^{2}}}}+1 \\right)\\left( \\sqrt{16-{{x}^{2}}}+2 \\right) =\\left( \\sqrt{8+2\\sqrt{16-{{x}^{2}}}}+1 \\right)\\left( \\sqrt{16-{{x}^{2}}}+2 \\right), ~ \\end{matrix}$$ 所以当$$x=\\pm 4$$时,$$y$$的最小值为$$2\\left( \\sqrt{8}+1 \\right)=4\\sqrt{2}+2$$;当$$x=0$$时,$$y$$的最大值为$$30$$.故$$y$$的取值范围为$$4\\sqrt{2}+2\\leqslant y\\leqslant 30$$.故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
116
08b6ae32fffe46f2a0bf99aeb5d02fed
[ "2018年全国初中数学联赛竞赛B卷" ]
2
single_choice
满足$${{({{x}^{2}}+x-1)}^{x+2}}=1$$的整数$$x$$的个数为(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程", "课内体系->知识点->式->整式的乘除->幂的运算", "课内体系->能力->运算能力", "课内体系->能力->抽象概括能力" ]
[ "当$$x+2=0$$且$${{x}^{2}}+x-1\\ne 0$$时,$$x=-2$$, 当$${{x}^{2}}+x-1=1$$时,$$x=-2$$或$$x=1$$, 当$${{x}^{2}}+x-1=-1$$且$$x+2$$为偶数时,$$x=0$$, 所以,满足条件的整数$$x$$有$$3$$个. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1485
dcb5097fc8534d08b96ecfd924ee27f5
[ "1991年第2届希望杯初二竞赛第3题" ]
1
single_choice
$$y\textgreater0$$时,$$\sqrt{-{{x}^{3}}y}$$等于.
[ [ { "aoVal": "A", "content": "$$-x\\sqrt{xy}$$ " } ], [ { "aoVal": "B", "content": "$$x\\sqrt{xy}$$ " } ], [ { "aoVal": "C", "content": "$$-x\\sqrt{-xy}$$ " } ], [ { "aoVal": "D", "content": "$$x\\sqrt{-xy}$$ " } ] ]
[ "竞赛->知识点->数与式->二次根式->二次根式的性质与运算" ]
[ "由$$y\\textgreater0$$,可知$$x\\textless{}0$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
685
4910951259f34365a515acf7d3fef2e0
[ "2019年广东惠州惠城区光正实验学校初二竞赛第3题3分" ]
1
single_choice
计算:$${{(\sqrt{7})}^{2}}-\sqrt{{{(-4)}^{2}}}=$$.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$-3$$ " } ], [ { "aoVal": "D", "content": "$$-11$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->二次根式->二次根式的运算->二次根式的加减以及混合运算" ]
[ "$${{(\\sqrt{7})}^{2}}-\\sqrt{{{(-4)}^{2}}}=7-4=3$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
939
d676b497a2d74d9ca6cfd7c757247e4c
[ "1995年第12届全国初中数学联赛竞赛第3题" ]
2
single_choice
如果方程$$\left( x-1 \right)\left( {{x}^{2}}-2x+m \right)=0$$的三根可以作为一个三角形的三边之长,那么实数$$m$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$0\\leqslant m\\leqslant 1$$ " } ], [ { "aoVal": "B", "content": "$$m\\geqslant \\frac{3}{4}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}\\textless{}m\\leqslant 1$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{4}\\leqslant m\\leqslant 1$$ " } ] ]
[ "竞赛->知识点->方程与不等式->二次方程->一元二次方程的根与系数的关系", "竞赛->知识点->三角形->三角形基础" ]
[ "显然,方程的一个根为$$1$$,另两根之和为$${{x}_{1}}+{{x}_{2}}=2\\textgreater1$$,三根能作为一个三角形的三边,须且只须$$\\left\\textbar{} {{x}_{1}}-{{x}_{2}} \\right\\textbar\\textless{}1$$, 又$$\\left\\textbar{} {{x}_{1}}-{{x}_{2}} \\right\\textbar=\\frac{\\sqrt{\\Delta }}{\\left\\textbar{} a \\right\\textbar}=\\sqrt{4-4m}\\textless{}1$$, 有$$0\\leqslant 4-4m\\textless{}1$$, 解得$$\\frac{3}{4}\\textless{}m\\leqslant 1$$, 但作为选择题,只须取$$m=\\frac{3}{4}$$代入,得方程的根为$$1$$、$$\\frac{3}{2}$$、$$\\frac{1}{2}$$,不能组成三角形,故包括$$\\frac{3}{4}$$的$$\\text{A}$$、$$\\text{B}$$、$$\\text{D}$$均可否定,选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
472
35a551685829403f98430deebff29b0c
[ "2021年福建竞赛(\"大梦杯”青少年水平测试)第2~2题" ]
2
single_choice
已知实数\emph{x,y}满足$$\frac{26{{x}^{3}}{{y}^{3}}}{{{x}^{6}}-27{{y}^{6}}}=1$$且$${{x}^{2}}\ne {{y}^{2}}$$,则$$\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}$$的值为(~~~~~~~)
[ [ { "aoVal": "A", "content": "$$\\frac{5}{4}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{4}{5}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "2 " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 由$$\\frac{26{{x}^{3}}{{y}^{3}}}{{{x}^{6}}-27{{y}^{6}}}=1$$可得$${{x}^{6}}-26{{x}^{3}}{{y}^{3}}-27{{y}^{6}}=0$$,进而可得$${{\\left( \\frac{x}{y} \\right)}^{6}}-26{{\\left( \\frac{x}{y} \\right)}^{3}}-27=0$$,解得$$\\frac{x}{y}=-1$$或$$\\frac{x}{y}=3$$,然后再对$$\\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}$$进行变形即可解答.\\\\ 【详解】\\\\ 解:∵$$\\frac{26{{x}^{3}}{{y}^{3}}}{{{x}^{6}}-27{{y}^{6}}}=1$$,得$${{x}^{6}}-26{{x}^{3}}{{y}^{3}}-27{{y}^{6}}=0$$,\\\\ 即$${{\\left( \\frac{x}{y} \\right)}^{6}}-26{{\\left( \\frac{x}{y} \\right)}^{3}}-27=0$$.\\\\ ∴$${{\\left( \\frac{x}{y} \\right)}^{3}}=-1$$或$${{\\left( \\frac{x}{y} \\right)}^{3}}=27$$.\\\\ 即$$\\frac{x}{y}=-1$$或$$\\frac{x}{y}=3$$.\\\\ ∴$${{x}^{2}}\\ne {{y}^{2}}$$,所以$$\\frac{x}{y}=3$$,$$\\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}=\\frac{{{\\left( \\frac{x}{y} \\right)}^{2}}+1}{{{\\left( \\frac{x}{y} \\right)}^{2}}-1}=\\frac{9+1}{9-1}=\\frac{5}{4}$$.\\\\ 故选:A.\\\\ 【点睛】\\\\ 本题主要考查了分式的化简求值、立方根、解一元二次方程等知识点,解题的关键是灵活应用相关定义和运算法则以及整体法来求解. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
173
58a61c0789c3425982fd036681f7a9d7
[ "2019年安徽蚌埠初三中考一模(局属学校)第9题4分", "2018年湖北黄冈中考真题第6题3分", "2018~2019学年10月河南洛阳洛龙区洛阳地矿双语学校初三上学期月考第8题3分", "2019~2020学年12月河北石家庄新华区石门实验学校初三上学期月考第13题", "2019~2020学年10月安徽合肥包河区合肥市第四十八中学初三上学期月考第10题4分", "2019~2020学年江苏苏州姑苏区苏州市草桥中学校初三下学期单元测试《二次函数》第4题", "2018~2019学年4月广东深圳宝安区深圳市石岩公学初三下学期周测(第12周)第11题3分", "2018~2019学年9月湖北武汉蔡甸区初三上学期月考第9题3分", "2018~2019学年天津滨海新区初三上学期期末第12题3分", "2018年第20届浙江宁波余姚市余姚市实验学校初三竞赛决赛(实验杯)第6题4分", "2018~2019学年福建厦门思明区厦门松柏中学初三上学期期中第9题4分", "2019~2020学年10月江苏苏州姑苏区金阊实验中学初三上学期月考第9题3分" ]
1
single_choice
当$$a\leqslant x\leqslant a+1$$时,函数$$y={{x}^{2}}-2x-1$$的最小值为$$-1$$,则$$a$$的值为.
[ [ { "aoVal": "A", "content": "$$-1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$0$$或$$2$$ " } ], [ { "aoVal": "D", "content": "$$-1$$或$$2$$ " } ] ]
[ "课内体系->能力->运算能力" ]
[ "当$$y=1$$时,有$${{x}^{2}}-2x+1=1$$, 解得:$${{x}_{1}}=0$$,$${{x}_{2}}=2$$. ∵当$$a\\leqslant x\\leqslant a+1$$时,函数有最小值$$1$$, ∴$$a=2$$或$$a+1=0$$, ∴$$a=2$$或$$a=-1$$, 故选:$$\\text{D}$$. ∵$$y={{x}^{2}}-2x+1={{\\left( x-1 \\right)}^{2}}$$, ∴①当$$a+1\\textless{}1$$,即$$a\\textless{}0$$时,函数的最小值为$$y={{\\left( a+1-1 \\right)}^{2}}=1$$, ∴$$a=\\pm 1$$, ∴$$a=-1$$. ②当$$a\\textgreater1$$时,函数的最小值为$$y={{\\left( a-1 \\right)}^{2}}=1$$, ∴$$a=2$$或$$a=0$$, ∴$$a=2$$. 综上所述,$$a=-1$$或$$2$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1380
c9cecdc6e25e4cd1ad619dd2d6bc960a
[ "2001年第12届希望杯初一竞赛第5题" ]
2
single_choice
当$$x=\frac{2}{3}$$时,代数式$$1+3x$$的值是$$-\frac{1}{3}$$的.
[ [ { "aoVal": "A", "content": "绝对值 " } ], [ { "aoVal": "B", "content": "倒数 " } ], [ { "aoVal": "C", "content": "相反数 " } ], [ { "aoVal": "D", "content": "倒数的相反数 " } ] ]
[ "课内体系->知识点->数->有理数->相反数", "课内体系->能力->运算能力" ]
[ "$$x=\\frac{2}{3}$$时,代数式$$1+3x$$的值是$$1+3\\times \\left( \\frac{2}{3} \\right)=3$$,而$$3$$是$$-\\frac{1}{3}$$的倒数的相反数. 故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
282
3450802b62b34139ba9b27fc1e62490a
[ "2007年第18届希望杯初一竞赛初赛第10题4分" ]
1
single_choice
对任意四个有理数$$a$$,$$b$$,$$c$$,$$d$$,定义新运算: $$\left\textbar{} \begin{matrix}a b c d \end{matrix} \right\textbar=ad-bc$$ 已知$$\left\textbar{} \begin{matrix}2x -4 x 1 \end{matrix} \right\textbar=18$$,则$$x=$$.
[ [ { "aoVal": "A", "content": "$$-1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算", "课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式->解一元一次不等式", "课内体系->知识点->式->整式的加减->整式的加减运算" ]
[ "由已知新运算的定义,知 $$\\left\\textbar{} \\begin{matrix}2x -4 x 1 \\end{matrix} \\right\\textbar=2x-\\left( -4 \\right)x=18$$, 解得$$x=3$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
758
a7f6815b70ea4e149982e6622ddc5f3b
[ "2001年第12届希望杯初二竞赛第1试第9题" ]
2
single_choice
某工厂生产的灯泡中有$$\frac{1}{5}$$是次品,实际在检查时,只发现其中的$$\frac{4}{5}$$被剔除,另有$$\frac{1}{20}$$的正品也被误以为是次品而剔除,其余的灯泡全部上市出售,那么该工厂出售的灯泡中次品所占的百分率是.
[ [ { "aoVal": "A", "content": "$$4 \\%$$ " } ], [ { "aoVal": "B", "content": "$$5 \\%$$ " } ], [ { "aoVal": "C", "content": "$$6.25 \\%$$ " } ], [ { "aoVal": "D", "content": "$$7.25 \\%$$ " } ] ]
[ "竞赛->知识点->方程与不等式->一次方程->一元一次方程" ]
[ "设工厂的总产量为$$M$$,则次品为$$\\frac{1}{5}M$$;正品为$$\\frac{4}{5}M$$; 检查时,被剔除的次品数为$$\\frac{1}{5}M\\times \\frac{4}{5}=\\frac{4}{25}M$$, 被剔除的正品数为$$\\frac{4}{5}M\\times \\frac{1}{20}=\\frac{1}{25}M$$. 所以出售的产品中次品数为$$\\frac{1}{5}M-\\frac{4}{25}M=\\frac{1}{25}M$$. 而出售产品的总量为$$\\dfrac{1}{25}M+\\left( \\dfrac{4}{5}M-\\frac{1}{25}M \\right)=\\frac{4}{5}M$$. 所以该工厂出售的灯泡中次品所占的百分率为$$\\frac{\\dfrac{1}{25}M}{\\dfrac{4}{5}M}\\times 100 \\%=5 \\%$$. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1248
8aac490751148307015127b8b7113655
[ "初三上学期单元测试《概率初步》第22题", "2009年竞赛第3题7分" ]
2
single_choice
将一枚六个面编号分别为$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为$$a$$,第二次掷出的点数为$$b$$,则使关于$$x$$,$$y$$的方程组$$\begin{cases}ax+by=3 x+2y=2 \end{cases}$$只有正数解的概率为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{12}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{5}{18}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{13}{36}$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->统计与概率->概率->概率的计算方法" ]
[ "当$$2a-b=0$$时,方程组无解. 当$$2a-b\\ne 0$$时,方程组的解为$$\\begin{cases}x=\\dfrac{6-2b}{2a-b} y=\\dfrac{2a-3}{2a-b} \\end{cases}$$, 由已知,得$$\\begin{cases}\\dfrac{6-2b}{2a-b}\\textgreater0 \\dfrac{2a-3}{2a-b}\\textgreater0 \\end{cases}$$ 即$$\\begin{cases}2a-b\\textgreater0 a\\textgreater-\\dfrac{3}{2} b\\textless{}3 \\end{cases}$$, 或$$\\begin{cases}2a-b\\textless{}0 a\\textless{}\\dfrac{3}{2} b\\textgreater3 \\end{cases}$$, 由$$a$$,$$b$$的实际意义为$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,可得$$a=2$$或$$3$$或$$4$$或$$5$$或$$6$$,$$b=1$$或$$2$$, 共有$$5\\times 2=10$$种情况;或$$a=1$$,$$b=4$$或$$5$$或$$6$$,共$$3$$种情况. 又掷两次骰子出现的基本事件共$$6\\times 6=36$$种情况,故所求的概率为$$\\frac{13}{36}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
923
ff8080814a39795c014a50b60d584292
[ "初二下学期其它", "2000年第11届希望杯初一竞赛第8题" ]
1
single_choice
已知$$a$$是不为$$0$$的整数,并且关于$$x$$的方程$$ax=2{{a}^{3}}-3{{a}^{2}}-5a+4$$有整数解,则$$a$$的值共有(~ ).
[ [ { "aoVal": "A", "content": "$$1$$个 " } ], [ { "aoVal": "B", "content": "$$3$$个 " } ], [ { "aoVal": "C", "content": "$$6$$个 " } ], [ { "aoVal": "D", "content": "$$9$$个 " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->方程与不等式->一元一次方程->含参一元一次方程->一元一次方程的含参整数解", "课内体系->知识点->方程与不等式->一元一次方程->解一元一次方程->分离法解一元一次方程" ]
[ "由原方程可知,$$x=2{{a}^{2}}-3a-5+\\frac{4}{a}$$. 由于$$a$$是不为$$0$$的整数且$$x$$为整数, 所以$$a=1$$,$$-1$$,$$2$$,$$-2$$,$$4$$,$$-4$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1576
e29433ead46e43c4bd31b9b91e04b67e
[ "2002年第13届希望杯初二竞赛第2试第9题" ]
1
single_choice
设$${{a}_{i}}=1989+i$$,当$$i$$取$$1$$,$$2$$,$$3$$,$$\cdots $$,$$100$$时,得到$$100$$个分式$$\frac{i}{{{a}_{i}}}$$(如$$i=5$$,则$$\frac{i}{{{a}_{i}}}=\frac{5}{1989+5}=\frac{5}{1994}$$),在这$$100$$个分式中,最简分式的个数是.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$58$$ " } ], [ { "aoVal": "C", "content": "$$63$$ " } ], [ { "aoVal": "D", "content": "$$65$$ " } ] ]
[ "课内体系->知识点->式->分式->分式的运算->最简分式", "课内体系->知识点->式->分式->分式的基础->最简公分母" ]
[ "当$$\\frac{i}{{{a}_{i}}}$$为可约分式时,$$i$$与$${{a}_{i}}$$的最大公约数$$(i,{{a}_{i}})=d\\textgreater1$$), 而$$({{a}_{i}}-i,i)=({{a}_{i}},i)=d\\textgreater1$$. 所以,当$$\\frac{i}{{{a}_{i}}}$$为可约分式时,$$(1989,i)=d\\textgreater1$$. 由$$1989=3\\times 3\\times 13\\times 17$$,知 d的可能取值是$$1989$$的正约数$$3$$,$$9$$,$$13$$,$$17$$,$$39$$,$$51$$,$$117$$,$$153$$,$$221$$,$$663$$,$$1989$$. 又$$d\\textgreater1$$,$$i\\leqslant 100$$. 因此,$$d=3$$,$$9$$,$$13$$,$$17$$,$$39$$,$$51$$. (1)当$$d=3$$时,$$i=3$$,$$6$$,$$9$$,$$\\cdots $$,$$99$$共$$33$$个; (2)当$$d=9$$时,$$i=9$$,$$18$$,$$27$$,$$\\cdots $$,$$99$$共$$11$$个,而这$$11$$个数均与($$1$$)中的数重合; (3)当$$d=13$$时,$$i=13$$,$$26$$,$$39$$,$$\\cdots $$,$$91$$共$$7$$个,其中$$i=39$$,$$78$$已包含在($$1$$)中,故符合条件的分数只有$$5$$个; (4)当$$d=17$$时,$$i=17$$,$$34$$,$$51$$,$$68$$,$$85$$,共$$5$$个,其中$$i=51$$已包含在($$1$$)中,故符合条件的分数只有$$4$$个; (5)当$$d=39$$时,$$i=39$$,$$78$$共$$2$$个,均与($$1$$)中的数重合; (6)当$$d=51$$时,$$i=51$$已包含在($$1$$)中. 故可以约分的分数共有$$33+5+4=42$$个,最简分式有$$58$$个. 故选$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
97
1c6465c07ec14243a9df061efcde60a0
[ "1997年第8届希望杯初二竞赛第2试第3题" ]
0
single_choice
下列图形中,不是轴对称图形的是.
[ [ { "aoVal": "A", "content": "直角三角形$$ABC$$ " } ], [ { "aoVal": "B", "content": "角$$DOE$$ " } ], [ { "aoVal": "C", "content": "等边三角形$$FGH$$ " } ], [ { "aoVal": "D", "content": "线段$$MN$$ " } ] ]
[ "竞赛->知识点->几何变换->对称" ]
[ "角$$DOE$$的对称轴是它的角平分线所在的直线; 等边三角形$$FGH$$的对称轴有三条,它们是三边的垂直平分线; 线段$$MN$$的对称轴是$$MN$$的垂直平分线, 只有直角三角形$$ABC$$不是轴对称图形. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1195
8aac49074e442d81014e4d1503f0260c
[ "1995年第6届全国希望杯初一竞赛复赛第9题" ]
1
single_choice
设$$P=-\frac{1}{12345\times 12346}$$,$$Q=-\frac{1}{12344\times 12346}$$,$$R=-\frac{1}{12344\times 12345}$$,则$$P$$,$$Q$$,$$R$$的大小关系是(~ ).
[ [ { "aoVal": "A", "content": "$$P\\textgreater Q\\textgreater R$$ " } ], [ { "aoVal": "B", "content": "$$Q\\textgreater P\\textgreater R$$ " } ], [ { "aoVal": "C", "content": "$$P\\textgreater R\\textgreater Q$$ " } ], [ { "aoVal": "D", "content": "$$R\\textgreater Q\\textgreater P$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性" ]
[ "因为$$12344\\textless{}12345\\textless{}12346$$, 所以$$12344\\times 12345\\textless{}12344\\times 12346\\textless{}12345\\times 12346$$, 所以$$\\frac{1}{12344\\times 12345}\\textgreater\\frac{1}{12344\\times 12346}\\textgreater\\frac{1}{12345\\times 12346}$$, 所以$$-\\frac{1}{12344\\times 12345}\\textless{}-\\frac{1}{12344\\times 12346}\\textless{}-\\frac{1}{12345\\times 12346}$$, 所以$$R\\textless{}Q\\textless{}P$$.选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1047
ff8080814d7978b9014d86d1c88c2566
[ "1991年第2届全国希望杯初一竞赛初赛第1题" ]
0
single_choice
数$$1$$是(~ ).
[ [ { "aoVal": "A", "content": "最小整数 " } ], [ { "aoVal": "B", "content": "最小正数 " } ], [ { "aoVal": "C", "content": "最小正整数 " } ], [ { "aoVal": "D", "content": "最小有理数 " } ] ]
[ "课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类" ]
[ "整数无最小数,排除$$\\text{A}$$; 正数无最小数,排除$$\\text{B}$$; $$0$$是最小正整数,选择C; 有理数无最小数,排除$$\\text{D}$$. 考试的时候,当时规定$$0$$不是自然数,后来$$0$$也规定为自然数了. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
202
5d59b2db49d54e14862aaea4b331cc76
[ "初一下学期其它第18题", "2016~2017学年陕西西安高新区西安高新第一中学初二上学期期末第24题7分", "2008年第19届希望杯初二竞赛第2试第2题" ]
1
single_choice
关于$$x$$,$$y$$的方程组$$\begin{cases}x+ay+1=0 bx-2y+1=0 \end{cases}$$有无数组解,则$$a$$,$$b$$的值为(~ ).
[ [ { "aoVal": "A", "content": "$$a=0$$,$$b=0$$ " } ], [ { "aoVal": "B", "content": "$$a=-2$$,$$b=1$$ " } ], [ { "aoVal": "C", "content": "$$a=2$$,$$b=-1$$ " } ], [ { "aoVal": "D", "content": "$$a=2$$,$$b=1$$ ~ " } ] ]
[ "课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->二元一次方程组的解", "课内体系->知识点->方程与不等式->二元一次方程(组)->含参二元一次方程组->二元一次方程组解的情况", "课内体系->能力->运算能力" ]
[ "方程组有无数组解于是有$$\\frac{{{a}_{1}}}{{{a}_{2}}}=\\frac{{{b}_{1}}}{{{b}_{2}}}=\\frac{{{c}_{1}}}{{{c}_{2}}}$$, 于是$$\\frac{1}{b}=\\frac{a}{-2}=\\frac{1}{1}$$, ∴$$a=-2$$,$$b=1$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
915
6a1add00bcea47c4ad767000862ea4d5
[ "1999年第10届希望杯初一竞赛第6题", "2018~2019学年安徽宿州灵璧县尹集中学初一上学期期中第16题3分", "2016~2017学年9月吉林长春农安县农安县第一中学初一上学期月考第6题3分", "2019~2020学年9月江苏连云港海州区连云港市新海实验中学(苍梧校区)初一上学期周测B卷第5题3分", "2017~2018学年广东深圳福田区深圳外国语学校初一上学期期中第3题3分", "2015~2016学年浙江杭州上城区初一上学期期中第7题3分" ]
1
single_choice
设$$a$$是最小的自然数,$$b$$是最大的负整数,$$c$$是绝对值最小的有理数,则$$a-b+c$$的值为.
[ [ { "aoVal": "A", "content": "$$-1$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类", "课内体系->知识点->数->有理数->有理数基础运算->有理数减法->有理数加减混合运算", "课内体系->能力->运算能力" ]
[ "因为$$a$$是最小的自然数,所以$$a=0$$, 因为$$b$$是最大的负整数,所以$$b=-1$$, 因为$$c$$是绝对值最小的有理数,所以$$c=0$$, 所以$$a-b+c=0-\\left(-1\\right)+0=1$$. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
315
625364ec59ba44dc858be988151b89bf
[ "1997年第8届全国希望杯初一竞赛复赛第4题" ]
1
single_choice
有四个关于$$x$$的方程: ①$$x-2=-1$$;②$$\left( x-2 \right)+\left( x-1 \right)=-1+\left( x-1 \right)$$;③$$x=0$$;④$$x-2+\frac{1}{x-1}=-1+\frac{1}{x-1}$$. 其中同解的两个方程是.
[ [ { "aoVal": "A", "content": "①与② " } ], [ { "aoVal": "B", "content": "①与③ " } ], [ { "aoVal": "C", "content": "①与④ " } ], [ { "aoVal": "D", "content": "②与④ " } ] ]
[ "课内体系->知识点->方程与不等式->分式方程->分式方程的解与解分式方程->分式方程的解" ]
[ "方程①的解$$x=1$$,将$$x=1$$代入方程②,方程②成立, ∴$$x=1$$也是方程②的解. 方程①和②是同解方程,而①与③显然不同解; ①的解代入④,④无意义. ∴$$\\text{B}$$、$$\\text{C}$$、$$\\text{D}$$都不正确,只有$$\\text{A}$$正确. 所以选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
208
58bd599fad474e1aa76ef736a98cb1b6
[ "2007年竞赛第5题6分" ]
2
single_choice
方程$${{x}^{3}}+6{{x}^{2}}+5x={{y}^{3}}-y+2$$的整数解$$\left( x,y \right)$$的个数是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "无穷多 " } ] ]
[ "竞赛->知识点->方程与不等式->二次方程->特殊方程的解法" ]
[ "原方程可化为$$x\\left( x+1 \\right)\\left( x+2 \\right)+3\\left( {{x}^{2}}+x \\right)=y\\left( y-1 \\right)\\left( y+1 \\right)+2$$,因为三个连续整数的乘积是$$3$$的倍数,所以上式左边是$$3$$的倍数,而右边除以$$3$$余$$2$$,这是不可能的,所以,原方程无整数解. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
383
c76596654af749dfbae0743c97e5b2de
[ "1994年第11届全国初中数学联赛竞赛第6题6分" ]
2
single_choice
若方程$$\sqrt{x-p}=x$$有两个不相等的实根,则实数$$p$$的取值范围是( ~ ~).
[ [ { "aoVal": "A", "content": "$$p\\leqslant 0$$ " } ], [ { "aoVal": "B", "content": "$$p\\textless{}\\frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "$$0\\leqslant p\\textless{}\\frac{1}{4}$$ " } ], [ { "aoVal": "D", "content": "$$p\\geqslant \\frac{1}{4}$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程->根的判别式的应用->一元二次方程根的判别式", "课内体系->知识点->式->二次根式->二次根式的基础->二次根式有意义的条件" ]
[ "本题可以用特殊值法,排除不合理的选项: 取$$p=-1$$,代入原方程得$$\\sqrt{x+1}=x$$,即$${{x}^{2}}-x-1=0$$,此时,方程有一个负根,于是可排除$$\\text{A}$$,$$\\text{B}$$, 取$$p=1$$,代入原方程得$${{x}^{2}}-x+1=0$$,无解,故排除$$\\text{D}$$, 因此,应选$$\\text{C}$$. ", "<p>原方程可化为:$${{x}^{2}}+x+p=0$$,$$x\\geqslant 0$$,</p>\n<p>∵方程有两个不相等的实根,</p>\n<p>&there4;$$\\Delta =1-4p&gt;0$$,</p>\n<p>解得$$p &nbsp;&lt; &nbsp;\\frac{1}{4}$$,</p>\n<p>设方程两根为$${{x}_{1}}$$,$${{x}_{2}}$$,则必有$${{x}_{1}}\\geqslant 0$$,$${{x}_{2}}\\geqslant 0$$,于是得$$0\\leqslant p &nbsp;&lt; &nbsp;\\frac{1}{4}$$.</p>\n<p>故选$$\\text{C}$$.</p>" ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1442
bcb585d78f0343d2a4fafeb820ca1ce7
[ "2015年竞赛第30题" ]
1
single_choice
\textbf{2011 Think Cup G5} 艾尔、比和卡尔以恒定的速度刷墙,他们正在一起刷一所房子.艾尔和比一起可以在$$12$$小时内完成这项工作;艾尔和卡尔可以在$$15$$分钟内完成,比和卡尔可以在$$20$$分钟内完成.三个人一起粉刷房子要花多少小时?.
[ [ { "aoVal": "A", "content": "$$8.5$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$10.5$$ " } ] ]
[ "课内体系->知识点->式->因式分解->十字相乘法->二次项系数为±1的十字相乘", "美国AMC8->Knowledge Point->Word Problem->Work Word Problems->Cooperative Work Word Problems" ]
[ "设$$a$$、$$b$$、$$c$$是每个人$$1$$小时内可以粉刷的房子的比例,则$$a+b=\\frac{1}{12}$$,$$a+c=\\frac{1}{15}$$,$$b+c=\\frac{1}{20}$$.把$$3$$个等式加起来我们得到$$2a+2b+2c=\\frac{1}{5}$$,相等地,$$a+b+c=\\frac{1}{10}$$.因此,他们在$$1$$小时内刷完$$\\frac{1}{10}$$的房子,$$10$$小时内刷完整个房子. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
782
45a076d791a44db09c2021fd58222887
[ "2014年第25届全国希望杯初一竞赛复赛第1题4分" ]
1
single_choice
若有理数$$a$$、$$b$$、$$c$$两两不等,则$$\frac{a-b}{b-c}$$,$$\frac{b-c}{c-a}$$,$$\frac{c-a}{a-b}$$中负数的个数是(~ ).
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$0$$ " } ] ]
[ "课内体系->知识点->数->有理数->正数和负数->正数、负数定义", "课内体系->知识点->数->有理数->有理数基础运算->有理数减法->确定几个数和或差的符号", "课内体系->能力->运算能力" ]
[ "方法一: 不妨设$$a\\textgreater b\\textgreater c$$, 则$$\\frac{a-b}{b-c}\\textgreater0$$,$$\\frac{b-c}{c-a}\\textless{}0$$,$$\\frac{c-a}{a-b}\\textless{}0$$, 所以有$$2$$个负数. 方法二: 取$$a=0$$,$$b=1$$,$$c=-2$$, 则$$\\frac{a-b}{b-c}=\\frac{-1}{3}=-\\frac{1}{3}$$,$$\\frac{b-c}{c-a}=\\frac{3}{-2}=-\\frac{3}{2}$$,$$\\frac{c-a}{a-b}=\\frac{-2}{-1}=2$$, 所以有$$2$$个负数. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
272
2fb443408f034fcb9719bcb21a76c923
[ "2019~2020学年3月广东深圳福田区深圳明德实验学校初三下学期月考第3题", "2018~2019学年5月广东深圳罗湖区深圳中学初中部初一上学期周测A卷竞赛班初一第23次第1题3分", "2019~2020学年4月四川成都金牛区成都七中万达学校初三下学期周测B卷第3题3分", "2020年广东中山市南朗镇中山纪念中学初三中考一模第3题3分", "2019年四川成都邛崃市初三中考二模第4题3分", "2019年四川成都青羊区初三中考二模第4题3分" ]
0
single_choice
港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,全长$$55$$千米,设计时速$$100$$千米/小时,工程项目总投资额$$1269$$亿元,用科学记数法表示$$1269$$亿元为.
[ [ { "aoVal": "A", "content": "$$1269\\times {{10}^{8}}$$ " } ], [ { "aoVal": "B", "content": "$$1.269\\times {{10}^{8}}$$ " } ], [ { "aoVal": "C", "content": "$$1.269\\times {{10}^{10}}$$ " } ], [ { "aoVal": "D", "content": "$$1.269\\times {{10}^{11}}$$ " } ] ]
[ "课内体系->知识点->数->有理数->科学记数法->科学记数法:表示较大的数" ]
[ "$$1269$$亿元$$=1269 000 00=1.269\\times {{10}^{11}}$$,故选$$\\text{D}$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1343
dbd6d50d7327435cb9d06170422bcbea
[ "2015年第32届全国全国初中数学联赛竞赛A卷第5题7分" ]
1
single_choice
已知实数$$x$$,$$y$$满足关系式$$xy-x-y=1$$,则$${{x}^{2}}+{{y}^{2}}$$的最小值为(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$3-2\\sqrt{2}$$ " } ], [ { "aoVal": "B", "content": "$$6-4\\sqrt{2}$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$6+4\\sqrt{2}$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程->解一元二次方程->换元法求一元二次方程的根", "课内体系->方法->配方法" ]
[ "设$$x+y=t$$, 则$$xy=x+y+1=t+1$$, ∴$$x$$,$$y$$是关于$$m$$的一元二次方程$${{m}^{2}}-tm+t+1=0$$的两个实数根, ∴$$\\Delta ={{t}^{2}}-4(t+1)\\geqslant 0$$, 解得$$t\\geqslant 2+2\\sqrt{2}$$或$$t\\leqslant 2-2\\sqrt{2}$$. ∵$${{x}^{2}}+{{y}^{2}}={{(x+y)}^{2}}-2xy={{t}^{2}}-2(t+1)={{(t-1)}^{2}}-3$$, ∴当$$t=2-2\\sqrt{2}$$(即$$x=y=1-\\sqrt{2}$$)时,$${{x}^{2}}+{{y}^{2}}$$取得最小值,最小值为$$6-4\\sqrt{2}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1071
ff8080814d7978b9014d897647403530
[ "2000年第11届希望杯初二竞赛第2试第7题", "初一其它" ]
3
single_choice
三元方程$$x+y+z=1999$$的非负整数解的个数有(~ ~ ).
[ [ { "aoVal": "A", "content": "$$20001999$$个 " } ], [ { "aoVal": "B", "content": "$$19992000$$个 " } ], [ { "aoVal": "C", "content": "$$2001000$$个 " } ], [ { "aoVal": "D", "content": "$$2001999$$ " } ] ]
[ "课内体系->知识点->方程与不等式->其他方程->三元一次方程组->三元一次方程组的定义", "课内体系->知识点->方程与不等式->其他方程->三元一次方程组->解三元一次方程组" ]
[ "当$$x=0$$时,$$y+z=1999$$,$$y$$分别取$$0$$,$$1$$,$$2$$,\\ldots,$$1999$$时,$$z$$取$$1999$$,$$1998$$,\\ldots,$$0$$,有$$2000$$个整数解; 当$$x=1$$时,$$y+z=1998$$,有$$1999$$个整数解, 当$$x=2$$时,$$y+z=1997$$,有$$1998$$个整数解; \\ldots 当$$x=1999$$时,$$y+z=1$$,只有$$1$$组整数解.故非负整数解共有$$2000+1999+1998+\\cdot \\cdot \\cdot +3+2+1=2001000$$(个). " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1114
ff8080814d9efd56014daa7506d80a99
[ "1993年第4届全国希望杯初一竞赛初赛第6题" ]
1
single_choice
甲的$$6$$张卡片上分别写有$$-4$$,$$-1$$,$$-2.5$$,$$-0.01$$,$$-3\frac{3}{4}$$,$$-15$$,乙的$$6$$张卡片上分别写有$$-5$$,$$-1$$,$$0.1$$,$$-0.001$$,$$-8$$,$$-12\frac{1}{2}$$,则乙的卡片上的最小数$$a$$与甲的卡片上的最大数$$b$$的比$$\frac{a}{b}$$的值等于(~ ).
[ [ { "aoVal": "A", "content": "$$1250$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$0.1$$ " } ], [ { "aoVal": "D", "content": "$$800$$ " } ] ]
[ "课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性", "课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数除法运算" ]
[ "观察知,乙的卡片上的最小数$$a=-12\\frac{1}{2}$$,甲的卡片上的最大数$$b=-0.01$$. 所以$$\\frac{a}{b}=\\frac{-12\\frac{1}{2}}{-0.01}=1250$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1475
b41001ece7a64317bd596b681aa39fae
[ "2013年四川成都成华区成都石室中学初中学校初三自主招生第4题5分", "2011年竞赛第3题4分" ]
2
single_choice
已知$$\angle A$$,$$\angle B$$是两个锐角,且满足$${{\sin }^{2}}A+{{\cos }^{2}}B=\frac{5}{4}t$$,$${{\cos }^{2}}A+{{\sin }^{2}}B=\frac{3}{4}{{t}^{2}}$$,则实数$$t$$所有可能的值的和为.
[ [ { "aoVal": "A", "content": "$$-\\frac{8}{3}$$ " } ], [ { "aoVal": "B", "content": "$$-\\frac{5}{3}$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{11}{3}$$ " } ] ]
[ "课内体系->知识点->三角形->锐角三角函数及解直角三角形->解直角三角形", "课内体系->知识点->方程与不等式->一元二次方程->一元二次方程的基础->一元二次方程的根", "课内体系->知识点->方程与不等式->一元二次方程->解一元二次方程->因式分解法求一元二次方程的根", "课内体系->能力->推理论证能力", "课内体系->思想->方程思想" ]
[ "根据已知得:$${{\\sin }^{2}}A+{{\\cos }^{2}}B+{{\\cos }^{2}}A+{{\\sin }^{2}}B=\\frac{3}{4}{{t}^{2}}+\\frac{5}{4}t$$,即$$2=\\frac{3}{4}{{t}^{2}}+\\frac{5}{4}t$$, ∴$$3{{t}^{2}}+5t-8=0$$,解得$${{t}_{1}}=1$$,$${{t}_{2}}=-\\frac{8}{3}$$,又∵$${{\\sin }^{2}}A+{{\\cos }^{2}}B=\\frac{5}{4}t\\textgreater0$$,即$$t\\textgreater0$$, ∴$$t=1$$, 故$$t$$所有可能的值的和为$$1$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
89
7da23e42a2694446a2809d2150664564
[ "2009年第14届华杯赛初一竞赛初赛第9题" ]
2
single_choice
已知关于$$x$$,$$y$$的方程组$$\begin{cases}2x+3y=-5 3x+7y=m \end{cases}$$,当$$-20 ~\textless{} ~m ~\textless{} ~-10$$时有整数解,则$${{x}^{2}}+xy+{{y}^{2}}$$的值等于~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "竞赛->知识点->方程与不等式->一次方程->方程组", "课内体系->知识点->式->因式分解->十字相乘法->二次项系数为±1的十字相乘" ]
[ "解方程组$$\\begin{cases}2x+3y=-5 3x+7y=m \\end{cases}$$,解得:$$\\begin{cases}x=-\\dfrac{3m+35}{5} y=\\dfrac{2m+15}{5} \\end{cases}$$, 当$$-20\\textless{}m\\textless{}-10$$时有整数解, 即$$x$$,$$y$$的值都是整数,则只有当$$m=-15$$时,$$x$$、$$y$$的值是整数, 当$$m=-15$$时,$$x=2$$,$$y=-3$$, 则$${{x}^{2}}+xy+{{y}^{2}}={{2}^{2}}+2\\times (-3)+{{(-3)}^{2}}=7$$. 故答案为:$$7$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
366
34dd04c5b03a48d1a5573349480dd283
[ "2009年第20届希望杯初二竞赛第2试第6题4分" ]
2
single_choice
已知多项式$${{p}_{1}}\left( x \right)=2{{x}^{2}}-5x+1$$和$${{p}_{2}}\left( x \right)=3x-4$$,则$${{p}_{1}}\left( x \right)\times {{p}_{2}}\left( x \right)$$的最简结果为.
[ [ { "aoVal": "A", "content": "$$6{{x}^{3}}-23{{x}^{2}}+23x-4$$ " } ], [ { "aoVal": "B", "content": "$$6{{x}^{3}}+23{{x}^{2}}-23x-4$$ " } ], [ { "aoVal": "C", "content": "$$6{{x}^{3}}-23{{x}^{2}}-23x+4$$ " } ], [ { "aoVal": "D", "content": "$$6{{x}^{3}}+23{{x}^{2}}+23x+4$$ " } ] ]
[ "竞赛->知识点->数与式->整式->整式的乘除运算" ]
[ "$${{p}_{1}}\\left( x \\right)\\times {{p}_{2}}\\left( x \\right)=\\left( 2{{x}^{2}}-5x+1 \\right)\\left( 3x-4 \\right)$$ $$=6{{x}^{3}}-23{{x}^{2}}+23x-4$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
8
0dee35eb4e4e43f5b283e594ab96a594
[ "2019~2020学年9月江苏无锡梁溪区东林中学初一上学期月考第8题3分", "1996年第7届全国希望杯初一竞赛初赛第6题" ]
2
single_choice
如果$$x\textless-2$$,那么化简$$\left\textbar{} 1-\left\textbar{} 1+x \right\textbar{} \right\textbar$$的结果为. If $$x\textless-2$$, the result of simplifying $$\left\textbar{} 1-\left\textbar{} 1+x \right\textbar{} \right\textbar$$ is .
[ [ { "aoVal": "A", "content": "$$-2-x$$ " } ], [ { "aoVal": "B", "content": "$$2+x$$ " } ], [ { "aoVal": "C", "content": "$$x$$ " } ], [ { "aoVal": "D", "content": "$$-x$$ " } ] ]
[ "课内体系->知识点->数->有理数->绝对值->已知范围化简绝对值", "课内体系->能力->运算能力" ]
[ "∵$$x\\textless{}-2$$, ∴$$1+x\\textless{}0$$, ∴$$\\textbar1+x\\textbar=-x-1$$, ∴$$\\textbar1-\\textbar1+x\\textbar\\textbar=\\textbar1-(-x-1)\\textbar$$ $$=\\textbar2+x\\textbar$$ $$=-2-x$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
263
38c6675b8e324f4bbae15b43a0b3d036
[ "2002年第13届希望杯初二竞赛第2试第10题" ]
1
single_choice
一个长方体的棱长都是正整数,体积是$$2002$$,若对应棱长相等的长方体算作同一种长方体,那么这样的长方体.
[ [ { "aoVal": "A", "content": "有$$6$$种 " } ], [ { "aoVal": "B", "content": "有$$12$$种 " } ], [ { "aoVal": "C", "content": "有$$14$$种 " } ], [ { "aoVal": "D", "content": "多于$$16$$种 " } ] ]
[ "课内体系->知识点->几何图形初步->几何图形->立体图形与平面图形->点线面体", "课内体系->能力->运算能力", "竞赛->知识点->数论->整除->因数与倍数" ]
[ "不失一般性,可设长方体在同一顶点处的三条棱长分别为$$a\\leqslant b\\leqslant c$$, 又$$2002=1\\times 2\\times 7\\times 11\\times 13$$. ①$$a=b=1$$时,$$c=2002$$,这样的长方体只有$$1$$种; ②当$$a=1$$,$$b$$是质数$$2$$,$$7$$,$$11$$,$$13$$中的一个时,这样的长方体共有$$4$$种; ③当$$a=1$$,$$b$$是$$2$$,$$7$$,$$11$$,$$13$$中的两个数的乘积时,则有$$b=2\\times 7$$,$$b=2\\times 11$$,$$b=2\\times 13$$共$$3$$种可能(b不能是$$7\\times 11$$或$$7\\times 13$$或$$11\\times 13$$); ④当$$a=2$$时,$$b$$是$$7$$,$$11$$,$$13$$中的一个时,这样的长方体有$$3$$种; ⑤当$$a=7$$时,$$b$$是$$11$$或$$13$$中的一个时,这样的长方体有$$2$$种; ⑥当$$a=11$$时,$$b$$只能取$$13$$,这样的长方体只有$$1$$种. 综上所述,符合条件的长方体有$$14$$种. 故选$$\\text{C}$$. " ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
306
3d8dd65473a6490d90d7c509f7315610
[ "2017年安徽芜湖镜湖区芜湖市第一中学初三自主招生第6题6分", "2004年竞赛第1题6分" ]
2
single_choice
已知实数$$a\ne b$$,且满足$${{\left( a+1 \right)}^{2}}=3-3\left( a+1 \right)$$,$$3\left( b+1 \right)=3-{{\left( b+1 \right)}^{2}}$$,则$$b\sqrt{\frac{b}{a}}+a\sqrt{\frac{a}{b}}$$的值为(~ ).
[ [ { "aoVal": "A", "content": "$$23$$ " } ], [ { "aoVal": "B", "content": "$$-23$$ " } ], [ { "aoVal": "C", "content": "$$-2$$ " } ], [ { "aoVal": "D", "content": "$$-13$$ " } ] ]
[ "课内体系->知识点->方程与不等式->一元二次方程->根与系数的关系->一元二次方程根与系数的关系", "课内体系->知识点->方程与不等式->一元二次方程->一元二次方程的基础->一元二次方程的根" ]
[ "容易知道$$a,b$$是方程$${{\\left( x+1 \\right)}^{2}}=3-3\\left( x+1 \\right)$$的两个根, 整理得$${{x}^{2}}+5x+1=0$$, 于是有$$a+b=-5,ab=1$$,于是$$a\\textless{}0,b\\textless{}0$$, $$b\\sqrt{\\frac{b}{a}}+a\\sqrt{\\frac{a}{b}}$$, $$=b\\sqrt{\\frac{{{b}^{2}}}{ab}}+a\\sqrt{\\frac{{{a}^{2}}}{ab}}$$, $$=\\frac{b\\left\\textbar{} b \\right\\textbar+a\\left\\textbar{} a \\right\\textbar}{\\sqrt{ab}}$$, $$=-\\frac{\\left( {{a}^{2}}+{{b}^{2}} \\right)}{\\sqrt{ab}}$$, $$=-\\frac{{{\\left( a+b \\right)}^{2}}-2ab}{\\sqrt{ab}}$$, $$=-23$$, 故答案为$$\\text{B}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1523
cf81a689f0e6482b96bc6b8fa4f506e9
[ "2007年竞赛第1题6分", "2017~2018学年江苏无锡滨湖区无锡外国语学校初一下学期期中第10题3分" ]
2
single_choice
\textbf{【七年级新思维$$-93$$页$$-18$$题】} 方程组$$\begin{cases}\left\textbar{} x \right\textbar+y=12 x+\left\textbar{} y \right\textbar=6 \end{cases}$$的解的个数为.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "知识标签->知识点->方程与不等式->二元一次方程(组)->二元一次方程组->二元一次方程组的解", "知识标签->知识点->方程与不等式->二元一次方程(组)->二元一次方程组->加减消元法解二元一次方程组", "知识标签->题型->方程与不等式->二元一次方程(组)->解二元一次方程组->题型:解含绝对值的方程组", "知识标签->数学思想->分类讨论思想", "知识标签->学习能力->运算能力" ]
[ "①当$$x\\textgreater0$$,$$y\\textgreater0$$时,原方程组为$$\\begin{cases}x+y=12 x+y=6 \\end{cases}$$显然无解; ②当$$x ~\\textless{} ~0$$,$$y\\textgreater0$$时,原方程组为$$\\begin{cases}-x+y=12 x+y=6 \\end{cases}$$,解得$$\\begin{cases}x=-3 y=9 \\end{cases}$$; ③当$$x\\textgreater0$$,$$y ~\\textless{} ~0$$时,原方程组为$$\\begin{cases}x+y=12 x-y=6 \\end{cases}$$,解得$$\\begin{cases}x=9 y=3 \\end{cases}$$,舍去; ④当$$x ~\\textless{} ~0$$,$$y ~\\textless{} ~0$$时,原方程组为$$\\begin{cases}-x+y=12 x-y=6 \\end{cases}$$显然无解; 综上,只有$$1$$组解.故选$$\\text{A}$$. 若$$x\\geqslant 0$$,则$$\\begin{cases}x+y=12 x+\\left\\textbar{} y \\right\\textbar=6 \\end{cases}$$,于是$$\\left\\textbar{} y \\right\\textbar-y=-6$$,显然不可能. 若$$x ~\\textless{} ~0$$,则$$\\begin{cases}-x+y=12 x+\\left\\textbar{} y \\right\\textbar=6 \\end{cases}$$, 于是$$\\left\\textbar{} y \\right\\textbar+y=18$$,解得$$y=9$$,进而求得$$x=-3$$. 所以,原方程组的解为$$\\begin{cases}x=-3 y=9 \\end{cases}$$,只有$$1$$个解. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
40
030080857e2e4df6a00941b9bc290295
[ "2014年第31届全国全国初中数学联赛竞赛第5题7分" ]
2
single_choice
设$$[t]$$表示不超过实数$$t$$的最大整数,令$$ {t }=t-[t]$$.已知实数$$x$$满足$${{x}^{3}}+\frac{1}{{{x}^{3}}}=18$$,则$$ {x }+\left { \frac{1}{x} \right }=$$(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$3-\\sqrt{5}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}(3-\\sqrt{5})$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算", "课内体系->知识点->式->整式的乘除->乘法公式->和与差的立方公式", "课内体系->能力->运算能力" ]
[ "设$$x+\\frac{1}{x}=a$$, 则$${{x}^{3}}+\\frac{1}{{{x}^{3}}}=\\left( x+\\frac{1}{x} \\right)\\left( {{x}^{2}}+\\frac{1}{{{x}^{2}}}-1 \\right)=\\left( x+\\frac{1}{x} \\right)\\left[ {{\\left( x+\\frac{1}{x} \\right)}^{2}}-3 \\right]=a({{a}^{2}}-3)$$, 所以$$a({{a}^{2}}-3)=18$$, 因式分解得$$(a-3)({{a}^{2}}+3a+6)=0$$, 所以$$a=3$$. 由$$x+\\frac{1}{x}=3$$解得$$x=\\frac{1}{2}(3\\pm \\sqrt{5})$$, 显然$$0\\textless{} {x }\\textless{}1$$,$$0\\textless{}\\left { \\frac{1}{x} \\right }\\textless{}1$$, 所以$$ {x }+\\left { \\frac{1}{x} \\right }=1$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
863
acef7efed8d64a63a6d96aa88bb2f162
[ "2015年第32届全国全国初中数学联赛竞赛A卷第1题7分" ]
2
single_choice
设实数$$a$$,$$b$$,$$c$$满足:$$a+b+c=3$$,$${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=4$$,则$$\frac{{{a}^{2}}+{{b}^{2}}}{2-c}+\frac{{{b}^{2}}+{{c}^{2}}}{2-a}+\frac{{{c}^{2}}+{{a}^{2}}}{2-b}=$$.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "课内体系->能力->运算能力", "课内体系->知识点->式->整式的乘除->乘法公式->平方差公式的计算", "课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算" ]
[ "∵$$a+b+c=3$$,$${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=4$$, ∴$$\\frac{{{a}^{2}}+{{b}^{2}}}{2-c}+\\frac{{{b}^{2}}+{{c}^{2}}}{2-a}+\\frac{{{c}^{2}}+{{a}^{2}}}{2-b}$$ $$=\\frac{4-{{c}^{2}}}{2-c}+\\frac{4-{{a}^{2}}}{2-a}+\\frac{4-{{b}^{2}}}{2-b}$$ $$=2+c+2+a+2+b$$ $$=a+b+c+6$$ $$=3+6$$ $$=9$$. " ]
D
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
292
4b360dedf10548b78e64b953189f862e
[ "2012年第23届全国希望杯初一竞赛复赛第9题4分" ]
2
single_choice
身高两两不同的$$30$$个学生向老师站成一排.其中恰有$$11$$个学生高于自己左侧相邻的同学.那么高于自己右侧相邻学生的学生有(~ )人.
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "竞赛->知识点->组合->容斥原理", "课内体系->知识点->数->有理数->有理数比较大小" ]
[ "$$30$$个学生,从左向右数有$$29$$个相邻组$$({{a}_{i}},{{a}_{i+1}})$$,$$i=1$$,$$2$$,$$\\cdots $$,$$29$$. 因为已知$${{a}_{i}}\\textless{}{{a}_{i+1}}$$的有$$11$$对, 所以$${{a}_{i}}\\textgreater{{a}_{i+1}}$$的有$$29-11=18$$(对). ", "<p>$$30$$人有$$29$$对相邻的同学</p>\n<p>其中有$$11$$对右侧高</p>\n<p>则有$$18$$对左侧高</p>" ]
C
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1337
8aac50a7511483070151193811840fad
[ "2015年第26届全国希望杯初三竞赛初赛(特)第9题" ]
2
single_choice
已知函数$$y=\frac{3x+m}{1-2x}$$,当$$x\textless{}\frac{1}{2}$$时,$$y$$随$$x$$的增大而减小,则实数$$m$$的取值范围是(~ ).
[ [ { "aoVal": "A", "content": "$$-\\frac{3}{2}\\textless{}m\\textless{}0$$ " } ], [ { "aoVal": "B", "content": "$$m\\textless{}-\\frac{3}{2}$$ " } ], [ { "aoVal": "C", "content": "$$m\\textgreater0$$ " } ], [ { "aoVal": "D", "content": "$$m\\textless{}-\\frac{3}{2}$$或$$m\\textgreater0$$ " } ] ]
[ "课内体系->知识点->函数->函数概念和图象->函数的相关概念->探究函数性质" ]
[ "令$${{x}_{2}}\\textless{}{{x}_{1}}\\textless{}\\frac{1}{2}$$, 当$$x={{x}_{1}}$$时,$$y=\\frac{3{{x}_{1}}+m}{1-2{{x}_{1}}}$$, 当$$x={{x}_{2}}$$时,$$y=\\frac{3{{x}_{2}}+m}{1-2{{x}_{2}}}$$, ∴$$\\frac{3{{x}_{1}}+m}{1-2{{x}_{1}}}-\\frac{3{{x}_{2}}+m}{1-2{{x}_{2}}}=\\frac{(3{{x}_{1}}+m)(1-2{{x}_{2}})-(1-2{{x}_{1}})(3{{x}_{2}}+m)}{(1-2{{x}_{2}})(1-2{{x}_{1}})}=\\frac{(3+2m)({{x}_{1}}-{{x}_{2}})}{(1-2{{x}_{2}})(1-2{{x}_{1}})}$$, ∵$$y$$随$$x$$的增大而减小, ∴$$\\frac{3{{x}_{1}}+m}{1-2{{x}_{1}}}-\\frac{3{{x}_{2}}+m}{1-2{{x}_{2}}}\\textless{}0$$, 即$$\\frac{(3+2m)({{x}_{1}}-{{x}_{2}})}{(1-2{{x}_{2}})(1-2{{x}_{1}})}\\textless{}0$$, 解得$$m\\textless{}-\\frac{3}{2}$$. " ]
B
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
1586
e2c2a61c4e9c481cbd73799778d30a86
[ "1990年第1届希望杯初二竞赛第3题" ]
1
single_choice
当$$x=1$$时,$${{a}_{0}}{{x}^{10}}-{{a}_{1}}{{x}^{9}}+{{a}_{0}}{{x}^{8}}-{{a}_{1}}{{x}^{7}}-{{a}_{1}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}-{{a}_{0}}{{x}^{4}}+{{a}_{1}}{{x}^{3}}-{{a}_{0}}{{x}^{2}}+{{a}_{1}}x$$的值是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$${{a}_{0}}$$ " } ], [ { "aoVal": "C", "content": "$${{a}_{1}}$$ " } ], [ { "aoVal": "D", "content": "$${{a}_{0}}-{{a}_{1}}$$ " } ] ]
[ "竞赛->知识点->数与式->整式->整式的乘除运算" ]
[ "以$$x=1$$代入,得 $${{a}_{0}}-{{a}_{1}}+{{a}_{0}}-{{a}_{1}}-{{a}_{1}}+{{a}_{1}}-{{a}_{0}}+{{a}_{1}}-{{a}_{0}}+{{a}_{1}}$$ $$=2{{a}_{0}}-3{{a}_{1}}+3{{a}_{1}}-2{{a}_{0}}$$ $$=0$$. 故选$$\\text{A}$$. " ]
A
mid_math_competition_ch_single_choice_1.5K_dev
2023-07-07T00:00:00
660
9e6b3fbf2e5044aaa014e9e0936fa159
[ "2008年第19届希望杯初二竞赛第2试第3题" ]
1
single_choice
在平面直角坐标系内,有等腰三角形$$AOB$$,$$O$$是坐标原点,点$$A$$的坐标是$$(a,b)$$,底边$$AB$$的中线在第一、三象限的角平分线上,则点$$B$$的坐标是.
[ [ { "aoVal": "A", "content": "$$(b,a)$$ " } ], [ { "aoVal": "B", "content": "$$(-a,-b)$$ " } ], [ { "aoVal": "C", "content": "$$(a,-b)$$ " } ], [ { "aoVal": "D", "content": "$$(-a,b)$$ " } ] ]
[ "竞赛->知识点->几何变换->对称" ]
[ "因为$$\\triangle OAB$$是等腰三角形,$$O$$为顶点, 所以$$OA=OB$$,又$$AB$$为底边, 所以$$AB$$垂直于中线,即垂直于直线$$y=x$$, 不防设$$a=2$$,$$b=1$$,画图可知$$A(2,1)$$关于$$y=x$$的对称点为$$(1,2)$$. 点$$A(a,b)$$关于$$y=x$$的对称点为$$(b,a)$$, 故选$$\\text{A}$$. " ]
A