dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3046
c5e73133b52248e9873f4d90ce814487
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第2题3分" ]
1
single_choice
两数相减,减数增加$$7$$,要使差增加$$7$$,被减数应该.
[ [ { "aoVal": "A", "content": "减少$$14$$ " } ], [ { "aoVal": "B", "content": "减少$$3$$ " } ], [ { "aoVal": "C", "content": "增加$$3$$ " } ], [ { "aoVal": "D", "content": "增加$$14$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "两数相减,当减数增加$$7$$,被减数不变则差减少了$$7$$. 又因为要使得差增加$$7$$, 所以被减数应增加:$$7+7=14$$, 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2764
4e4ba2ebd91643c280c44c266409c628
[ "2020年亚洲国际数学奥林匹克公开赛(AIMO)二年级竞赛决赛第23题8分" ]
1
single_choice
计算:$$199\times 11-199\times 2-199\times 8-199$$
[ [ { "aoVal": "A", "content": "$$198$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$1990$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "原式$$\\begin{eqnarray}\\&=\\&199\\times \\left( 11-2-8-1 \\right)\\end{eqnarray}$$ $$\\begin{eqnarray} \\&=\\&199\\times 0 \\&=\\&0\\end{eqnarray}$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2941
e4aca3d96db445b19ace1db06883ba9a
[ "其它改编自2015年全国希望杯六年级竞赛初赛第1题" ]
1
single_choice
计算:$$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=$$.
[ [ { "aoVal": "A", "content": "$$\\frac{31}{32}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{15}{16}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{7}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{4}$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "原式$$=\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{8}+\\frac{1}{16}+\\left( \\frac{1}{32}+\\frac{1}{32} \\right)-\\frac{1}{32}$$$$=1-\\frac{1}{32}=\\frac{31}{32}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2099
fe0516ed3bbc486da970edf15976a0ea
[ "2004年六年级竞赛创新杯", "2004年第2届创新杯六年级竞赛复赛第9题" ]
2
single_choice
Ⅰ号混合液由柠檬汁、油、和醋以$$1:2:3$$的比例配成,Ⅱ号混合液由同样这三种液体以$$3:4:5$$的比例配成,将两种混合液倒在一起后,可以调成下面哪一种比例的混合液( )
[ [ { "aoVal": "A", "content": "$$2:5:8$$ " } ], [ { "aoVal": "B", "content": "$$4:5:6$$ " } ], [ { "aoVal": "C", "content": "$$3:5:7$$ " } ], [ { "aoVal": "D", "content": "$$5:6:7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->浓度问题->浓度基本题型" ]
[ "设取Ⅰ号溶液$$6x$$升,那么一号溶液中有柠檬汁$$x$$升,油$$2x$$升,醋$$3x$$升.同样设取Ⅱ号溶液$$12y$$升,那么Ⅱ号溶液中有柠檬汁$$3y$$升,油$$4y$$升,醋$$5y$$升。现在可以用排除法对四个选项进行分析,为了便于描述,现设混合后三种液体的比为$$a:b:c$$.。 我们先观察选项$$A$$,由$$2(x+3y)=2x+6y\\textgreater2x+4y$$得$$2a\\textgreater b$$,而选项$$A$$中的$$2\\times 2 \\textless{} 5$$,所以选项$$A$$不能被调出; 再来观察选项$$B$$,$$(2x+4y)-(x+3y)=x+y$$,由$$4(x+y)=4x+4y\\textgreater2x+4y$$得$$4(b-a)\\textgreater b$$即$$3b\\textgreater4a$$,而选项$$B$$中的$$3\\times 5 \\textless{} 4\\times 4$$,所以选项$$B$$不能被调出;同理选项$$D$$中的$$3\\times 6 \\textless{} 4\\times 5$$,选项$$D$$也不能被调出; 那么能被调出的只有选项$$C$$。实际上,当$$x=3$$,$$y=1$$时,混合后三种液体的比正好为$$3:5:7$$,选$$C$$.。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3236
2cc3b0eccf9944a291f35e1053fa09c9
[ "2018年河南郑州K6联赛竞赛初赛第23题3分" ]
1
single_choice
给一个正方体的六个面分别涂上红黄蓝三种颜色,任意抛$$50$$次,要想红色朝上次数最多,蓝色朝上次数最少,~\uline{~~~~~~~~~~}~面涂红色,~\uline{~~~~~~~~~~}~涂蓝色.
[ [ { "aoVal": "A", "content": "$$2,2$$ " } ], [ { "aoVal": "B", "content": "$$1,2$$ " } ], [ { "aoVal": "C", "content": "$$1,3$$ " } ], [ { "aoVal": "D", "content": "$$3,1$$ " } ] ]
[ "知识标签->拓展思维->计数模块->统计与概率->概率->基本概率->可能的情况" ]
[ "可能性;要想红色朝上次数最少,则$$1$$面涂红色,$$2$$面染黄色. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3360
a8a2f0bbd52c47dba3ca5ef6950bd071
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
春节时,妈妈买了$$3$$个完全一样的福袋,小悦想把$$10$$枚相同的一元硬币放到这三个福袋里,如果每个福袋里至少放$$1$$枚,不考虑福袋的先后顺序的话,共有( )种放法。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "解:枚举法,$$10$$能变成哪三个数相加,$$10=1+1+8=1+2+7=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4$$,共$$8$$种。 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3366
8558971e5b01433fa23aa13e7b5351c2
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛初赛(中国区)第5题5分" ]
2
single_choice
丽丽有$$1$$角、$$2$$角、$$5$$角的硬币各$$5$$枚,若她想购买$$1$$元钱的商品,可以有种付钱的方法(不找零).
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "$2$枚$$5$$角;$$1$$枚$$5$$角$$+2$$枚$$2$$角$$+1$$枚$$1$$角;$$1$$枚$$5$$角$$+1$$枚$$2$$角$$+3$$枚$$1$$角;$$1$$枚$$5$$角$$+5$$枚$$1$$角;$$5$$枚$$2$$角;$$4$$枚$$2$$角$$+2$$枚$$1$$角;$$3$$枚$$2$$角$$+4$$枚$$1$$角;一共是$$7$$种情况. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1406
5a11adfd06184a43a2bc71be03024302
[ "2005年第3届创新杯五年级竞赛初赛第2题" ]
1
single_choice
小华期末考试,数学、语文、英语三科的平均分是$$92$$分;语文、英语两科的平均分是$$90$$分;又英语比语文高$$3$$分,那么数学比语文高.
[ [ { "aoVal": "A", "content": "$$8$$分 " } ], [ { "aoVal": "B", "content": "$$7.5$$分 " } ], [ { "aoVal": "C", "content": "$$7$$分 " } ], [ { "aoVal": "D", "content": "$$6.5$$分 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "数学、语文、英语三科的总成绩是$$92\\times 3=276$$分, 语文、英语两科的总成绩是$$90\\times 2=180$$分, 那么数学的得分为$$276-180=96$$分, 又英语比语文高$$3$$分, 那么语文的成绩为$$\\left( 180-3 \\right)\\div 2=88.5$$分, 所以数学比语文高$$96-88.5=7.5$$分. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2050
fd425719f59a4299ba099b7c4a89e9c0
[ "2020年新希望杯二年级竞赛初赛(团战)第12题" ]
1
single_choice
$$10$$名同学参加$$50$$米赛跑.跑到一半的时候,小明后面有$$5$$人,前面有$$4$$人,之后,没有人超过他,而小明又超过了$$3$$人到达终点.这次比赛没有并列名次,那么小明是.
[ [ { "aoVal": "A", "content": "第一名 " } ], [ { "aoVal": "B", "content": "第二名 " } ], [ { "aoVal": "C", "content": "第三名 " } ], [ { "aoVal": "D", "content": "第四名 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "小明后面有$$5$$人,前面有$$4$$人,则他此时排在第$$5$$,之后,没有人超过他,小明又超过了$$3$$人后,他此时就是第二名. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
790
69090f65d312430ebeca201700ef0a1a
[ "2018年湖北武汉新希望杯六年级竞赛训练题(五)第4题" ]
2
single_choice
十进制数$$25$$转换成二进制数是.
[ [ { "aoVal": "A", "content": "$$11101$$ " } ], [ { "aoVal": "B", "content": "$$1011$$ " } ], [ { "aoVal": "C", "content": "$$10101$$ " } ], [ { "aoVal": "D", "content": "$$11001$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->进制的性质与应用->进制间的互化" ]
[ "短除法,倒取余数 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
316
7ff6a31104e34079a604024863698bf3
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第6题3分" ]
1
single_choice
小明早晨起床,要完成这几件事:起床穿衣$$3$$分钟,刷牙洗脸$$5$$分钟,在火炉上烧水煮面要$$10$$分钟,吃面要$$8$$分钟,整理房间$$5$$分钟,为了尽快做完这些事,最少用分钟.
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$19$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->同时进行问题" ]
[ "从题干可以知道,小明早晨起床,要完成这几件事:起床穿衣$$3$$分钟,刷牙洗脸$$5$$分钟,在火炉上烧水煮面要$$10$$分钟,吃面要$$8$$分钟,整理房间$$5$$分钟. 为了最优化时间,先起床穿衣,再在火炉上烧水煮面,煮面的过程中刷牙洗脸、整理房间;最后吃面; $$3+10+8=21$$(分钟); 即为了尽快做完这些事,最少用$$21$$分钟. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1780
856bfa8ec9f04646985f351a483d2745
[ "2013年第11届全国创新杯五年级竞赛第6题5分" ]
2
single_choice
下列各组数中,平均数较大的是.
[ [ { "aoVal": "A", "content": "$$1$$与$$101$$之间的$$2$$倍数 " } ], [ { "aoVal": "B", "content": "$$1$$与$$101$$之间的$$3$$倍数 " } ], [ { "aoVal": "C", "content": "$$1$$与$$101$$之间的$$4$$倍数 " } ], [ { "aoVal": "D", "content": "$$1$$与$$101$$之间的$$6$$倍数 " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "一个等差数串的平均数,是这个数串首项与末项的平均数,简化计算后易知$$1$$与$$101$$之间$$4$$的倍数的平均数最大,其值为$$(4+100)\\div 2=52$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1689
ace45189688d456ea776c9a523e41eac
[ "2018年第22届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第5题5分" ]
1
single_choice
一条毛毛虫由幼虫长成成虫,每天长大一倍,$$30$$天能长到$$20$$厘米.问长到$$5$$厘米时要用天.
[ [ { "aoVal": "A", "content": "$$28$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$26$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "已知一条毛毛虫由幼虫长成成虫,每天长大一倍,$$30$$天能长到$$20$$厘米,可根据最后结果出发,逐步向前一步一步推理; 按从后往前推理可知最后一天长的是前一天的$$2$$倍,最后一天是$$20$$厘米,长到$$10$$厘米的时候是$$30$$天$$-1$$天; 根据以上分析可得$$29$$天时是$$10$$厘米,由此可推出长到$$5$$厘米时是几天,进而得出答案. $$30-1-1=28$$(天), 答:长到$$5$$厘米时要用$$28$$天. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
372
9b1b2510a8f2419db6dd8b96ea8838b9
[ "2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第9题3分" ]
1
single_choice
有一种水草每天长一倍,到第$$3$$天时长到$$32$$平方米,那么到第天时长到$$64$$平方米.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "每天长一倍,第$$3$$天是$$32$$平方米,那么第$$4$$天,就应该是$$32\\times 2=64$$平方米. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2460
cbdacae97fe2479eb7f65a3f010345b3
[ "2016年IMAS小学高年级竞赛第二轮检测试题第2题4分" ]
1
single_choice
课后测 正整数$$a$$、$$b$$、$$c$$、$$d$$满足$$\frac{1}{a-2013}=\frac{1}{b+2014}=\frac{1}{c-2015}=\frac{1}{d+2016}$$,请问下列哪一项关于$$a$$、$$b$$、$$c$$、$$d$$的大小顺序是正确的?
[ [ { "aoVal": "A", "content": "$$b\\textless{}d\\textless{}a\\textless{}c$$ " } ], [ { "aoVal": "B", "content": "$$d\\textless{}b\\textless{}a\\textless{}c$$ " } ], [ { "aoVal": "C", "content": "$$d\\textless{}a\\textless{}b\\textless{}c$$ " } ], [ { "aoVal": "D", "content": "$$d\\textless{}b\\textless{}c\\textless{}a$$ " } ], [ { "aoVal": "E", "content": "$$b\\textless{}d\\textless{}c\\textless{}a$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "因为$$\\frac{1}{a-2013}=\\frac{1}{b+2014}=\\frac{1}{c-2015}+\\frac{1}{d+2016}$$, 所以$$a-2013=b+2014=c-2015=d+2016$$, 所以$$d\\textless{}b\\textless{}a\\textless{}c$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
435
c96a8864997f4ec7a1a7ce0d3af8ee55
[ "2018年湖北武汉新希望杯五年级竞赛训练题(一)第6题" ]
2
single_choice
甲、乙、丙、丁四名白领同在一栋$$55$$层高的写字楼里办公,他们分别来自广西、湖南、四川和江苏.已知:①甲在的层数比丙在的层数高,但比丁在的层数低;②乙在的层数比四川人在的层数低;③广西人与四川人、江苏人相隔的层数一样;④广西人在的层数是湖南人和四川人在的层数的和.根据以上条件可知,甲是(~~~ ).
[ [ { "aoVal": "A", "content": "广西人 " } ], [ { "aoVal": "B", "content": "湖南人 " } ], [ { "aoVal": "C", "content": "四川人 " } ], [ { "aoVal": "D", "content": "江苏人 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "从层数看,丁\\textgreater 甲\\textgreater 丙\\textgreater 乙,江苏\\textgreater 广西\\textgreater 四川\\textgreater 湖南,所以甲是广西人. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
401
e912de3cd0ca400b9f51918bc8c658b5
[ "2012年第8届全国新希望杯小学高年级六年级竞赛复赛第3题4分" ]
2
single_choice
现有$$A$$、$$B$$、$$C$$、$$D$$四个钢珠,用天平两个两个称,共称了六次,其中最重的是$$B$$和$$C$$,最轻的是$$A$$和$$D$$,第二重的是$$A$$和$$B$$.这四个钢珠按重量从重到轻排列依次是(~ ).
[ [ { "aoVal": "A", "content": "$$B\\textgreater A\\textgreater C\\textgreater D$$ " } ], [ { "aoVal": "B", "content": "$$B\\textgreater C\\textgreater A\\textgreater D$$ " } ], [ { "aoVal": "C", "content": "$$C\\textgreater B\\textgreater A\\textgreater D$$ " } ], [ { "aoVal": "D", "content": "$$A\\textgreater B\\textgreater D\\textgreater C$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意有$$B$$和$$C$$最重,第二重的是$$A$$和$$B$$,因此$$B\\textgreater C\\textgreater A\\textgreater D$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2201
3149b168d5ff4aba8e7bf69022f4f536
[ "2017年全国亚太杯五年级竞赛初赛第24题" ]
2
single_choice
甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动.当乙走了$$250$$米以后,他们第一次相遇.在甲走完一周前$$80$$米处又第二次相遇.此圆形场地的周长为~\uline{~~~~~~~~~~}~米.
[ [ { "aoVal": "A", "content": "$$1440$$ " } ], [ { "aoVal": "B", "content": "$$1340$$ " } ], [ { "aoVal": "C", "content": "$$1250$$ " } ], [ { "aoVal": "D", "content": "$$1025$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "第一次相遇甲和乙共走了半圈,此时乙走了$$250$$ 米. 而第二次相遇,甲和乙一共走了$$3$$个半圈,所以此时乙走了$$250\\times 3=750$$米. 因为第二次相遇在甲走完一周前$$80$$米处,所以半圈的路线长为$$750-80=670$$米. 所以此圆形场地的周长为$$670\\times 2=1340$$米. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2279
8ddba7c40f634002909ac622fc93d032
[ "2017年河南郑州豫才杯六年级竞赛初赛第5题" ]
1
single_choice
2. 同学甲、同学乙两人在游乐场的直行道上进行$$200$$米赛跑,当同学甲跑到终点时.同学乙还差$$40$$米,现在两人重新跑,而且速度和原来一样,要使两人同时到达终点,那么同学甲的起跑线应往后退米.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$55$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "比例解行程;相等的时间内,甲跑了$$200$$米时,乙跑了$$160$$米,甲乙的速度比是$$200:160=5:4$$,要使两人同时到达终点,乙跑了$$200$$米的时间内甲要跑$$200\\div 4\\times 5=250$$米,所以同学甲的起跑线应后退$$250-200=50$$米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2645
999837297178473a8343f3feb3d270eb
[ "2015年IMAS小学中年级竞赛第二轮检测试题第2题4分" ]
2
single_choice
若$$6\otimes 2=6+66=72$$且$$2\otimes 3=2+22+222=246$$,请问$$5\otimes 3$$的值为.
[ [ { "aoVal": "A", "content": "$$3735$$ " } ], [ { "aoVal": "B", "content": "$$605$$ " } ], [ { "aoVal": "C", "content": "$$615$$ " } ], [ { "aoVal": "D", "content": "$$625$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "由题意,发现规律$$a\\otimes b=a+aa+aaa+\\cdots +\\underbrace{aa\\cdots a}_{b}$$,则$$5\\otimes 3=5+55+555=615$$,故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
851
7c4b93cfaaa74b3abd4acde315663beb
[ "2018年美国数学大联盟杯五年级竞赛初赛第13题5分" ]
0
single_choice
下列哪个选项是$$2$$个连续整数的和?
[ [ { "aoVal": "A", "content": "$$111111$$ " } ], [ { "aoVal": "B", "content": "$$222222$$ " } ], [ { "aoVal": "C", "content": "$$444444$$ " } ], [ { "aoVal": "D", "content": "$$888888$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "在两个连续整数中,其中一个是双数,一个是单数.一个双数和一个单数的和一定是一个单数,所以两个连续整数的和也定是单数. 在$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$、$$\\text{D}$$,$$4$$个选项中,只有$$\\text{A}$$是单数,其余$$3$$个都是双数. 故答案选:$$\\text{A}$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
570
7d999547509d43aa9869b56a3adf782e
[ "2017年第4届广东深圳鹏程杯小学高年级竞赛第3题6分" ]
2
single_choice
若$$69$$、$$90$$和$$125$$被大于$$1$$的整数$$m$$除的余数都相同,那么$$m$$是多少?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "知识标签->课内知识点->数与运算->除法->整数除法->带余除法" ]
[ "根据余数的可减性,这个数可以同时整除$$90-69=21$$和$$125-90=35$$,所以这个数能整除$$(21,35)=7$$,即这个数是$$7$$的因数,而$$7$$的因数有$$1$$和$$7$$,又因为这个数大于$$1$$,所以经检验,这个整数$$m$$为$$7$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1023
45d6182ee5874ae4962a53b251e7c38a
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第8题5分" ]
0
single_choice
【破1】鸡兔同笼,共有$$4$$个头,$$12$$条腿,有只兔.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "枚举法: 当有$$1$$只兔,$$3$$只鸡时,共$$1\\times4+3\\times2=10$$(条)腿. 当有$$2$$只兔,$$2$$只鸡时,共$$2\\times4+2\\times2=12$$(条)腿. 所以有$$2$$只兔. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
677
2c9a5f667c9d45bf9175356afa9e8237
[ "2016年全国美国数学大联盟杯小学高年级六年级竞赛初赛" ]
2
single_choice
做家务是郝美女老师的兴趣.她每$$8$$天进行一次大扫除,每$$11$$天洗一次衣服.如果星期天她做了两件家务,那么下一次她做两件家务会是哪一天?
[ [ { "aoVal": "A", "content": "星期三 " } ], [ { "aoVal": "B", "content": "星期四 " } ], [ { "aoVal": "C", "content": "星期五 " } ], [ { "aoVal": "D", "content": "星期六 " } ] ]
[ "知识标签->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "$$8\\times 11=88$$,$$88$$除以$$7$$余$$4$$,所以正好是周四. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1679
5c202dc90ca6494a9f5f67bc79ab7354
[ "2009年第7届创新杯六年级竞赛初赛第3题4分" ]
1
single_choice
$$P$$和$$Q$$共做一事$$2$$天可完成,$$Q$$和$$R$$共做此事$$4$$天可完成,$$P$$和$$R$$共做此事$$2.4$$天可完成,$$P$$一人做完此事完成的天数是( )天.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$P$$和$$Q$$一天可以完成$$\\frac{1}{2}$$,$$Q$$和$$R$$一天可以完成$$\\frac{1}{4}$$,$$P$$和$$R$$一天可以完成$$\\frac{1}{2.4}=\\frac{5}{12}$$,则三人一天一共可以完成$$\\frac{1}{2}\\times \\left( \\frac{1}{2}+\\frac{1}{4}+\\frac{5}{12} \\right)=\\frac{7}{12}$$,$$P$$的工作效率为$$\\frac{7}{12}-\\frac{1}{4}=\\frac{1}{3}$$,因此$$P$$单独做需要$$3$$天完成. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
563
09fbcedfa00442f4824cdb5741b4486b
[ "2005年六年级竞赛创新杯", "2005年第3届创新杯六年级竞赛初赛第1题" ]
1
single_choice
任意两个质数之和( )。
[ [ { "aoVal": "A", "content": "一定是偶数 " } ], [ { "aoVal": "B", "content": "一定是质数 " } ], [ { "aoVal": "C", "content": "一定是合数 " } ], [ { "aoVal": "D", "content": "可能是偶数,也可能是质数,也可能是合数 " } ] ]
[ "课内体系->知识模块->数与代数", "拓展思维->拓展思维->数论模块->质数与合数" ]
[ "$$3+5=8$$,$$8$$为偶数也为合数;$$2+3=5$$,$$5$$为质数,故选D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2839
8965d51026a04a789cb7d05648ad0758
[ "2010年五年级竞赛明心奥数挑战赛", "2010年六年级竞赛明心奥数挑战赛" ]
0
single_choice
下列各选项中的值最接近$$9$$的是( )。
[ [ { "aoVal": "A", "content": "$$9.2$$ " } ], [ { "aoVal": "B", "content": "$$8.17$$ " } ], [ { "aoVal": "C", "content": "$$8.7$$ " } ], [ { "aoVal": "D", "content": "$$9.21$$ " } ], [ { "aoVal": "E", "content": "$$8.71$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->小数比较大小" ]
[ "$$9.21\\textgreater9.2\\textgreater9\\textgreater8.71\\textgreater8.7\\textgreater8.17$$,$$9.2-9=0.2 \\textless{} 9-8.71=0.29$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2287
d6cc0a9fc6804fbdabe72633115987a3
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
1
single_choice
一列火车通过一座长$$320$$米的桥用了$$105$$秒,当它通过$$860$$米的隧道时,速度是过桥速度的$$2$$倍,结果用了$$120$$秒,火车通过大桥时的速度是每秒米;火车的车身长度为米.
[ [ { "aoVal": "A", "content": "$$2$$;$$100$$ " } ], [ { "aoVal": "B", "content": "$$4$$;$$100$$ " } ], [ { "aoVal": "C", "content": "$$8$$;$$100$$ " } ], [ { "aoVal": "D", "content": "$$8$$;$$200$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "若通过$$860$$米隧道时速度不变则需要$$120\\times 2=240$$(秒),火车过桥速度:$$\\left( 860-320 \\right)\\div \\left( 240-105 \\right)=4$$(米/秒);火车车身长:$$105\\times 4-320=100$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2959
d270ab5822df4854a00727860c841cde
[ "2019年全国小学生数学学习能力测评四年级竞赛复赛第10题3分" ]
1
single_choice
一位疯狂的艺术家为了寻找灵感,把一张厚为$$0.1$$毫米的很大的纸对半撕开,重叠起来,然后再撕成两半叠起来.假设他如此重复这一过程$$25$$次,那么这叠纸会.
[ [ { "aoVal": "A", "content": "像山一样高 " } ], [ { "aoVal": "B", "content": "像一栋房子高 " } ], [ { "aoVal": "C", "content": "像一个人一样高 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$2$$的十次方为$$1024$$,$$2$$的五次方为$$32$$, 所以$$0.1\\times1024\\times1024\\times32=3355443.2$$毫米$$=3355.4432$$米. 故像山一样高. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2869
a41d0f94fe8a431f87b4b489050cddc6
[ "2018年IMAS小学高年级竞赛(第一轮)第4题3分" ]
1
single_choice
把$$\frac{2}{3}$$的分母加上$$6$$,且要使得原分数大小不变﹐请问分子应该加上多少?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "$$\\frac{2}{3}=\\frac{6}{9}=\\frac{2+4}{3+6}$$. 故选$$\\text{B}$$. ", "<p>可知原分数的分母为分子的$$1.5$$倍.</p>\n<p>当分母增加$$6$$之后,为了使这个比例不变,分子应该加上$$6\\div 1.5=4$$.</p>\n<p>故选$$\\text{B}$$.</p>" ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1579
ff8080814518d524014519098ce20320
[ "2014年全国迎春杯四年级竞赛初赛第7题" ]
1
single_choice
一些糖果,如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个.那么,这些糖果原来有个.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,说明糖果至少有$$3\\times 10+2=32$$(个),且糖果数应除以$$3$$ 余$$2$$;如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个,说明糖果至多有$$4\\times 8+3=35$$(个),且除以$$4$$余$$3$$. 综上,糖果有$$35$$个. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
858
db23e19dbf7044ff8899d17b5d19ee08
[ "2015年第13届全国创新杯五年级竞赛复赛第4题" ]
2
single_choice
一个整数去除$$151$$、$$197$$、$$238$$所得$$3$$个余数的和是$$31$$,所得$$3$$个商的和是(~ ).
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "$$151+197+238-31=555$$是除数的倍数,$$555=3\\times 5\\times 37$$,由于余数和是$$31$$,检验$$37$$成立,商分别是$$4$$、$$5$$、$$6$$,所以和是$$15$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3129
f0ba74d663054a38beb77c141ef70728
[ "其它改编自2012年全国希望杯六年级竞赛初赛第2题" ]
1
single_choice
计算:$$\frac{251}{2008\times 2009}+\frac{251}{2009\times 2010}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2009}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{2010}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{8040}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{4020}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数裂差->两分数间接裂差" ]
[ "$$\\begin{align}\\& ~ \\frac{251}{2008\\times 2009}+\\frac{251}{2009\\times 2010} \\& =251\\times(\\frac{1}{2008}-\\frac{1}{2009}+\\frac{1}{2009}-\\frac{1}{2010}) \\&=251\\times (\\frac{1}{2008}-\\frac{1}{2010}) \\& =\\frac{1}{8040} \\end{align}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2046
ef697593c2224315a3fa7162a329d2c8
[ "2014年全国迎春杯四年级竞赛初赛第8题" ]
2
single_choice
有一种特殊的计算器,当输入一个$$10$ $49$$的自然数后,计算器会先将这个数乘$$2$$,然后将所得结果的十位和个位顺序颠倒,再加$$2$$后显示出最后的结果.那么,下列四个选项中,可能是最后显示的结果.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$42$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "拓展思维->七大能力->运算求解" ]
[ "倒推.$$44$$ 对应的是$$44-2=42$$,颠倒后是$$24$$,除以$$2$$ 为$$12$$.符合条件.其他的均不符合条件. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1482
562ff3747b174afe858aed87590d1816
[ "2014年全国迎春杯三年级竞赛初赛第8题" ]
1
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$2000$$颗龙珠是. (2017年迎春杯二年级竞赛初赛第$$8$$题)
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "知识标签->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$2000\\div (4+3+2+1)=200$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
671
30bba94f8bab4cbc81b54a376566b4c8
[ "2018年全国小学生数学学习能力测评四年级竞赛复赛第7题3分" ]
1
single_choice
用$$8$$个$$3$$和$$1$$个$$0$$组成的九位数有若干个,其中除以$$4$$余$$1$$的数有个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "用$$8$$个$$3$$和$$1$$个$$0$$组成的九位数,其中$$1$$个$$3$$必须放在最高位上, 所以这个$$9$$位数最后两位只有三种情况:即$$03$$,$$30$$,$$33$$; $$4$$的倍数的特点是末尾两位数是$$4$$的倍数,整个数就是$$4$$的倍数, 要使除以$$4$$余数是$$1$$,那么末尾两位数是比$$4$$的倍数多$$1$$的数, 只有$$33$$符合要求,所以前$$7$$位是由$$1$$个$$0$$和$$6$$个$$3$$组成,可以是: $$303333333$$, $$330333333$$, $$333033333$$, $$333303333$$, $$333330333$$, $$333333033$$, 一共有$$6$$个. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2578
599e32dd60a1495eb5273614e12f9c68
[ "2013年IMAS小学高年级竞赛第一轮检测试题第18题4分" ]
2
single_choice
小明在做一道将三个正整数连乘的习题时,错当把这三个正整数相加.令人惊奇的是,他所得的结果竟然与这三个正整数连乘的正确答案相同.请问这三个正整数的总和是什么?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "设这三个数从小到大分别为$$a$$、$$b$$、$$c$$.显然可知$$a$$、$$b$$、$$c$$不可以都等于$$1$$,否则$$abc=1\\ne 1+1+1=3$$,所以$$c\\geqslant 2$$.由题意可知,$$a$$只能是$$1$$,否则三个数的乘积将大于它们之和(因为$$abc\\geqslant 2bc=bc+bc\\textgreater2b+c\\geqslant a+b+c$$),所以$$1+b+c=bc$$. 同样,如果$$b$$大于或等于$$3$$,则$$bc$$大于或等于$$c$$的$$3$$倍,而$$1+b+c$$小于$$c$$的$$3$$倍,所以$$b$$只能是$$2$$. 因此,$$1+2+c=2c$$,得$$c=3$$. 故这个三个正整数之总和为$$1+2+3=6$$,故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2540
c2c1b76f86af4a4a8df6c6e89a39282a
[ "2018年第6届湖北长江杯六年级竞赛初赛B卷第6题3分" ]
1
single_choice
一个分数的分母是分子的$$5$$倍,分子和分母同时扩大$$3$$倍,相当于分子增加$$8$$,分母增加.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "分数的分子和分母同时乘或者除以一个相同的数($$0$$除外),分数的大小不变.这叫做分数的基本性质.一个分数的分母是分子的$$5$$倍,比如分子是$$A$$,分母是$$5A$$;扩大$$3$$倍这个分数变为:$$\\frac{A}{5A}=\\frac{3A}{15A}$$;根据题意我们道,相当于分子增加$$8$$,也就是$$3A-A=8$$,所以$$A=4$$; $$15A-5A=15\\times 4-5\\times 4=40$$, 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1217
1a3e2f8bbe9c42328e5b6efcbf59d9aa
[ "2017年第15届湖北武汉创新杯六年级竞赛初赛第2题" ]
1
single_choice
十个数的平均数是$$57$$,从小到大排列,前四个数的平均数是$$37$$,后七个数的平均数是$$67$$,则第四个数是.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$47$$ " } ], [ { "aoVal": "C", "content": "$$52$$ " } ], [ { "aoVal": "D", "content": "$$62$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$37\\times 4+67\\times 7-57\\times 10=47$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
966
fe2875e124fe46b99b54f8911bbfa8cc
[ "竞赛" ]
2
single_choice
有一个长方体,长、宽、高都是整数厘米,它的相邻三个面的面积分别是96平方厘米、40平方厘米和60平方厘米,这个长方体的体积是( )立方厘米.
[ [ { "aoVal": "A", "content": "300 " } ], [ { "aoVal": "B", "content": "360 " } ], [ { "aoVal": "C", "content": "400 " } ], [ { "aoVal": "D", "content": "480 " } ] ]
[ "拓展思维->拓展思维->几何模块->立体图形->长方体与正方体->长方体与正方体基本概念运用->长方体表面积" ]
[ "相乘分解,因为$$96\\times 40\\times 60={{\\left( {{2}^{5}}\\times 3\\times 5 \\right)}^{2}}$$,所以长方体体积为$${{2}^{5}}\\times 3\\times 5=480$$(立方厘米) " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
391
a90559c673b0449ea56943d1b30e3954
[ "2011年全国华杯赛竞赛初赛第4题" ]
2
single_choice
老师问学生:``昨天你们有几个人复习数学了?'' 张:``没有人.'' 李:``一个人.'' 王:``二个人.'' 赵:``三个人.'' 刘:``四个人.'' 老师知道,他们昨天下午有人复习,也有人不复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这$$5$$个人中复习数学的有个人.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "知识标签->课内题型->综合与实践->智巧趣题->逻辑推理->排除矛盾法" ]
[ "$$5$$名学生说的话相互矛盾,只能有$$1$$人说的是真话,则只有李复习了,说的是真话. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
478
a1ce585018a64daba0bb9b800d691608
[ "2019年第24届YMO六年级竞赛决赛第7题3分" ]
3
single_choice
有一个$$12$$级的楼梯.某人每次能登上$$1$$级或$$2$$级或$$3$$级,现在他要从地面登上第$$10$$级,有种不同的方式.
[ [ { "aoVal": "A", "content": "$$149$$ " } ], [ { "aoVal": "B", "content": "$$244$$ " } ], [ { "aoVal": "C", "content": "$$264$$ " } ], [ { "aoVal": "D", "content": "$$274$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->归纳递推->斐波那契数列递推", "Overseas Competition->知识点->组合模块->操作与策略->归纳递推" ]
[ "设第$$n$$级有$${{a}_{n}}$$种登的方式, 则第$$n-3$$,$$n-2$$,$$n-1$$级再分别登$$3$$,$$2$$,$$1$$级可到第$$n$$级, 则$${{a}_{n}}={{a}_{n-3}}+{{a}_{n-2}}+{{a}_{n-1}}$$, 而$${{a}_{1}}=1$$,$${{a}_{2}}=1+1=2$$,$${{a}_{3}}=1+1+2=4$$, 故$${{a}_{4}}=1+2+4=7$$, $${{a}_{5}}=2+4+7=13$$, $${{a}_{6}}=4+7+13=24$$, $${{a}_{7}}=7+13+24=44$$, $${{a}_{8}}=13+24+44=81$$, $${{a}_{9}}=24+44+81=149$$, $${{a}_{10}}=44+81+149=274$$. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3258
31d72939d4194d2bb7ac9bf142d112f3
[ "2016年创新杯六年级竞赛训练题(四)第5题" ]
2
single_choice
三娃的书架只有$$1$$本书,后来又新买$$3$$本不同的书.他想把书放到书架上,那么这$$4$$本书一共有种不同的放法.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "知识标签->课内知识点->数学广角->排列组合->排列数" ]
[ "$$24$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2328
f08509fc0fd64e6ba5c8ff4114ad01b8
[ "2013年第25届广东广州五羊杯六年级竞赛第2题5分" ]
1
single_choice
张涛周日去爬山,他上山的速度为$$0.5\text{m/s}$$,登顶后立刻下山,下山的速度为$$2\text{m/s}$$,假设上山下山的路程一样,问小张上下山的平均速度为.
[ [ { "aoVal": "A", "content": "$$0.7\\text{m/s}$$ " } ], [ { "aoVal": "B", "content": "$$0.8\\text{m/s}$$ " } ], [ { "aoVal": "C", "content": "$$1\\text{m/s}$$ " } ], [ { "aoVal": "D", "content": "$$1.25\\text{m/s}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->设数法" ]
[ "平均速度$$=$$总路程$$\\div $$总时间,将上山的路程看作单位``$$1$$'', 则有$$\\dfrac{2}{\\dfrac{1}{0.5}+ \\dfrac{1}{2}}= \\dfrac{4}{5}$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
127
2734b200480843028a9f844f4a5b8f53
[ "2013年全国希望杯六年级竞赛初赛第18题" ]
0
single_choice
某次数学大比拼,甲、乙、丙$$3$$人中只有一人获奖. 甲说:``我获奖了.'' 乙说:``我没获奖.'' 丙说:``甲没有获奖.'' 他们的话中只有一句是真话,则获奖的是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "甲和丙的话相互矛盾,一定是一真一假,所以乙说的是假话,那么乙获奖了. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2570
62c13b9671034ba88afe78ddddac4b45
[ "2014年全国迎春杯竞赛" ]
1
single_choice
$$2014$$年$$2$$月$$6$$日是星期四,小胖决定从这天起(含$$2$$月$$6$$日)练习计算,一直练习到$$2$$月$$17$$日,(含$$2$$月$$17$$日)开学为止.但是中间如果遇到周六和周日,小胖还是决定休息一下,不做练习.已知他第一天做$$1$$道题,第二天做$$3$$道题,第三天做$$5$$道题,依此变化做下去,那么小胖这段时间一共做了道计算练习题.
[ [ { "aoVal": "A", "content": "$$144$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$81$$ " } ], [ { "aoVal": "D", "content": "$$64$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "从$$2$$月$$6$$日到$$2$$月$$17$$日为止,一共有$$17-6+1=12$$(天)其中有$$2$$个星期六,星期日.工作了$$12-4=8$$(天),共完成$$1+3+5+7+9+11+13+15=64$$(题). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1972
ea06561cbf5d4986b75e0e7d8b51cae8
[ "2021年第4届山东青岛市南区京山杯六年级竞赛决赛A卷第1题4分" ]
1
single_choice
一件上衣按成本价提高$$50 \%$$后,以$$105$$元售出,则这件上衣的利润为.
[ [ { "aoVal": "A", "content": "$$20$$元 " } ], [ { "aoVal": "B", "content": "$$25$$元 " } ], [ { "aoVal": "C", "content": "$$30$$元 " } ], [ { "aoVal": "D", "content": "$$35$$元 " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设成本为$$x$$元,由题意可得等量关系:$$\\left( 1+50 \\% \\right)\\times $$成本价$$=$$售价,进而得到方程,可算出成本价,再利用售价$$-$$成本价$$=$$利润.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 设成本为$$x$$元,由题意得: $$\\left( 1+50 \\% \\right)x=105$$, 解得:$$x=70$$, $$105-70=35$$(元), 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1564
4de818336d054fe099de86203fb3ee61
[ "2003年第1届创新杯六年级竞赛初赛第8题", "2003年六年级竞赛创新杯" ]
1
single_choice
据日本一个联合小组最近在东京宣布,他们使用1秒钟能进行2万亿计算的超级计算机,将圆周率π计算到小数后12411亿位,计算过程耗时601小时56分,假如一个人1秒钟读2个阿拉伯数字,那么他日夜不停地读完这个π的数值要用的时间是( ).
[ [ { "aoVal": "A", "content": "1万年 " } ], [ { "aoVal": "B", "content": "2万年 " } ], [ { "aoVal": "C", "content": "3万年 " } ], [ { "aoVal": "D", "content": "4万年 " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->乘除法应用->除法应用" ]
[ "这个人1秒钟读2个数字,那么1天可以读$$2\\times 60\\times 60\\times 24=172800$$(个)数字,一年(平年)可以读$$172800\\times 365=6307200$$个数字,那么1万年大约可以读6307亿个数字,现要读12411亿个数字,大约要读$$12411\\div 6307\\approx 2$$(万年). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1718
774d9dd481744fb18a70499810870ed2
[ "2017年第20届世界少年奥林匹克数学竞赛四年级竞赛初赛(中国区)第4题5分" ]
1
single_choice
鸭子和兔子共有$$30$$只,共有脚$$86$$只.问鸭子和兔子分别有只.
[ [ { "aoVal": "A", "content": "$$12$$、$$18$$ " } ], [ { "aoVal": "B", "content": "$$9$$、$$21$$ " } ], [ { "aoVal": "C", "content": "$$17$$、$$13$$ " } ], [ { "aoVal": "D", "content": "$$19$$、$$11$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->原型题" ]
[ "假设都是鸭子,共有脚:$$2\\times 30=60$$(只), 所以有兔子$$(86-60)\\div (4-2)=13$$(只), 鸭子:$$30-13=17$$(只). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1191
873b349f01f7498685ba640cb24b1011
[ "2015年上海走美杯五年级竞赛初赛" ]
2
single_choice
有一筐苹果,第一次取出全部的一半多$$2$$个,第二次取出余下的一半少$$3$$个,筐中还剩$$24$$个,筐中原有苹果( )个。
[ [ { "aoVal": "A", "content": "$$104$$ " } ], [ { "aoVal": "B", "content": "$$88$$ " } ], [ { "aoVal": "C", "content": "$$46$$ " } ], [ { "aoVal": "D", "content": "$$96$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->还原问题->两量还原问题" ]
[ "方法一:第一次取后还剩下$$\\left( 24-3 \\right)\\times 2=42$$(个),原来有$$\\left( 42+2 \\right)\\times 2=88$$(个); 方法二:设原有苹果$$x$$个,$$(\\frac{x}{2}-2)\\times \\frac{1}{2}+3=24$$,解得$$x=88$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2741
ff8080814518d524014519271a710538
[ "2014年全国迎春杯六年级竞赛复赛第2题" ]
2
single_choice
对于任何自然数,定义$$n!=1\times 2\times 3\times \cdots \times n$$.那么算式$$2014!-3!$$的计算结果的个位数字是(~~~~~ ).
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "由新定义:$$n!=1×2×3×\\ldots×n$$得: $$2014!=1×2×3×4×5×\\ldots×2013×2014$$ $$=1×3×4×6×7×8×\\ldots×2013×2014×10$$ 所以$$1×3×4×6×7×8×\\ldots×2013×2014×10$$是$$10$$的倍数, 所以$$2014!$$的个位数为$$0$$; $$3!=1×2×3=6$$ 所以$$2014!-3!$$的个位数也就为:$$10-6=4$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1502
3bdf3557003e4dea88801ba54a617bdb
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第1题5分" ]
0
single_choice
$$2017$$年元旦是星期二,$$2019$$的元旦节是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "从$$2019$$年的$$1$$月$$1$$日至$$2019$$年的$$10$$月$$1$$日共:$$31+28+31+30+31+30+31+31+30+1=274$$(天), 根据``二、三、四、五、六、日、一''的周期规律:$$274\\div 7=39$$(周)$$\\cdots \\cdots 1$$(天). 所以$$10$$月$$1$$日是这个周期的第$$1$$天,即星期二. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2976
cdfa9467a0674a9b9d6d4110c30697ee
[ "2015年第13届全国创新杯五年级竞赛复赛第1题" ]
1
single_choice
计算:$$2015\times 2015-2014\times 2016=$$(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2014$$ " } ], [ { "aoVal": "C", "content": "$$2015$$ " } ], [ { "aoVal": "D", "content": "$$2016$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$${{2015}^{2}}-(2015-1)\\times (2015+1)={{2015}^{2}}-{{2015}^{2}}+1=1$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3101
d916a0ec7e0d48839e63c7b9786338fd
[ "2020年第24届YMO三年级竞赛决赛第4题3分", "2019年第24届YMO三年级竞赛决赛第4题3分" ]
1
single_choice
按规律写算式:$$100+2$$,$$98-5$$,$$96+8$$,$$94-11$$,$$\cdots $$第$$10$$个算式是.
[ [ { "aoVal": "A", "content": "$$80-27$$ " } ], [ { "aoVal": "B", "content": "$$82-29$$ " } ], [ { "aoVal": "C", "content": "$$82+29$$ " } ], [ { "aoVal": "D", "content": "$$82-27$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数", "Overseas Competition->知识点->组合模块->操作与策略->归纳递推" ]
[ "规律:每个算式第一个数是从$$100$$开始,依次少$$2$$, 第二个数是从$$2$$开始,依次多$$3$$, 算式中间的符号是``$$+-$$''循环, 则第$$10$$个算式,中间符号为``$$-$$'', 第$$1$$个数为$$100-9\\times 2=82$$, 第$$2$$个数为$$2+3\\times 9=29$$, 则第$$10$$个算式为``$$82-29$$''. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2022
b43ec7dc9a7e49ec99e1257a720e5feb
[ "2015年世界少年奥林匹克数学竞赛三年级竞赛复赛A卷第7题8分" ]
1
single_choice
一只蜗牛沿着柱子往上爬,白天往上爬$$5$$米,晚上又下滑$$3$$米,已知这只蜗牛是第$$6$$天爬上柱子顶端的,那么这根柱子最长有~\uline{~~~~~~~~~~}~米.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->能力->运算求解", "课内体系->能力->实践应用" ]
[ "因为蜗牛白天爬$$5$$米,晚上下滑$$3$$米,所以相当于蜗牛一天往上爬$$5-3=2$$米,这只蜗牛前五天一共爬了$$5\\times 2=10$$米.因为这只蜗牛是第六天爬上柱子顶端的,所以这根柱子最长有$$10+5=15$$米. 故答案为:$$15$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3103
e6be16c9fc8c4930bd01497df967cacd
[ "2019年第24届YMO四年级竞赛决赛第9题3分", "2020年第24届YMO四年级竞赛决赛第9题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第9题3分" ]
1
single_choice
已知$$5$$,$$a$$,$$b$$,$$c$$,$$4035$$这五个数成等差数列,则$$b=$$.
[ [ { "aoVal": "A", "content": "$$2017$$ " } ], [ { "aoVal": "B", "content": "$$2018$$ " } ], [ { "aoVal": "C", "content": "$$2019$$ " } ], [ { "aoVal": "D", "content": "$$2020$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$5$$,$$a$$,$$b$$,$$c$$,$$4035$$是等差数列, 则$$5$$,$$b$$,$$4035$$也是等差数列, 则$$b=\\left( 4035+5 \\right)\\div 2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=4040\\div 2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=2020$$. 选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2175
1a2c235f999f4acea1b4217e981b1db7
[ "2018年全国小学生数学学习能力测评五年级竞赛初赛第9题3分" ]
1
single_choice
甲、乙两船在静水中的速度分别为每小时$$36$$千米和每小时$$28$$千米,今从相隔$$192$$千米的两港同时相对行驶,甲船逆水而上,乙船顺水而下,那么小时后两船相遇.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$2.5$$ " } ], [ { "aoVal": "D", "content": "$$3.5$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->流水行船问题->基本流水行船问题->四个速度->基本行程" ]
[ "相遇问题中,路程和$$=$$速度和$$\\times $$相遇时间, 所以:相遇时间$$=$$路程和$$\\div $$速度和. 甲船逆水而上速度是甲船静水速度减去水速,即:$$36-$$水速; 乙船顺水而下速度是乙船静水速度加上水速,即:$$28+$$水速; 甲乙速度和为:$$36-$$水速$$+28+$$水速$$=64$$(千米/小时). 甲乙相遇时间为:$$192\\div64=3$$(小时). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
357
9af469b99dca46a988d1f7f431df4b34
[ "2018年四川成都锦江区四川师范大学附属第一实验中学小升初模拟11第9题3分", "2015年湖北武汉世奥赛五年级竞赛模拟训练题(四)第4题" ]
2
single_choice
一把钥匙只能开一把锁.现有$$12$$把钥匙和$$11$$把锁,但不知道哪把钥匙开哪把锁,最少要试次才能保证配好全部的锁的钥匙.
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$55$$ " } ], [ { "aoVal": "D", "content": "$$65$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "从最不利的情况考虑,第$$1$$把锁需要试$$11$$次;第$$2$$把锁需要试$$10$$次$$\\ldots \\ldots $$;一共需要试$$2+3+\\cdots \\cdots +11=65$$(次). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3462
c6e3e897626b4ac3a302cae9b74d8c79
[ "2019年第24届YMO三年级竞赛决赛第3题3分", "2020年第24届YMO三年级竞赛决赛第3题3分" ]
1
single_choice
$$10$$本相同的笔记本分给$$3$$个人,每人至少一本,共有~\uline{~~~~~~~~~~}~种不同的分配方案.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$45$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意,$$10$$个相同的小球分给$$3$$个人,每人至少$$1$$个,就是将$$10$$个球分成$$3$$组, 一个人最多分:$$10-1-1=8$$(支), $$8+7+6+5+4+3+2+1=36$$(种), 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3328
6da3a7d1808640aead3894892c5c6b27
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第5题5分" ]
1
single_choice
用数字$$0$$、$$1$$、$$2$$、$$3$$、$$4$$最多可以组成个无重复数字的四位数.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "由于首位不能为$$0$$,故有$$4$$种选择,其它三位,任意选$$3$$个数即可,根据分步计数原理可得一共有$$4\\times 4\\times 3\\times 2=96$$个. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
537
ebe7e65fc6c6436db8ed2dae8b147972
[ "2016年全国中环杯五年级竞赛中小学生思维能力训练活动决赛" ]
2
single_choice
若$$E、$$U$$、$$L$$、$$S$$、$$R$$、T$$分别表示$$1、$$2$$、$$3$$、$$4$$、$$5$$、6$$(不同的字母表示不同的数字),且满足: $$(1)E+U+L= 6$$; $$(2)S+R+U+T= 18$$; $$(3)U\times T=15$$; $$(4)S \times L = 8$$. 则六位数$$\overline{EULSRT}$$ =~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$123456$$ " } ], [ { "aoVal": "B", "content": "$$132465$$ " } ], [ { "aoVal": "C", "content": "$$145632$$ " } ], [ { "aoVal": "D", "content": "$$325416$$ " } ], [ { "aoVal": "E", "content": "$$146325$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "($$1$$)因为$$E+U+L= 6$$; 而$$1+2+3=6$$; 所以$${E, U ,L}=~ {1,$$2$$,$$3$$ }$$; ($$2$$)因为$$S+R+U+T = 18$$; 而$$6+5+4+3=18$$; 所以$${S, R ,$$U$$ ,$$T$$ }= {6,$$5$$,$$4$$,$$3$$ }$$; ($$3$$)因为$$U\\times T=15$$; 而$$15=1\\times15=3\\times5$$; 所以$${U,T}={3,$$5$$ }$$; ($$4$$)因为$$S\\times L = 8 $$; 而$$8=1\\times8=2\\times4$$; 所以$${S,L}= {2,$$4$$ }$$. 由($$1$$)和($$3$$),得$$U= 3$$,则$$T= 5$$; 由($$1$$)和($$4$$),得$$L= 2$$,则$$S= 4$$; 最后分别结合($$1$$)和($$2$$),得$$E =1$$,$$R = 6$$; 故六位数$$\\overline{EULSRT}=132465$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1039
0ea1fb95fca34bbab0eaa86179ee1ae0
[ "2019年广东深圳全国小学生数学学习能力测评五年级竞赛初赛第9题3分" ]
1
single_choice
五年级数学测评试卷共有$$15$$小题,做对一题得$$10$$分,做错一题扣$$4$$分,不答得$$0$$分,陈莉得了$$88$$分,她有道题未答.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "假设她全做对,可得:$$15\\times 10=150$$(分), 现在得了$$88$$分,少了:$$150-88=62$$(分), 做错一题,不但得不到$$10$$分,还扣$$4$$分, 说明错一题,少得$$10+4=14$$(分), 不答得$$0$$分,说明不答少得$$10$$分, ∵$$62\\div 14=4$$(题)$$\\cdots 6$$(分),$$6$$不是$$10$$的倍数, 不合题意; $$62\\div 14=3$$(题)$$\\cdots 20$$(分),$$20$$是$$10$$的倍数, 符合题意; ∴未答的题有$$20\\div 10=2$$(题). 选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1526
567dbfc84a5c425c9d28d9f6c0606522
[ "2019年第7届湖北长江杯五年级竞赛复赛A卷第9题3分" ]
1
single_choice
学校买了$$4$$张桌子,$$9$$把椅子,共用了$$252$$元,$$1$$张桌子和$$3$$把椅子的价钱正好相等,一张桌子元.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "设椅子的单价是$$x$$元,则桌子的价格是$$3x$$元, $$3x\\times4+x\\times9=252$$ $$21x=252$$ $$x=12$$(元), 桌子的单价:$$3\\times12=36$$(元). 答:桌子、椅子的单价分别是$$12$$元、$$36$$元. 故答案选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
68
ec4053f7f2e64dbd9fd7b595555d8c07
[ "其它改编题", "2017年全国华杯赛小学中年级竞赛初赛模拟第5题" ]
2
single_choice
从$$1$$至$$11$$这$$11$$个自然数中至少选出~\uline{~~~~~~~~~~}~个不同的数,才能保证其中一定有两个数的和为$$12$$?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "把和为$$12$$的两个数分成一组,这样就把这$$11$$个数分成$$6$$组:$$(1,11)$$,$$\\left( 2,10 \\right)$$,$$\\left( 3,9 \\right)$$,$$(4,8)$$,$$(5,7)$$,$$(6)$$.要保证一定有两个数的和为$$12$$,就要保证至少有两个数属于同一组. 由抽屉原理可知,从这$$12$$个数中选出$$7$$个数,就一定有两个数属于同一组.此时这两个数的和就是$$12$$. 如果我们从$$6$$组中各取一个数,则取出的这$$6$$个数中,没有两个数的和是$$12$$,因此本题的答案就是至少选出$$7$$个不同的数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1923
983e3f268e08460c9d9ac0ecd0068e06
[ "2015年第4届广东广州羊排赛六年级竞赛第8题1分" ]
1
single_choice
一个三角形的三个内角角度之比为$$2:3:5$$,这是一个 .
[ [ { "aoVal": "A", "content": "锐角三角形 " } ], [ { "aoVal": "B", "content": "直角三角形 " } ], [ { "aoVal": "C", "content": "钝角三角形 " } ], [ { "aoVal": "D", "content": "等腰三角形 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "最大的角为$$180\\div (2+3+5)\\times 5=90$$(度),是直角三角形. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
130
168d59abe6f3432a9ddf27c28d2eb70a
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第6题5分" ]
1
single_choice
$$4$$辆汽车进行了$$4$$场比赛,每场比赛结果如下: ($$1$$)$$1$$号汽车比$$2$$号汽车跑得快; ($$2$$)$$2$$号汽车比$$3$$号汽车跑得快; ($$3$$)$$3$$号汽车比$$4$$号汽车跑得慢; ($$4$$)$$4$$号汽车比$$1$$号汽车跑得快. 汽车跑得最快.
[ [ { "aoVal": "A", "content": "$$1$$号 " } ], [ { "aoVal": "B", "content": "$$2$$号 " } ], [ { "aoVal": "C", "content": "$$3$$号 " } ], [ { "aoVal": "D", "content": "$$4$$号 " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理", "Overseas Competition->知识点->组合模块->逻辑推理" ]
[ "根据($$1$$)可知,$$1$$号比$$2$$号快.根据($$2$$)可知,$$2$$号比$$3$$号快.根据($$3$$)可知,$$4$$号比$$3$$号快.根据($$4$$)可知,$$4$$号比$$1$$号快.所以$$4$$号快于$$1$$号,$$1$$号快于$$2$$号,$$2$$号快于$$3$$号.故最快的是$$4$$号.故$$\\text{ABC}$$错误,$$\\text{D}$$正确. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
918
c53f24be7ba0487092db1b193d48fa35
[ "2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第7题5分" ]
1
single_choice
有一个自然数,用它分别去除$$62$$、$$90$$、$$130$$都有余数,这三个余数的和是$$24$$.这三个余数中最大的是.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "假设这个自然数为$$n$$,$$n$$除$$62$$、$$90$$、$$130$$的余数分别为$$a$$、$$b$$、$$c$$, 则$$62-a$$,$$90-b$$,$$130-c$$都是$$n$$的倍数, 可得$$\\left( 62-a \\right)+\\left( 90-b \\right)+\\left( 130-c \\right)=62+90+130-\\left( a+b+c \\right)$$, 得$$282-24=258$$,$$258=2\\times 3\\times 43$$, 则$$n$$可能为$$2$$、$$3$$、$$6$$、$$43$$, 又由于三个余数的和为$$24$$, 则$$abc$$中至少有一个要大于$$8$$, 由于除数大于余数, 因此$$n=43$$, 所以$$a=19$$,$$b=4$$,$$c=1$$, 因此三个余数中最大的是$$19$$, 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2258
d18fc67485314198bc66bde5ddf2a702
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(一)" ]
2
single_choice
在一个流穿梭的早晨,$$XRS$$张老师要去赶飞机,早上$$9$$点整出发,到达机场时惊奇的发现已知下午$$2$$点多了,他拿出了自己的量角器发现此时时针和分针刚好关于表盘上$$3$$点时刻上下对称,那么此时是下午$$2$$点(~ )分.
[ [ { "aoVal": "A", "content": "$$16\\frac{4}{11}$$ " } ], [ { "aoVal": "B", "content": "$$13\\frac{11}{13}$$ " } ], [ { "aoVal": "C", "content": "$$18\\frac{6}{13}$$ " } ], [ { "aoVal": "D", "content": "$$21\\frac{9}{11}$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意我们可以得到如果以$$2$$点整为初始时刻,那么从初始时刻开始,时针和分针共走了$$120 {}^{}\\circ $$,已知时针、分针速度分别为$$6 {}^{}\\circ $$每分,$$0.5 {}^{}\\circ $$每分,那么此时为下午$$2$$点过$$120\\left( 6 {}^{}\\circ +0.5 {}^{}\\circ ~\\right)=18\\frac{6}{13}$$分. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
870
c8ef2561213f406189e50885335b32d7
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
0
single_choice
一个奇数乘$$3$$以后将会是 (~ ~ ).
[ [ { "aoVal": "A", "content": "质数 " } ], [ { "aoVal": "B", "content": "合数 " } ], [ { "aoVal": "C", "content": "奇数 " } ], [ { "aoVal": "D", "content": "偶数 " } ] ]
[ "拓展思维->拓展思维->数论模块->奇数与偶数->奇数与偶数的乘法规律" ]
[ "奇数$$\\times 3$$只能是奇数.最容易做错的是选合数,反例:$$1\\times 3=3$$,$$3$$不是合数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
566
20b6cab5ac544f6b803249684a1fc44f
[ "2012年美国数学大联盟杯六年级竞赛初赛第33题5分(每题5分)" ]
1
single_choice
$264$ and have a greatest common factor of $132$. $$264$$和的最大公因数是$$132$$.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$66$$ " } ], [ { "aoVal": "C", "content": "$$528$$ " } ], [ { "aoVal": "D", "content": "$$660$$ " } ] ]
[ "Overseas Competition->知识点->数论模块->因数与倍数->公因数与公倍数", "拓展思维->能力->运算求解" ]
[ "公约数,亦称``公因数''.它是指能同时整除几个整数的数.如果一个整数同时是几个整数的约数,称这个整数为它们的``公约数'';公因数中最大的称为最大公因数. $$264$$和$$528$$的最大公因数为$$264$$; $$264$$和$$660$$的最大公因数为$$132$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2271
db07463d27784e7fb6209ff0dd6e53db
[ "2017年全国华杯赛小学高年级竞赛" ]
2
single_choice
小宏$$2015$$年$$10$$月长跑了$$17$$次,每次跑运的路程相同;小海$$10$$月长跑了$$11$$次,每次跑动的路程相同,小宏跑$$5$$次的路程等于小海跑$$3$$次的路程,则在$$10$$月(~ ).
[ [ { "aoVal": "A", "content": "小宏长跑的总路程多于小海长跑的总路程 " } ], [ { "aoVal": "B", "content": "小宏长跑的总路程少于小海长跑的总路程 " } ], [ { "aoVal": "C", "content": "小宏长跑的总路程等于小海长跑的总路程 " } ], [ { "aoVal": "D", "content": "小宏长跑的次数少于小海长跑的次数 " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "小海跑$$1$$次的路程$$=\\frac{5}{3}\\times $$小宏跑$$1$$次的路程,故小海长跑$$11$$次$$=11\\times \\frac{5}{3}\\times $$小宏跑$$1$$次的路程$$=$$小宏长跑$$18\\frac{1}{3}$$次,所以选$$B$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1632
7b4c997046db48a184a2327a248d036d
[ "2021年鹏程杯六年级竞赛初赛第23题" ]
2
single_choice
---项铺路工程,如果甲队单独做$$100$$天可以完成,乙队单独做$$150$$天可以完成.现在两队同时施工,工作效率比单独做提高$$20 \%$$,当工程完成$$\frac{2}{5}$$时,正好赶上疫情,影响施工进度,使得每天少铺$$70$$米,结果前后一起共用了$$90$$天完成这项工程.则整个工程铺路米.
[ [ { "aoVal": "A", "content": "$$6125$$ " } ], [ { "aoVal": "B", "content": "$$6135$$ " } ], [ { "aoVal": "C", "content": "$$6145$$ " } ], [ { "aoVal": "D", "content": "$$6155$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->变速工程问题" ]
[ "原来甲乙合作工效$$\\left( \\frac{1}{100}+\\frac{1}{150} \\right)\\times (1+20 \\%)=\\frac{1}{50}$$, 完成前面$$\\frac{2}{5}$$的工作量需工时$$\\frac{2}{5}\\div \\frac{1}{50}=20$$(天), 完成后面$$\\frac{3}{5}$$的工作量需工时$$90-20=70$$(天), 工作效率是$$\\frac{3}{5}\\div 70=\\frac{3}{350}$$, 工效之差为$$\\frac{1}{50}-\\frac{3}{350}=\\frac{4}{350}=\\frac{2}{175}$$, 总工作量为$$70\\div \\frac{2}{175}=6125$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3305
5b14e8f16a1b4366a4d3d681ba1ced3e
[ "2020年新希望杯二年级竞赛初赛(团战)第52题" ]
1
single_choice
个位数字与十位数字不同的两位数共有个.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$82$$ " } ], [ { "aoVal": "C", "content": "$$81$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ], [ { "aoVal": "E", "content": "$$79$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->字典排序法->组数->数字组数(规定数位大小)" ]
[ "根据题意分析可知,个数数字与十位数字相同的两位数有$$10$$个,两位数一共有$$91$$个, 由此可知,个位数字与十位数字不同的两位数有$$91-10=81$$(个). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1926
93e1ef277c8744ea85c526cd644ea9e4
[ "2011年北京五年级竞赛" ]
1
single_choice
石灰水是用石灰和水按照$$1∶100$$配制而成,要配制$$4545$$千克的石灰水,需要石灰多少千克?
[ [ { "aoVal": "A", "content": "$$35$$千克 " } ], [ { "aoVal": "B", "content": "$$45$$千克 " } ], [ { "aoVal": "C", "content": "$$55$$千克 " } ] ]
[ "知识标签->课内知识点->数与运算->数的运算的实际应用(应用题)->分数的简单实际问题" ]
[ "相当于把石灰水分成了$$101$$份,石灰占$$1$$份.所以石灰有$$4545\\times \\frac{1}{{1{ + }100}}{ = }45$$(千克). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2515
27528719f3094a57ac5cfb5df014c7a5
[ "2018年湖北武汉新希望杯小学高年级六年级竞赛训练题(二)第2题", "2017年新希望杯小学高年级六年级竞赛训练题(二)第2题" ]
1
single_choice
将$$9$$个数从左到右排成一行,从第$$3$$个数开始,每个数恰好等于它前面两个数之和.如果第$$8$$个数和第$$9$$个数分别是$$76$$和$$123$$,那么第$$1$$个数是( ~).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律" ]
[ "$$123-76=47$$,$$76-47=29$$,$$47-29=18$$,$$29-18=11$$,$$18-11=7$$,$$11-7=4$$,$$7-4=3$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2945
adfff7bb5b69450d85c1e7f21b34b8de
[ "2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第2题2分" ]
1
single_choice
爸爸带了$$269$$元钱,要买$$8$$元一个的笔记本,最多能买个.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$33$$ " } ], [ { "aoVal": "C", "content": "$$34$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ], [ { "aoVal": "E", "content": "$$36$$ " } ] ]
[ "拓展思维->能力->实践应用", "Overseas Competition->知识点->计算模块->整数->整数乘除->整数除法运算" ]
[ "根据题意分析可知,利用关系式:数量$$=$$总价$$\\div $$单价,用爸爸带的钱除以每个笔记本的单价即可得到最多能买多少个笔记本,列式为:$$269\\div 8=33$$(个)$$\\cdots \\cdots 5$$(元),剩下的$$5$$元不足以再买一个笔记本, 所以最多能买$$33$$个, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1921
aea65772d1e24c2a8cf4360e80d22e50
[ "2014年北京六年级竞赛", "2016年陕西西安小升初交大附中入学真卷9第11题", "2014年全国迎春杯六年级竞赛初赛第6题", "2014年全国迎春杯五年级竞赛初赛第6题" ]
2
single_choice
甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了$$3$$,$$7$$,$$14$$件礼物,最后结算时,乙付给了丁$$14$$元钱,并且乙没有付给甲钱.那么丙应该再付给丁元钱.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$56$$ " } ], [ { "aoVal": "D", "content": "$$70$$ " } ], [ { "aoVal": "E", "content": "$$75$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设丁拿了$$a$$件礼物,则四人花同样的钱,每人可以拿到$$a+\\frac{3+7+14}{4}=a+6$$件礼物, 实际情况:丁少拿了$$6$$件,乙多拿了$$1$$件,给丁$$14$$元,则货物单价$$14$$元, 丙多拿了$$14-6=8$$件,$$3$$件给甲,$$5$$件给丁,$$5\\times14=70$$元. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
787
df33ea6cf7244368aa645a182e396c86
[ "2018年全国小学生数学学习能力测评六年级竞赛初赛第9题3分" ]
2
single_choice
把一批书按$$2:3:4$$或$$2:4:5$$两种方案分给甲、乙、丙三个班,都可以将这批书正好分完,这批书可能有本.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$99$$ " } ], [ { "aoVal": "C", "content": "$$110$$ " } ], [ { "aoVal": "D", "content": "$$180$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->因倍应用题->倍数应用题" ]
[ "如果按照$$2:3:4$$发书,相当于将书分成$$2+3+4=9$$份;如果按照$$2:4:5$$发书,相当于将书分成$$2+4+5=11$$份,因此这批书是$$9$$和$$11$$的公倍数,只有$$\\text{B}$$选项符合. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3452
cb10162a53c04c87ab813454152b41dc
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第7题5分" ]
1
single_choice
\textbf{(2019 Youth Mathematics Olympics, Primary 5, Question \#7)} $990$ has many factors, and the average of these factors is($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$). $$990$$有很多因数,这些因数的平均数是($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$).
[ [ { "aoVal": "A", "content": "$$110$$ " } ], [ { "aoVal": "B", "content": "$$115$$ " } ], [ { "aoVal": "C", "content": "$$117$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "Overseas Competition->知识点->数论模块->因数与倍数->因数个数定理", "拓展思维->思想->对应思想" ]
[ "$$990$$的因数有:$$1$$;$$990$$;$$2$$;$$495$$;$$3$$;$$330$$;$$5$$;$$198$$;$$6$$;$$165$$;$$9$$;$$110$$;$$10$$;$$99$$;$$11$$;$$90$$;$$15$$;$$66$$;$$18$$;$$55$$;$$22$$;$$45$$;$$30$$;$$33$$,一共$$24$$个, 平均数为:$$(1+990+2+495+3+330+5+198+6+165+9+110+10+99+11+90+15+66+18+55+22+45+30+33)\\div 24$$ $$=2808\\div 24$$ $$=117$$, 故选答案$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1461
7f04b52772fa43ecafd4a35b67b03870
[ "2013年第11届创新杯三年级竞赛初赛第5题6分" ]
1
single_choice
某班有$$50$$多人上体育课,他们站成一排,老师让他们按$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$循环报数,最后一人报的数是$$4$$,这个班有人上体育课.
[ [ { "aoVal": "A", "content": "$$51$$ " } ], [ { "aoVal": "B", "content": "$$50$$ " } ], [ { "aoVal": "C", "content": "$$53$$ " } ], [ { "aoVal": "D", "content": "$$57$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "也就是说,有这样一个两位数,首先他是一个十位是$$5$$的两位数,并且除以$$7$$的余数是$$4$$,那么最终只可能是$$53$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
95
38a1ad9d4ab0407f93bd7f6dffc4190b
[ "2017~2018学年浙江杭州五年级期中", "2017年第22届湖北武汉华杯赛三年级竞赛复赛(华罗庚金杯)第2题10分" ]
2
single_choice
在下面加法竖式中,八个不同的字母分别代表$$2\sim 9$$这八个数字,其中相同的字母代表相同的数字,不同的字母代表不同的数字,那么$$\overline{NINE}=$$~\uline{~~~~~~~~~~}~. $$\frac{\begin{matrix} \begin{matrix} + \end{matrix} \begin{matrix}O T S \end{matrix} \begin{matrix}N W I \end{matrix} \begin{matrix}E O X \end{matrix} \end{matrix}}{\begin{matrix} N\textasciitilde I\textasciitilde\textasciitilde N\textasciitilde E \end{matrix}}$$
[ [ { "aoVal": "A", "content": "$$1986$$ " } ], [ { "aoVal": "B", "content": "$$2034$$ " } ], [ { "aoVal": "C", "content": "$$2176$$ " } ], [ { "aoVal": "D", "content": "$$2458$$ " } ], [ { "aoVal": "E", "content": "$$2526$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜", "Overseas Competition->知识点->组合模块->数字谜->竖式数字谜" ]
[ "因为字母代表$$2\\sim 9$$八个数字,故$$N$$只能为$$2$$. $$\\frac{\\begin{matrix} \\begin{matrix} + \\end{matrix} \\begin{matrix}O T S \\end{matrix} \\begin{matrix}N W I \\end{matrix} \\begin{matrix}E O X \\end{matrix} \\end{matrix}}{\\begin{matrix} N I N E \\end{matrix}}$$, $$O+E+X=E$$,故$$O+X=10$$,可为$$3+7$$,$$4+6$$;$$W+I=9$$,当$$O=3$$,$$I=4$$或$$5$$, 当$$I=4$$,$$W=5$$,或$$I=5$$,$$W=4$$, $$T+S$$需要为$$20$$或$$21$$,不可能; 当$$O=7$$,$$I=4$$或$$5$$,$$T+S=16$$或$$17$$,此时$$E=6$$. $$\\frac{\\begin{matrix} \\begin{matrix} + \\end{matrix} \\begin{matrix}7 8 9 \\end{matrix} \\begin{matrix}2 4 5 \\end{matrix} \\begin{matrix}6 7 3 \\end{matrix} \\end{matrix}}{\\begin{matrix} 2 5 2 6 \\end{matrix}}$$或$$\\frac{\\begin{matrix} \\begin{matrix} + \\end{matrix} \\begin{matrix}7 9 8 \\end{matrix} \\begin{matrix}2 4 5 \\end{matrix} \\begin{matrix}6 7 3 \\end{matrix} \\end{matrix}}{\\begin{matrix} 2 5 2 6 \\end{matrix}}$$ " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2628
298f33cd2a7c4e1c8a6df31da2af2c99
[ "2020年广东广州羊排赛六年级竞赛第6题3分" ]
1
single_choice
在一张地图上用$$1$$厘米的长度表示实际$$300$$千米的距离,则这张地图的比例尺是.
[ [ { "aoVal": "A", "content": "$$1:300$$ " } ], [ { "aoVal": "B", "content": "$$300:1$$ " } ], [ { "aoVal": "C", "content": "$$1:30000000$$ " } ], [ { "aoVal": "D", "content": "$$30000000:1$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$300$$千米$$=30000000$$厘米; 比例尺$$=$$图上距离$$:$$实际距离$$=1:300000000$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1090
0c05145fc49c4ecf99eaaa4a3193bd54
[ "2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第2题5分" ]
1
single_choice
一件商品先涨价$$15 \%$$,再降价$$15 \%$$,该商品的价格.
[ [ { "aoVal": "A", "content": "比原价低 " } ], [ { "aoVal": "B", "content": "比原价高 " } ], [ { "aoVal": "C", "content": "与原价相同 " } ], [ { "aoVal": "D", "content": "无法判断 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "先把原价看作单位``$$1$$''; 涨价后的价钱是原价的$$\\left( 1+15 \\% \\right)$$; 后又降价$$15 \\%$$,是降低涨价后的价格的$$15 \\%$$, 据此可知现在的价格是原价的百分之几,进而得出结论. $$\\left( 1+15 \\% \\right)\\times \\left( 1-15 \\% \\right)$$ $$=1.15\\times 0.85$$ $$=97.8 \\%$$; $$97.8 \\% ~\\textless{} ~1$$,即现价比原价低. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2919
ff8409bd9b9b4096bb7492c250707069
[ "2020年新希望杯三年级竞赛初赛(团战)第35题" ]
1
single_choice
下面哪个算式的计算结果是偶数?
[ [ { "aoVal": "A", "content": "$$\\left( 784-455 \\right)\\times 39+44\\times 11$$ " } ], [ { "aoVal": "B", "content": "$$11\\times 1+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ " } ], [ { "aoVal": "C", "content": "$$11\\times 1+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ " } ], [ { "aoVal": "D", "content": "$$123\\times 456+789$$ " } ], [ { "aoVal": "E", "content": "$$2\\times 4\\times 6\\times \\cdots \\times 2018\\times 2020-1\\times 3\\times 5\\times \\cdots \\times 2017\\times 2019$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->奇数与偶数->奇数与偶数的混合计算" ]
[ "暂无 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1358
28b414e32ee84eab937c336318e812fc
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛决赛第4题5分" ]
1
single_choice
一张课桌$$60$$元,比一把椅子多$$20$$元.一套课桌椅元.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知, 一张桌子比一把椅子多$$20$$元, 那么一把椅子就比一张桌子少$$20$$元, 所以一把椅子的价钱是:$$60-20=40$$(元), 那么一套桌椅的价钱是:$$60+40=100$$(元). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1829
bff916051f804fba9c2a528e924effb6
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第4题6分" ]
1
single_choice
小红家住五楼,他每上一层楼要走$$20$$级台阶.小红每天回家要走级台阶.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$80$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都有->爬楼梯问题" ]
[ "小红每天回家要走:$$20\\times \\left(5-1\\right)=80$$(级). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2306
aef3d295a3c745ceb5772ff057e4e092
[ "2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第7题3分" ]
1
single_choice
在$$9$$点至$$10$$点之间的某个时刻,$$5$$分钟前分针的位置和$$5$$分钟后时针的位置相同,此时刻是.
[ [ { "aoVal": "A", "content": "$$9:05$$ " } ], [ { "aoVal": "B", "content": "$$9:35$$ " } ], [ { "aoVal": "C", "content": "$$9:55$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据选项$$\\text{C}$$,现在是$$9:55$$,那么$$5$$分钟前分针的位置是指向$$10$$,$$5$$分钟后时针也是指向$$10$$.所以$$\\text{C}$$选项答案是满足题目要求的. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3085
ead9f72813dc4bb5aeccdeb3b9fd2e33
[ "2014年第10届全国新希望杯小学高年级六年级竞赛复赛第2题4分" ]
2
single_choice
对自然数$$n$$进行如下操作:如果$$n$$是偶数,就把它除以$$2$$,如果$$n$$是奇数,就把它加上$$7$$.现在对$$154$$进行有限次操作,得到的结果不可能是.
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$28$$ " } ] ]
[ "知识标签->课内知识点->数的认识->数的特征->倍数->倍的认识" ]
[ "154按照操作依次为$$77$$,$$84$$,$$42$$,$$21$$,$$28$$,$$14$$,$$7$$,$$14$$,7\\ldots\\ldots,不可能得到$$11$$. 154和$$7$$都是$$7$$点倍数,每次操作后最终结果都是$$7$$的倍数,不可能得到11. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2552
5969867fec86420198b259fcb7b217d8
[ "2014年迎春杯四年级竞赛复赛" ]
2
single_choice
一个$$12$$项的等差数列,公差是$$2$$,且前$$8$$项的和等于后$$4$$项的和,那么,这个数列的第二项是~\uline{~~~~~~~~}~。
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求通项" ]
[ "根据题意得$$({{a}_{1}}+{{a}_{8}})\\times 8\\div 2=({{a}_{9}}+{{a}_{12}})\\times 4\\div 2$$,因为$${{a}_{8}}={{a}_{1}}+14$$,$${{a}_{9}}={{a}_{1}}+16$$,$${{a}_{12}}={{a}_{1}}+22$$, 所以$$({{a}_{1}}+{{a}_{1}}+14)\\times 8\\div 2=({{a}_{1}}+16+{{a}_{1}}+22)\\times 4\\div 2$$,解得$${{a}_{1}}=5$$,因此$${{a}_{2}}=5+2=7$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2950
cdd4dd731e9a4485a6a2d41edbfec183
[ "2006年四年级竞赛创新杯" ]
1
single_choice
一个数的小数点向右移动一位,比原数大$$36$$,这个数是.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$11.$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数点的移动规律" ]
[ "小数点向右移动$$1$$位,则新数比原数扩大$$10$$倍,即增加$$9$$倍,所以原数为$$59.94\\div \\left( 10-1 \\right)=6.66$$,选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1621
b5d2b7f267724df49b397c0ad7b59775
[ "2022年第9届广东深圳鹏程杯四年级竞赛初赛第13题5分" ]
1
single_choice
一根圆柱形木料长$$200$$厘米,每$$40$$厘米锯成一段,每锯一段要$$2$$分钟,且每锯完一段要休息$$3$$分钟,那么这根木料锯完至少需要分钟
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$17$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->锯木头类型问题" ]
[ "无 " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
363
89c7a469ed9b492e80a1568d8c5edaac
[ "2011年全国华杯赛竞赛初赛第4题" ]
2
single_choice
老师问学生:``昨天你们有几个人复习数学了?'' 张:``没有人.''李:``一个人.''王:``二个人.''赵:``三个人.''刘:``四个人.'' 老师知道,他们昨天下午有人复习,也有人不复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这$$5$$个人中复习数学的有个人.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "$$5$$名学生说的话相互矛盾,只能有$$1$$人说的是真话,则只有李复习了,说的是真话. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1784
dfb959be9820468497565da86d0b5924
[ "2008年第6届创新杯四年级竞赛初赛B卷第9题5分", "2008年四年级竞赛创新杯" ]
2
single_choice
一串数排成一列,它们的规律是:前两个数都是1,从第三个数开始,每一个数都是它前面两个数的和.如下所示: 1,1,2,3,5,8,13,21,34,55,$$\cdots$$ 这串数的前100个数(包括第100个数)中,偶数的个数是( ).
[ [ { "aoVal": "A", "content": "50 " } ], [ { "aoVal": "B", "content": "49 " } ], [ { "aoVal": "C", "content": "34 " } ], [ { "aoVal": "D", "content": "33 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "这串数的规律是``奇奇偶''循环的,在前99个数中,有33个偶数,第100个数是奇数,所以,这串数中前100个数有33个偶数. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1726
9640e29674b4472aa9154277b0613391
[ "2008年四年级竞赛创新杯" ]
2
single_choice
一个车队以$$5$$米/秒的速度完全经过一座长$$200$$米的大桥,共用时$$145$$秒。已知每辆车长$$5$$米,相邻两辆车相隔$$8$$米,那么这个车队共有车( )辆。
[ [ { "aoVal": "A", "content": "$$39$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$41$$ " } ], [ { "aoVal": "D", "content": "$$42$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题" ]
[ "车队$$145$$秒行的路程为$$5\\times 145=725$$(米) 车队的长度为$$725-200=525$$(米) 车队共有车$$\\left( 525-5 \\right) \\div\\left( 5+8 \\right)+1=41$$(辆) " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1717
69ce00277cb5411cab65edc42c6a3395
[ "2017年河南郑州联合杯竞赛附加赛第一场第3题2分" ]
2
single_choice
在一个减法算式里,被减数与减数以及差的和是$$160$$,且减数是差的$$3$$倍,差是(~ ).
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "被减数$$+$$减数$$+$$差$$=160$$,减数$$=3$$差,又被减数$$=$$减数$$+$$差; 则有被减数$$=$$减数$$+$$差$$=160\\div 2=80$$,即$$3$$差$$+$$差$$=80$$,所以差$$=80\\div 4=20$$. 故选A. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1615
5724a89be4f44da492b406615039b8c1
[ "2018年第6届湖北长江杯六年级竞赛初赛B卷第8题3分" ]
1
single_choice
把一杯$$200$$克甜度是$$30 \%$$的糖水倒入另外一杯$$300$$克甜度是$$15 \%$$的糖水里,结果得到甜度是.
[ [ { "aoVal": "A", "content": "$$19$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$22$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一杯的糖:$$200\\times 30 \\%=60$$(克), 第二杯的糖:$$300\\times 15 \\%=45$$(克), 两杯混到一起后浓度为 $$(45+60)\\div (200+300)$$ $$=105\\div 500$$ $$=0.21$$ $$=21 \\%$$, 甜度为$$21$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
684
288be384bfd840c3bcbe1524702de36a
[ "2021年鹏程杯六年级竞赛初赛第3题" ]
1
single_choice
由$$3$$个不同的自然数组成一等式:$$\square +\triangle +\bigcirc =\square \times \triangle -\bigcirc $$这三个数中最多有个奇数.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$0$$ " } ], [ { "aoVal": "E", "content": "无法确定 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "如果这三个数中有$$2$$个奇数和$$1$$个偶数,那么等式左边必为偶数,等式右边必为奇数,不可能.如果这三个数均为奇数,那么等式左边必为奇数,而等式右边必为偶数,不可能.因此,这三个数中最多有$$1$$个奇数,例如$$2+4+1=2\\times 4-1$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3163
4abb2d7ecd14401ea5b39eb2483c9274
[ "2017年河南郑州豫才杯六年级竞赛" ]
1
single_choice
袋子里装着只有颜色不同的若干黑、白、红三种颜色的小球.其中红色小球的颗数是白色的$$\frac{1}{6}$$.黑色小球的颗数是红色小球的一半.如果从盒子中任意摸出一颗小球,摸出黑色小球的可能性是(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{6}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{12}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{14}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{15}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->典型问题->摸小球" ]
[ "由题意可知,红$$:$$白$$=1:6$$,黑$$:$$红$$=1:2$$,则黑$$:$$红$$:$$白$$=1:2:12$$.摸出黑色小球的可能性为$$\\frac{1}{1+2+12}=\\frac{1}{15}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
711
363e8cb5277d48d39771d92fb0d65cf2
[ "2006年第4届创新杯五年级竞赛复赛第5题", "2006年五年级竞赛创新杯" ]
2
single_choice
在一根长100厘米的木棍上,自左向右每隔6厘米染一个红点,同时自右向左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么,长度是1厘米的短木棍有( )条.
[ [ { "aoVal": "A", "content": "7 " } ], [ { "aoVal": "B", "content": "8 " } ], [ { "aoVal": "C", "content": "9 " } ], [ { "aoVal": "D", "content": "10 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->因倍应用题->倍数应用题" ]
[ "不妨将100厘米长的木棍视为有刻度的米尺,那么从左到右每隔6厘米染一个红点,这些红点在米尺上的量数为(单位:厘米): $$6$$,$$12$$,$$18$$,$$24$$,$$30$$,$$36$$,$$\\cdots$$,$$60$$;$$66$$,$$\\cdots$$,$$90$$;$$96$$① 从右到左每隔5厘米染一个红点,这些红点在米尺上的量数为(单位:厘米):$$5$$,$$10$$,$$15$$,$$20$$,$$25$$,$$30$$;$$35$$,$$\\cdots$$ ,$$60$$;$$65$$,$$\\cdots$$ ,$$90$$;$$95$$② 比较上述两个数列①和②,知 在$$0\\sim30$$内的红点,有两组$$\\left( 5,6 \\right)\\left( 24,25 \\right)$$,两个相邻红点相距1厘米; 在$$30\\sim60$$内的红点,有两组$$\\left( 35,36 \\right)\\left( 54,55 \\right)$$,两个相邻红点相距1厘米; 在$$60\\sim90$$内的红点,有两组$$\\left( 65,66 \\right)\\left( 84,85 \\right)$$,两个相邻红点相距1厘米; 在$$90\\sim100$$内的红点,有一组$$\\left( 95,96 \\right)$$,两个相邻红点相距$$1$$厘米; 因此,沿红点锯开,长1厘米得短木棍有7条 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3115
ddeb5f5cc4584483aa54bf2b165d74ad
[ "2006年四年级竞赛创新杯" ]
1
single_choice
某小数的小数点向右移动一位,则数值比原来大25.65,原小数是( ).
[ [ { "aoVal": "A", "content": "2.565 " } ], [ { "aoVal": "B", "content": "2.56 " } ], [ { "aoVal": "C", "content": "2.855 " } ], [ { "aoVal": "D", "content": "2.85 " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数点的移动规律" ]
[ "小数点向右移动一位,则扩大10倍,增加9倍.因此原数为$$25.65\\div \\left( 10-1 \\right)=2.85$$,故选D. " ]
D