dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
118
ec623f79a86d44598fe5adad7fe82edf
[ "2014年全国华杯赛小学中年级竞赛初赛第1题" ]
1
single_choice
两个正整数的和小于$100$,其中一个是另一个的两倍,则这两个正整数的和的最大值是(~~ ).
[ [ { "aoVal": "A", "content": "$83$ " } ], [ { "aoVal": "B", "content": "$99$ " } ], [ { "aoVal": "C", "content": "$96$ " } ], [ { "aoVal": "D", "content": "$98$~ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "较小数为$$a$$,较大数为$$2a$$,和为$$a+2a=3a$$. 和小于$$100$$,最大为$$99$$, $$3a=99$$ $$a=33$$. 较大数:$$2\\times 33=66$$,符合题意. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
572
0a8deb33bb5f4f589dadb123cf288a94
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
一个三位数各个数位上的数字都不相同。把$$2$$写在这个三位数的左端得到一个四位数;把$$2$$写在这个三位数的右端得到一个四位数;这两个四位数相差$$945$$,那么这个三位数是( )
[ [ { "aoVal": "A", "content": "$$117$$ " } ], [ { "aoVal": "B", "content": "$$327$$ " } ], [ { "aoVal": "C", "content": "$$219$$ " } ], [ { "aoVal": "D", "content": "$$312$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用" ]
[ "解:设这个三位数是$$\\overline{abc}$$,依题意可知$$\\overline{2abc}-\\overline{abc2}=945$$或者$$\\overline{abc2}-\\overline{2abc}=945$$, 按照不完全拆分把$$abc$$看成一组, 当:$$\\overline{2abc}-\\overline{abc2}=945$$, $$2000+\\overline{abc}-10\\overline{abc}-2=945$$, $$1998-9\\overline{abc}=945$$, $$\\overline{abc}=117$$(与题中说互不相同矛盾), 当:$$\\overline{abc2}-\\overline{2abc}=945$$, $$10\\overline{abc}+2-2000-\\overline{abc}=945$$, $$9\\overline{abc}-1998=945$$, $$\\overline{abc}=327$$(满足条件)。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3451
dd2018aed8174598b48141d43543bbf5
[ "2017年IMAS小学中年级竞赛(第一轮)第10题3分" ]
1
single_choice
有$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$六张卡片,从中任意取出两张卡片可以组成一个两位数.把组成的所有两位数按从小到大的顺序排列﹐请问第$$21$$个二位数是?
[ [ { "aoVal": "A", "content": "$$43$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$46$$ " } ], [ { "aoVal": "D", "content": "$$51$$ " } ], [ { "aoVal": "E", "content": "$$61$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "由题意,十位数为$$1$$的两位数有$$12$$、$$13$$、$$14$$、$$15$$、$$16$$共$$5$$个,同理可得十位数为$$2$$、$$3$$、$$4$$的两位数也是各有$$5$$个,因此第$$21$$个两位数是$$51$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1054
0ada4e8505be4304bd236e2b10c6b034
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第9题3分", "六年级其它" ]
1
single_choice
$$2018$$年春节有个小程序可以发红包,但是每发一次要收$$2 \%$$的服务费.张紫亦的爸爸、妈妈和他分别发了$$3$$个红包,被收取$$4.5$$元的服务费,爸爸发的最多.请问下面那个数可能是爸爸发的钱数.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$66$$ " } ], [ { "aoVal": "C", "content": "$$75$$ " } ], [ { "aoVal": "D", "content": "$$88$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "已知服务费占总钱数的$$2 \\%$$, 服务费是$$4.5$$元,总钱数$$=4.5\\div 2 \\%=225$$(元). $$225$$元是爸爸、妈妈和张紫亦发的总钱数, 平均每个人发$$225\\div 3=75$$(元), 爸爸发的最多一定大于$$75$$元,选项$$\\text{D}$$正确. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3212
5de2f99569c640e485593ec4ebbf7f26
[ "2008年第6届创新杯六年级竞赛初赛B卷第3题5分", "2008年六年级竞赛创新杯" ]
1
single_choice
在$$1\text{、}2\text{、}3\text{、}\cdots\text{、}100$$这$$100$$个整数中,能被$$2$$或$$3$$整除的数一共有( )。
[ [ { "aoVal": "A", "content": "$$85$$个 " } ], [ { "aoVal": "B", "content": "$$67$$个 " } ], [ { "aoVal": "C", "content": "$$34$$个 " } ], [ { "aoVal": "D", "content": "$$17$$个 " } ] ]
[ "拓展思维->拓展思维->计数模块->容斥原理->二量容斥" ]
[ "在$$1\\text{、}2\\text{、}3\\text{、}\\cdots\\text{、}100$$这$$100$$个整数中,$$2$$的倍数有$$50$$个,$$3$$的倍数有$$33$$个,$$6$$的倍数有$$16$$个,所以能被$$2$$或$$3$$整除的整数有$$50+33-16=67$$(个)。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1410
5eadc4231f3e444aab46ba23a02016ee
[ "2008年第6届创新杯五年级竞赛初赛B卷第3题5分" ]
1
single_choice
在植树节时,某班每人应平均植树$$6$$株,如果只由女生完成,每人应植$$15$$株,如果只由男生完成,则每人应植树株.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->多元一次方程解应用题->整数系数二元一次方程组解应用题" ]
[ "设全班有$$x$$人,女生有$$y$$人, 可得$$6x=15y$$, $$x:y=15:6$$, 所以女生占全班的$$6\\div 15=\\frac{6}{15}=\\frac{2}{5}$$, 男生占$$1-\\frac{2}{5}=\\frac{3}{5}$$, 总棵树不变,男生人数$$:$$女生人数$$=3:2$$, 故只由男生完成,男生应植树$$15\\times \\frac{2}{3}=10$$(株). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3156
0f032374f5cf4fb4bff2db0c3e573675
[ "2011年北京学而思杯五年级竞赛" ]
3
single_choice
有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?
[ [ { "aoVal": "A", "content": "$$37$$和$$18$$ " } ], [ { "aoVal": "B", "content": "$$74$$和$$3$$ " } ], [ { "aoVal": "C", "content": "$$74$$和$$3$$或$$37$$和$$18$$ " } ] ]
[ "知识标签->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "两位数中,数字相同的两位数有$$11$$、$$22$$、$$33$$、$$44$$、$$55$$、$$66$$、$$77$$、$$88$$、$$99$$共九个,它们中的每个数都可以表示成两个整数相加的形式,例如$$33=1+32=2+31=3+30=\\cdots \\cdots =16+17$$,共有$$16$$种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有$$111$$、$$222$$、$$333$$、$$444$$、$$555$$、$$666$$、$$777$$、$$888$$、$$999$$,每个数都是$$111$$的倍数,而$$111=37\\times 3$$,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是$$37$$或$$37$$的倍数,但只能是$$37$$的$$2$$倍(想想为什么?)$$3$$倍就不是两位数了. 把九个三位数分解:$$111=37\\times 3$$、$$222=37\\times 6=74\\times 3$$、$$333=37\\times 9$$、$$444=37\\times12=74\\times 6$$、$$555=37\\times 15$$、$$666=37\\times 18=74\\times 9$$、$$777=37\\times 21$$、$$888=37\\times24=74\\times 12$$、$$999=37\\times 27$$. 把两个因数相加,只有($$74+3$$)$$=77$$和($$37+18$$)$$=55$$的两位数字相同.所以满足题意的答案是$$74$$和$$3$$,$$37$$和$$18$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1237
797a8ce6570b4ee8a36b9a6522a0696d
[ "2018年第6届湖北长江杯六年级竞赛初赛B卷第10题3分" ]
1
single_choice
两桶食用油,从第一桶倒入第二桶$$18$$千克,两桶重量相等,现在第一桶用$$9$$分之$$7$$,第二桶用$$5$$分之$$3$$,两桶油剩下的重量相等,问两桶油原来各重多少千克?
[ [ { "aoVal": "A", "content": "$$66$$,$$30$$ " } ], [ { "aoVal": "B", "content": "$$72$$,$$36$$ " } ], [ { "aoVal": "C", "content": "$$81$$,$$45$$ " } ], [ { "aoVal": "D", "content": "$$90$$,$$54$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为从第一桶倒入第二桶$$18$$千克,两桶重量相等, 所以第一桶重量$$-$$第二桶重量$$=36$$千克,选项$$\\text{ABCD}$$都满足, 且知第一桶重量$$\\times \\frac{2}{9}=$$第二桶重量$$\\times \\frac{2}{5}$$,只有$$\\text{C}$$项满足, 故答案选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
36
d05731d5cc01463787d3a4b86d550413
[ "2015年第13届全国创新杯五年级竞赛复赛第8题" ]
3
single_choice
一副扑克牌去掉大、小王共有$$52$$张,最上面的一张是红桃$$K$$,如果每次把最上面的$$18$$张牌移到最下面而不改变他们的顺序,至少经过(~ )次移动,红桃$$K$$才会有出现在最上面.
[ [ { "aoVal": "A", "content": "$$13$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$26$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "每次移动$$18$$张,那么移动牌的总数是$$18$$的倍数,要使红桃$$K$$又出现在最上面,那么$$18\\times $$次数的乘积应该是$$52$$的倍数,那么至少是$$26$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1190
15a7393a02484bc082df07c2fc8b4901
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第1题" ]
2
single_choice
在$$A$$地植树$$400$$棵,$$B$$地植树$$600$$棵,甲、乙、丙每天分别能植树$$25$$、$$52$$、$$48$$棵,甲在$$A$$地、乙在$$B$$地、丙跨$$A$$与$$B$$两地,同时开始、同时结束,整个过程所用的时间是天.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->双工程问题" ]
[ "工程问题.从开始到结束三人一共用了$$(400+600)\\div (25+52+48)=1000\\div 125=8$$天. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2637
d5916431e63743e58331a33f7495a992
[ "2014年全国迎春杯五年级竞赛复赛第5题" ]
1
single_choice
算式$$826446281\times11\times 11$$的计算结果是.
[ [ { "aoVal": "A", "content": "$$9090909091$$ " } ], [ { "aoVal": "B", "content": "$$909090909091$$ " } ], [ { "aoVal": "C", "content": "$$10000000001$$ " } ], [ { "aoVal": "D", "content": "$$100000000001$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "根据$$11$$乘法的特征``两边一拉,中间相加''可得到结果D 本题考察乘$$11$$的速算诀窍. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
347
91b17dd1e25e4dd1a1d0d7dcf5b938fb
[ "2016年全国华杯赛小学中年级竞赛在线模拟第3题", "2013年全国华杯赛小学中年级竞赛初赛A卷第3题" ]
2
single_choice
小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的不对.他们之中只有一个人说对了,这个人是.
[ [ { "aoVal": "A", "content": "小东 " } ], [ { "aoVal": "B", "content": "小西 " } ], [ { "aoVal": "C", "content": "小南 " } ], [ { "aoVal": "D", "content": "小北 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "由于只有一个人说对了,而小北支持小东,那么他们俩都错了,所以反对小东的小南说对了. ", "<p>根据题干分析可得,小南与小北说的话是相互矛盾的,所以两人中一定有一个人说的是正确的,假设小北说的是正确的,则小南说&ldquo;小东说的不对&rdquo;是错,可得,小东说的对,这样与已知只有一个人说对了相矛盾,所以此假设不成立,故小南说的是正确的.</p>\n<p>故选:$$\\text{C}$$.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
690
6789a0f74b1649518d8d85a63bb5d556
[ "2007年第5届创新杯五年级竞赛第1题5分" ]
2
single_choice
从$$1000$$到$$2007$$的自然数中有奇数个因数的数有个.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "有奇数个因数的数必是完全平方数,如果不是完全平方数,它们的余数都是成对出现的,因此原题等价于求$$1000$$到$$2007$$之间的完全平方数,$${{32}^{2}}=1024$$,$${{33}^{2}}=1089$$,$${{34}^{2}}=1156$$,$$\\cdots \\cdots $$,$${{42}^{2}}=1764$$,$${{43}^{2}}=1849$$,$${{44}^{2}}=1936$$,$${{45}^{2}}=2025\\textgreater2007$$,所以一共有:$$44-32+1=13$$(个). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1568
ff808081451596cc014516b4bff0024b
[ "2014年北京五年级竞赛" ]
1
single_choice
等腰三角形底边上的高为$$8$$,周长为$$32$$,则三角形的面积为(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$48$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$321$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "底边上的高为$$8$$,高将等腰三角形分成了两个相等的直角三角形,周长为$$32\\div 2+8=24$$,其中一条直角边(高)为$$8$$另一条(底边的一半)记作$$a$$、则斜边(等腰三角形的腰)应为$$16-a$$,根据勾股定理$${{(16-a)}^{2}}={{8}^{2}}+{{a}^{2}}$$,求得$$a=6$$所以三角形的面积为$$48$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3
00afae649a0f4efc9f59b9671c1ae118
[ "2011年第7届全国新希望杯小学高年级六年级竞赛第6题4分" ]
2
single_choice
盒子里装有分别写着$$1$$,$$2$$,$$3$$,$$4$$,\ldots,$$100$$的黄色卡片各一张,我们称如下操作为一次操作;从盒子里取出$$m(7\leqslant m\leqslant 10)$$张卡片,算出这$$m$$张卡片上各数之和减去$$27$$的差,将写在一张红色卡片上(不放回).若干次操作之后,盒子里的卡片全部被取出,若所有红色卡片上的数字之和为$$n$$,那么$$n$$的最大可能值减去最小可能值等于.
[ [ { "aoVal": "A", "content": "$$108$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$88$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ], [ { "aoVal": "E", "content": "$$75$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "先算卡片的总值. 最小值$$100\\div 10=10$$次,共减$$10\\times 27$$; 最多$$14$$次,共减去$$14\\times 27$$, 因此差为$$(14-10)\\times 27=108$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
825
5c4df7410d614de492c7dd2240f31ed3
[ "2020年第23届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第3题3分" ]
1
single_choice
把一堆桃子分给若干只猴子,如果每只猴子分$$6$$个,剩$$57$$个桃子;如果每只猴子分$$9$$个,就有$$5$$只猴子一个也分不到,还有一只猴子只分到$$3$$个.那么,一共有个桃子.
[ [ { "aoVal": "A", "content": "$$216$$ " } ], [ { "aoVal": "B", "content": "$$324$$ " } ], [ { "aoVal": "C", "content": "$$273$$ " } ], [ { "aoVal": "D", "content": "$$301$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "如果每只猴子分$$6$$个,剩$$57$$个桃子;如果每只猴子分$$9$$个,就有$$5$$只猴子一个也分不到,还有一只猴子只分到$$3$$个,证明少了$$5\\times9+6=51$$(个),猴子共有:$$(57+51)\\div (9-6)=36$$(只);桃子共有:$$36\\times6+57=273$$(个) 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
576
0ab7295a27f042fabbdc344c3bc96cd3
[ "2017年IMAS小学高年级竞赛(第一轮)第14题4分" ]
1
single_choice
某公共汽车总站有两条路线,第一条每$$8$$分钟发一辆车、第二条每$$10$$分钟发一辆车,且在早上$$6:00$$两条路线同时发出第一辆车.请问下面哪一项是两条路线同时发车的时刻?
[ [ { "aoVal": "A", "content": "$$7:30$$ " } ], [ { "aoVal": "B", "content": "$$8:20$$ " } ], [ { "aoVal": "C", "content": "$$9:40$$ " } ], [ { "aoVal": "D", "content": "$$10:00$$ " } ], [ { "aoVal": "E", "content": "$$11:00$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "由题意可知,每隔$$\\left[ 8,10 \\right]=40$$分钟两条线路同时发出一辆车. 而$$7:30$$与$$6:00$$相差$$90$$分钟、$$8:20$$与$$6:00$$相差$$140$$分钟、$$9:40$$与$$6:00$$相差$$220$$分钟、$$10:00$$与$$6:00$$相差$$240$$分钟、$$11:00$$与$$6:00$$相差$$300$$分钟,其中仅$$10:00$$与$$6:00$$相差的分钟数是$$40$$的倍数. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
962
f4922c07a5634e64942115a5fed24673
[ "2017年第17届世奥赛六年级竞赛决赛第2题" ]
1
single_choice
通过下面算式观察个位上数字是$$5$$的数的平方: $${{15}^{2}}=225$$可写成$$100\times 1\times \left( 1+1 \right)+25$$ $${{25}^{2}}=625$$可写成$$100\times 2\times \left( 2+1 \right)+25$$ $${{35}^{2}}=1225$$可写成$$100\times 3\times \left( 3+1 \right)+25$$ $${{45}^{2}}=2025$$可写成$$100\times 4\times \left( 4+1 \right)+25$$······ 请你推测$${{\left( 10n+5 \right)}^{2}}$$可写成.
[ [ { "aoVal": "A", "content": "$$100n\\left( n+1 \\right)+25$$ " } ], [ { "aoVal": "B", "content": "$$100\\left( n+1 \\right)+25$$ " } ], [ { "aoVal": "C", "content": "$$100{{n}^{2}}+25$$ " } ], [ { "aoVal": "D", "content": "$$100{{n}^{2}}+100n+5$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->平方数的简单应用" ]
[ "$${{\\left( 10n+5 \\right)}^{2}}=100n\\left( n+1 \\right)+25=100{{n}^{2}}+100n+25$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3463
eb2c244e22764dc5ada2b8f122b7a667
[ "2017年北京迎春杯小学高年级五年级竞赛模拟" ]
3
single_choice
小悦与阿奇比赛下象棋,两人水平相当,约定赛$$7$$局,先赢$$4$$局者胜,现在已经比赛了$$3$$局,小悦胜了$$2$$局,阿奇胜了$$1$$局,请问:小悦最后胜利的概率有多少?
[ [ { "aoVal": "A", "content": "$$\\frac{3}{8}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{11}{16}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{16}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{7}{16}$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$\\rm B$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
207
70e30d127b0645fc8ea0277fcec0cad9
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
3
single_choice
有一天,彭老师和陈老师约好去打乒乓球,结果彭老师以$$4:0$$完虐陈老师.乒乓球比赛为$$11$$分制,即每局$$11$$分,$$7$$局$$4$$胜制,打成$$10:10$$后必须净胜而且只能净胜$$2$$分.经计算,彭老师四局的总得分为$$48$$分,陈老师总得分为$$39$$分,且每一局比赛分差不超过$$3$$分,则一共有(~ )种情况.(不考虑这四局比分之间的顺序)
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->单循环赛" ]
[ "每周比赛要分出胜负分差必须在$$2$$分或以上,题中又给出每局比赛分差不超过$$3$$分,故每局比赛的分差只有两种可能:差$$2$$分或$$3$$分.且分差为$$3$$分的那局彭老师得分为$$11$$分,总分差为$$4839=9$$分,故必有$$3$$场分差为$$2$$分,另一场分差为$$3$$分;即有一场的比分为$$118$$,另两场的总比分为$$3731$$,有以下四种情况:①$$11:9$$,$$11:9$$,$$15:13$$②$$11:9$$,$$12:10$$,$$14:12$$③$$11:9$$,$$13:11$$,$$13:11$$④$$12:10$$,$$12:10$$,$$13:11$$.故一共有$$4$$种情况. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2997
e9980a8868434ee3a5591426ae546c80
[ "其它改编自2015年全国希望杯六年级竞赛初赛第3题" ]
1
single_choice
观察下面一列数的规律.这列数从左往右第$$100$$个数是~\uline{~~~~~~~~~~}~. $$\frac{1}{2}$$,$$\frac{3}{5}$$,$$\frac{5}{8}$$,$$\frac{7}{11}$$,$$\frac{9}{14}$$,\ldots\ldots{}
[ [ { "aoVal": "A", "content": "$$\\frac{199}{302}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{201}{299}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{201}{302}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{199}{299}$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "分子是公差为$$2$$的等差数列,第$$100$$项是:$$1+\\left( 100-1 \\right)\\times 2=199$$, 分母是公差为$$3$$的等差数列,第$$100$$项是$$2+\\left( 100-1 \\right)\\times 3=299$$, 所以第$$100$$个数是$$\\frac{199}{299}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
841
a40ae920a7c9428681c5306ceb3d9a0b
[ "2017年河南郑州联合杯竞赛附加赛第一场第1题2分" ]
1
single_choice
王小天有若干张$$10$$元、$$5$$元的纸币,这两种纸币的张数相同,那么王小天可能有(~ )元钱.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$51$$ " } ], [ { "aoVal": "C", "content": "$$75$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "因为张数相同,所以先求出$$1$$张$$10$$元和$$5$$元共有$$15$$元,再看一下选项中哪个是$$15$$的倍数即可.容易看出$$C$$正确. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
165
23a9582fffa24ced904d5cc5409748bf
[ "2020年新希望杯二年级竞赛初赛(团战)第24题" ]
1
single_choice
有甲、乙、丙、丁四盘苹果,乙不是最多的,但比甲、丁多,甲没有丁多.按照苹果从少到多的顺序,四盘苹果分别是.
[ [ { "aoVal": "A", "content": "甲、丁、乙、丙 " } ], [ { "aoVal": "B", "content": "丙、甲、乙、丁 " } ], [ { "aoVal": "C", "content": "丙、乙、丁、甲 " } ], [ { "aoVal": "D", "content": "乙、丙、丁、甲 " } ], [ { "aoVal": "E", "content": "丙、甲、丁、乙 " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理" ]
[ "暂无 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1835
78b29284999e4b7bafb2afbe5d5a29ac
[ "2017年河南郑州联合杯竞赛第7题4分" ]
1
single_choice
小明买了一本$$513$$页的小说,数字$$1$$在页码中出现了(~ )次.
[ [ { "aoVal": "A", "content": "$$153$$ " } ], [ { "aoVal": "B", "content": "$$203$$ " } ], [ { "aoVal": "C", "content": "$$206$$ " } ], [ { "aoVal": "D", "content": "$$211$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "页码问题;$$1\\sim 99$$中数字``$$1$$''出现了$$20$$次,$$100\\sim 199$$中数字``$$1$$''出现了$$120$$个,剩下的$$200\\sim 500$$有$$3\\times 20=60$$(个),$$501\\sim 513$$中数字``$$1$$''出现了$$6$$次,所以一共有$$20+120+60+6=206$$(次). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1256
16e030a8b2984b08ab1356fa66d3baf5
[ "2014年第2届广东广州羊排赛六年级竞赛第3题1分" ]
1
single_choice
一班共有$$48$$名同学,那么男女生人数之比可能是.
[ [ { "aoVal": "A", "content": "$$5:4$$ " } ], [ { "aoVal": "B", "content": "$$6:5$$ " } ], [ { "aoVal": "C", "content": "$$7:4$$ " } ], [ { "aoVal": "D", "content": "$$7:5$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "人数为$$48$$,则比的总份数必须是$$48$$的因数,只有$$7+5=12$$符合. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1424
51402efb96f64ac199f7965ebbad9127
[ "2018年湖北武汉新希望杯五年级竞赛训练题(五)第1题" ]
2
single_choice
一队学生排成$$9$$行$$9$$列的方阵,如果去掉最外层$$2$$行$$2$$列,要减少人.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$34$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->方阵问题->实心方阵->实心方阵的增减" ]
[ "$$9\\times 9-7\\times 7=32$$(人). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1903
8f23a2291bc343088c473307c9ed143e
[ "2018年环亚太杯三年级竞赛初赛第12题" ]
1
single_choice
\textbf{(2009 Math kangaroo Problems, Level 1-2, Question \#7)} After Snow White, the Prince and the 7 Dwarfs ate one apple each, there were 4 apples left in the basket. How many apples were there in the basket before they ate any? 翻译:在白雪公主之后,王子和七个小矮人也每人吃了$$1$$个苹果,篮子里还剩下$$4$$个苹果.那么他们吃苹果之前篮子里有多少苹果?
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "吃掉的苹果加上篮子里剩下的苹果就是原来一共的苹果数量.白雪公主吃了一个苹果,王子吃了一个苹果,再加上七个小矮人各吃了一个苹果,所以一共吃了$$1+1+7=9$$个苹果,再加上篮子里还剩下的$$4$$个苹果,那么原来没吃苹果之前就有$$9+4=13$$个苹果. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2580
3583793597664660a2825db4dd025e7e
[ "2015年IMAS小学高年级竞赛第一轮检测试题第1题4分" ]
2
single_choice
请问算式$$32\times 37\times 75$$的值为多少?
[ [ { "aoVal": "A", "content": "$$88075$$ " } ], [ { "aoVal": "B", "content": "$$88800$$ " } ], [ { "aoVal": "C", "content": "$$88200$$ " } ], [ { "aoVal": "D", "content": "$$74000$$ " } ], [ { "aoVal": "E", "content": "$$80800$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$32\\times 37\\times 75$$ $$=4\\times 8\\times 37\\times 3\\times 25$$ $$=(4\\times 25)\\times (37\\times 3)\\times 8$$ $$=100\\times 111\\times 8$$ $$=88800$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
906
9c25d72396c541bd89ae5df62d7e5c5a
[ "2020年广东深圳龙岗区亚迪学校迎春杯五年级竞赛模拟第20题2分", "2019~2020学年陕西宝鸡渭滨区五年级上学期期末第22题1分", "2019~2020学年山东济南高新区五年级下学期期末第10题1分" ]
1
single_choice
在下面四组数中,组中的数都是质数.
[ [ { "aoVal": "A", "content": "$$31$$,$$71$$,$$91$$ " } ], [ { "aoVal": "B", "content": "$$13$$,$$21$$,$$37$$ " } ], [ { "aoVal": "C", "content": "$$17$$,$$37$$,$$85$$ " } ], [ { "aoVal": "D", "content": "$$43$$,$$53$$,$$73$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\text{A}$$中$$91$$不是质数,故$$\\text{A}$$错误; $$\\text{B}$$中$$$21$$不是质数,故$$\\text{B}$$错误. $$\\text{C}$$中$$85$$不是质数,故$$\\text{C}$$错误. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2828
d1a133cef0b6466e94b5fe8ca873440d
[ "2016年河南郑州K6联赛六年级竞赛第14题2分" ]
1
single_choice
把$$20$$克盐放入$$100$$克水中,盐与水的比、盐与盐水的比分别是(~ )和(~ ).
[ [ { "aoVal": "A", "content": "$$1:6$$和$$1:5$$ " } ], [ { "aoVal": "B", "content": "$$1:5$$和$$1:6$$ " } ], [ { "aoVal": "C", "content": "$$1:4$$和$$1:5$$ " } ], [ { "aoVal": "D", "content": "$$1:4$$和$$1:6$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "盐与水的比为$$20:100=1:5$$,盐与盐水的比是$$20:\\left( 20+100 \\right)=1:6$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3427
aeef0597581e4b54ac1e622b9829cd11
[ "2004年第2届创新杯五年级竞赛复赛第6题" ]
1
single_choice
在$$50$$束鲜花中,$$16$$束有月季花,$$15$$束有马蹄莲,$$21$$束有白兰花,有$$7$$束中既有月季花又有马蹄莲,有$$8$$束中既有马蹄莲又有白兰花,有$$10$$束中既有月季花又有白兰花,还有$$5$$束鲜花中,月季花、马蹄莲、白兰花都有.则$$50$$束鲜花中,上述三种花都没有的花束共有.
[ [ { "aoVal": "A", "content": "$$17$$束 " } ], [ { "aoVal": "B", "content": "$$18$$束 " } ], [ { "aoVal": "C", "content": "$$19$$束 " } ], [ { "aoVal": "D", "content": "$$20$$束 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "先求出有月季花、马蹄莲、白兰花的一共有多少束,然后减去有其中$$2$$种花的束数,再加上三种花都有束数,就是三种花至少有一种的有多少束,再用总数$$50$$束,减去至少有一种的束数,就是三种都没有的束数. $$3$$种花至少有一种的有: $$16+15+21-7-8-10+5$$ $$=52-\\left( 7+8+10 \\right)+5$$ $$=52-25+5$$ $$=32$$ (束) $$50-32=18$$ (束) 答:月季花、马蹄莲、白兰花三种花都没有的花束共有$$18$$束. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
898
f716d6e72b134ec8a3db13aba6ffbe95
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(二)" ]
2
single_choice
有一两位数$$N$$,在它的两头各添上一个$$1$$以后就变成一个四位的数$$M$$.若$$M$$是$$N$$的$$23$$倍,那么当$$M$$最小时,$$N$$的值是(~ ).
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$77$$ " } ], [ { "aoVal": "C", "content": "$$160$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "由整除关系容易得到$$N$$的最后一位是$$7$$,显然$$N=7$$不成立,即$$K$$大于等于$$2$$,于是当$$K$$大于等于$$2$$时可以设$$N\\text{=X7}$$(表示$$X$$与$$7$$连在一起,$$X$$是一个数,不是$$X*7$$,例如$$N=857$$,则$$\\text{X=85}$$),于是$$\\text{M=1X71}$$(同上,时表示连在一起的数),把$$M$$、$$N$$表示如下:$$M={{10}^{\\wedge }}\\left( K+1 \\right)+X*100+71$$,$$N=10*X+7$$,由条件$$M=23*N$$,展开$${{10}^{\\wedge }}\\left( K+1 \\right)+X*100+71=\\left( 10*7 \\right)*23=230*X+161$$,化简得$${{10}^{\\wedge }}K=13*X+9$$,容易看出,当$$K=2$$时,$$X=7$$符合条件,所以$$K$$最小为$$2$$时,$$N=7$$,$$\\text{M=1771}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
869
ad8ad067ffea4aefb8120119eefbb100
[ "2013年华杯赛六年级竞赛初赛" ]
2
single_choice
从$$1\sim 11$$这$$11$$个整数中任意取出$$6$$个数,则下列结论正确的有( )个。 ①其中必有两个数互质; ②其中必有一个数是其中另一个数的倍数; ③其中必有一个数的$$2$$倍是其中另一个数的倍数。
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$0$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "($$1$$)根据互质数的意义,公因数只有$$1$$的两个数叫做互质数,在这$$11$$个中,质数有$$2$$、$$3$$、$$5$$、$$7$$、$$11$$,任何两个质数一定是互质数,又因为在这$$11$$个数中偶数有$$2$$、$$4$$、$$6$$、$$8$$、$$10$$五个,奇数有六个,所以任意取出$$6$$个数,其中必有两个数互质。 ($$2$$)比如取$$5$$个偶数一个奇数,在这$$5$$个偶数中$$4$$、$$6$$、$$8$$、$$10$$都是$$2$$的倍数,如果取$$1$$、$$3$$、$$5$$、$$7$$、$$9$$、$$11$$,其中$$9$$是$$3$$的倍数;如果取$$6$$、$$7$$、$$8$$、$$9$$、$$10$$、$$11$$,就没有倍数关系; ($$3$$)比如$$1$$的$$2$$倍是$$2$$,$$2$$是$$2$$的倍数,$$2$$的$$2$$倍是$$4$$,$$4$$是$$4$$的倍数.据此解答。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
607
10612f786d98473682cdaba3ad156342
[ "2014年全国创新杯五年级竞赛第1题5分" ]
0
single_choice
在整数$$0$$、$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$中,质数的个数为$$x$$,偶数有$$y$$个,完全平方数的个数为$$z$$.则$$x+y+z$$ 等于.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->平方数的简单应用" ]
[ "质数有$$4$$个,偶数有$$5$$个,完全平方数有$$4$$个($$0$$也是)$$4+5+4=13$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2311
fc819369ac714decb680f537d9d7fcf7
[ "2010年第8届创新杯六年级竞赛初赛第1题4分", "2010年六年级竞赛创新杯" ]
1
single_choice
因武汉白沙洲大桥维修造成堵车,某人上班车速降低了$$\frac{1}{7}$$,那么他在路上的时间增加了( )。
[ [ { "aoVal": "A", "content": "$$\\frac{1}{6}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{7}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{9}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例" ]
[ "速度比为$${{v}_{1}}:{{v}_{2}}=1:\\left( 1-\\frac{1}{7} \\right)=7:6$$,路程一定,时间比为$${{t}_{1}}:{{t}_{2}}=6:7$$,则在路上的时间增加了$$\\frac{1}{6}$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2909
b6c44fdba1ab41729c9e29eae637c94c
[ "2014年IMAS小学高年级竞赛第一轮检测试题第8题3分" ]
2
single_choice
把数$$38$$、$$79$$、$$17$$、$$43$$、$$74$$、$$96$$、$$87$$重新排成一排,使得从第二个数开始,每个数的十位数码都等于前一个数的个位数码,请问排列后第四个数是什么?
[ [ { "aoVal": "A", "content": "$$38$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$17$$ " } ], [ { "aoVal": "D", "content": "$$96$$ " } ], [ { "aoVal": "E", "content": "$$87$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "重新排列后,除了最前面与最后面的数码外,每个数码都要出现偶数次,现只有数码$$1$$与$$6$$各出现一次,故$$17$$必须是第一个数,接下来的排列方式为:$$17$$、$$74$$、$$43$$、$$38$$、$$87$$、$$79$$、$$96$$,故第四个数是$$38$$.故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2719
ff8080814502fa24014503a78d2001ad
[ "2014年全国迎春杯六年级竞赛初赛第8题" ]
1
single_choice
算式$$2013\times \frac{2015}{2014}+2014\times\frac{2016}{2015}+\frac{4029}{2014\times 2015}$$计算结果是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "$$4027$$ " } ], [ { "aoVal": "B", "content": "$$4029$$ " } ], [ { "aoVal": "C", "content": "$$2013$$ " } ], [ { "aoVal": "D", "content": "$$2015$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数运算->分数四则混合运算" ]
[ "$$2013\\times \\frac{2015}{2014}\\textgreater2013$$,$$2014\\times\\frac{2016}{2015}\\textgreater2014$$结果大于$$4027$$.结果为B. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1618
df3bbbfb45764573aebf4551d7cbfe46
[ "2013年华杯赛四年级竞赛初赛" ]
2
single_choice
三个自然数$$A$$、$$B$$、$$C$$之和是$$111$$,已知$$A$$、$$B$$的平均数是$$31$$,$$A$$、$$C$$的平均数是$$37$$.那么$$B$$、$$C$$的平均数是.
[ [ { "aoVal": "A", "content": "$$34$$ " } ], [ { "aoVal": "B", "content": "$$37$$ " } ], [ { "aoVal": "C", "content": "$$43$$ " } ], [ { "aoVal": "D", "content": "$$68$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "$$C=111-31\\times 2=49$$ $$B=111-37\\times 2=37$$ $$\\left( 49+37 \\right)\\div 2$$ $$=86\\div 2$$ $$=43$$ 答:$$B$$、$$C$$的平均数是$$43$$. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2423
0c5127c0f1df4291b69770c82e65dd35
[ "2009年六年级竞赛创新杯" ]
2
single_choice
$$4$$吨葡萄在新疆测得含水量为$$55 \%$$,运抵武昌后测得含水量为$$40 \%$$,运抵武昌后葡萄剩下( )吨。
[ [ { "aoVal": "A", "content": "1 " } ], [ { "aoVal": "B", "content": "2 " } ], [ { "aoVal": "C", "content": "3 " } ], [ { "aoVal": "D", "content": "4 " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->一元一次方程->分数、小数系数方程" ]
[ "不妨称不含水的葡萄为``干葡萄''。设运抵武昌后葡萄还剩$$x$$吨,由于运输途中``干葡萄''的重量不变,所以$$x\\times \\left( 1-40 \\% \\right)=4\\times \\left( 1-55 \\% \\right)$$,解得$$x=3$$,所以运抵武昌后葡萄剩下$$3$$吨。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2073
cb77a07e035e4f0ea983bc190a21f345
[ "2019年第7届湖北长江杯六年级竞赛复赛A卷第2题3分" ]
2
single_choice
在含盐为$$5 \%$$的$$100$$克盐水中,再分别加入$$10$$克盐和$$40$$克水后,盐与水的比是.
[ [ { "aoVal": "A", "content": "$$20:1$$ " } ], [ { "aoVal": "B", "content": "$$1:10$$ " } ], [ { "aoVal": "C", "content": "$$10:9$$ " } ], [ { "aoVal": "D", "content": "$$1:9$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "原有的盐有$$100$$克$$\\times 5 \\%=5$$克,所以原有水$$95$$克. 加入$$10$$克盐和$$40$$克水后,有盐$$5$$克$$+10$$克$$=15$$克,有水$$95$$克$$+40$$克$$=135$$克. 所以盐$$:$$水$$=15$$克$$:135$$克$$=1:9$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
779
9ec053c8620a446cbb3e12199c3d0723
[ "2017年全国美国数学大联盟杯小学中年级四年级竞赛初赛" ]
1
single_choice
一群$$5$$至$$12$$岁的孩子去看电影.这些孩子的年龄的乘积是$$3080$$.请问这些孩子的年龄的和是多少?
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$31$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$33$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$3080=2^{3}\\times5\\times7\\times11$$, $$5+7+8+11=31$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
321
64ee522b1fce495fadde8a1fb8fea49c
[ "2022年陕西西安六年级下学期小升初模拟《推理问题》第9题", "2016年陕西西安小升初工大附中入学真题4第10题", "2021年陕西西安碑林区西安铁一中龙岗中学小升初(三)第10题3分", "2016年陕西西安小升初工大附中", "2010年天津陈省身杯三年级竞赛第13题" ]
2
single_choice
甲、乙、丙三个同学中有一个人在同学们都不在时把教室打扫干净,事后老师问他们是谁做的好事,甲说:``是乙干的'',乙说:``不是我干的'',丙说:``不是我干的'',如果他们中有两人说了谎话,一个人说的是真话,由此断定是~\uline{~~~~~~~~~~}~干的.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "这是逻辑推理题,理清思路即可.假设甲说的是真话,那么是乙干的,这时丙说的话是真话,与只有一人说真话产生矛盾,因此甲说的是假话,即不是乙干的,所以乙说的是真话,从而丙说的是假话,故是丙干的. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
110
829a014c892748f98cc1749659eabb88
[ "2016年环亚太杯三年级竞赛初赛第9题" ]
2
single_choice
现有甲、乙两个水桶,甲桶容量$7$公升,乙桶容量$$3$$公升,甲桶装满了水,甲桶给乙桶~\uline{~~~~~~~~~~}~公升的水后,两桶的水一样多.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$2.5$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$3.5$$ " } ], [ { "aoVal": "F", "content": "$$4.5$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "课内体系->知识点->数学广角->优化->解决问题策略" ]
[ "$$\\frac{7}{2}=3.5$$公升$$\\textgreater3$$公升,所以只能将$$3$$公升的水桶装满,且$$7$$公升水桶中仍有$$3$$公升,则$$7-3=4$$公升,即给$$4$$公升水给$$3$$公升水桶,则$$1$$公升溢出,两个容器水一样多. 故答案为:$$4$$.选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2076
c7022107f51e4dd2b7ff8816327b2421
[ "2008年六年级竞赛创新杯" ]
1
single_choice
李平的妈妈买了几瓶饮料。第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李平招待同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李平又喝了第二天剩下的饮料的一半零半瓶。这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有( )。
[ [ { "aoVal": "A", "content": "$$5$$瓶 " } ], [ { "aoVal": "B", "content": "$$6$$瓶 " } ], [ { "aoVal": "C", "content": "$$7$$瓶 " } ], [ { "aoVal": "D", "content": "$$8$$瓶 " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "对每个选项进行检验,如($$C$$):$$7$$瓶,第一天喝了$$3.5+0.5=4$$(瓶),剩下$$3$$瓶;第二天喝了$$1.5+0.5=2$$(瓶),剩下$$1$$瓶;第三天喝了$$0.5+0.5=1$$(瓶),正好把妈妈买的$$7$$瓶饮料喝光。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2425
33b58a81569849d58e033b512a8e006b
[ "2019年美国数学大联盟杯五年级竞赛初赛第1题5分" ]
1
single_choice
与$$60\times 120$$结果相同的算式是.
[ [ { "aoVal": "A", "content": "$$180+240$$ " } ], [ { "aoVal": "B", "content": "$$180+540$$ " } ], [ { "aoVal": "C", "content": "$$1800+2400$$ " } ], [ { "aoVal": "D", "content": "$$1800+5400$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$60\\times 120=7200$$, $$\\text{A}$$选项中,$$180+240=420$$; $$\\text{B}$$选项中,$$180+540=720$$; $$\\text{C}$$选项中,$$1800+2400=4200$$; $$\\text{D}$$选项中,$$1800+5400=7200$$. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2681
3318b34321154e14ae48b27ccb416719
[ "2006年第4届创新杯六年级竞赛初赛B卷第1题" ]
1
single_choice
完成一件工作,甲要$$\frac{1}{5}$$小时,乙要$$\frac{1}{3}$$小时,甲与乙的工作效率比是.
[ [ { "aoVal": "A", "content": "$$2:6$$ " } ], [ { "aoVal": "B", "content": "$$5:3$$ " } ], [ { "aoVal": "C", "content": "$$3:5$$ " } ], [ { "aoVal": "D", "content": "$$6:2$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "把工作总量看作``$$1$$'',根据工作总量$$\\div $$工作时间$$=$$工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比. $$\\left( 1\\div \\frac{1}{5} \\right):\\left( 1\\div \\frac{1}{3} \\right)=5:3$$. 答:甲与乙的工作效率比是$$5:3$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1071
98a40144b7664e388f5d22f8945abaa0
[ "2017年第13届湖北武汉新希望杯六年级竞赛决赛第5题" ]
2
single_choice
《学而思外思班终极秘籍》的正文共$$193$$页,页码是从$$1$$到$$3$$位的连续自然数,这本书正文的页码共有个数码``$$1$$''.
[ [ { "aoVal": "A", "content": "$$131$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$133$$ " } ], [ { "aoVal": "D", "content": "$$134$$ " } ] ]
[ "拓展思维->知识点->应用题模块->页码问题->数码综合问题", "课内体系->七大能力->逻辑分析" ]
[ "百位上是$$1$$:$$100$ $193$$共$$94$$个; 十位上是$$1$$:$$10$ $19$$,$$110$ $119$$共$$20$$个; 个位上是$$1$$:$$1,11,21,31,\\cdot \\cdot \\cdot \\cdot \\cdot \\cdot 191$$共$$20$$个; 总共$$94+20+20=134$$(个). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2706
7f5fafe0caa44f569755e91c09d7f21b
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
下列算式结果为$$500$$的是( )
[ [ { "aoVal": "A", "content": "$$5\\times 99+1$$ " } ], [ { "aoVal": "B", "content": "$$100+25\\times 4$$ " } ], [ { "aoVal": "C", "content": "$$88\\times 4\\text{ }+37\\times 4$$ " } ], [ { "aoVal": "D", "content": "$$100\\times 0\\times 5$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "$$88\\times 4+37\\times 4=\\left( 88+37 \\right)\\times 4=125\\times 4=500$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2384
3cbc83dfef144ab7abc8dbf6c232db57
[ "2017年第22届湖北武汉华杯赛三年级竞赛复赛(华罗庚金杯)第1题10分" ]
1
single_choice
计算$$(888+777)\div (666+555+444)=$$.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "前后括号同时除以$$111$$,即$$(8+7)\\div (6+5+4)=1$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3213
1f0ba593d63c4492aa3811de7bfafb36
[ "2008年第6届创新杯四年级竞赛初赛A卷第4题5分", "2008年四年级竞赛创新杯" ]
2
single_choice
如果两个四位数的差等于2008,我们就称这两个四位数组成了一个``创新数对'',那么``创新数对''共有( )个.
[ [ { "aoVal": "A", "content": "6991 " } ], [ { "aoVal": "B", "content": "6992 " } ], [ { "aoVal": "C", "content": "6993 " } ], [ { "aoVal": "D", "content": "6994 " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "在这些``创新数对''中,被减数最大的是9999,此时减数是7991,而减数最小的为1000,所以``创新数对''共有$$7991-1000+1=6992$$个 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1958
aa9e8b3810fd40f3b4db0fd0cb7d3bae
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第1题5分" ]
1
single_choice
小东看叔叔锯木头,锯一次需要用时$$3$$分,最后叔叔把木头锯成$$4$$段,叔叔请小东算算,他一共用了分.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->锯木头类型问题" ]
[ "锯成$$4$$段,则需要锯$$3$$次,则所花时间为:$$3+3+3=9$$(分). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2398
0f8c10f8623e4e1798c6c1e578b2e0cd
[ "2017年陕西西安碑林区西北工业大学附属中学小升初(二)第3题3分", "2017年陕西西安碑林区西北工业大学附属中学小升初(十)第3题3分", "2016年创新杯六年级竞赛训练题(四)第4题", "2017年陕西西安小升初某工大附中", "2018年湖南长沙雨花区中雅培粹中学小升初第3题3分", "2018年陕西西安小升初分类卷15第5题" ]
2
single_choice
($$2018$$.ZY)盒子中原来有$$7$$个小球,魔术师从中任取几个小球,把每一个小球都变成$$7$$个小球放回盒中;他又从中任取一些小球,把每一个小球又都变成$$7$$个小球放回盒中;如此进行,到某一时刻魔术师停止取球变魔术,此时盒中球的总数可能是.
[ [ { "aoVal": "A", "content": "$$2018$$ " } ], [ { "aoVal": "B", "content": "$$2017$$ " } ], [ { "aoVal": "C", "content": "$$2016$$ " } ], [ { "aoVal": "D", "content": "$$2015$$ " } ] ]
[ "拓展思维->能力->抽象概括" ]
[ "每取出$$1$$个,盒中就增加$$6$$个,有$$7+6n=2017$$,∴$$n=335$$. 而$$\\rm A$$中,$$7+6n=2018$$,$$\\rm C$$中$$7+6n=2016$$,$$\\text{D}$$中$$7+6n=2015$$,$$n$$都不为整数. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2261
893b500eb7e34a64a8399bfe582d3899
[ "2014年全国华杯赛小学高年级竞赛初赛B卷第4题" ]
1
single_choice
小华下午$$2$$点要到少年宫参加活动,但他的手表每个小时快了$$4$$分钟,他特意在上午$$10$$点时对好了表.当小华按照自己的表于下午$$2$$点到少年宫时,实际早到了分钟.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "小华所带的``快表''每小时快了$$4$$分钟,说明准确时间走$$60$$分钟的时候,``快表''已经走了$$64$$分钟了,这样我们就可以得到$$\\frac{快表}{准表}=\\frac{64}{60}=\\frac{16}{15}$$;现在快表走了$$4\\times60=240$$,那么标准表走了$$240\\times 15\\div 16=225$$;所以实际上早到了$$240-225=15$$,选$$B$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2663
681c654c41c3450aaa595f05f4863d94
[ "2020年希望杯一年级竞赛模拟第29题" ]
1
single_choice
下面的算式中,相同的图形代表相同的数,不同的图形代表不同的数. $$\square +\square +\square =\triangle +\triangle $$ $$\triangle =\bigcirc +\bigcirc +\bigcirc $$ $$\square =?$$.
[ [ { "aoVal": "A", "content": "$$\\bigcirc +\\bigcirc $$ " } ], [ { "aoVal": "B", "content": "$$\\bigcirc +\\bigcirc+\\bigcirc $$ " } ], [ { "aoVal": "C", "content": "$$\\bigcirc +\\bigcirc+\\bigcirc +\\bigcirc $$ " } ], [ { "aoVal": "D", "content": "$$\\bigcirc +\\bigcirc+\\bigcirc +\\bigcirc +\\bigcirc $$ " } ], [ { "aoVal": "E", "content": "$$\\bigcirc +\\bigcirc+\\bigcirc +\\bigcirc +\\bigcirc +\\bigcirc $$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->等量代换->可直接计算的算式代换" ]
[ "看图可知$$3$$个正方形相加$$=2$$个三角形相加,$$1$$个三角形$$=3$$个圆形相加,所以$$2$$个三角形$$=3+3=6$$(个)圆形相加,所以$$3$$个正方形相加$$=6$$个圆形相加,可以得到$$1$$个正方形$$=2$$个圆形相加,故选项$$\\text{A}$$正确. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
483
c5d785a46c2840589896d936a8f39ae2
[ "2012年全国创新杯五年级竞赛第6题5分" ]
1
single_choice
将$$1$$、$$2$$、$$3$$、$$4\cdot \cdot \cdot 28$$、$$29$$、$$30$$这$$30$$个数从左往右依次排列成一个$$51$$位数,这个数被$$9$$除的余数是(~ ).
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$123\\cdot \\cdot \\cdot 9$$为$$9$$的倍数;$$1011\\cdot \\cdot \\cdot 27$$为$$9$$的倍数;$$282930$$的数字和为$$24$$,除以$$9$$ 余$$6$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2544
236749d1129341aeb6ef06cf64768dbd
[ "2018年湖北武汉新希望杯六年级竞赛训练题(一)第4题", "2017年新希望杯六年级竞赛训练题(一)第4题" ]
2
single_choice
将四个分数按从小到大的顺序排列,正确的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{14}\\textless{}\\frac{10}{27}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{12}{31}\\textless{}\\frac{20}{53}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{27}\\textless{}\\frac{5}{14}\\textless{}\\frac{20}{53}\\textless{}\\frac{12}{31}$$ " } ] ]
[ "拓展思维->能力->数感认知->分数数字加工" ]
[ "通分子$$\\frac{5}{14}=\\frac{60}{168}$$, $$\\frac{10}{27}=\\frac{60}{162}$$, $$\\frac{12}{31}=\\frac{60}{155}$$, $$\\frac{20}{53}=\\frac{60}{159}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2737
452746b988a74128a12efd99e38ac8d3
[ "2013年河南郑州中原网杯小学高年级六年级竞赛初赛" ]
3
single_choice
有$$10$$个表面涂红色的正方体,它们的棱长分别是$$1$$,$$2$$,$$3$$,$$\cdot \cdot \cdot $$,$$10$$厘米,如果把这些正方体全部割成棱长为$$1\text{cm}$$的小正方体,在这些小正方体中至少有一面是红色的块数是(~ ).
[ [ { "aoVal": "A", "content": "$$1000$$ " } ], [ { "aoVal": "B", "content": "$$1250$$ " } ], [ { "aoVal": "C", "content": "$$1729$$ " } ], [ { "aoVal": "D", "content": "$$2009$$ " } ] ]
[ "拓展思维->能力->图形认知" ]
[ "求至少有一面的块数我们可以先求一面都没有的块数,从第三个正方体开始我们可以去掉外层的正方体得到中间的$$1$$个正方体,以此类推可得到一组新的正方体,$$1$$,$$2$$,$$3$$,$$\\cdot \\cdot \\cdot $$,$$8$$,那我们就可以按照块数得到一组新的数列$${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\\cdot \\cdot \\cdot +{{8}^{3}}=1296$$,而总块数是$${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\\cdot \\cdot \\cdot +{{10}^{3}}=3025$$,则至少有一面的块数为$$3025-1296=1729$$个.数列立方和公式:$$1+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+\\cdot \\cdot \\cdot +{{n}^{3}}={{\\left[ \\frac{n\\left( n+1 \\right)}{2} \\right]}^{2}}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
104
de6ae5eeea9143b39516551c35658c17
[ "2019年第24届YMO五年级竞赛决赛第6题3分", "2020年第24届YMO五年级竞赛决赛第6题3分" ]
1
single_choice
2020第$$24$$届$$YMO$$五年级决赛 小$$Y$$、小$$M$$、小$$O$$、小$$T$$四人中只有$$1$$人会开车.小$$Y$$说:``我会开''.小$$M$$说:``我不会开''.小$$O$$说:``小$$Y$$不会开''.小$$T$$什么也没说.已知小$$Y$$、小$$M$$、小$$O$$三人只有一人说了真话.会开车的是.
[ [ { "aoVal": "A", "content": "小$$Y$$ " } ], [ { "aoVal": "B", "content": "小$$M$$ " } ], [ { "aoVal": "C", "content": "小$$O$$ " } ], [ { "aoVal": "D", "content": "小$$T$$ " } ] ]
[ "Overseas Competition->知识点->组合模块->逻辑推理", "拓展思维->能力->创新思维" ]
[ "对比发现,小$$O$$与小$$Y$$说的矛盾,相互对立, 则小$$O$$与小$$Y$$必一对一错, 则小$$M$$说假话,则小$$M$$会开车,选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3041
d7dc6f1e927c4b778a90fef6815e071e
[ "2016年第3届广东深圳鹏程杯小学高年级六年级竞赛集训材料第十章从算术到代数第6题" ]
2
single_choice
解下列方程: 已知关于$$x$$的方程$$2(x+1)=3(x-1)$$的解为$$a+2$$,求关于$$y$$方程$$2[2(y+3)-3(y-a)]=3a$$的解.
[ [ { "aoVal": "A", "content": "$$y=7\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$y=8\\frac{1}{2}$$ " } ], [ { "aoVal": "C", "content": "$$y=9\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$y=10\\frac{1}{2}$$ " } ] ]
[ "知识标签->课内知识点->式与方程->简易方程(一元一次)->解简易方程->整数简易方程" ]
[ "解:把$$a+2$$代入方程$$2(x+1)=3(x-1)$$ 得:$$2(a+2+1)=3(a+2-1)$$ $$2(a+3)=3(a+1)$$ $$2a+6=3a+3$$ $$3=3a-2a$$ $$a=3$$ 把$$a=3$$代入方程$$2[2(y+3)-3(y-a)]=3a$$ 得:$$2[2(y+3)-3(y-3)]=3\\times 3$$ $$2(2y+6-3y+9)=9$$ $$2(15-y)=9$$ $$30-2y=9$$ $$30-9=2y$$ $$21=2y$$ $$y=10\\frac{1}{2}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1416
5a2dd8297c254dc7b2e9df9688c93dee
[ "2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛决赛第10题5分" ]
1
single_choice
有两个同样的仓库,搬运完其中一个仓库的货物,甲需要$$6$$小时,乙需要$$7$$小时,丙需要$$14$$小时.甲、乙同时开始各搬运一个仓库的货物,开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.丙从一个仓库到另一个仓库的时间忽略不计.则丙帮甲搬了小时.
[ [ { "aoVal": "A", "content": "$$1.5$$ " } ], [ { "aoVal": "B", "content": "$$1\\frac{3}{4}$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3\\frac{1}{2}$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "本题主要考查分数的应用, 首先计算出三个人搬仓库用时,再分别计算甲、乙完成了多少, 然后可知丙完成的为$$1$$减去甲的完成量加上$$1$$减去乙的完成量, 再计算丙帮甲、乙分别用时即可, 三个人都搬了同样长的时间, 甲每小时搬$$\\frac{1}{6}$$,乙每小时搬$$\\frac{1}{7}$$,丙每小时搬$$\\frac{1}{14}$$, 三人每小时共可般$$\\frac{1}{6}+\\frac{1}{7}+\\frac{1}{14}=\\frac{8}{21}$$, 则搬完两个仓库共要$$2\\div \\frac{8}{21}=\\frac{21}{4}$$时, 即三人都同样工作了$$\\frac{21}{4}$$小时, 而$$\\frac{21}{4}$$小时内甲完成$$\\frac{21}{4}\\times \\frac{1}{6}=\\frac{7}{8}$$, 乙完成$$\\frac{21}{4}\\times \\frac{1}{7}=\\frac{3}{4}$$, 即甲有$$\\frac{1}{8}$$是丙完成的,乙有$$\\frac{1}{4}$$是丙帮忙完成的, 丙帮甲、乙分别用时$$\\frac{1}{8}\\div \\frac{1}{14}=\\frac{7}{4}$$时,$$\\frac{1}{4}\\div \\frac{1}{14}=\\frac{7}{2}$$小时. 答:丙帮甲、乙分别用时$$\\frac{7}{4}$$时、$$\\frac{7}{2}小时$$, $$\\frac{7}{4}=1\\frac{3}{4}$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1273
8b3805873c4c4beca708ca8913000c27
[ "2016年新希望杯六年级竞赛训练题(二)第3题" ]
2
single_choice
办公室有甲、乙、丙、丁$$4$$位同事,甲比乙大$$5$$岁,丙比丁大$$2$$岁.丁$$3$$年前参加工作,当时$$22$$岁.他们四人现在的年龄之和为$$127$$岁.那么乙现在的年龄是(~ )岁.~
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "丁今年$$22+3=25$$(岁),丙今年$$25+2=27$$(岁),甲、乙年龄和是$$127-25-27=75$$(岁),甲比乙大$$5$$岁,则乙的年龄是$$\\left( 75-5 \\right)\\div 2=35$$(岁). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1899
e05dafa3119b42f6888b353f8fc17df5
[ "2011年全国美国数学大联盟杯小学高年级五年级竞赛初赛第32题" ]
1
single_choice
我班上男生和女生的比例是$$3:4$$.请问我班上可能有多少名学生?
[ [ { "aoVal": "A", "content": "$$120$$ " } ], [ { "aoVal": "B", "content": "$$70$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "是$$3+4=7$$的倍数. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2958
86749103e58f4161ac2cf263b706100b
[ "2021年第8届鹏程杯四年级竞赛初赛第2题4分" ]
1
single_choice
计算:$$2020\times 20212021-2021\times 20202020=$$.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2020$$ " } ], [ { "aoVal": "D", "content": "$$2021$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "原式$$=2020\\times 2021\\times 10001-2021\\times 2020\\times 10001=0$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2513
1e9dc6b3183546c89fa079b3e4b4e78e
[ "2020年希望杯六年级竞赛模拟第25题" ]
1
single_choice
比较大小: $$1+\frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}+\frac{1}{{{4}^{2}}}+\cdots +\frac{1}{{{2020}^{2}}}$$~\uline{~~~~~~~~~~}~$$2$$.
[ [ { "aoVal": "A", "content": "$$\\textgreater$$ " } ], [ { "aoVal": "B", "content": "$$\\textless{}$$ " } ], [ { "aoVal": "C", "content": "$$=$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为$$\\frac{1}{{{2}^{2}}}\\textless{}\\frac{1}{1\\times 2}$$,$$\\frac{1}{{{3}^{2}}}\\textless{}\\frac{1}{2\\times 3}$$,$$\\frac{1}{{{4}^{2}}}\\textless{}\\frac{1}{3\\times 4}$$, 所以$$\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\frac{1}{{{4}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}}\\textless{}\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{2019\\times 2020}$$, 因为$$\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\frac{1}{3\\times 4}\\cdots +\\frac{1}{2019\\times 2020}$$ $$=1-\\frac{1}{2}+\\frac{1}{2}-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{4}+\\cdots +\\frac{1}{2019}-\\frac{1}{2020}$$ $$=1-\\frac{1}{2020}$$ $$=\\frac{2019}{2020}$$, 所以$$\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}}\\textless{}\\frac{2019}{2020}$$, 所以$$1+\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\frac{1}{{{4}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}}\\textless{}2$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
91
a21645299bc34646bc42929ae153cf3e
[ "2006年五年级竞赛创新杯", "2006年第4届创新杯五年级竞赛初赛A卷第3题" ]
1
single_choice
五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且其中得分最高为90分,那么得分最低的选手至少得( )分.
[ [ { "aoVal": "A", "content": "45 " } ], [ { "aoVal": "B", "content": "50 " } ], [ { "aoVal": "C", "content": "55 " } ], [ { "aoVal": "D", "content": "60 " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "要使某选手得分最低,其他选手得分必须尽可能的高,又知每人得分互不相同,所以前四名选手得分依次为90,89,88,87,因此,得出得分最低的选手至少得$$404-\\left( 90+89+88+87 \\right)=50$$分 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
459
aa34f1fbfb8b4b58b74958d081562271
[ "2019年第7届湖北长江杯六年级竞赛复赛B卷第2题3分" ]
1
single_choice
有$$16$$个外形完全相同的小零件,其中$$15$$个是正品,$$1$$个是次品,正品重量都相等,次品比正品稍重一些,一架无砝码的天平至少称次可把次品找出来.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "天平是用来称量物体质量的工具,此题并不是称量物体的质量,而是使用天平来比较物体质量的大小,所以,在调好的天平两盘中分别放上物体,当哪边的托盘上升,则说明这边托盘中的物体质量偏小. 将$$16$$个零件分成$$6$$、$$6$$、$$4$$三组,先称量$$6$$,$$6$$的一组如果重量相等,则将$$4$$的那一组分为$$2$$,$$2$$的两组,接着称量,找出较重的一组,分为$$1$$,$$1$$的两组,进行第三次称量,找出次品;如果$$6$$,$$6$$的重量不相等,找出较重的一组分为$$3$$,$$3$$的两组,进行第二次称量,找出较重的一组,分为$$1$$,$$1$$,$$1$$的三组,任意挑选其中的两个,如果重量一样,那么另一个就是次品,再或者可以直接称量出来.这样只需$$3$$次即可找出次品. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3342
ed2a7153c7664f1c87691c6ac0725f74
[ "2022年袋鼠数学竞赛(Math Kangaroo)小学高年级竞赛第19题4分" ]
1
single_choice
丽丽有 4 只狗,每只狗的体重都是整数 kg,且重量各不相同.已知它们的总重量为 60kg,第二重的狗有 28kg.请问第三重的狗体重是?
[ [ { "aoVal": "A", "content": "$$2kg$$ " } ], [ { "aoVal": "B", "content": "$$3kg$$ " } ], [ { "aoVal": "C", "content": "$$4kg$$ " } ], [ { "aoVal": "D", "content": "$$5kg$$ " } ], [ { "aoVal": "E", "content": "$$6kg$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->整数分拆" ]
[ "According to the given information, the 2nd heaviest dog is 28kg, so the sum of the remaining 3 dogs is: 60 - 28 = 32kg. So the heaviest one has at least 29kg, and the sum of the weight of the 2 remaining dogs is 3kg. Since none of them weigh the same, the weight of the 2 remaining dogs is 2kg and 1kg respectively. Choose A. 本题中,第二重的狗体重为$$28$$千克,剩余$$3$$只狗的体重和为:$$60-28=32$$(千克).此时最重的狗体重至少为$$29$$千克,那么剩下的两只狗体重之和至多只有$$3$$千克,则它们的体重只能是$$1$$千克和$$2$$千克.因此第三重的狗体重为$$2$$千克.选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2474
19977b1c84604a1aa83bd13e891ebcd4
[ "2010年北京学而思综合能力诊断三年级竞赛第3题" ]
3
single_choice
在下面的一列数中,从左向右数,第$$8$$个数是~\uline{~~~~~~~~~~}~. $$1$$,$$4$$,$$10$$,$$20$$,$$35$$,$$\cdots$$
[ [ { "aoVal": "A", "content": "$$116$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$140$$ " } ], [ { "aoVal": "D", "content": "$$156$$ " } ], [ { "aoVal": "E", "content": "$$180$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "每两个数差值为$$3$$,$$6$$,$$10$$,$$15$$,$$\\cdots$$ 它们的差值为$$3$$,$$4$$,$$5$$,$$\\cdots$$ 所以第$$8$$个数是$$120$$. $$1+3=4$$,$$4+6=10$$,$$10+10=20$$,$$20+15=35$$,$$35+21=56$$,$$56+28=84$$,$$84+36=120$$,每次加上的数$$3$$,$$6$$,$$10$$,$$15$$,$$21$$,$$28$$,$$36$$又有规律,$$3+3=6$$,$$6+4=10$$,$$10+5=15$$,$$15+6=21$$,$$21+7=28$$,$$28+8=36$$,所以第$$8$$个数是$$120$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2630
5122e0d2d1ef41f0ae20c6a656428f2f
[ "2008年五年级竞赛创新杯" ]
1
single_choice
植树节时,某班每人应平均植树6株,如果只有女生来完成,每人应植树15株,如果只有男生来完成,则每人应植树( )株.
[ [ { "aoVal": "A", "content": "8 " } ], [ { "aoVal": "B", "content": "10 " } ], [ { "aoVal": "C", "content": "12 " } ], [ { "aoVal": "D", "content": "14 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->设而不求" ]
[ "设共有[6,15]=90棵数,所以共有90÷6=15位同学,其中女生有90÷15=6,那么男生有15-6=9位,平均植树90÷9=10棵,故选B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2254
64e5b44502f244c5b98cd81af6be389f
[ "2017年全国华杯赛竞赛初赛模拟试卷3第1题" ]
2
single_choice
甲,乙两个小朋友,在一条环形路上面跑步,同时从同地反向跑,已知甲小朋友的速度是每秒$$5$$米,乙小朋友的速度是每秒$$7$$米,在$$14$$分钟内,他们相遇了 $$21$$次,则环形路长为(~ ~ ~)米.
[ [ { "aoVal": "A", "content": "$$480$$ " } ], [ { "aoVal": "B", "content": "$$510$$ " } ], [ { "aoVal": "C", "content": "$$450$$ " } ], [ { "aoVal": "D", "content": "$$620$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->环形跑道->环形跑道中的相遇->环形相遇同时同地出发" ]
[ "设环形路长为$$M$$米,则甲、乙相遇$$1$$次所需时间是: $$\\frac{M}{5+7}=\\frac{M}{12}$$(秒),所以$$14\\times60\\div\\frac{M}{12}=21$$,因此,$$M=480$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2586
3e84907eec734be48a5239812d1de420
[ "2019年浙江杭州滨江区杭州江南实验学校五年级竞赛模拟(江南杯)第11题1分" ]
1
single_choice
两个因数的积保留两位小数后约是$$9.28$$,准确数可能是.
[ [ { "aoVal": "A", "content": "$$9.2729$$ " } ], [ { "aoVal": "B", "content": "$$9.276$$ " } ], [ { "aoVal": "C", "content": "$$9.286$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "要考虑$$9.28$$是一个三位小数的近似数,有两种情况:``四舍''得到的$$9.28$$最大是$$9.284$$,``五入''得到的$$9.28$$最小是$$9.275$$,即该数的取值是大于或等于$$9.275$$并且小于或等于$$9.284$$;由此进行选择即可. ``四舍''得到的$$9.28$$最大是$$9.284$$,``五入''得到的$$9.28$$最小是$$9.275$$,即该数的取值是大于或等于$$9.275$$并且小于或等于$$9.284$$,结合选项可知:准确值可能是$$9.276$$,故选$$\\text{B}$$. 故答案为:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
300
52a720834f234a2787cba03af546580b
[ "2015年第13届全国创新杯小学高年级五年级竞赛复赛第5题", "2016年创新杯小学高年级五年级竞赛训练题(三)第5题" ]
1
single_choice
三个相邻奇数的积是一个六位数$$\overline{3abcd3}$$,那么这三个奇数的和为(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$203$$ " } ], [ { "aoVal": "B", "content": "$$205$$ " } ], [ { "aoVal": "C", "content": "$$207$$ " } ], [ { "aoVal": "D", "content": "$$209$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "末尾是$$3$$,三个奇数的末尾只能是$$7$$、$$9$$、$$1$$,考虑$$6$$位数,三个奇数是两位数,且首位在$$6 \\tilde{ } 7$$之间,那么有$$67\\times 69\\times 71=328233$$满足,和是$$207$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2256
4ede08deae0a4b1cbe55e8ffd1a6b38d
[ "2017年第13届湖北武汉新希望杯六年级竞赛决赛第2题" ]
2
single_choice
泸昆高铁最后一段贵阳至昆明于$$2016$$年$$12$$月$$28$$日开通运营,这对我国``一带一路''战略的实施和区域经济发展都有着重大意义.$$G1375$$次高铁$$11:06$$从上海虹桥站出发,当天$$22:56$$到达昆明南站,全程共$$1518$$千米,途中站点共计停车$$50$$分钟,扣除停车时间,$$G1375$$次高铁的平均速度为千米/时.
[ [ { "aoVal": "A", "content": "$$148$$~ " } ], [ { "aoVal": "B", "content": "$$138$$ " } ], [ { "aoVal": "C", "content": "$$150$$~ " } ], [ { "aoVal": "D", "content": "$$151$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "$$11:06至22:56$$共$$11$$小时$$50$$分,其中停车$$50$$分钟,运行$$11$$小时. 平均速度为$$1518\\div11=138\\rm km/h$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1613
4e47a7c8129743c5ab4cc74a25b28ab3
[ "小学中年级三年级上学期其它", "2017年全国华杯赛小学中年级竞赛初赛模拟第1题" ]
1
single_choice
甲乙两人在春节一共得$$210$$元压岁钱,甲给乙$$40$$元,还比乙多$$10$$元,那么,原来甲得了元压岁钱.
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差" ]
[ "因为甲给乙$$40$$元,还比乙多$$10$$元,所以甲比乙多$$40\\times 2+10=90$$元, 所以甲:$$(210+90)\\div 2=150$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
927
a64cb54217b745c68bdc5ec72089061e
[ "2009年第7届创新杯六年级竞赛初赛第10题4分", "2009年六年级竞赛创新杯" ]
2
single_choice
$${{1949}^{2009}}$$的末两位数字是( ).
[ [ { "aoVal": "A", "content": "49 " } ], [ { "aoVal": "B", "content": "81 " } ], [ { "aoVal": "C", "content": "01 " } ], [ { "aoVal": "D", "content": "69 " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数的可乘性" ]
[ "显然$${{1949}^{2009}}$$的末两位数字与$${{49}^{2009}}$$的末两位数字相同.由于$${{49}^{1}}$$的末两位数字为49,$${{49}^{2}}$$的末两位数字为01,$${{49}^{3}}$$的末两位数字为$$49$$,$${{49}^{4}}$$的末两位数字为01,\\ldots,可见$${{49}^{n}}\\left( n=1,2,3,4,... \\right)$$的末两位数字是以2为周期循环出现49和01的,所以$${{49}^{2009}}$$的末两位数字与$${{49}^{1}}$$的末两位数字相同,都是49. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2691
99da7f2d52364633b8d4062970ea28fb
[ "2018年第6届湖北长江杯五年级竞赛初赛A卷第2题3分" ]
1
single_choice
如果$$0.988\times a=0.999\times b$$($$a$$,$$b$$均不为$$0$$),那么$$a$$与$$b$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textless{}b$$ " } ], [ { "aoVal": "B", "content": "$$a\\textgreater b$$ " } ], [ { "aoVal": "C", "content": "$$a=b$$ " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->算式比较大小" ]
[ "因为$$0.988\\times a$$的积和$$0.999\\times b$$的积相等, 而$$0.988\\textless{}0.999$$, 即一个因数变大,要使积不变,另一个因数需要变小, 所以$$a\\textgreater b$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1690
ff808081488801c601488c270e6f0f18
[ "2011年北京五年级竞赛" ]
1
single_choice
甲从一个鱼摊上买了三条鱼,平均每条$$a$$元,又从另一个鱼摊上买了两条鱼,平均每条$$b$$元,后来他又以每条$$\frac{a+b}{2}$$元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "$$a\\textgreater b$$ " } ], [ { "aoVal": "B", "content": "$$a\\textless{b}$$ " } ], [ { "aoVal": "C", "content": "$$a=b$$ " } ], [ { "aoVal": "D", "content": "与$$a$$和$$b$$的大小无关 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "可根据题意算出买进和卖出鱼所花钱的总数,买进一共花了$$(3a+2b)$$元,一共卖了$$\\frac{a+b}{2}$$$$\\times5$$元,前者大于后者,即可推导出$$a\\textgreater b$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1756
9f93dd2bbd8c441c9d88c8ab09515991
[ "2013年第9届全国新希望杯小学高年级六年级竞赛复赛第1题4分" ]
1
single_choice
其中$$9$$岁的有$$11$$人,$$11$$岁的有$$2$$人,$$13$$岁的有$$3$$人,那么这$$16$$个小朋友的平均年龄是.
[ [ { "aoVal": "A", "content": "$$10$$岁 " } ], [ { "aoVal": "B", "content": "$$10.5$$岁 " } ], [ { "aoVal": "C", "content": "$$11$$岁 " } ], [ { "aoVal": "D", "content": "$$11.5$$岁 " } ] ]
[ "知识标签->拓展思维->应用题模块->平均数问题->公式类->加权平均数" ]
[ "$$\\left( 9\\times 11+11\\times 2+13\\times 3 \\right)\\div 16=10$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2829
7bbf1d8816034849bb06e8d0d538d730
[ "2006年五年级竞赛创新杯", "2006年第4届创新杯五年级竞赛初赛A卷第8题", "2006年五年级竞赛创新杯" ]
2
single_choice
甲乙两人对同一数作除法,甲将其除以8,乙将其除以9,甲所得的商与乙所得的余数之和为13,则甲所得的余数为( ).
[ [ { "aoVal": "A", "content": "2 " } ], [ { "aoVal": "B", "content": "3 " } ], [ { "aoVal": "C", "content": "4 " } ], [ { "aoVal": "D", "content": "5 " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "解法一:设这个相同的数为$$8m+n$$或$$9\\left( m-1 \\right)+a$$,即$$8m+n=9\\left( m-1 \\right)+a$$,又$$m+a=13$$,所以$$n=m+a-9=13-9=4$$,故选C. 解法二:设这个相同的数为a,则$$\\begin{cases}a=8m+n\\left( 0\\leqslant n \\textless{} 8 \\right) a=9{{m}^{'}}+{{n}^{'}} m+{{n}^{'}}=13 \\end{cases}$$① 所以,$$a=9{{m}^{'}}+13-m$$② ①$$-$$②得$$9m-9{{m}^{'}}+n-13=0$$,所以$$9\\left( m-{m}' \\right)=13-n$$,又$$5 \\textless{} 13-n\\leqslant 13$$,所以$$5 \\textless{} 9\\left( m-{m}' \\right)\\leqslant 13$$,因此,$$m-{{m}^{'}}=1$$,从而$$9=13-n$$,故$$n=4$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3302
406d64c912ad4148906f3ffcbb6085a8
[ "2019年第24届YMO二年级竞赛决赛第1题3分" ]
1
single_choice
$$42$$ children are lined up to go on an autumn trip,~ $$Y$$ is the $$22$$th from the front and $$M$$ is the~~$$22$$th from the back of the line. How many children are between $$Y$$ and $$X$$? $$42$$个小朋友排成一队去秋游,从排头往后数,小$$Y$$是第$$22$$个,从排尾往前数,小$$M$$是第$$22$$个,小$$Y$$和小$$M$$中间有个人.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ], [ { "aoVal": "E", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->计数模块->加乘原理->排队问题" ]
[ "根据题意分析可知,小$$Y$$后面有$$42-22=20$$(人),$$22-20-1=1$$(人).那么小$$M$$应该在小$$Y$$的正前方,所以小$$Y$$和小$$M$$之间有$$0$$个人. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1588
b5b578f7d3b84ef4a9d8444d03c36e19
[ "2018年全国小学生数学学习能力测评六年级竞赛复赛第8题3分" ]
1
single_choice
球从高处自由落下,每次弹起的高度是前次下落高度的$$\frac{2}{5}$$,如果球从$$75$$米处落下,第二次弹起的高度是米.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一次弹起:$$75\\times \\frac{2}{5}=30$$(米), 第二次弹起:$$30\\times \\frac{2}{5}=12$$(米). 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3388
a0200657f5e44be99cd16dd0de716548
[ "2008年第6届创新杯四年级竞赛初赛B卷第4题5分", "2008年四年级竞赛创新杯" ]
1
single_choice
由$$1$$,$$3$$,$$5$$,$$7$$,$$9$$五个数组成甲组数,$$2$$,$$4$$,$$6$$,$$8$$,四个数组成乙组数,从甲,乙两组数中各取一个数相加,可以得到不同的和的个数是( )。
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "和可以是$$3$$,$$5$$,$$7$$,$$9$$,$$11$$,$$13$$,$$15$$和$$17$$,所以和的个数是$$8$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2791
9a6185d3482f406c954ba7f4f3c1fb4e
[ "2021年新希望杯四年级竞赛初赛第15题" ]
2
single_choice
计算:$$2788\div 4\div 27+565\div (27\times 5)=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$300$$ " } ], [ { "aoVal": "C", "content": "$$27$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数除法巧算之提取公除数(普通型)" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde2788\\div 4\\div 27+565\\div (27\\times 5)$$ $$=697\\div 27+565\\div 5\\div 27$$ $$=697\\div 27+113\\div 27$$ $$=(697+113)\\div 27$$ $$=810\\div 27$$ $$=30$$. 故答案为:$$30$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
201
24d77807fa714bc2a97225317de7da65
[ "2007年四年级竞赛创新杯", "2007年第5届创新杯四年级竞赛第6题5分" ]
1
single_choice
设m和n是选自自然数$$1\sim 1004$$中的两个不同的数,那么$$\left( m+n \right)\div \left( m-n \right)$$的最大值 是( )。
[ [ { "aoVal": "A", "content": "$$2000$$ " } ], [ { "aoVal": "B", "content": "$$2005$$ " } ], [ { "aoVal": "C", "content": "$$2007$$ " } ], [ { "aoVal": "D", "content": "$$2009$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "为使$$\\left( m+n \\right)\\div \\left( m-n \\right)$$最大,应使$$m+n$$尽可能大,而$$m-n$$尽可能小,所以$$m=1004$$,$$n=1003$$,$$\\left( m+n \\right)\\div \\left( m-n \\right)=2007$$为最大值。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
979
04d732ff8554407aa30528b2137215d7
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第7题5分" ]
1
single_choice
有大、小两桶油共重$$44$$千克,两个桶都倒出同样多的油后,分别还剩$$14$$千克和$$10$$千克,小桶原来装油千克.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->加减法应用->同增同减应用题->连筐(桶、瓶等)带物(考虑筐桶瓶等重量)" ]
[ "倒了$$44-14-10=20$$千克,倒了相同多,小桶倒了$$20\\div 2=10$$千克,小桶原来$$10+10=20$$千克。 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2187
6281a498f02b4c7c8e0c4ce53f0d3993
[ "2017年河南郑州豫才杯六年级竞赛初赛第5题" ]
1
single_choice
12. 同学甲、同学乙两人在游乐场的直行道上进行$$200$$米赛跑,当同学甲跑到终点时.同学乙还差$$40$$米,现在两人重新跑,而且速度和原来一样,要使两人同时到达终点,那么同学甲的起跑线应往后退米.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$55$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例" ]
[ "比例解行程;相等的时间内,甲跑了$$200$$米时,乙跑了$$160$$米,甲乙的速度比是$$200:160=5:4$$,要使两人同时到达终点,乙跑了$$200$$米的时间内甲要跑$$200\\div 4\\times 5=250$$米,所以同学甲的起跑线应后退$$250-200=50$$米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2633
c7b2bb9c7dc84dd19ba03242de08e251
[ "2020年希望杯二年级竞赛模拟第4题" ]
1
single_choice
请你根据数串的规律再横线上填上正确的答案:3,6,9,~\uline{~~~~~~~~~~}~,15.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "后一个数等于前一个数$$\\times$$ 2 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1793
8593ebc84ec34f79a24c0c8e0082a414
[ "2020年新希望杯二年级竞赛初赛(团战)第12题" ]
1
single_choice
$$10$$名同学参加$$50$$米赛跑.跑到一半的时候,小明后面有$$5$$人,前面有$$4$$人,之后,没有人超过他,而小明又超过了$$3$$人到达终点.这次比赛没有并列名次,那么小明是.
[ [ { "aoVal": "A", "content": "第一名 " } ], [ { "aoVal": "B", "content": "第二名 " } ], [ { "aoVal": "C", "content": "第三名 " } ], [ { "aoVal": "D", "content": "第四名 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "小明后面有$$5$$人,前面有$$4$$人,则他此时排在第$$5$$,之后,没有人超过他,小明又超过了$$3$$人后,他此时就是第二名. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
695
4341126073c04edab976eb89aad96dde
[ "2016年创新杯小学高年级六年级竞赛训练题(四)第7题" ]
3
single_choice
在$$\left[ \frac{{{1}^{2}}}{2017} \right]$$,$$\left[ \frac{{{3}^{2}}}{2017} \right]$$,$$\left[ \frac{{{5}^{2}}}{2017} \right]$$,\ldots,$$\left[ \frac{{{2017}^{2}}}{2017} \right]$$这$$1009$$个数中共有个互不相同的数($$\left[ {}\textasciitilde\textasciitilde\textasciitilde{} \right]$$表示取整数,如$$\left[ \frac{13}{5} \right]=2$$).
[ [ { "aoVal": "A", "content": "$$883$$ " } ], [ { "aoVal": "B", "content": "$$882$$ " } ], [ { "aoVal": "C", "content": "$$888$$ " } ], [ { "aoVal": "D", "content": "$$1509$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "假设相邻两数为$$a$$、$$b$$,且$$a$$大$$b$$小,其实我们知道,$$a-b$$的差小于$$1$$时,$$[a]=[b]$$或者$$[a]-[b]=1$$;当$$a-b$$的差大于等于$$1$$时,$$[a]$$和$$[b]$$一定不同. 从小到大看,取整符号中的第$$n$$项是$$\\frac{{{\\left( 2n-1 \\right)}^{2}}}{2017}$$,第$$\\left( n+1 \\right)$$项是$$\\frac{{{\\left( 2n+1 \\right)}^{2}}}{2017}$$, 相减并利用平方差公式为$$\\frac{{{\\left( 2n+1 \\right)}^{2}}}{2017}-\\frac{{{\\left( 2n-1 \\right)}^{2}}}{2017}=\\frac{8n}{2017}$$,要想大于等于$$1$$,则$$n$$至少取$$253$$.所以取整符号中的第$$253$$项之后的数之差均大于$$1$$,即各不相同. 第$$253$$项为$$\\frac{{{505}^{2}}}{2017}=126$$,$$1-253$$项中,取整后的数每个整数都取过$$0-126$$有$$127$$个不一样的数.从第$$254-1009$$项中,每个数都不相同, 有$$1009-253=756$$个数.$$127+756=883$$(个). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
756
68b3ddd539c2475f8b6eec9222f79d21
[ "2003年第1届创新杯六年级竞赛复赛第5题" ]
1
single_choice
如果形如$$\overline{2\square \square 3}$$的四位数能被$$9$$整除,那么这样的四位数的个数有多少个?
[ [ { "aoVal": "A", "content": "$$5$$个 " } ], [ { "aoVal": "B", "content": "$$9$$个 " } ], [ { "aoVal": "C", "content": "$$11$$个 " } ], [ { "aoVal": "D", "content": "$$12$$个 " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "如果$$\\overline{2ab3}$$能被$$9$$整除,那么$$(2+a+b+3)$$一定是$$9$$的倍数,即$$(a+b+5)$$是$$9$$的倍数.所以$$(a+b+5)$$只能等于$$9$$或$$18$$. 经枚举得,当$$a+b+5=9$$时,这个四位数有:$$2043$$、$$2133$$、$$2223$$、$$2313$$、$$2403$$.共$$5$$种情况. 当$$a+b+5=18$$时,这个四位数有:$$2943$$、$$2853$$、$$2763$$、$$2673$$、$$2583$$、$$2493$$.共$$6$$种情况. 综上,这样的四位数的个数有$$5+6=11$$(个). ", "<p>若$$9\\left| \\overline{2ab3} \\right.$$,则$$9\\left| \\left( 2+a+b+3 \\right) \\right.$$,则$$\\left( a+b \\right)$$除以$$9$$余$$4$$, 所以$$\\overline{ab}$$除以$$9$$余$$4$$,</p>\n<p>所以$$\\overline{ab}=4,4+9,4+9\\times 2,4+9\\times 3,\\ldots ,4+9\\times 10$$, 所以有$$11$$个.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1338
c784572ad04941f8abc70b4fcd921714
[ "2014年全国迎春杯四年级竞赛初赛第4题" ]
1
single_choice
有四个数,它们的和是$$45$$,把第一个数加$$1$$,第二个数减$$1$$,第三个数乘$$2$$,第四个数除以$$2$$,得到的结果都相同.那么,原来这四个数依次是.
[ [ { "aoVal": "A", "content": "$$10$$,$$10$$,$$10$$,$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$,$$8$$,$$20$$,$$5$$ " } ], [ { "aoVal": "C", "content": "$$9$$,$$11$$,$$5$$,$$20$$ " } ], [ { "aoVal": "D", "content": "$$9$$,$$11$$,$$12$$,$$13$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设相同的结果为$$x$$,根据题意有:$$x-1+x+1+2x+0.5x=45$$,$$\\Rightarrow x=10$$ 易知原来的$$4$$ 个数依次是$$9$$,$$11$$,$$5$$,$$20$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2412
46197c3db2474327b7ddf7680601c1bc
[ "2013年走美杯六年级竞赛初赛", "2013年走美杯六年级竞赛", "2013年浙江杭州走美杯六年级竞赛初赛" ]
2
single_choice
$$183\times279\times361-182\times278\times360$$的计算结果是( )。
[ [ { "aoVal": "A", "content": "$$217017$$ " } ], [ { "aoVal": "B", "content": "$$207217$$ " } ], [ { "aoVal": "C", "content": "$$207216$$ " } ], [ { "aoVal": "D", "content": "$$217016$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之凑整法->整数基准数法" ]
[ "解:$$183\\times279\\times361-182\\times278\\times360$$ $$=\\left(182+1\\right)\\times\\left(278+1\\right)\\times\\left(360+1\\right)-182\\times278\\times360$$ $$=182\\times278\\times360+182\\times278+182\\times360+278\\times360+182+278+360+1-182\\times278\\times360$$ $$=182\\times278+182\\times360+278\\times360+182+278+360+1$$ $$=50596+65520+100080+182+278+360+1$$ $$=217017$$ 故答案是$$217017$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3161
3cc58f7eba3f4855bb9d2be78cf24d85
[ "2009年全国迎春杯小学中年级竞赛复赛第7题10分" ]
1
single_choice
过年了,妈妈买了$$7$$件不同的礼物,要送给亲朋好友的$$5$$个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么妈妈送出这$$5$$件礼物共有~\uline{~~~~~~~~~~}~种方法.
[ [ { "aoVal": "A", "content": "$$60$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$150$$ " } ], [ { "aoVal": "E", "content": "$$180$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->计数模块->加乘原理" ]
[ "假如给小强的是智力拼图,则有$$2\\times 5\\times 4\\times 3=120$$种方法. 假如给小强的是遥控汽车,则有$$1\\times 5\\times 4\\times 3=60$$种方法. 总共有$$120+60=180$$种方法. 若将遥控汽车给小强,则学习机要给小玉,此时另外$$3$$个孩子在剩余$$5$$件礼物中任选$$3$$件,有$$5\\times 4\\times 3=60$$种方法;若将遥控汽车给小玉,则智力拼图要给小强,此时也有$$60$$种方法;若遥控汽车既不给小强、也不给小玉,则智力拼图要给小强,学习机要给小玉,此时仍然有$$60$$种方法. 所以共有$$60+60+60=180$$种方法. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1388
24f8f99b382d49359c2d7aee14e898dc
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
下式中,$$\square $$和$$\triangle $$分别代表( ) $$\square +\square +\square +\triangle +\triangle +\triangle =27$$ $$\triangle +\triangle +\square =12$$。
[ [ { "aoVal": "A", "content": "$$3$$和$$4$$ " } ], [ { "aoVal": "B", "content": "$$3$$和$$6$$ " } ], [ { "aoVal": "C", "content": "$$4$$和$$6$$ " } ], [ { "aoVal": "D", "content": "$$6$$和$$3$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换" ]
[ "解:$$\\square +\\square +\\square +\\triangle +\\triangle +\\triangle =27$$, 得$$\\square +\\triangle =9$$①, $$\\triangle +\\triangle +\\square =12$$得$$2\\triangle +\\square =12$$②, ②$$-$$①得:$$\\triangle =3$$, 把$$\\triangle =3$$代入①得: $$\\square =6$$ 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
724
3b1f33e49f23408dad88e81ff79f6be8
[ "2013年IMAS小学高年级竞赛第一轮检测试题第12题4分" ]
2
single_choice
有四个连续的二位数,将每个数的两个数码相乘,依序得到乘积$$24$$、$$28$$、$$32$$、$$36$$,请问这四个连续的二位数之总和是什么?
[ [ { "aoVal": "A", "content": "$$120$$ " } ], [ { "aoVal": "B", "content": "$$136$$ " } ], [ { "aoVal": "C", "content": "$$160$$ " } ], [ { "aoVal": "D", "content": "$$172$$ " } ], [ { "aoVal": "E", "content": "$$190$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数->分解质因数的应用" ]
[ "解法$$1$$:将$$24$$、$$28$$、$$32$$、$$36$$分别表示成两个数码之积的行驶,即可得 $$24=3\\times 8=4\\times 6$$ $$28=4\\times 7$$ $$32=4\\times 8$$ $$36=4\\times 9=6\\times 6$$ 因这四个两位数为四个连续的两位数,故此时可判断出这四个连续的正整数为$$46$$、$$47$$、$$48$$、$$49$$,其和为$$190$$.故选$$\\text{E}$$. 解法$$2$$:由题意可知,这些所得到的乘积不包含数码$$0$$,所以这四个两位数的十位数必须相同.设它们的十位数码为$$a$$.由于两个相邻的个位数是互质的,所以$$24$$、$$28$$、$$32$$、$$36$$的最大公因数为$$a$$. 因此,$$a=4$$,且这四个数的个位数分别为$$6$$、$$7$$、$$8$$、$$9$$.即这四个整数之和是$$46+47+48+49=190$$.故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2926
92c81fb7e34a4436a5203fadd9aba92d
[ "2017年第1届重庆华杯赛竞赛" ]
2
single_choice
$$\frac{2013\times 2013}{2014\times 2014+2012}=\frac{n}{m}( m,n$$互质$$ ),m+n=$$~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "$$1234$$ " } ], [ { "aoVal": "B", "content": "$$1243$$ " } ], [ { "aoVal": "C", "content": "$$1343$$ " } ], [ { "aoVal": "D", "content": "$$1244$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "~ ~ $$\\frac{2013\\times 2013}{2014\\times 2014+2012}=\\frac{2013\\times 2013}{\\left( 2013+1 \\right)\\times \\left( 2013+1 \\right)+2013-1}$$ $$=\\frac{2013\\times 2013}{2013\\times 2013+2013\\times 2+1+2013-1}$$ $$=\\frac{2013\\times 2013}{2013\\times 2013+3\\times 2013} $$ $$=\\frac{671}{672}$$ $$n+m=671+672=1343$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
982
04d9ec253b1f4a679995ec040c67eb7e
[ "2016年创新杯六年级竞赛训练题(二)第4题" ]
3
single_choice
自然保护区中原有一定量的牛,并保持着一定的自然增长率。为进行原始物种的迁出工作,我们将自然保护区的草地按照$$1:2:3$$的面积比分成三块。工作人员先用$$1$$年时间逐步迁出了一号草地的种群,接着又用$$4$$年去暗处了二号种群.此时,仍需要年能够迁出第三块保护区的牛。
[ [ { "aoVal": "A", "content": "$$216$$ " } ], [ { "aoVal": "B", "content": "$$288$$ " } ], [ { "aoVal": "C", "content": "$$324$$ " } ], [ { "aoVal": "D", "content": "$$396$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "设$$1$$份草地原有草量为$$x$$,每天生长量为$$y$$,第三块草地需要$$n$$天吃完. 根据牛每天吃的草量相等可得: $$\\frac{x+12y}{12}=\\frac{2x+2\\left( 12y+48y \\right)}{48}$$ 解得$$x=36y$$,这群牛的每天吃草量为$$4y$$. 故第三块草地的等量关系为$$\\frac{3x+3\\left( 12y+48y+ny \\right)}{4y}=n$$,解得$$n=288$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
403
e47999701c3d4119aa932b2c1462b886
[ "2018年第8届北京学而思综合能力诊断六年级竞赛年度教学质量监测第12题" ]
1
single_choice
$$6$$支球队进行足球比赛,每两支队之间都要赛一场,规定胜一场得$$3$$分,平一场各得$$1$$分,负一场不得分.全部比赛结束后,发现共有$$4$$场平局,且其中$$5$$支球队共得了$$31$$分,则第$$6$$支球队得了分.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "课内体系->能力->逻辑分析" ]
[ "每场平局两队共得$$2$$分,如果分出胜负则两队共得$$3$$分.$$6$$支球队共要比$$6\\times 5\\div 2=15$$场比赛, 其中有$$4$$场平局,所以有$$15-4=11$$场分出了胜负,那么$$6$$支球队总得分为$$2\\times 4+3\\times 11=41$$分, 其中$$5$$支球队共得了$$31$$分,所以第$$6$$支球队得了$$41-31=10$$分. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2471
11b98f33d7754d9b8c195dc637baed0d
[ "2021年新希望杯六年级竞赛初赛第11题5分" ]
2
single_choice
【$$2021$$年六年级卷第$$11$$题】小糊涂遇到一个问题:比较$$\frac{99}{100}$$,$$ \frac{100}{101}$$,$$\frac{199}{201}$$的大小.他感到很迷糊,请你帮他找到正确的答案.
[ [ { "aoVal": "A", "content": "$$\\frac{99}{100}\\textgreater{} \\frac{100}{101}\\textgreater{} \\frac{199}{201}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{199}{201}\\textgreater{} \\frac{100}{101}\\textgreater{} \\frac{99}{100}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{99}{100}\\textgreater{} \\frac{199}{201}\\textgreater{} \\frac{100}{101}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{100}{101}\\textgreater{} \\frac{199}{201}\\textgreater\\frac{99}{100}$$ " } ], [ { "aoVal": "E", "content": "$$\\frac{100}{101}\\textgreater{} \\frac{99}{100}\\textgreater{} \\frac{199}{201}$$ " } ] ]
[ "拓展思维->能力->数感认知->分数数字加工" ]
[ "$$\\frac{99}{100}=1- \\frac{1}{100}=1- \\frac{2}{200}$$, $$\\frac{100}{101}=1- \\frac{1}{101}=1- \\frac{2}{202}$$, $$\\frac{199}{201}=1- \\frac{2}{201}$$, 因为$$\\frac{2}{202}\\textless{} \\frac{2}{201}\\textless{} \\frac{2}{200}$$, 所以$$1- \\frac{2}{202}\\textgreater1- \\frac{2}{201}\\textgreater1- \\frac{2}{200}$$, 即$$\\frac{100}{101}\\textgreater{} \\frac{199}{201}\\textgreater{} \\frac{99}{100}$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2728
bedca10707d14c16ab90fbf2c898fcdb
[ "2018年IMAS小学中年级竞赛(第二轮)第1题4分" ]
1
single_choice
请问$$100-97+94-91+88-85+\cdots +4-1$$之值等于多少?
[ [ { "aoVal": "A", "content": "$$45$$ " } ], [ { "aoVal": "B", "content": "$$48$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ], [ { "aoVal": "D", "content": "$$54$$ " } ], [ { "aoVal": "E", "content": "$$57$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律" ]
[ "方法一:等差数列的通项公式 第$$n$$个数$$=$$第$$1$$个数+(n-1)\\times 公差 $$100-97+94-91+88-85+\\cdots +4-1$$ $$=\\left( 100-97 \\right)+\\left( 94-91 \\right)+\\left( 88-85 \\right)+\\cdots +\\left( 4-1 \\right)$$ $$=\\underbrace{3+3+3+\\cdots +3}_{17项}$$ $$=3\\times 17$$ $$=51$$. ①先分组再等差数列求有多少组:以$$4$$为首项,公差为6 ②先等差数列求有多少个数再除以$$2$$求有多少组:以$$1$$为首项,公差为3 故选$$\\text{C}$$. 方法二:等差数列求和公式 等差数列的和=(第$$1$$个数$$+$$第$$n$$个数)\\times 项数$$\\div$$ 2 $$100-97+94-91+88-85+\\cdots +4-1$$ $$=\\left( 100+94+88+\\cdots +4 \\right)-\\left( 97+91+85+\\cdots +1 \\right)$$ $$=\\frac{\\left( 100+4 \\right)\\times 17}{2}-\\frac{\\left( 97+1 \\right)\\times 17}{2}$$ $$=\\left( 104-98 \\right)\\times \\frac{17}{2}$$ $$=6\\times \\frac{17}{2}$$ $$=51$$. 故选$$\\text{C}$$ " ]
C