dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
366
b66a3e33a16e4782a8a2adfdf91221e4
[ "2011年第7届全国新希望杯小学高年级六年级竞赛第6题4分" ]
2
single_choice
盒子里装有分别写着$$1$$,$$2$$,$$3$$,$$4$$,\ldots,$$100$$的黄色卡片各一张,我们称如下操作为一次操作;从盒子里取出$$m(7\leqslant m\leqslant 10)$$张卡片,算出这$$m$$张卡片上各数之和减去$$27$$的差,将写在一张红色卡片上(不放回).若干次操作之后,盒子里的卡片全部被取出,若所有红色卡片上的数字之和为$$n$$,那么$$n$$的最大可能值减去最小可能值等于(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$108$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$88$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->操作问题->数字操作" ]
[ "先算卡片的总值. 最小值$$100\\div 10=10$$次,共减$$10\\times 27$$; 最多$$14$$次,共减去$$14\\times 27$$, 因此差为$$(14-10)\\times 27=108$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1014
02e9303452034cba82dda970fcac4752
[ "2015年全国迎春杯四年级竞赛初赛第5题" ]
2
single_choice
王伯伯养了一些鸡、兔和鹤.其中鹤白天双足站立,夜间则单足站立;鸡晚上睡觉时则把头藏起来.细心的悦悦发现:不论白天还是晚上,足数和头数的差都一样,那么,如果白天悦悦可以数出$$56$$条腿,晚上会数出~\uline{~~~~~~~~~~}~个头.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$18$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->分组法解鸡兔同笼->腿倍型" ]
[ "白天比晚上多了一个鸡头,还多了一只鹤脚;无论晚上还是白天,足数和头数的差都一样,所以鹤的数量和鸡的数量是一样的.将鸡和鹤打一个包,则在白天这个包和兔子腿数一样为$$4$$,在晚上这个包和兔子头数一样为$$1$$;则可以得出晚上的头数为$$56\\div 4=14$$(个). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
166
a70a1835e06d4b0d80b3b5e910c6a7fb
[ "2016年全国小学生数学学习能力测评四年级竞赛初赛第6题3分" ]
1
single_choice
把$$100$$个球放到$$36$$个盒子里.已知任何连续的$$5$$个盒子中共有$$14$$个球,问最后一个盒子里有多少个球? Put a total of $100$ balls into $36$ boxes. Given that any consecutive $5$ boxes have a sum of $14$ balls, the last box has~\uline{~~~~~~~~~~}~balls.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->组合模块->操作与策略->统筹规划" ]
[ "$36\\div5=7R1$. Thus, for the first $35$ boxes, there is a total of $$14\\times7=98$$ balls. Therefore, there are $100-98=2$ balls. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2762
84410d2730cf47b5b53ea6ad91c8bf91
[ "六年级其它导引", "2015年世界少年奥林匹克数学竞赛六年级竞赛复赛A卷第10题10分", "2018年陕西西安碑林区西安市铁一中学小升初(二十六)第20题5分" ]
3
single_choice
【补4】 计算:$$\frac{{{1}^{2}}+{{2}^{2}}}{1\times 2}+\frac{{{2}^{2}}+{{3}^{2}}}{2\times 3}+\cdots +\frac{{{18}^{2}}+{{19}^{2}}}{18\times 19}+\frac{{{19}^{2}}+{{20}^{2}}}{19\times 20}$$.
[ [ { "aoVal": "A", "content": "$$38\\frac{19}{20}$$ " } ], [ { "aoVal": "B", "content": "$$38\\frac{17}{20}$$ " } ], [ { "aoVal": "C", "content": "$$38\\frac{13}{20}$$ " } ], [ { "aoVal": "D", "content": "$$38\\frac{1}{20}$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "算式中的分母是裂项计算的最基本形式,但分子比较复杂,我们可以从前几项找找规律: $$\\frac{{{1}^{2}}+{{2}^{2}}}{1\\times 2}=\\frac{5}{2}=2\\frac{1}{2}$$,$$\\frac{{{2}^{2}}+{{3}^{2}}}{2\\times 3}=\\frac{13}{6}=2\\frac{1}{6}$$,$$\\frac{{{3}^{2}}+{{4}^{2}}}{3\\times 4}=\\frac{25}{12}=2\\frac{1}{12}$$. 我们发现一规律:每一项减去$$2$$后,分子就变成了$$1$$. 再来试试最后一项:$$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{761}{380}=2\\frac{1}{380}$$, 也满足这个规律,这是为什么呢? 观察每一项的分子和分母,我们发现分子的每个加数都与分母大小接近,可以做如下变形: $$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{19\\times \\left( 20-1 \\right)+20\\times \\left( 19+1 \\right)}{19\\times 20}$$ $$=\\frac{19\\times 20\\times 2+\\left( 20-19 \\right)}{19\\times 20}$$ $$=2+\\frac{1}{19\\times 20}$$. 算式中的每一项都能像上面一样进行变形,所以: 原式$$=2\\frac{1}{1\\times 2}+2\\frac{1}{2\\times 3}+\\cdots +2\\frac{1}{19\\times 20}$$ $$=2\\times 19+\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{19\\times 20}$$ $$=38+1-\\frac{1}{20}$$ $$=38\\frac{19}{20}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3387
adba0f59ad464189bcf144eba4e7c5ae
[ "2019年第23届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第8题5分" ]
2
single_choice
整数$$146$$和$$234$$的三个数位上数字的乘积都是$$24$$(注:$$1\times 4\times6 =24$$,$$2\times 3\times 4=24$$).那么共有个三位数其各位数字的乘积是$$72$$.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$25$$ " } ], [ { "aoVal": "C", "content": "$$26$$ " } ], [ { "aoVal": "D", "content": "$$27$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "$$1\\times 8\\times 9=72$$, ∴各位数字乘积为$$72$$的有 $$189$$,$$198$$,$$819$$,$$891$$,$$918$$,$$981$$,$$6$$个. ∵$$2\\times 4\\times 9=72$$, ∴三位数各位数字乘积为$$72$$的有 $$249$$,$$294$$,$$429$$,$$492$$,$$924$$,$$942$$,$$6$$个. ∵$$3\\times 3\\times 8=72$$, ∴三位数各位数字乘积为$$72$$的有 $$338$$,$$383$$,$$833$$,$$3$$个. ∵$$3\\times 4\\times 6=72$$, ∴三位数各位数字乘积为$$72$$的有 $$346$$,$$364$$,$$463$$,$$436$$,$$643$$,$$634$$,共$$6$$个. ∵$$2\\times 6\\times 6=72$$, ∴三位数各位数字乘积为$$72$$的有 $$266$$,$$626$$,$$662$$,$$3$$个. 综上所述共有$$6+6+3+6+3=24$$个. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1448
838ac350937441018f8450369233741c
[ "2020年广东广州羊排赛五年级竞赛第8题3分" ]
0
single_choice
$$2020$$年元旦是周三,以这天为第$$1$$天,从这天起的第天是周三.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$105$$ " } ], [ { "aoVal": "C", "content": "$$205$$ " } ], [ { "aoVal": "D", "content": "$$366$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据周期问题的公式:总数$$\\div $$周期$$=$$周期数$$\\cdots \\cdots $$余数,余数是几,就是周期中的第几个.本题最后这一天是周三,刚好是周期中的第一天,说明余数就是$$1$$,又因为一周有$$7$$天,依次判断选项中的数除以$$7$$的余数. $$\\text{A}$$.$$15\\div 7=2$$(周)$$\\cdots \\cdots 1$$(天);$$\\text{B}$$.$$105\\div 7=15$$(周); $$\\text{C}$$.$$205\\div 7=29$$(周)$$\\cdots \\cdots 2$$(天);$$\\text{D}$$.$$366\\div 7=52$$(周)$$\\cdots \\cdots 2$$(天). 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
716
634956ef59c2495a8302d31e49b036c1
[ "2006年第4届创新杯六年级竞赛复赛第6题" ]
1
single_choice
若数$$n=20\times 30\times 40\times 50\times 60\times 70\times 80\times 90\times 100\times 110\times 120\times 130$$,则不是$$n$$的约数的最小质数是( ).
[ [ { "aoVal": "A", "content": "$$19$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "非上述答案 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "原算式中有约数$$2$$,$$3$$,$$5$$,$$7$$,$$11$$,$$13$$,没有约数$$17$$,那么不是$$n$$的约数的最小质数是$$17$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3310
ff8080814502fa2401450753fb4d09ed
[ "2014年全国迎春杯六年级竞赛复赛第8题" ]
2
single_choice
在纸上任意写一个自然数,把这张纸旋转$$180$$度,数值不变,如$$0$$、$$11$$、$$96$$、$$888$$等,我们把这样的数称为``神马数''.在所有五位数中共有(~~~~~~~ )个不同的``神马数''.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->组数问题->有特殊要求的组数问题" ]
[ "设这个数为$$\\overline{ABCBA}$$,$$A$$位可以填$$11$$,$$ 88$$,$$ 69$$,$$96$$,$$4$$种情况,$$B$$位可以填$00$$,$$11$$,$$88$$,$$69$$,$$96$,$$5$$种情况,$$C$$位可以填$$0$$,$$1$$,$$8$$,$$3$$种情况,$$4\\times 5\\times 3=60$$(个). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2867
80b1c2036446447bb5705abe8df5ac3c
[ "2017年四川六年级竞赛排位赛第20题2分" ]
1
single_choice
有甲、乙、丙三个数,甲$$:$$丙$$=4:3$$,丙$$:$$乙$$=5:3$$,如果甲、乙两数的和是$$87$$,则乙、丙两数相差.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{174}{7}$$ " } ], [ { "aoVal": "C", "content": "$$144$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "甲$$:$$丙$$=4:3=20:15$$,丙$$:$$乙$$=5:3=15:9$$, 则甲$$:$$乙$$:$$丙$$=20:9:15$$,每份为$$87\\div (20+9)=3$$, 则丙数$$-$$乙数$$=(15-9)\\times 3=18$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
138
42617762cc144ef39a042a1791a388cb
[ "2017年第15届全国希望杯五年级竞赛第1试试题第18题", "其它改编题" ]
2
single_choice
【例4】$$A$$,$$B$$,$$C$$,$$D$$,$$E$$五人一同参加飞镖大赛,其中只有一人射中飞镖盘的中心,但不知是谁所射. $$A$$说:``不是我射中的,就是$$C$$射中的.'' $$B$$说:``不是$$E$$射中的.'' $$C$$说:``如果不是$$D$$射中的,那么一定是$$B$$射中的.'' $$D$$说:``既不是我射中的,也不是$$B$$射中的.'' $$E$$说:``既不是$$C$$射中的,也不是$$A$$射中的.'' 其中五人中只有两个人说的是对的,由此可以判断射中飞镖盘中心的人是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$A$$ " } ], [ { "aoVal": "B", "content": "$$B$$ " } ], [ { "aoVal": "C", "content": "$$C$$ " } ], [ { "aoVal": "D", "content": "$$D$$ " } ], [ { "aoVal": "E", "content": "$$E$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$A$$和$$E$$说的话对立,$$C$$和$$D$$说的话对立,必有两对两错,故$$B$$说的是错的,则是$$E$$射中的. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2011
e13cc3e1cf8b453295732f22ade99670
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第8题5分" ]
0
single_choice
鸡兔同笼,共有$$4$$个头,$$12$$条腿,有只兔.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->原型题" ]
[ "枚举法: 当有$$1$$只兔,$$3$$只鸡时,共$$1\\times4+3\\times2=10$$(条)腿. 当有$$2$$只兔,$$2$$只鸡时,共$$2\\times4+2\\times2=12$$(条)腿. 所以有$$2$$只兔. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3130
f5809cca601944bbb88fa8a437d631fc
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
1
single_choice
如果你花$$30$$分钟做了$$35$$道题目,那么用同样的速度,你做$$315$$道题目至少需要多少小时?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "知识标签->拓展思维->计算模块->整数->四则混合运算" ]
[ "$$35$$个题目需要$$30$$分钟,$$315$$里面有$$9$$个$$35$$,所以需要的时间是$$30\\times 9=270$$分钟,等于$$4.5$$小时. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2125
00175456487f4f9da59ce5e0ae64b547
[ "2016年新希望杯六年级竞赛训练题(五)第6题" ]
1
single_choice
甲、乙两人一起参加$$3000$$米长跑比赛,甲以匀速$$8$$米/秒跑完了全程,乙先以$$10$$米/秒跑了一段时间,后减速为$$5$$米/秒跑完了全程.当甲跑到终点的时候,乙距离终点还有$$125$$米.乙跑完全程用$$5$$米/秒的速度跑了(~ ~ )秒.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$150$$ " } ], [ { "aoVal": "C", "content": "$$200$$ " } ], [ { "aoVal": "D", "content": "$$250$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人变速问题" ]
[ "甲跑完全程共花了$$3000\\div 8=375$$秒,乙在这段时间跑了$$3000-125=2875$$米. 设乙用$$10$$米/秒速度跑了$$x$$秒,则他用$$5$$米/秒的速度跑了$$\\left( 375-x \\right)$$秒.$$10x+\\left( 375-x \\right)\\times 5=2875$$,解得$$x=200$$,用$$5$$米/秒的速度所跑的路程为$$3000-200\\times 10=1000$$米. 所用时间为$$1000\\div 5=200$$秒. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1539
71bcefd196c648259f163cf044af2cdc
[ "2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第5题6分" ]
0
single_choice
$$20$$个同学排成一队做操,从左边数小文排在第$$12$$个,从右边数小文排在第个.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "小文的左边有人:$$12-1=11$$(人), 所以从右边数小文排在:$$20-11=9$$(个). 故选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1064
0b35203fc06b44e287e3c28a912fc016
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第4题5分" ]
0
single_choice
如果把一根木棍锯成$$5$$段需要$$4$$分钟.如果锯成$$10$$段需要分钟.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->锯木头类型问题" ]
[ "锯成$$5$$段,需要锯$$4$$次,所以每次$$1$$分钟.锯成$$10$$段,需要锯$$9$$次,所以需要$$9$$分钟,故选择$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1822
e4802ef280d9425ab9d8b665407580f7
[ "2014年全国迎春杯三年级竞赛初赛第8题" ]
1
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,若按此方式不断重复,则从龙嘴里吐出的第$$2000$$颗龙珠是.
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "知识标签->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$2000\\div (4+3+2+1)=200$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
94
340a6638f6644a8b8dc51363e7d34aa7
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第4题3分" ]
1
single_choice
一把钥匙只能开一把锁,现有$$4$$把钥匙和$$4$$把锁搞乱了,最多试开次就能确定哪把钥匙开哪把锁.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一把钥匙最坏的情况要试$$3$$次,把这把钥匙和这把锁拿出;剩下的$$3$$把锁和$$3$$把钥匙,最坏的情况要试$$2$$次,把这把钥匙和这把锁拿出;剩下的$$2$$把锁和$$2$$把钥匙,最坏的情况要试$$1$$次,把这把钥匙和这把锁拿出;剩下的$$1$$把锁和$$1$$把钥匙就不用试了;$$3+2+1=6$$(次). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
139
1ac24ad3cb314aa6a7c52f172177b05f
[ "2016年IMAS小学高年级竞赛第一轮检测试题第13题4分" ]
3
single_choice
已知袋子中装有$$n$$颗小球,依次编号为$$1$$、$$2$$、$$3$$、$$\cdots$$、$$n$$,每次都从袋子中取出两颗球,把它们的编号相加并记下结果,然后把它们放回袋子内.重复抽取直到袋子中每一对小球都被取到为止,记录中恰好有$$215$$种不同的数值,请问$$n$$的值是多少?
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$105$$ " } ], [ { "aoVal": "C", "content": "$$108$$ " } ], [ { "aoVal": "D", "content": "$$109$$ " } ], [ { "aoVal": "E", "content": "$$215$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "每两个数相加,和最小为$$1+2=3$$,最大为$$n+(n-1)=2n-1$$,现在共有$$215$$种不同的数值,即最大的数值为$$215+3-1=217$$,$$217=2n-1$$,$$n=109$$. ", "<p>最大值和最小值之间有多少数字就是多少种可能性.$$2n -1-3=215$$.</p>" ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2498
2295a3df2f52407f877d7cb7587340b9
[ "2017年第15届湖北武汉创新杯小学高年级五年级竞赛决赛第5题" ]
2
single_choice
天安门广场是世界上最大的广场,面积约为$$44$$万平方米.已知$$1$$亩$$=\frac{2000}{3}$$平方米,则天安门广场的面积约为.
[ [ { "aoVal": "A", "content": "$$600$$亩 " } ], [ { "aoVal": "B", "content": "$$630$$亩 " } ], [ { "aoVal": "C", "content": "$$660$$亩 " } ], [ { "aoVal": "D", "content": "$$690$$亩 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$440000\\div \\frac{2000}{3}=660$$(亩). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
681
676f4591184f44159afb2c82cc76fa1e
[ "2018年第6届湖北长江杯五年级竞赛初赛A卷第6题3分", "2018年上海小学高年级五年级竞赛A卷" ]
1
single_choice
$$5$$路和$$9$$路公共汽车早上$$6$$时$$40$$分同时发车,$$5$$路公共汽车每隔$$10$$分钟发一辆车,$$9$$路公共汽车每隔$$8$$分钟发一辆车,这两路车第$$20$$次同时发车是.
[ [ { "aoVal": "A", "content": "$$8:00$$ " } ], [ { "aoVal": "B", "content": "$$18:40$$ " } ], [ { "aoVal": "C", "content": "$$19:20$$ " } ], [ { "aoVal": "D", "content": "$$20:00$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "$$10$$和$$8$$的最小公倍数是$$40$$, $$40\\times20=800$$(分钟), $$6$$时$$20$$分再过$$800$$分钟为$$20$$时, 所以第$$20$$次同时发车为$$20$$时. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
189
205ae59dbf97407c86433eade75c920f
[ "2013年第11届全国创新杯五年级竞赛第4题5分" ]
2
single_choice
在垒球比赛中,若赢$$1$$场得$$3$$分,平$$1$$场得$$1$$分,输$$1$$场不得分.每个队都与其他队交锋$$4$$场,这时四个参赛队的总积分为:$$A$$队$$22$$分,$$B$$队$$19$$分,$$C$$队$$14$$分,$$D$$队$$12$$分.那么有(~ )场比赛为平局.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "知识标签->数学思想->分类讨论思想" ]
[ "对于赛况分析试题,尤其对于与分数相关的试题,最重要的是思维方式,本题如果从整体上来考虑比赛所产生的总分值,问题将迎刃而解,依题意可知比赛总场次为$$24$$场比赛之中,若平局则将会让所有队伍的总分增加$$2$$分(比赛双方均得$$1$$分),若出现了胜败,则所有队伍的总分增加$$3$$分,而现在所有队伍获得的总分值为:$$22+19+14+12=67$$(分),$$24$$场比赛,总分最多$$24\\times 3=72$$分,平$$1$$场总分少$$1$$分,$$72-67=5$$分,所以平局$$5$$场. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2253
4a47642dc5a142d88d2ad30d46576e3f
[ "2017年第22届全国华杯赛小学中年级竞赛初赛第4题10分" ]
2
single_choice
猎豹跑一步长为$$2$$米,狐狸跑一步长为$$1$$米,猎豹跑$$2$$步的时间狐狸跑$$3$$步.猎豹距离狐狸$$30$$米,则猎豹跑动~\uline{~~~~~~~~~~}~米可追上狐狸.
[ [ { "aoVal": "A", "content": "$$90$$ " } ], [ { "aoVal": "B", "content": "$$105$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$135$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "在同样时间内,猎豹跑$$2$$步可以跑$$4$$米,孤狸跑$$3$$步可以跑$$3$$米,那么$${{V}_{豹}}:{{V}_{狐}}=4:3$$,猎豹跑距离气$${{S}_{豹}}=30\\times \\frac{4}{4-3}=120$$米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3089
dd47d0da8b174aeca8395b1f73a93a3e
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(三)" ]
1
single_choice
已知$$a$$和$$b$$均是正整数,并且$$\frac{a}{7}+\frac{b}{11}$$的值四舍五入的百分位等于$$1.03$$,那么$$a+b=$$(~ ).
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\frac{a}{7}+\\frac{b}{11}=\\frac{11a+7b}{77}=1.03$$ $$11a+7b\\approx 79.31~ , 11a+7b=79$$ 由于$$a$$和$$b$$都是正整数,$$a=4$$,$$b=5$$,$$a+b=9$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1365
28c81a8a383943128eb00f5b9ba3863e
[ "2014年全国华杯赛小学高年级竞赛初赛A卷第2题" ]
2
single_choice
【数学人教版】某次考试有$$50$$道试题,答对一道题得$$3$$分,答错一道题或不答题会扣$$1$$分,小龙得分$$118$$分,则小龙答对了道试题.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$42$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$50$$ " } ] ]
[ "知识标签->数学思想->方程思想" ]
[ "假设小龙所有的题目都做对了,则小龙的得分为:$$50\\times 3=150$$(分);实际上小龙的得分为$$118$$分,假设与实际相差:$$150-118=32$$(分);小龙一道题由对变错会损失:$$3+1=4$$(分),所以小龙错了:$$32\\div 4=8$$(道)题,则小龙答对了:$$50-8=42$$(道)题. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1167
116047fdb2ca4d5f972379887e22a895
[ "2017年第15届湖北武汉创新杯六年级竞赛初赛第5题" ]
1
single_choice
小刚、小强、小明一起买文具,小刚买$$3$$支铅笔和$$5$$支圆珠笔共用$$5.4$$元,小强买$$5$$支铅笔和$$7$$支圆珠笔共用$$7.8$$元,小明买$$4$$支铅笔和$$4$$支圆珠笔共用元.
[ [ { "aoVal": "A", "content": "$$3.4$$ " } ], [ { "aoVal": "B", "content": "$$4.8$$ " } ], [ { "aoVal": "C", "content": "$$6.0$$ " } ], [ { "aoVal": "D", "content": "$$6.6$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设每支铅笔$$x$$元,每支圆珠笔$$y$$元,则$$3x+5y=5.4$$,$$5x+7y=7.8$$,得$$2x+2y=2.4$$,所以$$4x+4y=4.8$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2933
9752800056d54be991d69bed2475b807
[ "2013年第12届全国小机灵杯小学中年级三年级竞赛初赛第6题8分" ]
1
single_choice
对于两个数$$a$$和$$b$$,规定一种新运算,$$a\Delta b=3\times a+2\times b$$,$$a\nabla b=2\times a+3\times b$$,那么$$2\Delta \left( 3\nabla 4 \right)=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$42$$ " } ], [ { "aoVal": "B", "content": "$$47$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->定义新运算->直接运算型->普通型" ]
[ "$$3\\nabla 4=2\\times 3+3\\times 4=18$$,$$2\\Delta \\left( 3\\nabla 4 \\right)=2\\Delta 18=3\\times 2+2\\times 18=42$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2753
e8679025ee8d4fb2b63e0e0fa863e758
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(一)" ]
2
single_choice
已知$$N=1\frac{1}{6}+2\frac{1}{12}+\ldots \ldots +9\frac{1}{110}$$,那么比$$N$$大的自然数最小值为(~ ).
[ [ { "aoVal": "A", "content": "$$45$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$47$$ " } ], [ { "aoVal": "D", "content": "$$48$$ " } ] ]
[ "拓展思维->能力->归纳总结->归纳推理" ]
[ "原式$$=\\left( 1+2+3+\\cdots \\cdots +9 \\right)+\\left( \\frac{1}{6}+\\frac{1}{12}+\\cdots \\cdots +\\frac{1}{110} \\right)$$ $$=45+\\left( \\frac{1}{2\\times 3}+\\frac{1}{3\\times 4}+\\cdots \\cdots +\\frac{1}{10\\times 11} \\right)$$ $$=45+\\left( \\frac{1}{2}\\times \\frac{1}{11} \\right)$$ $$=45\\frac{9}{22}$$ 所以符合题意的最小值为$$46$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1335
676b0454b50b4e648c522a55f8ac6218
[ "2018年湖北武汉新希望杯五年级竞赛训练题(五)第1题" ]
2
single_choice
$$9$$行$$9$$列的方阵树林,如果去掉最外层$$2$$行$$2$$列,要减少棵树.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$34$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$38$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->方阵问题->实心方阵->实心方阵的增减", "课内体系->思想->数形结合思想" ]
[ "$$9\\times 9-7\\times 7=32$$(棵). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1874
a5223a7746ac42b1802fe3269e3b7a8f
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第4题5分" ]
1
single_choice
一本书,小明从第$$10$$页看到第$$25$$页,他看了页.
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "$$25-10+1=16$$. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2769
6da179f0313e4b388156dd6d28b74dd8
[ "2012年IMAS小学中年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
在算式$$+5=13-2$$中,括号中应填入什么数才能使算式成立?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "13-2=11;11-5=6 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1035
0e95cfa449454fabb295f2fe24e87f0e
[ "2012年IMAS小学高年级竞赛第一轮检测试题第18题4分" ]
1
single_choice
老王在机场工作,他每上$$8$$天班后,就连续休息两天,如果这个星期六和星期天连休二天他都休息,请问至少再过几个星期后,他才能又在星期天休息?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "老王接下来的休息时间为:周二和周三;周五和周六;周一和周二;周四和周五;周日和周一;$$\\cdots\\cdots$$. 所以他再次在星期天休息时已经过了$$10\\times 4+9=49$$天,刚好$$7$$个星期. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3086
bd9cac9ff9d344e9aa52d18a55361368
[ "2016年第14届全国创新杯五年级竞赛初赛第8题" ]
3
single_choice
根据``三角形任意两边之和大于第三边''的知识,解答本题: 有不同长度的七条线段,其长度均为整数厘米,最短的是$$1$$厘米,最长的是$$21$$厘米,其中以任何三条线段作``边''都不能组成一个三角形,那么这七条线段中第二长的线段长厘米.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "斐波那契数列从第三项开始,等于前两项的和,即$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$. 即第二长的为$$13$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
452
8f0f40848f6a4253be5828b817464fdd
[ "2020年希望杯二年级竞赛模拟第17题" ]
1
single_choice
小皮、小舒和小贝是同班同学,他们中一个是班长,一个是学习委员,一个是体育委员.现在知道: ①小皮的年龄比体育委员的年龄大; ②小舒比学习委员的年龄大; ③小贝和学习委员年龄不同. 那么小皮、小舒和小贝分别担任.
[ [ { "aoVal": "A", "content": "班长,学习委员,体育委员 " } ], [ { "aoVal": "B", "content": "学习委员,体育委员,班长 " } ], [ { "aoVal": "C", "content": "学习委员,班长,体育委员 " } ], [ { "aoVal": "D", "content": "班长,体育委员,学习委员 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由②小舒比学习委员的年龄大;和③小贝和学习委员年龄不同.可知小舒和小贝都不是学习委员,所以学习委员是小皮; 已知小舒比小皮大,并且小皮的年龄比体育委员的年龄大,所以小舒不是体育委员,所以小舒是班长;那么小贝就是体育委员. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2374
336106070fa54f478c6a17045a56ff9c
[ "2011年第9届全国创新杯小学高年级六年级竞赛第7题" ]
1
single_choice
定义两种运算:$$a\oplus b=a+b-1$$,$$a\otimes b=ab-1$$.如果$$4\otimes \left[ \left( 6\oplus x \right)\oplus \left( 3\otimes 5 \right) \right]=79$$,则$$x$$等于( ).
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$6\\oplus x=6+x-1=5+x$$;$$3\\otimes 5=3\\times 5-1=14$$;$$\\left( 5+x \\right)\\oplus 14=5+x+14-1=x+18$$; $$4\\otimes \\left( 18+x \\right)=4\\times \\left( 18+x \\right)-1=4x+71$$;$$4x+71=79$$,得$$x=2$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1867
fbc4a38924854eb7991c19197acdf40a
[ "2018年湖北武汉创新杯小学高年级五年级竞赛初赛数学思维能力等级测试第9题4分" ]
1
single_choice
小明、小强各买了单价为$$10$$元、$$15$$元两种价格的书,每人买的书两种价格的都有,各自的书款总额都是$$90$$元,但所买的数的本书不同,那么两人买的书共有(~ )本.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "设$$10$$元的有$$x$$本,$$15$$元的有$$y$$本,则$$10x+15y=90$$,解得$$\\begin{cases} x=6 y=2 \\end{cases}$$,$$\\begin{cases} x=3 y=4 \\end{cases}$$,共$$6+2+3+4=15$$本. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3206
1a7f2e663d5d484abb048f8985fd7efc
[ "2011年北京五年级竞赛", "2011年北京六年级期中" ]
2
single_choice
$$4$$个人聚会,每人各带$$2$$件礼品,分赠给其余$$3$$个人中的$$2$$人.则:至少有$$2$$对人,每对人是互赠过礼品的.~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "对 " } ], [ { "aoVal": "B", "content": "不对 " } ] ]
[ "知识标签->数学思想->枚举思想" ]
[ "将这四个人用$$4$$个点表示,如果两个人之间送过礼,就在两点之间连一条线. 由于每人送出$$2$$件礼物,图中共有$$4\\times 2=8$$条线,由于每人礼品都分赠给$$2$$个人,所以每两点之间至多有$$1+1=2$$条线.四点间,每两点连一条线,一共$$6$$条线,现在有$$8$$条线,说明必有两点之间连了$$2$$条线,还有另外两点(有一点可以与前面的点相同)之间也连了$$2$$条线. 即为所证结论. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1155
3d2e8e0f6c834ae9814ee89ed61b9b0e
[ "2014年全国迎春杯三年级竞赛初赛第12题" ]
1
single_choice
$$2013$$年$$12$$月$$21$$日是星期六,那么$$2014$$年的春节,即$$2014$$年$$1$$月$$31$$日是星期. $ $ $ $ $ $
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "四 " } ], [ { "aoVal": "C", "content": "五 " } ], [ { "aoVal": "D", "content": "六 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "星期六有:$$21\\to 28\\to 4(35)\\to 11\\to 18\\to 25$$,所以 $$31$$日是星期五. $$10+31=41$$(天),$$41\\div7=5\\cdots 6$$ ,差一天是星期六,所以$$31$$日是星期五. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2987
b2eef23883ff431c9f50b9b7b5023dd0
[ "2017年第15届湖北武汉创新杯五年级竞赛初赛第11题" ]
1
single_choice
计算:$$\frac{37037037037\times 73}{2703703703701}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$37$$ " } ], [ { "aoVal": "D", "content": "无法计算 " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "原式$$=\\frac{37\\times 1001001001\\times 73}{2701\\times 1001001001}$$ $$=\\frac{2701\\times 1001001001}{2701\\times 1001001001}$$ $$=1$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
151
628c3b5ede004a4784d781d2eb619ba0
[ "2019年第24届YMO六年级竞赛决赛第7题3分" ]
3
single_choice
有一个$$12$$级的楼梯.某人每次能登上$$1$$级或$$2$$级或$$3$$级,现在他要从地面登上第$$12$$级,有种不同的方式.
[ [ { "aoVal": "A", "content": "$$149$$ " } ], [ { "aoVal": "B", "content": "$$274$$ " } ], [ { "aoVal": "C", "content": "$$504$$ " } ], [ { "aoVal": "D", "content": "$$927$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "设第$$n$$级有$${{a}_{n}}$$种登的方式, 则第$$n-3$$,$$n-2$$,$$n-1$$级再分别登$$3$$,$$2$$,$$1$$级可到第$$n$$级, 则$${{a}_{n}}={{a}_{n-3}}+{{a}_{n-2}}+{{a}_{n-1}}$$, 而$${{a}_{1}}=1$$,$${{a}_{2}}=1+1=2$$,$${{a}_{3}}=1+1+2=4$$, 故$${{a}_{4}}=1+2+4=7$$, $${{a}_{5}}=2+4+7=13$$, $${{a}_{6}}=4+7+13=24$$, $${{a}_{7}}=7+13+24=44$$, $${{a}_{8}}=13+24+44=81$$, $${{a}_{9}}=24+44+81=149$$, $${{a}_{10}}=44+81+149=274$$, $${{a}_{11}}=81+149+274=504$$, $${{a}_{12}}=149+274+504=927$$. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1038
06eacdb28421499883db75681b9ff994
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第8题3分" ]
1
single_choice
商店有$$A$$、$$B$$两件衣服,都卖$$200$$元,$$A$$赚了十分之一,$$B$$亏了十分之一,总体上是.
[ [ { "aoVal": "A", "content": "赚了 " } ], [ { "aoVal": "B", "content": "亏了 " } ], [ { "aoVal": "C", "content": "不亏不赚 " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->已知售价利润求成本" ]
[ "售价为$$200$$元,$$A$$赚了十分之一,$$A$$的进价为$$200\\div \\left( 1+10 \\% \\right)=\\frac{2000}{11}$$(元), $$B$$亏了十分之一,$$B$$的进价为$$200\\div \\left( 1-10 \\% \\right)=\\frac{2000}{9}$$(元), $$\\frac{2000}{11}+\\frac{2000}{9}=\\frac{40000}{99}$$(元)$$\\textgreater400$$元, 进价$$\\textgreater$$售价,亏了. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2350
8aac50a7519fa10a01519fd4faa4002b
[ "2016年全国华杯赛小学高年级竞赛初赛第1题" ]
1
single_choice
算式$$\underbrace{999\cdots 9}_{2016}\times \underbrace{999\cdots 9}_{2016}$$的结果中含有( ~ ~ ~ ~)个数字$$0$$.
[ [ { "aoVal": "A", "content": "$$2017$$ " } ], [ { "aoVal": "B", "content": "$$2016$$ " } ], [ { "aoVal": "C", "content": "$$2015$$ " } ], [ { "aoVal": "D", "content": "$$2014$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$${{\\left( {{10}^{2016}}-1 \\right)}^{2}}=\\left( {{10}^{2016}}-2 \\right)\\times {{10}^{2016}}+1=\\underbrace{999\\cdots 99}_{2015}8\\underbrace{000\\cdots 00}_{2015}1$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
806
ff80808147248448014724de1968012d
[ "2012年全国华杯赛小学高年级竞赛初赛网络版第3题" ]
1
single_choice
两个数的最大公因数是$$20$$,最小公倍数是$$100$$,下面说法正确的有个. (1)两个数的乘积是$$2000$$. (2)两个数都扩大$$10$$倍,最大公因数扩大$$100$$倍. (3)两个数都扩大$$10$$倍,最小公倍数扩大$$10$$倍. (4)两个数都扩大$$10$$倍,两个数乘积扩大$$100$$倍.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$(1)$$$$(3)$$$$(4)$$正确. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
204
902ee41d952d474f886cd0bdb5b37531
[ "2013年小机灵杯五年级竞赛初赛" ]
2
single_choice
古时候的原始人捕猎,捕到一只野兽对应一根手指。等到$$10$$根手指都用完,就在绳子上打一个结,这就是运用现在的数学中的( )
[ [ { "aoVal": "A", "content": "出入相补原理 " } ], [ { "aoVal": "B", "content": "等差数列求和 " } ], [ { "aoVal": "C", "content": "十进制计数法 " } ] ]
[ "拓展思维->拓展思维->组合模块->智巧趣题" ]
[ "解:古时候的原始人捕猎,捕到一只野兽对应一根手指。等到$$10$$根手指都用完,就在绳子上打一个结,这就是运用现在的数学中的十进制计数法; 故选:$$C$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2364
047c1a6892d44100b42a46f246e7b5d7
[ "2012年IMAS小学中年级竞赛第一轮检测试题第2题3分" ]
0
single_choice
在算式$$\square +5=13-2$$中,请问$$\square $$中应填入什么数才能使算式正确?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数减法运算->减法横式" ]
[ "13-2=11;11-5=6 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
416
78c7a7da757b47a5b0c2b40f4c90d2c8
[ "2017年IMAS小学高年级竞赛(第一轮)第11题4分" ]
1
single_choice
有$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$的数码卡片各一张,小李每次取出$$2$$张,记录下它们的差(大的数减小的数),然后把这两张卡片扔掉.取完这六张卡片后,请问小李记录下的三个差之和最大可能值为多少?
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "小李记录下的三个差之和等于六个数码的其中三个数码减去另外三个数码, 所以最大可能值为$$6+5+4-3-2-1=9$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2049
eae7efabd11a491ea930257b03240fe8
[ "2018年湖北武汉新希望杯五年级竞赛训练题(四)第4题" ]
1
single_choice
水果店规定:如果购买芒果不超过$$10$$千克,那么每千克售价$$4$$元;如果超过$$10$$千克,那么超过的部分每千克$$3.5$$元.某人买了$$24$$千克芒果,他应付元.
[ [ { "aoVal": "A", "content": "$$84$$ " } ], [ { "aoVal": "B", "content": "$$89$$ " } ], [ { "aoVal": "C", "content": "$$90$$ " } ], [ { "aoVal": "D", "content": "$$96$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->分段计价问题" ]
[ "$$4\\times 10+3.5\\times (24-10)=89$$(元). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
593
7467a847fc424ee882285afac2e4cb9f
[ "2006年华杯赛五年级竞赛初赛", "2006年华杯赛六年级竞赛初赛" ]
1
single_choice
2007005共有个质因数.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数" ]
[ "因为$$2007005=2005\\times 1000+2005=2005\\times 1001=\\left( 5\\times 401\\times )( 7\\times 11\\times 13 \\right)$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2804
8002adff54074710a97a3b13bec2edd3
[ "2012年全国希望杯五年级竞赛初赛第2题" ]
0
single_choice
计算:$$21.49+52.37-0.4+5.51-11.37-6.6=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$41$$ " } ], [ { "aoVal": "B", "content": "$$51$$ " } ], [ { "aoVal": "C", "content": "$$61$$ " } ], [ { "aoVal": "D", "content": "$$71$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "$$21.49+52.37-0.4+5.51-11.37-6.6$$$$=(21.49+5.51)+(52.37-11.37)-(0.4+6.6)$$$$=27+41-7$$$$=61$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3362
8d509065dcce4cdf9c309b6b0d3e1ec8
[ "2016年第14届全国创新杯五年级竞赛初赛第9题" ]
2
single_choice
不妨称各位数字之和为$$7$$的整数为``魔力数'',如$$115$$,$$1312$$等就是魔力数.那么随手写出一个三位数,恰好是``魔力数''的可能性是(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{45}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{75}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{7}{225}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{8}{225}$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "三位数一共有$$900$$个满足条件的魔力数有$$\\text{C}_{7+2-1}^{2}=28$$个,则$$\\frac{28}{900}=\\frac{7}{225}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1688
917e0a45e24040759f92eab66af8047c
[ "2007年四年级竞赛创新杯" ]
1
single_choice
一条绳子,折成相等的$$3$$段后,再对折成相等的两段,然后从中间剪开,一共可以剪成~\uline{~~~~~~~~}~段。
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->剪绳子" ]
[ "将绳折成$$3$$段再对折,相当于折成$$6$$段,一刀与这$$6$$段共有$$6$$个交点,所以将绳剪成$$7$$段。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1206
4b42ceb7f4144f149e8f945da32ba889
[ "2018年全国小学生数学学习能力测评四年级竞赛复赛第9题3分" ]
1
single_choice
学校有象棋,跳棋共$$26$$副,$$2$$人下一副象棋,$$6$$人下一副跳棋,恰好可供$$120$$名同学进行活动,象棋有副.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "利用假设的方法来解答, 假设$$26$$副都是跳棋,那么$$26$$副跳棋可供$$6\\times 26=156$$(人)进行活动, 与$$120$$人相差$$156-120=36$$(人), 每副象棋和跳棋的人数相差$$6-2=4$$(人), 用一共相差的人数$$36$$除以$$4$$就求出象棋有多少副,$$36\\div 4=9$$(副). 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2992
a57bb94584134e5fb6289af83d836e47
[ "2014年迎春杯三年级竞赛初赛", "2014年迎春杯四年级竞赛初赛", "2014年迎春杯四年级竞赛初赛", "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
下面计算结果等于$$9$$的是( )。
[ [ { "aoVal": "A", "content": "$$3\\times 3\\div 3+3$$ " } ], [ { "aoVal": "B", "content": "$$3\\div 3+3\\times 3$$ " } ], [ { "aoVal": "C", "content": "$$3\\times 3-3+3$$ " } ], [ { "aoVal": "D", "content": "$$3\\div 3+3\\div 3$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->四则混合运算" ]
[ "解:A、$$3\\times 3\\div 3+3$$ $$=3+3$$ $$=6$$ B、$$3\\div 3+3\\times 3$$ $$=1+9$$ $$=10$$ C、$$3\\times 3-3+3$$ $$=9-3+3$$ $$=9$$ D、$$3\\div 3+3\\div 3$$ $$=1+1$$ $$=2$$ 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
384
923e9c283f57445da28185a896629e0e
[ "2021年新希望杯一年级竞赛初赛第14题5分" ]
1
single_choice
$$5$$只动物排成一排,狗和猫都与鸡相邻,猫和鼠都与兔相邻,那么都与猫相邻.
[ [ { "aoVal": "A", "content": "鼠和鸡 " } ], [ { "aoVal": "B", "content": "鸡和兔 " } ], [ { "aoVal": "C", "content": "兔和狗 " } ], [ { "aoVal": "D", "content": "兔和鼠 " } ], [ { "aoVal": "E", "content": "鼠和狗 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据题意分析可知,狗和猫都与鸡相邻,即鸡的左右两边是猫和狗,又因为猫与老鼠都与兔相邻,所以猫的旁边是兔子和老鼠,兔子和老鼠在猫的同一侧,由此可知,与猫相邻的是鸡和兔. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
850
89c25eab2fc64218869a27fda8859631
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
1
single_choice
在$$20$$到$$100$$这$$100$$个正整数中,不能被$$2$$,$$3$$,$$5$$,$$7$$中任何一个数整除的数有(~ )个.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->整除->整除特征->整除初识" ]
[ "在$$20100$$以内不能被$$2$$,$$3$$,$$5$$,$$7$$整除的数其实就是比$$20$$大的质数,只要理解了这一点,就可以直接得出答案.$$100$$以内有$$25$$质数,$$20$$以内有$$8$$个质数,$$258=17$$(个). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2060
e1f07df818ed402a8a1d70bd82131f5a
[ "2019年第24届YMO二年级竞赛决赛第6题3分" ]
1
single_choice
小$$\text{Y}$$和小$$\text{M}$$共同组装$$15$$个机器人玩具.小$$\text{Y}$$每$$2$$小时组装$$1$$个机器人玩具,小$$\text{M}$$每$$3$$小时组装一个机器人玩具,两人同时开始组装,小时能完成任务.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "根据题意分析可知,用工作总量除以工作效率就能得到工作时间,小$$\\text{Y}$$的工作效率为:$$1\\div 2=\\frac{1}{2}$$,小$$\\text{M}$$的工作效率为:$$1\\div 3=\\frac{1}{3}$$,所以两人同时组装,完成的时间为: $$15 \\div \\left( \\frac{1}{2}+ \\frac{1}{3}\\right)$$ $$=15 \\div \\frac{5}{6}$$ $$=18$$(小时) 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
673
1bd6bca400a5427385c61a8a6374c8eb
[ "2011年北京五年级竞赛", "2011年其它", "2019年陕西西安新城区爱知中学小升初入学真卷2第24题7分" ]
1
single_choice
甲、乙两车分别从 $$A$$、$$B$$两地同时出发,相向而行.出发时,甲、乙的速度之比是 $$5 : 4$$,相遇后甲的速度减少$$20 \%$$,乙的速度增加 $$20 \%$$.这样当甲到达$$B$$地时,乙离$$A$$地还有$$10$$千米.那么$$A$$、$$B$$两地相距多少千米?
[ [ { "aoVal": "A", "content": "$$300$$ " } ], [ { "aoVal": "B", "content": "$$350$$ " } ], [ { "aoVal": "C", "content": "$$400$$ " } ], [ { "aoVal": "D", "content": "$$450$$ " } ], [ { "aoVal": "E", "content": "$$480$$ " } ] ]
[ "海外竞赛体系->知识点->数论模块->质数与合数->特殊质数运用->特殊质数2", "拓展思维->思想->整体思想" ]
[ "两车相遇时甲走了全程的$$\\frac{5}{9}$$,乙走了全程的$$\\frac{4}{9}$$, 之后甲的速度减少$$20 \\%$$,乙的速度增加$$20 \\%$$, 此时甲、乙的速度比为$$5 \\times (1 - 20 \\% ):$$4$$ \\times (1 + 20 \\% ) = 5:6$$ , 所以甲到达$$B$$地时,乙又走了$$\\frac{4}{9} \\times \\frac{6}{5} = \\frac{8}{{15}}$$,距离 $$A$$地$$\\frac{5}{9} - \\frac{8}{{15}} = \\frac{1}{{45}}$$, 所以$$A$$、$$B$$两地的距离为$$10 \\div \\frac{1}{{45}} = 450$$ $$($$千米$$)$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
899
81e40461001c4fb9a2e650aca64a3add
[ "2013年第11届全国创新杯五年级竞赛第3题5分" ]
1
single_choice
将$$42$$个边长为$$1$$厘米的小方块粘在一起形成一个长方体,若长方体地面的周长为$$18$$厘米,则长方体的高是(~ ).
[ [ { "aoVal": "A", "content": "$$2$$厘米 " } ], [ { "aoVal": "B", "content": "$$3$$厘米 " } ], [ { "aoVal": "C", "content": "$$4$$厘米 " } ], [ { "aoVal": "D", "content": "$$7$$厘米 " } ] ]
[ "拓展思维->能力->图形认知" ]
[ "根据题意我们必须将$$42$$拆分成$$3$$个自然数的乘积,且恰好其中长与高之和应为$$18\\div 2=9cm$$,易得:$$42=7\\times 2\\times 3$$,故长为$$7$$厘米,宽为$$2$$厘米,高为$$3$$厘米. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
945
e615099e054d4f078d9bfaeef50456d1
[ "2019年美国数学大联盟杯五年级竞赛初赛第5题5分" ]
1
single_choice
下面哪个数不是三个不同质数的乘积(正好三个)? Which of the following is not the product of exactly three different prime factors?
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$70$$ " } ], [ { "aoVal": "C", "content": "$$105$$ " } ], [ { "aoVal": "D", "content": "$$175$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数->分解质因数(式)", "Overseas Competition->知识点->数论模块->分解质因数" ]
[ "题目翻译:下面哪一项不是三个完全不同的质数的乘积? 把每个选项的数进行分解质因数. $$30=2\\times3\\times5$$,是三个不同的质数的乘积. $$70=2\\times5\\times7$$,是三个不同的质数的乘积. $$105=3\\times5\\times7$$,是三个不同的质数的乘积. $$175=5\\times5\\times7$$,不是三个不同的质数的乘积. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
793
ff808081465a848401465b54d7b90281
[ "2014年全国华杯赛小学高年级竞赛初赛B卷第6题", "2016年吉林长春二道区吉大附中力旺实验小学小升初第9题2分" ]
2
single_choice
有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数$$2014315$$.将这七张卡片全部分给甲、乙、丙、丁四人,每人至多分$$2$$张.他们各说了一句话: 甲:``如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$8$$的倍数'' 乙:``如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数仍不是$$9$$的倍数'' 丙:``如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$10$$的倍数'' 丁:``如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$11$$的倍数'' 已知四人中恰有一个人说了谎,那么说谎的人是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "可以直接判断乙必定说的是真话,可以直接判断乙必定是说真话的,乙中的数字不管怎么变换都不可能是$$9$$的倍数. 因为七位数的数字之和为$$2+0+1+4+3+1+5=16$$,不是$$9$$的倍数; 如果丙说真话,那么他手中的数字是$$0$$和$$5$$,可以实现对调位置后被$$10$$整除; 如果甲说真话,那么他手中的数字只能是$$5$$和$$2$$,可以实现对调位置后被$$8$$整除; 如果丁说真话,那么他手中的数字只能是$$0$$和$$3$$,这样才能使得奇数位数字之和减去偶数位数字之和的差是$$11$$的倍数$$(2314015$$,$$(5+0+1+2)-(1+4+3)=0$$). 综上,如果丙说真话,那甲和丁都是说谎话的人,两个人说谎话,不符合题意,所以说谎话的人是丙,选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1376
755ebdd376da4b6fb81f528136c93f86
[ "2017年IMAS小学高年级竞赛(第二轮)第5题4分" ]
1
single_choice
一个正数去掉小数部分后得到一个整数,将这个整数加上原来的正数所得之和,再与$$5$$相乘,最后得到$$22.1$$.请问原来这个正数是多少?
[ [ { "aoVal": "A", "content": "$$4.42$$ " } ], [ { "aoVal": "B", "content": "$$0.42$$ " } ], [ { "aoVal": "C", "content": "$$4.41$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$2.42$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "可知原来的正数与其整数部分相加所得之和为$$22.1\\div 5=4.42$$, 因此原来的正数之小数部分为$$0.42$$,且整数部分为$$4\\div 2=2$$, 所以原来这个正数是$$2.42$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1639
4e897ae0cc2e4a799a40fdc721a49a19
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第7题3分" ]
1
single_choice
一条公路,甲队单独修需要$$24$$天完成,乙队单独修需要$$30$$天完成.甲乙两队合修几天后,乙队停工休息,甲队继续修了$$6$$天公路修好.乙队修了天.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->休息工程问题" ]
[ "把这条公路的工程量看成单位``$$1$$'', 那么甲的工作效率就是$$\\frac{1}{24}$$,乙的工作效率就是$$\\frac{1}{30}$$, 合作的工作效率就是二者的和, 用总工作量减去甲独干的工作量就是合干的工作量, 用合干的工作量除以合作的工作效率就是合干的时间,也就是乙队干的时间. $$\\left( 1-\\frac{1}{24}\\times 6 \\right)\\div \\left( \\frac{1}{24}+\\frac{1}{30} \\right)$$ $$=\\left( 1-\\frac{1}{4} \\right)\\div \\frac{3}{40}$$ $$=\\frac{3}{4}\\div \\frac{3}{40}$$ $$=10$$(天). 答:乙队修了$$10$$天. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
786
d5f61594f99d4b47a3a40e265b9d1cbe
[ "2016年全国美国数学大联盟杯小学高年级六年级竞赛初赛" ]
2
single_choice
做家务是郝美女老师的兴趣.迪每$$8$$天进行一次大扫除,每$$11$$天洗一次衣服.如果星期天她做了两件家务,那么下一次她做两件家务会是哪一天?
[ [ { "aoVal": "A", "content": "星期三 " } ], [ { "aoVal": "B", "content": "星期四 " } ], [ { "aoVal": "C", "content": "星期五 " } ], [ { "aoVal": "D", "content": "星期六 " } ] ]
[ "知识标签->课内知识点->数的认识->数的特征->倍数->两个数的公倍数" ]
[ "$$8\\times 11=88$$,$$88$$除以$$7$$余$$4$$,所以正好是周四. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2232
7161cc01cd2b4628b6120e442df34044
[ "2017年第15届湖北武汉创新杯五年级竞赛决赛第6题" ]
2
single_choice
十八世纪,某国、某人在浓雾中步行,另一乘马车之人从他身后来到他身边,他问马车的速度是多少,对方答道:每分钟$$176$$米.二人各自继续相同而行,$$5$$分钟后,乘马车之人在他前方$$660$$米处隐于浓雾中看不见了,问步行人每分钟步行.
[ [ { "aoVal": "A", "content": "$$11$$米 " } ], [ { "aoVal": "B", "content": "$$22$$米 " } ], [ { "aoVal": "C", "content": "$$33$$米 " } ], [ { "aoVal": "D", "content": "$$44$$米 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$176-660\\div 5=44\\text{m/min}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1723
e8b8f108ca294fbb8824747ebff03d9c
[ "2019年第24届YMO二年级竞赛决赛第3题3分" ]
1
single_choice
一根细绳对折两次后,从正中间剪开,最短的一段长$$1$$米,这根细绳原来长米.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->直线型两端都没有->剪绳子" ]
[ "根据题意分析可知,一根细绳对折两次后被分成了$$4$$段,从中间剪开后,分为两个一样长的短段和一个长段,长段的距离是短段的$$2$$倍, 所以细绳原来长:$$2+1+1=4$$(米). 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
228
5ee2ff196d324dbcac89176297cf1e4a
[ "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第15题3分" ]
1
single_choice
用$$26$$根长度$$1$$厘米的小棒拼长方形,长方形的面积最大是平方厘米.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$42$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->最值原理在几何中的应用" ]
[ "$$26\\div2=13$$(厘米),要使长方形的面积最大,它的长和宽最接近,$$7+6=13$$(厘米),$$7\\times6=42$$(平方厘米),所以长方形的面积最大是$$42$$平方厘米. 故答案为:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2990
ffde55bafb434963ab377db21b63b380
[ "2017年河南郑州联合杯竞赛第10题4分" ]
2
single_choice
$$a=\frac{1234567890}{2345678901}$$,$$b=\frac{1234567890-2017}{2345678901-2016}$$,$$a$$与$$b$$的大小关系是(~ ).
[ [ { "aoVal": "A", "content": "$$a\\textgreater b$$~ " } ], [ { "aoVal": "B", "content": "$$a\\textless{}b$$~~~~~~~ " } ], [ { "aoVal": "C", "content": "$$a=b$$~ " } ], [ { "aoVal": "D", "content": "无法判断 " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->糖水原理法->加糖" ]
[ "比较大小;$$\\frac{1234567890}{2345678901}\\textgreater\\frac{1234567890-2016}{2345678901-2016}\\textgreater\\frac{1234567890-2017}{2345678901-2016}$$,则$$a\\textgreater b$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2923
92bf04be1ae942e39b9fdad56ed1e2b3
[ "2003年六年级竞赛创新杯" ]
1
single_choice
用方砖铺地,当铺地面积一定时,方砖的边长和所需方砖块数的关系是( )
[ [ { "aoVal": "A", "content": "正比例关系 " } ], [ { "aoVal": "B", "content": "反比例关系 " } ], [ { "aoVal": "C", "content": "不成比例关系 " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "拓展思维->拓展思维->计算模块->比和比例->比例->正比例与反比例" ]
[ "$$s=a{{l}^{2}}$$,其中a为块数,$${l}$$为边长,故不成比例 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
675
82fbf33fd7744dc3926e1ce9a3fa0de7
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第3题5分" ]
2
single_choice
下列数中,$$32$$、$$324$$、$$3244$$、$$32444$$、$$324444$$、$$3244444$$、$$32444444$$、$$324444444$$,有个是完全平方数.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$32=2\\times2\\times2\\times2\\times2={{4}^{2}}\\times2$$,不是平方数. $$324={{18}^{2}}$$是平方数. $$32444={{2}^{2}}\\times8111$$不是平方数. $$324444={{2}^{2}}\\times3\\times19\\times1423$$不是平方数. $$3244444={{2}^{2}}\\times7\\times115873$$,而$$115873$$不含质因数$$7$$,故不是. $$32444444={{2}^{2}}\\times23\\times352657$$,而$$352657$$不含质因数$$23$$,故不是. $$324444444={{2}^{2}}\\times3\\times27037037$$,而$$27037037$$不含质因数$$37$$,故不是. 所以选择$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
603
7dc4d32a01b7498da11562ad9b937e8a
[ "2017年第15届湖北武汉创新杯五年级竞赛决赛第8题" ]
2
single_choice
五个数,两两相加,再把所得的和相加,总和为$$2064$$,原来五个数的和为.
[ [ { "aoVal": "A", "content": "$$2064$$ " } ], [ { "aoVal": "B", "content": "$$2068$$ " } ], [ { "aoVal": "C", "content": "$$7099$$ " } ], [ { "aoVal": "D", "content": "$$516$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用" ]
[ "五个数两两相加再求和,每个数计算$$4$$次,则五个数的和为:$$2064\\div 4=516$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1386
31a43c81eb1b4b4fb146e1d9e0c849e5
[ "2020年广东广州羊排赛三年级竞赛第8题5分" ]
1
single_choice
一个工人$$3$$小时磨了$$60$$千克面粉,照这样计算,这个工人磨完$$200$$千克面粉,一共要 小时.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "一个工人$$3$$小时磨了$$60$$千克面粉, 所以$$1$$小时磨面粉$$60\\div3=20$$(千克), 这个工人磨完$$200$$千克面粉,一共要$$200\\div20=10$$(时), 所以答案为$$10$$小时. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2455
66abdab8a1d246548df974c39dd6e831
[ "2017年全国美国数学大联盟杯小学高年级五年级竞赛初赛第34题" ]
3
single_choice
从前一百个正整数中,最多能选出多少个不同整数,使任意其中三个都不能作为同一个三角形的三边长?
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "Overseas Competition->知识点->几何模块->直线型->图形认知->三角形->三角形三边关系", "拓展思维->能力->逻辑分析" ]
[ "To be the lengths of a triangle, the sum of two sides must be longer than the third side. Therefore, we just need to make the third number exactly the sum of the two former numbers, which is also the Fibonacci sequence. $$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$34$$,$$55$$,$$89$$. The last number to be chosen is $$89$$. A total of $$10$$ numbers. Choose $$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1978
aae8ce8dd24f4aaa80b2115a097fdddb
[ "2013年华杯赛六年级竞赛初赛" ]
2
single_choice
甲、乙两仓的稻谷数量一样,爸爸,妈妈和阳阳单独运完一仓稻谷分别需要$$10$$天,$$12$$天和$$15$$天。爸爸妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷,那么阳阳帮妈妈运了( )天。
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题" ]
[ "解:三人一共搬了: $$\\left( 1+1 \\right)\\div \\left( \\frac{1}{10}+\\frac{1}{12}+\\frac{1}{15} \\right)$$ $$=2\\div \\frac{1}{4}$$ $$=8$$(天) 阳阳帮妈妈运的天数: $$\\left( 1-\\frac{1}{12}\\times 8 \\right)\\div \\frac{1}{15}$$ $$=\\frac{1}{3}\\times 15$$ $$=5$$(天) 答:阳阳帮妈妈运了$$5$$天。 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
198
24bb45fc993c461e80b53dca33060009
[ "2020年新希望杯五年级竞赛第33题", "2020年希望杯五年级竞赛模拟第33题" ]
0
single_choice
斯普林特老师在$$3$$个小箱中各放一个有颜色的球,让四只忍者神龟猜箱子中球的颜色. 李奥纳多说:``$$1$$号箱中放红球,$$2$$号箱中放黑球,$$3$$号箱中放黄球.'' 拉斐尔说:``$$1$$号箱中放橙球,$$2$$号箱中放黑球,$$3$$号箱中放绿球.'' 米开朗琪罗说:``$$1$$号箱中放蓝球,$$2$$号箱中放橙球,$$3$$号箱中放紫球.'' 多纳泰罗说:``$$1$$号箱中放橙球,$$2$$号箱中放绿球,$$3$$号箱中放蓝球.'' 斯普林特老师说:``你们中有一个人恰好猜对了两个,其余三人都只猜对一个.'' 那么$$3$$号箱中放的是球.
[ [ { "aoVal": "A", "content": "黄 " } ], [ { "aoVal": "B", "content": "黑 " } ], [ { "aoVal": "C", "content": "红 " } ], [ { "aoVal": "D", "content": "橙 " } ], [ { "aoVal": "E", "content": "蓝 " } ], [ { "aoVal": "F", "content": "紫 " } ], [ { "aoVal": "G", "content": "绿 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "共猜对$$5$$次,由题意知:$$1$$号箱被猜$$2$$次橙,$$2$$号箱被猜$$2$$次黑,则$$1$$号箱为橙或$$2$$号箱为黑. 假设$$1$$号为橙色,则拉斐尔和多纳泰罗一个猜中$$1$$次,一人猜中两次. 假设拉斐尔猜中$$1$$次,则$$2$$号不为黑,$$3$$号不为绿,则李奥纳多猜中$$3$$号为黄,米开朗琪罗全猜错. 假设有问题,则拉斐尔猜中$$2$$次,$$1$$号为橙,$$2$$号不为黑,$$3$$号为绿,则李奥纳多全猜错,则$$1$$号为橙,$$2$$号为黑,$$3$$号不为绿,拉斐尔猜中$$2$$次,李奥纳多猜中$$2$$号为黑,多纳泰罗猜中$$1$$号为橙,米开朗琪罗猜中$$3$$号为紫. " ]
F
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1340
2cd0102c3aa04253bbc93625c0290b3c
[ "2017年全国华杯赛小学中年级竞赛初赛模拟第1题", "小学中年级三年级上学期其它" ]
1
single_choice
甲、乙两人在春节一共得$$210$$元压岁钱,甲给乙$$40$$元,还比乙多$$10$$元,那么,原来甲得了元压岁钱.
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差" ]
[ "因为甲给乙$$40$$元,还比乙多$$10$$元,所以甲比乙多$$40\\times 2+10=90$$元, 所以甲:$$(210+90)\\div 2=150$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
342
7bcd5933858740c5b93e1ca5f8657f20
[ "2021年新希望杯二年级竞赛初赛第30题5分" ]
2
single_choice
谎言岛有一半的人只在星期三、星期五、星期六说谎,另一半的人只在星期二、星期四、星期日说谎.某一天,岛上的所有人都说:``我明天说真话.''那么,这一天是. (2021年新希望杯二年级竞赛初赛数学试卷)
[ [ { "aoVal": "A", "content": "星期二 " } ], [ { "aoVal": "B", "content": "星期三 " } ], [ { "aoVal": "C", "content": "星期五 " } ], [ { "aoVal": "D", "content": "星期六 " } ], [ { "aoVal": "E", "content": "星期日 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "前一半$$7$$天的情况:真、真、假、真、假、假、真, 后一半$$7$$天的情况:真、假、真、假、真、真、假, $$\\text{A}$$选项:若这一天是星期二,则前一半人在今天说的是真话,那么明天应该说真话才合理,但星期三他们说的是假话,相互矛盾.后一半人在今天说的是假话,那么明天应该说假话才合理,但是星期三他们说的是真话,也相互矛盾,故$$\\text{A}$$错误; $$\\text{B}$$选项:若这一天是星期三,则前一半人在今天说的是假话,那么明天应该说假话才合理,但星期四他们说的是真话,相互矛盾.后一半人在今天说的是真话,那么明天应该说真话才合理,但是星期四他们说的是假话,也相互矛盾,故$$\\text{B}$$错误; $$\\text{C}$$选项:若这一天是星期五,则前一半人在今天说的是假话,那么明天应该说假话才合理,星期六他们说的正好是假话,符合.后一半人在今天说的是真话,那么明天应该说真话才合理,星期六他们说的正好是真话,符合,故$$\\text{C}$$正确; $$\\text{D}$$选项:若这一天是星期六,则前一半人在今天说的是假话,那么明天应该说假话才合理,但星期日他们说的是真话,相互矛盾.后一半人在今天说的是真话,那么明天应该说真话才合理,但是星期日他们说的是假话,也相互矛盾,故$$\\text{D}$$错误; E选项:若这一天是星期日,则前一半人在今天说的是真话,那么明天应该说真话才合理,星期一他们说的是真话,符合.后一半人在今天说的是假话,那么明天应该说假话才合理,但是星期一他们说的是真话,相互矛盾,故$$\\text{E}$$错误. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
819
bf39b0079136456fa142deedeea40061
[ "2006年第4届创新杯五年级竞赛复赛第10题" ]
2
single_choice
某加油站有二位员工,从今年$$1$$月$$1$$日起规定:员工甲每工作$$3$$天后休息$$1$$天,员工乙每工作$$5$$天后休息$$2$$天,当遇到二人都休息时,必须另聘一位临时工,则今年共有~\uline{~~~~~~~~~~}~天要聘$$1$$个时工.
[ [ { "aoVal": "A", "content": "$$26$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "甲每到$$4$$的倍数就休息,而乙每到$$7$$的倍数和比$$7$$的倍数少一天都休息. 因为$$4$$和$$7$$的最小公倍数是$$28$$, 因为今年是平年, 所以在$$28$$的倍数体息的日子时:$$365\\div28\\approx 15$$(天), 而在比$$7$$的倍数少一天休息时,甲乙第一次重逢的日子是第二十天,以后每隔$$28$$天就共同休息一天,$$365-20=345$$(天),$$345\\div28\\approx 12$$(天), 所以甲乙两人共同休息的天数是$$15+12+1=28$$(天). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2283
787d64ec61af406d84bad2edcdd517c8
[ "2016年新希望杯六年级竞赛训练题(二)第4题" ]
1
single_choice
一艘轮船先顺水航行$$40$$千米,再逆水航行$$24$$千米,共用$$8$$小时.若该船先逆水航行$$20$$千米,再顺水航行$$60$$千米,也要用$$8$$小时,则在静水种这艘船每小时航行(~ )千米.~
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->流水行船问题->基本流水行船问题->四个速度->基本行程" ]
[ "该船顺流行$$120$$千米,再逆流行$$72$$千米,共用时$$24$$小时;若逆流行$$40$$千米,再顺流行$$120$$千米,共用时$$16$$小时. 所以,逆流$$72-40=32$$千米,用时$$24-16=8$$小时,逆流船速是$$\\frac{32}{8}=4$$千米/时,则顺流船速$$40\\div \\left( 8-\\frac{24}{4} \\right)=20$$千米/时,静水船速是$$\\left( 4+20 \\right)\\div 2=12$$千米/时. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
909
93735f2654344587acb165160a11279b
[ "2017年全国小学生数学学习能力测评五年级竞赛复赛第10题3分" ]
1
single_choice
下面$$4$$个数中,恰有一个数是两个相邻整数的乘积,这个数是.
[ [ { "aoVal": "A", "content": "$$5096303$$ " } ], [ { "aoVal": "B", "content": "$$5096304$$ " } ], [ { "aoVal": "C", "content": "$$5096305$$ " } ], [ { "aoVal": "D", "content": "$$5096306$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->尾数特征->末一位数" ]
[ "因为两个相邻整数相乘,积的个位数字只可能是$$0$$,$$2$$,$$6$$之中的一个,可以直接排除$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$,只留下$$\\text{D}$$. ", "<p>分解质因数后重新搭配:$$5096306=\\left( 2\\times 1129 \\right)\\times \\left( 37\\times 61 \\right)=2258\\times 2257$$.注意:遇到像这种数比较大的时候,一般都会想到尾数规律,进而排除不成立的选项,而不是第二种直接求出具体的两个数.</p>" ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1677
5350f37b43de4bf3a96ec103b41080a0
[ "2006年四年级竞赛创新杯" ]
2
single_choice
$$3\times 3\times \cdots \times 3$$(2006个3)减去$$7\times 7\times \cdots \times 7$$(100个7),得数的个位数字是( ).
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "2 " } ], [ { "aoVal": "C", "content": "6 " } ], [ { "aoVal": "D", "content": "8 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "每4个3相乘,尾数是1.因$$2006=4\\times 501+2$$,所以2006个3相乘的尾数为$$3\\times 3=9$$;每4个7相乘,尾数为1,因$$100=4\\times 25$$,所以100个7相乘的尾数为1;故两个积的个位数字相减,结果为$$9-1=8$$,选D " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1369
28d01a0636e44d89a372d3d94c73bd1e
[ "2015年上海走美杯五年级竞赛初赛" ]
2
single_choice
有一筐苹果,第一次取出全部的一半多$$2$$个,第二次取出余下的一半少$$1$$个,筐中还剩$$4$$个,筐中原有苹果( )个。
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->还原问题->两量还原问题" ]
[ "第一次取后还剩下$$\\left( 4-1 \\right)\\times 2=6$$(个),原来有$$\\left( 6+2 \\right)\\times 2=16$$(个)。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1640
c844947b4015460bafc1a83debf034a7
[ "2010年六年级竞赛创新杯", "2010年第8届创新杯六年级竞赛初赛第8题4分" ]
1
single_choice
某工程进行招标,甲、乙两工程队承包$$2\frac{2}{5}$$天完成,需人民币$$1800$$元;乙、丙两工程队承包$$3\frac{3}{4}$$天完成,需人民币$$1500$$元;甲、丙两工程队承包$$2\frac{6}{7}$$天完成,需人民币$$1600$$元.现要求某队单独承包一星期内完成,所需费用最省,则被招标的是工程队.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "甲或乙 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换->等量代换加减型" ]
[ "甲和乙一天可以完成$$\\frac{5}{12}$$,乙和丙一天可以完成$$\\frac{4}{15}$$,甲和丙一天可以完成$$\\frac{7}{20}$$,则三个工程队一天一共可以完成$$\\frac{1}{2}\\times \\left( \\frac{5}{12}+\\frac{4}{15}+\\frac{7}{20} \\right)=\\frac{31}{60}$$,则甲工程队的效率为:$$\\frac{31}{60}-\\frac{4}{15}=\\frac{1}{4}$$,乙工程队的效率为:$$\\frac{5}{12}-\\frac{1}{4}=\\frac{1}{6}$$,丙工程队的效率为:$$\\frac{4}{15}-\\frac{1}{6}=\\frac{1}{10}$$.按要求,只有甲、乙工程队能在一星期内完成.甲、乙、丙$$3$$队一天的工程款是:$$\\left( 1800\\div 2\\frac{2}{5}+1500\\div 3\\frac{3}{4}+1600\\div 2\\frac{6}{7} \\right)\\div 2=855$$(元). 甲工程队一天的工程款是:$$855-1500\\div 3\\frac{3}{4}=455$$(元),甲工程队总的工程款是:$$455\\times 4=1820$$(元); 乙工程队一天的工程款是:$$855-1600\\div 2\\frac{6}{7}=295$$(元),乙工程队总的工程款是:$$295\\times 6=1770$$(元).所以乙工程队所需费用最省,乙工程队被招标. ", "<p>甲乙每天$$1800\\div 2\\frac{2}{5}=1800\\div \\frac{12}{5}=750$$(元);</p>\n<p>乙丙每天$$1500\\div 3\\frac{3}{4}=1500\\div \\frac{15}{4}=400$$(元);</p>\n<p>甲丙每天$$1600\\div 2\\frac{6}{7}=1600\\div \\frac{20}{7}=560$$(元),</p>\n<p>甲乙丙每天:$$\\left( 750+400+560 \\right)\\div 2=1710\\div 2=855$$(元),</p>\n<p>则甲每天:$$855-400=455$$(元),</p>\n<p>乙每天:$$855-560=295$$(元),</p>\n<p>丙每天:$$855-750=105$$(元).</p>\n<p>因为一星期完成任务,所以乙队最省.</p>\n<p>答:被招标的是乙工程队.</p>\n<p>故选$$\\text{B}$$.</p>\n" ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3124
fe5654925f83468c8b8aa18b3f2a909b
[ "2017年新希望杯六年级竞赛训练题(一)第1题" ]
1
single_choice
下列说法正确的是(~ ).
[ [ { "aoVal": "A", "content": "女生人数与全班人数的比是$$4:9$$,男生人数与女生人数的比是$$4:5$$. " } ], [ { "aoVal": "B", "content": "比的前项和后项同时乘一个相同的数,比值不变. " } ], [ { "aoVal": "C", "content": "最简单的整数比,就是比的前项和后项都是质数的比. " } ], [ { "aoVal": "D", "content": "如果$$A:B=C$$,那么是比的前项,$$A$$是比的后项. " } ] ]
[ "拓展思维->拓展思维->计算模块->比和比例->比->求比值" ]
[ "$$\\text{A}$$项,男生人数与女生人数的比是$$5:4$$.$$\\text{B}$$项,同时乘的数不能是$$0$$.$$\\text{C}$$项,最简比的前后项是互质数,不一定都是质数. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2899
8de91c17285744e58176708c281597fa
[ "2008年第6届创新杯六年级竞赛初赛A卷第1题5分" ]
1
single_choice
下列各分数中,分数值最小的是( ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{7}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{15}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{15}{112}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数通分法->通分子" ]
[ "由于$$\\frac{1}{7}=\\frac{2}{14}\\textgreater\\frac{2}{15}\\textgreater\\frac{2}{16}=\\frac{1}{8}$$,$$\\frac{15}{112}\\textgreater\\frac{14}{112}=\\frac{1}{8}$$,所以$$\\frac{1}{8} \\textless{} \\frac{1}{7}$$,$$\\frac{1}{8} \\textless{} \\frac{2}{15}$$,$$\\frac{1}{8} \\textless{} \\frac{15}{112}$$因此,这些分数中最小的是$$\\frac{1}{8}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
876
e471215e1a56414ea5626733a8eff444
[ "2019年广东广州羊排赛六年级竞赛第10题3分" ]
2
single_choice
有一个数列$$1$$、$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$、$$\cdots $$,从第三项开始,每一项都是前两项之和,这个数列第$$2019$$项除以$$4$$的余数是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数找规律" ]
[ "根据余数的性质,和的余数等于余数的和, $$1$$,$$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$\\cdots $$,$$\\div 4$$余$$1$$,$$1$$,$$2$$,$$3$$,$$1$$,$$0$$,$$1$$,$$1$$,$$2$$,$$3$$,$$1$$,$$0$$, $$1$$,$$1$$,$$\\cdots $$,$$6$$个为一周期,$$2019\\div 6=336$$(组)$$\\cdots \\cdots $$$$3$$(个), 为周期的第$$3$$个,余数为$$2$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2746
ecfed7315ae342d4a183c33dc4cf038b
[ "2017年河南郑州豫才杯四年级竞赛初赛第3题" ]
1
single_choice
聪聪在课余时间最爱阅读科普类读物,还养成了随手摘抄的好习惯.以下是他在《少儿百科全书》丛书中摘录的几个数据,其中有两个他故意写错了.根据你的常识,你能看出来是哪些么?(~ ) ($$1$$)我国东北三省总面积是$$800$$万平方千米; ($$2$$)$$100$$万次心跳是一个正常人$$9.9$$天心跳的次数; ($$3$$)$$1$$亿张$$A4$$纸摞起来的厚度可以相当于$$3$$层楼的高度; ($$4$$)光的速度大约是每秒$$299800$$米;
[ [ { "aoVal": "A", "content": "($$1$$)和($$4$$)~~~~~~~ " } ], [ { "aoVal": "B", "content": "($$2$$)和($$4$$)~~~~~~~~~~~~~~~ " } ], [ { "aoVal": "C", "content": "($$1$$)和($$3$$)~~~~~~~ " } ], [ { "aoVal": "D", "content": "($$2$$)和($$4$$) " } ] ]
[ "拓展思维->拓展思维->计算模块->单位换算->面积单位换算" ]
[ "($$1$$)我国东北三省总面积是$$78$$万平方千米,所以错了;($$2$$)$$100$$万次$$1$$心跳是 一个正常人$$9.9$$天心跳的次数;($$3$$)$$1$$层楼大概有$$3$$米,$$3$$层楼的高度大约有$$9$$米,$$1$$亿张$$A4$$纸摞起来的高度相当于$$9$$米;($$4$$)光的速度大约是每秒$$3$$亿米每秒,所以错了;综上所述,($$1$$)和($$4$$)错了.~~~~ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
308
5ba7181f4a3641e1bfd0cd1ded9f743b
[ "2011年全国希望杯四年级竞赛初赛第20题" ]
1
single_choice
甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名: 甲:``第一名是$$D$$,第$$5$$名是$$E$$.'' 乙:``第二名是$$A$$,第四名是$$C$$.'' 丙:``第三名是$$D$$,第四名是$$A$$.'' 丁:``第一名是$$C$$,第三名是$$B$$.'' 戊:``第二名是$$C$$,第四名是$$B$$.'' 若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$DEBAC$$ " } ], [ { "aoVal": "B", "content": "$$CABDE$$ " } ], [ { "aoVal": "C", "content": "$$DCBAE$$ " } ], [ { "aoVal": "D", "content": "$$CADBE$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->半真半假", "课内体系->知识点->数学广角->推理->假设法判断真假" ]
[ "假设法. 第一步:假设甲说的前半句是真的,那么$$D$$是第$$1$$名, 那么此时丙说的前半句错,后半句对.则$$A$$是第$$4$$名. 同理乙的后半句对,$$C$$是第$$4$$名.矛盾. 由此至甲的后半句对. 第二步:已知$$E$$是第$$5$$名,$$D$$不是第$$1$$名. 和第一名有关的话只剩下丁说的,设$$C$$是第$$1$$名. 则戊:``第$$2$$名是$$C$$,第$$4$$名是$$B$$''.可知前错后对,$$B$$是第$$4$$名. 且有乙:``第二名是$$A$$,第四名是$$C$$''.可知,$$A$$是第$$2$$名. $$D$$是第$$3$$名. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3292
8c0b7e68bac5480eb6287362c424f195
[ "2006年第4届创新杯五年级竞赛复赛第8题", "2006年五年级竞赛创新杯" ]
2
single_choice
有7个相同的小球放入4个不同的盒子中,每个盒子中至少放一个球,则共有( )种不同的放法.
[ [ { "aoVal": "A", "content": "15 " } ], [ { "aoVal": "B", "content": "18 " } ], [ { "aoVal": "C", "content": "20 " } ], [ { "aoVal": "D", "content": "24 " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->字典排序法->非数字排列" ]
[ "$$7=1+1+1+4$$有$$4$$种放法. $$7=1+1+2+3$$有$$12$$种放法. $$7=2+2+2+1$$有$$4$$种放法. 共有$$4+12+4=20$$种不同的放法. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
226
36afcb0fc2114826ab7c5acdd0a9f7e9
[ "2015年第14届春蕾杯一年级竞赛初赛第5题1分" ]
1
single_choice
小王说:小胖比我高;小胖说:我比园园矮;小朱说:我还没有小王高呢; 那么四个小朋友~\uline{~~~~~~~~~~}~最高.
[ [ { "aoVal": "A", "content": "小王 " } ], [ { "aoVal": "B", "content": "小胖 " } ], [ { "aoVal": "C", "content": "小朱 " } ], [ { "aoVal": "D", "content": "园园 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,小胖比小王高,所以小胖的身高高于小王,小胖说比园园矮,所以园园的身高高于小胖,小朱没有小王高,所以小王的身高高于小朱,由此可知,四个人的身高从高到低位:园园$$\\textgreater$$小胖$$\\textgreater$$小王$$\\textgreater$$小朱. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3242
35bd405001524d868cca42c78eff645f
[ "2017年全国华杯赛竞赛初赛模拟题1第4题" ]
1
single_choice
用红色和黄色给正方体的$$6$$个面染色,每个面必须染色,染色后经过旋转和翻转后相同的算同一种,共有种不同染色方式.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "分类计数 用$$1$$种颜色染色,则有$$2$$种不同的染色方式; 用$$2$$种颜色染色,再分类如下计数: ($$1$$)仅$$1$$个面是红色,有$$1$$种不同的染色方式; ($$2$$)仅$$2$$个面是红色,相对和相邻,有$$2$$种不同的染色方式; ($$3$$)仅$$3$$个面是红色,其中有$$2$$个相对,经适当转动,固定为红色上底面和红色下底面,仅有$$1$$种不同的染色方式:$$3$$个红色面两两相邻,仅有$$1$$种不同的染色方式; ($$4$$)有$$4$$个红色面,即有$$2$$个黄色面,不同染色方式的个数同($$2$$); ($$5$$)有$$5$$个红色面,即有$$1$$个黄色面,不同染色方式的个数同($$1$$). 共有$$10$$种不同的染色方式. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1173
1dac340d4b0045bdb2d89e3072a6efa5
[ "2018年湖北武汉创新杯小学高年级六年级竞赛初赛数学思维能力等级测试第1题4分" ]
1
single_choice
甲、乙两人出售成本相同的同一种商品,甲按$$20 \% $$的利润率定价,售出了$$15$$个;乙按照$$15 \% $$的利润率定价,售出了$$24$$个,比较甲乙所获利润的多少,你的结论为.
[ [ { "aoVal": "A", "content": "甲获利润多 " } ], [ { "aoVal": "B", "content": "乙获利润多 " } ], [ { "aoVal": "C", "content": "两人利润相同 " } ], [ { "aoVal": "D", "content": "无法比较谁多 " } ] ]
[ "拓展思维->思想->赋值思想" ]
[ "假设成本为$$100$$元,则甲的利润$$ =100\\times 20 \\%\\times 15 =300$$(元),乙的利润$$=100\\times 15 \\%\\times 24=360$$(元). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1553
450716fcf23f4a9b920ab32a53c9c292
[ "2012年IMAS小学中年级竞赛第一轮检测试题第10题3分" ]
2
single_choice
有一对姐妹的生日在同一天,但姐姐比妹妹的年龄大$$4$$岁,当两人的年龄和为$$50$$岁时,请问妹妹为多少岁?
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ], [ { "aoVal": "E", "content": "$$27$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题基本关系->年龄和" ]
[ "姐姐与妹妹的年龄差是$$4$$岁,当两人年龄和为$$50$$岁时,妹妹的年龄等于$$(50-4)\\div 2=23$$(岁). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
41
0aa7bc5bb73c41fbafc45fb81179e2ba
[ "2014年迎春杯四年级竞赛复赛" ]
2
single_choice
在下面的每个方框中填入``$$+$$''或``$$-$$'',得到所有不同计算结果的总和是( ) $$25\square 9\square 7\square 5\square 3\square 1$$。
[ [ { "aoVal": "A", "content": "$$540$$ " } ], [ { "aoVal": "B", "content": "$$600$$ " } ], [ { "aoVal": "C", "content": "$$630$$ " } ], [ { "aoVal": "D", "content": "$$650$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜->巧填算符" ]
[ "解:由于$$25+9+7+5+3+1=50$$,所以我们猜测$$0\\sim 50$$之间的所有偶数都有可能得到, $$0\\sim 50$$所有偶数的总和是$$(0+50)\\times 26\\div 2=650$$; 当把$$1$$前面的$$+$$号变成$$-$$号,可得$$25+9+7+5+3-1=48$$,比$$50$$小$$1\\times 2$$, 当把$$3$$前面的$$+$$号变成$$-$$号,可得$$25+9+7+5-3+1=44$$,比$$50$$小$$3\\times 2$$, 当把$$3$$和$$1$$前面的$$+$$号变成$$-$$号,可得$$25+9+7+5-3-1=42$$,比$$50$$小$$4\\times 2$$, 当把$$5$$前面的$$+$$号变成$$-$$号,可得$$25+9+7-5+3+1=40$$,比$$50$$小$$5\\times 2$$, $$\\cdots \\cdots $$ $$22=1+5+7+9$$,因此当把$$1$$,$$5$$,$$7$$,$$9$$前面的$$+$$号变成$$-$$号,可得$$25-9-7-5+3-1=6$$, $$24=3+5+7+9$$,因此当把$$3$$,$$5$$,$$7$$,$$9$$前面的$$+$$号变成$$-$$号,可得$$25-9-7-5-3+1=2$$, $$25=1+3+5+7+9$$,因此当把$$1$$,$$3$$,$$5$$,$$7$$,$$9$$前面的$$+$$号变成$$-$$号,可得$$25-9-7-5-3-1=0$$, 根据上述规律可得,但是数字$$2$$和$$23$$无法凑出来,那么偶数$$4$$和$$46$$无法取到, 所以答案是:$$650-4-46=600$$。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1907
ce38939d9b3a4495b8939f0b85e9515f
[ "2011年第9届全国创新杯小学高年级六年级竞赛第18题" ]
2
single_choice
一次英语竞赛原定一等奖$$10$$人,二等奖$$20$$人,现将一等奖中最后$$4$$人调整为二等奖,这样得一等奖的平均分提高了$$3$$分,得二等奖的平均分提高了$$2$$分,则原一等奖平均分比二等奖平均分高~\uline{~~~~~~~~~~}~分.
[ [ { "aoVal": "A", "content": "$$16.4$$ " } ], [ { "aoVal": "B", "content": "$$16.5$$ " } ], [ { "aoVal": "C", "content": "$$16.6$$ " } ], [ { "aoVal": "D", "content": "$$17.5$$ " } ] ]
[ "拓展思维->七大能力->逻辑分析" ]
[ "可用方程解决,假设原来一等奖的平均分为$$a$$,二等奖的平均分为$$b$$,根据题意可以得到:$$10a+20b=6\\left( a+3 \\right)+24\\left( b+2 \\right)$$,得$$a-b=16.5$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1671
53451c56366d45969a78dfa6eb8d5f16
[ "2016年新希望杯小学高年级六年级竞赛训练题(六)第6题" ]
2
single_choice
政府机关每年花费$$20000$$元采购本子、笔、打印纸这三种办公用品,其中打印纸的费用是其他两种办公用品费用和的$$3$$倍.前半年政府每个月采购的打印纸数量都是一样多,$$7$$月份开始比$$6$$月份多$$10 \% $$,之后$$8$$月份比$$6$$月份多$$20 \% $$,$$9$$月份比$$6$$月份多$$30 \% $$,$$\cdots\cdots$$,$$12$$月比$$6$$月多$$60 \% $$.$$8$$月份政府机关花费(~ ~ ~ )元采购打印纸.(精确到小数点后一位)~
[ [ { "aoVal": "A", "content": "$$1000.0$$ " } ], [ { "aoVal": "B", "content": "$$1063.8$$ " } ], [ { "aoVal": "C", "content": "$$1276.6$$ " } ], [ { "aoVal": "D", "content": "$$1333.3$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "全年打印纸总共花了$$20000\\times \\frac{3}{4}=15000$$元,设第一个月打印纸花了$$x$$元,则全年$$12x+\\frac{\\left( 0.1+0.6 \\right)\\times 6}{2}x=15000$$,解得:$$x=\\frac{150000}{141}$$. 那么$$8$$月份用了$$x\\times 120 \\% =\\frac{180000}{141}=1276.6$$元. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1674
650731559ea642b68e7e64f3c26b8b4d
[ "小学高年级六年级其它2014年数学思维能力等级测试第4题", "2014年第12届全国创新杯六年级竞赛第4题" ]
1
single_choice
~小明收集了$$10$$册数学题,每册的题目数相同,并且连续编号(例如,第$$2$$册中的第一个题目比第$$1$$册中最后一个题的编号大$$1$$),一天他发现编号为$$351$$的数学题在第$$5$$册上,编号为$$689$$的数学题在第$$8$$册上,那么每册各有(~ ~ ~ )个数学题.
[ [ { "aoVal": "A", "content": "$$70$$ " } ], [ { "aoVal": "B", "content": "$$71$$ " } ], [ { "aoVal": "C", "content": "$$85$$ " } ], [ { "aoVal": "D", "content": "$$87$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设每册$$n$$道题,则有 $$\\left { \\begin{matrix}351\\textgreater4n 689\\textless{}8n \\end{matrix} \\right.\\Rightarrow \\left { \\begin{matrix}n\\textless{}87\\frac{3}{4} n\\textgreater86\\frac{1}{8} \\end{matrix} \\right.$$ 故$$n$$只能为$$87$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3025
d322b459694649369eb76fa0341949c6
[ "2016年全国中环杯四年级竞赛初赛第11题" ]
2
single_choice
神庙里有一把古老的秤,对于重量小于$$1000$$克的物体,这把秤会显示其正确的重量;对于重量大于等于$$1000$$克的物体,这把秤会显示出一个大于等于$$1000$$的随机数.艾迪有五个物品,各自的重量都小于$$1000$$克,我们分别用$$P$$、$$Q$$、$$R$$、$$S$$、$$T$$表示它们的重量.将这五个物品两两配对放到秤上进行称重,得到下面的结果:$$Q+S=1200$$(克)、$$R+T=2100$$(克)、$$Q+T=800$$(克)、$$Q+R=900$$(克)、$$P+T=700$$(克).那么这五个物品的重量从重到轻的顺序为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$S\\textgreater R\\textgreater T\\textgreater P\\textgreater Q$$ " } ], [ { "aoVal": "B", "content": "$$S\\textgreater T\\textgreater R\\textgreater Q\\textgreater P$$ " } ], [ { "aoVal": "C", "content": "$$S\\textgreater R\\textgreater T\\textgreater Q\\textgreater P$$ " } ], [ { "aoVal": "D", "content": "$$S\\textgreater T\\textgreater R\\textgreater P\\textgreater Q$$ " } ] ]
[ "知识标签->拓展思维->计算模块->方程基础->不等式->不等式组求解" ]
[ "$$Q+T=800$$①; $$Q+R=900$$②;$$P+T=700$$③;$$Q+S\\geqslant 1000$$④;$$R+T\\geqslant 1000$$⑤;由①②得:$$R\\textgreater T$$;由①③得:$$Q\\textgreater P$$;由②④得:$$S\\textgreater R$$;由②⑤得:$$T\\textgreater Q$$;所以:$$S\\textgreater R\\textgreater T\\textgreater Q\\textgreater P$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
800
e880e88ce7054b00b9ccdce0e16b8ad0
[ "2008年第6届创新杯六年级竞赛复赛第10题4分", "2008年六年级竞赛创新杯" ]
2
single_choice
在黑板上任意写一个正整数,在不是它的因数的正整数中,找出最小的正整数,擦去原数,写上找到的这个数.这样继续下去,最多只要擦( )次,黑板上就会出现2.
[ [ { "aoVal": "A", "content": "2 " } ], [ { "aoVal": "B", "content": "3 " } ], [ { "aoVal": "C", "content": "4 " } ], [ { "aoVal": "D", "content": "5 " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->操作问题" ]
[ "用符号$$a\\to b$$表示``擦去原数$$a$$,改写为$$b$$''的一次操作. 如:$$5\\to 2$$(擦1次就可得到2); $${{2}^{3}}=8\\to 3\\to 2$$(擦2次就可得到2); $${2\\times 2\\times 3\\times 5\\times 7}=420\\to 8={{2}^{3}}\\to 3\\to 2$$(擦3次就可得到2). 再试几次,没有出现需要擦4次或更多次才出现2的情况,因此初步断定选B. 严格证明如下: (1)如果黑板上最初写的是奇数,只要擦1次就可出现2. (2)如果黑板上最初写的是偶数,擦过1次,改写的数如果是奇数,显然再擦1次就可出现2(共擦2次即可). (3)如果黑板上最初写的是偶数,擦过1次,改写的数如果还是偶数,那么可以证明这个偶数不可能有奇质数因子,即这个改写的数为$${{2}^{k}}$$($$k\\geqslant 1$$),从而第2次改写得3,第3次改写得2. 事实上,设最初写的偶数为$$a$$,改写的偶数为$$b$$,则1,2,3,\\ldots,$$b-1$$都是$$a$$的因数,而$$b$$不能整除$$a$$,假设$$b$$有奇质数因子,则$$b={{2}^{k}}{{p}_{1}}^{{{a}_{1}}}\\cdots {{p}_{s}}^{{{a}_{s}}}$$为质因数分解式,其中$${{p}_{1}} \\textless{} {{p}_{2}}\\cdots \\textless{} {{p}_{s}}$$,均为奇质数,$$s\\geqslant 1$$,$$k\\geqslant 1$$.显然,$$1 \\textless{} {{2}^{k}} \\textless{} b$$,$$1 \\textless{} {{p}_{i}}^{{{a}_{i}}} \\textless{} b$$($$i=1$$,2\\ldots,$$s$$),所以$${{2}^{k}}\\textbar a$$,$${{p}_{i}}^{{{a}_{i}}}\\textbar a$$($$i=1$$,2,\\ldots,$$s$$),从而$${{2}^{k}}p_{1}^{{{a}_{1}}}\\cdots {{p}_{s}}^{{{a}_{s}}}\\textbar a$$,即$$b\\textbar a$$,与$$b$$不能整除$$a$$矛盾,故$$b$$没有奇质数因子. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3317
fae9d99c035645c299487c37453f1d50
[ "2009年五年级竞赛创新杯", "2009年四年级竞赛创新杯", "2009年三年级竞赛创新杯", "2009年六年级竞赛创新杯" ]
2
single_choice
从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中只有甲不能从事翻译工作,则不同的选派方案有( ).
[ [ { "aoVal": "A", "content": "24种 " } ], [ { "aoVal": "B", "content": "36种 " } ], [ { "aoVal": "C", "content": "48种 " } ], [ { "aoVal": "D", "content": "60种 " } ] ]
[ "拓展思维->拓展思维->计数模块->排列组合->排列组合综合" ]
[ "因为翻译可以从除甲外的4人中选1个担当,有4种方法:又导游、保洁可从余下的4人中选2个担当,有$$4\\times 3=12$$种选法,所以有$$4\\times 12=48$$种选派方案. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
462
93e6600e30314041917cc0aabe518cd9
[ "2017年河南郑州东风杯竞赛初赛" ]
2
single_choice
■◇◇●●●■◇◇●●●■◇◇●●●$$\cdot \cdot \cdot \cdot \cdot \cdot $$,照这样的规律摆,第$$40$$个图形是(~ ).
[ [ { "aoVal": "A", "content": "■~~~~~ " } ], [ { "aoVal": "B", "content": "◇~~~~~~~~~~~~ " } ], [ { "aoVal": "C", "content": "●~~~~~ " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->能力->图形认知" ]
[ "观察可知,■◇◇●●●,$$6$$个图形一个循环周期,$$40\\div 6=6\\cdots \\cdots4$$,所以第$$40$$个图形是一个周期中的第$$4$$个,是●. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2983
dbc4913181d74045a9d97aee08998eec
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
计算:$$2.\dot{0}1\dot{6}\div \left( 20.1\dot{6}+2\frac{19}{90} \right)$$=~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{10}{11}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{10}{22}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{111}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->循环小数->循环小数混合运算" ]
[ "原式$$=2\\frac{16}{999}\\times \\frac{1}{20\\frac{16-1}{90}+2\\frac{19}{90}}$$ $$=\\frac{2\\times 999+16}{999}\\times \\frac{1}{22\\frac{34}{90}}$$ $$=\\frac{2000+16-2}{999}\\times \\frac{90}{2014}$$ $$=\\frac{10}{111}$$ " ]
D