dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2830
a3d1b930a24f474597b0bb7ea47e1da1
[ "2008年六年级竞赛创新杯", "2008年第6届创新杯六年级竞赛初赛B卷第10题5分" ]
2
single_choice
$$\overline{abcd}$$是一个四位的自然数,已知$$\overline{abcd}-\overline{abc}-\overline{ab}-a=2008$$,这个四位数是( ).
[ [ { "aoVal": "A", "content": "2275 " } ], [ { "aoVal": "B", "content": "2175 " } ], [ { "aoVal": "C", "content": "2257 " } ], [ { "aoVal": "D", "content": "2157 " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->大数的估算" ]
[ "由已知等式知,其中$$\\left( 1000a+100b+10c+d \\right)-\\left( 100a+10b+c \\right)-\\left( 10a+b \\right)-a=889a+89b+9c+d=2008$$,其中$$1\\leqslant a\\leqslant 9$$,$$0\\leqslant b$$,$$c$$,$$d\\leqslant 9$$.显然$$a=2$$,于是$$89b+9c+d=230$$,从而$$b=2$$,$$9c+d=52$$,所以$$c=5$$,$$d=7$$,因此,这个四位数$$\\overline{abcd}=2257$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1896
b2e7fc32ab164e01bda10abdd29790b0
[ "2017年IMAS小学中年级竞赛(第一轮)第11题4分" ]
1
single_choice
若$$(\Delta \div 2-2)\times 2+2=222$$,请问$$\Delta $$代表的数是多少?
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$224$$ " } ], [ { "aoVal": "C", "content": "$$228$$ " } ], [ { "aoVal": "D", "content": "$$876$$ " } ], [ { "aoVal": "E", "content": "$$884$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "$$\\Delta \\div 2-2=(222-2)\\div 2$$ $$=220\\div 2=110$$, 因此$$\\Delta =(110+2)\\times 2=112\\times 2=224$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2280
8de71bbfe1354b6dad41d64e52950d3c
[ "2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第7题3分" ]
1
single_choice
在$$9$$点至$$10$$点之间的某个时刻,$$5$$分钟前分针的位置和$$5$$分钟后时针的位置相同,此时刻是.
[ [ { "aoVal": "A", "content": "$$9:05$$ " } ], [ { "aoVal": "B", "content": "$$9:35$$ " } ], [ { "aoVal": "C", "content": "$$9:55$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->认识钟表" ]
[ "根据选项$$\\text{C}$$,现在是$$9:55$$,那么$$5$$分钟前分针的位置是指向$$10$$,$$5$$分钟后时针也是指向$$10$$.所以$$\\text{C}$$选项答案是满足题目要求的,故选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
827
a3cc47094bea48a08f07d2918d7c6ecf
[ "2006年华杯赛六年级竞赛初赛", "2006年华杯赛五年级竞赛初赛" ]
1
single_choice
2008006共有( )个质因数.
[ [ { "aoVal": "A", "content": "4 " } ], [ { "aoVal": "B", "content": "5 " } ], [ { "aoVal": "C", "content": "6 " } ], [ { "aoVal": "D", "content": "7 " } ] ]
[ "拓展思维->拓展思维->数论模块->整除->整除特征->差系整除特征" ]
[ "因为$$2008006=2006\\times 1000+2006=2006\\times 1001=\\left( 2\\times 17\\times 59 \\right)\\times \\left( 7\\times 11\\times 13 \\right)$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1745
f6ab2479421641ddb270a9410d9d01a2
[ "2016年第21届全国华杯赛小学高年级竞赛初赛B卷第4题" ]
1
single_choice
已知$$a$$,$$b$$为自然数,$$\dfrac{4}{15}=\frac{1}{a}+\frac{1}{b}$$那么$$a+b$$的最小值是( ~ ~).
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->加减法应用->最值问题" ]
[ "极端思考$$\\frac{4}{15}=\\frac{1}{6}+\\frac{1}{10}=\\frac{1}{5}+\\dfrac{1}{15}=\\frac{1}{4}+\\frac{1}{60}$$,则$$a+b$$最小为$$16$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3118
f99de094d99f4ae19cb61292caf6b871
[ "2006年五年级竞赛创新杯", "2006年第4届创新杯五年级竞赛初赛B卷第2题" ]
2
single_choice
某年某月内有三个星期天的日期都是偶数,那么这个月的14日是星期( ).
[ [ { "aoVal": "A", "content": "二 " } ], [ { "aoVal": "B", "content": "三 " } ], [ { "aoVal": "C", "content": "四 " } ], [ { "aoVal": "D", "content": "五 " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数表规律->常见数表规律" ]
[ "因为此月有三个星期天的日期都是偶数,所以该月必有两个星期天的日期为奇数,从而该月有5个星期天,由此可知该月的第一个星期天的日期只能是2号(否则,这个月就没有5个星期天),从而5个星期天的日期为2,9,16,23,30,故14号为星期五 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3313
ff8080814518d52401451925774804f0
[ "2014年全国迎春杯五年级竞赛复赛第9题" ]
2
single_choice
我们定义像:$$31024$$、$$98567$$这样的五位数为位``神马数'',``神马数''是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有(~ ~ ~ ~~)个 .
[ [ { "aoVal": "A", "content": "$$1512$$ " } ], [ { "aoVal": "B", "content": "$$3024$$ " } ], [ { "aoVal": "C", "content": "$$1510$$ " } ], [ { "aoVal": "D", "content": "$$3020$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "考察是计数问题中的排列组合. $$0~9$$是个数中任意挑选$$5$$个都可以组成``神马数'',$$\\text{C}_{10}^{5}=\\frac{10\\times9\\times 8\\times 7\\times 6}{5\\times 4\\times 3\\times 2\\times 1}=252$$种;在被挑选的$$5$$个数中,最小的放中间,剩下的$$4$$个数进行组合,从中任意挑选$$2$$个可以放在左边或者右边,$$\\text{C}_{4}^{2}=6$$种; 在此一定要注意:$$4$$个数中任选$$2$$个放在左边然后再放到右边数的顺序改变了. 所以共有``神马数''$$252\\times 6=1512$$个. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2402
3cd28305f2f249dbb2898da5e96087cc
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第9题3分" ]
2
single_choice
小明在写作业时,不小心把一个三位小数的小数点忘掉了,结果所得的整数是$$60.03$$的$$100$$倍.原来的小数是多少,你知道吗?
[ [ { "aoVal": "A", "content": "$$6003$$ " } ], [ { "aoVal": "B", "content": "$$600.3$$ " } ], [ { "aoVal": "C", "content": "$$6.03$$ " } ], [ { "aoVal": "D", "content": "$$6.003$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->小数点的移动规律" ]
[ "把一个三位小数的小数点忘掉了, 结果所得的整数是$$60.03$$的$$100$$倍即$$60.03\\times 100=6003$$. 原来的小数是$$60003\\div 1000=6.003$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2800
a39e2b3c7b594371a8177ebb347bffc9
[ "2018年第22届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第3题6分" ]
1
single_choice
已知等差数列$$13$$,$$18$$,$$23$$,$$28$$,$$\cdots $$,$$1003$$.这个等差数列共有项.
[ [ { "aoVal": "A", "content": "$$198$$ " } ], [ { "aoVal": "B", "content": "$$199$$ " } ], [ { "aoVal": "C", "content": "$$200$$ " } ], [ { "aoVal": "D", "content": "$$201$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意:公差为$$5$$, 所以项数:$$\\left( 1003-13 \\right)\\div 5+1=199$$. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1381
94c33d709ba546a0b08432e7cc6623bb
[ "2017年河南郑州豫才杯六年级竞赛" ]
1
single_choice
某学校准备购买$$30$$个篮球,三家商店每个篮球的售价都是$$25$$元,但优惠方法不同,甲店``买九赠一'',乙店``打八八折'';丙店``满$$100$$元减现金$$10$$元'',为节约资金,应该到(~ )店购买.
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "任意一个店皆可 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "甲店:只需付$$27$$个篮球的钱即可买到$$30$$个篮球,要$$27\\times 25=675$$元; 乙店:$$30\\times 25\\times 88 \\% =660$$元; 丙店:$$25\\times 30=750$$元,减$$7\\times 10=70$$元,花费$$750-70=680$$元. 因为$$660\\textless{}675\\textless{}680$$,所以应到乙店购买. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
737
33154aa4cedb45e2914a1b58fab56bdd
[ "2016年第16届世奥赛六年级竞赛决赛第11题", "2016年全国世奥赛竞赛A卷第11题" ]
3
single_choice
请从一个$$1 \sim 9$$(缺$$8$$)这八个自然数中不重复地用这些数字构造出四个两位质数,并求出它们的和是.
[ [ { "aoVal": "A", "content": "$$190$$ " } ], [ { "aoVal": "B", "content": "$$217$$ " } ], [ { "aoVal": "C", "content": "$$127$$ " } ], [ { "aoVal": "D", "content": "无法构造 " } ] ]
[ "拓展思维->拓展思维->数论模块->质数与合数->质数与合数判定->质数与合数的认识" ]
[ "我们知道所有的偶数都是合数,除了$$5$$以外,个位为$$5$$的数也都是合数,这$$8$$个数中只有$$1$$、$$3$$、$$5$$、$$7$$、$$9$$放在个位才有可能是质数,所以十位上只能是$$2$$、$$4$$、$$5$$、$$6$$.这四个两位数的和是$$\\left( 2+4+5+6 \\right)\\times 10+1+3+7+9=190$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2803
5bf7727f81174be1a92f3ebb1f9c67aa
[ "2017年河南郑州联合杯竞赛附加赛第一场第5题2分" ]
0
single_choice
用乘法分配律可以将$$ab+b$$改写成(~ ).
[ [ { "aoVal": "A", "content": "$$(a+b)b$$ " } ], [ { "aoVal": "B", "content": "$$a(a+b)$$ " } ], [ { "aoVal": "C", "content": "$$(a+0)b$$ " } ], [ { "aoVal": "D", "content": "$$(a+1)b$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "$$ab+b=a\\times b+1\\times b=\\left( a+1 \\right)b$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
249
7f0e63f0cf7c48ca9d75429a3af9a9dc
[ "2020年广东广州羊排赛四年级竞赛第9题4分" ]
2
single_choice
六支队伍进行单循环赛,每两队都要赛一场.如果赛平,每队各得$$1$$分,否则胜队得$$2$$分,负队得$$0$$分.那么,打完所有比赛后,六支队伍的总得分是分.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$50$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ], [ { "aoVal": "E", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->2-1-0 积分制" ]
[ "在一场比赛中,如果一胜一负, 则胜得$$2$$分,负得$$0$$分, 总分为$$2+0=2$$分, 如果赛平,则总分为$$1+1=2$$分, 即在一场比赛中,无论结果如何,比赛总分是不变的,都是$$2$$分, $$6$$支队伍进行单循环赛,共有比赛:$$5+4+3+2+1=15$$场, 所以六支队伍的总得分是:$$15\\times 2=30$$分, 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1329
4bf45b311f7c4546a9e2c659338b1782
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
1
single_choice
在琼斯食堂里,每份晚餐有$$8$$个肉丸和$$3$$块蒜蓉面包.今天卖出的肉丸数量比卖出的蒜蓉面包数量多$$600$$.今天琼斯卖出了多少份晚餐?
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$360$$ " } ], [ { "aoVal": "D", "content": "$$960$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "每一份晚餐肉丸比蒜蓉多$$5$$,一共多了$$600$$,因此卖了$$600\\div 5=120$$(份). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1168
98d3f6753e3647a09286fd888d1d41a9
[ "2022年第9届广东深圳鹏程杯四年级竞赛初赛第23题5分" ]
1
single_choice
将$$1$$、$$2$$、$$3$$、\ldots\ldots、$$1000$$顺次写下来,形成一个数1234567891011\ldots9979989991000.这个数从左到右第$$2022$$个数字是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->页码问题" ]
[ "无 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3288
5a99a54fbdc8470b80c70ef4365db8bb
[ "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛复赛(中国区)第14题3分" ]
1
single_choice
用数字$$0$$,$$1$$,$$2$$,$$3$$能组成个数字不重复的三位数.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->字典排序法->组数->数字组数(不可重复)" ]
[ "因为用数字$$0$$,$$1$$,$$2$$,$$3$$可以组成的三位数有:$$120$$、$$102$$、$$210$$、$$201$$、$$310$$、$$130$$、$$301$$、$$103$$、$$230$$、$$203$$、$$320$$、$$302$$、$$123$$、$$132$$、$$213$$、$$231$$、$$321$$、$$312$$,所以一共有$$18$$个不重复的三位数, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2863
a8a5e0d490574a2ca3e702af6e0a4a12
[ "2018~2019学年浙江杭州西湖区杭州市行知小学五年级上学期期中期中竞赛第17题1分" ]
1
single_choice
小机灵在用计算器计算``$$6.9\times 7$$''时,发现计算器的键``$$6$$''坏了,小机灵想到了四种不同的输入方法.请你判断一下,下面选项中的方法是错误的
[ [ { "aoVal": "A", "content": "$$2.3\\times 3\\times 7$$ " } ], [ { "aoVal": "B", "content": "$$13.8\\times 7\\div 2$$ " } ], [ { "aoVal": "C", "content": "$$2\\times 3\\times 7+0.9\\times 7$$ " } ], [ { "aoVal": "D", "content": "$$7\\times 7-7$$ " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "$$7\\times 7-7=7\\times \\left( 7-1 \\right)=7\\times 6=42$$,提取公因数后发现$$\\text{D}$$式变为$$7\\times 6$$,而非原式的$$6.9\\times 7$$,所以错误. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2921
add2799cd96940f3a1b9449b17fd73f4
[ "2018年陕西西安雁塔区西安铁一中小升初(二十六)第20题5分", "2015年世界少年奥林匹克数学竞赛六年级竞赛复赛A卷第10题10分", "六年级其它导引" ]
3
single_choice
计算:$$\frac{{{1}^{2}}+{{2}^{2}}}{1\times 2}+\frac{{{2}^{2}}+{{3}^{2}}}{2\times 3}+\cdots +\frac{{{18}^{2}}+{{19}^{2}}}{18\times 19}+\frac{{{19}^{2}}+{{20}^{2}}}{19\times 20}$$=~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "$$37\\frac{19}{20}$$ " } ], [ { "aoVal": "B", "content": "$$28\\frac{19}{20}$$ " } ], [ { "aoVal": "C", "content": "$$38\\frac{19}{20}$$ " } ] ]
[ "拓展思维->能力->运算求解", "课内体系->能力->运算求解" ]
[ "算式中的分母是裂项计算的最基本形式,但分子比较复杂,我们可以从前几项找找规律: $$\\frac{{{1}^{2}}+{{2}^{2}}}{1\\times 2}=\\frac{5}{2}=2\\frac{1}{2}$$,$$\\frac{{{2}^{2}}+{{3}^{2}}}{2\\times 3}=\\frac{13}{6}=2\\frac{1}{6}$$,$$\\frac{{{3}^{2}}+{{4}^{2}}}{3\\times 4}=\\frac{25}{12}=2\\frac{1}{12}$$. 我们发现一规律:每一项减去$$2$$后,分子就变成了$$1$$. 再来试试最后一项:$$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{761}{380}=2\\frac{1}{380}$$, 也满足这个规律,这是为什么呢? 观察每一项的分子和分母,我们发现分子的每个加数都与分母大小接近,可以做如下变形: $$\\frac{{{19}^{2}}+{{20}^{2}}}{19\\times 20}=\\frac{19\\times \\left( 20-1 \\right)+20\\times \\left( 19+1 \\right)}{19\\times 20}$$ $$=\\frac{19\\times 20\\times 2+\\left( 20-19 \\right)}{19\\times 20}$$ $$=2+\\frac{1}{19\\times 20}$$. 算式中的每一项都能像上面一样进行变形,再结合分数裂差,所以: 原式$$=2\\frac{1}{1\\times 2}+2\\frac{1}{2\\times 3}+\\cdots +2\\frac{1}{19\\times 20}$$ $$=2\\times 19+\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{19\\times 20}$$ $$=38+1-\\frac{1}{20}$$ $$=38\\frac{19}{20}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1114
33c293a238044286871e3de8402ce02e
[ "2013年华杯赛六年级竞赛初赛" ]
2
single_choice
某日,甲学校买了$$56$$千克水果糖,每千克$$8.06$$元.过了几日,乙学校也需要买同样的$$56$$千克水果糖,不过正好赶上促销活动,每千克水果糖降价$$0.56$$元,而且只要买水果糖都会额外赠送$$5 \%$$同样的水果糖.那么乙学校将比甲学校少花元.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$51.36$$ " } ], [ { "aoVal": "C", "content": "$$31.36$$ " } ], [ { "aoVal": "D", "content": "$$10.36$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "甲学校花钱: $$56\\times 8.06=451.36$$(元); 乙学校花钱: $$56\\div \\left( 1+5 \\% \\right)\\times\\left(8.06-0.56 \\right)$$, $$=\\frac{160}{3}\\times 7.5$$, $$=400$$(元); 乙学校将比甲学校少花: $$451.36-400=51.36$$(元); 答:乙学校将比甲学校少花$$51.36$$元. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
543
f0af3924013b4f289e446aa8d92e92d3
[ "2019年第24届YMO一年级竞赛决赛第3题3分" ]
1
single_choice
把$$63$$分成两个自然数,要使这两个数的乘积最大,这两个数是.
[ [ { "aoVal": "A", "content": "0,63 " } ], [ { "aoVal": "B", "content": "30,33 " } ], [ { "aoVal": "C", "content": "31,32 " } ], [ { "aoVal": "D", "content": "1,62 " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->构造和一定最值原理" ]
[ "和一定,差小积大 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1800
6f597fc82ae9429bb0164657aee01f3b
[ "2006年五年级竞赛创新杯" ]
1
single_choice
$$12345678910111213\cdots 20052006$$是( )位数.
[ [ { "aoVal": "A", "content": "6913 " } ], [ { "aoVal": "B", "content": "6914 " } ], [ { "aoVal": "C", "content": "6915 " } ], [ { "aoVal": "D", "content": "6917 " } ] ]
[ "拓展思维->拓展思维->应用题模块->页码问题->数字与页码的对应问题->数字个数" ]
[ "求多位数共有多少个数码,分几个阶段来计算(一位,二位,三位,四位).$$9\\times 1+90\\times 2+900\\times 3+\\left( 2006-999 \\right)\\times 4=6917$$(位) " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2393
0b959586ee754baabe674f9e0722b34f
[ "2020年重庆渝中区重庆市巴蜀中学校小升初(十一)第2题2分", "2018年华杯赛小学中年级竞赛初赛第1题10分", "2018年第23届华杯赛小学中年级竞赛初赛第1题" ]
1
single_choice
$$A$$、$$B$$均为小于$$1$$的小数,算式$$A\times B+0.1$$的结果.(2020BS)
[ [ { "aoVal": "A", "content": "大于$$1$$ " } ], [ { "aoVal": "B", "content": "小于$$1$$ " } ], [ { "aoVal": "C", "content": "等于$$1$$ " } ], [ { "aoVal": "D", "content": "无法确定和$$1$$的大小 " } ] ]
[ "拓展思维->思想->赋值思想" ]
[ "$$0.2+0.3+0.1=0.16\\textless{}1$$ $$0.99\\times 0.99+0.1=1.081\\textgreater1$$ 又因为小数是连续的,因此可以取到等于$$1$$的$$A$$、$$B$$值,故$$A\\times B+0.1$$的计算结果与$$1$$的大小无法比较. 因为$$A$$,$$B$$都小于$$1$$, 所以无法确定$$A\\times B$$与$$0.9$$的大小关系. ①当$$A\\times B\\textless{}0.9$$,则$$A\\times B+0.1\\textless{}1$$, ②当$$A\\times B=0.9$$,则$$A\\times B+0.1=1$$, ③当$$A\\times B\\textgreater0.9$$,则$$A\\times B+0.1\\textgreater1$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2418
2152c1bd3aae4b87b58bb1ce985922ea
[ "2020年第1届广东深圳超常思维竞赛五年级竞赛初赛第1题4分" ]
1
single_choice
找规律:$$16\textasciitilde\textasciitilde20\textasciitilde\textasciitilde25\textasciitilde\textasciitilde30\textasciitilde\textasciitilde36\textasciitilde\textasciitilde42\textasciitilde\textasciitilde49$$,则空格处的正确答案是 .
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$64$$ " } ], [ { "aoVal": "C", "content": "$$72$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ], [ { "aoVal": "E", "content": "$$100$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "这组数的规律如下:$$4\\times4$$,$$4\\times5$$,$$5\\times5$$,$$5\\times6$$,$$6\\times6$$,$$6\\times7$$,$$7\\times7$$,$$7\\times8$$,$$7\\times8=56$$.故选$$\\text{A}$$. ", "<p>$$16+4=20$$,$$20+5=25$$,$$25+5=30$$,$$30+6=36$$,$$36+6=42$$,$$42+7=49$$,$$49+7=56$$.故选$$\\text{A}$$.</p>" ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2742
ff8080814518d524014519271d85053a
[ "2014年全国迎春杯六年级竞赛复赛第3题" ]
1
single_choice
童童在计算有余数的除法时,把被除数$$472$$错看成了$$427$$,结果商比原来小$$5$$,但余数恰好相同,那么这个余数是(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法->除法中四量关系" ]
[ "除数$$=(472-427)\\div 5=9$$,$$472\\equiv 4(\\bmod9)$$,所以余数是4. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2005
b894bb61ebac4b6abc94a31736e023e5
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第6题5分" ]
1
single_choice
$$3$$年前爷爷的年龄是小明年龄的$$4$$倍,$$5$$年后爷爷的年龄是小明年龄的$$3$$倍,爷爷今年是岁.
[ [ { "aoVal": "A", "content": "$$60$$ " } ], [ { "aoVal": "B", "content": "$$67$$ " } ], [ { "aoVal": "C", "content": "$$70$$ " } ], [ { "aoVal": "D", "content": "$$76$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "设小明今年$$x$$岁,爷爷今年$$y$$岁, $$y-3=4\\left( x-3 \\right)$$, $$y+5=3\\left( x+5 \\right)$$, 解得$$x=19$$,$$y=67$$, 则爷爷今年$$67$$岁. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
664
2bfb8173cb274461a4a28137b1b31d75
[ "2011年全国学而思杯五年级竞赛第5题", "2011年北京学而思综合能力诊断六年级竞赛第3题", "2011年全国学而思杯四年级竞赛第5题" ]
2
single_choice
2018年$$9$$月$$8$$日,云南墨江发生大约$$6$$级地震.$$2008$$年$$5$$月$$12$$日,汶川发生$$8$$级大地震.已知地震级数每升$$1$$级,地震释放能量大约扩大到原来的$$30$$倍,那么汶川大地震释放能量是云南墨江地震的~\uline{~~~~~~~~~~}~倍.
[ [ { "aoVal": "A", "content": "$$60$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$900$$ " } ], [ { "aoVal": "D", "content": "$$27000$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "$$8$$级和$$6$$级差了$$2$$级,那么30*30=900 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2850
658e2a9d0a0e4e1dbe4508836c97a058
[ "四年级其它", "2012年全国学而思杯三年级竞赛第5题" ]
2
single_choice
算式:$$103\times 107-91\times 99$$的计算结果是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$2022$$ " } ], [ { "aoVal": "B", "content": "$$2012$$ " } ], [ { "aoVal": "C", "content": "$$2002$$ " } ], [ { "aoVal": "D", "content": "$$2000$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->公式类运算->平方差公式->平方差公式逆向应用", "Overseas Competition->知识点->计算模块->公式类运算->平方差公式->平方差公式逆向应用" ]
[ "$$\\begin{align}\\& 103\\times 107-91\\times99 \\& =(105-2)\\times (105+2)-(95-4)\\times (95+4) \\&=({{105}^{2}}-{{2}^{2}})-({{95}^{2}}-{{4}^{2}}) \\&={{105}^{2}}-{{2}^{2}}-{{95}^{2}}+{{4}^{2}} \\&=({{105}^{2}}-{{95}^{2}})+({{4}^{2}}-{{2}^{2}}) \\& =(105+95)\\times(105-95)+12 \\& =200\\times 10+12 \\& =2012 \\end{align}$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
547
005512b0eb50425a82d25ca8c59f4866
[ "2020年四川绵阳涪城区绵阳东辰国际学校超越杯四年级竞赛第3题2分" ]
1
single_choice
一道除法题,商和除数都是$$8$$,余数是$$7$$,被除数是.
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$64$$ " } ], [ { "aoVal": "C", "content": "$$71$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法->除法中四量关系" ]
[ "被除数$$\\div $$除数$$=$$商$$+$$余数;被除数$$=$$除数$$\\times $$商$$+$$余数; 从题干可以知道,一道除法题,商和除数都是$$8$$,余数是$$7$$; 所以被除数$$=8\\times 8+7=71$$. 所以选择$$\\text{C}$$选项. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
990
2096c9fa1f6244fb9b3520e3a1405543
[ "走美杯四年级竞赛", "走美杯三年级竞赛" ]
1
single_choice
小明的妈妈比小明大$$26$$岁,去年妈妈的岁数正好是小明的$$3$$倍,小明今年( )岁。
[ [ { "aoVal": "A", "content": "$$13$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "去年妈妈比小明大$$2$$倍,则去年小明$$26\\div 2=13$$(岁),小明今年$$13+1=14$$(岁)。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1292
1b845f70956f4040b02c7e04f2e69a7a
[ "2017年湖北武汉创新杯六年级竞赛邀请赛训练题(三)" ]
2
single_choice
金星上有三种奇怪的生物,$$3$$脚$$5$$尾的独头鸟:$$2$$脚$$1$$尾的四头蛇;$$5$$脚$$3$$尾的五头龙.所有生物加起来共$$106$$个头,$$98$$只脚和$$76$$条尾巴,那么这三种动物一共(~ )只.
[ [ { "aoVal": "A", "content": "$$26$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "解设独头鸟$$x$$只,四头蛇$$y$$只,五头龙$$\\text{z}$$只,其方程组 $$\\begin{cases} x+4y+5z=106 3x+2y+5z=98 5x+y+3z=76 \\end{cases}$$解得$$\\begin{cases} x=6 y=10 z=12 \\end{cases}$$ $$6+10+12=28$$(只). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1427
8373cebd7bc246ee9c8eb04eb97982ac
[ "2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第2题6分" ]
1
single_choice
小林今年$$8$$岁.小林满$$10$$岁时,爸爸正好$$39$$岁,爸爸今年岁.
[ [ { "aoVal": "A", "content": "$$29$$ " } ], [ { "aoVal": "B", "content": "$$31$$ " } ], [ { "aoVal": "C", "content": "$$37$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "爸爸比小林大:$$39-10=29$$(岁),所以今年爸爸的年龄为:$$29+8=37$$(岁). 故选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1409
510c3c2136034398848f809af597d5f4
[ "2020年第24届YMO三年级竞赛决赛第5题3分", "2019年第24届YMO三年级竞赛决赛第5题3分" ]
1
single_choice
有一个正方形的操场,在它的外面一圈插上小红旗,四个角上都插一面小红旗,每边都插$$26$$面,一共插了面小红旗.
[ [ { "aoVal": "A", "content": "$$92$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$104$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->间隔问题->封闭型->封闭型植树问题->封闭植树类型问题(段数大于10)" ]
[ "根据题意分析可知,四个角都插上一面小红旗,每边都插$$26$$面, 所以每一边有小红旗:$$26-1=25$$(面), 因为是正方形,每边都有$$25$$面,那么一共插了:$$25\\times4=100$$(面)红旗, 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1970
b8278aa442a64462b7085d7e61afe9f7
[ "2016年广东深圳华杯赛小学高年级竞赛冬令营二试第4题" ]
2
single_choice
数学竞赛原定一等奖$$10$$人、二等奖$$20$$人,现在将一等奖中得分靠后的$$4$$人调整为二等奖,这样得二等奖的学生的平均分提高了$$1$$分,得一等奖的学生的平均分提高了$$3$$分.那么原来一等奖平均得分比二等奖平均分多多少分?
[ [ { "aoVal": "A", "content": "$$9.5$$ " } ], [ { "aoVal": "B", "content": "$$10.2$$ " } ], [ { "aoVal": "C", "content": "$$10.5$$ " } ], [ { "aoVal": "D", "content": "$$11.5$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->列方程解应用题->设而不求" ]
[ "设原来一等奖平均分为$$x$$分,二等奖平均分为$$y$$分. $$10x+20y=\\left( 10-4 \\right)\\times \\left( x+3 \\right)+\\left( 20+4 \\right)\\times \\left( y+1 \\right)$$ $$10x+20y=6x+18+24y+24$$ $$4x-4y=42$$ $$x-y=10.5$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1473
372ef32705ed4f5b943c5efb0f810696
[ "2009年第9届全国走美杯四年级竞赛初赛" ]
3
single_choice
小华问陈老师今年有多少岁,陈老师说:``当我像你这么大时,我的年龄是你年龄的$$10$$倍,当你像我这么大时,我已经$$56$$岁了.''陈老师今年多少岁?
[ [ { "aoVal": "A", "content": "$$38$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$28$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "和差倍问题(年龄问题),差不变,设当陈老师与小华一样大时,小华为$$1$$份,则陈老师为$$10$$份,此时年龄差为$$9$$份,所以现在小华为$$10$$份,陈老师为$$19$$份,当小华像陈老师一样大时,小华$$19$$份,陈老师为$$28$$份,此时$$1$$份为$$2$$,所以陈老师今年$$38$$岁. $$(10-1)\\times 3+1=28$$ 学生:$$56\\div 28=2$$(岁) 老师:$$2\\times 10=20$$(岁) $$20+(20-2)=38$$(岁) " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3178
2f7830cec449471489686d54e4dbef1d
[ "2017年河南郑州联合杯竞赛第3题4分" ]
2
single_choice
某汽车销售处有$$65$$辆小汽车,其中$$45$$辆有空调,$$30$$辆有高级音响,$$12$$辆有空调也有高级音响,没有空调也没有高级音响的汽车有(~ )辆.
[ [ { "aoVal": "A", "content": "$$2$$~~~~~ " } ], [ { "aoVal": "B", "content": "$$8$$~~~~~ " } ], [ { "aoVal": "C", "content": "$$10$$~~~ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->容斥原理->三量容斥" ]
[ "容斥原理;没有空调也没有高级音响的有$$65-\\left( 45+30-12 \\right)=2$$辆. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
64
2ef54e132c8047b0b130878302d4bc7e
[ "六年级其它", "2017年华杯赛六年级竞赛初赛" ]
2
single_choice
两个有限小数的整数部分分别是$$7$$和$$10$$,那么这两个有限小数的积的整数部分有种可能的取值.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$17$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$19$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "由已知设这两个数分别为$$a$$,$$b$$,可得$$7\\times 10 \\textless{} a\\times b \\textless{} 8\\times 11$$,即$$70 \\textless{} a\\times b \\textless{} 88$$,则乘积的整数部分$$M$$满足$$M\\leqslant a\\times b$$,则$$70\\leqslant M \\textless{} 88$$,因此可得整数部分可以取$$70$$到$$87$$的所有整数,共有$$87-70+1=18$$(个),因此选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1400
3a9a26fd902d4f4ca403e217a758bffa
[ "2005年六年级竞赛创新杯" ]
1
single_choice
某班学生的达标人数是没有达标人数的$$\frac{1}{4}$$,如果又有$$2$$人达标,这时达标人数是没有达标人数的$$\frac{1}{3}$$,那么全班有( )人。
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题", "课内体系->知识模块->综合与实践" ]
[ "由达标人数是没有达标人数的$$\\frac{1}{4}$$知: 达标人数占总人数的$$\\frac{1}{1+4}=\\frac{1}{5}$$。又有$$2$$人达标后, 达标人数是没有达标人数的$$\\frac{1}{3}$$, 那么这时达标人数占总人数的$$\\frac{1}{1+3}=\\frac{1}{4}$$。 所以这个班的总人数为$$2\\div \\left( \\frac{1}{4}-\\frac{1}{5} \\right)=40$$(人), 故而选B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1504
ff676fab3110463cb348de43e1ad0bd0
[ "2014年IMAS小学中年级竞赛第一轮检测试题第17题4分" ]
1
single_choice
王师傅搬$$40$$玻璃,每搬一块得$$2$$元,如果打碎一块玻璃不但没有搬运费,还要赔$$8$$元,最后王师傅拿到了$$60$$元,请问王师傅打碎了多少块玻璃?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ], [ { "aoVal": "E", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->差倍->两量差倍->变倍型二量差倍问题" ]
[ "假设王师傅没有打碎玻璃,则他应该拿到$$2\\times 40=80$$元,但他只拿到$$60$$元,所以他打碎了$$(80-60)\\div (2+8)=2$$块玻璃. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1585
40e4d19b1773495095f7f918478a5f13
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
$$2014$$年$$2$$月$$6$$日是星期四,小胖决定从这天起(含$$2$$月$$6$$日)练习计算,一直练习到$$2$$月$$17$$日,(含$$2$$月$$17$$日)开学为止.但是中间如果遇到周六和周日,小胖还是决定休息一下,不做练习.已知他第一天做$$1$$道题,第二天做$$3$$道题,第三天做$$5$$道题,依此变化做下去,那么小胖这段时间一共做了道计算练习题.
[ [ { "aoVal": "A", "content": "$$144$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$81$$ " } ], [ { "aoVal": "D", "content": "$$64$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "解:依题意可知: 从$$2$$月$$6$$日到$$2$$月$$17$$日为止,一共有$$17-6+1=12$$(天); 其中有$$2$$个星期六,星期日,工作了$$12-4=8$$(天). 共完成$$1+3+5+7+9+11+13+15=64$$(道)题. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
638
2b3f57680d464571a75e08d50dd3fb3c
[ "2014年迎春杯六年级竞赛初赛" ]
2
single_choice
式子$$\frac{2014}{x+1}$$为整数,则正整数$$x$$有( )种取值。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->分解质因数" ]
[ "因为$$2014=2\\times 19\\times 53$$,$$x+1$$全部可能的取值为$$2014$$的$$1$$以外的全部因数,根据因数个数公式,故共有$${{\\left( 1+1 \\right)}^{3}}-1=7$$种。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2775
5bad78e59d5149ef9c06fbfbe7b92c61
[ "2006年四年级竞赛创新杯", "2006年第4届创新杯四年级竞赛初赛A卷第8题" ]
1
single_choice
下面的算式是按一定的规律排列的:$$4+2$$,$$5+8$$ ,$$6+14$$,$$7+20\cdots $$那么和为83的算式是( ).
[ [ { "aoVal": "A", "content": "$$16+67$$ " } ], [ { "aoVal": "B", "content": "$$15+68$$ " } ], [ { "aoVal": "C", "content": "$$14+69$$ " } ], [ { "aoVal": "D", "content": "$$17+66$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求项数" ]
[ "观察这组式子可知两加数分别由两组等差数列组成,且和亦为等差数列 第一组:4,5,6,7,\\ldots 公差1; 第二组:2,8,14,20,\\ldots 公差6; 各组和:6,13,20,27,\\ldots 公差7; 因此,当和为83时,可求得项数为$$(83-6)\\div 7+1=12$$所以第12项的算式为:$$\\left[ 4+\\left( 12-1 \\right)\\times 1 \\right]+\\left[ \\left( 12-1 \\right)\\times 6+2 \\right]=15+68$$,选B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
434
822c9f1ac99b4189b7990922772fd420
[ "2012年第10届创新杯四年级竞赛初赛第5题6分" ]
1
single_choice
显示在电子钟上的时间是$$5:55$$,下一次电子钟上显示的时间又是全部相同的数字,还要过分钟.
[ [ { "aoVal": "A", "content": "$$71$$ " } ], [ { "aoVal": "B", "content": "$$255$$ " } ], [ { "aoVal": "C", "content": "$$316$$ " } ], [ { "aoVal": "D", "content": "$$377$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "因为分钟的十位最大为$$5$$,故下一次数字相同的时刻为$$11:11$$,$$11:11$$距$$5:55$$有$$5$$小时$$16$$分,即$$316$$分钟. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2313
e5a51986a7c54763a8c75881b9e56a7e
[ "2016年创新杯五年级竞赛训练题(一)第2题" ]
2
single_choice
甲、乙两人在学校到体育场的路上练习竞走,甲每分比乙多走$$10$$米,上午$$9$$点两人同时从学校出发,上午$$10$$点甲到达体育场后立即返回学校,在距体育场$$310$$米处遇到乙,那么学校到体育馆的距离为(~ )米.
[ [ { "aoVal": "A", "content": "$$9610$$ " } ], [ { "aoVal": "B", "content": "$$9300$$ " } ], [ { "aoVal": "C", "content": "$$8600$$ " } ], [ { "aoVal": "D", "content": "$$7000$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "根据题意有相遇时甲比乙多走了$$310\\times 2=620$$(米),已知每分钟甲比乙多走$$10$$米,那么从出发到相遇时间为$$620\\div 10=62$$(分),形完全程甲需要$$60$$分钟,那么走$$310$$米需要$$2$$分钟,那么甲的速度为$$310\\div 2=155$$(米)每分钟,所以学校到体育馆的距离为:$$60\\times 155=9300$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1607
4574c364eaa949d8a300d1b1541f73a2
[ "2018年IMAS小学高年级竞赛(第一轮)第11题4分" ]
1
single_choice
\uline{小明}在作除法时,把除数$$45$$写成$$54$$,结果得到的商是$$18$$且余数为$$18$$.请问正确的商应该是多少?
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$22$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ], [ { "aoVal": "E", "content": "$$28$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "由题意知被除数为$$54\\times 18+18=990$$, 因此正确的商为$$990\\div 45=22$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2048
dd376ed13120437498ae8455d620befe
[ "2017年全国希望杯小学高年级五年级竞赛初赛考前100题" ]
3
single_choice
小聪赶着一头猪到山外的生猪收购站去卖.过秤知猪重$$150$$斤,他和收购站的工作人员有如下对话: 收购员:你这头猪肚子这么大有这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收! 小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路猜到这里. 收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称的重量,收购价提高两成五,两种选择由你来决定! 请帮助小聪做出选择,并说明原因.
[ [ { "aoVal": "A", "content": "第一种 " } ], [ { "aoVal": "B", "content": "第二种 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解其他问题" ]
[ "设收购价为$$a$$元/斤,则第二天``保本''情况下,猪的重量应为 $$0.9\\times 150a\\div \\left[ a\\left( 1+25 \\% \\right) \\right]=0.9\\times 150a\\div 1.25a=108$$(斤) 就是说,及时猪的重量减轻了$$42$$斤,也能``保本'',也比第一种选择好,根据生活经验可知,一夜之后猪的重量不可能减轻$$42$$斤,所以应该果断选择第二种! " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3375
96c41632fe374477a365b3b351deebe1
[ "2009年四年级竞赛创新杯" ]
1
single_choice
师徒两人加工同一种零件,每人都把自己的产品装入自己的箩筐中,结果师傅产量是徒弟的两倍,现在装了$$6$$只箩筐,每只箩筐都标了零件的只数:$$78$$只,$$94$$只,$$86$$只,$$87$$只,$$82$$只,$$80$$只。那么( )这两筐是徒弟加工的。
[ [ { "aoVal": "A", "content": "87只与86只 " } ], [ { "aoVal": "B", "content": "87只与82只 " } ], [ { "aoVal": "C", "content": "80只与87只 " } ], [ { "aoVal": "D", "content": "94只与80只 " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法" ]
[ "因为$$\\left( 78+94+86+87+82+80 \\right)\\div \\left( 1+2 \\right)=169$$,又$$87+82=169$$,所以$$87$$只与$$82$$只这两筐是徒弟加工的。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
821
9f255ff8cf9e48e596d08e791d5dffa4
[ "2014年迎春杯四年级竞赛初赛", "2014年迎春杯三年级竞赛初赛", "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
一些糖果,如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个;如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天只吃了$$3$$个。那么,这些糖果原来有( )个。
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,说明糖果至少有$$3\\times 10+2=32$$(个),且糖果数应除以$$3$$余$$2$$;如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个,说明糖果至多有$$4\\times 8+3=35$$(个),且糖果数应除以$$4$$余$$3$$。综上,糖果有$$35$$个。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
12
4a6c95f3b4ad41eb857ce0290604a957
[ "2017年第16届春蕾杯二年级竞赛决赛第12题6分" ]
1
single_choice
把一张正方形纸对折$$1$$次,可以得到$$2$$个完全相同的长方形;再对折$$1$$次,可以得到$$4$$个完全相同的长方形;再对折$$1$$次,可以得到$$\cdots \cdots $$那么把这张正方形的纸连续对折多少次,可以得到$$128$$个完全相同的长方形?
[ [ { "aoVal": "A", "content": "6次 " } ], [ { "aoVal": "B", "content": "7次 " } ], [ { "aoVal": "C", "content": "8次 " } ], [ { "aoVal": "D", "content": "64次 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "($$1$$)对折$$3$$次,得到$$8$$个完全相同的长方形; ($$2$$)对折$$4$$次,得到$$16$$个完全相同的长方形; ($$3$$)对折$$5$$次,得到$$32$$个完全相同的长方形; ($$4$$)对折$$6$$次,得到$$64$$个完全相同的长方形; ($$5$$)对折$$7$$次,得到$$128$$个完全相同的长方形; 答:把这张正方形的纸连续对折$$7$$次,可以得到$$128$$个完全相同的长方形. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
436
a0a56f3611f54d8cb485926409f22c79
[ "2018年湖北武汉新希望杯五年级竞赛训练题(五)第6题" ]
3
single_choice
用$$1\tilde{ }9$$这九个数字组成三个三位数,每个数字只用一次,要求它们的和是奇数,那么这三个三位数的和最大是.
[ [ { "aoVal": "A", "content": "$$2521$$ " } ], [ { "aoVal": "B", "content": "$$2529$$ " } ], [ { "aoVal": "C", "content": "$$2539$$ " } ], [ { "aoVal": "D", "content": "$$2547$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "先考虑最大,$$741+852+963=2556$$,再调整相近的两个数字$$4$$和$$3$$,则$$731+852+964=2547$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2144
0f70646727664cb796f44ea932142bf3
[ "2016年全国小学生数学学习能力测评四年级竞赛复赛第8题3分" ]
1
single_choice
上午$$9$$点$$30$$分时针与分针组成的角是度.
[ [ { "aoVal": "A", "content": "$$75$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$105$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$9$$点$$30$$分时时针与分针构成的角度为$$30\\times 9-30\\times 5.5=105$$(度). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2089
fdc8257132b944dabe5d657d499db487
[ "2011年广东深圳华杯赛小学中年级竞赛复赛第4题" ]
2
single_choice
一列数:$$1$$,$$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,34$\cdot\cdot\cdot$从第二个开始,每个数都是最靠近它前两个数的和.那么第$$100$$个数除以$$3$$的余数是~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "无余数 " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "除以$$3$$的余数为$$1$$,$$1$$,$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0$$,$$1$$,$$1$$,$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0.$$八个一周期 100$\\div8=12\\cdot\\cdot\\cdot\\cdot\\cdot\\cdot4$ 第$$100$$个数是除以$$3$$的余数和第$$4$$个数除以$$3$$的余数一样.所以第$$100$$个数除以$$3$$的余数是$$0$$. 故答案是没有余数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1503
df005691d6ee4b7aaa1460a7c55b7fa1
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第3题5分" ]
1
single_choice
大李和小李两人一共做了$$68$$个幸运星,大李的数量比小李的$$4$$倍少$$2$$个,如果设小李做了$$x$$个幸运星,则下列方程正确的是.
[ [ { "aoVal": "A", "content": "$$4x-2=68$$ " } ], [ { "aoVal": "B", "content": "$$(4x-2)+x=68$$ " } ], [ { "aoVal": "C", "content": "$$(4x+2)+x=68$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "设小李做了$$x$$个幸运星,则大李做了$$(4x-2)$$个,根据题意列方程:$$(4x-2)+x=68$$,故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
928
bcbb90873a9b462f844c63fd4acb8a09
[ "2012年美国数学大联盟杯六年级竞赛初赛第33题5分(每题5分)" ]
1
single_choice
$$264$$和的最大公因数是$$132$$.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$66$$ " } ], [ { "aoVal": "C", "content": "$$528$$ " } ], [ { "aoVal": "D", "content": "$$660$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "公约数,亦称``公因数''.它是指能同时整除几个整数的数.如果一个整数同时是几个整数的约数,称这个整数为它们的``公约数'';公因数中最大的称为最大公因数. $$264$$和$$528$$的最大公因数为$$264$$; $$264$$和$$660$$的最大公因数为$$132$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
169
35411fca5f7b4c4e9f6227ef87dfa378
[ "2003年第9届华杯赛竞赛初赛第8题" ]
1
single_choice
一副扑克牌有$$54$$张,最少要抽取几张牌,方能使其中至少有$$2$$张牌有相同的点数?
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$54$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->简单抽屉原理" ]
[ "如果不算大、小王,每个花色$$13$$张牌,只需$$14$$张便一定有两张相同点数的牌,加上大、小王,则需要$$16$$张牌. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3379
a90c956fc6294c7aa35d2440e62c3531
[ "2008年五年级竞赛创新杯" ]
1
single_choice
有$$1$$克、$$2$$克、$$4$$克、$$8$$克的砝码各一个,从这$$4$$个砝码中每次任选$$2$$个使用,能称出( )种不同的重量。(砝码也可以放在天平的两边)
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "从$$1\\text{、}2\\text{、}4\\text{、}8$$克中任取两个,其和为$$3\\text{、}5\\text{、}9\\text{、}6\\text{、}10\\text{、}12$$克,从$$1\\text{、}2\\text{、}4\\text{、}8$$克任取两个,大的减去小的,其差为$$1\\text{、}3\\text{、}7\\text{、}2\\text{、}6\\text{、}4$$克,又因为和与差中的$$3$$克$$\\text{、}6$$克重复,所以可称出$$6+6-2=10$$(种)不同的重量。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1786
f22edb1683e848a7a49cda2fcc48df1b
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$2000$$颗龙珠是( )
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "解:$$2000\\div (4+3+2+1)$$ $$=2000\\div 10$$ $$=200$$(组) 商是$$200$$,没有余数,说明第$$2000$$颗龙珠是$$200$$组的最后一个,是白珠。 答:从龙嘴里吐出的第$$2000$$颗龙珠是白珠。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
77
6fd4094d371d447886c8f9c317afcc9d
[ "2003年五年级竞赛创新杯", "2003年六年级竞赛创新杯", "2003年第1届创新杯五年级竞赛复赛第10题", "2003年四年级竞赛创新杯" ]
2
single_choice
一个聪明的海盗,他根据藏宝图的指引来到了传说中的藏宝岛,他上岛后发现岛上确实有三个厚重的石门,而其中之一就是通往宝藏之门. 右边的石门上写着:此非通往宝藏之门. 中间的石门上写着:此是通往宝藏之门. 左边的石门上写着:右边的石门确实不是通往宝藏之门. 根据藏宝图所附的提示得知,这三道石门上的陈述至少有一句是真的,有一句是假的,那么真正通往宝藏之门的是( ).
[ [ { "aoVal": "A", "content": "右边的石门 " } ], [ { "aoVal": "B", "content": "中间的石门 " } ], [ { "aoVal": "C", "content": "左边的石门 " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理" ]
[ "用假设法,假设右边门是,则左中右都是假的,所以假设不符;假设中间门是,则左中右都是真的,不符;假设左边门是,则左右是真的,中间是假的,符合.所以真正通往宝藏之门是左边的石门,选C. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2357
037a92247d87499aa63ad80700b2db23
[ "2004年第2届创新杯六年级竞赛复赛第5题" ]
2
single_choice
在下面四个算式中,得数最大的是( )
[ [ { "aoVal": "A", "content": "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->和一定型最值问题->构造和一定最值原理" ]
[ "$$\\left( \\frac{1}{17}-\\frac{1}{19} \\right)\\div 20=\\frac{2}{17\\times 19}\\div 20=\\frac{1}{17\\times 19}\\times \\frac{1}{10}$$;$$\\left( \\frac{1}{15}-\\frac{1}{21} \\right)\\div 60=\\frac{6}{15\\times 21}\\div 60=\\frac{1}{15\\times 21}\\times \\frac{1}{10}$$; $$\\left( \\frac{1}{13}-\\frac{1}{23} \\right)\\div 100=\\frac{10}{13\\times 23}\\div 100=\\frac{1}{13\\times 23}\\times \\frac{1}{10};$$$$\\left( \\frac{1}{11}-\\frac{1}{25} \\right)\\div 140=\\frac{14}{11\\times 25}\\div 140=\\frac{1}{11\\times 25}\\times \\frac{1}{10};$$ 只需比较$$\\frac{1}{17\\times 19}$$,$$\\frac{1}{15\\times 21}$$,$$\\frac{1}{13\\times 23}$$,$$\\frac{1}{11\\times 25}$$的大小,根据和一定,两数越接近乘 积越大,则$$11\\times 25 \\textless{} 13\\times 23 \\textless{} 15\\times 21 \\textless{} 17\\times 19$$,那么 $$\\frac{1}{11\\times 25}\\textgreater\\frac{1}{13\\times 23}\\textgreater\\frac{1}{15\\times 21}\\textgreater\\frac{1}{17\\times 19}$$,所以答案为$$D$$ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1779
c8cb2f284ba942169d39ad6ebb1e42d3
[ "2012年IMAS小学高年级竞赛第一轮检测试题第13题4分" ]
2
single_choice
小英从上星期五开始观察一株风信子,当时有些花已经开了.从此之后,每天新开的花朵数刚好等于前一天已开的花朵数,在这个过程中没有花凋谢.如果风信子的花朵全部开的那一天是星期四,请问花刚好开完一半的那一天是星期几?
[ [ { "aoVal": "A", "content": "星期六 " } ], [ { "aoVal": "B", "content": "星期天 " } ], [ { "aoVal": "C", "content": "星期一 " } ], [ { "aoVal": "D", "content": "星期二 " } ], [ { "aoVal": "E", "content": "星期三 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "因为每天新开的花朵数刚好等于前一天已开的花朵数,所以最后一天新开的花朵数刚好等于总花朵数的一半.这说明花刚好开完一半的那一天是最后一天的前一天,也就是星期三. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1761
ed79aaf290ec4c659894c847e5a3d831
[ "2020年广东广州海珠区广州为明学校卓越杯六年级竞赛初赛第5题2分" ]
1
single_choice
水结成冰体积增加$$\frac{1}{10}$$,冰化成水体积减少.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{10}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{11}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "E", "content": "$$\\frac{1}{8}$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "设水的体积是``$$1$$'', 那么水结成冰体积是$$1\\times \\left( 1+\\frac{1}{10} \\right)=\\frac{11}{10}$$, 冰化成水体积减少$$\\left( \\frac{11}{10}-1 \\right)\\div \\frac{11}{10}=\\frac{1}{11}$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
875
96e4a402918d41008b0c69a5e26d15cf
[ "2018年湖北武汉新希望杯六年级竞赛训练题(二)第16题", "2017年新希望杯六年级竞赛训练题(二)第16题" ]
3
single_choice
质数$$a$$、$$b$$、$$c$$满足:$${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=19350$$,则$$a+b+c=$$.
[ [ { "aoVal": "A", "content": "$$128$$ " } ], [ { "aoVal": "B", "content": "$$146$$ " } ], [ { "aoVal": "C", "content": "$$185$$ " } ], [ { "aoVal": "D", "content": "$$149$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$19350=$$奇数$$+$$奇数$$+$$偶数,所以$$3$$个质数中必定有一个是$$2$$; 由于质数中除了$$2$$、$$5$$以外,其他的质数都以$$1$$、$$3$$、$$7$$、$$9$$结尾,因此它们的平方末尾相应为$$1$$、$$9$$、$$9$$、$$1$$,相加后不可能得到$$6$$,而$$5$$的平方个位还是$$5$$,所以其中一个奇数必定为$$5$$.$$19350-4-25=19321$$,$$139$$的平方是$$19321$$,$$2+5+139=146$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
968
e2d587eb418f4e21a554fc1ced9bb87f
[ "2006年四年级竞赛创新杯", "2006年第4届创新杯四年级竞赛初赛B卷第1题" ]
1
single_choice
0\textasciitilde4五个数字组成的,各位数字不同的最大五位数与最小五位数相差( ).
[ [ { "aoVal": "A", "content": "30870 " } ], [ { "aoVal": "B", "content": "32900 " } ], [ { "aoVal": "C", "content": "32976 " } ], [ { "aoVal": "D", "content": "10000 " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用" ]
[ "$$43210-10234=32976$$,选C " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1776
6628fb6bbcb64907add42c90c42d7c60
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第9题5分" ]
1
single_choice
天气炎热,维维去帮爸爸妈妈排队买饮料,维维发现他的前面有$$3$$人,后面有$$4$$人,聪明的你赶快开动大脑想想这里一共有多少个小朋友在排队买饮料呢?
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "除了涛涛前面的人和涛涛本身,剩下的就是排在涛涛后面的人, 所以共有:$$26-10-1=15$$(人). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
799
60342feddb764954864d04f3928ec397
[ "2006年第4届创新杯五年级竞赛复赛第3题" ]
2
single_choice
$$1234567891011121314\cdots 20052006$$是位数.
[ [ { "aoVal": "A", "content": "$$6913$$ " } ], [ { "aoVal": "B", "content": "$$6914$$ " } ], [ { "aoVal": "C", "content": "$$6915$$ " } ], [ { "aoVal": "D", "content": "$$6917$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->数与数字->数、数位、数字的认识" ]
[ "$$1\\sim 9$$,共有$$9$$个数字组成, $$10\\sim 99$$共有$$2\\times 90=180$$个数字组成, $$100\\sim 999$$,共有$$3\\times 900=2700$$个数字组成, $$1000\\sim 2006$$共有$$4\\times 1007=4028$$个数字组成, 所以$$1234567891011121314\\cdots 20052006$$是由:$$9+180+2700+4028=6917$$个数字组成. 则其是$$6917$$位数. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3261
b531f7c275ea4e598c4624ad7328ab7d
[ "2016年全国小学生数学学习能力测评五年级竞赛初赛第8题3分" ]
2
single_choice
$$1$$角硬币分正面与反面.拿三个$$1$$角硬币一起投掷一次,得到两个正面和一个反面的可能性为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{8}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->典型问题->抛硬币" ]
[ "全部情况有:$$2\\times 2\\times 2=8$$(种), 最终得到两个正面一个反面可有以下三种情况: 正正反、正反正、反正正, 故所求概率为$$\\frac{3}{8}$$. 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
862
bb1c98913ccd403f9aca01cc6414fe1c
[ "2018年美国数学大联盟杯五年级竞赛初赛第24题5分" ]
1
single_choice
\textbf{(2018 Math League, Priamry 5, Question \#24)} My favorite number has $$6$$ different factors. If the product of all $$6$$ factors is $${{12}^{3}}$$,what$$$$ is the sum of the factors of my favorite number? 我最喜欢的数有$$6$$个不同的因数.如果所有$$6$$个因数的乘积为$${{12}^{3}}$$,我最喜欢的数的因数之和是多少?($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$)
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->数论模块->因数与倍数->因数个数定理" ]
[ "我们知道:$${{12}^{3}}=1728$$; 将$$1728$$分解质因数:$$1728=2\\times 2\\times 2\\times 2\\times 2\\times 2\\times 3\\times 3\\times 3$$; 由于$$6$$个因数各不相同,将质因数进行组合; 所以这六个因数可以是:$$1$$、$$2$$、$$3$$、$$4$$、$$6$$、$$12$$; 那么$$6$$个因数之和是:$$1+2+3+4+6+12=28$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
736
374ef944bd874c3dad6bf6941d79c5c6
[ "2012年美国数学大联盟杯六年级竞赛初赛第29题5分(每题5分)" ]
1
single_choice
$$12$$的所有因数之和是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$28$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "整数$$a$$除以整数$$b(b\\ne 0)$$除得的商正好是整数而没有余数,我们就说$$a$$能被$$b$$整除,或$$b$$能整除$$a$$. $$a$$称为$$b$$的倍数,$$b$$称为$$a$$的因数. $$12$$的因数有:$$1$$、$$2$$、$$3$$、$$4$$、$$6$$、$$12$$, 它们的和是:$$1+2+3+4+6+12=28$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2176
d5301253ff7d4d7f8db42628c10c75c1
[ "2016年华杯赛六年级竞赛初赛" ]
2
single_choice
已知$$A,B$$两地相距$$300$$米。甲、乙两人同时分别从$$A,B$$两地出发,相向而行,在距$$A$$地$$140$$米处相遇; 如果乙每秒多行$$1$$米,则两人相遇处距$$B$$地$$180$$米。那么乙原来的速度是每秒( )米。
[ [ { "aoVal": "A", "content": "$$2\\frac{3}{5}$$ " } ], [ { "aoVal": "B", "content": "$$2\\frac{4}{5}$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$3\\frac{1}{5}$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例" ]
[ "本题是典型的利用正反比例解行程的问题。首先根据不变量判断是否成正反比例。两次相遇过程中两人的时间相同,路程比等于速度比。两次相遇过程中甲的速度没变,通分比较乙的,即可解决问题。 解:第一次相遇过程中,甲、乙两人的路程之比是$$140:\\left( 300-140 \\right)=7:8$$,时间相同,路程比就是速度比。 第二次相遇过程中,甲、乙两人的路程之比是$$\\left( 300-180 \\right):180=2:3$$,速度比也是$$2:3$$。 在两次相遇问题中,甲的速度是保持不变的。通分得,第一次速度比为$$7:8=14:16$$;第二次速度比为$$2:3=14:21$$。 速度从$$16$$份增加到$$21$$份,速度增加$$1$$米/秒,即$$1\\div \\left( 21-16 \\right)=\\frac{1}{5}$$。 乙原来的速度是$$16\\times \\frac{1}{5}=3.2$$(米/秒)$$=3\\frac{1}{5}$$(米/秒)。 故选:D " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2832
b6243428bce244f89fbc77165d32c5c5
[ "2018~2019学年浙江杭州西湖区杭州市行知小学五年级上学期期中期中竞赛第17题1分" ]
1
single_choice
小机灵在用计算器计算``$$6.9\times 7$$''时,发现计算器的键``$$6$$''坏了,小机灵想到了四种不同的输入方法.请你判断一下,下面选项中的方法是错误的
[ [ { "aoVal": "A", "content": "$$2.3\\times 3\\times 7$$ " } ], [ { "aoVal": "B", "content": "$$13.8\\times 7\\div 2$$ " } ], [ { "aoVal": "C", "content": "$$2\\times 3\\times 7+0.9\\times 7$$ " } ], [ { "aoVal": "D", "content": "$$7\\times 7-7$$ " } ] ]
[ "知识标签->拓展思维->计算模块->小数->小数乘除->小数乘法运算" ]
[ "$$7\\times 7-7=7\\times \\left( 7-1 \\right)=7\\times 6=42$$,提取公因数后发现$$\\text{D}$$式变为$$7\\times 6$$,而非原式的$$6.9\\times 7$$,所以错误. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1372
47b69bf977024b01b79b84a4b804f773
[ "2006年第4届创新杯四年级竞赛初赛B卷第10题" ]
1
single_choice
某次数学比赛,分两种方法给分,一种是答对了一题给$$5$$分,不答给$$2$$分,答错不给分;另一种是先给$$40$$分,答对一题给$$3$$分,不答不给分,答错扣$$1$$分.某考生两种判分方法均得$$81$$分,这次比赛共有( )题.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$22$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "选项$$\\rm A$$:$$12$$题,按第一种给分方法,最多得$$12\\times 5=60$$分,排除$$\\rm A$$;选项$$\\rm B$$:$$15$$题,按第一种给分方法,最多得$$15\\times 5=75$$分,排除$$\\rm B$$; 选项$$\\rm D$$:$$17$$题,按第一种给分方法,得$$81$$分只有一种方法,$$81=5\\times 15+2\\times 3$$,因此比赛试题最少应该有$$15+3=18$$题,排除$$\\rm D$$.故选$$\\rm C$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
205
3eda02c4b9194a45ba1796bd1d992acf
[ "2021年新希望杯一年级竞赛初赛第14题5分" ]
1
single_choice
$$5$$只动物排成一排,狗和猫都与鸡相邻,猫和鼠都与兔相邻,那么都与猫相邻.
[ [ { "aoVal": "A", "content": "鼠和鸡 " } ], [ { "aoVal": "B", "content": "鸡和兔 " } ], [ { "aoVal": "C", "content": "兔和狗 " } ], [ { "aoVal": "D", "content": "兔和鼠 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,狗和猫都与鸡相邻,即鸡的左右两边是猫和狗,又因为猫与老鼠都与兔相邻,所以猫的旁边是兔子和老鼠,兔子和老鼠在猫的同一侧,由此可知,与猫相邻的是鸡和兔. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2179
2744bdaf70b74e6bb028b77deee741b7
[ "2016年新希望杯小学高年级六年级竞赛训练题(一)第2题" ]
1
single_choice
$$A$$、$$B$$两地相距$$600$$千米.甲、乙两车同时从$$A$$、$$B$$两地相向而行,$$3$$小时后相遇.甲速度是乙的$$1.5$$倍,则甲的速度是千米/时.
[ [ { "aoVal": "A", "content": "$$80$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设甲速度是$$3x$$千米/时,以速度是$$2x$$千米/时,$$600=\\left( 2x+3x \\right)\\times 3$$,$$3x=120$$,即甲的速度是$$120$$千米/时 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
375
a4447bef78ef4ee6bd94e2f3a9ec632b
[ "2013年河南郑州中原网杯六年级竞赛初赛" ]
2
single_choice
甲、乙、丙、丁$$4$$人坐在$$1$$、$$2$$、$$3$$、$$4$$号椅子上,有人说:乙坐在丙旁边,甲坐在乙、丙中间,乙没有坐在$$3$$号椅子上.已知此人说的都是错的, 则丁坐在几号椅子上?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "Overseas Competition->知识点->组合模块->逻辑推理->条件型逻辑推理->神推理", "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->连线法" ]
[ "首先,``乙没有坐在$$3$$号椅子上''是错的,就可以判断出乙在$$3$$号椅子上;再看,``乙坐在丙旁边''是错的,可以判断出丙不在$$2$$,$$4$$号椅子上,所以在$$1$$号椅子;最后,``甲坐在乙、丙中间''是错的,可以判断出甲在$$4$$号,故得出丁在$$2$$号椅子上. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1647
4a3abc651f774b6daf03e28723631671
[ "2018年四川成都锦江区四川师范大学附属第一实验中学小升初(四)第5题3分", "2014年全国迎春杯三年级竞赛初赛第13题" ]
1
single_choice
同学们一起去划船,但公园船不够多,如果每条船坐$$4$$人,会多出$$10$$人;如果每条船坐$$5$$人,还会多出$$1$$人,共有人去划船.
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "盈盈类问题:共有$$(10-1)\\div (5-4)=9$$(条)船,共有$$4\\times 9+10=46$$人. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1419
51325d32706c4104bbb9a462f109045f
[ "2010年华杯赛四年级竞赛初赛", "2010年华杯赛三年级竞赛初赛" ]
1
single_choice
两条纸带,较长的一条为$$23$$cm,较短的一条为$$15$$cm. 把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )厘米.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->加减法应用->同增同减应用题" ]
[ "考虑到``同增同减差不变''的原则,在剪之后,两条纸带长度的差仍为$$23-15=8$$(厘米). 较长的纸带的长度不少于较短的纸带长度的两倍,故他们长度的差不少于较短的纸带长度的一倍, 较短的纸带不能超过$$8$$厘米,故至少剪下了$$7$$厘米。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2953
ffa1b030d1fe4ad2aa6494f9dbcdc188
[ "2017年河南郑州联合杯竞赛决赛第10题2分" ]
1
single_choice
一列数$$1$$,$$2$$,$$2$$,$$3$$,$$3$$,$$3$$,$$4$$,$$4$$,$$4$$,$$4$$,$$...$$ .中的第$$35$$个数为(~ ).
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "无答案 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$1+2+\\cdots +7=\\left( 1+7 \\right)\\times 7\\div 2=28$$,$$35-28=7$$,则第$$35$$个数为$$8$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1540
3c41e0d9e6774abf836906f67f97a559
[ "2015年第11届全国新希望杯小学高年级六年级竞赛复赛第3题" ]
2
single_choice
星星、希希、望望三人过年期间一共收了$$1800$$元压岁钱,如果星星把自己的钱数的$$\frac{1}{3}$$给希希,然后希希把自己现有钱数的$$\frac{1}{4}$$给望望,望望再把自己现有钱数的$$\frac{1}{5}$$给星星,此时二个人手中的钱就一样多了,那么希希原来的钱数比望望原来的钱数多(~ ).
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$35$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$125$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "相互给,总和不变,给完后三人的钱数都是$$1800\\div 3=600$$,望望得到希希的钱后是$$600\\div \\frac{4}{5}=750$$,给希希$$150$$后,星星是$$600$$,那么说明星星给出$$\\frac{1}{3}$$后是$$450$$,那么星星原来是$$450\\div \\frac{2}{3}=675$$(元),那么给了希希$$225$$元,希希得到后有$$600\\div \\frac{3}{4}=800$$(元),那么希希原有$$800-225=575$$(元).那么望望原有$$1800-675-575=550$$(元),所以希希原来的钱比望望原来的钱多$$25$$元. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
199
28f3316cabe149fcb68a14853643aa18
[ "2014年第3届广东广州羊排赛六年级竞赛第9题1分" ]
2
single_choice
琦琦身陷神秘房间中.房间大门紧锁,上面刻着一段话:``钥匙上的话只有一句是真的.''往门旁一看,挂着三把钥匙,上面各贴着一句话.金钥匙:``这把钥匙不可以打开大门.''银钥匙:``金钥匙可以打开大门.''铜钥匙:``这把钥匙不可以打开大门.''那么,( ~ ~).
[ [ { "aoVal": "A", "content": "琦琦应该拿金钥匙打开大门 " } ], [ { "aoVal": "B", "content": "琦琦应该拿银钥匙打开大门 " } ], [ { "aoVal": "C", "content": "琦琦应该拿铜钥匙打开大门 " } ], [ { "aoVal": "D", "content": "三把钥匙都不能打开大门,琦琦应该另想办法 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "本题的思路其实很简单,就是``找矛盾''; 1、三句话只有一句是真的;------题目条件; 2、只要存在一对矛盾则必然一真一假;------矛盾的定义; 3、金钥匙和银钥匙上写的话相互矛盾,根据以上两条,真的那句话一定是其中一句(具体到底是金还是银不重要); 4、根据$$3$$,则铜钥匙那句一定是假的,但它上面说的本身是否定,否定为假则肯定为真,所以铜钥匙就可以打开大门. 答案选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
650
16682faeed844e519bf4848665814fd7
[ "2006年华杯赛六年级竞赛初赛", "2006年华杯赛五年级竞赛初赛" ]
1
single_choice
2008006共有个质因数.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->质数与合数" ]
[ "因为$$2008006=2006\\times 1000+2006=2006\\times 1001=\\left( 2\\times 17\\times 59 \\right)\\times \\left( 7\\times 11\\times 13 \\right)$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2560
2c66de2f335949e7ac51cdf47f715f03
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(一)" ]
1
single_choice
在$$2000$$,$$2001$$,$$2002$$,$$2003$$,$$\ldots \ldots $$,$$2017$$这$$18$$个连续自然数中能表示为两个自然数平方之差的数有(~ )个.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->公式类运算->完全平方公式" ]
[ "根据完全平方公式有$${{\\left( a+1 \\right)}^{2}}={{a}^{2}}+2a+1$$,那么可以得到$${{\\left( a+1 \\right)}^{2}}{{a}^{2}}=2a+1$$,$$2a+1$$是一个奇数,那么所在奇数共有$$9$$个,都可以表示为两个自然数平方之形;若一个偶数能表示为两个平方数之差,都为$${{a}^{2}}{{b}^{2}}=\\left( a+b \\right)\\left( ab \\right)$$,此时$$\\left( a+b \\right)$$与$$\\left( a-b \\right)$$同奇偶性,必同为偶数,那么此时$${{a}^{2}}{{b}^{2}}=\\left( a+b \\right)\\left( ab \\right)$$必为$$4$$的偶数,也就是说$$4$$的偶数才能表示为两个平方数之和,那么$$2000$$,$$2004$$,$$2006$$,$$2012$$,$$2016$$也是可以表示成两个平方数之差的,所以一共有$$9+5=14$$个. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2745
ff8080814518d5240145201b60020a7d
[ "2014年全国迎春杯三年级竞赛复赛第1题" ]
1
single_choice
找出规律,将你认为合适的数填入(~ ~ ~ ),$$2$$、$$4$$、$$3$$、$$9$$、$$4$$、$$16$$、$$5$$、 ~( ~ ~ ~ ~ ~)、 ~( ~ ~ ~ ~ )、$$36$$、 $$7$$、$$\cdots$$那么正确的数是(~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$18$$、$$6$$ " } ], [ { "aoVal": "B", "content": "$$22$$、$$6$$ " } ], [ { "aoVal": "C", "content": "$$25$$、$$6$$ " } ], [ { "aoVal": "D", "content": "$$25$$、$$26$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$2$$、$${ 2 }^{ 2 }$$、$$3$$、$${ 3 }^{ 2 }$$、$$4$$、$${ 4 }^{ 2 }$$、$$5$$、($${5 }^{ 2 }$$)、($$6$$ )、$${ 6 }^{ 2 }$$、$$7$$$$\\cdots$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2358
06826e60ba0040cc8f092b3c41d18b4a
[ "2011年六年级竞赛创新杯" ]
1
single_choice
$$1\times 2\times 3\times 4\times 5\times \cdots \times 21\div 343$$,则商的千位上的数字是( )
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之位值原理" ]
[ "易知最后的几位为$$0$$,$$0$$的个数由$$5$$和$$2$$的个数决定,在这里显然$$2$$的个数多于$$5$$;我们只需要考虑$$5$$的个数即可。$$1\\times 2\\times 3\\times 4\\times 5\\times \\cdots \\times 21$$中含有$$4$$个$$5$$,而$$343={{7}^{3}}$$,所以商千位上的数字为$$0$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2641
6c8666acdc714e3280eef1f4f87e0d06
[ "2019年亚洲国际数学奥林匹克公开赛(AIMO)三年级竞赛决赛第2题3分" ]
1
single_choice
计算. $$13+16+19+22+ 25+ 28+31+34+37+40=$$.
[ [ { "aoVal": "A", "content": "$$286$$ " } ], [ { "aoVal": "B", "content": "$$265$$ " } ], [ { "aoVal": "C", "content": "$$258$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和" ]
[ "原式$$=\\left( 13+40 \\right)+\\left( 16+37 \\right)+\\left( 19+34 \\right)+\\left( 22+31 \\right)+\\left( 25+28 \\right)$$ $$=53\\times 5$$ $$=265$$. $$(13+40)\\times 10\\div 2=265$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3392
8645d3cb153e4df8a87b929347d0e886
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(四)第6题" ]
1
single_choice
一袋准备要爆花的玉米,其中$$\frac{2}{3}$$是白粒的,$$\frac{1}{3}$$是黄粒的.白粒的$$\frac{1}{2}$$会爆开,黄粒的$$\frac{2}{3}$$会爆开.今从该袋中任选一粒放入锅中发生爆花,则是白粒玉米的概率是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{4}{7}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{5}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->统计与概率->概率->加乘原理求概率" ]
[ "会爆开的白粒$$\\frac{2}{3}\\times \\frac{1}{2}=\\frac{1}{3}$$,会爆开的黄粒$$\\frac{1}{3}\\times \\frac{2}{3}=\\frac{2}{9}$$,会爆开的白粒是会爆开的玉米总数的$$\\frac{1}{3}\\div \\left( \\frac{1}{3}+\\frac{2}{9} \\right)=\\frac{3}{5}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1019
035d0fe6ddd845e19b6d576a7d0da19b
[ "2015年华杯赛五年级竞赛初赛", "2015年华杯赛六年级竞赛初赛" ]
2
single_choice
六位同学考试的平均成绩是$$92.5$$分,他们的成绩是互不相同的整数,最高的$$99$$分,最低的$$76$$分。那么,按分数从高到低居第三位的同学的分数至少是( )分。
[ [ { "aoVal": "A", "content": "94 " } ], [ { "aoVal": "B", "content": "95 " } ], [ { "aoVal": "C", "content": "96 " } ], [ { "aoVal": "D", "content": "97 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题" ]
[ "六位同学的平均成绩为$$92.5$$分,因此这六人的总分为$$92.5\\times 6=555$$(分)。又最高分为$$99$$,最低分为$$76$$,因此剩下四人的分数和为$$380$$分。要使第三名的同学分数尽可能小,那么得使另外三人的分数尽可能大。而第二名最高为$$98$$分,而第四名第五名分数小于第三名,所以第三名至少为:$$(380-98)\\div3+1=95$$(分),选$$B$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
957
dd85a44e9f044b7d83ea1a5c97414cef
[ "2015年第27届广东广州五羊杯小学高年级竞赛第10题4分" ]
1
single_choice
有$$15$$位同学,每位同学都有编号,他们是从$$1$$号到$$15$$号.$$1$$号同学写了一个自然数,$$2$$号同学说:``这个数能被$$2$$整除.''$$3$$号同学说:``这个数能被$$3$$整除.''$$4$$号同学说:``这个数能被$$4$$整除.''$$\cdots \cdots $$,依次下去,每位同学都说,这个数能被他(或她)的编号整除.$$1$$号同学一一验证,发现只有编号相邻的两个同学说得不对.那么,说得不对的同学,他们的编号是两个连续的自然数.
[ [ { "aoVal": "A", "content": "$$5$$、$$6$$ " } ], [ { "aoVal": "B", "content": "$$6$$、$$7$$ " } ], [ { "aoVal": "C", "content": "$$7$$、$$8$$ " } ], [ { "aoVal": "D", "content": "$$8$$、$$9$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "首先可以判断编号为$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$的同学说的一定都对, 否则的话,其中说的不对的同学的编号乘以$$2$$后所得的编号也将说得不对, 这样就与``只有编号相邻的两个同学说得不对''矛盾. 因而这个数能被$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$整除, 从而也能被$$10$$,$$12$$,$$14$$整除, 即编号为$$10$$,$$12$$,$$14$$的同学说得也对. 于是可以判定编号为$$11$$,$$13$$,$$15$$的同学也对. 现在只剩下$$8$$号和$$9$$号了,所以错的是$$8$$,$$9$$两号, 答案为$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1673
d190eb727e824be6ac177c88cd04f020
[ "2017年全国华杯赛竞赛初赛模拟3第6题" ]
2
single_choice
养鸡场购进一批种蛋,若能全部孵化成小鸡则有$$2.5$$倍的收益,但是实际上获得的收益仅仅为$$1.25$$倍,这批种蛋的孵化率是~\uline{~~~~~~~~~~}~$$ \%$$(百分子保留一位小数).
[ [ { "aoVal": "A", "content": "$$64.3$$ " } ], [ { "aoVal": "B", "content": "$$63.3$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$70$$ " } ] ]
[ "拓展思维->思想->赋值思想" ]
[ "解法一:这一批种蛋的孵化收益损失$$2\\frac{1}{2}-1\\frac{1}{4}=1\\frac{1}{4}$$(倍),若是全部孵化失败,则要损失$$2\\frac{1}{2}+1=3\\frac{1}{2}$$(倍),所以这批种蛋的孵化率是: $$(1-1\\frac{1}{4}\\div3\\frac{1}{2})\\times100 \\%=\\frac{9}{14}\\times100 \\%=64.3 \\%$$. 解法二:假设每个种蛋的成本价为$$1$$元,$$100$$个种蛋总成本价$$100$$元.又设$$100$$个种种蛋$$S$$个孵化出来,则孵化出后可卖$$S(2\\frac{1}{2}+1)$$元.于是$$S(2\\frac{1}{2}+1)\\div100=1\\frac{1}{4}+1$$, 因此,这批种蛋的孵化率是$$\\frac{9}{14}\\times100 \\%=64.3 \\%$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
524
f442abd3b0f2414f96b4d10d52bc0cc3
[ "2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第3题6分" ]
0
single_choice
芳芳煮熟$$2$$个生鸡蛋用$$6$$分钟,煮熟$$10$$个生鸡蛋用分钟.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->时间总和问题" ]
[ "鸡蛋可以一起煮,所以所花的时间是一样的. 故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2657
b0b5cb382193412898a153325fbfdb2e
[ "2014年第10届全国新希望杯小学高年级六年级竞赛复赛第2题4分" ]
2
single_choice
对自然数$$n$$进行如下操作:如果$$n$$是偶数,就把它除以$$2$$,如果$$n$$是奇数,就把它加上$$105$$.现在对$$123$$进行有限次操作,得到的结果不可能是(~ ).
[ [ { "aoVal": "A", "content": "$$57$$ " } ], [ { "aoVal": "B", "content": "$$93$$ " } ], [ { "aoVal": "C", "content": "$$100$$ " } ], [ { "aoVal": "D", "content": "$$114$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "由于$$123$$是$$3$$的倍数,操作过程中得到数一定为$$3$$的倍数,故不可能得到$$100$$选$$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
276
6d2e1e5eb3bb4c8da02fdc700eb660de
[ "2019年第24届YMO一年级竞赛决赛第7题3分" ]
1
single_choice
在一个口袋里有$$8$$个黑球、$$3$$个白球、$$9$$个红球,至少取出个球,才能保证其中有黑球.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$13$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "根据题意分析可知,考虑最坏的情况,先摸到的都是其他颜色的球,即白球和红球,把$$3+9=12$$(个)球全摸完然后再接下来摸到的球一定是黑球也就是:$$12+1=13$$(个),故选答案$$\\text C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
809
6957bf1cbbda4ad09081c2a77a630087
[ "2004年五年级竞赛创新杯" ]
2
single_choice
有两个两位数,它们的最大公因数是$$8$$,最小公倍数是$$96$$,这两个数的和是.
[ [ { "aoVal": "A", "content": "56 " } ], [ { "aoVal": "B", "content": "78 " } ], [ { "aoVal": "C", "content": "84 " } ], [ { "aoVal": "D", "content": "96 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公因数与最大公因数->两数的最大公因数" ]
[ "因为两个两位数的最大公因数为8,可设这两个数分别为$$8a\\text{,}8b$$($$a\\text{,}b$$互质),那么$$8\\times a\\times b=96$$,即$$a\\times b=12$$,则$$a\\text{,}b$$为$$\\left( 3\\text{,}4 \\right)\\text{,}\\left( 1\\text{,}12 \\right)$$,又因为这两个数皆为两位数,所以这两个数只能为24和32,$$24+32=56$$,选 A. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1765
6608dd7f709945a0a879b82d91695c50
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(二)第2题" ]
2
single_choice
某货运公司运送一批货物,原计划安排$$18$$辆小卡车和$$12$$辆大卡车刚好运$$4$$次,已知$$2$$辆大卡车与$$5$$辆小卡车装的重量相同,现在只能派出$$8$$辆小卡车,需运次才能把货物运完.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$12$$辆大卡车装的重量等于$$12\\div 2\\times 5=30$$辆小卡车,则原计划运$$1$$次的货物现在要运$$\\left( 18+30 \\right)\\div 8=6$$(次),所以一共需运$$6\\times 4=24$$次. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
267
83d78f31dfcc4276b36d670b7c3e11a8
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
一次考试有三道题,四个好朋友考完后互相交流了成绩,发现四人各对了$$3$$、$$2$$、$$1$$、$$0$$ 道题。这时一个路人问:``你们考得怎么样啊?'' 甲:``我对了两道题,而且比乙对的多,丙考得不如丁。'' 乙:``我全对了,丙全错了,甲考得不如丁。'' 丙:``我对了一道,丁对了两道,乙考得不如甲。'' 丁:``我全对了,丙考得不如我,甲考得不如乙。'' 已知大家都是对了几道题就说几句真话,那么对了$$2$$题的人是~\uline{~~~~~~~~}~。
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理" ]
[ "全对的人不会说自己对的题少于$$3$$,故只有乙、丁可能全对。若乙全对,则排名是乙、丁、甲、丙,与丙所说的``丁对了$$2$$道''是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的``甲考得不如乙''能知道第二名是乙,故丙全错,甲只有``丙考得不如丁''是真话,排名是丁、乙、甲、丙且$$4$$人的话没有矛盾。综上,答案是B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
674
67558def52984186b07fc234da86d942
[ "2014年IMAS小学高年级竞赛第一轮检测试题第7题3分" ]
2
single_choice
若甲数除以$$5$$余$$2$$、乙数除以$$5$$余$$4$$,请问甲、乙两数之和除以$$5$$的余数是多少?
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ], [ { "aoVal": "E", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "将甲、乙两数余数之和$$2+4=6$$继续除以$$5$$,可得其余数为$$1$$.故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2774
45b15afcf45645bea34f5680f758605b
[ "2020年新希望杯六年级竞赛初赛(个人战)第4题", "2020年希望杯六年级竞赛(个人赛)第4题" ]
1
single_choice
【2020希望杯六年级竞赛初赛】 如果$$x:y=4:7$$,$$z:x=3:5$$,那么$$\left( x+y \right):(z+x)=$$.
[ [ { "aoVal": "A", "content": "$$11:8$$ " } ], [ { "aoVal": "B", "content": "$$33:55$$ " } ], [ { "aoVal": "C", "content": "$$32:55$$ " } ], [ { "aoVal": "D", "content": "$$41:32$$ " } ], [ { "aoVal": "E", "content": "$$55:32$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "已知$$x:y=4:7$$,$$z:x=3:5$$,那么$$y:x=7:4$$,$$x:z=5:3$$, $$y:x=\\left( 7\\times 5 \\right):\\left( 4\\times 5 \\right)=35:20$$,$$x:z=\\left( 5\\times 4 \\right):\\left( 3\\times 4 \\right)=20:12$$, $$y:x:z=35:20:12$$. 假设$$y=35a$$,$$x=20a$$,$$z=12a$$,其中$$a\\ne 0$$. $$x+y=20a+35a=55a$$,$$z+x=12a+20a=32a$$, 那么$$\\left( x+y \\right):\\left( z+x \\right)=55a:32a=55:32$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3171
4f82532f1b0945efac7ebbdcaa0831ea
[ "2015年湖北武汉世奥赛小学高年级六年级竞赛模拟训练题(四)第4题" ]
2
single_choice
四位同学到商店买毛笔或铅笔,每人只买了$$1$$支笔,而且至少有$$1$$人买了铅笔,则可能的买法有(~ ~ ~ ~)种.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->乘法原理->物品搭配(有特殊要求)" ]
[ "每位同学有两种买法,排除全部是毛笔,则共有$$2\\times 2\\times 2\\times 2-1=15$$(种). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1362
28bee930d52440d999bd63254b1386d0
[ "其它", "2010年北京学而思综合能力诊断三年级竞赛第8题" ]
2
single_choice
某次数学竞赛,试题共有$$10$$道,每做对一题得$$6$$分,每做错一题倒扣$$2$$分,小红最终得$$44$$分,做对的题比做错的题多~\uline{~~~~~~~~~~}~道.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "$$\\left( 60-44 \\right)\\div 8=2$$,做错$$2$$道题,做对$$8$$道题,对的比错的多$$6$$道. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2998
c09ede4a0b804b71b43d5ef2cb128fcb
[ "2017年第15届全国希望杯小学高年级六年级竞赛" ]
2
single_choice
$$9$$个正方形放在一行,第$$1$$个正方形的面积为$$1$$,从第$$2$$个正方形开始,每个正方形的面积都是前一个正方形面积的一半,试比较第$$2$$个到第$$9$$个正方形的面积之和与第$$1$$个正方形面积的大小.
[ [ { "aoVal": "A", "content": "第$$2$$个到第$$9$$个正方形的面积之和大 " } ], [ { "aoVal": "B", "content": "第$$1$$个正方形面积大 " } ], [ { "aoVal": "C", "content": "一样大 " } ], [ { "aoVal": "D", "content": "不能判断 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "第$$2$$个到第$$9$$个正方形的面积之和为$$\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{8}+\\frac{1}{16}+\\frac{1}{32}+\\frac{1}{64}+\\frac{1}{128}+\\frac{1}{256}$$ $$=\\frac{1}{256}\\left( 128+64+32+16+8+4+2+1 \\right)$$ $$=\\frac{255}{256}\\textless{}1$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1216
1e69375093124e51858de5b1becc4d50
[ "2014年迎春杯五年级竞赛初赛" ]
2
single_choice
已知$$a$$、$$b$$、$$c$$、$$d$$四个数的平均数是$$12.345$$,$$a\textgreater b\textgreater c\textgreater d$$,那么$$b$$( )。
[ [ { "aoVal": "A", "content": "大于$$12.345$$ " } ], [ { "aoVal": "B", "content": "小于$$12.345$$ " } ], [ { "aoVal": "C", "content": "等于$$12.345$$ " } ], [ { "aoVal": "D", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类" ]
[ "解:因为$$a$$、$$b$$、$$c$$、$$d$$四个数的平均数是$$12.345$$,$$a\\textgreater b\\textgreater c\\textgreater d$$, 所以$$a$$一定大于$$12.345$$,$$d$$一定小于$$12.345$$, 但是$$b$$的取值无法确定,$$b$$可能大于$$12.345$$,也有可能小于$$12.345$$或等于$$12.345$$。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3000
c5266d4023514625a71935532ed5fe6d
[ "竞赛" ]
1
single_choice
计算:$$0.123\times 958958+877\times 613.613-34.5\times 1231.23=$$( ).
[ [ { "aoVal": "A", "content": "$$613613$$ " } ], [ { "aoVal": "B", "content": "$$6136.13$$ " } ], [ { "aoVal": "C", "content": "61361.3 " } ], [ { "aoVal": "D", "content": "以上答案都不对 " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数提取公因数->小数乘法巧算之提取公因数(普通型)" ]
[ "原式 $$=123\\times 958.958-123\\times 1.001\\times 345+877\\times 613.613 $$ $$=123\\times \\left( 958.958-345.345 \\right)+877\\times 613.613 $$ $$=123\\times 613.613+877\\times 613.613 $$ $$=613\\times 1.001\\times \\left( 123+877 \\right) $$ $$=613\\times 1001 $$ $$=613613 $$ " ]
A