dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
729
32da61ffac2c48928ce9ef6b79f374d1
[ "2017年新希望杯小学高年级六年级竞赛训练题(二)第5题", "2018年湖北武汉新希望杯六年级竞赛训练题(二)第5题" ]
1
single_choice
在$$1\tilde{ }200$$的自然数中,如果一个数能被$$2$$或$$7$$整除,就称这个数是``双七数'',那么``双七数''共有(~~ )个.
[ [ { "aoVal": "A", "content": "$$112$$ " } ], [ { "aoVal": "B", "content": "$$114$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$128$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\left[ \\frac{200}{2} \\right]+\\left[ \\frac{200}{7} \\right]-\\left[ \\frac{200}{2\\times 7} \\right]=100+28-14=114$$(个). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
114
38f0899231e84303826ab6b14e7cc8a8
[ "2017年第15届湖北武汉创新杯小学高年级六年级竞赛初赛第9题" ]
2
single_choice
若两个三位数的和为$$\overline{ \square \square\square } +\overline{\square \square \square } =1949$$,那么$$6$$个$$\square $$中的数字之和是.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$23$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$41$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜->横式数字谜->与数论的结合" ]
[ "和有千位,则百位一定向前进一位,和的百位为$$9$$且向前进位,则十位一定向百位进一位,和的个位为$$9$$,则个位一定不向前进位,所以总共进两位,数字之和减少$$9\\times 2=18$$,则$$\\overline{\\square } $$中的数字之和是$$1+9+4+9+18=41$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
534
f4f774fad04d43e69660158a99200518
[ "2019年第24届YMO六年级竞赛决赛第7题3分" ]
3
single_choice
有一个$$12$$级的楼梯.某人每次能登上$$1$$级或$$2$$级或$$3$$级,现在他要从地面登上第$$12$$级,有种不同的方式.
[ [ { "aoVal": "A", "content": "$$149$$ " } ], [ { "aoVal": "B", "content": "$$244$$ " } ], [ { "aoVal": "C", "content": "$$264$$ " } ], [ { "aoVal": "D", "content": "$$274$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "设第$$n$$级有$${{a}_{n}}$$种登的方式, 则第$$n-3$$,$$n-2$$,$$n-1$$级再分别登$$3$$,$$2$$,$$1$$级可到第$$n$$级, 则$${{a}_{n}}={{a}_{n-3}}+{{a}_{n-2}}+{{a}_{n-1}}$$, 而$${{a}_{1}}=1$$,$${{a}_{2}}=1+1=2$$,$${{a}_{3}}=1+1+2=4$$, 故$${{a}_{4}}=1+2+4=7$$, $${{a}_{5}}=2+4+7=13$$, $${{a}_{6}}=4+7+13=24$$, $${{a}_{7}}=7+13+24=44$$, $${{a}_{8}}=13+24+44=81$$, $${{a}_{9}}=24+44+81=149$$, $${{a}_{10}}=44+81+149=274$$. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
916
d2cf8027528a4881a7e0720da101aa1d
[ "2016年第21届全国华杯赛小学高年级竞赛初赛B卷第2题" ]
3
single_choice
有一种数,是以法国数学家梅森的名字命名的,它们就是形如$$2^{n}-1$$($$n$$为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数,例如:$$2^{2}-1=3$$就是第一个梅森质数.第一个梅森合数是.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$127$$ " } ], [ { "aoVal": "D", "content": "$$2047$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "选项$$\\rm A$$:$$2^{n}-1=4$$,$$n$$无整数解; 选项$$\\rm B$$:$$2^{n}-1=15$$,$$n$$为$$4$$,但$$n$$不是质数,故舍去; 选项$$\\rm C$$:$$2^{n}-1=127$$,$$n$$为$$7$$,$$127$$不是合数,故舍去; 选项$$\\rm D$$:$$2^{n}-1=2047$$,$$n$$为$$11$$,$$n$$为质数,且$$2047=23\\times 89$$,是合数,满足条件. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1379
5555b5f7b08e49ea90cb331c12a11968
[ "2014年全国迎春杯三年级竞赛初赛第8题" ]
1
single_choice
祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$2000$$颗龙珠是. (2014年二年级竞赛初赛第$$8$$题)
[ [ { "aoVal": "A", "content": "红珠 " } ], [ { "aoVal": "B", "content": "黄珠 " } ], [ { "aoVal": "C", "content": "绿珠 " } ], [ { "aoVal": "D", "content": "白珠 " } ] ]
[ "知识标签->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "$$2000\\div (4+3+2+1)=200$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
134
5496ba24c6e948ada71b1c97569bdb45
[ "2017年第22届全国华杯赛小学高年级竞赛初赛第6题10分" ]
3
single_choice
从$$0$$至$$9$$中选择四个不同的数字分别填入下方的四个括号中,共有~\uline{~~~~~~~~~~}~种填法使得下面这句话是正确的. 这个话里有个数大于$$1$$,有个数大于$$2$$,有个数大于$$3$$,有个数大于$$4$$.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "设四个空依次为$$a,b,c,d$$,即,``这句话里有$$a$$个数大于$$1$$,有$$b$$个数大于$$2$$,有$$c$$个数大于$$3$$,有$$d$$个数大于$$4$$.''根据包含关系,必有$$a\\textgreater b\\textgreater c\\textgreater d\\geqslant 0$$,所以$$a\\textgreater b\\geqslant 2$$,所以至少有$$5$$个数大于$$1$$($$a,b$$以及给出的$$2,3,4$$),所以$$a\\geqslant 5$$,说明至少有一个数大于$$4$$(这个数是$$a$$),所以$$d\\geqslant 1$$.从$$d$$开始考虑: 若$$d=1$$,说明只有$$1$$个数大于$$4$$(只能为$$a$$),且$$a,b,c$$均大于$$1$$,于是有$$a\\textgreater4\\geqslant b\\textgreater c\\geqslant 2$$,则有$$6$$个数大于$$1$$($$a,b,c$$以及给出的$$2,3,4$$),所以$$a=6$$.由$$a\\textgreater4\\geqslant b\\textgreater c\\geqslant 2$$可知$$b\\geqslant 3$$说明至少有$$4$$个数大于$$2$$($$a,b$$以及给出的$$3,4$$),所以$$b\\geqslant 4$$,又因为$$b\\geqslant 4$$,所以有$$b=4$$.此时有$$3$$个数大于$$3$$($$a,b$$以及给出的$$4$$),但此时发现$$8$$个数中有$$5$$个大于$$2$$,和$$b=4$$矛盾; 若$$d=2$$,说明有$$2$$个数大于$$4$$(只能为$$a,b$$),且$$a,b,c$$均大于$$2$$,于是有$$a\\textgreater b\\textgreater4\\geqslant c\\geqslant 3$$,则有$$7$$个数大于$$1$$($$a,b,c$$以及给出的$$2,3,4$$),$$5$$个数大于$$2$$($$a,b,c$$以及给出的$$3,4$$),所以$$a=6$$,$$b=5$$.此时无论$$c=3$$或$$c=4$$均满足条件,这时的两组解为$$a=7$$,$$b=5$$,$$c=3$$,$$d=2$$和$$a=7$$,$$b=5$$,$$c=4$$,$$d=2$$. 若$$d=3$$,说明有$$3$$个数大于$$4$$(为$$a,b,c$$),那么大于$$3$$的数有$$4$$个($$a,b,c$$以及给出的$$4$$),所以$$c=4$$,但$$c\\textgreater4$$,矛盾,所以$$d=3$$不存在. 若$$d=4$$,说明有$$4$$个数大于$$4$$(为$$a,b,c,d$$),但$$d=4$$,与$$d\\textgreater4$$矛盾. 显然$$d=5$$不存在,所以共有$$2$$组解. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
16
01d9d2aeb27a4c0c8734f9e5ee0672e8
[ "2020年希望杯二年级竞赛模拟第19题" ]
1
single_choice
把$$3$$、$$3$$、$$5$$、$$9$$分别放入方格中,不能重复使用,那么和最小是. $$\square \square +\square \square $$
[ [ { "aoVal": "A", "content": "$$56$$ " } ], [ { "aoVal": "B", "content": "$$74$$ " } ], [ { "aoVal": "C", "content": "$$92$$ " } ], [ { "aoVal": "D", "content": "$$146$$ " } ], [ { "aoVal": "E", "content": "$$188$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "要使得和最小,那么两个因数应该尽可能的小; 如果要求两个因数尽可能的小,那么两个因数十位应该填入较小数, 即这两个因数应该是:$$35+39=74$$, 所以和最小是$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3433
e0e43bba29eb4292bc676c53b6ed7e43
[ "2015年第27届广东广州五羊杯小学高年级竞赛第8题4分" ]
2
single_choice
有一类两位数,只有$$4$$个因数,并且个位和十位上的数字是相邻的自然数,那么这样的两位数共有个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "解析分类讨论,有序列举. 有$$4$$个因数的整数只有两种情况:立方数和两个质因数的乘积. 不难验证,立方数中没有任何一个满足条件, 所以只能是第二种情况. 1.自然数由大到小:$$10=2\\times5$$;$$21=3\\times7$$;$$65=13\\times5$$;$$87=3\\times29$$; 2.自然数由小到大:$$34=2\\times17$$,所以共有$$5$$个. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1813
bb4248def3c446898d2305d1656057bd
[ "2021年迎春杯小学高年级六年级竞赛决赛C卷第7题10分" ]
3
single_choice
甲、乙、丙、丁各戴了一顶帽子,帽子上写了一个$$1\sim9$$中的自然数,且互不相同.每人能看到别人帽子上的数,但看不到自己的.他们有如下对话: 甲说:``我看到的三个数两两互质.'' 乙、丙同时说:``那我知道我帽子上的数了.'' 如果他们都聪明且诚实,那么丁帽子上的数是.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理", "Overseas Competition->知识点->应用题模块->分百应用题->认识单位1" ]
[ "本题中,通过甲说出的``另外三个数两两互质'',乙丙就知道了自己的数,说明乙、丙、丁三个人的数字,在$$1\\sim 9$$当中是唯一固定的一组三个数明确的互质数即``$$5$$、$$6$$、$$7$$''三个数,而在这三个数中,只有``$$6$$''在$$1$$$$\\sim 9$$当中有且仅有$$5$$、$$7$$两个互质数,所以乙、丙两个人的数为$$5$$、$$7$$或$$7$$、$$5$$,丁为$$6$$. $$1$$$$\\sim9$$各个数字对应的互质数. $$1$$:$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$, $$2$$:$$3$$、$$5$$、$$7$$、$$9$$, $$3$$:$$2$$、$$4$$、$$5$$、$$7$$、$$8$$, $$4$$:$$3$$、$$5$$、$$7$$、$$9$$, $$5$$:$$2$$、$$3$$、$$4$$、$$6$$、$$7$$、$$8$$、$$9$$, $$6$$:$$5$$、$$7$$, $$8$$:$$3$$、$$5$$、$$7$$、$$9$$, $$9$$:$$2$$、$$4$$、$$5$$、$$7$$、$$8$$. 由此可见,只有$$6$$在$$1\\sim9$$的范围内有且仅有两个互质数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2621
50fa2ac9b07041c1ba7dff6d143ca7cf
[ "2017年四川六年级竞赛排位赛第17题2分", "2020~2021学年福建福州鼓楼区福州教育学院附属第二小学六年级上学期期中第5题1分" ]
1
single_choice
若$$a$$、$$b$$、$$c$$是不同的自然数,而且$$a\times \frac{c}{b} ~\textless{} ~a$$,那么正确的一个结论是.
[ [ { "aoVal": "A", "content": "$$a ~\\textless{} ~b$$ " } ], [ { "aoVal": "B", "content": "$$b ~\\textless{} ~c$$ " } ], [ { "aoVal": "C", "content": "$$a ~\\textless{} ~c$$ " } ], [ { "aoVal": "D", "content": "$$c ~\\textless{} ~b$$ " } ] ]
[ "拓展思维->能力->抽象概括" ]
[ "因为$$a$$、$$b$$、$$c$$是不同的自然数,$$a\\times \\frac{c}{b} ~\\textless{} ~a$$,则$$ac ~\\textless{} ~ab$$,即$$c ~\\textless{} ~b$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3020
b7e4520fee404a7fb2fe34c2911b48d9
[ "2020年第1届广东深圳超常思维竞赛四年级竞赛初赛第2题4分" ]
1
single_choice
计算$$1+3+5+7+\cdots +2019+2021=$$.
[ [ { "aoVal": "A", "content": "$${{1011}^{2}}$$ " } ], [ { "aoVal": "B", "content": "$${{1000}^{2}}$$ " } ], [ { "aoVal": "C", "content": "$${{999}^{2}}$$ " } ], [ { "aoVal": "D", "content": "$${{998}^{2}}$$ " } ], [ { "aoVal": "E", "content": "以上都不正确 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "中项定理:等差数列的和等于中项的平方. 中项:$$\\left( 1+2021 \\right)\\div 2=1011$$, 所以答案为$$1011\\times 1011$$,即选择$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
612
18c91d273c6743c58bc10903476ceb82
[ "2014年IMAS小学高年级竞赛第二轮检测试题第3题4分" ]
2
single_choice
一个两位数是完全平方数,它的两个数字之和也恰好是完全平方数,请问所有这样的完全平方数之和为多少?
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$110$$ " } ], [ { "aoVal": "C", "content": "$$117$$ " } ], [ { "aoVal": "D", "content": "$$181$$ " } ], [ { "aoVal": "E", "content": "$$271$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->平方数的尾数特征" ]
[ "如果一个两位数是完全平方数,那么这个两位数的所有可能值是: $$16$$,$$25$$,$$36$$,$$49$$,$$64$$,$$81$$, 而$$3+6={{3}^{2}}$$,$$8+1={{3}^{2}}$$, 所以符合条件的两位数为$$36$$,$$81$$, $$36+81=117$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2781
acb1695a28704072a8e6265f4414e1ce
[ "2017年全国亚太杯四年级竞赛初赛第10题" ]
2
single_choice
算式$$42+402+4002+\cdots \cdots +\underbrace{400\cdots 002}_{5个0}$$ 的计算结果是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$4444452$$ " } ], [ { "aoVal": "B", "content": "$$4444450$$ " } ], [ { "aoVal": "C", "content": "$$4444450$$ " } ], [ { "aoVal": "D", "content": "$$4444428$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "根据位值原理,原式$$=4\\times 1111110+2\\times 6=4444452$$ . " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2470
5d83a03f98274306a6f64eaa3afe01f3
[ "2018年第6届湖北长江杯五年级竞赛初赛A卷第3题3分" ]
1
single_choice
$$0.00000025\times 0.000004$$的结果的小数部分有个$$0$$.
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$13$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数乘除->小数乘法运算" ]
[ "因为$$0.\\underbrace{00000025}_{8位}\\times 0.\\underbrace{000004}_{6位}=0.\\underbrace{000000000001}_{12位}$$, 故小数部分有$$11$$个$$0$$, 故答案是:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
290
ff8080814518d5240145192574fe04ee
[ "2014年全国迎春杯五年级竞赛复赛第8题" ]
2
single_choice
将一个数加上或减去或乘或除以一个一位数($$0$$不是一位数)视为一次操作,比如$$53$$可以通过加$$3$$,除以$$7$$,除以$$8$$三次操作变成$$1$$.那么$$2014$$至少经过(~~~~~~~ )次操作可变成$$1$$.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "$$2014$$要变成$$1$$就需要除以一个数,而除数只能是一位数,那么这个除数显然是越大越好.第一次操作$$2014+2=2016$$;第二次操作$$2016\\div9=224$$;第三次操作$$224\\div 8=28$$;第四次操作$$28\\div 7=4$$;第五次操作$$4\\div 4=1$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2676
cc7c2cdb421841b9bce34b35eb52d5b7
[ "2017年四川六年级竞赛排位赛第16题2分" ]
1
single_choice
把$$\frac{3}{8}$$的分子加上$$3$$,要使分数的大小不变,分母应该加上.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "$$3+3=6$$,$$6\\div 3=2$$,分子扩大到原来的$$2$$倍,要使分数大小不变,分母也要扩大到原来的$$2$$倍,即$$8\\times 2=16$$,$$16-8=8$$,分母应加上$$8$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3167
6fd8245d4c2447c8a9ddc05f98c467f8
[ "2020年长江杯五年级竞赛复赛B卷第3题5分" ]
2
single_choice
一个盒子里共有$$96$$颗雨花石,明明从这个盒子里把雨花石全部拿出来,每次拿的颗数要相等.如果不能一次全部拿出,也不能一颗一颗地拿出,那么,明明共有种不同的拿法.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "不能一颗一颗地拿,不能一次全拿出去,而且每次拿的颗数要相等,最后全部拿完,也就是说次数$$\\times $$每次拿的颗数$$=96$$.$$96=1\\times 96$$,$$96=2\\times 48$$,$$96=3\\times 32$$,$$96=4\\times 24$$,$$96=6\\times 16$$,$$96=8\\times 12$$,那么每次拿的颗数可以是$$2$$、$$48$$、$$3$$、$$32$$、$$4$$、$$24$$、$$6$$、$$16$$、$$8$$、$$12$$,一共有$$10$$种拿法. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1773
77ed427eb6304936bd90e4b228d950ea
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第4题5分" ]
1
single_choice
毛毛用围棋子摆成一个三层空心方阵,最内一层每边有围棋子$$8$$个.毛毛摆这个方阵共用围棋子个.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$108$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$132$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$1$$、这是一道关于方阵的问题,考查的是方阵的知识; $$2$$、由题意知,用围棋子摆成一个三层空心方阵,最内一层每边有围棋子$$8$$个,由于相邻两层每边相差$$2$$个,相邻两层相差$$8$$个,求出最内一层后依次加$$8$$即可。 根据题意分析可知:最内一层棋子个数为:$$\\left( 8-1 \\right)\\times 4=7\\times 4=28$$(个), 第二层棋子有:$$28+8=36$$(个), 第三层棋子有:$$36+8=44$$(个), 所以三层一共有$$28+36+44=108$$(个). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2210
756967750313406c8e1d745b73fbd9b4
[ "2015年第11届全国新希望杯小学高年级六年级竞赛复赛第2题" ]
1
single_choice
小明的手表每小时慢$$3$$分钟,如果他在早晨$$6$$:$$30$$将手表与准确时间对准,那么当天小明手表显示$$12$$:$$50$$的时候,准确时间是(~ ).
[ [ { "aoVal": "A", "content": "$$13$$:$$00$$ " } ], [ { "aoVal": "B", "content": "$$13$$:$$09$$ " } ], [ { "aoVal": "C", "content": "$$13$$:$$10$$ " } ], [ { "aoVal": "D", "content": "$$13$$:$$15$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->坏钟问题" ]
[ "手表走$$57$$分钟,正常钟走$$60$$分钟,现在手表走$$6$$小时$$20$$分钟,为$$380$$分钟,那么正常钟应该走$$380\\div 57\\times 60=400$$.为$$6$$小时$$40$$分,此时为$$13$$:$$10$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
312
ccdcc8cc15134479a41511e22d245f16
[ "2021年新希望杯三年级竞赛初赛第13题5分" ]
2
single_choice
【2021三年级卷第$$13$$题】五盘水果排成一排.苹果和橘子相邻,橘子和草莓相邻,苹果和香蕉不相邻,香蕉和芒果不相邻.那么一定和芒果相邻的是.
[ [ { "aoVal": "A", "content": "只有苹果 " } ], [ { "aoVal": "B", "content": "只有橘子 " } ], [ { "aoVal": "C", "content": "只有草莓 " } ], [ { "aoVal": "D", "content": "香蕉和草莓 " } ], [ { "aoVal": "E", "content": "橘子和香蕉 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,苹果和草莓都与橘子相邻, 所以可以确定橘子在苹果和草莓的中间, 假设苹果、橘子、草莓这样排列, 则香蕉在草莓的右边,芒果在苹果的左边, 即苹果与芒果一定相邻, 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2390
1803f467a1164d2b9a4b87d311071aba
[ "2017年第8届广东广州羊排赛六年级竞赛第4题1分" ]
1
single_choice
省略下列各数的最后一位数得到的近似数与$$9.24$$大小不同的是.
[ [ { "aoVal": "A", "content": "$$9.237$$ " } ], [ { "aoVal": "B", "content": "$$9.2395$$ " } ], [ { "aoVal": "C", "content": "$$9.2449$$ " } ], [ { "aoVal": "D", "content": "$$9.244$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数基础->取近似值" ]
[ "$$9.237\\approx 9.24$$,$$9.2395\\approx 9.240$$,$$9.2449\\approx 9.245$$,$$9.244\\approx 9.24$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1229
7e14a4a993614e98b354003f0e6b66e4
[ "2016年创新杯五年级竞赛训练题(二)第2题" ]
1
single_choice
在$$198896$$后面添一长串数,组成一个$$2016$$位数,添加的方法是:将末位数字乘$$7$$,取积的个位数字加在末位的后面,例如:$$198896$$的末位数字是$$6$$,$$6\times 7=42$$,在$$6$$后面添加数字$$2$$得$$1988962$$,$$2\times 7=14$$,在$$2$$后面添加$$4$$得$$19889624$$,继续按此规则添加下去组成一个$$2016$$位的数,这个$$2016$$位的数的尾数是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "按照题目的要求将这个数向后写$$10$$位,得到$$1988962486248624\\cdots $$,可以看到从第$$6$$位开始每$$4$$个数字一循环,与$$\\left( 2016-5 \\right)\\div 4=502$$(组)$$\\cdots 3$$(个),所以第$$2016$$位的数字为$$4$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2072
cff12befed3c4eb3b745eac7ffc55be5
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第5题5分" ]
1
single_choice
有一串数:$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$34$$,$$55$$,$$89$$$$\cdots \cdots $$,其中第一个数$$2$$,第二个数$$3$$,从第三个数起,每个数恰好是前两个数的和.那么在这串数中,第$$2019$$个数被$$3$$除后所得余数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "拓展思维->能力->归纳总结->归纳推理" ]
[ "将这一串数写成除以$$3$$的余数,则为:$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0$$,$$1$$,$$1$$,$$2$$,$$0$$,$$2\\cdots \\cdots $$ 所以重复的为:``$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0$$,$$1$$,$$1$$'', 故周期为$$8$$.$$2019\\div 8=252$$(组)$$\\cdots \\cdots 3$$(个),则答案为$$2$$,故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1153
827c4c38a5534aaca9136918392fa7d1
[ "2003年第1届创新杯六年级竞赛复赛第9题" ]
2
single_choice
四个同学进行计算比赛,比赛内容是:在$$9$$、$$10$$、$$11$$、$$\cdots \cdots $$、$$67$$、$$68$$这$$60$$个自然数的相邻两数之间任意添加符号``$$+$$''或``$$-$$'',然后进行计算.四个同学得到的结果分别是$$2274$$、$$2003$$、$$2300$$、$$2320$$,老师看后指出.这四个结果中只有一个是正确的.这个正确的结果是.
[ [ { "aoVal": "A", "content": "$$2274$$ " } ], [ { "aoVal": "B", "content": "$$2003$$ " } ], [ { "aoVal": "C", "content": "$$2300$$ " } ], [ { "aoVal": "D", "content": "$$2320$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由于$$9+10+11+\\cdots 68=2310$$,由此可知$$2320$$是错误的.由于$$2274$$、$$2003$$、$$2300$$都小于小于$$2310$$,所以减的数较多,由于减一个数,总和里面就要少这个数的$$2$$倍,如减$$2$$,则是$$2310-2\\times 2=2306$$,所以只要是小于$$2310$$.据此分析即 $$9+10+11+\\cdots 68=2310$$,$$2320\\textgreater2310$$,故$$\\text{D}$$错误; $$\\left( 2310-2274 \\right)\\div 2=18$$,$$18\\div 2=9$$,所以在$$9$$前是减号即可,符合题意. $$\\left( 2310-2003 \\right)=307\\textgreater68$$,错误 $$\\left( 2310-2000 \\right)\\div 2=155\\textgreater68$$,错误. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1288
54dc63565f814fb3a0489aa7127b94e8
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
一只大熊猫从$$A$$地往$$B$$地运送竹子,它每次可以运送$$50$$根,但是它从$$A$$地走到$$B$$地和从$$B$$地返回$$A$$地都要吃$$5$$根,$$A$$地现在有$$200$$根竹子,那么大熊猫最多可以运到$$B$$地( )根。
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$155$$ " } ], [ { "aoVal": "C", "content": "$$160$$ " } ], [ { "aoVal": "D", "content": "$$165$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->乘除法应用->乘法应用(顺口溜)" ]
[ "解:由题意,运四次,去四次回三次,吃掉了$$5\\times (4+3)=35$$根,则最多可以运到$$B$$地$$200-35=165$$根。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1527
5684aa516e9645cbaece3c8dfb613e56
[ "2019年第23届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第9题5分" ]
1
single_choice
有一个数,它的一半的一半是$$4$$,这个数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "一个数的一半的一半是$$4$$,则这个数的一半为$$4\\times 2=8$$,则这个数为$$8\\times 2=16$$,故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2955
9bf8b4e1455b409f8de985f1c58c7e4c
[ "2018年湖北武汉新希望杯六年级竞赛训练题(四)第6题" ]
3
single_choice
从$$0$$、$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$这十个数字中选出九个数字,组成一个两位数、一个三位数和一个四位数,使这三个数的和等于$$2017$$,那么未被选中的数字是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "$$2017$$除以$$9$$余$$1$$,$$0+1+2+3+\\cdots +9=45$$,$$45$$是$$9$$的倍数,$$9-1=8$$,所以未被选中的数字是$$8$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2984
f74ac5fe3f6e45e8b00e523a5166b3a9
[ "2015年第13届全国创新杯五年级竞赛复赛第1题" ]
1
single_choice
计算:$$2015\times 2015-2014\times 2016=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2014$$ " } ], [ { "aoVal": "C", "content": "$$2015$$ " } ], [ { "aoVal": "D", "content": "$$2016$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->公式类运算->平方差公式->平方差公式逆向应用" ]
[ "$${{2015}^{2}}-(2015-1)\\times (2015+1)={{2015}^{2}}-{{2015}^{2}}+1=1$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2207
3eb4bc2a2825416c9df8fb1c8255d101
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
1
single_choice
一列火车通过一座长$$320$$米的桥用了$$105$$秒,当它通过$$860$$米的隧道时,速度是过桥速度的$$2$$倍,结果用了$$120$$秒,火车通过大桥时的速度是每秒米;火车的车身长度为米.
[ [ { "aoVal": "A", "content": "$$2$$;$$100$$ " } ], [ { "aoVal": "B", "content": "$$4$$;$$100$$ " } ], [ { "aoVal": "C", "content": "$$8$$;$$100$$ " } ], [ { "aoVal": "D", "content": "$$8$$;$$200$$ " } ] ]
[ "课内体系->知识点->应用题->行程应用题->火车过桥完全过桥", "拓展思维->思想->对应思想" ]
[ "若通过$$860$$米隧道时速度不变则需要$$120\\times 2=240$$(秒),火车过桥速度:$$\\left( 860-320 \\right)\\div \\left( 240-105 \\right)=4$$(米/秒):火车车身长:$$105\\times 4-320=100$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3224
6745abad3b244368bc11cb40689947cb
[ "2014年第2届广东广州羊排赛六年级竞赛第4题1分" ]
1
single_choice
袋子中有$$4$$个红球,$$6$$个黄球,$$8$$个蓝球和$$3$$个绿球.从中随机拿出一个,是黄球的概率是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2}{7}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3}{5}$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "共有$$4+6+8+3=21$$(个)球,拿到黄球概率为$$6\\div 21=\\frac{2}{7}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1006
1c065f5617f046ec8c3cf057e06cd16f
[ "2017年第17届全国中环杯三年级竞赛初赛第5题" ]
2
single_choice
若$$100$$个数的平均数为$$1$$,增加一个数$$102$$之后,这$$101$$个数的平均数为.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->加权平均数" ]
[ "$$1\\times 100+102\\div( 100+1)=2$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3177
827a73fcd55a469f9f50123b8d10138a
[ "2017年全国华杯赛小学高年级竞赛初赛模拟" ]
1
single_choice
六个小朋友排成一排照相,其中有四个男生和两个女生,两个女生必须站在一起而且不能站在边上,则一共有种不同的排列方式.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$144$$ " } ], [ { "aoVal": "D", "content": "$$240$$ " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "先捆绑,再插空,$A_{2}^{\\^{2}}\\times C_{3}^{1}\\times A_{4}^{4}=144$种. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2138
c716332e8f504c90897ed34a6bdb91f4
[ "2016年第14届全国创新杯五年级竞赛复赛第8题", "2011年全国创新杯五年级竞赛第8题5分" ]
3
single_choice
甲、乙两车分别从$$A$$、$$B$$两地同时相向开出,$$4$$小时后两车相遇,然后各自继续行驶$$3$$小时,此时甲车距$$B$$地$$10$$千米,乙车距$$A$$地$$80$$千米,那么$$AB$$两地相距(~ )千米.
[ [ { "aoVal": "A", "content": "$$350$$ " } ], [ { "aoVal": "B", "content": "$$360$$ " } ], [ { "aoVal": "C", "content": "$$370$$ " } ], [ { "aoVal": "D", "content": "$$380$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->两人相遇与追及问题->相遇问题->同时出发相向而行" ]
[ "$$4$$小时甲乙共行了$$AB$$,$$3$$小时甲乙共行了$$\\frac{3}{4}AB$$,$$(10+80)\\div \\left( 1-\\frac{3}{4} \\right)=360$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
191
50ab989a58b044af8c05bea54c107139
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第6题3分" ]
2
single_choice
一副扑克牌去掉大小王共有$$52$$张,共有$$13$$种点数,最少要抽取张牌,方能保证其中至少有$$2$$张牌有相同的点数.
[ [ { "aoVal": "A", "content": "$$13$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "扑克牌的点数有$$1$ $13$$点,所以要保证$$2$$张牌有相同的点数.最坏的情况就是抽到$$1$ $13$$,这$$13$$张牌,再来一张,就一定和之前的$$13$$张相同,所以是$$13+1=14$$(张). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2454
19074618ec8d40a5ada6edb7ddb5965e
[ "2019年福建泉州鲤城区泉州师范附属小学三年级竞赛模拟第2题2分", "2019年广西防城港小升初模拟第13题", "2015~2016学年内蒙古乌兰察布丰镇市丰镇实验小学四年级上学期期中第25题5分", "2019年广西防城港小升初模拟第12题" ]
1
single_choice
计算:$$9+99+999+9999+99999=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$111105$$ " } ], [ { "aoVal": "B", "content": "$$1111105$$ " } ], [ { "aoVal": "C", "content": "$$111104$$ " } ], [ { "aoVal": "D", "content": "$$111005$$ " } ] ]
[ "课内体系->能力->运算求解", "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之凑整法" ]
[ "根据题意,把$$9$$、$$99$$、$$999$$、$$9999$$、$$99999$$看作$$\\left(10-1\\right)$$、$$\\left(100-1\\right)$$、$$\\left(1000-1\\right)$$、$$\\left(10000-1\\right)$$、$$\\left(100000-1\\right)$$,再进行计算. $$9+99+999+9999+99999$$ $$=\\left(10-1\\right)+\\left(100-1\\right)+\\left(1000-1\\right)+\\left(10000-1\\right)+\\left(100000-1\\right)$$ $$=\\left(100000+10000+1000+100+10\\right)-\\left(1+1+1+1+1\\right)$$ $$=111110-5$$ $$=111105$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2344
0203e0f25745468e9e0547dc86ed62fc
[ "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
$$2$$个樱桃的价钱与$$3$$个苹果的价钱一样,但是一个苹果的大小却是一个樱桃的$$12$$倍,如果妈妈用买$$1$$箱樱桃的钱买同样大小箱子的苹果,能买( )箱。
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$27$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->等量代换" ]
[ "$$12$$个樱桃的钱可以买$$18$$个苹果,大小是$$1$$个苹果的大小,所以$$1$$个苹果大小的樱桃可以买到$$18$$个苹果,所以$$1$$箱樱桃的钱可以买$$18$$箱苹果。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
991
3c7cd9341ad34ec397f5a0bb02c3faf2
[ "2020年长江杯六年级竞赛复赛A卷第4题5分" ]
2
single_choice
``双$$11$$''前夕,某天猫店购进一批商品,按期望获得$$60 \%$$的利润定价,在卖出$$70 \%$$的商品后,进行``双$$11$$''促销,该天猫店决定按定价折扣销售,货销完后,所获得的全部利润只是原来期望利润的$$80 \%$$,该店``双$$11$$''销售剩余部分商品时打的折扣是.
[ [ { "aoVal": "A", "content": "六折 " } ], [ { "aoVal": "B", "content": "七折 " } ], [ { "aoVal": "C", "content": "七五折 " } ], [ { "aoVal": "D", "content": "八折 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "假设商品的成本是``$$1$$'',原来希望获得利润$$60 \\%$$,现出售$$70 \\%$$的商品已获得利润$$60 \\%\\times 70 \\%=0.42$$. 剩下的$$30 \\%$$商品将要获得利润:$$0.6\\times 80 \\%-0.42=0.06$$,因此这剩下$$30 \\%$$的商品的售价是:$$1\\times 30 \\%+0.06=0.36$$(元)原来定价是:$$1\\times 30 \\%\\times (1+60 \\%)=0.48$$,$$(0.36\\div 0.48)\\times 100 \\%=75 \\%$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1320
1fe9fabb0e7945b5b03e0f1933d9171b
[ "2016年新希望杯六年级竞赛训练题(六)第1题" ]
1
single_choice
李家村李家兄弟合作在门口挖一口井,李凡单独挖需要$$10$$天才能挖成,李超单独挖需要$$15$$天才能挖完.兄弟两人同时挖需要天.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$15$$ " } ] ]
[ "知识标签->课内知识点->数与运算->加法->分数加法->异分母分数加法" ]
[ "李凡一天挖$$\\frac{1}{10}$$,李超一天挖$$\\frac{1}{30}$$,兄弟合挖一天能完成$$\\frac{1}{30}+\\frac{1}{10}=\\frac{2}{15}$$,需要$$1\\div \\frac{2}{15}=7.5$$天. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
936
fca6163f959a461c9246663834221a8e
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第3题5分" ]
0
single_choice
妈妈在家开着灯做饭,突然停电了.爸爸回家按了$$4$$下开关,小林回家又按了$$3$$下开关.当来电的时候,灯泡.
[ [ { "aoVal": "A", "content": "亮 " } ], [ { "aoVal": "B", "content": "不亮 " } ], [ { "aoVal": "C", "content": "不能确定 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "开单数次数,改变原来灯的状态,开双数次,不改变原来的状态.总共开的次数为:$$4+3=7$$(次), 所以改变了原来的状态,原来是开着的, 所以现在不亮. 故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1467
6cc178e6ed1e496db9ac31a4991db464
[ "2012年全国美国数学大联盟杯小学高年级竞赛初赛第30题", "2013年美国数学大联盟杯小学高年级竞赛初赛第30题5分" ]
2
single_choice
花园里栽种着雏菊和玫瑰两种花共计$$66$$朵,其中每出现$$5$$朵雏菊便另有$$6$$朵玫瑰.问:花园里有玫瑰(~~ )朵?
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$22$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "$$66\\div(6+5)=6$$, 花园里有玫瑰$$6\\times6=36$$朵. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
964
d980a5804d734ed4929bf4be62e0b37c
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第4题5分" ]
1
single_choice
在$$\square $$里填上适当的数字,使得七位数$$\overline{2019\square \square \square }$$能同时被$$9$$、$$25$$、$$8$$整除,符合条件的七位数的数字和是.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$27$$ " } ], [ { "aoVal": "D", "content": "$$36$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "要使这个数能同时被$$9$$,$$25$$,$$8$$整除, 那么这个数一定是$$9$$,$$25$$,$$8$$的公倍数, 首先算出$$9$$,$$25$$,$$8$$的最小公倍数是$$1800$$, 然后可以使用试除法:$$2019999\\div 1800=1122\\cdots \\cdots 399$$, 所以这个七位数为$$2019999-399=2019600$$, 数字和是$$2+0+1+9+6+0+0=18$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1594
faef5314ba114e9cbbfd04296c7a0b10
[ "2019年第7届湖北长江杯五年级竞赛复赛A卷第6题3分" ]
1
single_choice
每次考试试卷总分是$$120$$分,小红四次考试的平均成绩是$$105$$分.为了使平均成绩尽快达到$$110$$分,她至少需要再考次.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "根据题意分析可知,总分数$$\\div $$考的次数$$=$$平均分数,;可设他至少要考$$x$$次才能尽快达到$$110$$分以上,那么 小红的总分数为:$$120x+105\\times 4$$,小红考试的次数为:$$x+4$$,小红平均分应为$$\\geqslant $$$$100$$,根据公式列方程解答即可. 设小红至少要考$$x$$次才能尽快达到$$110$$分以上, $$\\left( 120x+105\\times 4 \\right)$$$$\\div \\left( x+4 \\right)\\geqslant 110$$, $$120x+420\\geqslant 110x+440$$, $$120x-110x\\geqslant 440-420$$, $$10x\\geqslant 20$$, $$x\\geqslant 2$$. 即再考$$2$$次满分平均分可达到$$110$$分以上. 故选答案$$B$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1697
7bb14cd8374d4d38adf6550647aba206
[ "2017年全国美国数学大联盟杯小学高年级六年级竞赛第17题5分" ]
1
single_choice
(这是一道挑战题!)There are only white cars and black cars.$$If$$ the ratio of white cars to black cars is $$3$$ to $$8$$ and there are a total of $$242$$ cars, how many black cars and white cars are there?
[ [ { "aoVal": "A", "content": "$$66$$ " } ], [ { "aoVal": "B", "content": "$$110$$ " } ], [ { "aoVal": "C", "content": "$$129$$ " } ], [ { "aoVal": "D", "content": "$$176$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "停车场只有黑白两种车,白车与黑车的比率是$$3:8$$,黑白车的总数是$$242$$辆.请问黑车比白车多多少辆? ratio比率; a total of 总数; more..than 比..多. 白车数量:$$\\frac{3}{11}\\times 242=66$$辆,黑车数量:$$\\frac{8}{11}\\times 242=176$$辆.黑车比白车多$$176-66=110$$辆. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
937
d39b76e2ce0948bdb57dd64a25524865
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第2题3分" ]
1
single_choice
已知一个自然数有$$12$$个不同的因数,那么这个数最小是.
[ [ { "aoVal": "A", "content": "$$48$$ " } ], [ { "aoVal": "B", "content": "$$60$$ " } ], [ { "aoVal": "C", "content": "$$36$$ " } ], [ { "aoVal": "D", "content": "$$64$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "∵$$12=(2+1)\\times (1+1)\\times (1+1)$$, ∴最小是$$4\\times3\\times5=60$$, $$12$$个因数为:$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$10$$、$$15$$、$$12$$、$$20$$、$$30$$、$$60$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
49
080ac401862e49d688247f52722a94dd
[ "2008年四年级竞赛创新杯" ]
2
single_choice
在下面的数字之间添上四个加号``+'',不同的填法所算出的结果中最小值是( ). 1( )2( )3( )4( )5( )6( )7( )8
[ [ { "aoVal": "A", "content": "117 " } ], [ { "aoVal": "B", "content": "118 " } ], [ { "aoVal": "C", "content": "119 " } ], [ { "aoVal": "D", "content": "120 " } ] ]
[ "拓展思维->拓展思维->组合模块->数字谜->竖式数字谜->竖式数字谜的最值" ]
[ "在数串(列)1,2,3,4,5,6,7,8之间任意添上四个``+''号,可将它分成5段,因而可分成5个整数求和,所以有以下三种情况: ⑴1个四位数和4个一位数的和,此时和的最小值为$$1234+5+6+7+8=1260$$; ⑵1个三位数,1个两位数与3个一位数的和,此时最小值为$$123+45+6+7+8=189$$; ⑶3个两位数与2个一位数的和,此时最小值为$$12+34+56+7+8=117$$. 因此和的最小值是117 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2736
68c936b71c0a431fa4da7b513ce8e70f
[ "2016年第28届广东广州五羊杯小学高年级竞赛初赛第3题3分" ]
1
single_choice
在$$1:9000000$$地图上,$$A$$、$$B$$两地相距$$2$$厘米,早上八点,一辆车从$$A$$地以$$50\text{km}/\text{h}$$的速度开往$$B$$,那么在时汽车到达$$B$$地.
[ [ { "aoVal": "A", "content": "$$11$$点 " } ], [ { "aoVal": "B", "content": "$$11$$点$$30$$分 " } ], [ { "aoVal": "C", "content": "$$11$$点$$36$$分 " } ], [ { "aoVal": "D", "content": "$$11$$点$$45$$分 " } ] ]
[ "拓展思维->拓展思维->计算模块->比和比例->比例->比例尺" ]
[ "$$AB$$距离为$$2\\times 9000000=18000000\\text{cm=180}$$千米, 则需要$$180\\div 50=3.6\\text{h}=3\\text{h}36\\min $$, 则$$8:00+3:36=11:36$$到达. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
413
f703934550544aefa90fb1462d5244c6
[ "2021年新希望杯五年级竞赛初赛第14题5分" ]
2
single_choice
在比武大会上,熊猫阿宝和金猴两人进行比试,最多七局,谁先获得四局胜利,谁就是胜者,那么一共有~\uline{~~~~~~~~~~}~种可能的比试情况.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$70$$ " } ], [ { "aoVal": "C", "content": "$$38$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ], [ { "aoVal": "E", "content": "$$62$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "假设阿宝胜,有发以下几种获胜情况(用``$$+$$''表示胜``$$-$$''表示,负) ①连胜四局$$1$$种, $$++++$$, ②四胜一负$$4$$种, $$-++++$$;$$+-+++$$;$$++-++$$;$$+++-+$$ ③四胜两负$$10$$种, $$-\\/-++++$$;$$+-\\/-+++$$;$$++-\\/-++$$;$$+++-\\/-+$$;$$-+-+++$$;$$-++-++$$;$$-+++-+$$;$$+-+-++$$;$$+-++-+$$;$$++-+-+$$. ④四胜三负, (1)甲负三局连负$$4$$种, $$-\\/-\\/-++++$$;$$+-\\/-\\/-+++$$;$$++-\\/-\\/-++$$;$$+++-\\/-\\/-+$$. (2)甲连负两局$$12$$种, $$-\\/-+-+++$$;$$-\\/-++-++$$;$$-\\/-+++-+$$,$$+-\\/-+-++$$;$$+-\\/-++-+$$;$$++-\\/-+-+$$;$$-+-\\/-+++$$;$$-++-\\/-++$$;$$-+++-\\/-+$$;$$+-+-\\/-++$$;$$+-++-\\/-+$$;$$++-+-\\/-+$$. (3)甲负三局全都分开$$4$$种, $$-+-+-++$$,$$-+-++-+$$;$$-++-+-+$$;$$+-+-+-+$$. $$1+4+10+4+12+4=35$$(种)$$35+35=70$$种, 当考虑金猴的情况时与上述一致也为$$35$$种,因此一共$$35+35=70$$种可能. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2968
932b947ce1fa4b0e9ac790ec811ed31d
[ "2017年全国小升初八中入学备考课程", "2008年全国华杯赛竞赛复赛第6题" ]
1
single_choice
对于大于零的分数,有如下$$4$$个结论: ①两个真分数的和是真分数; ②两个真分数的积是真分数; ③一个真分数与一个假分数的和是一个假分数; ④一个真分数与一个假分数的积是一个假分数. 其中正确的有(~~~ )个.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数运算->分数加减" ]
[ "对于这种类型的题目,我们可以采取``反驳''的方法来做,找出每个不成立的案例来,若找不到则正确.①反例:$$\\frac{1}{2}+\\frac{1}{2}=1$$,$$\\frac{4}{5}+\\frac{3}{5}=\\frac{7}{5}$$;④反例:$$\\frac{1}{2}\\times \\frac{3}{2}=\\frac{3}{4}$$,$$\\frac{1}{5}\\times \\frac{8}{5}=\\frac{8}{25}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3221
a70973afeffe4f30978d8c5952978f70
[ "2018年第8届北京学而思综合能力诊断二年级竞赛年度教学质量第10题" ]
1
single_choice
五一到了,花花想要出去旅游,她有$$2$$顶帽子、$$3$$条项链、$$5$$种头花、$$2$$双鞋、$$3$$条白色裙子、$$4$$条粉色裙子、$$1$$条蓝色裙子,每类物品中各选一样进行搭配.那么,一共有种不同的搭配方法.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$460$$ " } ], [ { "aoVal": "C", "content": "$$480$$ " } ], [ { "aoVal": "D", "content": "$$720$$ " } ] ]
[ "课内体系->思想->对应思想", "拓展思维->能力->运算求解" ]
[ "$$2\\times 2\\times 3=12$$(种). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1826
929be6aa07964550b2b91b1a9bf72b40
[ "2017年全国小升初八中入学备考课程", "2014年全国华杯赛小学高年级竞赛初赛B卷第5题" ]
2
single_choice
甲乙丙丁四个人今年的年龄之和是$$72$$岁.几年前(至少一年)甲是$$22$$岁时,乙是$$16$$岁.又知道,当甲是$$19$$岁的时候,丙的年龄是丁的$$3$$倍(此时丁至少$$1$$岁).如果甲乙丙丁四个人的年龄互不相同,那么今年甲的年龄可以有种情况.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "甲乙的年龄差是$$22-16=6$$岁;当甲$$19$$岁时, $$13$$岁;至少一年前甲$$22$$岁,所以当甲$$19$$岁的时候,此时至少是$$4$$年前的年龄,那么甲今年至少是$$23$$岁;甲$$19$$岁时,丙的年龄是丁的$$3$$倍,假设丁为$$1$$岁,丙为$$3$$岁,此时四人的年龄和至少是$$19+13+1+3=36$$岁;且甲今年的年龄至多为$$19+\\left(72-36 \\right)\\div 4=28$$;所以甲今年的年龄可能是$$23$$,$$24$$,$$25$$,$$26$$,$$27$$,$$28$$;共$$6$$种,所以选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3002
bc126778752e4148b3f54f30ab612784
[ "2014年IMAS小学中年级竞赛第二轮检测试题第3题4分" ]
2
single_choice
请问$$32$$个$$1000$$、$$19$$个$$100$$、$$29$$个$$10$$之总和等于多少?
[ [ { "aoVal": "A", "content": "$$3219290$$ " } ], [ { "aoVal": "B", "content": "$$321929$$ " } ], [ { "aoVal": "C", "content": "$$342190$$ " } ], [ { "aoVal": "D", "content": "$$34190$$ " } ], [ { "aoVal": "E", "content": "$$32129$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->四则混合运算" ]
[ "$$32\\times 1000+19\\times 100+29\\times 10=34190$$,答案选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1008
37e3ad8702034f1489c3d5cf5ec6a4ea
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(四)" ]
1
single_choice
~春节中甲、乙两人出售同一种产品,甲按$$20 \% $$的利润定价,一共售出$$15$$个,乙按$$15 \% $$的利润定价,一共售出$$24$$个甲、乙获利润比较结论为(~ ).
[ [ { "aoVal": "A", "content": "甲获利润较多 " } ], [ { "aoVal": "B", "content": "乙获利润较多 " } ], [ { "aoVal": "C", "content": "两人利润相同 " } ], [ { "aoVal": "D", "content": "无法比较谁多 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->已知成本售价求利润" ]
[ "设原成本为$$1$$元/个,甲获利$$15\\times 20 \\% =3$$(元),乙获利$$0.15\\times 24=3.6$$(元).选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
253
884bbed70af843ae81f91f75ea0c10a7
[ "1989年华杯赛六年级竞赛初赛" ]
3
single_choice
一副扑克牌有四种花色,每种花色有$$13$$张,此外还有两张王牌,从中任意抽牌。那么,最少要抽( )张牌,才能保证有$$4$$张牌是同一花色。
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "如果在最不利的情况下能完成目标,则保证在任何情况下都能完成。最不利的情况是:抽的前$$12$$张是$$4$$种花色各$$3$$张,再抽两张王牌,这时抽第$$15$$张,无论是哪种花色,都能保证凑成$$4$$张牌同一花色。所以至少要抽$$15$$张牌,才能保证有四张牌是同一花色的。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1882
b757297e8faf4bf5a57ee4a6032b1578
[ "2011年世界少年奥林匹克数学竞赛六年级竞赛初赛第9题5分" ]
1
single_choice
小宇参加奥数竞赛抢答赛,抢答试题共有$$10$$道,每答对一题得$$8$$分,答错一题倒扣$$5$$分.小宇最终得$$41$$分,他做对~\uline{~~~~~~~~~~}~题.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$37$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ] ]
[ "知识标签->数学思想->对应思想" ]
[ "本题是鸡兔同笼问题的变式应用. 解决此类问题一般都用假设法,做对一题得$$8$$分,相当于``兔'',做错一题倒扣$$5$$分,相当于``鸡'',通过适当的替换进行解答. 假设$$10$$道题全部做对,则得分为$$10\\times 8=80$$(分),而答错一题比答对一题少得$$8+5=13$$(分),从题目中可以求出小宇一共少得$$80-41=39$$(分),由此可以求出他做错了$$39\\div 13=3$$(道). $$(10\\times 8-41)\\div (48+5)$$ $$=39\\div 13$$ $$=3$$(道), $$10-3=7$$(道). 故答案为:$$7$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2659
da44f96b5ab14700a99d0d0714da8b72
[ "2009年五年级竞赛创新杯" ]
0
single_choice
一列有明显规律的数$$5$$,$$8$$,$$11$$,$$14$$,$$17$$,$$\cdots$$第( )个数为$$2009$$。
[ [ { "aoVal": "A", "content": "$$667$$ " } ], [ { "aoVal": "B", "content": "$$668$$ " } ], [ { "aoVal": "C", "content": "$$669$$ " } ], [ { "aoVal": "D", "content": "$$700$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求项数" ]
[ "项数$$=\\left( 2009-5 \\right)\\div 3+1=669$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1353
ff21ec4e6de94a59b95fb50cee8a3813
[ "2018年第12届北京学而思综合能力诊断小学高年级五年级竞赛第6题" ]
2
single_choice
取经路上,师徒四人被妖精重重包围.孙悟空一个人,预计$$30$$分钟可以消灭所有妖精,如果猪八戒帮助他,可以比预计提前$$6$$分钟消灭所有妖精;如果猪八戒和沙和尚一起帮助他,可以比预计提前$$10$$分钟消灭所有妖精.现在猪八戒要保护师傅,只有沙和尚帮助孙悟空,那么需要分钟才能消灭所有妖精.
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$22$$ " } ], [ { "aoVal": "E", "content": "$$24$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想", "Overseas Competition->知识点->应用题模块->分百应用题->认识单位1" ]
[ "孙悟空打妖精的工作效率是$$\\frac{1}{30}$$; 猪八戒与孙悟空合作打妖精的工作效率是$$\\frac{1}{24}$$, 则有猪八戒打妖精的工作效率是$$\\frac{1}{24}-\\frac{1}{30}=\\frac{1}{120}$$; 沙和尚、猪八戒与孙悟空合作打妖精的工作效率是$$\\frac{1}{20}$$, 所以沙和尚和孙悟空合作打妖精的工作效率为$$\\frac{1}{20}-\\frac{1}{120}=\\frac{1}{24}$$, 需$$1\\div \\frac{1}{24}=24$$分钟. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1662
accd290176bf443db05ced82b2b08f5a
[ "2017年河南郑州联合杯竞赛第7题4分" ]
1
single_choice
小明买了一本$$513$$页的小说,数字$$1$$在页码中出现了次.
[ [ { "aoVal": "A", "content": "$$206$$ " } ], [ { "aoVal": "B", "content": "$$203$$ " } ], [ { "aoVal": "C", "content": "$$153$$ " } ], [ { "aoVal": "D", "content": "$$211$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->页码问题->数码综合问题" ]
[ "页码问题;$$1\\sim 99$$中数字``$$1$$''出现了$$20$$次,$$100\\sim 199$$中数字``$$1$$''出现了$$120$$个,剩下的$$200\\sim 500$$有$$3\\times 20=60$$(个),$$501\\sim 513$$中数字``$$1$$''出现了$$6$$次,所以一共有$$20+120+60+6=206$$(次). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1209
1a1af13a6b4d4bab95364658c582443e
[ "2012年美国数学大联盟杯六年级竞赛初赛第32题5分(每题5分)" ]
1
single_choice
我两年前的年龄加上两年后的年龄是$$24$$岁,则我现在几岁?
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题基本关系->年龄和" ]
[ "根据题意分析可知,假设现在是$$x$$岁,那么两年前的年龄为$$(x-2)$$岁,两年后的年龄为$$(x+2)$$岁,根据等量关系列方程如下: $$(x-2)+(x+2)=24$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde x-2+x+2=24$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde x+x=24+2-2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde2x=24$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde x=12$$. 即现在$$12$$岁, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2383
5d204a536ef848919a01250f0dca240a
[ "2016年IMAS小学高年级竞赛第一轮检测试题第2题3分" ]
2
single_choice
课后测 请问下列哪一项表达式是正确的?
[ [ { "aoVal": "A", "content": "$$1.2\\times 3.4=12\\times 3.4$$ " } ], [ { "aoVal": "B", "content": "$$0.98\\times 0.99\\textgreater0.99$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}-\\frac{1}{3}\\textless{}\\frac{1}{3}-\\frac{1}{4}$$ " } ], [ { "aoVal": "D", "content": "$$10.4\\times 0.1\\textless{}1.04$$ " } ], [ { "aoVal": "E", "content": "$$1.1\\times 1.1\\textgreater1.1$$ " } ] ]
[ "知识标签->拓展思维->数论模块->位值原理与进制->数与数字->比较大小" ]
[ "$$\\text{A}$$:$$1.2\\times 3.4\\textless{}12\\times 3.4$$ $$\\text{B}$$:$$0.98\\times 0.99\\textless{}0.99$$ $$\\text{C}$$:$$\\frac{1}{2}-\\frac{1}{3}=\\frac{1}{6}$$,$$\\frac{1}{3}-\\frac{1}{4}=\\frac{1}{12}$$,$$\\frac{1}{2}-\\frac{1}{3}\\textgreater\\frac{1}{3}-\\frac{1}{4}$$ $$\\text{D}$$:$$10.4\\times 0.1=1.04$$ " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2274
77d8a02e3fc84712a9ef3e99ab27ab04
[ "2013年北京迎春杯六年级竞赛", "2013年全国迎春杯六年级竞赛初赛第9题" ]
3
single_choice
甲、乙二车分别从$$A$$、$$B$$两地同时出发,相向匀速而行,当甲行驶过$$AB$$中点$$12$$千米时,两车相遇.若甲比乙晚出发$$10$$分钟,则两车恰好相遇在$$AB$$中点,且甲到$$B$$地时,乙距离$$A$$地还有$$20$$千米.那么$$AB$$两地间的距离是~\uline{~~~~~~~~~~}~千米.
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$110$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$130$$ " } ], [ { "aoVal": "E", "content": "$$140$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例", "Overseas Competition->知识点->行程模块" ]
[ "方法一:由第一个条件知甲乙速度比为$$(\\frac { S }{ 2 } +12):(\\frac { S }{ 2 } -12)$$;再由第二条件知甲乙速度比为$$\\frac { S }{ 2 } :(\\frac { S }{ 2 } -20)$$,两者相等得$$S=120$$千米. 方法二:设全长为$$2S$$千米,则第一次相遇时,甲走了$$S+12$$千米,乙走了$$S-12$$千米;第二次相遇点走到各自目的地时,甲走了$$S$$千米,乙走了$$S-20$$千米.由于两人速度不变,故以速度比作等量关系列方程可得:$$\\frac{S+12}{S-12}=\\frac{S}{S-20}$$,解得$$S=60$$,故全长为$$2S=120$$千米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
733
3fe8fcc043894df48727aef004cc6051
[ "2014年走美杯六年级竞赛" ]
1
single_choice
十进制的$$1039$$用二进制表示是$$($$~\uline{~~~~~~~~~~~~~~~~}~$$)_2$$。
[ [ { "aoVal": "A", "content": "$$10000001111$$ " } ], [ { "aoVal": "B", "content": "$$10000001110$$ " } ], [ { "aoVal": "C", "content": "$$10000000111$$ " } ], [ { "aoVal": "D", "content": "$$100000011001$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->进制的性质与应用->进制间的互化" ]
[ "用除$$2$$倒取余数法,得到$$10000001111$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2943
a068f4948b394233abad5596b2185536
[ "2018年四川成都小升初公立名校初一开学考(一)第5题5分", "2008年全国华杯赛竞赛初赛第6题", "2008年第13届全国迎春杯竞赛初赛第6题10分" ]
1
single_choice
若$$a=\frac{2005\times 2006}{2007\times 2008}$$,$$b=\frac{2006\times 2007}{2008\times 2009}$$,$$c=\frac{2007\times 2008}{2009\times 2010}$$,则有(~ ).
[ [ { "aoVal": "A", "content": "$$a\\textgreater b\\textgreater c$$ " } ], [ { "aoVal": "B", "content": "$$a\\textgreater c\\textgreater b$$ " } ], [ { "aoVal": "C", "content": "$$a\\textless{}c\\textless{}b$$ " } ], [ { "aoVal": "D", "content": "$$a\\textless{}b\\textless{}c$$ " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "由糖水原理可知$$a\\textless{}b\\textless{}c$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1820
d22ba96b34ff4b01947b2f41ce0f189a
[ "2017年河南郑州豫才杯六年级竞赛第7题3分" ]
2
single_choice
帅帅家购买了一套现价$$12$$万的新房,采用分期付款的形式,购房时,第一年付款$$3$$万元,从第二年起,每年应付房款$$5000$$元加上上一年欠款的利息,若剩余欠款的年利率为$$0.4 \% $$,第~\uline{~~~~~~~~~~}~年帅帅家需要交房款$$5200$$元.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->利息问题" ]
[ "第一年付:$$30000$$元,第二年付:$$5000+90000\\times 0.4 \\% =5360$$(元),第三年付:$$5000+85000\\times 0.4 \\% =5340$$(元),第四年付:$$5000+80000\\times 0.4 \\% =5320$$(元),$$\\cdot \\cdot \\cdot $$,以此类推,第十年付:$$5200$$元. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
783
6d74ee57646b4fd48eee5de18a4b8751
[ "2014年第12届全国小机灵杯小学高年级五年级竞赛决赛第14题" ]
3
single_choice
幼儿园老师把$$270$$个苹果、$$180$$个梨和$$235$$个橘子平均分给大班小朋友,余下的苹果、梨和橘子的数量之比是$$3:2:1$$.大班有~\uline{~~~~~~~~~~}~名小朋友.
[ [ { "aoVal": "A", "content": "请在答题卡上作答 " } ] ]
[ "课内体系->思想->逐步调整思想", "拓展思维->七大能力->实践应用" ]
[ "如果橘子的个数扩大到原来的$$3$$倍,那么余下的橘子数量将与余下苹果的相等; 即$$235\\times 3=705$$与$$270$$分别除以大班小朋友的人数,余数相同; 大班小朋友的人数是$$705-270=435$$的因数; 如果橘子的个数扩大到原来的$$2$$倍,那么余下的橘子数量将与余下的梨的相等; 即$$235\\times 2=470$$与$$180$$分别除以大班小朋友的人数,余数相同; 大班小朋友的人数是$$470-180=290$$的因数; 则大班小朋友的人数是$$435$$和$$290$$的公因数; $$(435,290)=5\\times 29=145$$; 大班小朋友的人数是$$145$$的因数:$$1$$、$$5$$、$$29$$、$$145$$ 当大班有$$1$$名小朋友时,$$270\\div 1=270$$,$$180\\div 1=180$$,$$235\\div 1=235$$; 余下$$0$$个苹果、$$0$$个梨、$$0$$个橘子,不符题意; 当大班有$$5$$名小朋友时,$$270\\div 5=54$$,$$180\\div 5=36$$,$$235\\div 5=47$$; 余下$$0$$个苹果、$$0$$个梨、$$0$$个橘子,不符题意; 当大班有$$29$$名小朋友时,$$270\\div 29=9\\cdots \\cdots 9$$,$$180\\div 29=6\\cdots \\cdots 6$$,$$235\\div 29=8\\cdots \\cdots 3$$; 余下$$9$$个苹果、$$6$$个梨、$$3$$个橘子,$$9:6:3=3:2:1$$,符合题意; 当大班有$$145$$名小朋友时,$$270\\div 145=1\\cdots \\cdots 125$$,$$180\\div 145=1\\cdots \\cdots 35$$,$$235\\div 145=1\\cdots \\cdots 90$$; 余下$$125$$个苹果、$$35$$个梨、$$90$$个橘子,$$125:35:90\\ne 3:2:1$$,不符题意; 经检验,大班有$$29$$名小朋友. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
406
8e0a0c9be1e6408cb7eb3e1495a80637
[ "2017年北京学而思杯四年级竞赛年度教学质量测评第19题3分" ]
2
single_choice
有黑白卡片各$$6$$张,它们的正面分别写着数字$$1$$到$$6$$.把它们充分打乱顺序后,从中拿走$$2$$张(黑白各$$1$$张),把剩下的$$10$$张按照下列规则进行排列: 规则$$1$$:从左到右,按照数字从小到大的顺序排列; 规则$$2$$:当黑白卡片的数字相同时,黑卡片排在白卡片的左边. 把这$$10$$张卡片按照上述规则排列,保持顺序不变,翻到背面朝上,从左到右卡片颜色为:黑白黑白黑白白黑黑白. 请问:拿走的$$2$$张卡片上的数字分别为(~ ).
[ [ { "aoVal": "A", "content": "黑卡是$$3$$,白卡是$$4$$ " } ], [ { "aoVal": "B", "content": "黑卡是$$4$$,白卡是$$5$$ " } ], [ { "aoVal": "C", "content": "白卡是$$4$$,黑卡是$$5$$~~~~~~ " } ], [ { "aoVal": "D", "content": "白卡是$$5$$,黑卡是$$6$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "略 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2903
bfdf1c2e769344869160b82ccb72263e
[ "2014年全国华杯赛小学高年级竞赛复赛C卷第12题" ]
2
single_choice
某自然数减去$$39$$是一个完全平方数,减去$$144$$也是一个完全平方数,此自然数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$400$$、$$208$$、$$160$$ " } ], [ { "aoVal": "B", "content": "$$2848$$、$$400$$、$$160$$ " } ], [ { "aoVal": "C", "content": "$$2848$$、$$400$$、$$208$$、$$160$$ " } ], [ { "aoVal": "D", "content": "$$2848$$、$$400$$、$$208$$、$$190$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "设这两个完全平方数分别为$${{a}^{2}}$$和$${{b}^{2}}$$($$a$$、$$b$$均为整数),则$${{a}^{2}}-{{b}^{2}}=144-39=105$$. 由平方差公式得:$$\\left( a+b \\right)\\left( a-b \\right)=105$$. 考虑到$$105=1\\times 105=3\\times 35=5\\times 21=7\\times 15$$,因此有$$4$$种可能: $$\\begin{cases}a+b=105 a-b=1 \\end{cases}$$,$$\\begin{cases}a+b=35 a-b=3 \\end{cases}$$,$$\\begin{cases}a+b=21 a-b=5 \\end{cases}$$,$$\\begin{cases}a+b=15 a-b=7 \\end{cases}$$ 解得:$$\\begin{cases}a=53 b=52 \\end{cases}$$,$$\\begin{cases}a=19 b=16 \\end{cases}$$,$$\\begin{cases}a=13 b=8 \\end{cases}$$,$$\\begin{cases}a=11 b=4 \\end{cases}$$. 原数为$${{a}^{2}}+39$$,对应$$4$$种可能:$$2848$$、$$400$$、$$208$$、$$160$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1178
6221023c036e4605a77dd2bda14d0d19
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第4题5分" ]
1
single_choice
毛毛用围棋子摆成一个三层空心方阵,最外一层每边有围棋子$$12$$个.摆这个方阵共用围棋子个.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$108$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$132$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "由题意知,用围棋子摆成一个三层空心方阵,最外一层每边有围棋子$$12$$个,由于相邻两层每边相差$$2$$个,则由外向里的两层每边分别是$$(12-2)$$个、$$(12-2\\times 2)$$个,根据``四周的个数$$=$$(每边的个数$$-1$$)$$\\times 4$$''可分别求得这三层棋子的个数,再相加就是所用的总个数,据此解答. 本题关键是求出每层的个数;方阵问题相关的知识点是:四周的个数$$=$$(每边的个数$$-1$$)$$\\times 4$$,每边的个数$$=$$四周的个数$$\\div 4+1$$,中实方阵的总个数$$=$$每边的个数$$\\times $$每边的个数,空心方阵的总个数$$=$$(最外层每边的个数$$-$$空心方阵的层数)$$\\times $$空心方阵的层数$$\\times 4$$,外层边长数$$^{2}-$$中空边长数$$^{2}=$$实面积数. 最外边一层棋子个数:$$(12-1)\\times 4=44$$(个), 第二层棋子个数:$$(12-2-1)\\times 4=36$$(个), 第三层棋子个数:$$(12-2\\times 2-1)\\times 4=28$$(个), 摆这个方阵共用棋子:$$44+36+28=108$$(个). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1659
69617415d9c14a4d9932242a43beaedd
[ "2013年第25届广东广州五羊杯六年级竞赛第4题5分" ]
1
single_choice
今天是星期四,从第二天算起,则第$$2013$$天是.
[ [ { "aoVal": "A", "content": "星期一 " } ], [ { "aoVal": "B", "content": "星期二 " } ], [ { "aoVal": "C", "content": "星期三 " } ], [ { "aoVal": "D", "content": "星期四 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->求再过几日是周几问题" ]
[ "$$2013\\div 7=287$$(组)$$\\cdots \\cdots 4$$(个),星期四后的第四天是星期一. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1619
49f642e12cb14504811bdc0a1a6d1653
[ "2018年华杯赛六年级竞赛模拟卷" ]
2
single_choice
甲、乙两队都可以胜任一项工程,甲单独做需要$$20$$天,乙单独做需要$$35$$天。甲队做了几天之后,由于突发状况而退出,停工了$$1$$天,剩下的由乙队完成,竣工时一共用了$$30$$天。那么,乙队做了( )天。
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$23$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->接力施工问题" ]
[ "可以设乙队工作了$$x$$天,列方程得:$$\\frac{30-1-x}{20}+\\frac{x}{35}=1$$,解得:$$x=21$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2353
8aac50a7519fa10a01519ff4869700ca
[ "2016年全国华杯赛小学中年级竞赛初赛第6题" ]
2
single_choice
在除法算式中,被除数为$$2016$$,余数为$$7$$,则满足算式的除数共有(~~ ~ )个.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "某个数除$$2016$$余$$7$$,于是这个数整除$$2016-7=2009$$,$$2009={{7}^{2}}\\times {{41}^{1}}$$,所以$$2009$$共有$$6$$个约数,其中比$$7$$大的约数有$$4$$个(除了$$1$$和$$7$$),所以满足要求的除数共有$$4$$个. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1177
1180db4484cd4c16b8e9c7f571ffe191
[ "2020年新希望杯四年级竞赛决赛(8月)第7题", "2020年新希望杯四年级竞赛初赛(个人战)第7题" ]
1
single_choice
光头强去赶集,去时步行,速度是$$15$$千米$$/$$时;回来时骑车,速度是$$30$$千米$$/$$时.光头强往返的平均速度是~\uline{~~~~~~~~~~}~千米$$/$$时.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ], [ { "aoVal": "E", "content": "$$30$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->设数法", "Overseas Competition->知识点->应用题模块" ]
[ "路程$$=$$时间$$\\times$$速度, 设路程为$$30$$千米,那么去时的时间是$$30\\div15=2$$(时), 回来的时间为$$30\\div30=1$$(时), 因此往返的平均速度是$$(30+30)\\div(2+1)=60\\div3=20$$(千米$$/$$时). 故答案为$$20$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3189
344298b2b3a646f58e8df758ff357ae5
[ "2017年河南郑州联合杯竞赛决赛第6题2分", "2021年河南郑州二七区京广实验学校小升初第6题2分" ]
1
single_choice
小红买售价$$4.4$$元的钢笔一支,根据你的生活经验,结合人民币币值的特点,下列付钱方式不合理的是(~ ).
[ [ { "aoVal": "A", "content": "付出$$4.5$$元,找回$$0.1$$元 " } ], [ { "aoVal": "B", "content": "付出$$4.7$$元,找回$$0.3$$元 " } ], [ { "aoVal": "C", "content": "付出$$5.4$$元,找回$$1.0$$元 " } ], [ { "aoVal": "D", "content": "付出$$10$$元,找回$$5.6$$元 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "B选项不合理. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
818
84a8ad3470834fda84506b305b9e9068
[ "2019年江苏南京栖霞区南外仙林分校小学部六年级下学期单元测试《正比例和反比例》第29题2分", "2015年全国迎春杯小学高年级竞赛复赛第9题" ]
2
single_choice
如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为``均衡数''.例如$$25254$$是``均衡数'',因为$$5+2+2=4+5$$.如果相邻的两个自然数都是``均衡数'',则称这对``均衡数''为``孪生均衡数''.那么最小的一对``孪生均衡数''的和是 .
[ [ { "aoVal": "A", "content": "$$999$$ " } ], [ { "aoVal": "B", "content": "$$1099$$ " } ], [ { "aoVal": "C", "content": "$$2099$$ " } ], [ { "aoVal": "D", "content": "$$3099$$ " } ] ]
[ "课内体系->七大能力->逻辑分析", "拓展思维->拓展思维->数论模块->奇数与偶数" ]
[ "两位数没有符合要求的数,$$99$$、$$100$$亦不符合,故知至少为三位数.两个相邻数数字和都是偶数,说明必有进位,且三位数必然只进$$1$$次位(数字和加$$1$$再减$$9$$),即这两个数是$$\\overline{ab9}$$和$$\\overline{a\\left( b+1 \\right)0}$$,必有$$a+b=9$$和$$a=b+1$$,故这两个数为$$549$$和$$550$$.$$549+550=1099$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
822
6e1934cdf0904575a44016317763ae7a
[ "2006年第4届创新杯四年级竞赛初赛A卷第10题" ]
2
single_choice
$$1\times 1+2\times 2+3\times 3+\cdots +2005\times 2005+2006\times 2006$$的个位数字是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "$$1\\times 1=1$$, $$2\\times 2=4$$, $$3\\times 3=9$$, $$4\\times 4=16$$, $$5\\times 5=25$$, $$6\\times 6=36$$, $$7\\times 7=49$$, $$8\\times 8=64$$, $$9\\times 9=81$$, $$10\\times 10=100$$, 我们可以把每$$10$$个数当作一个整体,它们的和的个位数是$$5$$, 从$$1$$到$$2006$$可以看作$$200$$个上面的整体和剩下$$6$$个数的乘积, 所以$$200$$个整体的和的个位数字应该是$$5$$乘$$200$$的个位,即为$$0$$, 显然剩下的$$6$$个数的个位是$$1$$, 所以最终的个位就应该为$$1$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1478
51ac51ed624a4198af6ef7b4eb35d22c
[ "2016年新希望杯六年级竞赛训练题(四)第3题" ]
1
single_choice
市政府要修建一条新地铁线路,其中一段交给甲、乙两个工程队完成.甲工程队每天能完成整个工程任务的$$\frac{1}{16}$$,乙工程队每天能完成整个工程任务的$$\frac{1}{24}$$.现在两队合作$$4$$天后,甲工程队被抽调离开,由乙队独自完成剩下的部分需要(~ )天.~
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "甲、乙两队第一阶段完成了$$\\left( \\frac{1}{16}+\\frac{1}{24} \\right)\\times 4=\\frac{5}{12}$$,乙队第二阶段需要$$\\left( 1-\\frac{5}{12} \\right)\\div \\frac{1}{24}=14$$天. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3192
4fc891b2b711463f9ac81d6a11049c49
[ "2008年五年级竞赛创新杯" ]
1
single_choice
从$$1$$到$$50$$这五十个自然数中,取两个不同的数相加,要使它们的和大于$$50$$,共有( )种不同的取法。
[ [ { "aoVal": "A", "content": "$$560$$ " } ], [ { "aoVal": "B", "content": "$$605$$ " } ], [ { "aoVal": "C", "content": "$$625$$ " } ], [ { "aoVal": "D", "content": "$$725$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->字典排序法" ]
[ "两个数中小的数为$$1$$,有$$\\left( 1\\text{,}50 \\right)$$,$$1$$种取法; 同理,小的数为$$2$$,有$$\\left( 2\\text{,}50 \\right)$$,$$\\left( 2\\text{,}49 \\right)$$,$$2$$种取法; 小的数为$$3$$,有$$\\left( 3\\text{,}50 \\right)$$,$$\\left( 3\\text{,}49 \\right)$$,$$\\left( 3\\text{,}48 \\right)$$,$$3$$种取法; $$\\cdots\\cdots$$ 小的数为$$25$$,有$$\\left( 25\\text{,}50 \\right)$$,$$\\left( 26\\text{,}50 \\right)$$,$$\\cdots$$,$$\\left( 25\\text{,}26 \\right)$$,$$25$$种取法; 小的数为$$26$$,有$$\\left( 26\\text{,}50 \\right)$$,$$\\left( 26\\text{,}49 \\right)$$,$$\\cdots$$,$$\\left( 26\\text{,}27 \\right)$$,$$24$$种取法; $$\\cdots\\cdots$$ 小的数为$$49$$,有$$\\left( 49\\text{,}50 \\right)$$,$$1$$种取法。 所以共有$$1+2+3+\\cdots +25+24+\\cdots +3+2+1$$ $$=2\\times \\left( 1+2+3+\\cdots +25 \\right)-25=2\\times \\frac{25\\times 26}{2}-25=25\\times 26-25$$ $$=25\\times 25=625$$(种)不同的取法。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3450
f3d356c1be3f4cf8a8d9c7ee36578be9
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(三)第5题" ]
2
single_choice
将$$15$$个相同的悠悠球分装到四个相同的纸盒中,要求每个盒子里至少装一个,且每个盒子装的数量都不相同,一共有种不同的装法.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "将$$15$$拆成四个不同的加数,按最小的加数分类数:$$15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6$$,共$$6$$种不同的分类. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2758
457a7909d46545bc8e5dea539577bb87
[ "2014年全国迎春杯四年级竞赛初赛第1题" ]
1
single_choice
下面计算结果等于$$9$$的是( ).
[ [ { "aoVal": "A", "content": "$$3\\times 3\\div 3+3$$ " } ], [ { "aoVal": "B", "content": "$$3\\div 3+3\\times 3$$ " } ], [ { "aoVal": "C", "content": "$$3\\times 3-3+3$$ " } ], [ { "aoVal": "D", "content": "$$3\\div 3+3\\div 3$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "解:$$\\rm A$$、$$3\\times 3\\div 3+3$$ $$=3+3$$ $$=6$$ $$\\rm B$$、$$3\\div 3+3\\times 3$$ $$=1+9$$ $$=10$$ $$\\rm C$$、$$3\\times 3-3+3$$ $$=9-3+3$$ $$=9$$ $$\\rm D$$、$$3\\div 3+3\\div 3$$ $$=1+1$$ $$=2$$ 故选:$$\\rm C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
355
91d8654287004305899244a2daf03ce3
[ "2014年全国学而思杯一年级竞赛第10题" ]
2
single_choice
$$5$$名分别来自美国、俄国、中国、日本和韩国的运动员参加冬奥会滑雪决赛,比赛结束后: 美国运动员说:俄国运动员紧跟在我后面; 俄国运动员说:我才不是最后一名; 中国运动员说:我比日本国人和美国人都快; 韩国运动员说:有三个人比我先到达终点. 那么,~\uline{~~~~~~~~~~}~国运动员是第一名.
[ [ { "aoVal": "A", "content": "美国 " } ], [ { "aoVal": "B", "content": "俄国 " } ], [ { "aoVal": "C", "content": "中国 " } ], [ { "aoVal": "D", "content": "日本 " } ], [ { "aoVal": "E", "content": "韩国 " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->比较型逻辑推理" ]
[ "中国比日本、美国快,美国比俄国快,所以日本、美国、俄国都不是第一,而韩国也不是第一个到的,所以中国是第一. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
613
0d3414b355da4790ac34efd69b29b070
[ "竞赛" ]
2
single_choice
记$$A=8\times 8\times 8\times \cdots\times 8$$(共$$25$$个$$8$$相乘),$$A\div 9$$的余数为.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数找规律" ]
[ "$$8$$的若干次方除以$$9$$的余数是以$$8$$、$$1$$为周期的数,$$25$$为奇数,对应余数为$$8$$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
474
fc4a9333bef447ddb9abbc0514e49ccd
[ "2012年第10届创新杯四年级竞赛初赛第5题6分" ]
1
single_choice
显示在电子钟上的时间是$$5:55$$,下一次电子钟上显示的时间又是全部相同的数字,还要过分钟.
[ [ { "aoVal": "A", "content": "$$71$$ " } ], [ { "aoVal": "B", "content": "$$255$$ " } ], [ { "aoVal": "C", "content": "$$316$$ " } ], [ { "aoVal": "D", "content": "$$377$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "因为分钟的十位最大为$$5$$,故下一次数字相同的时刻为$$11:11$$,$$11:11$$距$$5:55$$有$$5$$小时$$16$$分,即$$316$$分钟.所以选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
419
c9301aa7fe654db6b01ecddf387f7e73
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
3
single_choice
一个程序员给编号为$$1-40$$的$$40$$个机器人写好程序,让它们来判断某句话的对错.程序员为了提高准确率,在它们都进行过一次判断后,让从编号为$$1$$的机器人开始,修改自己的答案.如果其余$$39$$个机器人回答``对''多,则自己的回答也为``对'',否则回答``错''.如果最开始有$$20$$个机器人回答``对'',$$20$$个机器人回答``错'',并且一号机器人回答``对''.那么这$$40$$个机器人按序修改自己的答案后,有多少人回答``对''?
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->答案(数字)正误问题" ]
[ "由于第一个机器人回答对,所以说明除了第一个外的机器人,开始时$$19$$个回答对,$$20$$个回答错,第一个机器人根据判定需要改答案,其他机器根据第一个机器人改了答案判断,应该都回答错. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1385
4c52eb9d09664c81b4576f0d173771cd
[ "2006年五年级竞赛创新杯", "2006年第4届创新杯五年级竞赛初赛A卷第9题" ]
2
single_choice
一本书中间有一张被撕掉了,余下各页码数之和正好等于1000,这本书原有( )页.
[ [ { "aoVal": "A", "content": "40 " } ], [ { "aoVal": "B", "content": "45 " } ], [ { "aoVal": "C", "content": "48 " } ], [ { "aoVal": "D", "content": "50 " } ] ]
[ "拓展思维->拓展思维->应用题模块->页码问题" ]
[ "设撕掉这张的两个页码的和为x,原书有n页,则所有页码和为$$\\left( 1+2+3+\\cdots +n \\right)-x=\\frac{n\\left( n+1 \\right)}{2}-x=1000$$,只有当$$n=45$$时,其所有页码和为$$45\\times 46\\div 2=1035$$,恰好大于1000且最接近1000,故撕掉这张纸的两个页码的和为$$1035-1000=35$$,撕掉的这张的两个页码为17,18.所以这本书原有45页,故选B. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
370
89d16a180f4149a2893ff61e16a2ce08
[ "2018年第17届春蕾杯一年级竞赛初赛第14题6分" ]
1
single_choice
四耳穴学校也举办了一场足球比赛,皮皮、蛋君和大强所在的三个队伍分别获得了金、银、铜牌.根据下面三句话,猜一猜他们分别获得什么奖牌? 皮皮:``我分到的不是金牌.'' 大强:``他们俩的队伍一支获得金牌,一支获得银牌.'' 请问,蛋君所在的队伍获得什么奖牌?
[ [ { "aoVal": "A", "content": "金 " } ], [ { "aoVal": "B", "content": "银 " } ], [ { "aoVal": "C", "content": "铜 " } ] ]
[ "拓展思维->能力->推理推导->言语逻辑推理" ]
[ "推理题目 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1499
6cefec8852384b2b9a5efce51c89d04d
[ "2021年鹏程杯六年级竞赛初赛第12题" ]
1
single_choice
如果某国物价下降$$50 \%$$,那么原来买$$1$$件东西的钱现在就能买$$2$$件.$$1$$件变为$$2$$件增加了$$100 \%$$,这就相当于该国居民手中的钱增值了$$100 \%$$,如果物价上涨了$$25 \%$$,那么相当于手中的钱贬值了$$ \%$$.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "不难列出算式:$$\\left[ 1-\\frac{1}{1+25 \\%} \\right]\\times100 \\%=20 \\%$$, 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2783
ccdc9313e6e94306984ad9cbdfe1c13a
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
在$$9$$个数:$$1$$,$$\frac{2}{5}$$,$$7$$,$$8$$,$$\frac{5}{4}$$,$$1.\dot{2}$$,$$15$$,$$3.75$$,$$0.\dot{7}$$中取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,这样的算式存在吗?
[ [ { "aoVal": "A", "content": "存在 " } ], [ { "aoVal": "B", "content": "不存在 " } ], [ { "aoVal": "C", "content": "不能确定 " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "$$8\\div \\left( 7+1 \\right)=1$$,$$15\\div \\left( 7+8 \\right)=1$$,$$15\\div \\left( \\frac{5}{4}+3.75 \\right)=3$$,$$8\\div \\left( 1.\\dot{2}+0.\\dot{7} \\right)=4$$,$$7\\div \\left( \\frac{2}{5}+1 \\right)=5$$等. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
426
7d7d580bf5024f47a8466e6c5e5aaeab
[ "2014年全国创新杯小学高年级五年级竞赛第4题5分", "2016年创新杯小学高年级五年级竞赛训练题(四)第5题" ]
1
single_choice
从$$1$$,$$2$$,$$\cdot \cdot \cdot $$,$$79$$这$$79$$个数中,选出若干个数来,使得选出的这些数中,任何两个数之差(大减小)都不等于$$1$$,$$2$$,$$4$$.那么至多可以选出(~ ~ ~ )个数.
[ [ { "aoVal": "A", "content": "$$26$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$28$$ " } ], [ { "aoVal": "D", "content": "$$29$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "取$$1$$,$$4$$,$$7$$,$$\\cdot \\cdot \\cdot $$,$$79$$,最多有$$(79-1)\\div 3+1=27$$个. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2564
674e71ddaecb411086cd03ac2d59b68c
[ "2008年四年级竞赛创新杯" ]
2
single_choice
101个数之和为2008;把第一个数减1,第2个数加2,第3个数减3,\ldots,第100个数加100,第101个数减101,所得的101个新数之和为( ).
[ [ { "aoVal": "A", "content": "1957 " } ], [ { "aoVal": "B", "content": "1959 " } ], [ { "aoVal": "C", "content": "2008 " } ], [ { "aoVal": "D", "content": "2009 " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之分组法" ]
[ "所得的101个新数之和为: $$2008-1+2-3+4-\\cdots -99+100-101=2008+\\underbrace{1+1+1+\\cdots +1}_{50个1}-101=1957$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1138
3881252f9d0d4c4a9d1b2928d9baef9c
[ "2014年全国创新杯小学高年级五年级竞赛第5题5分" ]
1
single_choice
某出租车的收费标准是:起步价$$7$$元($$3$$千米以内包括$$3$$千米),$$3$$千米后每增加$$1$$千米加收$$2.4$$元(不足$$1$$千米按$$1$$千米计),某人乘坐出租车从甲地到乙地付车费$$19$$元,那么下列句子中正确的是(~ ).
[ [ { "aoVal": "A", "content": "甲地到乙地的路程为$$8$$千米 " } ], [ { "aoVal": "B", "content": "甲乙两地路程为$$7$$千米 " } ], [ { "aoVal": "C", "content": "甲乙两地路程大于$$7$$千米但不超过$$8$$千米 " } ], [ { "aoVal": "D", "content": "甲乙两地路程最多为$$8$$千米 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$19-7=12$$,$$12\\div 2.4=5$$,故甲、乙两地路程大于$$7$$千米但不超过$$8$$千米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1955
e55364bd3a524623b8cec30c05955744
[ "2018年第21届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第10题3分" ]
1
single_choice
有大、中、小三筐菠萝,小筐装的是中筐的一半,中筐比大筐少装$$24$$千克,大筐装的是小筐的$$5$$倍.大、中、小三筐一共装菠萝千克.
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$56$$ " } ], [ { "aoVal": "C", "content": "$$64$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "根据题意分析可知,因为小框装的是中筐的一半且大框装的是小筐的$$5$$倍可知, 大筐装的是中筐的$$5\\div 2=2.5$$倍, 又因为中框比大框少装$$24$$千克, 用差倍问题求出小筐的能装:$$24\\div \\left( 5-2 \\right)=8$$(千克), 中筐装:$$8\\times 2=16$$(千克), 大筐装:$$16\\times 2=32$$(千克), 所以三个筐一共能装:$$8+16+32=56$$(千克). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3063
b8bc913057414da49c9a5bbe39260f04
[ "2018年IMAS小学中年级竞赛(第一轮)第10题3分" ]
2
single_choice
西元$$1202$$年,意大利数学家斐波那契(Fibonacci,$$1170\sim 1250$$),在所著的《算术书(Liber Abaci)》中,提出了以下有趣的问题:一对兔子在它们出生整整两个月以后可以生一对小兔子(雌、雄兔各一只),其后每隔一个月又可再生一对小兔子.现有一对刚生下来的小兔子﹐如果兔子都不死亡,请问经过$$12$$个月后(即在第$$13$$个月初)总共有多少对兔子?
[ [ { "aoVal": "A", "content": "$$144$$ " } ], [ { "aoVal": "B", "content": "$$233$$ " } ], [ { "aoVal": "C", "content": "$$234$$ " } ], [ { "aoVal": "D", "content": "$$235$$ " } ], [ { "aoVal": "E", "content": "$$377$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->斐波那契数列(兔子数列)" ]
[ "逐月推算,我们可以得到下面的一列数: $$1$$、$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、$$13$$、$$21$$、$$34$$、$$55$$、$$89$$、$$144$$、$$233$$、$$\\cdots $$ 其中第$$13$$个数为$$233$$,所以经过$$12$$个月后共有$$233$$对兔子. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2778
6dae651848b348fb8a9167fa5de9c821
[ "2017年环亚太杯一年级竞赛初赛第4题" ]
1
single_choice
找规律,选一选: $$6$$,$$12$$,$$18$$,$$24$$,~\uline{~~~~~~~~~~}~,$$36$$,~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "28,40 " } ], [ { "aoVal": "B", "content": "28,42 " } ], [ { "aoVal": "C", "content": "30,40 " } ], [ { "aoVal": "D", "content": "30,42 " } ] ]
[ "知识标签->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "每个数之间差了一个6 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1033
0a56fcc8142043b1acd341867cfe686c
[ "2010年全国华杯赛竞赛初赛第3题" ]
2
single_choice
两个水池内有金鱼若干条,数目相同.亮亮和红红进行捞鱼比赛,一共比两次,每次捞一池,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是$$3:4$$;捞完第二个水池内的金鱼时,亮亮比第一次多捞$$33$$条,与红红捞到的金鱼数目比是$$5:3$$,每个水池内有金鱼条.
[ [ { "aoVal": "A", "content": "$$112$$ " } ], [ { "aoVal": "B", "content": "$$168$$ " } ], [ { "aoVal": "C", "content": "$$224$$ " } ], [ { "aoVal": "D", "content": "$$336$$ " } ] ]
[ "课内体系->七大能力->实践应用", "拓展思维->知识点->应用题模块->比例应用题->按比分配" ]
[ "本题原意为两人捞第一个水池内的金鱼,亮亮与红红捞到得金鱼数之比为$$3:4$$,共捞了$$7$$份;这样,第二个水池内涝完后,亮亮和红红所捞到的金鱼数目比是$$5:3$$,共捞了$$8$$份;由于两个水池内的鱼的量是相等的,则找$$\\left[ 7,8 \\right]=56$$. 两个水池内的总份数,均统一为$$56$$份,则在捞第一个水池时,亮亮和红红所捞到的金鱼数目之比为:$$3:4=24:32$$; 捞第二个水池时,亮亮和红红所捞到的金鱼数目之比为:$$5:3=35:21$$. 亮亮第一次捞了$$24$$份,第二次捞了$$35$$份,差了$$11$$份,为$$33$$条,则$$1$$份为$$3$$条. 所以原来每隔水池内的金鱼为:$$3\\times56=168$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1878
c05b75ee5df04182b9285c9a8c604f6e
[ "2008年六年级竞赛创新杯" ]
1
single_choice
$$A$$、$$B$$、$$C$$、$$D$$四个数,每次去掉一个数,将其余三个数求平均数.这样计算了四次,得到下面四个数:23,26,30,33,$$A$$、$$B$$、$$C$$、$$D$$四个数的平均数是( ).
[ [ { "aoVal": "A", "content": "24 " } ], [ { "aoVal": "B", "content": "26 " } ], [ { "aoVal": "C", "content": "28 " } ], [ { "aoVal": "D", "content": "30 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "不妨设$$A\\geqslant B\\geqslant C\\geqslant D$$,则 $$B\\text{+}C\\text{+}D=23\\times 3=69$$ $$A\\text{+}C\\text{+}D=26\\times 3=78$$ $$A\\text{+}B\\text{+}D=30\\times 3=90$$ $$A\\text{+}B\\text{+}C=33\\times 3=99$$ 四个等式相加得$$3\\times \\left( A\\text{+}B\\text{+}C\\text{+}D \\right)=336$$,从而$$A\\text{+}B\\text{+}C\\text{+}D\\text{=}112$$,所以$$A$$、$$B$$、$$C$$、$$D$$的平均数为$$112\\div 4\\text{=}28$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1687
80297962280f4c76bc3b146c19efe163
[ "2009年第9届全国新希望杯三年级竞赛初赛" ]
1
single_choice
一串彩珠按``$$1$$红$$2$$蓝$$4$$黄''的顺序依次排列,第$${32}$$颗彩珠是~\uline{~~~~~~~~~~}~色.
[ [ { "aoVal": "A", "content": "红 " } ], [ { "aoVal": "B", "content": "蓝 " } ], [ { "aoVal": "C", "content": "黄 " } ], [ { "aoVal": "D", "content": "白 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "将``$$1$$红$$2$$蓝$$4$$黄''看作一组,共有$$7$$颗,$$32 \\div 7 = 4 \\cdots ~\\cdots 4$$,说明这一组共出现了$$4$$次,余数是$$4$$说明还依次出现了$$1$$颗红珠、$$2$$颗蓝珠、$$1$$颗黄珠,所以第$$32$$颗彩珠是黄色. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3482
fec52e32149c45ddb0993819e3d4c890
[ "2020年希望杯一年级竞赛模拟第2题" ]
1
single_choice
每两人之间都握一次手(不能重复计数),$$5$$个小朋友一共要握次.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "因为由题干可知,一共有$$4$$个人,每两人之间需要握一次手,我们可以将这$$4$$个人分别用$$A$$、$$B$$、$$C$$和$$D$$来指代,则所有的握手情况为:$$AB$$,$$AC$$,$$AD$$,$$BC$$,$$BD$$和$$CD$$,所以一共要握$$6$$次,故本题答案为$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1433
43e85924e22c4eea8f7021e970dd139b
[ "2018年四川成都锦江区四川师范大学附属第一实验中学小升初模拟8第3题3分", "2018年全国小学生数学学习能力测评六年级竞赛初赛第8题3分", "2018年湖南长沙小升初数学入学试卷第4题4分" ]
1
single_choice
王师傅加工一批零件,$$\frac{1}{2}$$小时加工了这批零件的$$\frac{3}{8}$$,全部加工完还需要( )小时.
[ [ { "aoVal": "A", "content": "$$1\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{3}{10}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{6}$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "首先根据王师傅加工一批零件,$$\\frac{1}{2}$$小时加工了这批零件的$$\\frac{3}{8}$$,工作效率$$=$$工作量$$\\div $$工作时间,求出每小时加工这批零件的几分之几;求出剩下的工作量,然后根据工作时间$$=$$工作量$$\\div $$工作效率,求出全部加工完还需要多少小时即可. 解;$$\\frac{3}{8}\\div \\frac{1}{2}=\\frac{3}{4}$$ $$(1-\\frac{3}{8})\\div \\frac{3}{4}$$ $$=\\frac{5}{8}\\div \\frac{3}{4}$$ $$=\\frac{5}{6}$$(小时) 答:全部加工完还需要$$\\frac{5}{6}$$小时. 故选$$\\rm D$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2995
ce36ce976f3b45339902bed7a3c60882
[ "2018年第8届北京学而思综合能力诊断二年级竞赛年度教学质量第1题" ]
0
single_choice
算式$$\textasciitilde8+9\times 5$$的正确结果是(~ ).
[ [ { "aoVal": "A", "content": "$$85$$ " } ], [ { "aoVal": "B", "content": "$$55$$ " } ], [ { "aoVal": "C", "content": "$$53$$ " } ], [ { "aoVal": "D", "content": "$$62$$~ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->四则混合运算" ]
[ "先算乘除,再算加减,$$8+9\\times 5=8+45=53$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2898
8de584514277495c9cb6c6939d0d9f24
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第1题3分" ]
1
single_choice
$$15-18$$这些数的平方的倒数乘,可约分的数最多.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数基础->分数的约分" ]
[ "$${{15}^{2}}=225$$,$${{16}^{2}}=256$$,$${{17}^{2}}=289$$,$${{18}^{2}}=324$$, $$\\text{A}$$. $$\\frac{1}{225}\\times 2=\\frac{2}{225}$$,$$\\frac{1}{256}\\times 2=\\frac{2}{256}=\\frac{1}{128}$$, $$\\frac{1}{289}\\times 2=\\frac{2}{289}$$,$$\\frac{1}{324}\\times 2=\\frac{2}{324}=\\frac{1}{162}$$; $$\\text{B}$$. $$\\frac{1}{225}\\times 3=\\frac{3}{225}=\\frac{1}{75}$$,$$\\frac{1}{256}\\times 2=\\frac{3}{256}$$, $$\\frac{1}{289}\\times 3=\\frac{3}{289}$$,$$\\frac{1}{324}\\times 3=\\frac{3}{324}=\\frac{1}{108}$$; $$\\text{C}$$. $$\\frac{1}{225}\\times 4=\\frac{4}{225}$$,$$\\frac{1}{256}\\times 4=\\frac{4}{256}=\\frac{2}{128}=\\frac{1}{64}$$ $$\\frac{1}{289}\\times 4=\\frac{4}{289}$$,$$\\frac{1}{324}\\times =\\frac{4}{324}=\\frac{2}{162}=\\frac{1}{81}$$; $$\\text{D}$$. $$\\frac{1}{225}\\times 5=\\frac{5}{225}=\\frac{1}{45}$$,$$\\frac{1}{256}\\times 5=\\frac{5}{256}$$, $$\\frac{1}{289}\\times 5=\\frac{5}{289}$$,$$\\frac{1}{324}\\times 5=\\frac{5}{324}$$. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3295
48f5125a54f3493ab47a92bc40226b03
[ "2017年全国小学生数学学习能力测评四年级竞赛初赛第8题3分" ]
1
single_choice
用$$1$$、$$2$$、$$3$$、$$4$$这四个数字可以组成许多四位数,将它们从小到大依次排列,那么$$4123$$这个四位数排在第个位置上.
[ [ { "aoVal": "A", "content": "$$19$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "由$$1$$、$$2$$、$$3$$、$$4$$这四个数字组成的四位数有: $$1234$$;$$1243$$;$$1324$$;$$1342$$;$$1423$$;$$1432$$; $$2134$$;$$2143$$;$$2314$$;$$2341$$;$$2413$$;$$2431$$; $$3124$$;$$3142$$;$$3214$$;$$3241$$;$$3412$$;$$3421$$; $$4123$$;$$4132$$;$$4213$$;$$4231$$;$$4312$$;$$4321$$, 所以将它们从小到大的顺序排列,$$4123$$是第$$19$$个. 故选:$$\\text{A}$$. " ]
A