dataset_name
stringclasses 4
values | dataset_version
timestamp[s] | qid
stringlengths 1
5
| queId
stringlengths 32
32
| competition_source_list
sequence | difficulty
stringclasses 5
values | qtype
stringclasses 1
value | problem
stringlengths 6
1.51k
| answer_option_list
list | knowledge_point_routes
sequence | answer_analysis
sequence | answer_value
stringclasses 7
values |
---|---|---|---|---|---|---|---|---|---|---|---|
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1150 | cdb23b6731324ecbaa14c7b3b33cad46 | [
"1999年第10届希望杯初二竞赛第1试第5题"
] | 1 | single_choice | 两个数$$a$$,$$b$$,且$$a\textless b$$,把$$a$$到$$b$$的所有数记做$$[a, b]$$,例如$$1$$到$$4$$的所有数记做$$[1,4]$$,如果$$5 \leqslant m \leqslant 15$$,$$20 \leqslant n \leqslant 30$$,那么$$\frac{m}{n}$$的一切值包含在内. | [
[
{
"aoVal": "A",
"content": "$$[5,30]$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\left[\\frac{1}{4}, \\frac{3}{4}\\right]$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\left[\\frac{1}{6}, \\frac{2}{3}\\right]$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\left[\\frac{1}{6}, \\frac{7}{8}\\right]$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性",
"课内体系->能力->数据处理能力"
] | [
"因为$$5 \\leqslant m \\leqslant 15$$,$$20 \\leqslant n \\leqslant 30$$, 所以当$$m=5$$,$$n=30$$时,$$\\frac{m}{n}=\\frac{1}{6}$$是$$\\frac{m}{n}$$中的最小值, 当$$m=15$$,$$n=20$$时,$$\\frac{m}{n}=\\frac{3}{4}\\left(\\textless\\frac{7}{8}\\right)$$是$$\\frac{m}{n}$$中的最大值, 所以$$\\frac{m}{n}$$中的所有值都在$$\\left[\\frac{1}{6}, \\frac{7}{8}\\right]$$内. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 868 | cd0c0ae91f9c4efd8f847bc63376cf44 | [
"2018~2019学年5月广东深圳罗湖区深圳中学初中部初一上学期周测A卷竞赛班初一第23次第6题3分"
] | 1 | single_choice | 已知方程组$$\begin{cases}{{a}_{1}}x+{{b}_{1}}y={{c}_{1}} {{a}_{2}}x+{{b}_{2}}y={{c}_{1}} \end{cases}$$的解是$$\begin{cases}x=6 y=8 \end{cases}$$,则方程组$$\begin{cases}3{{a}_{1}}x+4{{b}_{1}}y=5{{c}_{1}} 3{{a}_{2}}x+4{{b}_{2}}y=5{{c}_{1}} \end{cases}$$的解是. | [
[
{
"aoVal": "A",
"content": "$$\\begin{cases}x=6 y=8 \\end{cases}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\begin{cases}x=8 y=6 \\end{cases}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\begin{cases}x=8 y=10 \\end{cases}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\begin{cases}x=10 y=10 \\end{cases}$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->二元一次方程组的解",
"课内体系->知识点->方程与不等式->二元一次方程(组)->二元一次方程->由二元一次方程的解求参数的值",
"课内体系->能力->运算能力"
] | [
"方程组$$\\begin{cases}3{{a}_{1}}x+4{{b}_{1}}y=5{{c}_{1}} 3{{a}_{2}}x+4{{b}_{2}}y=5{{c}_{1}} \\end{cases}$$可化为: $$\\begin{cases}{{a}_{1}}\\cdot \\dfrac{3}{5}x+{{b}_{1}}\\cdot \\dfrac{4}{5}y={{c}_{1}} {{a}_{2}}\\cdot \\dfrac{3}{5}x+{{b}_{2}}\\cdot \\dfrac{4}{5}y={{c}_{1}} \\end{cases}$$, ∵方程组$$\\begin{cases}{{a}_{1}}x+{{b}_{1}}y={{c}_{1}} {{a}_{2}}x+{{b}_{2}}y={{c}_{1}} \\end{cases}$$的解是$$\\begin{cases}x=6 y=8 \\end{cases}$$, ∴$$\\begin{cases}\\dfrac{3}{5}x=6 \\dfrac{4}{5}y=8 \\end{cases}$$, ∴$$\\begin{cases}x=10 y=10 \\end{cases}$$. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 984 | ff8080814cfa9b24014cfe9600870a3b | [
"上海自主招生近5年(2015-2019)真题题型分类汇编第15题",
"2017~2018学年5月四川成都天府新区 成都市实验外国语学校(西区)初二下学期月考第10题3分",
"2019~2020学年3月浙江杭州滨江区杭州二中白马湖学校初一下学期周测C卷第9题",
"初二其它",
"1996年第7届希望杯初二竞赛第3题4分"
] | 0 | single_choice | 已知$${{x}^{2}}+ax-12$$能分解成两个整数系数的一次因式的乘积,则符合条件的整数$$a$$的个数是. | [
[
{
"aoVal": "A",
"content": "$$3$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$4$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$6$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$8$$个 "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->因式分解->因式分解的基础->已知因式分解结果求参数"
] | [
"设$$x^{2}+ax-12$$能分解成两个整数系数的一次因式的乘积, 即$$x^{2}+ax-12=(x+m)(x+n)$$,$$m$$,$$n$$是整数, $$\\therefore x^{2}+ax-12=x^{2}+(m+n)x+mn$$, $$\\therefore \\begin{cases}mn=-12 \\m+n=a\\end{cases}$$, $$\\because m$$,$$n$$是整数,且$$mn=-12$$, 有$$\\begin{cases}m=12 \\n=-1\\end{cases}$$,$$\\begin{cases}m=-1 \\n=12\\end{cases}$$,$$\\begin{cases}m=6 \\n=-2\\end{cases}$$,$$\\begin{cases}m=-2 \\n=6\\end{cases}$$, $$\\begin{cases}m=4 \\n=-3\\end{cases}$$,$$\\begin{cases}m=-3 \\n=4\\end{cases}$$,$$\\begin{cases}m=3 \\n=-4\\end{cases}$$,$$\\begin{cases}m=-3 \\n=4\\end{cases}$$,$$\\begin{cases}m=2 \\n=-6\\end{cases}$$, $$\\begin{cases}m=-6 \\n=2\\end{cases}$$,$$\\begin{cases}m=1 \\n=-12\\end{cases}$$,$$\\begin{cases}m=-12 \\n=1\\end{cases}$$,共$$12$$种情况. 而$$a=m+n$$,只有$$6$$种结果, 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 211 | 748d7324fb5c4841a1cb786ac5b57435 | [
"2007年第18届希望杯初一竞赛初赛第6题4分"
] | 1 | single_choice | 已知$$p$$,$$q$$,$$r$$,$$s$$是互不相同的正整数,且满足$$\frac{p}{q}=\frac{r}{s}$$,则( ). | [
[
{
"aoVal": "A",
"content": "$$\\frac{p}{s}=\\frac{r}{q}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{p}{r}=\\frac{s}{q}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{p}{q}=\\frac{p+r}{q+s}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{r}{s}\\ne\\frac{r-p}{s-q}$$ "
}
]
] | [
"课内体系->思想->方程思想",
"课内体系->能力->运算能力",
"课内体系->知识点->三角形->相似三角形->比例线段->比例的综合应用",
"课内体系->知识点->三角形->相似三角形->比例线段->比例线段的性质"
] | [
"可用特殊值法.取$$p=1$$,$$q=2$$,$$r=3$$,$$s=6$$时,满足已知等式$$\\frac{p}{q}=\\frac{r}{s}$$,但选项$$\\text{A}$$、$$\\text{B}$$、$$\\text{D}$$均不成立,则选项$$\\text{C}$$一定成立.证明如下: 设$$\\frac{p}{q}=\\frac{r}{s}=k$$,则$$p=kq$$,$$r=ks$$,$$\\frac{p+r}{q+s}=\\frac{kq+ks}{q+s}=k=\\frac{p}{q}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 77 | 076ed741f2cb4477a682cf71b7054cad | [
"2018~2019学年浙江嘉兴初一上学期期末第7题3分",
"2018~2019学年5月广东深圳罗湖区深圳中学初中部初一上学期周测A卷竞赛班初一第23次第2题3分"
] | 1 | single_choice | 单项式$$3{{x}^{2m}}{{y}^{n-1}}$$与单项式$$-\frac{1}{2}{{x}^{2}}y$$是同类项,则$$m-2n$$的值为. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-3$$ "
}
]
] | [
"课内体系->知识点->式->整式的加减->整式有关的概念->整式->由同类项求参数的值",
"课内体系->知识点->式->整式的加减->整式有关的概念->整式->同类项的定义",
"课内体系->能力->运算能力"
] | [
"由题意,得: $$2m=2$$,$$n-1=1$$. ∴$$m=1$$,$$n=2$$. ∴$$m-2n=1-2\\times 1=-1$$. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 226 | e3078adea4dc48699222686857ba0603 | [
"2017~2018学年广东深圳南山区南山实验教育集团麒麟中学初一下学期开学考试第9题",
"2000年第11届希望杯初一竞赛第10题",
"2017~2018学年江苏无锡江阴市江阴市敔山湾实验学校初三下学期期中第1题3分"
] | 1 | single_choice | 小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与$$1$$之和.若输入$$-1$$,并将所显示的结果再次输入,这时显示的结果应当是(~ ). | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->数->实数->实数运算->其他实数的运算"
] | [
"∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与$$1$$之和, ∴若输入$$-1$$,则显示屏的结果为$${{(-1)}^{2}}+1=2$$,再将$$2$$输入,则显示屏的结果为$${{2}^{2}}+1=5$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 524 | 6c3e0b09b35d43fbbf507435d9cee0ab | [
"2002年竞赛第1题5分",
"2016~2017学年江西景德镇初二下学期期中景德镇一中1班第1题4分",
"2020~2021学年重庆北碚区重庆市西南大学附属中学初二上学期开学考试第10题4分",
"初二上学期其它"
] | 1 | single_choice | 设$$a\textless{}b\textless{}0$$,$${{a}^{2}}+{{b}^{2}}=4ab$$,则$$\frac{a+b}{a-b}$$的值为 . | [
[
{
"aoVal": "A",
"content": "$$\\sqrt{3}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\sqrt{6}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3$$ "
}
]
] | [
"课内体系->知识点->式->分式->分式化简求值->分式化简求值-条件化简求值",
"课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算",
"课内体系->能力->运算能力"
] | [
"$$a+b=-\\sqrt{6ab}$$,$$a-b=-\\sqrt{2ab}$$. ∵$${{a}^{2}}+{{b}^{2}}=4ab$$, ∴$${{a}^{2}}+{{b}^{2}}+2ab={{\\left( a+b \\right)}^{2}}=6ab$$① ∴$${{a}^{2}}+{{b}^{2}}-2ab={{\\left( a-b \\right)}^{2}}=2ab$$② $$\\frac{①}{②}$$,得~~$$\\frac{{{\\left( a+b \\right)}^{2}}}{{{\\left( a-b \\right)}^{2}}}=\\frac{6ab}{2ab}$$ ∵$$a\\textless{}b\\textless{}0$$, ∴$$ab\\textgreater0$$,$$a+b\\textless{}0$$,$$a-b\\textless{}0$$, ∴$$\\frac{{{\\left( a+b \\right)}^{2}}}{{{\\left( a-b \\right)}^{2}}}={{\\left( \\frac{a+b}{a-b} \\right)}^{2}}=3$$, ∴$$\\frac{a+b}{a-b}=\\sqrt{3}$$. 所以选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1026 | ff8080814d56502a014d678da1742146 | [
"2015年第26届全国希望杯初一竞赛复赛第7题"
] | 1 | single_choice | 甲、乙两人沿同一路线骑车(匀速)从$$A$$站到$$B$$站,甲要用$$30$$分钟,乙要用$$40$$分钟.如果乙比甲早出发$$5$$分钟去$$B$$站,则甲追上乙时,是甲出发后的第(~ ). | [
[
{
"aoVal": "A",
"content": "$$12$$分钟 "
}
],
[
{
"aoVal": "B",
"content": "$$13$$分钟 "
}
],
[
{
"aoVal": "C",
"content": "$$14$$分钟 "
}
],
[
{
"aoVal": "D",
"content": "$$15$$分钟 "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->能力->分析和解决问题能力",
"课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的行程问题->一元一次方程的行程问题-追及问题"
] | [
"甲每分钟行驶路程的$$\\frac{1}{30}$$,乙每分钟行驶路程的$$\\frac{1}{40}$$. 设$$x$$分钟后,甲追上乙, 由题意,得$$\\frac{x}{30}=\\frac{x+5}{40}$$, 解得$$x=15$$. 答:甲出发后的第$$15$$分钟,追上乙. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 492 | 249e209ffada4f1b80ebf095e9d9afb8 | [
"1998年第9届希望杯初二竞赛第2试第9题"
] | 2 | single_choice | 在方程组$$\begin{cases}x+y+z=0 {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=-36 \end{cases}$$中,$$x$$,$$y$$,$$z$$是互不相等的整数,那么此方程组的解的组数为( ). | [
[
{
"aoVal": "A",
"content": "$$6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "多于$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "少于$$3$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->方程与不等式->其他方程->高次方程"
] | [
"利用$${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\\left( x+y+z \\right)\\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-xz+yz \\right)=0$$,把原方程组转化为解不定方程$$3xyz=-36$$. 因为$${{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\\left( x+y+z \\right)\\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \\right)=0$$, 所以$${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$$,从而得$$3xyz=-36$$,即$$xyz=-12$$. 因此$$x$$,$$y$$,$$z$$中一定是两正一负,且$$x+y+z=0$$. 又$$12=1\\times 1\\times 12=1\\times 2\\times 6=1\\times 3\\times 4=2\\times 2\\times 3$$, 则上述两种组合中,只有$$12=1\\times 3\\times 4$$符合条件. 所以$$\\begin{cases}x=1 y=3 z=-4 \\end{cases}$$或$$\\begin{cases}x=1 y=-4 z=3 \\end{cases}$$或$$\\begin{cases}x=3 y=1 z=-4 \\end{cases}$$或$$\\begin{cases}x=3 y=-4 z=1 \\end{cases}$$或$$\\begin{cases}x=-4 y=1 z=3 \\end{cases}$$或$$\\begin{cases}x=-4 y=3 z=1 \\end{cases}$$, 共有$$6$$个解. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1445 | ca4701a6df9a4747b872b655b4fe43c3 | [
"2013年第24届全国希望杯初二竞赛初赛第23题8分"
] | 2 | single_choice | 若关于$$x$$的方程$$\frac{2}{x-2}+\frac{mx}{{{x}^{2}}-4}=\frac{3}{x+2}$$有增根,则$$m$$的值为 . | [
[
{
"aoVal": "A",
"content": "$$-4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$6$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-4$$或$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "不确定 "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->方程与不等式->分式方程->分式方程的解与解分式方程->分式方程的增根问题"
] | [
"当$$x\\ne \\pm 2$$时,可在方程两边同乘$${{x}^{2}}-4$$, 得$$2(x+2)+mx=3(x-2)$$, 当$${{x}^{2}}-4=0$$,即$$x=\\pm 2$$时,方程有增根. 将$$x=\\pm 2$$分别代入上式,得$$m=-4$$或$$6$$. 综上,当$$m=-4$$或$$6$$时,方程有增根. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1024 | ff8080814d56502a014d6781ad62210e | [
"2015年第26届全国希望杯初一竞赛复赛第2题"
] | 0 | single_choice | 若$$a+2015=0$$,则$$a-2015$$的值是(~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$-4030$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-2015$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2015$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->数->有理数->有理数基础运算->有理数减法->有理数减法运算",
"课内体系->知识点->数->有理数->有理数基础运算->有理数减法->有理数加减混合运算"
] | [
"∵$$a+2015=0$$, ∴$$a=-2015$$, ∴$$a-2015=-4030$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 664 | 48da6e491bc14283a5fa413bebc254e2 | [
"2013年竞赛第9题3分"
] | 2 | single_choice | 实数$$a$$,$$b$$,$$c$$,$$d$$满足:一元二次方程$${{x}^{2}}+cx+d=0$$的两根为$$a$$,$$b$$,一元二次方程$${{x}^{2}}+ax+b=0$$的两根为$$c$$,$$d$$,则所有满足条件的数组$$\left( a , b , c , d \right)$$共~\uline{~~~~~~~~~~}~组. | [
[
{
"aoVal": "A",
"content": "1组 "
}
],
[
{
"aoVal": "B",
"content": "2组 "
}
],
[
{
"aoVal": "C",
"content": "3组 "
}
],
[
{
"aoVal": "D",
"content": "无数组 "
}
]
] | [
"竞赛->知识点->方程与不等式->二次方程->一元二次方程的根与系数的关系"
] | [
"由一元二次方程根与系数的关系得 $$\\begin{cases}a+b=-c ab=d c+d=-a cd=b \\end{cases}$$, 由上式,可知$$b=-a-c=d$$. 若$$b=d\\ne 0$$,则$$a=\\frac{d}{b}=1$$,$$c=\\frac{b}{d}=1$$,进而$$b=d=-a-c=-2$$. 若$$b=d=0$$,则$$c=-a$$,有$$\\left( a , b , c , d \\right)=\\left( t , 0 , -t , 0 \\right)$$($$t$$为任意实数). 经检验,数组$$\\left( 1 , -2 , 1 , -2 \\right)$$与$$\\left( t , 0 , -t , 0 \\right)$$($$t$$为任意实数)满足条件. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1035 | ff8080814d7978b9014d865320cd23ac | [
"1990年第1届全国希望杯初一竞赛初赛第2题"
] | 1 | single_choice | 下面的说法中正确的是(~ ~ ~). | [
[
{
"aoVal": "A",
"content": "单项式与单项式的和是单项式 "
}
],
[
{
"aoVal": "B",
"content": "单项式与单项式的和是多项式 "
}
],
[
{
"aoVal": "C",
"content": "多项式与多项式的和是多项式 "
}
],
[
{
"aoVal": "D",
"content": "整式与整式的和是整式 "
}
]
] | [
"课内体系->知识点->式->整式的加减->整式有关的概念->单项式->单项式的定义",
"课内体系->知识点->式->整式的加减->整式有关的概念->多项式->多项式的定义"
] | [
"$${{x}^{2}}$$,$$2{{x}^{2}}$$,$${{x}^{3}}$$都是单项式. 两个单项式$${{x}^{3}}$$,$${{x}^{2}}$$之和为$${{x}^{3}}+{{x}^{2}}$$是多项式,排除$$\\text{A}$$. 两个单项式$${{x}^{2}}$$,$$2{{x}^{2}}$$之和为$$3{{x}^{2}}$$是单项式,排除$$\\text{B}$$. 两个多项式$${{x}^{3}}+{{x}^{2}}$$与$${{x}^{3}}-{{x}^{2}}$$之和为$$2{{x}^{3}}$$是个单项式,排除$$\\text{C}$$,因此选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 834 | c3c16d8dec3547b6b6ce45bd4cc3d008 | [
"2023年浙江宁波初三竞赛鄞州区联考学校:鄞实、曙光、鄞外、高桥、雅戈尔、集士港"
] | 0 | single_choice | 下列计算正确的是. | [
[
{
"aoVal": "A",
"content": "$$3{{x}^{3}}\\cdot 2{{x}^{2}} y=6{{x}^{5}}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2{{a}^{2}}\\cdot 3{{a}^{3}}=6{{a}^{5}}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\left( -2x \\right)\\cdot \\left( -5{{x}^{2}} y \\right)= -10 {{x}^{3}}y$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\left( -2xy \\right)\\cdot \\left( -3{{x}^{2}}y \\right)=6{{x}^{3}}y$$ "
}
]
] | [
"课内体系->方法->整体法",
"课内体系->知识点->式->整式的乘除->整式的乘除运算->单项式乘单项式",
"课内体系->思想->整体思想",
"课内体系->能力->运算能力"
] | [
"$A.$$3x^{2}\\times2x^{2}y=6x^{5}y,故此选项错误;$ $B.2a^{2}\\times3a^{3}=6a^{5},故此选项正确;$ $C.(-2x)\\times(-5x^{2}y)=10x^{3}y,故此选项错误;$ $D.(-2xy)\\times(-3x^{2}y)=6x^{3}y^{2},故此选项错误.$ 故选$B.$ "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1012 | 96d5c362907b420d99f4751e5f106fc3 | [
"2020年第22届浙江宁波余姚市余姚市实验学校初三竞赛(实验杯)第6题4分"
] | 1 | single_choice | 函数$$y=-2x^{2}-4x-1(-3\leqslant x\leqslant 0)$$的最大值与最小值之和是. | [
[
{
"aoVal": "A",
"content": "$$-6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-8$$ "
}
]
] | [
"课内体系->知识点->函数->二次函数->二次函数y=ax^2+bx+c 的图象和性质->二次函数y=ax^2+bx+c 的最值问题->给定范围求二次函数最值"
] | [
"∵$$y=-2x^{2}-4x-1$$ $$=-2(x^{2}+2x+1)+1$$ $$=-2(x+1)^{2}+1$$ ∴二次函数的对称轴为直线$$x=-1$$且$$a=-2\\textless0$$, ∴当$$-3\\leqslant x\\leqslant -1$$时, $$y$$随$$x$$的增大而增大, ∴最大值为:$$1$$, 最小值为:$$-2(-3+1)^{2}+1=-7$$, 当$$-1\\textless x\\leqslant 0$$时, $$y$$随$$x$$的增大而减小, 此时最小值为:$$-2(0+1)^{2}+1=-1$$, ∴综上,最小值为$$-7$$,最大值为$$1$$, ∴他们之和为:$$-7+1=-6$$, 故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 884 | 5c7f743a69254c2d82b476e42885e2f8 | [
"全国全国初中数学联赛竞赛C卷"
] | 2 | single_choice | 若$$\begin{cases}{{a}^{4}}+9=2b(2c+b) {{b}^{4}}+9=2c(2a+c) {{c}^{4}}+9=2a(2b+a) \end{cases}$$,则$$a-b+c$$的值为(~ ). | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\pm 1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\pm \\sqrt{3}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\pm 3$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->整式的乘除->乘法公式->配方思想的运用"
] | [
"$$\\left. \\begin{matrix}{{a}^{4}}+9=4bc+2{{b}^{2}} {{a}^{4}}+9=4ca+2{{c}^{2}} {{a}^{4}}+9=4ab+2{{a}^{2}} \\end{matrix} \\right }\\Rightarrow {{a}^{4}}+9+{{b}^{4}}+9+{{c}^{4}}+9-2{{a}^{2}}-2{{b}^{2}}-2{{c}^{2}}-4bc-4ca-4ab=0$$ $${{({{a}^{2}}-3)}^{2}}+{{(b^{2}-3)}^{2}}+({{c}^{2}}-3)^{2}+2[{{(a-b)}^{2}}+{{(b-c)}^{2}}+(c-a)^{2}]=0$$. $$\\therefore $$$$a=b=c=\\pm \\sqrt{3}$$,故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 122 | 1c8ff85333564991ae0610f649e9a658 | [
"2003年第20届全国初中数学联赛竞赛第4题7分",
"初三上学期其它"
] | 2 | single_choice | 满足等式$$x\sqrt{y}+\sqrt{x}y-\sqrt{2003x}-\sqrt{2003y}+\sqrt{2003xy}=2003$$的正整数对$$\left( x,y \right)$$的个数是. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->方程与不等式->其他方程->无理方程"
] | [
"\\textbf{(知识点:无理方程)} 已知等式可化为 $$\\sqrt{y}{{\\left( \\sqrt{x} \\right)}^{2}}+\\left[ {{\\left( \\sqrt{y} \\right)}^{2}}+\\sqrt{2003}\\sqrt{y}-\\sqrt{2003} \\right]\\sqrt{x}$$$$-\\sqrt{2003}\\left( \\sqrt{y}+\\sqrt{2003} \\right)=0$$, 所以$$\\left( \\sqrt{y}\\sqrt{x}-\\sqrt{2003} \\right)\\left( \\sqrt{x}+\\sqrt{y}+\\sqrt{2003} \\right)=0$$. 又由题意,$$\\sqrt{x}+\\sqrt{y}+\\sqrt{2003}\\textgreater0$$, 则$$\\sqrt{y}\\sqrt{x}-\\sqrt{2003}=0\\Rightarrow xy=2003$$. 而$$2003$$为质数,且$$x$$、$$y$$为正整数,所以$$\\left( x,y \\right)=\\left( 2003,1 \\right)$$,$$\\left( 1,2003 \\right)$$.所以选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1514 | fd0469990a634e099fb60b7bf6ee9cca | [
"2009年全美数学竞赛(AMC)竞赛"
] | 2 | single_choice | 有多少个三位数,其各个数位之积等于$$24$$?. | [
[
{
"aoVal": "A",
"content": "$$12$$ "
}
],
[
{
"aoVal": "B",
"content": "$$15$$ "
}
],
[
{
"aoVal": "C",
"content": "$$18$$ "
}
],
[
{
"aoVal": "D",
"content": "$$21$$ "
}
],
[
{
"aoVal": "E",
"content": "$$24$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘法->有理数乘法运算",
"美国AMC8->Knowledge Point->Number Theory->Factors and Multiples->Factors and Multiples Basics",
"美国AMC8->Knowledge Point->Number Theory->Place Value and Number Bases->Numbers and Digits"
] | [
"有多少个三位数,其各个数位之积等于$$24$$? 从最小到最大列出的数字,三位整数位$$138$$,$$146$$,$$226$$,$$234$$,$$226$$可按$$\\frac{3!}{2!}=3$$方式排列,其他三种可按$$3!=6$$方式排列,有$$3+6(3)=\\text{D}21$$个三位数的正整数. With the digits listed from least to greatest, the $$3$$-digit integers are $$138$$, $$146$$, $$226$$, $$234$$, $$226$$ can be arranged in $$\\frac{3!}{2!}=3$$ ways, and the other three can be arranged in $$3!= 6 $$ways. There are $$3+6(3)=21$$,$$3$$-digit positive integers. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1347 | 8aac50a75139269a0151626e686052f8 | [
"初三上学期其它",
"2010年竞赛第2题7分"
] | 1 | single_choice | 若实数$$a$$、$$b$$满足$$\frac{1}{2}a-ab+{{b}^{2}}+2=0$$,则实数$$a$$的取值范围是. | [
[
{
"aoVal": "A",
"content": "$$a\\leqslant -2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$a\\geqslant 4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$a\\leqslant -2$$或$$a\\geqslant 4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-2\\leqslant a\\leqslant 4$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->一元二次方程->根的判别式的应用->由一元二次方程根的情况确定参数",
"课内体系->知识点->方程与不等式->一元二次方程->根的判别式的应用->一元二次方程根的判别式"
] | [
"原方程即为$${{b}^{2}}-ab+\\frac{1}{2}a+2=0$$, $$\\Delta ={{(-a)}^{2}}-4(\\frac{1}{2}a+2)\\geqslant 0$$, 解得$$a\\leqslant -2$$或$$a\\geqslant 4$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 451 | 31159716cf6245d29285293701a16c56 | [
"2009年第20届希望杯初二竞赛第2试第5题"
] | 1 | single_choice | 面积是$$48$$的矩形的边长和对角线的长都是整数,则它的周长等于( ). | [
[
{
"aoVal": "A",
"content": "$$20$$ "
}
],
[
{
"aoVal": "B",
"content": "$$28$$ "
}
],
[
{
"aoVal": "C",
"content": "$$36$$ "
}
],
[
{
"aoVal": "D",
"content": "$$40$$ "
}
]
] | [
"竞赛->知识点->数论->整除->整除的概念与基本性质"
] | [
"设矩形的边长分别是$$a$$、$$b$$,对角线的长是$$c$$,则$${{a}^{2}}+{{b}^{2}}={{c}^{2}}$$. 已知矩形的面积是$$ab=48=3\\times {{2}^{4}}$$,$$a$$,$$b$$都是整数,不妨设$$\\alpha \\leqslant b$$,则$$(a,b)$$可能是 $$(1,48)$$,$$(2,24)$$,$$(3,16)$$,$$(4,12)$$,$$(6,8)$$, 分别代入$${{a}^{2}}+{{b}^{2}}={{c}^{2}}$$,只有当$$a=6$$,$$b=8$$时,$$c$$才是整数$$10$$,其他情况得到的$$c$$的值都不是整数. 所以,矩形的边长分别是$$6$$、$$8$$,周长是$$28$$. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 478 | 314565bad37c41a0a0d2254a9cefd32f | [
"2016年全国华杯赛初一竞赛"
] | 2 | single_choice | 已知$$x+y+z=5$$,$$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=5$$,$$xyz=1$$,则$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}=$$~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$10$$ "
}
],
[
{
"aoVal": "C",
"content": "$$15$$ "
}
],
[
{
"aoVal": "D",
"content": "$$20$$ "
}
]
] | [
"知识标签->知识点->式->分式->分式的运算->分式的加减",
"知识标签->知识点->式->整式的乘除->乘法公式->完全平方公式",
"知识标签->学习能力->运算能力",
"知识标签->题型->式->整式的乘除->乘法公式->题型:利用完全平方公式计算"
] | [
"∵$$\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z}=5$$,$$xyz=1$$, ∴$$\\frac{yz+xz+xy}{xyz}=5$$,即$$xy+yz+xz=5$$. ∵$$x+y+z=5$$, ∴$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{\\left( x+y+z \\right)}^{2}}-2\\left( xy+yz+xz \\right)=15$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 118 | 33874ebe19b74c32ac21913d7e26a4f1 | [
"2011年第22届全国希望杯初二竞赛复赛第1题4分"
] | 1 | single_choice | 已知$$A:B=\sqrt[3]{2}:\sqrt{3}$$,$$A=\sqrt{2}$$,$$C=\sqrt{\frac{29}{10}}$$,则$$B$$,$$C$$的大小关系是 . | [
[
{
"aoVal": "A",
"content": "$$B\\textgreater C$$ "
}
],
[
{
"aoVal": "B",
"content": "$$B=C$$ "
}
],
[
{
"aoVal": "C",
"content": "$$B\\textless{}C$$ "
}
],
[
{
"aoVal": "D",
"content": "不确定 "
}
]
] | [
"课内体系->知识点->数->实数->无理数有关的计算->无理数的估算",
"课内体系->知识点->数->实数->无理数有关的计算->无理数大小的比较"
] | [
"因为$$\\sqrt[3]{2}\\textless{}\\sqrt{2}$$, 则由题设得$$B=\\frac{\\sqrt{3}}{\\sqrt[3]{2}}A\\textgreater\\frac{\\sqrt{3}}{\\sqrt{2}}A=\\sqrt{3}$$, 而$$C=\\sqrt{2.9}\\textless{}\\sqrt{3}$$, 所以$$B\\textgreater C$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 594 | 9e354f530dc84fe68cc2cce7669ed7fd | [
"2001年第12届希望杯初一竞赛第10题",
"初一上学期单元测试《一元一次方程》第20题"
] | 1 | single_choice | 若$$k$$为整数,则使得方程$$(k-1999)x=2001-2000x$$的解也是整数的$$k$$值有(~ ) | [
[
{
"aoVal": "A",
"content": "$$4$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$8$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$12$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$16$$个 "
}
]
] | [
"课内体系->知识点->方程与不等式->一元一次方程->含参一元一次方程->一元一次方程的含参整数解"
] | [
"$$x=\\frac{2001}{k+1}$$为整数,又$$2001=1\\times 3\\times 23\\times 29$$, $$k+1$$可取$$\\pm 1$$、$$\\pm 3$$、$$\\pm 23$$、$$\\pm 29$$、$$\\pm (3\\times 23)$$、$$\\pm (3\\times 29)$$、$$\\pm (23\\times 29)$$、$$\\pm 2001$$共$$16$$个值, 其对应的$$k$$值也有$$16$$个. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 764 | ba51df32a06a4d0fb8b1685e2cf0d7c1 | [
"2000年第17届全国初中数学联赛竞赛第2题7分"
] | 2 | single_choice | 若$$\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}$$,则$$\frac{4{{x}^{2}}-5xy+6{{y}^{2}}}{{{x}^{2}}-2xy+3{{y}^{2}}}$$的值是. | [
[
{
"aoVal": "A",
"content": "$$\\frac{9}{2}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{9}{4}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
]
] | [
"课内体系->知识点->式->整式的乘除->整式的乘除运算->多项式除以多项式",
"课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算",
"课内体系->能力->运算能力"
] | [
"首先,我们可以利用已知的三个相等的分式,求出$$x$$,$$y$$之间的关系: 由$$\\frac{x}{3y}=\\frac{y}{2x-5y}$$,得到$$2{{x}^{2}}-5xy-3{{y}^{2}}=0$$,将$$2{{x}^{2}}-5xy-3{{y}^{2}}$$进行因式分解得到: $$2{{x}^{2}}-5xy-3{{y}^{2}}=\\left( x-3y \\right)\\left( 2x+y \\right)=0$$, $$\\therefore $$$$x=3y$$或$$y=-2x$$. 若$$y=-2x$$,$$\\frac{6x-15y}{x}=36$$,而$$\\frac{x}{3y}=\\frac{1}{6}$$, $$\\therefore $$$$\\frac{y}{2x-5y}\\ne \\frac{6x-15y}{x}$$. 若$$x=3y$$,则$$\\frac{x}{3y}=\\frac{y}{2x-5y}=\\frac{6x-15y}{x}=1$$, $$\\therefore $$$$x=3y$$. 将$$x=3y$$代入分式中得:$$\\frac{4{{x}^{2}}-5xy+6{{y}^{2}}}{{{x}^{2}}-2xy+3{{y}^{2}}}=\\frac{36{{y}^{2}}-15{{y}^{2}}+6{{y}^{2}}}{9{{y}^{2}}-6{{y}^{2}}+3{{y}^{2}}}=\\frac{9}{2}$$. ",
"<p>由已知条件知$$x\\ne 0$$,$$y\\ne 0$$,</p>\n<p>把已知等式变形并利用等比消去$$y$$,</p>\n<p>得$$\\frac{25x}{75y}=\\frac{15y}{30x-75y}=\\frac{6x-15y}{x}$$</p>\n<p>$$=\\frac{25x+15y+\\left( 6x-15y \\right)}{75y+\\left( 30x-75y \\right)+x}$$</p>\n<p>$$=\\frac{31x}{31x}$$</p>\n<p>$$=1$$,</p>\n<p>则$$x=3y$$,</p>\n<p>故$$\\frac{4{{x}^{2}}-5xy+6{{y}^{2}}}{{{x}^{2}}-2xy+3{{y}^{2}}}$$</p>\n<p>$$=\\frac{36{{y}^{2}}-15{{y}^{2}}+6{{y}^{2}}}{9{{y}^{2}}-6{{y}^{2}}+3{{y}^{2}}}$$</p>\n<p>$$=\\frac{27{{y}^{2}}}{6{{y}^{2}}}$$</p>\n<p>$$=\\frac{9}{2}$$.</p>"
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 562 | be742ed808a14b6ca24cf542eb711fb7 | [
"1998年第9届希望杯初一竞赛第5题"
] | 1 | single_choice | 若$$19a+98b=0$$,则$$ab$$是( ). | [
[
{
"aoVal": "A",
"content": "正数 "
}
],
[
{
"aoVal": "B",
"content": "非正数 "
}
],
[
{
"aoVal": "C",
"content": "负数 "
}
],
[
{
"aoVal": "D",
"content": "非负数 "
}
]
] | [
"课内体系->知识点->式->整式的乘除->整式乘除化简求值->整式乘除化简求值-条件化简求值",
"课内体系->能力->运算能力"
] | [
"∵$$19a+98b=0$$, ∴$$a=-\\frac{98}{19}b$$, ∴$$ab=-\\frac{98}{19}{{b}^{2}}\\leqslant 0$$, 故$$ab$$为非正数. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 880 | 69cd5e4311bc4895a9b87571fc3b1b65 | [
"1996年第7届希望杯初二竞赛第3题",
"上海自主招生近5年(2015-2019)真题题型分类汇编第15题",
"2017~2018学年5月四川成都天府新区 成都市实验外国语学校(西区)初二下学期月考第10题3分",
"初二其它",
"2019~2020学年3月浙江杭州滨江区杭州二中白马湖学校初一下学期周测C卷第9题"
] | 0 | single_choice | 已知$${{x}^{2}}+ax-12$$能分解成两个整数系数的一次因式的乘积,则符合条件的整数$$a$$的个数是. | [
[
{
"aoVal": "A",
"content": "$$3$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$4$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$6$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$8$$个 "
}
]
] | [
"课内体系->知识点->式->因式分解->因式分解的基础->已知因式分解结果求参数",
"课内体系->能力->运算能力"
] | [
"设$$x^{2}+ax-12$$能分解成两个整数系数的一次因式的乘积, 即$$x^{2}+ax-12=(x+m)(x+n)$$,$$m$$,$$n$$是整数, $$\\therefore x^{2}+ax-12=x^{2}+(m+n)x+mn$$, $$\\therefore \\begin{cases}mn=-12 \\m+n=a\\end{cases}$$, $$\\because m$$,$$n$$是整数,且$$mn=-12$$, 有$$\\begin{cases}m=12 \\n=-1\\end{cases}$$,$$\\begin{cases}m=-1 \\n=12\\end{cases}$$,$$\\begin{cases}m=6 \\n=-2\\end{cases}$$,$$\\begin{cases}m=-2 \\n=6\\end{cases}$$, $$\\begin{cases}m=4 \\n=-3\\end{cases}$$,$$\\begin{cases}m=-3 \\n=4\\end{cases}$$,$$\\begin{cases}m=3 \\n=-4\\end{cases}$$,$$\\begin{cases}m=-3 \\n=4\\end{cases}$$,$$\\begin{cases}m=2 \\n=-6\\end{cases}$$, $$\\begin{cases}m=-6 \\n=2\\end{cases}$$,$$\\begin{cases}m=1 \\n=-12\\end{cases}$$,$$\\begin{cases}m=-12 \\n=1\\end{cases}$$,共$$12$$种情况. 而$$a=m+n$$,只有$$6$$种结果, 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1554 | eb2e48c768ee4ababc569070373ab54e | [
"2014年第25届全国希望杯初一竞赛初赛第9题4分"
] | 1 | single_choice | 若实数$$x$$,$$y$$,$$z$$满足$$\left\textbar{} x+z \right\textbar+{{(x-y)}^{2}}=0$$,则$${{\left( \frac{x}{z} \right)}^{2}}+{{\left( \frac{y}{x} \right)}^{2}}$$的值为(~ ). | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0$$ "
}
]
] | [
"课内体系->知识点->数->实数->平方根->非负性的应用",
"课内体系->知识点->数->有理数->绝对值->绝对值的非负性",
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->有理数乘方运算",
"课内体系->能力->运算能力"
] | [
"由绝对值得非负性及完全平方的非负性, 可知$$x+z=0$$,$$x-y=0$$, ∴$$\\frac{x}{z}=-1$$,$$\\frac{y}{x}=1$$, ∴$${{\\left( \\frac{x}{z} \\right)}^{2}}+{{\\left( \\frac{y}{x} \\right)}^{2}}=1+1=2$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 550 | 31f5862a634f4731959595a6d7dce35d | [
"2002年第13届希望杯初一竞赛第1试第4题"
] | 1 | single_choice | 下面四个命题中,正确的是. | [
[
{
"aoVal": "A",
"content": "一切有理数的倒数还是有理数 "
}
],
[
{
"aoVal": "B",
"content": "一切正有理数的相反数必是负有理数 "
}
],
[
{
"aoVal": "C",
"content": "一切有理数的绝对值必是正有理数 "
}
],
[
{
"aoVal": "D",
"content": "一切有理数的平方是正有理数 "
}
]
] | [
"竞赛->知识点->数与式->绝对值->绝对值的代数意义"
] | [
"因为有理数$$0$$无倒数;$$0$$的绝对值是零,不是正有理数;$$0$$的平方是$$0$$,$$0$$不是正有理数. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 980 | 81091b0f5e7941a08ab5f5ea71ff2394 | [
"2020~2021学年6月重庆渝中区重庆市巴蜀中学校初一下学期周测C卷第10题4分",
"2018~2019学年5月广东深圳罗湖区深圳市罗湖区翠园中学(初中部)初一下学期周测B卷(竞赛班)第10题2分",
"2018~2019学年河北石家庄新华区石家庄第四十二中学初一下学期期中第16题3分"
] | 2 | single_choice | 已知关于$$x$$的方程$$9x-3=kx+14$$有整数解,且关于$$x$$的不等式组$$\begin{cases}\dfrac{x+15}{2}\textgreater x+5 \dfrac{3x}{2}\geqslant \dfrac{k-2}{8}-2x \end{cases}$$有且只有$$4$$个整数解,则满足条件的整数$$k$$有个. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式组->解一元一次不等式组",
"课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的整数解情况求参数范围",
"课内体系->能力->运算能力"
] | [
"解关于$$x$$的方程$$9x-3=kx+14$$得:$$x=\\frac{17}{9-k}$$, ∵方程有整数解, ∴$$9-k=\\pm 1$$或$$9-k=\\pm 17$$, 解得:$$k=8$$或$$10$$或$$-8$$或$$26$$, 解不等式组$$\\begin{cases}\\dfrac{x+15}{2}\\textgreater x+5 \\dfrac{3x}{2}\\geqslant \\dfrac{k-2}{8}-2x \\end{cases}$$,得不等式组的解集为$$\\frac{k-2}{28}\\leqslant x\\textless{}5$$, ∵不等式组有且只有四个整数解, ∴$$0\\textless{}\\frac{k-2}{28}\\leqslant 1$$,解得:$$2\\textless{}k\\leqslant 30$$, 所以满足条件的整数$$k$$的值为$$8$$或$$10$$或$$26$$. 故答案选:$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 991 | 6f35b6fd46374be4a8591eee27daace2 | [
"2013年第24届全国希望杯初二竞赛复赛第1题4分"
] | 0 | single_choice | 在无理数$$\sqrt{5}$$,$$\sqrt{6}$$,$$\sqrt{7}$$,$$\sqrt{8}$$中,介于$$\frac{\sqrt{8}+1}{2}$$与$$\frac{\sqrt{26}+1}{2}$$之间的数有(~ ). | [
[
{
"aoVal": "A",
"content": "$$1$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$2$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$3$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$4$$个 "
}
]
] | [
"课内体系->知识点->数->实数->无理数有关的计算->无理数大小的比较"
] | [
"因为$$\\sqrt{8}\\textless{}\\sqrt{9}=3$$, 所以$$\\frac{\\sqrt{8}+1}{2}\\textless{}\\frac{3+1}{2}=2$$. 因为$$\\sqrt{26}\\textgreater\\sqrt{25}=5$$, 所以$$\\frac{\\sqrt{26}+1}{2}\\textgreater\\frac{5+1}{2}=3$$. 因为无理数$$\\sqrt{5}$$,$$\\sqrt{6}$$,$$\\sqrt{7}$$,$$\\sqrt{8}$$都介于$$2$$与$$3$$之间, 所以在无理数$$\\sqrt{5}$$,$$\\sqrt{6}$$,$$\\sqrt{7}$$,$$\\sqrt{8}$$中,介于$$\\frac{\\sqrt{8}+1}{2}$$与$$\\frac{\\sqrt{26}+1}{2}$$之间的数有$$4$$个. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 568 | 7594601d492e48b18ecd962567ca1886 | [
"2001年第12届希望杯初二竞赛第2试第9题"
] | 1 | single_choice | 已知两个不同的质数$$p$$、$$q$$满足下列关系:$$p^{2}-2001p+m=0$$,$$q^{2}-2001q+m=0$$,$$m$$是适当的整数,那么$$p^{2}+q^{2}$$的数值是( ~). | [
[
{
"aoVal": "A",
"content": "$$4004006$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3996005$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3996003$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4004004$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->含乘方的有理数混合运算",
"课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数四则混合运算"
] | [
"两式相减,得$$(p-q)(p+q-2001)=0$$, ∵$$p\\ne q$$, ∴$$p+q=2001$$,而$$p$$、$$q$$为质数, ∴$$p$$、$$q$$中有一个为$$2$$,另一个为$$1999$$. ∴$$p^{2}+q^{2}=2^{2}+1999^{2}=3996005$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 147 | 0fe4c094fff34652999c56637e3e5e4e | [
"2015年第26届全国希望杯初一竞赛复赛第9题"
] | 1 | single_choice | 小明、小红、小华、小彬四人中的一人书包里有苹果,老师问:谁的书包里有苹果?四人回答如下: 小明:苹果不在我这里; 小红:苹果在小彬那里; 小华:苹果在小红那里; 小彬:苹果不在我这里. 若其中只有一人说了假话,则书包里有苹果的是( ~ ~). | [
[
{
"aoVal": "A",
"content": "小明 "
}
],
[
{
"aoVal": "B",
"content": "小红 "
}
],
[
{
"aoVal": "C",
"content": "小华 "
}
],
[
{
"aoVal": "D",
"content": "小彬 "
}
]
] | [
"小升初->小升初知识点->组合模块->逻辑推理"
] | [
"用假设法: ($$1$$)假设小明说了假话,那么苹果在小明那里,小红和小华就说的是假话,与题设冲突; ($$2$$)假设小红说的是假话,其他人说的都是真话,那么苹果在小红那里; ($$3$$)假设小华说了假话,则小红说``苹果在小彬那里''与小彬说``苹果不在我这里''都是真话,互相矛盾; ($$4$$)假设小彬说的是假话,那么小华说的就是假话,这样小彬、小华都说假话,与``其中只有一人说的是假话''的题设不符. 因此苹果在小红那里. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1157 | a04c036d3b8a43f4bec67b538bae6e32 | [
"2019年第1届广东深圳罗湖区深圳中学初中部初一竞赛(凤凰木杯)第3题3分"
] | 1 | single_choice | 已知$$m=1+ \sqrt{2}$$,$$n=1- \sqrt{2}$$且$$(7{{m}^{2}}-14m+a)(3{{n}^{2}}-6n-7)=8$$,则$$a$$的值等于. | [
[
{
"aoVal": "A",
"content": "$$-9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"竞赛->知识点->数与式->二次根式->二次根式的性质与运算"
] | [
"由 $$m=1+ \\sqrt{2}$$得$$m-1=\\sqrt{2}$$, 两边平方,得$${{m}^{2}}-2m+1=2$$, 即$${{m}^{2}}-2m=1$$,同理得$${{n}^{2}}-2n=1$$, 又$$(7{{m}^{2}}-14m+a)(3{{n}^{2}}-6n-7)=8$$, 所以$$\\left( 7+a \\right)\\left( 3-7 \\right)=8$$, 解得$$a=-9$$, 故选:$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1262 | 8aac50a74e023208014e3f5aeca71935 | [
"1995年第6届全国希望杯初一竞赛初赛第10题"
] | 2 | single_choice | 已知$$A={{a}^{2}}+{{b}^{2}}-{{c}^{2}}$$,$$B=-4{{a}^{2}}+2{{b}^{2}}+3{{c}^{2}}$$,若$$A+B+C=0$$,则$$C=$$(~ ). | [
[
{
"aoVal": "A",
"content": "$$5{{a}^{2}}+3{{b}^{2}}+2{{c}^{2}}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5{{a}^{2}}-3{{b}^{2}}+4{{c}^{2}}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3{{a}^{2}}-3{{b}^{2}}-2{{c}^{2}}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3{{a}^{2}}+{{b}^{2}}+4{{c}^{2}}$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->整式的加减->整式的加减运算->整式加减",
"课内体系->知识点->式->整式的加减->整式有关的概念->整式->整式的定义"
] | [
"∵$$A+B+C=0$$, ∴$$C=-A-B=-\\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \\right)-\\left( -4{{a}^{2}}+2{{b}^{2}}+3{{c}^{2}} \\right)$$ $$=-{{a}^{2}}-{{b}^{2}}+{{c}^{2}}+4{{a}^{2}}-2{{b}^{2}}-3{{c}^{2}}=3{{a}^{2}}-3{{b}^{2}}-2{{c}^{2}}$$.选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1585 | f9a0e198ece44318bf70d1711f07589d | [
"2007年第18届希望杯初二竞赛第1试第2题"
] | 0 | single_choice | 若$$x=1$$满足$$2m{{x}^{2}}-{{m}^{2}}x-m=0$$,则$$m$$的值是. | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0$$或$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "任意实数 "
}
]
] | [
"竞赛->知识点->方程与不等式->含参方程"
] | [
"将$$x=1$$代入到题设的等式,得:$$m-{{m}^{2}}=0$$, 解得$$m=0$$或$$1$$. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1564 | ddb72402fedc42cbb864a6ef6b6df448 | [
"2011年第22届全国希望杯初二竞赛初赛第17题4分"
] | 3 | single_choice | 设完全平方数$$A$$是$$11$$个连续整数的平方和,则$$A$$的最小值是~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$81$$ "
}
],
[
{
"aoVal": "B",
"content": "$$100$$ "
}
],
[
{
"aoVal": "C",
"content": "$$121$$ "
}
],
[
{
"aoVal": "D",
"content": "$$144$$ "
}
]
] | [
"课内体系->能力->抽象概括能力",
"课内体系->能力->运算能力",
"课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式",
"竞赛->知识点->数论->同余->完全平方数"
] | [
"设$$11$$个连续整数中,中间的数为$$x$$, 则这$$11$$个数的平方和可以写成 $${{(x-5)}^{2}}+{{(x-4)}^{2}}+\\cdots +{{x}^{2}}+\\cdots +{{(x+4)}^{2}}+{{(x+5)}^{2}}$$ $$=11{{x}^{2}}+2({{5}^{2}}+{{4}^{2}}+{{3}^{2}}+{{2}^{2}}+{{1}^{2}})$$ $$=11({{x}^{2}}+10)$$, 则$$A=11({{x}^{2}}+10)$$, 当$$x=\\pm 1$$时,$$A$$取最小值$$121$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 63 | 8aac50a7519fa10a0151b8248cd34eeb | [
"2016年初二上学期其它",
"2010年第21届希望杯初二竞赛第2试第2题"
] | 1 | single_choice | 若$$\frac{x}{2}-\frac{y}{3}=1$$,则代数式$$\frac{9x+y-18}{9x-y-18}$$的值. | [
[
{
"aoVal": "A",
"content": "等于$$\\frac{7}{5}$$ "
}
],
[
{
"aoVal": "B",
"content": "等于$$\\frac{5}{7}$$ "
}
],
[
{
"aoVal": "C",
"content": "等于$$\\frac{5}{7}$$或不存在 "
}
],
[
{
"aoVal": "D",
"content": "等于$$\\frac{7}{5}$$或不存在 "
}
]
] | [
"课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算",
"课内体系->知识点->式->分式->分式化简求值->分式化简求值-整体代入求值",
"课内体系->知识点->式->分式->分式化简求值->分式化简求值-条件化简求值",
"课内体系->能力->运算能力"
] | [
"∵$$\\frac{x}{2}-\\frac{y}{3}=1$$,∴$$y=\\frac{3}{2}x-3$$, 将其代入代数式,得$$\\frac{9x+y-18}{9x-y-18}=\\frac{9x+\\frac{3}{2}x-3-18}{9x-\\frac{3}{2}x+3-18}=\\frac{21x-42}{15x-30}=\\frac{7\\left( x-2 \\right)}{5\\left( x-2 \\right)}$$, 当$$x\\ne 2$$时,原式$$=\\frac{7}{5}$$;当$$x=2$$时,原式的值不存在. ",
"<p>由$$\\frac{x}{2}-\\frac{y}{3}=1$$得$$3x-2y=6$$,</p>\n<p>∴$$9x=6y+18$$.</p>\n<p>于是$$\\frac{9x+y-18}{9x-y-18}=\\frac{\\left( 6y+18 \\right)+y-18}{\\left( 6y+18 \\right)-y-18}=\\frac{7y}{5y}$$.</p>\n<p>当$$y\\ne 0$$(即$$x\\ne 2$$)时,原式$$=\\frac{7}{5}$$;</p>\n<p>当$$y=0$$(即$$x=2$$)时,原式无意义.</p>\n<p>故选$$\\text{D}$$.</p>"
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 56 | 067a24d2698c45bbb391f458c720dd79 | [
"2009年第20届希望杯初二竞赛第1试第7题"
] | 1 | single_choice | 在$$100\sim 1000$$的整数中(含$$100$$和$$1000$$),既不是完全平方数,也不是完全立方数的数有. | [
[
{
"aoVal": "A",
"content": "$$890$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$884$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$874$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$864$$个 "
}
]
] | [
"竞赛->知识点->数与式->数的运算->有理数运算问题"
] | [
"用$$A(n)$$表示不大于$$n$$的非零自然数中既不是完全平方数,也不是完全立方数的数的个数. 由于$$9 ~\\textless{} ~\\sqrt{99} ~\\textless{} ~10$$,$$4 ~\\textless{} ~\\sqrt[3]{99} ~\\textless{} ~5$$,$$2 ~\\textless{} ~\\sqrt[6]{99} ~\\textless{} ~3$$, 所以$$A(99)=99-(9+4-2)=88$$. 由于$$31 ~\\textless{} ~\\sqrt{1000} ~\\textless{} ~32$$,$$\\sqrt[3]{1000}=10$$,$$3 ~\\textless{} ~\\sqrt[6]{1000} ~\\textless{} ~4$$, 所以$$A(1000)=1000-(31+10-3)=962$$. 故有$$A(1000)-A(99)=962-88=874$$. 即在$$100\\sim 1000$$的整数中(含$$100$$和$$1000$$),既不是完全平方数也不是完全立方数的数有$$874$$个. 故选$$\\text{C}$$. ",
"<p>因为$$100={{10}^{2}}$$,$${{31}^{2}} < 1000 < {{32}^{2}}$$,</p>\n<p>所以,$$100\\sim 1000$$中,完全平方数有$${{10}^{2}}$$,$${{11}^{2}}$$,$${{12}^{2}}$$,$$\\cdots $$,$${{31}^{2}}$$,共$$22$$个.</p>\n<p>因为$${{4}^{3}} < 100 < {{5}^{3}}$$,$$1000={{10}^{3}}$$,</p>\n<p>所以,$$100\\sim 1000$$中,完全立方数有$${{5}^{3}}$$,$${{6}^{3}}$$,$$\\cdots $$,$${{9}^{3}}$$,$${{10}^{3}}$$共$$6$$个,</p>\n<p>其中$${{9}^{3}}={{3}^{6}}={{27}^{2}}$$既是完全平方数,也是完全立方数.</p>\n<p>所以,在$$100\\sim 1000$$的整数中(含$$100$$和$$1000$$),既不是完全平方数也不是完全立方数的数有$$901-22-6+1=874$$(个).</p>\n<p>故选$$\\text{C}$$.</p>"
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1367 | c9b947fbb512465ab87a5179ccc0a0a4 | [
"2007年第18届希望杯初二竞赛第2试第4题"
] | 2 | single_choice | 古人用天干和地支记次序,其中天干有$$10$$个:甲乙丙丁戊己庚辛壬癸.地支有$$12$$个:子丑寅卯辰巳午未申酉戌亥,将天干的$$10$$个汉字和地支的$$12$$个汉字对应排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁$$\cdots \cdots $$ 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥$$\cdots \cdots $$ 从左向右数,第$$1$$列是甲子,第$$2$$列是乙丑,第$$3$$列是丙寅$$\cdots \cdots $$,我国的农历纪年就是按这个顺序得来的,如公历$$2007$$年是农历丁亥年.那么从该年往后,农历纪年为甲亥年的那一年在. | [
[
{
"aoVal": "A",
"content": "$$2019$$年 "
}
],
[
{
"aoVal": "B",
"content": "$$2031$$年 "
}
],
[
{
"aoVal": "C",
"content": "$$2043$$年 "
}
],
[
{
"aoVal": "D",
"content": "没有对应的年号 "
}
]
] | [
"竞赛->知识点->组合->排列与组合"
] | [
"天干有$$10$$个,地支有$$12$$个,它们对应排列,天干中排在奇数位的甲、丙$$\\cdots \\cdots $$,只能与文中排在奇数位的子、寅$$\\cdots \\cdots $$组合成农历纪年,而亥排在地支中的第$$12$$位,所以不可能甲亥年. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1288 | a541399264974e6db749b09d01c37245 | [
"2016年第27届全国希望杯初二竞赛复赛第2题4分"
] | 1 | single_choice | 已知关于$$x$$的不等式组$$\left { \begin{matrix}x-3m\textless{}0 n-2x\textless{}0 \end{matrix} \right.$$的解集是$$-1\textless{}x\textless{}3$$,则$${{(m+n)}^{2016}}=$$(~ ). | [
[
{
"aoVal": "A",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的解集求参数的范围"
] | [
"解不等式组$$\\left { \\begin{matrix}x-3m\\textless{}0 n-2x\\textless{}0 \\end{matrix} \\right.$$,得$$\\frac{n}{2}\\textless{}x\\textless{}3m$$, 由题意,得$$3m=3$$,$$\\frac{n}{2}=-1$$, 解得$$m=1$$,$$n=-2$$, ∴$${{(m+n)}^{2016}}={{(-1)}^{2016}}=1$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1268 | 8aac50a74e442d83014e4ccdd0ac1d50 | [
"1995年第6届全国希望杯初一竞赛复赛第2题"
] | 1 | single_choice | 已知$$\left\textbar{} a \right\textbar=-a$$,则化简$$\left\textbar{} a-1 \right\textbar-\left\textbar{} a-2 \right\textbar$$所得的结果是(~ ). | [
[
{
"aoVal": "A",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2a-3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3-2a$$ "
}
]
] | [
"课内体系->知识点->数->有理数->绝对值->利用题设条件推理化简绝对值"
] | [
"∵$$\\left\\textbar{} a \\right\\textbar=-a$$,∴$$a\\leqslant 0$$. $$\\left\\textbar{} a-1 \\right\\textbar-\\left\\textbar{} a-2 \\right\\textbar=-\\left( a-1 \\right)+\\left( a-2 \\right)=-1$$,选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1273 | 8aac50a74e442d83014e4cd4134a1dc2 | [
"1995年第6届全国希望杯初一竞赛复赛第7题"
] | 2 | single_choice | 某同学到集贸市场买苹果,买每公斤$$3$$元的苹果用去所带钱数的一半,而其余的钱都买了每公斤$$2$$元的苹果,则该同学所买的苹果的平均价格是每公斤(~ )元. | [
[
{
"aoVal": "A",
"content": "$$2.6$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2.5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2.4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2.3$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->二元一次方程(组)->二元一次方程组应用题->二元一次方程组的和差倍分"
] | [
"设该同学买了$$3$$元一公斤的苹果$$x$$公斤,$$2$$元一公斤的苹果$$y$$公斤, 所用的钱数都是所带钱数的一半,所以$$3x=2y$$,即$$y=\\frac{3}{2}x$$. 因此该同学共买了$$x+y$$公斤苹果,花去了$$3x+2y=6x$$元. 所以所买的苹果平均价格是每公斤$$\\frac{3x+2y}{x+y}=\\frac{6x}{\\frac{5}{2}x}=\\frac{12}{5}=2.4$$元.选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 278 | 79520a3b15bd4352a3e96e1ec24ab67a | [
"2000年第11届希望杯初二竞赛第2试第15题"
] | 1 | single_choice | $${{a}^{2}}-{{b}^{2}}=1+\sqrt{2}$$,$${{b}^{2}}-{{c}^{2}}=1-\sqrt{2}$$, find $${{a}^{4}}+{{b}^{4}}+{{c}^{4}}-{{a}^{2}}{{b}^{2}}-{{b}^{2}}{{c}^{2}}-{{c}^{2}}{{a}^{2}}$$. 设$${{a}^{2}}-{{b}^{2}}=1+\sqrt{2}$$,$${{b}^{2}}-{{c}^{2}}=1-\sqrt{2}$$,则$${{a}^{4}}+{{b}^{4}}+{{c}^{4}}-{{a}^{2}}{{b}^{2}}-{{b}^{2}}{{c}^{2}}-{{c}^{2}}{{a}^{2}}=$$~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$4$$ "
}
],
[
{
"aoVal": "C",
"content": "$$5$$ "
}
],
[
{
"aoVal": "D",
"content": "$$6$$ "
}
],
[
{
"aoVal": "E",
"content": "$$7$$ "
}
]
] | [
"竞赛->知识点->数与式->整式->乘法公式",
"课内体系->知识点->式->整式的加减->整式有关的概念->整式"
] | [
"因为$${{a}^{2}}-{{b}^{2}}=1+\\sqrt{2}$$, $${{b}^{2}}-{{c}^{2}}=1-\\sqrt{2}$$, 所以$${{a}^{2}}-{{c}^{2}}=2$$, 所以$${{a}^{4}}+{{b}^{4}}+{{c}^{4}}-{{a}^{2}}{{b}^{2}}-{{b}^{2}}{{c}^{2}}-{{c}^{2}}{{a}^{2}}$$ $$=\\frac{1}{2}[({{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}})+({{b}^{4}}-2{{b}^{2}}{{c}^{2}}+{{c}^{4}})+({{c}^{4}}-2{{a}^{2}}{{c}^{2}}+{{a}^{4}})]$$ $$=\\frac{1}{2}[{{({{a}^{2}}-{{b}^{2}})}^{2}}+{{({{b}^{2}}-{{c}^{2}})}^{2}}+{{({{c}^{2}}-{{a}^{2}})}^{2}}]$$ $$=\\frac{1}{2}[{{(1+\\sqrt{2})}^{2}}+{{(1-\\sqrt{2})}^{2}}+{{2}^{2}}]$$ $$=5$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1438 | aac6a6fca6d14d9d8788d4966f565403 | [
"2001年第18届全国初中数学联赛竞赛第1题",
"2019~2020学年12月四川资阳雁江区资阳市雁江区第二中学初三上学期周测D卷第10题3分",
"2016~2017学年9月湖北武汉武昌区武汉初级中学初二上学期月考第10题3分",
"2016~2017学年3月湖北武汉武昌区武汉初级中学初二下学期月考第10题3分"
] | 2 | single_choice | $$a$$、$$b$$、$$c$$、为有理数,且等式$$a+b\sqrt{2}+c\sqrt{3}=\sqrt{5+2\sqrt{6}}$$成立,则$$2a+999b+1001c$$的值是(~ ). | [
[
{
"aoVal": "A",
"content": "$$1999$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2000$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2001$$ "
}
],
[
{
"aoVal": "D",
"content": "不能确定 "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算",
"课内体系->知识点->方程与不等式->等式与方程->等式->等式的性质->等式性质1"
] | [
"本题需要比较等式两边的各项,利用有理数部分等于理数部分,无理数部分等于无理数部分来求$$a$$、$$b$$、$$c$$的值,由于: $$5+2\\sqrt{6}={{\\left( \\sqrt{3}+\\sqrt{2} \\right)}^{2}}$$. 所以:$$a+b\\sqrt{2}+c\\sqrt{3}=\\sqrt{2}+\\sqrt{3}$$. 则$$a=0$$,$$b=1$$,$$c=1$$,∴$$2a+999b+1001c=2000$$. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 671 | 3bc66e9af33b4af5a704f3710947dca0 | [
"2002年第13届希望杯初一竞赛第1试第9题"
] | 1 | single_choice | 当$$x$$取$$1$$到$$10$$的整数时,整式$$x^{2}+x+11$$所对应的数值中质数的个数是. | [
[
{
"aoVal": "A",
"content": "$$10$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9$$ "
}
],
[
{
"aoVal": "C",
"content": "$$8$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"课内体系->能力->运算能力",
"竞赛->知识点->数论->整除->素数与合数"
] | [
"当$$x$$取$$1$$到$$10$$的整数时, $$x^{2}+x+11$$所对应的数值依次为: $$13$$,$$17$$,$$23$$,$$31$$,$$41$$,$$53$$,$$67$$,$$83$$,$$101$$,$$121$$. 其中质数为: $$13$$,$$17$$,$$23$$,$$31$$,$$41$$,$$53$$,$$67$$,$$83$$,$$101$$,共$$9$$个. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 556 | 7a28358b3f534fa3bb91fd0eacb390ad | [
"2019年浙江杭州拱墅区杭州市文澜中学初二竞赛第6题3分",
"2019~2020学年浙江杭州拱墅区杭州市文澜中学初二上学期单元测试《一次函数》第10题"
] | 1 | single_choice | 直线$$y=kx+b$$经过点$$(m ,1)$$和点$$(-1,m)$$ ,其中$$0 \textless{} m \textless{} 1$$ , 则$$k$$ ,$$b$$ 应满足的条件是. | [
[
{
"aoVal": "A",
"content": "$$k\\textgreater0$$且$$b\\textgreater0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$k\\textless0$$且$$b\\textgreater0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$k\\textgreater0$$且$$b\\textless0$$ "
}
],
[
{
"aoVal": "D",
"content": "$$k\\textless0$$且$$b\\textless0$$ "
}
]
] | [
"课内体系->知识点->函数->一次函数->一次函数基础->一次函数的增减性"
] | [
"∵$$m\\textgreater1\\textgreater-1$$,$$1 ~\\textless{} ~m$$,即自变量的值越大函数值越小,即函数值随着自变量的增大而减小,∴$$k ~\\textless{} ~0$$. 过第一象限内的点$$(1,m)$$和第四象限内的点$$(m,-1)$$画直线,知此直线与$$y$$轴正半轴相交,所以,$$b\\textgreater0$$. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 321 | b4c4608d742a4bd6ad77ef19e43b3420 | [
"2001年第18届全国初中数学联赛竞赛第2题"
] | 2 | single_choice | 若$$ab≠1$$,且有$$5{{a}^{2}}+2001a+9=0$$及$$9{{b}^{2}}+2001b+5=0$$,则$$\frac{a}{b}$$的值是(~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$\\frac{9}{5}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{5}{9}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-\\frac{2001}{5}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-\\frac{2001}{9}$$ "
}
]
] | [
"竞赛->知识点->方程与不等式->二次方程->一元二次方程的根与系数的关系"
] | [
"显然可以看出方程系数相同,可以利用根与系数关系来求解: $$2{{a}^{2}}+2001a+9=0$$, $$9{{b}^{2}}+2001b+5=0$$(显然$$b=0$$不是方程的解). ∴$$5\\frac{1}{{{b}^{2}}}+2001\\frac{1}{b}+9=0$$, 故$$a$$与$$\\frac{1}{b}$$都是方程$$5{{x}^{2}}+2001x+9=0$$的根, 但$$a\\ne \\frac{1}{b}$$,由$$\\Delta =0$$, 即$$a$$与$$\\frac{1}{b}$$是此方程的相异实根. 从而$$a\\cdot \\frac{1}{b}=\\frac{9}{5}$$. 故选 A. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1130 | ff8080814db3e529014dd125654f5317 | [
"2012年第23届全国希望杯初二竞赛初赛第8题4分"
] | 2 | single_choice | 一次函数$$y=({{m}^{2}}-4)x+(1-m)$$和$$y=(m+2)x+({{m}^{2}}-3)$$的图象分别与$$y$$轴交于点$$P$$和$$Q$$,这两点关于$$x$$轴对称,则$$m$$的值是(~ ). | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$或$$-1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$或$$-1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-1$$ "
}
]
] | [
"课内体系->能力->推理论证能力",
"课内体系->知识点->函数->一次函数->一次函数的几何变换->一次函数图象关于坐标轴对称"
] | [
"一次函数$$y=({{m}^{2}}-4)x+(1-m)$$的图象与$$y$$轴的交点$$P$$为$$(0,1-m)$$, 一次函数$$y=(m+2)x+({{m}^{2}}-3)$$的图象与$$y$$轴的交点$$Q$$为$$(0,{{m}^{2}}-3)$$, 因为$$P$$和$$Q$$关于$$x$$轴对称, 所以$$1-m+{{m}^{2}}-3=0$$, 解得$${{m}_{1}}=2$$,$${{m}_{2}}=-1$$. 又因为两个函数都是一次函数, 所以$${{m}^{2}}-4\\ne 0$$且$$m+2\\ne 0$$, 所以$$m=2$$不合题意,舍去, 所以$$m=-1$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 996 | 6f3ea325555a499eae368666ba0155c6 | [
"2011年第22届全国希望杯初二竞赛初赛第2题4分"
] | 1 | single_choice | 一辆汽车从$$A$$地匀速驶往$$B$$地,如果汽车行驶的速度增加$$a \%$$,则所用时间减少$$b \%$$,则$$a$$,$$b$$的关系是. | [
[
{
"aoVal": "A",
"content": "$$b=\\frac{100a}{1+a \\%}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$b=\\frac{100}{1+a \\%}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$b=\\frac{a}{1+a}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$b=\\frac{100a}{100+a}$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的行程问题->一元一次方程的行程问题-变速问题"
] | [
"设$$A$$,$$B$$两地之间的距离为$$s$$,汽车行驶的速度为$$v$$,汽车从$$A$$地到$$B$$地所用的时间为$$t$$, 则有$$s=vt=v(1+a \\%)\\cdot t(1-b \\%)$$, 即$$\\frac{100+a}{100}\\cdot \\frac{100-b}{100}=1$$, 解得$$b=\\frac{100a}{100+a}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 384 | 23614d800dcc43bcb1b2131d77afd761 | [
"初一其它",
"河北竞赛"
] | 1 | single_choice | 已知$$a$$、$$b$$、$$c$$满足$${{a}^{2}}+2b=7$$,$${{b}^{2}}-2c=-1$$,$${{c}^{2}}-6a=-17$$,则$$a+b+c$$的值等于. | [
[
{
"aoVal": "A",
"content": "$$2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$3$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->其他方程->多元二次方程(组)"
] | [
"∵$$\\begin{cases}{{a}^{2}}+2b=7① {{b}^{2}}-2c=-1 ② {{c}^{2}}-6a=-17③ \\end{cases}$$ ∴①$$+$$②$$+$$③得,$${{a}^{2}}+2b+{{b}^{2}}-2c+{{c}^{2}}-6a=-11$$ $${{a}^{2}}-6a+9+{{b}^{2}}+2b+1+{{c}^{2}}-2c+1=0$$ $${{(a-3)}^{2}}+{{(b+1)}^{2}}+{{(c-1)}^{2}}=0$$ ∴$$a-3=0$$,$$b+1=0$$,$$c-1=0$$ ∴$$a=3$$,$$b=-1$$,$$c=1$$ ∴$$a+b+c=3$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 635 | 99b98090352f4f77be6d20467bf9916d | [
"1991年第2届希望杯初二竞赛第15题"
] | 2 | single_choice | 甲乙二人,从$$M$$地同时出发去$$N$$地.甲用一半时间以每小时$$a$$公里的速度行走,另一半时间以每小时$$b$$公里的速度行走;乙以每小时$$a$$公里的速度行走一半路程,另一半路程以每小时$$b$$公里的速度行走.若$$a\ne b$$时,则到达$$N$$地. | [
[
{
"aoVal": "A",
"content": "二人同时 "
}
],
[
{
"aoVal": "B",
"content": "甲先 "
}
],
[
{
"aoVal": "C",
"content": "乙先 "
}
],
[
{
"aoVal": "D",
"content": "若$$a\\textgreater b$$时,甲先到达,若$$a ~\\textless{} ~b$$时,乙先到达 "
}
]
] | [
"竞赛->知识点->数与式->整式->整式的乘除运算"
] | [
"设$$M$$,$$N$$两地距离$$S$$,甲需时间$${{t}_{1}}$$,乙需时间$${{t}_{2}}$$, 则$$\\frac{a{{t}_{1}}}{2}+\\frac{b{{t}_{1}}}{2}=S$$,$${{t}_{2}}=\\dfrac{\\dfrac{S}{2}}{a}+\\dfrac{\\dfrac{S}{2}}{b}$$, 即$${{t}_{1}}=\\frac{2S}{a+b}$$,$${{t}_{2}}=\\frac{\\left( a+b \\right)S}{2ab}$$, $${{t}_{1}}-{{t}_{2}}=\\frac{2S}{a+b}-\\frac{\\left( a+b \\right)S}{2ab}$$ $$=\\frac{S\\left[ 4ab-{{\\left( a+b \\right)}^{2}} \\right]}{2ab\\left( a+b \\right)}$$ $$=\\frac{-S{{\\left( a-b \\right)}^{2}}}{2ab\\left( a+b \\right)} ~\\textless{} ~0$$. 所以$${{t}_{1}} ~\\textless{} ~{{t}_{2}}$$,即甲先. 另外:设$$a=1$$,$$b=2$$,则甲走了$$6$$小时,共走了$$9$$公里,这时乙走的时间为$$\\frac{4.5}{1}+\\frac{4.5}{2}=\\frac{3}{2}\\times 4.5\\textgreater6$$, 从这个计算中,可以看到,$$a$$,$$b$$的值互换,不影响结果. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 16 | 0977ee96ed5d45b681b5aefd11be7bcd | [
"2019~2020学年四川眉山东坡区眉山东辰国际学校初三上学期期中第33题5分",
"2001年第12届希望杯初二竞赛第2试第1题"
] | 1 | single_choice | 化简代数式$$\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}$$的结果是. | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1+\\sqrt{2}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2+\\sqrt{2}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2\\sqrt{2}$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->二次根式->二次根式的运算->多重二次根式"
] | [
"设$$y=\\sqrt{3+2\\sqrt{2}}+\\sqrt{3-2\\sqrt{2}}$$,$$y\\textgreater0$$, 所以$${{y}^{2}}=3+2\\sqrt{2}+2\\sqrt{3+2\\sqrt{2}}\\cdot \\sqrt{3-2\\sqrt{2}}+3-2\\sqrt{2}$$ $$=6+2\\sqrt{9-8}$$ $$=8$$, 所以$$y=2\\sqrt{2}$$. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 270 | 22380d4644834359905105f9548085cd | [
"2015年第32届全国全国初中数学联赛竞赛B卷第6题7分"
] | 2 | single_choice | 设$$n$$是小于$$100$$的正整数且使$$2{{n}^{2}}-3n-2$$是$$6$$的倍数,则符合条件的所有正整数$$n$$的和是(~ ). | [
[
{
"aoVal": "A",
"content": "$$784$$ "
}
],
[
{
"aoVal": "B",
"content": "$$850$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1536$$ "
}
],
[
{
"aoVal": "D",
"content": "$$1634$$ "
}
]
] | [
"竞赛->知识点->数论->整除->整除的概念与基本性质",
"课内体系->能力->运算能力",
"课内体系->知识点->数->有理数->有理数基础运算->有理数除法->有理数四则混合运算"
] | [
"∵$$2{{n}^{2}}-3n-2$$是$$6$$的倍数, ∴$$2\\textbar({{2n}^{2}}-3n-2)$$, ∴$$2\\textbar3n$$, ∴$$2\\textbar n$$. 设$$n=2m$$($$m$$是正整数), 则$$2{{n}^{2}}-3n-2=8{{m}^{2}}-6m-2=6{{m}^{2}}-6m+2({{m}^{2}}-1)$$. 又∵$$2{{n}^{2}}-3n-2$$是$$6$$的倍数, ∴$${{m}^{2}}-1$$是$$3$$的倍数, ∴$$m=3k+1$$或$$m=3k+2$$,其中$$k$$是非负整数, ∴$$n=2(3k+1)=6k+2$$或$$n=2(3k+2)=6k+4$$,其中$$k$$是非负整数, ∴符合条件的所有正整数$$n$$的和为 $$(2+8+14+\\cdots +92+98)+(4+10+16+\\cdots +88+94)=1634$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1408 | a1876fd351224cd68cb7e47d70f4e387 | [
"2016年第33届全国全国初中数学联赛竞赛第1题7分"
] | 1 | single_choice | 用$$\left[ x \right]$$表示不超过$$x$$的最大整数,把$$x-\left[ x \right]$$称为$$x$$的小数部分.已知$$t=\frac{1}{2-\sqrt{3}}$$,$$a$$是$$t$$的小数部分,$$b$$是$$-t$$的小数部分,则$$\frac{1}{2b}-\frac{1}{a}=$$. | [
[
{
"aoVal": "A",
"content": "$$\\frac{1}{2}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{\\sqrt{3}}{2}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\sqrt{3}$$ "
}
]
] | [
"课内体系->知识点->综合与实践->规律探究与程序框图->定义新运算",
"课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算",
"课内体系->知识点->数->实数->无理数有关的计算->无理数大小的比较",
"课内体系->能力->运算能力",
"课内体系->能力->推理论证能力"
] | [
"∵$$t=\\frac{1}{2-\\sqrt{3}}=2+\\sqrt{3}$$,$$1\\textless{}\\sqrt{3}\\textless{}2$$, ∴$$3\\textless{}2+\\sqrt{3}\\textless{}4$$,即$$3\\textless{}t\\textless{}4$$, ∴$$a=t-3=\\sqrt{3}-1$$. 又$$-t=-2-\\sqrt{3}$$,$$-2\\textless{}-\\sqrt{3}\\textless{}-1$$, ∴$$-4\\textless{}-2-\\sqrt{3}\\textless{}-3$$, ∴$$b=-t-(-4)=2-\\sqrt{3}$$, ∴$$\\frac{1}{2b}-\\frac{1}{a}=\\frac{1}{2(2-\\sqrt{3})}-\\frac{1}{\\sqrt{3}-1}=\\frac{2+\\sqrt{3}}{2}-\\frac{\\sqrt{3}+1}{2}=\\frac{1}{2}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1569 | fdef853b0a4546da8f7ce29cf4c240f8 | [
"初一上学期单元测试《一元一次方程》第19题",
"2013年第24届全国希望杯初一竞赛复赛第3题4分"
] | 1 | single_choice | 若$$\left( {{y}^{2}}-1 \right){{x}^{2}}+\left( y+1 \right)x+9=0$$是关于$$x$$的一元一次方程,则代数式$$\left( 4x+y \right)\left( 2x-y \right)+y$$的值是(~ ). | [
[
{
"aoVal": "A",
"content": "$$54$$ "
}
],
[
{
"aoVal": "B",
"content": "$$56$$ "
}
],
[
{
"aoVal": "C",
"content": "$$169$$ "
}
],
[
{
"aoVal": "D",
"content": "$$171$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->一元一次方程->一元一次方程的相关概念->一元一次方程的定义",
"课内体系->知识点->方程与不等式->一元一次方程->一元一次方程的相关概念->一元一次方程的解",
"课内体系->知识点->式->整式的加减->整式有关的概念->整式->整式的定义",
"课内体系->知识点->式->整式的加减->整式的加减运算",
"课内体系->能力->运算能力"
] | [
"因为$$\\left( {{y}^{2}}-1 \\right){{x}^{2}}+\\left( y+1 \\right)x+9=0$$是关于$$x$$的一元一次方程, 所以$${{y}^{2}}-1=0$$,$$y+1\\ne 0$$, 所以$$y=1$$. 从而方程$$\\left( {{y}^{2}}-1 \\right){{x}^{2}}+\\left( y+1 \\right)x+9=0$$可变形为$$2x+9=0$$, 解得$$x=-\\frac{9}{2}$$. 所以$$\\left( 4x+y \\right)\\left( 2x-y \\right)+y$$ $$=\\left[ 4\\left( -\\frac{9}{2} \\right)+1 \\right]\\left[ 2\\left( -\\frac{9}{2} \\right)-1 \\right]+1$$ $$=-17\\times (-10)+1$$ $$=170+1$$ $$=171$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1048 | ff8080814d7978b9014d86d2d0e72570 | [
"1991年第2届全国希望杯初一竞赛初赛第2题"
] | 1 | single_choice | 若$$a\textgreater b$$,则(~ ). | [
[
{
"aoVal": "A",
"content": "$$\\frac{1}{a}\\textless\\frac{1}{b}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-a\\textless-b$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\left\\textbar{} a \\right\\textbar\\textgreater\\left\\textbar{} b \\right\\textbar$$ "
}
],
[
{
"aoVal": "D",
"content": "$${{a}^{2}}\\textgreater{{b}^{2}}$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质"
] | [
"因为$$3\\textgreater-2$$,有$$\\frac{1}{3}\\textgreater-\\frac{1}{2}$$,排除$$\\text{A}$$; 因为$$2\\textgreater-3$$,有$$\\left\\textbar{} 2 \\right\\textbar\\textless\\left\\textbar{} -3 \\right\\textbar$$,排除$$\\text{C}$$; 因为$$2\\textgreater-3$$,有$${{2}^{2}}\\textless{{(-3)}^{2}}$$,排除$$\\text{D}$$; 事实上,$$a\\textgreater b$$必有$$-a\\textless-b$$.选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 511 | b5181e9882f64a25811910d66f3ba4fb | [
"2017~2018学年上海浦东新区上海中学东校初一上学期期中第16题2分",
"2006年第17届希望杯初一竞赛初赛第10题4分"
] | 1 | single_choice | 有如下四个叙述: ①当$$0\textless{}x\textless{}1$$时,$$\frac{1}{1+x}\textless{}1-x+{{x}^{2}}$$; ②当$$0\textless{}x\textless{}1$$时,$$\frac{1}{1+x}\textgreater1-x+{{x}^{2}}$$; ③当$$-1\textless{}x\textless{}0$$时,$$\frac{1}{1+x}\textless{}1-x+{{x}^{2}}$$; ④当$$-1\textless{}x\textless{}0$$时,$$\frac{1}{1+x}\textgreater1-x+{{x}^{2}}$$, 其中正确的叙述是. | [
[
{
"aoVal": "A",
"content": "①③ "
}
],
[
{
"aoVal": "B",
"content": "②④ "
}
],
[
{
"aoVal": "C",
"content": "①④ "
}
],
[
{
"aoVal": "D",
"content": "②③ "
}
]
] | [
"课内体系->知识点->式->整式的乘除->整式的乘除运算->整式乘除的综合",
"课内体系->知识点->式->整式的乘除->乘法公式->和与差的立方公式",
"课内体系->知识点->式->整式的乘除->整式乘除化简求值",
"课内体系->知识点->式->因式分解->公式法->利用立方和与立方差公式因式分解",
"课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质",
"课内体系->能力->运算能力",
"课内体系->能力->推理论证能力",
"课内体系->思想->转化与化归思想"
] | [
"当$$0\\textless{}x\\textless{}1$$或$$-1\\textless{}x\\textless{}0$$时,$$\\frac{1}{1+x}$$和$$1-x+{{x}^{2}}$$都大于$$0$$,所以两式的比值大于$$0$$, 又$$(1-x+{{x}^{2}})\\div \\frac{1}{1+x}=(1-x+{{x}^{2}})(1+x)=1+{{x}^{3}}$$, 当$$0\\textless{}x\\textless{}1$$时,$$1+{{x}^{3}}\\textgreater1$$,所以①正确;②不正确; 当$$-1\\textless{}x\\textless{}0$$时,$$1+{{x}^{3}}\\textless{}1$$,所以③不正确,④正确. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1552 | cfeef127272840c38fc4a56f37ef46d0 | [
"2020~2021学年四川内江市中区内江市第六初级中学校初二上学期期中第12题3分",
"2014~2015学年北京海淀区科迪实验中学初一下学期期中第10题",
"2019~2020学年天津和平区天津市益中学校初一下学期期中第16题2分",
"2009年竞赛第1题7分"
] | 2 | single_choice | 已知非零实数$$a$$、$$b$$满足$$\left\textbar{} 2a-4 \right\textbar+\left\textbar{} b+2 \right\textbar+\sqrt{\left( a-3 \right){{b}^{2}}}+4=2a$$,则$$a+b$$等于 . | [
[
{
"aoVal": "A",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2$$ "
}
]
] | [
"课内体系->知识点->式->二次根式->二次根式的基础->二次根式的性质",
"课内体系->能力->运算能力"
] | [
"方法一:由条件得$$a\\geqslant 3$$,原等式为$$\\left\\textbar{} b+2 \\right\\textbar+\\sqrt{\\left( a-3 \\right){{b}^{2}}}=0$$,$$a+b=1$$. 方法二:由题意$$(a-3){{b}^{2}}\\geqslant 0$$,∵$${{b}^{2}}\\geqslant 0$$,∴$$a-3\\geqslant 0$$,∴$$2a-4\\textgreater0$$, ∴原式可化简为$$2a-4+\\textbar b+2\\textbar+\\sqrt{(a-3){{b}^{2}}}+4=2a$$,$$\\textbar b+2\\textbar+\\sqrt{(a-3){{b}^{2}}}=0$$, ∴$$b+2=(a-3){{b}^{2}}=0$$,∴$$a=3$$,$$b=-2$$,选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1072 | a4807cf7cac54265904f0c80c5f0a8c5 | [
"2002年第13届希望杯初二竞赛第1试第8题"
] | 1 | single_choice | 已知$$b \textless{} 0$$,$$0 \textless{} \textbar a\textbar{} \textless{} \textbar b\textbar{} \textless{} \textbar c\textbar$$,且$$\sqrt{\frac{a{{b}^{2}}}{c}}=\frac{b}{c}\sqrt{ac}$$,则$$abc$$的大小顺序是( ) | [
[
{
"aoVal": "A",
"content": "$$a \\textless{} b \\textless{} c$$ "
}
],
[
{
"aoVal": "B",
"content": "$$c \\textless{} b \\textless{} a$$ "
}
],
[
{
"aoVal": "C",
"content": "$$b \\textless{} a \\textless{} c$$ "
}
],
[
{
"aoVal": "D",
"content": "$$b \\textless{} c \\textless{} a$$ "
}
]
] | [
"课内体系->知识点->数->实数->实数运算->实数基础运算",
"课内体系->知识点->数->实数->无理数有关的计算->无理数大小的比较"
] | [
"由题意$$\\frac{b}{c}\\textgreater0$$,$$b \\textless{} 0$$,所以得到$$c \\textless{} 0$$,又$$ac\\textgreater0$$,$$c \\textless{} 0$$,可以得到$$a \\textless{} 0$$ 所以$$a$$,$$b$$,$$c \\textless{} 0$$而$$0 \\textless{} \\textbar a\\textbar{} \\textless{} \\textbar b\\textbar{} \\textless{} \\textbar c\\textbar$$,故$$c \\textless{} b \\textless{} a$$选B "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1479 | b8921956449c46709d498b1bc4c3dec1 | [
"2014年第25届全国希望杯初一竞赛复赛第8题4分"
] | 2 | single_choice | 已知$$p={{3}^{70}}$$,$$q={{5}^{56}}$$,$$r={{6}^{42}}$$,$$s={{17}^{28}}$$.这$$4$$个数中,最大的是(~ ). | [
[
{
"aoVal": "A",
"content": "$$p$$ "
}
],
[
{
"aoVal": "B",
"content": "$$q$$ "
}
],
[
{
"aoVal": "C",
"content": "$$r$$ "
}
],
[
{
"aoVal": "D",
"content": "$$s$$ "
}
]
] | [
"课内体系->知识点->数->实数->实数运算->其他实数的运算",
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->有理数乘方运算",
"课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性"
] | [
"观察到,$$70$$,$$56$$,$$42$$,$$28$$的最大公约数为$$14$$. ∴题设中的四个数可化为 $$p={{3}^{70}}={{3}^{5\\times 4}}$$, $$q={{5}^{56}}={{5}^{4\\times 14}}$$, $$r={{6}^{42}}={{6}^{3\\times 14}}$$, $$s={{17}^{28}}={{17}^{2\\times 14}}$$. ∵$${{3}^{5}}=243$$,$${{5}^{4}}=625$$,$${{6}^{3}}=216$$,$${{17}^{2}}=289$$, ∴这$$4$$个数中,最大的是$$q$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 36 | 05ce0a5cd40b4f1ab2dc36c13feee723 | [
"2008年第19届希望杯初二竞赛第2试第10题"
] | 1 | single_choice | 已知$$a$$是方程$${{x}^{3}}+3x-1=0$$的一个实数根,则直线$$y=ax+1-a$$不经过. | [
[
{
"aoVal": "A",
"content": "第一象限 "
}
],
[
{
"aoVal": "B",
"content": "第二象限 "
}
],
[
{
"aoVal": "C",
"content": "第三象限 "
}
],
[
{
"aoVal": "D",
"content": "第四象限 "
}
]
] | [
"课内体系->知识点->函数->一次函数->一次函数基础",
"课内体系->知识点->方程与不等式->一元二次方程->根的判别式的应用->由一元二次方程根的情况确定参数",
"课内体系->知识点->方程与不等式->一元二次方程->根与系数的关系->一元二次方程根与系数的关系",
"课内体系->能力->抽象概括能力"
] | [
"当$$x\\leqslant 0$$时,$${{x}^{2}}+3x-1 ~\\textless{} ~0$$,此时$$x\\leqslant 0$$时,原方程无解, 当$$x\\geqslant \\frac{1}{3}$$时,$${{x}^{3}}+3x-1\\textgreater0$$时,此时原方程的实数根只能在$$\\left( 0,\\frac{1}{3} \\right)$$之间,因为$$a$$是方程$${{x}^{3}}+3x-1=0$$的一个实数根,所以$$0 ~\\textless{} ~a ~\\textless{} ~\\frac{1}{3}$$,对于相线$$y=ax+1-a$$,由于$$a\\textgreater0$$,$$1-a\\textgreater0$$,所以,直线不经过第四象限. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1545 | e1e54dfc08aa4357aa3bec838f6c59b5 | [
"2020~2021学年北京北京汇文中学初一上学期期末第10题2分",
"2007年竞赛第1题6分",
"2017~2018学年江苏无锡滨湖区无锡外国语学校初一下学期期中第10题3分"
] | 2 | single_choice | 方程组$$\begin{cases}\left\textbar{} x \right\textbar+y=12 x+\left\textbar{} y \right\textbar=6 \end{cases}$$的解的个数为. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->解含绝对值的方程组"
] | [
"①当$$x\\textgreater0$$,$$y\\textgreater0$$时,原方程组为$$\\begin{cases}x+y=12 x+y=6 \\end{cases}$$显然无解; ②当$$x ~\\textless{} ~0$$,$$y\\textgreater0$$时,原方程组为$$\\begin{cases}-x+y=12 x+y=6 \\end{cases}$$,解得$$\\begin{cases}x=-3 y=9 \\end{cases}$$; ③当$$x\\textgreater0$$,$$y ~\\textless{} ~0$$时,原方程组为$$\\begin{cases}x+y=12 x-y=6 \\end{cases}$$,解得$$\\begin{cases}x=9 y=3 \\end{cases}$$,舍去; ④当$$x ~\\textless{} ~0$$,$$y ~\\textless{} ~0$$时,原方程组为$$\\begin{cases}-x+y=12 x-y=6 \\end{cases}$$显然无解; 综上,只有$$1$$组解.故选$$\\text{A}$$. ",
"<p>若$$x\\geqslant 0$$,则$$\\begin{cases}x+y=12 \\\\ x+\\left| y \\right|=6 \\\\\\end{cases}$$,于是$$\\left| y \\right|-y=-6$$,显然不可能.</p>\n<p>若$$x < 0$$,则$$\\begin{cases}-x+y=12 \\\\ x+\\left| y \\right|=6 \\\\\\end{cases}$$,</p>\n<p>于是$$\\left| y \\right|+y=18$$,解得$$y=9$$,进而求得$$x=-3$$.</p>\n<p>所以,原方程组的解为$$\\begin{cases}x=-3 \\\\ y=9 \\\\\\end{cases}$$,只有$$1$$个解.</p>\n<p>故选$$\\text{A}$$.</p>"
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 961 | 662ceeddb12243959017385e2b552a52 | [
"2019~2020学年10月安徽合肥包河区合肥市第四十八中学初三上学期月考第10题4分",
"2019年安徽蚌埠初三中考一模(局属学校)第9题4分",
"2018~2019学年9月湖北武汉蔡甸区初三上学期月考第9题3分",
"2018年湖北黄冈中考真题第6题3分",
"2018~2019学年天津滨海新区初三上学期期末第12题3分",
"2019~2020学年12月河北石家庄新华区石门实验学校初三上学期月考第13题",
"2018年第20届浙江宁波余姚市余姚市实验学校初三竞赛决赛(实验杯)第6题4分",
"2018~2019学年福建厦门思明区厦门松柏中学初三上学期期中第9题4分",
"2019~2020学年10月江苏苏州姑苏区金阊实验中学初三上学期月考第9题3分",
"2018~2019学年4月广东深圳宝安区深圳市石岩公学初三下学期周测(第12周)第11题3分",
"2018~2019学年10月河南洛阳洛龙区洛阳地矿双语学校初三上学期月考第8题3分",
"2019~2020学年江苏苏州姑苏区苏州市草桥中学校初三下学期单元测试《二次函数》第4题"
] | 1 | single_choice | 当$$a\leqslant x\leqslant a+1$$时,函数$$y={{x}^{2}}-2x+1$$的最小值为$$1$$,则$$a$$的值为. | [
[
{
"aoVal": "A",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0$$或$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-1$$或$$2$$ "
}
]
] | [
"课内体系->能力->运算能力"
] | [
"当$$y=1$$时,有$${{x}^{2}}-2x+1=1$$, 解得:$${{x}_{1}}=0$$,$${{x}_{2}}=2$$. ∵当$$a\\leqslant x\\leqslant a+1$$时,函数有最小值$$1$$, ∴$$a=2$$或$$a+1=0$$, ∴$$a=2$$或$$a=-1$$, 故选:$$\\text{D}$$. ",
"<p>∵$$y={{x}^{2}}-2x+1={{\\left( x-1 \\right)}^{2}}$$,</p>\n<p>∴①当$$a+1<{}1$$,即$$a<{}0$$时,函数的最小值为$$y={{\\left( a+1-1 \\right)}^{2}}=1$$,</p>\n<p>∴$$a=\\pm 1$$,</p>\n<p>∴$$a=-1$$.</p>\n<p>②当$$a>1$$时,函数的最小值为$$y={{\\left( a-1 \\right)}^{2}}=1$$,</p>\n<p>∴$$a=2$$或$$a=0$$,</p>\n<p>∴$$a=2$$.</p>\n<p>综上所述,$$a=-1$$或$$2$$.</p>"
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 288 | 2fd7002459364dbc9711ff5194ec383d | [
"2007年第18届希望杯初二竞赛第1试第4题",
"其它"
] | 2 | single_choice | 已知$$a$$是正整数,方程组$$\begin{cases}ax+4y=8 3x+2y=6 \end{cases}$$的解满足$$x\textgreater0$$,$$y\textless{}0$$,则$$a$$的值是. | [
[
{
"aoVal": "A",
"content": "$$4$$ "
}
],
[
{
"aoVal": "B",
"content": "$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$6$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4$$,$$5$$,$$6$$以外的其他正整数 "
}
]
] | [
"课内体系->知识点->方程与不等式->不等式(组)->含参不等式->由不等式(组)的解集求参数的范围",
"课内体系->能力->推理论证能力"
] | [
"$$\\begin{cases}ax+4y=8 ① 3x+2y=6 ②\\end{cases}\\begin{matrix} \\end{matrix}$$, ①$$-$$②$$\\times 2$$:$$ax-bx=8-12$$ ∴$$(a-b)x=-4$$ ∵$$x\\textgreater0$$, ∴$$a-b\\textless{}0$$,$$a\\textless{}b$$. ①$$\\times 3-$$②$$\\times a$$:$$12y-2ay=24-6a$$, ∴$$(6-a)y=12-3a$$. ∵$$y\\textless{}0$$且$$a\\textless{}6$$, ∴$$12-3a\\textless{}0$$, ∴$$a\\textgreater4$$, ∴$$4\\textless{}a\\textless{}6$$, 又∵$$a$$为正整数, ∴$$a=5$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 836 | b165b5a3e6714a3487f9d4fe386f8c82 | [
"2012年第17届华杯赛初一竞赛初赛第1题"
] | 1 | single_choice | 若$$ab\textless{}0$$,$$a-b\textgreater0$$,则$$a$$,$$b$$两数的正负情况为. | [
[
{
"aoVal": "A",
"content": "$$a\\textgreater0$$,$$b\\textless{}0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$a\\textgreater0$$,$$b\\textgreater0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$a\\textless{}0$$,$$b\\textgreater0$$ "
}
],
[
{
"aoVal": "D",
"content": "$$a\\textgreater0$$,$$b\\textless{}0$$ "
}
]
] | [
"竞赛->知识点->数与式->数的运算->有理数运算问题"
] | [
"因为$$ab\\textless{}0$$, 所以$$a\\textgreater0$$,$$b\\textgreater0$$,或$$a\\textless{}0$$,$$b\\textgreater0$$. 又因为$$a-b\\textgreater0$$, 所以$$a\\textgreater0$$,$$-b\\textgreater0$$, 即$$a\\textgreater0$$,$$b\\textless{}0$$. 故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 798 | 91399da06b774840a39a97a142cbab7c | [
"2017~2018学年浙江金华金东区初二上学期期末第10题3分",
"2018~2019学年辽宁大连甘井子区初一下学期期末第10题3分",
"2018~2019学年湖北武汉武昌区初一下学期期中(十五校联考)第8题3分",
"2017~2018学年9月安徽安庆潜山县潜山第四中学初二上学期月考第6题4分",
"2018年湖南长沙初二竞赛长郡教育集团(觉园杯)第1题4分",
"2018~2019学年浙江宁波镇海区宁波市镇海蛟川书院初二上学期期中第4题4分",
"2017~2018学年浙江宁波镇海区宁波市镇海蛟川书院初二上学期期中第9题4分",
"2020~2021学年4月浙江杭州上城区杭州市建兰中学初三下学期周测A卷第1题4分",
"2017~2018学年12月陕西西安碑林区工大附中初二上学期月考第7题3分",
"2017年广西贵港中考真题第6题3分"
] | 1 | single_choice | 在平面直角坐标系中,点$$P(m-3,4-2m)$$不可能在. | [
[
{
"aoVal": "A",
"content": "第一象限 "
}
],
[
{
"aoVal": "B",
"content": "第二象限 "
}
],
[
{
"aoVal": "C",
"content": "第三象限 "
}
],
[
{
"aoVal": "D",
"content": "第四象限 "
}
]
] | [
"课内体系->知识点->函数->平面直角坐标系->坐标系基础->象限内坐标的特征"
] | [
"①$$m-3\\textgreater0$$,即$$m\\textgreater3$$时, $$-2m\\textless{}-6$$,$$4-2m\\textless{}-2$$, 所以,点$$P(m-3,4-2m)$$在第四象限,不可能在第一象限. ②$$m-3\\textless{}0$$,即$$m\\textless{}3$$时, $$-2m\\textgreater-6$$,$$4-2m\\textgreater-2$$, 点$$P(m-3,4-2m)$$可以在第二或三象限, 综上所述,点$$P$$不可能在第一象限. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 666 | b0d913debd544abead1b51bdb70368dc | [
"2019年浙江杭州拱墅区杭州市文澜中学初二竞赛第1题3分"
] | 1 | single_choice | 若代数式$$\sqrt{\frac{x+2}{{{x}^{2}}}}$$在实数范围内有意义,则$$x$$的取值范围是. | [
[
{
"aoVal": "A",
"content": "$$x\\textgreater2$$ "
}
],
[
{
"aoVal": "B",
"content": "$$x\\textgreater-2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$x\\textgreater-2$$且$$x\\ne 0$$ "
}
],
[
{
"aoVal": "D",
"content": "$$x\\geqslant -2$$且$$x\\ne 0$$ "
}
]
] | [
"课内体系->知识点->式->分式->分式的基础->分式有意义的条件",
"课内体系->知识点->式->二次根式->二次根式的基础->二次根式有意义的条件"
] | [
"∵$$\\sqrt{\\frac{x+2}{{{x}^{2}}}}$$在实数范围内有意义, ∴$$\\begin{cases}\\dfrac{x+2}{{{x}^{2}}}\\geqslant 0 {{x}^{2}}\\ne 0 \\end{cases}$$, ∴$$x\\geqslant -2$$且$$x\\ne 0$$. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1349 | 8aac50a75139269a0151679842a2626a | [
"2008年全国初中数学联赛竞赛",
"初三上学期其它"
] | 2 | single_choice | 设$${{a}^{2}}+1=3a$$,$${{b}^{2}}+1=3b$$,且$$a\ne b$$,则代数式$$\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}$$的值为(~ ). | [
[
{
"aoVal": "A",
"content": "$$5$$ "
}
],
[
{
"aoVal": "B",
"content": "$$7$$ "
}
],
[
{
"aoVal": "C",
"content": "$$9$$ "
}
],
[
{
"aoVal": "D",
"content": "$$11$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->一元二次方程->根与系数的关系->一元二次方程根与系数的关系"
] | [
"由题设条件可知$${{a}^{2}}-3a+1=0$$,$${{b}^{2}}-3b+1=0$$,且$$a\\ne b$$,所以$$ab$$是一元二次方程$${{x}^{2}}-3x+1=0$$的两根,故$$a+b=3$$,$$ab=1$$,因此$$\\frac{1}{{{a}^{2}}}+\\frac{1}{{{b}^{2}}}=\\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}{{b}^{2}}}=\\frac{{{(a+b)}^{2}}-2ab}{{{(ab)}^{2}}}=\\frac{{{3}^{2}}-2\\times 1}{{{1}^{2}}}=7$$. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 333 | d09535c3de96486e9bd2f65ccac84965 | [
"2015年第26届全国希望杯初三竞赛初赛第6题"
] | 2 | single_choice | 已知$$4{{x}^{4}}+3{{x}^{3}}-2{{x}^{2}}+3x+4=0$$,则$$x+\frac{1}{x}$$的值为. | [
[
{
"aoVal": "A",
"content": "$$\\frac{5}{4}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-2$$或$$\\frac{5}{4}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{3}{4}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-2$$ "
}
]
] | [
"知识标签->知识点->式->因式分解->因式分解:其他方法",
"知识标签->题型->式->整式的乘除->乘法公式->题型:配方思想的运用"
] | [
"∵$$4{{x}^{4}}+3{{x}^{3}}-2{{x}^{2}}+3x+4={{(1+x)}^{2}}(4{{x}^{2}}-5x+4)=0$$, ∴$$1+x=0$$或$$4{{x}^{2}}-5x+4=0$$, 当$$1+x=0$$,则$$x=-1$$,∴$$x+\\frac{1}{x}=-2$$. 当$$4{{x}^{2}}-5x+4=0$$,$$\\Delta ={{5}^{2}}-4\\times 4\\times 4=-39\\textless{}0$$,此方程无解. ∴$$x+\\frac{1}{x}=-2$$. 原方程化为$$4\\left( {{x}^{2}}+\\frac{1}{{{x}^{2}}} \\right)+3\\left( x+\\frac{1}{x} \\right)-2=0$$. 故选$$\\text{D}$$ "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1357 | f2c40bed91da4f0a8fb397337e28dd66 | [
"2001年第12届希望杯初一竞赛第6题"
] | 0 | single_choice | 珠穆朗玛峰峰顶比吐鲁番盆地底部高$$9003$$米,已知,珠穆朗玛峰海拔高度是$$8848$$米,则吐鲁番盆地的海拔高度是. | [
[
{
"aoVal": "A",
"content": "$$-155$$米 "
}
],
[
{
"aoVal": "B",
"content": "$$155$$米 "
}
],
[
{
"aoVal": "C",
"content": "$$-17851$$米 "
}
],
[
{
"aoVal": "D",
"content": "$$17651$$米 "
}
]
] | [
"课内体系->方法->整体法",
"课内体系->知识点->数->有理数->正数和负数->相反意义的量"
] | [
"设吐鲁番盆地的海拔高度是$$x$$米,则依题意得方程$$8848-x=9003$$, 所以$$x=8848-9003=--155$$. 故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 378 | 6bb76336eb2a4780b4c32ad4f8678484 | [
"2000年第11届希望杯初一竞赛第2题"
] | 1 | single_choice | 有如下四个命题: ①有理数的相反数是正数. ②两个同类项的数字系数是相同的. ③两个有理数的和的绝对值大于这两个有理数绝对值的和. ④两个负有理数的比值是正数. 其中真命题有. | [
[
{
"aoVal": "A",
"content": "$$4$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$3$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$2$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$1$$个 "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类",
"课内体系->知识点->几何图形初步->命题与证明"
] | [
"由于有理数$$0$$的相反数是$$0$$,所以``①有理数的相反数是正数''是假命题. 由于同类项只是说字母相同且相同字母的乘方次数也相同的项,所以``②两个同类项的数字系数是相同的''是个假命题.$$\\left\\textbar{} (-2)+(-1) \\right\\textbar=3=\\left\\textbar{} -2 \\right\\textbar+\\left\\textbar{} -1 \\right\\textbar$$,所以``③两个有理数的和的绝对值大于这两个有理数绝对值的和''是假命题.而两个负有理数的比值是正数显然是真命题.所以,$$4$$个命题中只有$$1$$个是真命题. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 617 | 3b41d4ddc8cd4e138a0757f1c174e640 | [
"1992年第9届全国初中数学联赛竞赛第8题"
] | 2 | single_choice | 设$${{x}_{1}}$$,$${{x}_{2}}$$,$${{x}_{3}}$$,$$\cdots $$,$${{x}_{9}}$$均为正整数,且$${{x}_{1}}\textless{}{{x}_{2}}\textless{}\cdots \textless{}{{x}_{9}}$$,$${{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{9}}=220$$,则当$${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}$$的值最大时,$${{x}_{9}}-{{x}_{1}}$$的最小值是(~ ). | [
[
{
"aoVal": "A",
"content": "$$8$$ "
}
],
[
{
"aoVal": "B",
"content": "$$9$$ "
}
],
[
{
"aoVal": "C",
"content": "$$10$$ "
}
],
[
{
"aoVal": "D",
"content": "$$11$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数基础运算->有理数加法->有理数加法运算",
"课内体系->知识点->数->有理数->有理数基础运算->有理数加法->有理数的加法法则",
"课内体系->能力->运算能力"
] | [
"先证$${{x}_{1}}+{{x}_{2}}+\\cdots +{{x}_{5}}\\leqslant 110$$. 若不然,设$${{x}_{1}}+{{x}_{2}}+\\cdots +{{x}_{5}}\\textgreater110$$,则$${{x}_{5}}=25$$,从而$${{x}_{6}}\\geqslant 26$$,$${{x}_{7}}\\geqslant 27$$,$${{x}_{8}}\\geqslant 28$$,$${{x}_{9}}\\geqslant 29$$.于是,与假设矛盾. 若取$${{x}_{1}}=20$$,$${{x}_{2}}=21$$,$${{x}_{3}}=22$$,$${{x}_{4}}=23$$,$${{x}_{5}}=24$$,则所以当$${{x}_{1}}+{{x}_{2}}+\\cdots +{{x}_{5}}$$取得最大值时,$${{x}_{1}}$$最大的值是$$20$$. 若取$${{x}_{6}}=27$$,$${{x}_{7}}=27$$,$${{x}_{8}}=28$$,$${{x}_{9}}=29$$,则$${{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}=110$$. 所以,当$${{x}_{1}}+{{x}_{2}}+\\cdots +{{x}_{5}}$$取得最大值时,$${{x}_{9}}$$最小的值是$$29$$. 因此$${{x}_{9}}-{{x}_{1}}$$的最小值是$$29-20=9$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 507 | 50c44989eb674fb3813cbaaa78bc2962 | [
"2001年第18届全国初中数学联赛竞赛第9题"
] | 2 | single_choice | 已知$$x$$、$$y$$是正整数,并且$$xy+x+y=23$$,$${{x}^{2}}y+x{{y}^{2}}=120$$,则$${{x}^{2}}+{{y}^{2}}=$$~\uline{~~~~~~~~~~}~. | [
[
{
"aoVal": "A",
"content": "$$30$$ "
}
],
[
{
"aoVal": "B",
"content": "$$34$$ "
}
],
[
{
"aoVal": "C",
"content": "$$35$$ "
}
],
[
{
"aoVal": "D",
"content": "$$36$$ "
}
]
] | [
"知识标签->题型->方程与不等式->一元二次方程->根与系数的关系->题型:韦达定理应用",
"知识标签->知识点->方程与不等式->一元二次方程->一元二次方程根的判别式",
"知识标签->知识点->方程与不等式->一元二次方程->一元二次方程的根与系数的关系"
] | [
"由于$$xy+\\left( x+y \\right)=23$$,$$xy\\cdot \\left( x+y \\right)=120$$, 则$$x$$,$$y$$与$$\\left( x+y \\right)$$为方程$${{t}^{2}}-23t+120=0$$的两个根,得到$${{t}_{1}}=8$$,$${{t}_{2}}=15$$, 即$$xy=8$$,$$x+y=15$$ ①,或者$$xy=15$$,$$x+y=8$$ ②, ①的时候$$x$$,$$y$$为方程$${{u}^{2}}-15u+8=0$$的根,$${{\\Delta }_{1}}={{15}^{2}}-32=193$$,不是完全平方数,$$xy$$不可能为题目中要求的正整数,舍, ②的时候$$x$$,$$y$$为方程$${{u}^{2}}-8u+15=0$$的根,$${{u}_{1}}=3$$,$${{u}_{2}}=5$$, 故$${{x}^{2}}+{{y}^{2}}={{\\left( x+y \\right)}^{2}}-2xy=34$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 603 | b548f6fa5e6e4896ae9a553e0c2f1d91 | [
"2019~2020学年河南郑州金水区郑州八中初一上学期期中第8题3分",
"初一上学期单元测试《解读绝对值》第3题",
"2020~2021学年9月湖北宜昌伍家岗区宜昌英杰学校初一上学期月考(英杰教育集团)第11题3分",
"2017年湖南长沙天心区初二竞赛长郡教育集团抵达杯第1题5分"
] | 1 | single_choice | 若$$a$$,$$b$$,$$c$$是非零有理数,且$$a+b+c=0$$,则$$\frac{a}{\textbar a\textbar}+\frac{b}{\textbar b\textbar}+\frac{c}{\textbar c\textbar}+\frac{abc}{\textbar abc\textbar}$$所有可能的值为. | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$或$$-1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$或$$-2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$0$$或$$-2$$ "
}
]
] | [
"课内体系->知识点->数->有理数->绝对值->|a|/a的化简"
] | [
"∵$$a+b+c=0$$且$$a$$、$$b$$、$$c$$均$$\\ne 0$$, ∴$$a$$、$$b$$、$$c$$三数符号为两正一负或两负一正, 不妨设, ①$$a$$,$$b$$为正,$$c$$为负,此时$$abc$$为负: $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=1+1+(-1)+(-1)$$ $$=0$$. ②$$a$$,$$b$$为负,$$c$$为正,此时$$abc$$为正, $$\\frac{a}{\\left\\textbar{} a \\right\\textbar}+\\frac{b}{\\left\\textbar{} b \\right\\textbar}+\\frac{c}{\\left\\textbar{} c \\right\\textbar}+\\frac{abc}{\\left\\textbar{} abc \\right\\textbar}$$ $$=-1+(-1)+1+1$$ $$=0$$. 综上原式$$=0$$,故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 103 | 6b11147d9ef04b1785092bd258548ef3 | [
"2011年第22届全国希望杯初一竞赛复赛第9题4分"
] | 1 | single_choice | 已知$$\left\textbar{} x \right\textbar\leqslant 3$$,$$\left\textbar{} y \right\textbar\leqslant 1$$,$$\left\textbar{} z \right\textbar\leqslant 4$$且$$\left\textbar{} x-2y+z \right\textbar=9$$,则$${{x}^{2}}{{y}^{2011}}{{z}^{3}}$$的值是. | [
[
{
"aoVal": "A",
"content": "$$432$$ "
}
],
[
{
"aoVal": "B",
"content": "$$576$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-432$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-576$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->式->整式的乘除->幂的运算->幂的综合运算",
"课内体系->知识点->方程与不等式->不等式(组)->不等式->不等式的性质"
] | [
"只要$$\\left\\textbar{} x \\right\\textbar\\textless{}3$$,$$\\left\\textbar{} y \\right\\textbar\\textless{}1$$,$$\\left\\textbar{} z \\right\\textbar\\textless{}4$$中至少有一个成立, 则$$\\left\\textbar{} x-2y+z \\right\\textbar\\leqslant \\left\\textbar{} x \\right\\textbar+2\\left\\textbar{} y \\right\\textbar+\\left\\textbar{} z \\right\\textbar\\textless{}9$$, 这与$$\\left\\textbar{} x-2y+z \\right\\textbar=9$$矛盾, 所以当且仅当$$\\left\\textbar{} x \\right\\textbar=3$$,$$\\left\\textbar{} y \\right\\textbar=1$$,$$\\left\\textbar{} z \\right\\textbar=4$$同时成立时,才能满足$$\\left\\textbar{} x-2y+z \\right\\textbar=9$$, 此时$$x=3$$,$$y=-1$$,$$z=4$$或$$x=-3$$,$$y=1$$,$$z=-4$$, 所以$${{x}^{2}}{{y}^{2011}}{{z}^{3}}={{3}^{2}}\\times {{(-1)}^{2011}}\\times {{4}^{3}}=-576$$或$${{x}^{2}}{{y}^{2011}}{{z}^{3}}={{(-3)}^{2}}\\times {{1}^{2011}}\\times {{(-4)}^{3}}=-576$$, 综上,$${{x}^{2}}{{y}^{2011}}{{z}^{3}}$$的值是$$-576$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 221 | 0db891868d8741afad969ff8d9ba9e7d | [
"2002年竞赛第4题5分"
] | 1 | single_choice | 设$$a$$,$$b$$,$$c$$为实数,$$x={{a}^{2}}-2b+\frac{ \pi }{3}$$,$$y={{b}^{2}}-2c+\frac{ \pi }{6}$$,$$z={{c}^{2}}-2a+\frac{ \pi }{2}$$,则$$x$$,$$y$$,$$z$$中,至少有一个值( ~). | [
[
{
"aoVal": "A",
"content": "大于$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "等于$$0$$ "
}
],
[
{
"aoVal": "C",
"content": "不大于$$0$$ "
}
],
[
{
"aoVal": "D",
"content": "小于$$0$$ "
}
]
] | [
"课内体系->知识点->式->整式的乘除->乘法公式->完全平方公式的计算-不含分式",
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->含乘方的有理数混合运算",
"课内体系->知识点->数->有理数->有理数基础运算->有理数乘方->有理数乘方运算",
"课内体系->能力->运算能力"
] | [
"$$x+y+z$$ $$={{a}^{2}}-2a+{{b}^{2}}-2b+{{c}^{2}}-2c+\\pi $$ $$={{(a-1)}^{2}}+{{(b-1)}^{2}}+{{(c-1)}^{2}}+(\\pi -3)$$ $$\\textgreater0$$, $$x$$,$$y$$,$$z$$至少有$$1$$个值大于$$0$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1516 | d3f1ef6f47264eb1b46195cf688cce07 | [
"2012年第17届华杯赛初一竞赛初赛第6题"
] | 2 | single_choice | 如果正整数$$x$$与$$y$$使得$$\frac{x{{y}^{2}}}{x+y}$$的值为质数,那么$$x+y$$共有种可能的值. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4$$ "
}
]
] | [
"竞赛->知识点->数与式->数的运算->有理数运算问题"
] | [
"设$$(x,y)=d$$,则存在正整数$$a$$,$$b$$,使得$$x=da$$,$$y=db$$,不妨设$$a\\geqslant b$$. 于是质数: $$p=\\frac{x{{y}^{2}}}{x+y}=\\frac{da{{(db)}^{2}}}{ad+db}=\\frac{{{d}^{2}}a{{b}^{2}}}{a+b}$$,即$${{d}^{2}}a{{b}^{2}}=p(a+b)$$.① 由于$$(a,a+b)=(b,a+b)=(a,b)=1$$,且$$a{{b}^{2}}\\textbar p(a+b)$$, 所以,$$a{{b}^{2}}\\textbar p$$,进而$$a=p$$,$$b=1$$,或$$a=b=1$$. ①当$$a=p$$,$$b=1$$时,$${{d}^{2}}=p+1$$. 所以$$(d+1)(d-1)=p$$.进而,$$d-1=1$$,$$d+1=p$$,$$d=2$$,$$p=3$$. 此时$$x=6$$,$$y=2$$,$$x+y=8$$. ②当$$a=b=1$$时,$${{d}^{2}}=2p$$.所以$$d=2$$,$$p=2$$. 此时$$x=2$$,$$y=2$$.$$x+y=4$$. 所以$$x+y$$共有两种可能的值. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1208 | 8aac49074e724b45014e87cc50d55157 | [
"1996年第7届全国希望杯初一竞赛复赛第10题"
] | 2 | single_choice | 在某浓度的盐水中加入一杯水后,得到新盐水,它的浓度为$$20 \%$$,又在新盐水中加入与前述一杯水的重量相等的纯盐合,盐水浓度变为$$33\frac{1}{3} \%$$,那么原来盐水的浓度是. | [
[
{
"aoVal": "A",
"content": "$$23 \\%$$ "
}
],
[
{
"aoVal": "B",
"content": "$$25 \\%$$ "
}
],
[
{
"aoVal": "C",
"content": "$$30 \\%$$ "
}
],
[
{
"aoVal": "D",
"content": "$$32 \\%$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->二元一次方程(组)->二元一次方程组应用题->二元一次方程组的数字问题"
] | [
"设原盐水溶液为$$a$$克,其中含纯盐$$m$$克,后加入``一杯水''为$$x$$克, 依题意得$$\\begin{cases}(a+x)\\times 20 \\%=m (a+x+x)\\times 33\\dfrac{1}{3} \\%=m+x \\end{cases}$$, 整理得$$\\begin{cases}a+x=5m a-x=3m \\end{cases}$$, 解得$$2a=8m$$,∴$$a=4m$$. 于是原盐水的浓度为$$\\frac{m}{a}=\\frac{m}{4m}=25 \\%$$,选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 696 | 5af563f916fd4fd78df0b7d741bf7be8 | [
"2019年浙江杭州拱墅区杭州市文澜中学初二竞赛第3题3分"
] | 1 | single_choice | 在平面直角坐标系中,若点$$P(m-2,m+1)$$在第二象限,则$$m$$的取值范围是. | [
[
{
"aoVal": "A",
"content": "$$m ~\\textless~ -1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$m\\textgreater2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$-1 ~\\textless{} ~m ~\\textless{} ~2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$m\\textgreater-1$$ "
}
]
] | [
"课内体系->知识点->函数->平面直角坐标系->坐标系基础->象限内坐标的特征"
] | [
"∵$$P(m-2,m+1)$$在第二象限, ∴$$\\begin{cases}m-2 ~\\textless{} ~0 m+1\\textgreater0 \\end{cases}$$. ∴$$-1 ~\\textless{} ~m ~\\textless{} ~2$$. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 179 | 0cc87f7059f840e99a8c431814252ad1 | [
"2009年第20届希望杯初二竞赛第2试第8题"
] | 2 | single_choice | 若不等式组$$\begin{cases}-x+4m\textless{}x+10 x+1\textgreater m \end{cases}$$的解集是$$x\textgreater4$$,则. | [
[
{
"aoVal": "A",
"content": "$$m\\leqslant \\frac{9}{2}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$m\\leqslant 5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$m=\\frac{9}{2}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$m=5$$ "
}
]
] | [
"竞赛->知识点->方程与不等式->不等式->一次含参不等式"
] | [
"$$-x+4m\\textless{}x+10$$,得$$x\\textgreater2m-5$$, $$x+1\\textgreater m$$,得$$x\\textgreater m-1$$, 因为不等式组的解集是$$x\\textgreater4$$,所以必须是$$\\begin{cases}2m-5\\leqslant 4 m-1\\leqslant 4 \\end{cases}$$成立,且其中至少有一个等式成立, 若$$2m-5=4$$,则$$m=\\frac{9}{2}$$,且$$m=\\frac{9}{2}$$,使得$$m-1\\leqslant 4$$成立; 若$$m-1=4$$,则$$m=5$$,当$$m=5$$时,$$2m-5\\leqslant 4$$不成立,所以$$m=5$$不符合原不等式组. 综上得,当$$m=\\frac{9}{2}$$时,原不等式组的解集是$$x\\textgreater4$$. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1215 | 92f332b3318840d88561c07f096342de | [
"2008年第19届希望杯初二竞赛第1试第2题"
] | 1 | single_choice | 若单项式$$-2{{a}^{\textbar x\textbar}}{{b}^{\textbar5x\textbar}}$$和$${{3}^{2}}{{a}^{2}}{{b}^{3-x}}$$的次数相同,则$$x$$的整数值等于. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\pm 1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\pm 1$$以外的数 "
}
]
] | [
"竞赛->知识点->数与式->整式->整式的乘除运算"
] | [
"由题意,知$$\\textbar x\\textbar+\\textbar5x\\textbar=2+(3-x)$$, 当$$x\\geqslant 0$$时,则$$6x=5-x$$, 解得$$x=\\frac{5}{7}$$,不合题意,舍去. 当$$x\\textless{}0$$时,则$$-6x=5-x$$, 解得$$x=-1$$,符合题意. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 867 | 9aa71db43efb4b998b06dd453a2bab04 | [
"2006年第17届希望杯初一竞赛初赛第2题4分"
] | 1 | single_choice | 有如下四个命题: ①两个符号相反的分数之间至少有一个正整数; ②两个符号相反的分数之间至少有一个负整数; ③两个符号相反的分数之间至少有一个整数; ④两个符号相反的分数之间至少有一个有理数. 其中真命题的个数为. | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$3$$ "
}
],
[
{
"aoVal": "D",
"content": "$$4$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数的概念及分类->有理数的分类",
"课内体系->知识点->几何图形初步->命题与证明",
"课内体系->能力->推理论证能力"
] | [
"如$$-\\frac{1}{2}$$和$$\\frac{1}{2}$$之间既没有正整数,也没有负整数, 所以命题①、②不正确.$$0$$介于两个符号相反的分数之间,所以命题③、④正确. 故选($$\\text{B}$$). "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 353 | 2bcac3fe58f64092ba12d22405639b45 | [
"2006年第17届希望杯初二竞赛第2试第7题"
] | 1 | single_choice | 若$$a$$、$$b$$、$$c$$都是大于$$1$$的自然数,且$${{a}^{c}}=252b$$,则$$a$$的最小值是. | [
[
{
"aoVal": "A",
"content": "$$42$$ "
}
],
[
{
"aoVal": "B",
"content": "$$24$$ "
}
],
[
{
"aoVal": "C",
"content": "$$21$$ "
}
],
[
{
"aoVal": "D",
"content": "$$15$$ "
}
]
] | [
"竞赛->知识点->数与式->数的运算->有理数运算问题",
"竞赛->知识点->数论->整除->因数与倍数"
] | [
"因为$$252={{2}^{2}}\\times {{3}^{2}}\\times 7$$, 所以,要使$${{a}^{c}}=252b$$成立,$$a$$中一定含有$$2$$,$$3$$,$$7$$这三个因数, 所以$$a$$的最小值是$$2\\times 3\\times 7=42$$, 如取$$a=42$$,$$b=7$$,$$c=2$$, 得$${{42}^{2}}=252\\times 7$$, 故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 817 | acc6571216fb4a57844c12626cf1d845 | [
"2009年第20届希望杯初二竞赛第2试第10题"
] | 1 | single_choice | 任何一个正整数$$n$$都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解$$n=p\times q$$($$p\leqslant q$$)可称为正整数$$n$$的最佳分解,并规定$$F(n)=\frac{p}{q}$$.如:$$12=1\times 12=2\times 6=3\times 4$$,则$$F(12)=\frac{3}{4}$$. 则在以下结论 ①$$F(2)=\frac{1}{2}$$. ②$$F(24)=\frac{3}{8}$$. ③若$$n$$是一个完全平方数,则$$F(n)=1$$. ④若$$n$$是一个完全立方数,即$$n={{a}^{3}}$$($$a$$是正整数),则$$F(n)=\frac{1}{a}$$中,正确的结论有. | [
[
{
"aoVal": "A",
"content": "$$4$$个 "
}
],
[
{
"aoVal": "B",
"content": "$$3$$个 "
}
],
[
{
"aoVal": "C",
"content": "$$2$$个 "
}
],
[
{
"aoVal": "D",
"content": "$$1$$个 "
}
]
] | [
"竞赛->知识点->数论->同余->完全平方数"
] | [
"因为$$2=1\\times 2$$,所以$$F(2)=\\frac{1}{2}$$,①正确; 因为$$24=1\\times 24=2\\times 12=3\\times 8=4\\times 6$$,所以$$F(24)=\\frac{4}{6}=\\frac{2}{3}$$,②错误; 若$$n$$是一个完全平方数,设$$n={{a}^{2}}$$,则$$F(n)=\\frac{a}{a}=1$$,③正确; 若$$n$$是一个完全立方数,$$F(n)$$可能不等于$$\\frac{1}{a}$$,如$$64=43=8\\times 8$$,$$F(64)=1$$,④错误. 故选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 565 | 559d4eb851e8462fb138dcad01350420 | [
"2014年第25届全国希望杯初一竞赛初赛第3题4分"
] | 1 | single_choice | 若$$a+b+c=0$$,则$$\frac{\left\textbar{} a \right\textbar}{a}+\frac{\left\textbar{} b \right\textbar}{b}+\frac{\left\textbar{} c \right\textbar}{c}+\frac{\left\textbar{} ab \right\textbar}{ab}+\frac{\left\textbar{} ac \right\textbar}{ac}+\frac{\left\textbar{} bc \right\textbar}{bc}+\frac{\left\textbar{} abc \right\textbar}{abc}$$的值为(~ ). | [
[
{
"aoVal": "A",
"content": "$$-7$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$7$$ "
}
]
] | [
"课内体系->知识点->数->有理数->绝对值->绝对值的非负性",
"课内体系->知识点->数->有理数->绝对值->|a|/a的化简"
] | [
"方法一: 依题意,$$a$$,$$b$$,$$c$$都不为$$0$$, ∵$$a+b+c=0$$, ∴$$a$$,$$b$$,$$c$$中既有正数,又有负数. 若$$a$$,$$b$$,$$c$$中只有一个正数,不妨设$$a\\textgreater0$$,则$$b\\textless{}0$$,$$c\\textless{}0$$, 则$$\\frac{\\left\\textbar{} a \\right\\textbar}{a}+\\frac{\\left\\textbar{} b \\right\\textbar}{b}+\\frac{\\left\\textbar{} c \\right\\textbar}{c}+\\frac{\\left\\textbar{} ab \\right\\textbar}{ab}+\\frac{\\left\\textbar{} ac \\right\\textbar}{ac}+\\frac{\\left\\textbar{} bc \\right\\textbar}{bc}+\\frac{\\left\\textbar{} abc \\right\\textbar}{abc}$$ $$=1-1-1-1-1+1+1$$ $$=-1$$. 若$$a$$,$$b$$,$$c$$中只有一个负数,不妨设$$a\\textless{}0$$,则$$b\\textgreater0$$,$$c\\textgreater0$$, 则$$\\frac{\\left\\textbar{} a \\right\\textbar}{a}+\\frac{\\left\\textbar{} b \\right\\textbar}{b}+\\frac{\\left\\textbar{} c \\right\\textbar}{c}+\\frac{\\left\\textbar{} ab \\right\\textbar}{ab}+\\frac{\\left\\textbar{} ac \\right\\textbar}{ac}+\\frac{\\left\\textbar{} bc \\right\\textbar}{bc}+\\frac{\\left\\textbar{} abc \\right\\textbar}{abc}$$ $$=-1+1+1-1-1+1-1$$ $$=-1$$. 方法二: 取特殊值. ∵$$a+b+c=0$$,不妨设$$a=2$$,$$b=c=-1$$, 则$$\\frac{\\left\\textbar{} a \\right\\textbar}{a}+\\frac{\\left\\textbar{} b \\right\\textbar}{b}+\\frac{\\left\\textbar{} c \\right\\textbar}{c}+\\frac{\\left\\textbar{} ab \\right\\textbar}{ab}+\\frac{\\left\\textbar{} ac \\right\\textbar}{ac}+\\frac{\\left\\textbar{} bc \\right\\textbar}{bc}+\\frac{\\left\\textbar{} abc \\right\\textbar}{abc}$$ $$=1-1-1-1-1+1+1$$ $$=-1$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 25 | 019f34295c3349c7a85f5d4766de4ade | [
"2007年第18届希望杯初一竞赛复赛第1题4分"
] | 1 | single_choice | 假定未拧紧的水龙头每秒钟渗出$$2$$滴水,每滴水约$$0.05$$毫升.现有一个水龙头未拧紧,$$4$$小时后,才被发现并拧紧,在这段时间内,水龙头共滴水约( )(用科学记数法表示,结果保留两位有效数字). | [
[
{
"aoVal": "A",
"content": "$$1440$$毫升 "
}
],
[
{
"aoVal": "B",
"content": "$$1.4\\times {{10}^{3}}$$毫升 "
}
],
[
{
"aoVal": "C",
"content": "$$0.14\\times {{10}^{4}}$$毫升 "
}
],
[
{
"aoVal": "D",
"content": "$$14\\times {{10}^{2}}$$毫升 "
}
]
] | [
"课内体系->知识点->数->有理数->科学记数法->科学记数法:表示较大的数"
] | [
"$$0.05\\times 2\\times 4\\times 60\\times 60=1440=1.4\\times {{10}^{3}}$$(毫升). "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 526 | 556ac3d0fb5e47d1b23e64c574062c18 | [
"2013年山东青岛黄岛区山东省青岛第九中学自主招生",
"2018年浙江宁波余姚市余姚市实验学校初二竞赛第3题5分"
] | 1 | single_choice | 设$$x=\frac{\sqrt{5}-3}{2}$$,则代数式$$x(x+1)\left( x+2 \right)\left( x+3 \right)$$的值是. | [
[
{
"aoVal": "A",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$0$$ "
}
],
[
{
"aoVal": "C",
"content": "$$1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$2$$ "
}
]
] | [
"竞赛->知识点->数与式->二次根式->二次根式的性质与运算"
] | [
"$$x=\\frac{\\sqrt{5}-3}{2}$$,$$2x=\\sqrt{5}-3$$ ,$$2x+3=\\sqrt{5}$$, 两边同时平方整理得,$${{x}^{2}}+3x=-1$$. $$x(x+1)(x+2)(x+3)=({{x}^{2}}+3x)({{x}^{2}}+3x+2)$$$$=-1\\times (-1+2)=-1$$. 故选$$\\text{A}$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1199 | c9395fc2390c452eb1c5f6f490bedc7e | [
"1993年第10届全国初中数学联赛竞赛第8题"
] | 2 | single_choice | $$\sqrt[3]{3}{{\left( \sqrt[3]{\frac{4}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{1}{9}} \right)}^{-1}}$$可以化简成(~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$\\sqrt[3]{3}\\left( \\sqrt[3]{2}+1 \\right)$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\sqrt[3]{3}\\left( \\sqrt[3]{2}-1 \\right)$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\sqrt[3]{2}-1$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\sqrt[3]{2}+1$$ "
}
]
] | [
"课内体系->知识点->式->二次根式->二次根式化简求值",
"课内体系->知识点->式->二次根式->二次根式的运算->二次根式的四则混合运算",
"课内体系->能力->运算能力"
] | [
"原式$$={{3}^{\\frac{1}{3}}}{{\\left( \\frac{1}{9} \\right)}^{-\\frac{1}{3}}}{{\\left( {{2}^{\\frac{2}{3}}}-{{2}^{\\frac{1}{3}}}+1 \\right)}^{-1}}$$ $$=3\\left[ \\frac{{{\\left( {{2}^{\\frac{1}{3}}} \\right)}^{3}}+1}{{{2}^{\\frac{1}{3}}}+1} \\right]^{-1}$$ $$={{2}^{\\frac{1}{3}}}+1$$ $$=\\sqrt[3]{2}+1$$. 故选$$\\text{D}$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 374 | 5de0df3b26874de591aa3f675e42bbc5 | [
"2016年上海浦东新区进才中学自主招生第6题10分",
"2016年第33届全国全国初中数学联赛竞赛第2题7分"
] | 1 | single_choice | 三种图书的单价分别为$$10$$元、$$15$$元和$$20$$元,某学校计划恰好用$$500$$元购买上述图书$$30$$本,那么不同的购书方案有种. | [
[
{
"aoVal": "A",
"content": "$$9$$ "
}
],
[
{
"aoVal": "B",
"content": "$$10$$ "
}
],
[
{
"aoVal": "C",
"content": "$$11$$ "
}
],
[
{
"aoVal": "D",
"content": "$$12$$ "
}
],
[
{
"aoVal": "E",
"content": "$$13$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->其他方程->三元一次方程组->三元一次方程组的实际应用"
] | [
"设购买三种图书的数量分别为$$x$$,$$y$$,$$z$$, 则$$\\left { \\begin{array}{*{35}{l}} x+y+z=30 10x+15y+20z=500 \\end{array} \\right.$$, 即$$\\begin{cases}y+z=30-x 3y+4z=100-2x \\end{cases}$$, 解得$$\\begin{cases}y=20-2x z=10+x \\end{cases}$$, 依题意得,$$x$$,$$y$$,$$z$$,为自然数(非负整数), 故$$0\\leqslant x\\leqslant 10$$,$$x$$有$$11$$种可能的取值(分别为$$0$$,$$1$$,$$2$$,$$3$$,$$\\cdots $$,$$10$$), 对于每一个$$x$$值,$$y$$和$$z$$都有唯一的值(自然数)相对应, 即不同的购书方案共有$$11$$种. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1594 | fea48df0cddc4ccda73ea6d0c4040b43 | [
"初一下学期其它",
"1994年第11届全国初中数学联赛竞赛第4题6分"
] | 1 | single_choice | 当$$x=\frac{1+\sqrt{1994}}{2}$$时,多项式$${{(4{{x}^{3}}-1997x-1994)}^{2001}}$$的值为( ). | [
[
{
"aoVal": "A",
"content": "$$1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$-1$$ "
}
],
[
{
"aoVal": "C",
"content": "$${{2}^{2001}}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$-{{2}^{2001}}$$ "
}
]
] | [
"课内体系->知识点->式->二次根式->二次根式化简求值->二次根式的化简求值——利用完全平方"
] | [
"∵$$x=\\frac{1+\\sqrt{1994}}{2}$$, ∴$${{(2x-1)}^{2}}=1994$$, 即$$4{{x}^{2}}-4x-1993=0$$, ∴$${{(4{{x}^{3}}-1997x-1994)}^{2001}}$$ $$={{[(4{{x}^{2}}-4x-1993)x+(4{{x}^{2}}-4x-1993)-1]}^{2001}}$$ $$={{(-1)}^{2001}}$$ $$=-1$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1118 | ff8080814d9efd56014daa79ad010ac2 | [
"1993年第4届全国希望杯初一竞赛初赛第10题"
] | 2 | single_choice | 若$$a=(\frac{-3.14}{3.13})\div 3.12$$,$$b=(\frac{2.14}{-2.13})\div 2.12$$,$$c=(\frac{1.14}{1.13})\div (-1.12)$$,则$$a$$,$$b$$,$$c$$的大小关系是(~ ). | [
[
{
"aoVal": "A",
"content": "$$a\\textgreater b\\textgreater c$$ "
}
],
[
{
"aoVal": "B",
"content": "$$a\\textgreater c\\textgreater b$$ "
}
],
[
{
"aoVal": "C",
"content": "$$b\\textgreater c\\textgreater a$$ "
}
],
[
{
"aoVal": "D",
"content": "$$c\\textgreater b\\textgreater a$$ "
}
]
] | [
"课内体系->知识点->数->有理数->有理数比较大小->有理数比较大小-利用有理数正负性",
"课内体系->能力->运算能力"
] | [
"容易看出$$a$$,$$b$$,$$c$$均为负数,我们看$$\\left\\textbar{} a \\right\\textbar$$,$$\\left\\textbar{} b \\right\\textbar$$,$$\\left\\textbar{} c \\right\\textbar$$. ∵$$\\frac{3.14}{3.13}=1+\\frac{1}{313}$$,$$\\frac{2.14}{2.13}=1+\\frac{1}{213}$$,$$\\frac{1.14}{1.13}=1+\\frac{1}{113}$$, 又$$313\\textgreater213\\textgreater113$$,知$$\\frac{3.14}{3.13}\\textless{}\\frac{2.14}{2.13}\\textless{}\\frac{1.14}{1.13}$$, 又$$3.13\\textgreater2.13\\textgreater1.13$$, ∴$$\\frac{3.14}{3.13}\\div 3.13\\textless{}\\frac{2.14}{2.13}\\div 2.13\\textless{}\\frac{1.14}{1.13}\\div 1.13$$, ∴$$\\left\\textbar{} a \\right\\textbar\\textless{}\\left\\textbar{} b \\right\\textbar\\textless{}\\left\\textbar{} c \\right\\textbar$$, ∴$$a\\textgreater b\\textgreater c$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 762 | 45599f2290fc4b9fa45cd6d82c88338d | [
"1993年第10届全国初中数学联赛竞赛第4题",
"初一上学期其它"
] | 2 | single_choice | $${{x}_{1}}$$、$${{x}_{2}}$$、$${{x}_{3}}$$、$${{x}_{4}}$$、$${{x}_{5}}$$满足方程组$$\begin{cases}{{x}_{1}}+{{x}_{2}}+{{x}_{3}}={{a}_{1}} {{x}_{2}}+{{x}_{3}}+{{x}_{4}}={{a}_{2}} {{x}_{3}}+{{x}_{4}}+{{x}_{5}}={{a}_{3}} {{x}_{4}}+{{x}_{5}}+{{x}_{1}}={{a}_{4}} {{x}_{5}}+{{x}_{1}}+{{x}_{2}}={{a}_{5}} \end{cases}$$, 其中$${{a}_{1}}$$、$${{a}_{2}}$$、$${{a}_{3}}$$、$${{a}_{4}}$$、$${{a}_{5}}$$是常数,且$${{a}_{1}}\textgreater{{a}_{2}}\textgreater{{a}_{3}}\textgreater{{a}_{4}}\textgreater{{a}_{5}}$$,则$${{x}_{1}}$$、$${{x}_{2}}$$、$${{x}_{3}}$$、$${{x}_{4}}$$、$${{x}_{5}}$$的大小顺序是. | [
[
{
"aoVal": "A",
"content": "$${{x}_{1}}\\textgreater{{x}_{2}}\\textgreater{{x}_{3}}\\textgreater{{x}_{4}}\\textgreater{{x}_{5}}$$ "
}
],
[
{
"aoVal": "B",
"content": "$${{x}_{4}}\\textgreater{{x}_{2}}\\textgreater{{x}_{1}}\\textgreater{{x}_{3}}\\textgreater{{x}_{5}}$$ "
}
],
[
{
"aoVal": "C",
"content": "$${{x}_{3}}\\textgreater{{x}_{1}}\\textgreater{{x}_{4}}\\textgreater{{x}_{2}}\\textgreater{{x}_{5}}$$ "
}
],
[
{
"aoVal": "D",
"content": "$${{x}_{5}}\\textgreater{{x}_{3}}\\textgreater{{x}_{1}}\\textgreater{{x}_{4}}\\textgreater{{x}_{2}}$$ "
}
]
] | [
"课内体系->能力->运算能力",
"课内体系->知识点->方程与不等式->其他方程->三元一次方程组->解多元一次方程组",
"课内体系->知识点->方程与不等式->二元一次方程(组)->解二元一次方程组->加减消元法解二元一次方程组"
] | [
"\\textbf{(知识点:解多元一次方程组)} 给定方程组中的方程按顺序两两相减分别得: $${{x}_{1}}-{{x}_{4}}={{a}_{1}}-{{a}_{2}}$$,$${{x}_{2}}-{{x}_{5}}={{a}_{2}}-{{a}_{3}}$$,$${{x}_{3}}-{{x}_{1}}={{a}_{3}}-{{a}_{4}}$$,$${{x}_{4}}-{{x}_{2}}={{a}_{4}}-{{a}_{5}}$$, 由于$${{a}_{1}}\\textgreater{{a}_{2}}\\textgreater{{a}_{3}}\\textgreater{{a}_{4}}\\textgreater{{a}_{5}}$$,有$${{x}_{1}}\\textgreater{{x}_{4}}$$,$${{x}_{2}}\\textgreater{{x}_{5}}$$,$${{x}_{3}}\\textgreater{{x}_{1}}$$,$${{x}_{4}}\\textgreater{{x}_{2}}$$,因此$${{x}_{3}}\\textgreater{{x}_{1}}\\textgreater{{x}_{4}}\\textgreater{{x}_{2}}\\textgreater{{x}_{5}}$$. 所以选$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1213 | c942880b33f942548e9397704b44ea28 | [
"2002年第13届希望杯初二竞赛第2试第3题",
"初一上学期单元测试《几何图形初步》角第16题"
] | 2 | single_choice | 上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是. At 9:00 a.m., the hour hand is at right angles to the minute hand, so the next time the hour hand is at right angles to the minute hand is . | [
[
{
"aoVal": "A",
"content": "$$9$$:$$30$$ "
}
],
[
{
"aoVal": "B",
"content": "$$10$$:$$5$$ "
}
],
[
{
"aoVal": "C",
"content": "$$10$$:$$5\\frac{5}{11}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$9$$:$$32\\frac{8}{11}$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->一元一次方程->一元一次方程与实际问题->一元一次方程的钟表问题",
"课内体系->能力->运算能力",
"课内体系->能力->推理论证能力",
"课内体系->能力->分析和解决问题能力"
] | [
"设再次转成直角的时间间隔为$$x$$,则 $$(6-\\frac{1}{2})x=180$$, ∴$$x=32\\frac{8}{11}$$. 所以下一次时针与分针成直角的时间为$$9$$时$$32\\frac{8}{11}$$分. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1378 | d76bc00d030149059628a06fe5339748 | [
"其它",
"2009年第20届希望杯初二竞赛第2试第9题4分"
] | 2 | single_choice | 电影票有$$10$$元、$$15$$元、$$20$$元三种票价,班长用$$500$$元买了$$30$$张电影票,其中票价为$$20$$元的比票价为$$10$$元的多(~ ~ ~). | [
[
{
"aoVal": "A",
"content": "$$20$$张 "
}
],
[
{
"aoVal": "B",
"content": "$$15$$张 "
}
],
[
{
"aoVal": "C",
"content": "$$10$$张 "
}
],
[
{
"aoVal": "D",
"content": "$$5$$张 "
}
]
] | [
"课内体系->知识点->方程与不等式->其他方程->三元一次方程组->解三元一次方程组",
"课内体系->知识点->方程与不等式->其他方程->三元一次方程组->三元一次方程组的实际应用"
] | [
"设购买$$10$$元、$$15$$元、$$20$$元的电影票分别为$$x$$、$$y$$、$$z$$张, 则根据题意,得$$\\begin{cases}\\textasciitilde x+y+z=10 ① \\textasciitilde10x+15y+20z=500 ②\\end{cases}$$, 方法一:①$$-$$②$$\\times 10$$得, $$5y+10z=200$$, ∴$$z=\\frac{40-y}{2}=20-\\frac{y}{2}$$. ①$$\\times 20-$$②得, $$10x+5y=100$$, ∴$$x=\\frac{20-y}{2}=10-\\frac{y}{2}$$. 方法二:②$$-$$①$$\\times 15$$得, $$-5x+5z=50$$ ∴$$z-x=10$$. ∴票价为$$20$$元的比票价为$$10$$元的多$$10$$张. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 783 | 9a498d26d1df418a9210f5e31a1b9db9 | [
"2002年第13届希望杯初二竞赛第2试第4题"
] | 2 | single_choice | 有理数$$a$$,$$b$$,$$c$$满足下列条件:$$a+b+c=0$$且$$abc ~\textless{} ~0$$,那么$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$的值. | [
[
{
"aoVal": "A",
"content": "是正数 "
}
],
[
{
"aoVal": "B",
"content": "是零 "
}
],
[
{
"aoVal": "C",
"content": "是负数 "
}
],
[
{
"aoVal": "D",
"content": "不能确定是正数、负数或$$0$$. "
}
]
] | [
"课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算",
"课内体系->知识点->式->分式->分式化简求值->分式恒等变形",
"课内体系->能力->运算能力"
] | [
"由$$abc ~\\textless{} ~0$$知$$a$$、$$b$$、$$c$$均不为$$0$$. $$\\therefore $$ $${{\\left( a+b+c \\right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\\left( ab+bc+ac \\right)=0$$, $$\\therefore ab+bc+ca=-\\frac{1}{2}\\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \\right) ~\\textless{} ~0$$, $$\\therefore $$$$\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{c}=\\frac{bc+ac+ab}{abc}\\textgreater0$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1228 | c041b9458f174cf68b3ce824d348d249 | [
"2006年全美数学竞赛(AMC)竞赛"
] | 2 | single_choice | 羽毛球单打比赛一共有$$6$$名选手参赛.每名选手只和其他选手比赛一次,没有平局.如果$$A$$选手赢了$$4$$场,$$B$$选手赢了$$3$$场,$$C$$选手赢了$$3$$场,$$D$$选手赢了$$2$$场,$$E$$选手赢了$$2$$场,那么第六位选手赢了场. | [
[
{
"aoVal": "A",
"content": "$$0$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1$$ "
}
],
[
{
"aoVal": "C",
"content": "$$2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$3$$ "
}
],
[
{
"aoVal": "E",
"content": "$$4$$ "
}
]
] | [
"美国amc8->知识点->组合->逻辑推理->体育比赛"
] | [
"由于有$$6$$名选手,总共有$$\\frac{6(6-1)}{2}=15$$场比赛.到目前为止,已经有$$4+3+3+2+2=14$$场比赛结束了(每场比赛一个人赢),所以第六位选手需要赢$$15-14=1$$场. 故选$$\\text{B}$$. "
] | B |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1079 | ff8080814d95366b014d988f71d213cf | [
"2011年第22届全国希望杯初二竞赛复赛第2题4分"
] | 2 | single_choice | 已知$${{a}^{2}}-a=7$$,则代数式$$\frac{a-1}{a+2}\centerdot \frac{{{a}^{2}}-4}{{{a}^{2}}-2a+1}\div \frac{1}{{{a}^{2}}-1}$$的值是(~ ~ ). | [
[
{
"aoVal": "A",
"content": "$$3$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{7}{2}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$4$$ "
}
],
[
{
"aoVal": "D",
"content": "$$5$$ "
}
]
] | [
"课内体系->知识点->式->分式->分式的运算->分式乘除混合运算",
"课内体系->知识点->式->分式->分式的运算->分式加减、乘除、乘方混合运算",
"课内体系->能力->运算能力"
] | [
"$$\\frac{a-1}{a+2}\\cdot \\frac{{{a}^{2}}-4}{{{a}^{2}}-2a+1}\\div \\frac{1}{{{a}^{2}}-1}$$ $$=\\frac{a-1}{a+2}\\cdot \\frac{(a+2)(a-2)}{{{(a-1)}^{2}}}\\cdot (a+1)(a-1)$$ $$=(a+1)(a-2)$$ $$={{a}^{2}}-a-2$$ $$=7-2$$ $$=5$$. "
] | D |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1503 | ef138c99c4824a04882663c839178383 | [
"2016年第27届全国希望杯初二竞赛初赛第4题4分"
] | 1 | single_choice | 已知不等式$$\left\textbar{} x+1 \right\textbar\textgreater2$$与不等式$$\left\textbar{} x \right\textbar\leqslant a$$($$a\geqslant 0$$)的解集没有公共部分,那么$$a$$的取值范围是(~ ). | [
[
{
"aoVal": "A",
"content": "$$0\\leqslant a\\leqslant 1$$ "
}
],
[
{
"aoVal": "B",
"content": "$$1\\leqslant a\\leqslant 2$$ "
}
],
[
{
"aoVal": "C",
"content": "$$0\\leqslant a\\leqslant 2$$ "
}
],
[
{
"aoVal": "D",
"content": "$$a\\geqslant 1$$ "
}
]
] | [
"课内体系->知识点->方程与不等式->不等式(组)->一元一次不等式组->解含绝对值的一元一次不等式(组)"
] | [
"不等式$$\\left\\textbar{} x+1 \\right\\textbar\\textgreater2$$的解集为$$x\\textless{}-3$$或$$x\\textgreater1$$. $$\\left\\textbar{} x \\right\\textbar\\leqslant a$$($$a\\geqslant 0$$)的解集为$$-a\\leqslant x\\leqslant a$$. ∵两不等式的解集没有公共部分, ∴$$a\\leqslant 1$$, ∴$$0\\leqslant a\\leqslant 1$$. "
] | A |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1304 | 97d5f4af6eb440ea94cb1a14f1aa99db | [
"2001年第12届希望杯初一竞赛第2试第3题"
] | 0 | single_choice | 我国古代伟大的数学家祖冲之在$$1500$$年以前就已经相当精确地算出圆周率$$\pi $$是在$$3.1415926$$和$$3.1415927$$之间,并取$$\frac{355}{113}$$为密率、$$\frac{22}{7}$$为约率,则( ). | [
[
{
"aoVal": "A",
"content": "$$3.1415 \\textless{} \\pi \\textless{} \\frac{333}{106}$$ "
}
],
[
{
"aoVal": "B",
"content": "$$\\frac{355}{113} \\textless{} \\pi \\textless{} \\frac{22}{7}$$ "
}
],
[
{
"aoVal": "C",
"content": "$$\\frac{333}{106} \\textless{} \\pi \\textless{} \\frac{355}{113}$$ "
}
],
[
{
"aoVal": "D",
"content": "$$\\frac{22}{7} \\textless{} \\pi \\textless{} 1.429$$ "
}
]
] | [
"课内体系->知识点->数->实数->无理数有关的计算->无理数的估算"
] | [
"对$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$、$$\\text{D}$$四个答案进行比较分析即可得到答案$$\\text{C}$$. "
] | C |
mid_math_competition_ch_single_choice_1.5K_dev | 2023-07-07T00:00:00 | 1513 | f3c8b87aeb724096b730c5686170897d | [
"2000年第11届希望杯初一竞赛第10题"
] | 1 | single_choice | 在某班的新年晚会上,每个同学都写若干字条祝福他人.已知在任意四个人中,每一位都祝福其他三人中的至少一位.那么该班中没有得到其他同学祝福字条的同学最多有位. | [
[
{
"aoVal": "A",
"content": "$$1$$. "
}
],
[
{
"aoVal": "B",
"content": "$$2$$. "
}
],
[
{
"aoVal": "C",
"content": "$$3$$. "
}
],
[
{
"aoVal": "D",
"content": "$$4$$. "
}
]
] | [
"课内体系->知识点->式->整式的加减->整式的加减运算"
] | [
"假设有$$A$$、$$B$$两同学没有得到祝福字条,现在任选另外两位同学记为$$C$$和$$D$$,则$$A$$、$$B$$、$$C$$、$$D$$组成一个四人组,由于$$C$$至少祝福了$$A$$、$$B$$、$$D$$中一位,而$$A$$、$$B$$没有得到任何同学的祝福,所以$$D$$得到$$C$$的祝福,同理$$C$$也得到$$D$$的祝福,由$$C$$、$$D$$的任意性可以得出,除$$A$$、$$B$$之外,班上其他同学都得到了祝福字条.以上分析说明,未得到祝福字条的同学不能超过$$2$$人. 在$$A$$、$$B$$给除他俩之外的同学都写了祝福字条,其余同学也都给除$$A$$、$$B$$之外的所有同学写了祝福字条的情况下,题目条件满足,即存在恰有两位同学未得到祝福字条的情况,所以最多有两位同学未得到祝福字条.选$$\\text{B}$$. "
] | B |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.