file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_nat32_to_seq_nat8_to_seq_nat32_LE | val seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
[SMTPat (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x))] | val seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
[SMTPat (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x))] | let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
() | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 231,
"start_col": 0,
"start_line": 225
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length x % 4 == 0}
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE
x) ==
x)
[
SMTPat (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE (Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE
x))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Words_s.four",
"Prims.op_Division",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"FStar.Mul.op_Star",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x: seq nat8 {length x % 4 == 0})
: Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x) =
| reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
() | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_uint8_to_seq_nat8_to_seq_uint8 | val seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) :
Lemma (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x) == x)
[SMTPat (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x))] | val seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) :
Lemma (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x) == x)
[SMTPat (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x))] | let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 237,
"start_col": 0,
"start_line": 236
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 x) ==
x)
[
SMTPat (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8
x))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8",
"Prims.unit"
] | [] | true | false | true | false | false | let seq_uint8_to_seq_nat8_to_seq_uint8 (x: seq nat8) =
| assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x) | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific | val seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') | val seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') | let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 263,
"start_col": 0,
"start_line": 260
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE x' ==>
x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq.seq_four_to_seq_LE_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let seq_four_to_seq_LE_injective_specific (#a: eqtype) (x x': seq (four a))
: Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') =
| seq_four_to_seq_LE_injective a | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_four_to_seq_LE_injective | val seq_four_to_seq_LE_injective (a:eqtype) : Lemma
(forall (x x':seq (four a)).{:pattern seq_four_to_seq_LE x; seq_four_to_seq_LE x'}
seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') | val seq_four_to_seq_LE_injective (a:eqtype) : Lemma
(forall (x x':seq (four a)).{:pattern seq_four_to_seq_LE x; seq_four_to_seq_LE x'}
seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x') | let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
() | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 249,
"start_col": 0,
"start_line": 242
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b' | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype
-> FStar.Pervasives.Lemma
(ensures
forall (x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a))
(x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)).
{:pattern
Vale.Def.Words.Seq_s.seq_four_to_seq_LE x; Vale.Def.Words.Seq_s.seq_four_to_seq_LE x'}
Vale.Def.Words.Seq_s.seq_four_to_seq_LE x == Vale.Def.Words.Seq_s.seq_four_to_seq_LE x' ==>
x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"Prims.unit",
"Vale.Lib.Meta.generic_injective_proof",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_or",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let seq_four_to_seq_LE_injective (a: eqtype)
: Lemma
(forall (x: seq (four a)) (x': seq (four a)).
seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x') =
| let seq_four_to_seq_LE_stronger (#b: Type) (x: seq (four b)) : (s: seq b {length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger)
(seq_to_seq_four_LE #a)
(seq_to_seq_four_to_seq_LE #a);
() | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_four_to_seq_BE_injective | val seq_four_to_seq_BE_injective (a:eqtype) : Lemma
(forall (x x':seq (four a)).{:pattern seq_four_to_seq_BE x; seq_four_to_seq_BE x'}
seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') | val seq_four_to_seq_BE_injective (a:eqtype) : Lemma
(forall (x x':seq (four a)).{:pattern seq_four_to_seq_BE x; seq_four_to_seq_BE x'}
seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') | let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
() | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 258,
"start_col": 0,
"start_line": 251
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype
-> FStar.Pervasives.Lemma
(ensures
forall (x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a))
(x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)).
{:pattern
Vale.Def.Words.Seq_s.seq_four_to_seq_BE x; Vale.Def.Words.Seq_s.seq_four_to_seq_BE x'}
Vale.Def.Words.Seq_s.seq_four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE x' ==>
x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"Prims.unit",
"Vale.Lib.Meta.generic_injective_proof",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Vale.Def.Words.Seq_s.seq_to_seq_four_BE",
"Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_or",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let seq_four_to_seq_BE_injective (a: eqtype)
: Lemma
(forall (x: seq (four a)) (x': seq (four a)).
seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x') =
| let seq_four_to_seq_BE_stronger (#b: Type) (x: seq (four b)) : (s: seq b {length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger)
(seq_to_seq_four_BE #a)
(seq_to_seq_four_to_seq_BE #a);
() | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.seq_four_to_seq_BE_injective_specific | val seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') | val seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') | let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 268,
"start_col": 0,
"start_line": 265
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> x': FStar.Seq.Base.seq (Vale.Def.Words_s.four a)
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_four_to_seq_BE x == Vale.Def.Words.Seq_s.seq_four_to_seq_BE x' ==>
x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq.seq_four_to_seq_BE_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let seq_four_to_seq_BE_injective_specific (#a: eqtype) (x x': seq (four a))
: Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x') =
| seq_four_to_seq_BE_injective a | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.four_to_seq_BE_injective | val four_to_seq_BE_injective (a:eqtype) : Lemma
(forall (x x':four a).{:pattern four_to_seq_BE x; four_to_seq_BE x'}
four_to_seq_BE x == four_to_seq_BE x' ==> x == x') | val four_to_seq_BE_injective (a:eqtype) : Lemma
(forall (x x':four a).{:pattern four_to_seq_BE x; four_to_seq_BE x'}
four_to_seq_BE x == four_to_seq_BE x' ==> x == x') | let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 112,
"end_line": 278,
"start_col": 0,
"start_line": 275
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.four a) (x': Vale.Def.Words_s.four a).
{:pattern Vale.Def.Words.Seq_s.four_to_seq_BE x; Vale.Def.Words.Seq_s.four_to_seq_BE x'}
Vale.Def.Words.Seq_s.four_to_seq_BE x == Vale.Def.Words.Seq_s.four_to_seq_BE x' ==> x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"Vale.Lib.Meta.generic_injective_proof",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Words.Seq_s.four_to_seq_BE",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Vale.Def.Words.Seq.seq_to_four_to_seq_BE",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let four_to_seq_BE_injective (a: eqtype)
: Lemma (forall (x: four a) (x': four a). four_to_seq_BE x == four_to_seq_BE x' ==> x == x') =
| generic_injective_proof #(four a)
#(seq4 a)
(four_to_seq_BE #a)
(seq_to_four_BE #a)
(seq_to_four_to_seq_BE #a) | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.four_to_seq_LE_injective | val four_to_seq_LE_injective (a:eqtype) : Lemma
(forall (x x':four a).{:pattern four_to_seq_LE x; four_to_seq_LE x'}
four_to_seq_LE x == four_to_seq_LE x' ==> x == x') | val four_to_seq_LE_injective (a:eqtype) : Lemma
(forall (x x':four a).{:pattern four_to_seq_LE x; four_to_seq_LE x'}
four_to_seq_LE x == four_to_seq_LE x' ==> x == x') | let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a) | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 112,
"end_line": 273,
"start_col": 0,
"start_line": 270
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.four a) (x': Vale.Def.Words_s.four a).
{:pattern Vale.Def.Words.Seq_s.four_to_seq_LE x; Vale.Def.Words.Seq_s.four_to_seq_LE x'}
Vale.Def.Words.Seq_s.four_to_seq_LE x == Vale.Def.Words.Seq_s.four_to_seq_LE x' ==> x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"Vale.Lib.Meta.generic_injective_proof",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Words.Seq_s.four_to_seq_LE",
"Vale.Def.Words.Seq_s.seq_to_four_LE",
"Vale.Def.Words.Seq.seq_to_four_to_seq_LE",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let four_to_seq_LE_injective (a: eqtype)
: Lemma (forall (x: four a) (x': four a). four_to_seq_LE x == four_to_seq_LE x' ==> x == x') =
| generic_injective_proof #(four a)
#(seq4 a)
(four_to_seq_LE #a)
(seq_to_four_LE #a)
(seq_to_four_to_seq_LE #a) | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.four_to_nat_8_injective | val four_to_nat_8_injective (_:unit) : Lemma
(forall (x x':four (natN (pow2_norm 8))).{:pattern four_to_nat 8 x; four_to_nat 8 x'}
four_to_nat 8 x == four_to_nat 8 x' ==> x == x') | val four_to_nat_8_injective (_:unit) : Lemma
(forall (x x':four (natN (pow2_norm 8))).{:pattern four_to_nat 8 x; four_to_nat 8 x'}
four_to_nat 8 x == four_to_nat 8 x' ==> x == x') | let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 283,
"start_col": 0,
"start_line": 280
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8)))
(x': Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 8))).
{:pattern Vale.Def.Words.Four_s.four_to_nat 8 x; Vale.Def.Words.Four_s.four_to_nat 8 x'}
Vale.Def.Words.Four_s.four_to_nat 8 x == Vale.Def.Words.Four_s.four_to_nat 8 x' ==> x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Vale.Lib.Meta.generic_injective_proof",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq.nat_to_four_to_nat",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Vale.Def.Words_s.pow2_norm",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let four_to_nat_8_injective ()
: Lemma
(forall (x: four (natN (pow2_norm 8))) (x': four (natN (pow2_norm 8))).
four_to_nat 8 x == four_to_nat 8 x' ==> x == x') =
| generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_BE | val append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) | val append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) | let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y));
() | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 309,
"start_col": 0,
"start_line": 304
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
let nat_to_four_8_injective () :
Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
=
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
(*
let seq_to_four_LE_injective () :
Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x')
=
generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE
*)
let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} ->
y: FStar.Seq.Base.seq a {FStar.Seq.Base.length y % 4 == 0}
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_to_seq_four_BE (x @| y) ==
Vale.Def.Words.Seq_s.seq_to_seq_four_BE x @| Vale.Def.Words.Seq_s.seq_to_seq_four_BE y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq_s.seq_to_seq_four_BE",
"FStar.Seq.Base.op_At_Bar",
"FStar.Pervasives.reveal_opaque",
"Prims.op_Division",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_distributes_seq_to_seq_four_BE
(#a: Type)
(x: seq a {length x % 4 == 0})
(y: seq a {length y % 4 == 0})
: Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y) =
| reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y));
() | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.nat_to_four_8_injective | val nat_to_four_8_injective (_:unit) : Lemma
(forall (x x':natN (pow2_norm 32)).{:pattern nat_to_four 8 x; nat_to_four 8 x'}
nat_to_four 8 x == nat_to_four 8 x' ==> x == x') | val nat_to_four_8_injective (_:unit) : Lemma
(forall (x x':natN (pow2_norm 32)).{:pattern nat_to_four 8 x; nat_to_four 8 x'}
nat_to_four 8 x == nat_to_four 8 x' ==> x == x') | let nat_to_four_8_injective () :
Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
=
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 79,
"end_line": 288,
"start_col": 0,
"start_line": 285
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32))
(x': Vale.Def.Words_s.natN (Vale.Def.Words_s.pow2_norm 32)).
{:pattern Vale.Def.Words.Four_s.nat_to_four 8 x; Vale.Def.Words.Four_s.nat_to_four 8 x'}
Vale.Def.Words.Four_s.nat_to_four 8 x == Vale.Def.Words.Four_s.nat_to_four 8 x' ==> x == x') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Vale.Lib.Meta.generic_injective_proof",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq.four_to_nat_to_four_8",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Vale.Def.Words_s.pow2_norm",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let nat_to_four_8_injective ()
: Lemma
(forall (x: natN (pow2_norm 32)) (x': natN (pow2_norm 32)).
nat_to_four 8 x == nat_to_four 8 x' ==> x == x') =
| generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8 | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_BE | val append_distributes_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) (y:seq (four a)) :
Lemma (seq_four_to_seq_BE (x @| y) == seq_four_to_seq_BE x @| seq_four_to_seq_BE y) | val append_distributes_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) (y:seq (four a)) :
Lemma (seq_four_to_seq_BE (x @| y) == seq_four_to_seq_BE x @| seq_four_to_seq_BE y) | let append_distributes_seq_four_to_seq_BE #a x y =
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (seq_four_to_seq_BE (x @| y)) (seq_four_to_seq_BE x @| seq_four_to_seq_BE y)) | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 317,
"start_col": 0,
"start_line": 315
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
let nat_to_four_8_injective () :
Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
=
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
(*
let seq_to_four_LE_injective () :
Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x')
=
generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE
*)
let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y));
()
let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y));
()
let append_distributes_seq_four_to_seq_LE #a x y =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y)) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> y: FStar.Seq.Base.seq (Vale.Def.Words_s.four a)
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_four_to_seq_BE (x @| y) ==
Vale.Def.Words.Seq_s.seq_four_to_seq_BE x @| Vale.Def.Words.Seq_s.seq_four_to_seq_BE y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"FStar.Seq.Base.op_At_Bar",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star"
] | [] | true | false | true | false | false | let append_distributes_seq_four_to_seq_BE #a x y =
| reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (seq_four_to_seq_BE (x @| y)) (seq_four_to_seq_BE x @| seq_four_to_seq_BE y)) | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_LE | val append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) | val append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) | let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y));
() | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 302,
"start_col": 0,
"start_line": 297
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
let nat_to_four_8_injective () :
Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
=
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
(*
let seq_to_four_LE_injective () :
Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x')
=
generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE
*) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.Seq.Base.seq a {FStar.Seq.Base.length x % 4 == 0} ->
y: FStar.Seq.Base.seq a {FStar.Seq.Base.length y % 4 == 0}
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_to_seq_four_LE (x @| y) ==
Vale.Def.Words.Seq_s.seq_to_seq_four_LE x @| Vale.Def.Words.Seq_s.seq_to_seq_four_LE y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"FStar.Seq.Base.op_At_Bar",
"FStar.Pervasives.reveal_opaque",
"Prims.op_Division",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_distributes_seq_to_seq_four_LE
(#a: Type)
(x: seq a {length x % 4 == 0})
(y: seq a {length y % 4 == 0})
: Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y) =
| reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y));
() | false |
Vale.Def.Words.Seq.fst | Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_LE | val append_distributes_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) (y:seq (four a)) :
Lemma (seq_four_to_seq_LE (x @| y) == seq_four_to_seq_LE x @| seq_four_to_seq_LE y) | val append_distributes_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) (y:seq (four a)) :
Lemma (seq_four_to_seq_LE (x @| y) == seq_four_to_seq_LE x @| seq_four_to_seq_LE y) | let append_distributes_seq_four_to_seq_LE #a x y =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y)) | {
"file_name": "vale/code/lib/util/Vale.Def.Words.Seq.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 313,
"start_col": 0,
"start_line": 311
} | module Vale.Def.Words.Seq
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Words.Seq_s
open FStar.Mul
open Vale.Lib.Meta
open Vale.Lib.Seqs_s
open Vale.Lib.Seqs
let two_to_seq_to_two_LE #a x =
assert (equal (two_to_seq_LE (seq_to_two_LE x)) x)
let seq_to_two_to_seq_LE #a x = ()
let seq_to_seq_four_to_seq_LE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_LE (seq_four_to_seq_LE x) == x)
[SMTPat (seq_to_seq_four_LE (seq_four_to_seq_LE x))]
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
let bytes = seq_four_to_seq_LE x in
let fours = seq_to_seq_four_LE bytes in
assert (equal fours x);
()
let seq_to_seq_four_to_seq_BE (#a:Type) (x:seq (four a)) :
Lemma (seq_to_seq_four_BE (seq_four_to_seq_BE x) == x)
[SMTPat (seq_to_seq_four_BE (seq_four_to_seq_BE x))]
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (seq_four_to_seq_BE x)) x);
()
let seq_four_to_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_LE (seq_to_seq_four_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_four_to_seq_LE (seq_to_seq_four_LE x)) x);
()
let seq_four_to_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) :
Lemma (seq_four_to_seq_BE (seq_to_seq_four_BE x) == x)
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_four_to_seq_BE (seq_to_seq_four_BE x)) x);
()
unfold let pow2_24 = 16777216 //normalize_term (pow2 24)
#push-options "--z3rlimit 200 --using_facts_from 'Prims Vale.Def.Words_s'"
let lemma_fundamental_div_mod_4 (x:nat32) :
Lemma (x = x % pow2_8 + pow2_8 * ((x / pow2_8) % pow2_8) + pow2_16 * ((x / pow2_16) % pow2_8) + pow2_24 * ((x / pow2_24) % pow2_8))
=
()
#pop-options
let four_to_nat_to_four_8 (x:natN (pow2_norm 32)) :
Lemma (four_to_nat 8 (nat_to_four 8 x) == x)
[SMTPat (four_to_nat 8 (nat_to_four 8 x))]
=
let size = 8 in
let n1 = pow2_norm size in
let n2 = pow2_norm (2 * size) in
let n3 = pow2_norm (3 * size) in
let n4 = pow2_norm (4 * size) in
assert_norm (pow2 8 == 256);
assert_norm (pow2 16 == 0x10000);
assert_norm (pow2 24 == 0x1000000);
assert_norm (pow2 32 == 0x100000000);
let fourX = nat_to_four 8 x in
assert_norm (nat_to_four 8 x == Mkfour (x % n1) ((x / n1) % n1) ((x / n2) % n1) ((x / n3) % n1));
let Mkfour x0 x1 x2 x3 = fourX in
let x' = x0 + x1 * n1 + x2 * n2 + x3 * n3 in
assert_norm (four_to_nat 8 fourX == int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3));
lemma_fundamental_div_mod_4 x;
()
#push-options "--z3rlimit 20 --z3cliopt smt.arith.nl=true"
(* Localized use of NL arith. The makefile passes the option to disable
it in this file, so we reenable it here. *)
let rec base_to_nat (base:pos) (cs : list (natN base)) : nat =
match cs with
| [] -> 0
| c :: cs' -> c + base_to_nat base cs' * base
(* NB: right-multiplying by base is a lot better than left-multiplying
since it more closely matches the lemmas in FStar.Math.Lemmas. *)
#pop-options
(* If two lists represent the same number, their heads must match,
otherwise their modulus wrt the base would differ. *)
let base_to_nat_inj_head (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ Cons? x /\ Cons? y)
(ensures List.Tot.hd x == List.Tot.hd y)
=
match x, y with
| x1 :: xs, y1 :: ys ->
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
x1 <: int;
== { small_mod x1 base }
x1 % base;
== { lemma_mod_plus x1 (base_to_nat base xs) base }
(x1 + base_to_nat base xs * base) % base;
== {}
x' % base;
== {}
y' % base;
== {}
(y1 + base_to_nat base ys * base) % base;
== { lemma_mod_plus y1 (base_to_nat base ys) base }
y1 % base;
== { small_mod y1 base }
y1;
}
(* Generalizing the lemma above, if two lists represent the same number,
and they have the same length, they must be the same list. The length requirement
is due to the possibility of trailing zeroes. Another possibility is stating
that one of them is a prefix of the other, which is enough for this module,
even without stating that the "rest" is all zeroes. *)
let rec base_to_nat_inj (base:pos) (x y : list (natN base)) :
Lemma (requires base_to_nat base x == base_to_nat base y /\ List.length x == List.length y)
(ensures x == y)
=
match x, y with
| [], [] -> ()
| x1 :: xs, y1 :: ys ->
base_to_nat_inj_head base x y;
let x' = base_to_nat base x in
let y' = base_to_nat base y in
let open FStar.Math.Lemmas in
calc (==) {
base_to_nat base xs * base;
== {}
x' - x1;
== {}
y' - y1;
== {}
base_to_nat base ys * base;
};
lemma_cancel_mul (base_to_nat base xs) (base_to_nat base ys) base;
assert (base_to_nat base xs == base_to_nat base ys);
base_to_nat_inj base xs ys
#push-options "--fuel 4"
(* Fuel needed to prove length equality *)
let four_to_nat_inj (x y : four (natN 256)) :
Lemma (requires four_to_nat 8 x == four_to_nat 8 y)
(ensures x == y)
=
let Mkfour x0 x1 x2 x3 = x in
let Mkfour y0 y1 y2 y3 = y in
assert_norm (four_to_nat 8 (Mkfour x0 x1 x2 x3) == base_to_nat 256 [x0; x1; x2; x3]);
assert_norm (four_to_nat 8 (Mkfour y0 y1 y2 y3) == base_to_nat 256 [y0; y1; y2; y3]);
base_to_nat_inj 256 [x0; x1; x2; x3] [y0; y1; y2; y3];
()
#pop-options
let nat_to_four_to_nat (x:four (natN 256)) :
Lemma (nat_to_four 8 (four_to_nat 8 x) == x)
[SMTPat (nat_to_four 8 (four_to_nat 8 x))]
=
four_to_nat_to_four_8 (four_to_nat 8 x);
four_to_nat_inj (nat_to_four 8 (four_to_nat 8 x)) x
let four_to_seq_to_four_LE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_LE (seq_to_four_LE x) == x)
=
assert (equal (four_to_seq_LE (seq_to_four_LE x)) x);
()
let seq_to_four_to_seq_LE (#a:Type) (x:four a) :
Lemma (seq_to_four_LE (four_to_seq_LE x) == x)
=
()
let four_to_seq_to_four_BE (#a:Type) (x:seq4 a) :
Lemma (four_to_seq_BE (seq_to_four_BE x) == x)
=
assert (equal (four_to_seq_BE (seq_to_four_BE x)) x);
()
let seq_to_four_to_seq_BE (#a:Type) (x:four a) :
Lemma (seq_to_four_BE (four_to_seq_BE x) == x)
=
()
let four_to_seq_LE_is_seq_four_to_seq_LE(#a:Type) (x:four a) :
Lemma (four_to_seq_LE x == seq_four_to_seq_LE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
let s0 = four_to_seq_LE x in
let s1 = seq_four_to_seq_LE (create 1 x) in
assert (equal s0 s1);
()
let four_to_seq_BE_is_seq_four_to_seq_BE (x:four nat32) :
Lemma (four_to_seq_BE x == seq_four_to_seq_BE (create 1 x))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #nat32);
let s0 = four_to_seq_BE x in
let s1 = seq_four_to_seq_BE (create 1 x) in
assert (equal s0 s1);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_LE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE x)) x);
()
let seq_nat8_to_seq_nat32_to_seq_nat8_BE (x:seq nat32) :
Lemma (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x) == x)
=
assert (equal (seq_nat8_to_seq_nat32_BE (seq_nat32_to_seq_nat8_BE x)) x);
()
let seq_nat32_to_seq_nat8_to_seq_nat32_LE (x:seq nat8{length x % 4 == 0}) :
Lemma (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x) == x)
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8);
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (equal (seq_nat32_to_seq_nat8_LE (seq_nat8_to_seq_nat32_LE x)) x);
()
let seq_nat8_to_seq_uint8_to_seq_nat8 (x:seq UInt8.t) =
assert (equal (seq_nat8_to_seq_uint8 (seq_uint8_to_seq_nat8 x)) x)
let seq_uint8_to_seq_nat8_to_seq_uint8 (x:seq nat8) =
assert (equal (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 x)) x)
let seq_nat8_to_seq_uint8_injective b b' =
seq_map_injective UInt8.uint_to_t b b'
let seq_four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_LE #a x == seq_four_to_seq_LE #a x' ==> x == x')
=
let seq_four_to_seq_LE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_LE x
in
generic_injective_proof (seq_four_to_seq_LE_stronger) (seq_to_seq_four_LE #a) (seq_to_seq_four_to_seq_LE #a);
()
let seq_four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': seq (four a)). seq_four_to_seq_BE #a x == seq_four_to_seq_BE #a x' ==> x == x')
=
let seq_four_to_seq_BE_stronger (#b:Type) (x:seq (four b)) : (s:seq b{length s % 4 == 0}) =
seq_four_to_seq_BE x
in
generic_injective_proof (seq_four_to_seq_BE_stronger) (seq_to_seq_four_BE #a) (seq_to_seq_four_to_seq_BE #a);
()
let seq_four_to_seq_LE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_LE x == seq_four_to_seq_LE x' ==> x == x')
=
seq_four_to_seq_LE_injective a
let seq_four_to_seq_BE_injective_specific (#a:eqtype) (x x':seq (four a)) :
Lemma (seq_four_to_seq_BE x == seq_four_to_seq_BE x' ==> x == x')
=
seq_four_to_seq_BE_injective a
let four_to_seq_LE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_LE x == four_to_seq_LE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_LE #a) (seq_to_four_LE #a) (seq_to_four_to_seq_LE #a)
let four_to_seq_BE_injective (a:eqtype) :
Lemma (forall (x x': four a) . four_to_seq_BE x == four_to_seq_BE x' ==> x == x')
=
generic_injective_proof #(four a) #(seq4 a) (four_to_seq_BE #a) (seq_to_four_BE #a) (seq_to_four_to_seq_BE #a)
let four_to_nat_8_injective () :
Lemma (forall (x x':four (natN (pow2_norm 8))) . four_to_nat 8 x == four_to_nat 8 x' ==> x == x')
=
generic_injective_proof (four_to_nat 8) (nat_to_four 8) nat_to_four_to_nat
let nat_to_four_8_injective () :
Lemma (forall (x x':natN (pow2_norm 32)) . nat_to_four 8 x == nat_to_four 8 x' ==> x == x')
=
generic_injective_proof (nat_to_four 8) (four_to_nat 8) four_to_nat_to_four_8
(*
let seq_to_four_LE_injective () :
Lemma (forall (#a:Type) (x x':seq4 a) . seq_to_four_LE x == seq_to_four_LE x' ==> x == x')
=
generic_injective_proof seq_to_four_LE four_to_seq_LE four_to_seq_to_four_LE
*)
let append_distributes_seq_to_seq_four_LE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_LE (x @| y) == seq_to_seq_four_LE x @| seq_to_seq_four_LE y)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (seq_to_seq_four_LE (x @| y)) (seq_to_seq_four_LE x @| seq_to_seq_four_LE y));
()
let append_distributes_seq_to_seq_four_BE (#a:Type) (x:seq a{length x % 4 == 0}) (y:seq a{length y % 4 == 0}) :
Lemma (seq_to_seq_four_BE (x @| y) == seq_to_seq_four_BE x @| seq_to_seq_four_BE y)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (seq_to_seq_four_BE (x @| y)) (seq_to_seq_four_BE x @| seq_to_seq_four_BE y));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs_s.fst.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Words.Seq.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> y: FStar.Seq.Base.seq (Vale.Def.Words_s.four a)
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Seq_s.seq_four_to_seq_LE (x @| y) ==
Vale.Def.Words.Seq_s.seq_four_to_seq_LE x @| Vale.Def.Words.Seq_s.seq_four_to_seq_LE y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"FStar.Seq.Base.op_At_Bar",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star"
] | [] | true | false | true | false | false | let append_distributes_seq_four_to_seq_LE #a x y =
| reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (seq_four_to_seq_LE (x @| y)) (seq_four_to_seq_LE x @| seq_four_to_seq_LE y)) | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_cons | val on_range_cons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True) | val on_range_cons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True) | let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 76,
"start_col": 0,
"start_line": 66
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Steel.Effect.Common.vprop) -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_join",
"Prims.unit",
"Steel.ST.OnRange.on_range_singleton_intro",
"Steel.Effect.Common.star",
"Steel.ST.OnRange.on_range",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_cons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True) =
| on_range_singleton_intro p i j;
on_range_join p i j k | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_unsnoc | val on_range_unsnoc (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (on_range p i j) `star` (p j))
(i <= j /\ k == j + 1)
(fun _ -> True) | val on_range_unsnoc (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (on_range p i j) `star` (p j))
(i <= j /\ k == j + 1)
(fun _ -> True) | let on_range_unsnoc
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` p j)
(i <= j /\ k == j + 1)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p j k | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 132,
"start_col": 0,
"start_line": 122
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k)
let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Steel.Effect.Common.vprop) -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_singleton_elim",
"Prims.unit",
"Steel.ST.OnRange.on_range_split",
"Steel.ST.OnRange.on_range",
"Steel.Effect.Common.star",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_unsnoc (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (on_range p i j) `star` (p j))
(i <= j /\ k == j + 1)
(fun _ -> True) =
| on_range_split p i j k;
on_range_singleton_elim p j k | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_uncons | val on_range_uncons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p i) `star` (on_range p j k))
(j == i + 1 /\ j <= k)
(fun _ -> True) | val on_range_uncons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p i) `star` (on_range p j k))
(j == i + 1 /\ j <= k)
(fun _ -> True) | let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 88,
"start_col": 0,
"start_line": 78
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Steel.Effect.Common.vprop) -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_singleton_elim",
"Prims.unit",
"Steel.ST.OnRange.on_range_split",
"Steel.ST.OnRange.on_range",
"Steel.Effect.Common.star",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_uncons (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p i) `star` (on_range p j k))
(j == i + 1 /\ j <= k)
(fun _ -> True) =
| on_range_split p i j k;
on_range_singleton_elim p i j | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.felem4 | val felem4 : Type0 | let felem4 = uint64 & uint64 & uint64 & uint64 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple4",
"Lib.IntTypes.uint64"
] | [] | false | false | false | true | true | let felem4 =
| uint64 & uint64 & uint64 & uint64 | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.as_nat4 | val as_nat4 : f: Hacl.Spec.K256.Field52.Definitions.felem4 -> Prims.int | let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 59,
"end_line": 17,
"start_col": 0,
"start_line": 15
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.K256.Field52.Definitions.felem4 -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.felem4",
"Lib.IntTypes.uint64",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.int"
] | [] | false | false | false | true | false | let as_nat4 (f: felem4) =
| let f0, f1, f2, f3 = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.scale64 | val scale64 : Type0 | let scale64 = x:nat{x <= 4096} | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 78,
"start_col": 0,
"start_line": 78
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual"
] | [] | false | false | false | true | true | let scale64 =
| x: nat{x <= 4096} | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.felem5 | val felem5 : Type0 | let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64"
] | [] | false | false | false | true | true | let felem5 =
| uint64 & uint64 & uint64 & uint64 & uint64 | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.mk_nat5 | val mk_nat5 (x: nat) : nat5 | val mk_nat5 (x: nat) : nat5 | let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 81,
"start_col": 0,
"start_line": 81
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536} | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat -> Hacl.Spec.K256.Field52.Definitions.nat5 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.K256.Field52.Definitions.nat5"
] | [] | false | false | false | true | false | let mk_nat5 (x: nat) : nat5 =
| (x, x, x, x, x) | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.scale64_last | val scale64_last : Type0 | let scale64_last = x:nat{x <= 65536} | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 79,
"start_col": 0,
"start_line": 79
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual"
] | [] | false | false | false | true | true | let scale64_last =
| x: nat{x <= 65536} | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.nat5 | val nat5 : Type0 | let nat5 = nat & nat & nat & nat & nat | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 80,
"start_col": 0,
"start_line": 80
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096} | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple5",
"Prims.nat"
] | [] | false | false | false | true | true | let nat5 =
| nat & nat & nat & nat & nat | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.scale64_5 | val scale64_5 : Type0 | let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536} | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 70,
"end_line": 84,
"start_col": 0,
"start_line": 83
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.nat5",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual"
] | [] | false | false | false | true | true | let scale64_5 =
| x:
nat5
{ let x0, x1, x2, x3, x4 = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536 } | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.max52 | val max52:pos | val max52:pos | let max52 : pos =
assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 106,
"start_col": 0,
"start_line": 104
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let ( <=* ) (x y:nat5) : Type =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
let ( +* ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
let ( ** ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.pos | Prims.Tot | [
"total"
] | [] | [
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_GreaterThan"
] | [] | false | false | false | true | false | let max52:pos =
| assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.felem_fits1 | val felem_fits1 : x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64 -> Prims.bool | let felem_fits1 (x:uint64) (m:scale64) =
v x <= m * max52 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 115,
"start_col": 0,
"start_line": 114
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let ( <=* ) (x y:nat5) : Type =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
let ( +* ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
let ( ** ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
noextract
let max52 : pos =
assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1
noextract
let max48 : pos =
assert_norm (pow2 48 - 1 > 0);
pow2 48 - 1 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64 -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.uint64",
"Hacl.Spec.K256.Field52.Definitions.scale64",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.K256.Field52.Definitions.max52",
"Prims.bool"
] | [] | false | false | false | true | false | let felem_fits1 (x: uint64) (m: scale64) =
| v x <= m * max52 | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.mask52 | val mask52:x: uint64{v x == pow2 52 - 1} | val mask52:x: uint64{v x == pow2 52 - 1} | let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 35,
"start_col": 0,
"start_line": 33
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 52 - 1} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.u64",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | false | false | false | false | false | let mask52:x: uint64{v x == pow2 52 - 1} =
| assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.max48 | val max48:pos | val max48:pos | let max48 : pos =
assert_norm (pow2 48 - 1 > 0);
pow2 48 - 1 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 111,
"start_col": 0,
"start_line": 109
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let ( <=* ) (x y:nat5) : Type =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
let ( +* ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
let ( ** ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
noextract
let max52 : pos =
assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.pos | Prims.Tot | [
"total"
] | [] | [
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_GreaterThan"
] | [] | false | false | false | true | false | let max48:pos =
| assert_norm (pow2 48 - 1 > 0);
pow2 48 - 1 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 | val felem_fits_last1 : x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_last -> Prims.bool | let felem_fits_last1 (x:uint64) (m:scale64_last) =
v x <= m * max48 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 118,
"start_col": 0,
"start_line": 117
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let ( <=* ) (x y:nat5) : Type =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
let ( +* ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
let ( ** ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
noextract
let max52 : pos =
assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1
noextract
let max48 : pos =
assert_norm (pow2 48 - 1 > 0);
pow2 48 - 1
let felem_fits1 (x:uint64) (m:scale64) =
v x <= m * max52 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.uint64 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_last -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.uint64",
"Hacl.Spec.K256.Field52.Definitions.scale64_last",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.K256.Field52.Definitions.max48",
"Prims.bool"
] | [] | false | false | false | true | false | let felem_fits_last1 (x: uint64) (m: scale64_last) =
| v x <= m * max48 | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.pow52 | val pow52:(pow52:
pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) | val pow52:(pow52:
pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) | let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 29,
"start_col": 0,
"start_line": 24
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pow52:
Prims.pos
{ Prims.pow2 64 == 4096 * pow52 /\ Prims.pow2 128 == (16777216 * pow52) * pow52 /\
Prims.pow2 52 == pow52 } | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.pos",
"FStar.Pervasives.normalize_term"
] | [] | false | false | false | false | false | let pow52:(pow52:
pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
| let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = (16777216 * pow52) * pow52);
pow52 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.feval5 | val feval5 (f: felem5) : S.felem | val feval5 (f: felem5) : S.felem | let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 75,
"start_col": 0,
"start_line": 75
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.K256.Field52.Definitions.felem5 -> Spec.K256.PointOps.felem | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Prims.op_Modulus",
"Hacl.Spec.K256.Field52.Definitions.as_nat5",
"Spec.K256.PointOps.prime",
"Spec.K256.PointOps.felem"
] | [] | false | false | false | true | false | let feval5 (f: felem5) : S.felem =
| as_nat5 f % S.prime | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.mask48 | val mask48:x: uint64{v x == pow2 48 - 1} | val mask48:x: uint64{v x == pow2 48 - 1} | let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 20,
"end_line": 41,
"start_col": 0,
"start_line": 39
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 48 - 1} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.u64",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | false | false | false | false | false | let mask48:x: uint64{v x == pow2 48 - 1} =
| assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.pow156 | val pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) | val pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) | let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 57,
"start_col": 0,
"start_line": 52
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pow156:
Prims.pos
{ Prims.pow2 156 == pow156 /\
pow156 ==
(Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52) *
Hacl.Spec.K256.Field52.Definitions.pow52 } | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pos",
"Prims.pow2",
"FStar.Pervasives.normalize_term"
] | [] | false | false | false | false | false | let pow156:(pow156: pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
| let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.as_nat5 | val as_nat5 (f: felem5) : nat | val as_nat5 (f: felem5) : nat | let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 72,
"start_col": 0,
"start_line": 70
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.K256.Field52.Definitions.felem5 -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Lib.IntTypes.uint64",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.K256.Field52.Definitions.pow52",
"Hacl.Spec.K256.Field52.Definitions.pow104",
"Hacl.Spec.K256.Field52.Definitions.pow156",
"Hacl.Spec.K256.Field52.Definitions.pow208",
"Prims.nat"
] | [] | false | false | false | true | false | let as_nat5 (f: felem5) : nat =
| let f0, f1, f2, f3, f4 = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.pow208 | val pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) | val pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) | let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 66,
"start_col": 0,
"start_line": 60
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pow208:
Prims.pos
{ Prims.pow2 208 == pow208 /\
pow208 ==
((Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52) *
Hacl.Spec.K256.Field52.Definitions.pow52) *
Hacl.Spec.K256.Field52.Definitions.pow52 } | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pos",
"Prims.pow2",
"FStar.Pervasives.normalize_term"
] | [] | false | false | false | false | false | let pow208:(pow208: pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
| let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208 | false |
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.pow104 | val pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) | val pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) | let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 49,
"start_col": 0,
"start_line": 45
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pow104:
Prims.pos
{ Prims.pow2 104 == pow104 /\
pow104 == Hacl.Spec.K256.Field52.Definitions.pow52 * Hacl.Spec.K256.Field52.Definitions.pow52 } | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pos",
"Prims.pow2",
"FStar.Pervasives.normalize_term"
] | [] | false | false | false | false | false | let pow104:(pow104: pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
| let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104 | false |
Hacl.Hash.MD.fsti | Hacl.Hash.MD.legacy_alg | val legacy_alg : Type0 | let legacy_alg = a:hash_alg { a == MD5 \/ a == SHA1 } | {
"file_name": "code/hash/Hacl.Hash.MD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 8,
"start_col": 0,
"start_line": 8
} | module Hacl.Hash.MD
open Hacl.Hash.Definitions
open Spec.Hash.Definitions
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Hacl.Hash.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Hash.MD.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.l_or",
"Prims.eq2",
"Spec.Hash.Definitions.MD5",
"Spec.Hash.Definitions.SHA1"
] | [] | false | false | false | true | true | let legacy_alg =
| a: hash_alg{a == MD5 \/ a == SHA1} | false |
|
Hacl.Spec.K256.Field52.Definitions.fst | Hacl.Spec.K256.Field52.Definitions.felem_fits5 | val felem_fits5 : f: Hacl.Spec.K256.Field52.Definitions.felem5 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_5
-> Prims.logical | let felem_fits5 (f:felem5) (m:scale64_5) =
let (f0,f1,f2,f3,f4) = f in
let (m0,m1,m2,m3,m4) = m in
felem_fits1 f0 m0 /\
felem_fits1 f1 m1 /\
felem_fits1 f2 m2 /\
felem_fits1 f3 m3 /\
felem_fits_last1 f4 m4 | {
"file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 127,
"start_col": 0,
"start_line": 120
} | module Hacl.Spec.K256.Field52.Definitions
open FStar.Mul
open Lib.IntTypes
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let felem4 = uint64 & uint64 & uint64 & uint64
noextract
let as_nat4 (f:felem4) =
let (f0, f1, f2, f3) = f in
v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
inline_for_extraction noextract
let felem5 = uint64 & uint64 & uint64 & uint64 & uint64
[@"opaque_to_smt"]
let pow52: (pow52:pos{pow2 64 == 4096 * pow52 /\ pow2 128 == 16777216 * pow52 * pow52 /\ pow2 52 == pow52}) =
let pow52:pos = normalize_term (pow2 52) in
assert_norm (pow52 = pow2 52);
assert_norm (pow2 64 = 4096 * pow52);
assert_norm (pow2 128 = 16777216 * pow52 * pow52);
pow52
inline_for_extraction noextract
let mask52: x:uint64{v x == pow2 52 - 1} =
assert_norm (pow2 52 - 1 = 0xfffffffffffff);
u64 0xfffffffffffff
inline_for_extraction noextract
let mask48: x:uint64{v x == pow2 48 - 1} =
assert_norm (pow2 48 - 1 = 0xffffffffffff);
u64 0xffffffffffff
[@"opaque_to_smt"]
let pow104: (pow104:pos{pow2 104 == pow104 /\ pow104 == pow52 * pow52}) =
let pow104:pos = normalize_term (pow2 104) in
assert_norm (pow104 = pow2 104);
Math.Lemmas.pow2_plus 52 52;
pow104
[@"opaque_to_smt"]
let pow156: (pow156:pos{pow2 156 == pow156 /\ pow156 == pow52 * pow52 * pow52}) =
let pow156:pos = normalize_term (pow2 156) in
assert_norm (pow156 = pow2 156);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
pow156
[@"opaque_to_smt"]
let pow208: (pow208:pos{pow2 208 == pow208 /\ pow208 == pow52 * pow52 * pow52 * pow52}) =
let pow208:pos = normalize_term (pow2 208) in
assert_norm (pow208 = pow2 208);
Math.Lemmas.pow2_plus 52 52;
Math.Lemmas.pow2_plus 104 52;
Math.Lemmas.pow2_plus 156 52;
pow208
noextract
let as_nat5 (f:felem5) : nat =
let (f0, f1, f2, f3, f4) = f in
v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208
noextract
let feval5 (f:felem5) : S.felem = as_nat5 f % S.prime
let scale64 = x:nat{x <= 4096}
let scale64_last = x:nat{x <= 65536}
let nat5 = nat & nat & nat & nat & nat
let mk_nat5 (x:nat) : nat5 = (x,x,x,x,x)
let scale64_5 = x:nat5{let (x0,x1,x2,x3,x4) = x in
x0 <= 4096 /\ x1 <= 4096 /\ x2 <= 4096 /\ x3 <= 4096 /\ x4 <= 65536}
let ( <=* ) (x y:nat5) : Type =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
x0 <= y0 /\ x1 <= y1 /\ x2 <= y2 /\ x3 <= y3 /\ x4 <= y4
let ( +* ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 + y0, x1 + y1, x2 + y2, x3 + y3, x4 + y4)
let ( ** ) (x y:nat5) : nat5 =
let (x0,x1,x2,x3,x4) = x in
let (y0,y1,y2,y3,y4) = y in
(x0 * y0, x1 * y1, x2 * y2, x3 * y3, x4 * y4)
noextract
let max52 : pos =
assert_norm (pow2 52 - 1 > 0);
pow2 52 - 1
noextract
let max48 : pos =
assert_norm (pow2 48 - 1 > 0);
pow2 48 - 1
let felem_fits1 (x:uint64) (m:scale64) =
v x <= m * max52
let felem_fits_last1 (x:uint64) (m:scale64_last) =
v x <= m * max48 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Field52.Definitions.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Field52",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.K256.Field52.Definitions.felem5 -> m: Hacl.Spec.K256.Field52.Definitions.scale64_5
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.K256.Field52.Definitions.felem5",
"Hacl.Spec.K256.Field52.Definitions.scale64_5",
"Lib.IntTypes.uint64",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Hacl.Spec.K256.Field52.Definitions.felem_fits1",
"Hacl.Spec.K256.Field52.Definitions.felem_fits_last1",
"Prims.logical"
] | [] | false | false | false | true | true | let felem_fits5 (f: felem5) (m: scale64_5) =
| let f0, f1, f2, f3, f4 = f in
let m0, m1, m2, m3, m4 = m in
felem_fits1 f0 m0 /\ felem_fits1 f1 m1 /\ felem_fits1 f2 m2 /\ felem_fits1 f3 m3 /\
felem_fits_last1 f4 m4 | false |
|
CBOR.Spec.Type.fsti | CBOR.Spec.Type.max_simple_value_additional_info | val max_simple_value_additional_info : FStar.UInt8.t | let max_simple_value_additional_info = 23uy | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 29,
"start_col": 0,
"start_line": 29
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.__uint_to_t"
] | [] | false | false | false | true | false | let max_simple_value_additional_info =
| 23uy | false |
|
CBOR.Spec.Type.fsti | CBOR.Spec.Type.min_simple_value_long_argument | val min_simple_value_long_argument : FStar.UInt8.t | let min_simple_value_long_argument = 32uy | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 41,
"end_line": 26,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.__uint_to_t"
] | [] | false | false | false | true | false | let min_simple_value_long_argument =
| 32uy | false |
|
CBOR.Spec.Type.fsti | CBOR.Spec.Type.simple_value_wf | val simple_value_wf (x: U8.t) : Tot bool | val simple_value_wf (x: U8.t) : Tot bool | let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 90,
"end_line": 36,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t",
"Prims.op_BarBar",
"FStar.UInt8.lte",
"CBOR.Spec.Type.max_simple_value_additional_info",
"CBOR.Spec.Type.min_simple_value_long_argument",
"Prims.bool"
] | [] | false | false | false | true | false | let simple_value_wf (x: U8.t) : Tot bool =
| x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.dummy_raw_data_item | val dummy_raw_data_item:Ghost.erased raw_data_item | val dummy_raw_data_item:Ghost.erased raw_data_item | let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 57,
"start_col": 0,
"start_line": 56
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Ghost.erased CBOR.Spec.Type.raw_data_item | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.hide",
"CBOR.Spec.Type.raw_data_item",
"CBOR.Spec.Type.Int64",
"CBOR.Spec.Constants.cbor_major_type_uint64",
"FStar.UInt64.__uint_to_t"
] | [] | false | false | false | true | false | let dummy_raw_data_item:Ghost.erased raw_data_item =
| Int64 cbor_major_type_uint64 0uL | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_pair | val holds_on_pair (#t: Type) (pred: (t -> bool)) (x: (t & t)) : Tot bool | val holds_on_pair (#t: Type) (pred: (t -> bool)) (x: (t & t)) : Tot bool | let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2 | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 20,
"end_line": 84,
"start_col": 0,
"start_line": 78
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pred: (_: t -> Prims.bool) -> x: (t * t) -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Prims.op_AmpAmp"
] | [] | false | false | false | true | false | let holds_on_pair (#t: Type) (pred: (t -> bool)) (x: (t & t)) : Tot bool =
| let x1, x2 = x in
pred x1 && pred x2 | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item' | val holds_on_raw_data_item' (p: (raw_data_item -> bool)) (x: raw_data_item) : Tot bool | val holds_on_raw_data_item' (p: (raw_data_item -> bool)) (x: raw_data_item) : Tot bool | let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 98,
"start_col": 0,
"start_line": 87
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) -> x: CBOR.Spec.Type.raw_data_item -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"Prims.op_AmpAmp",
"Prims.list",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.List.Tot.Base.length",
"FStar.UInt64.n",
"FStar.List.Tot.Base.for_all",
"CBOR.Spec.Type.holds_on_raw_data_item",
"FStar.Pervasives.Native.tuple2",
"CBOR.Spec.Type.holds_on_pair",
"FStar.UInt64.t"
] | [] | false | false | false | true | false | let holds_on_raw_data_item' (p: (raw_data_item -> bool)) (x: raw_data_item) : Tot bool =
| p x &&
(match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l -> List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.simple_value | val simple_value:eqtype | val simple_value:eqtype | let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } ) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 42,
"end_line": 41,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t",
"Prims.eq2",
"Prims.bool",
"CBOR.Spec.Type.simple_value_wf"
] | [] | false | false | false | true | false | let simple_value:eqtype =
| (x: U8.t{simple_value_wf x == true}) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.get_major_type | val get_major_type (d: raw_data_item) : Tot major_type_t | val get_major_type (d: raw_data_item) : Tot major_type_t | let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 40,
"end_line": 69,
"start_col": 0,
"start_line": 60
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: CBOR.Spec.Type.raw_data_item -> CBOR.Spec.Constants.major_type_t | Prims.Tot | [
"total"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"CBOR.Spec.Type.simple_value",
"CBOR.Spec.Constants.cbor_major_type_simple_value",
"CBOR.Spec.Constants.major_type_uint64_or_neg_int64",
"FStar.UInt64.t",
"CBOR.Spec.Constants.major_type_byte_string_or_text_string",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.Seq.Base.length",
"FStar.UInt64.n",
"Prims.list",
"FStar.List.Tot.Base.length",
"CBOR.Spec.Constants.cbor_major_type_array",
"FStar.Pervasives.Native.tuple2",
"CBOR.Spec.Constants.cbor_major_type_map",
"CBOR.Spec.Constants.cbor_major_type_tagged",
"CBOR.Spec.Constants.major_type_t"
] | [] | false | false | false | true | false | let get_major_type (d: raw_data_item) : Tot major_type_t =
| match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_string | val holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t {FStar.UInt.fits (Seq.length v) U64.n})
: Lemma (holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))] | val holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t {FStar.UInt.fits (Seq.length v) U64.n})
: Lemma (holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))] | let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 44,
"end_line": 130,
"start_col": 0,
"start_line": 123
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
typ: CBOR.Spec.Constants.major_type_byte_string_or_text_string ->
v: FStar.Seq.Base.seq FStar.UInt8.t {FStar.UInt.fits (FStar.Seq.Base.length v) FStar.UInt64.n}
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.String typ v) ==
p (CBOR.Spec.Type.String typ v))
[SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.String typ v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"CBOR.Spec.Constants.major_type_byte_string_or_text_string",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.Seq.Base.length",
"FStar.UInt64.n",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.String",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t {FStar.UInt.fits (Seq.length v) U64.n})
: Lemma (holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))] =
| holds_on_raw_data_item_eq p (String typ v) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_int64 | val holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma (holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))] | val holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma (holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))] | let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 121,
"start_col": 0,
"start_line": 114
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
typ: CBOR.Spec.Constants.major_type_uint64_or_neg_int64 ->
v: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Int64 typ v) ==
p (CBOR.Spec.Type.Int64 typ v))
[SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Int64 typ v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"CBOR.Spec.Constants.major_type_uint64_or_neg_int64",
"FStar.UInt64.t",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.Int64",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma (holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))] =
| holds_on_raw_data_item_eq p (Int64 typ v) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.map_entry_order | val map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1 m2: (key & value))
: Tot bool | val map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1 m2: (key & value))
: Tot bool | let map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1: (key & value))
(m2: (key & value))
: Tot bool
= key_order (fst m1) (fst m2) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 29,
"end_line": 165,
"start_col": 0,
"start_line": 158
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v)
let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v)
let holds_on_raw_data_item_eq_tagged
(p: (raw_data_item -> bool))
(tag: U64.t)
(v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v))
[SMTPat (holds_on_raw_data_item p (Tagged tag v))]
= holds_on_raw_data_item_eq p (Tagged tag v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | key_order: (_: key -> _: key -> Prims.bool) -> value: Type -> m1: (key * value) -> m2: (key * value)
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.fst"
] | [] | false | false | false | true | false | let map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1 m2: (key & value))
: Tot bool =
| key_order (fst m1) (fst m2) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_simple | val holds_on_raw_data_item_eq_simple (p: (raw_data_item -> bool)) (v: simple_value)
: Lemma (holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))] | val holds_on_raw_data_item_eq_simple (p: (raw_data_item -> bool)) (v: simple_value)
: Lemma (holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))] | let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 40,
"end_line": 112,
"start_col": 0,
"start_line": 106
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) -> v: CBOR.Spec.Type.simple_value
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Simple v) ==
p (CBOR.Spec.Type.Simple v))
[SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Simple v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"CBOR.Spec.Type.simple_value",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.Simple",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_simple (p: (raw_data_item -> bool)) (v: simple_value)
: Lemma (holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))] =
| holds_on_raw_data_item_eq p (Simple v) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.data_item_wf_head | val data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item)
: Tot bool | val data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item)
: Tot bool | let data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item) : Tot bool
= match x with
| Map l ->
FStar.List.Tot.sorted (map_entry_order order _) l
| _ -> true | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 172,
"start_col": 0,
"start_line": 168
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v)
let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v)
let holds_on_raw_data_item_eq_tagged
(p: (raw_data_item -> bool))
(tag: U64.t)
(v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v))
[SMTPat (holds_on_raw_data_item p (Tagged tag v))]
= holds_on_raw_data_item_eq p (Tagged tag v)
noextract
let map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1: (key & value))
(m2: (key & value))
: Tot bool
= key_order (fst m1) (fst m2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
order: (_: CBOR.Spec.Type.raw_data_item -> _: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
x: CBOR.Spec.Type.raw_data_item
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.List.Tot.Base.length",
"FStar.UInt64.n",
"FStar.List.Tot.Properties.sorted",
"CBOR.Spec.Type.map_entry_order"
] | [] | false | false | false | true | false | let data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item)
: Tot bool =
| match x with
| Map l -> FStar.List.Tot.sorted (map_entry_order order _) l
| _ -> true | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.data_item_wf | val data_item_wf (order: (raw_data_item -> raw_data_item -> bool)) : Tot (raw_data_item -> bool) | val data_item_wf (order: (raw_data_item -> raw_data_item -> bool)) : Tot (raw_data_item -> bool) | let data_item_wf (order: (raw_data_item -> raw_data_item -> bool)) : Tot (raw_data_item -> bool)
= holds_on_raw_data_item (data_item_wf_head order) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 50,
"end_line": 176,
"start_col": 0,
"start_line": 175
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v)
let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v)
let holds_on_raw_data_item_eq_tagged
(p: (raw_data_item -> bool))
(tag: U64.t)
(v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v))
[SMTPat (holds_on_raw_data_item p (Tagged tag v))]
= holds_on_raw_data_item_eq p (Tagged tag v)
noextract
let map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1: (key & value))
(m2: (key & value))
: Tot bool
= key_order (fst m1) (fst m2)
noextract
let data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item) : Tot bool
= match x with
| Map l ->
FStar.List.Tot.sorted (map_entry_order order _) l
| _ -> true | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
order: (_: CBOR.Spec.Type.raw_data_item -> _: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
_: CBOR.Spec.Type.raw_data_item
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"CBOR.Spec.Type.holds_on_raw_data_item",
"CBOR.Spec.Type.data_item_wf_head"
] | [] | false | false | false | true | false | let data_item_wf (order: (raw_data_item -> raw_data_item -> bool)) : Tot (raw_data_item -> bool) =
| holds_on_raw_data_item (data_item_wf_head order) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_array | val holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Array v) ==
(p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))] | val holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Array v) ==
(p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))] | let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 39,
"end_line": 138,
"start_col": 0,
"start_line": 132
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
v:
Prims.list CBOR.Spec.Type.raw_data_item
{FStar.UInt.fits (FStar.List.Tot.Base.length v) FStar.UInt64.n}
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Array v) ==
(p (CBOR.Spec.Type.Array v) &&
FStar.List.Tot.Base.for_all (CBOR.Spec.Type.holds_on_raw_data_item p) v))
[SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Array v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"Prims.list",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.List.Tot.Base.length",
"FStar.UInt64.n",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.Array",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.op_AmpAmp",
"FStar.List.Tot.Base.for_all",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Array v) ==
(p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))] =
| holds_on_raw_data_item_eq p (Array v) | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.u51 | val u51 : Type0 | let u51 = n:nat{n < 0x8000000000000} | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 52,
"start_col": 0,
"start_line": 52
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | false | false | false | true | true | let u51 =
| n: nat{n < 0x8000000000000} | false |
|
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_map | val holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Map v) ==
(p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))] | val holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Map v) ==
(p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))] | let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 37,
"end_line": 146,
"start_col": 0,
"start_line": 140
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
v:
Prims.list (CBOR.Spec.Type.raw_data_item * CBOR.Spec.Type.raw_data_item)
{FStar.UInt.fits (FStar.List.Tot.Base.length v) FStar.UInt64.n}
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Map v) ==
(p (CBOR.Spec.Type.Map v) &&
FStar.List.Tot.Base.for_all (CBOR.Spec.Type.holds_on_pair (CBOR.Spec.Type.holds_on_raw_data_item
p))
v)) [SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Map v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.b2t",
"FStar.UInt.fits",
"FStar.List.Tot.Base.length",
"FStar.UInt64.n",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.Map",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.op_AmpAmp",
"FStar.List.Tot.Base.for_all",
"CBOR.Spec.Type.holds_on_pair",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) {FStar.UInt.fits (List.Tot.length v) U64.n})
: Lemma
(holds_on_raw_data_item p (Map v) ==
(p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))] =
| holds_on_raw_data_item_eq p (Map v) | false |
CBOR.Spec.Type.fsti | CBOR.Spec.Type.data_item | val data_item : order: (_: CBOR.Spec.Type.raw_data_item -> _: CBOR.Spec.Type.raw_data_item -> Prims.bool) -> Type0 | let data_item (order: (raw_data_item -> raw_data_item -> bool)) =
(x: raw_data_item { data_item_wf order x == true }) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 53,
"end_line": 179,
"start_col": 0,
"start_line": 178
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v)
let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v)
let holds_on_raw_data_item_eq_tagged
(p: (raw_data_item -> bool))
(tag: U64.t)
(v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v))
[SMTPat (holds_on_raw_data_item p (Tagged tag v))]
= holds_on_raw_data_item_eq p (Tagged tag v)
noextract
let map_entry_order
(#key: Type)
(key_order: (key -> key -> bool))
(value: Type)
(m1: (key & value))
(m2: (key & value))
: Tot bool
= key_order (fst m1) (fst m2)
noextract
let data_item_wf_head (order: (raw_data_item -> raw_data_item -> bool)) (x: raw_data_item) : Tot bool
= match x with
| Map l ->
FStar.List.Tot.sorted (map_entry_order order _) l
| _ -> true
noextract
let data_item_wf (order: (raw_data_item -> raw_data_item -> bool)) : Tot (raw_data_item -> bool)
= holds_on_raw_data_item (data_item_wf_head order) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | order: (_: CBOR.Spec.Type.raw_data_item -> _: CBOR.Spec.Type.raw_data_item -> Prims.bool) -> Type0 | Prims.Tot | [
"total"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"Prims.eq2",
"CBOR.Spec.Type.data_item_wf"
] | [] | false | false | false | true | true | let data_item (order: (raw_data_item -> raw_data_item -> bool)) =
| (x: raw_data_item{data_item_wf order x == true}) | false |
|
CBOR.Spec.Type.fsti | CBOR.Spec.Type.holds_on_raw_data_item_eq_tagged | val holds_on_raw_data_item_eq_tagged (p: (raw_data_item -> bool)) (tag: U64.t) (v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v)
) [SMTPat (holds_on_raw_data_item p (Tagged tag v))] | val holds_on_raw_data_item_eq_tagged (p: (raw_data_item -> bool)) (tag: U64.t) (v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v)
) [SMTPat (holds_on_raw_data_item p (Tagged tag v))] | let holds_on_raw_data_item_eq_tagged
(p: (raw_data_item -> bool))
(tag: U64.t)
(v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v))
[SMTPat (holds_on_raw_data_item p (Tagged tag v))]
= holds_on_raw_data_item_eq p (Tagged tag v) | {
"file_name": "share/steel/examples/pulse/dice/cbor/CBOR.Spec.Type.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 44,
"end_line": 155,
"start_col": 0,
"start_line": 148
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CBOR.Spec.Type
include CBOR.Spec.Constants
module U8 = FStar.UInt8
module U64 = FStar.UInt64
(* Simple values *)
[@@CMacro]
let min_simple_value_long_argument = 32uy
[@@CMacro]
let max_simple_value_additional_info = 23uy
inline_for_extraction
noextract
let simple_value_wf
(x: U8.t)
: Tot bool
= x `U8.lte` max_simple_value_additional_info || min_simple_value_long_argument `U8.lte` x
inline_for_extraction
noextract
let simple_value : eqtype =
(x: U8.t { simple_value_wf x == true } )
(* Raw data items, disregarding ordering of map entries *)
noextract
noeq
type raw_data_item
= | Simple: (v: simple_value) -> raw_data_item
| Int64: (typ: major_type_uint64_or_neg_int64) -> (v: U64.t) -> raw_data_item
| String: (typ: major_type_byte_string_or_text_string) -> (v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n }) -> raw_data_item // Section 3.1: "a string containing an invalid UTF-8 sequence is well-formed but invalid", so we don't care about UTF-8 specifics here.
| Array: (v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Map: (v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n }) -> raw_data_item
| Tagged: (tag: U64.t) -> (v: raw_data_item) -> raw_data_item
// | Float: (v: Float.float) -> raw_data_item // TODO
let dummy_raw_data_item : Ghost.erased raw_data_item =
Int64 cbor_major_type_uint64 0uL
noextract
let get_major_type
(d: raw_data_item)
: Tot major_type_t
= match d with
| Simple _ -> cbor_major_type_simple_value
| Int64 m _ -> m
| String m _ -> m
| Array _ -> cbor_major_type_array
| Map _ -> cbor_major_type_map
| Tagged _ _ -> cbor_major_type_tagged
noextract
val holds_on_raw_data_item
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
noextract
let holds_on_pair
(#t: Type)
(pred: (t -> bool))
(x: (t & t))
: Tot bool
= let (x1, x2) = x in
pred x1 && pred x2
noextract
let holds_on_raw_data_item'
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Tot bool
= p x &&
begin match x with
| Array l -> List.Tot.for_all (holds_on_raw_data_item p) l
| Map l ->
List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) l
| Tagged _ v -> holds_on_raw_data_item p v
| _ -> true
end
val holds_on_raw_data_item_eq
(p: (raw_data_item -> bool))
(x: raw_data_item)
: Lemma
(holds_on_raw_data_item p x == holds_on_raw_data_item' p x)
let holds_on_raw_data_item_eq_simple
(p: (raw_data_item -> bool))
(v: simple_value)
: Lemma
(holds_on_raw_data_item p (Simple v) == p (Simple v))
[SMTPat (holds_on_raw_data_item p (Simple v))]
= holds_on_raw_data_item_eq p (Simple v)
let holds_on_raw_data_item_eq_int64
(p: (raw_data_item -> bool))
(typ: major_type_uint64_or_neg_int64)
(v: U64.t)
: Lemma
(holds_on_raw_data_item p (Int64 typ v) == p (Int64 typ v))
[SMTPat (holds_on_raw_data_item p (Int64 typ v))]
= holds_on_raw_data_item_eq p (Int64 typ v)
let holds_on_raw_data_item_eq_string
(p: (raw_data_item -> bool))
(typ: major_type_byte_string_or_text_string)
(v: Seq.seq U8.t { FStar.UInt.fits (Seq.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (String typ v) == p (String typ v))
[SMTPat (holds_on_raw_data_item p (String typ v))]
= holds_on_raw_data_item_eq p (String typ v)
let holds_on_raw_data_item_eq_array
(p: (raw_data_item -> bool))
(v: list raw_data_item { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Array v) == (p (Array v) && List.Tot.for_all (holds_on_raw_data_item p) v))
[SMTPat (holds_on_raw_data_item p (Array v))]
= holds_on_raw_data_item_eq p (Array v)
let holds_on_raw_data_item_eq_map
(p: (raw_data_item -> bool))
(v: list (raw_data_item & raw_data_item) { FStar.UInt.fits (List.Tot.length v) U64.n })
: Lemma
(holds_on_raw_data_item p (Map v) == (p (Map v) && List.Tot.for_all (holds_on_pair (holds_on_raw_data_item p)) v))
[SMTPat (holds_on_raw_data_item p (Map v))]
= holds_on_raw_data_item_eq p (Map v) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"CBOR.Spec.Constants.fst.checked"
],
"interface_file": false,
"source_file": "CBOR.Spec.Type.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "CBOR.Spec.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "CBOR.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: CBOR.Spec.Type.raw_data_item -> Prims.bool) ->
tag: FStar.UInt64.t ->
v: CBOR.Spec.Type.raw_data_item
-> FStar.Pervasives.Lemma
(ensures
CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Tagged tag v) <==>
p (CBOR.Spec.Type.Tagged tag v) && CBOR.Spec.Type.holds_on_raw_data_item p v)
[SMTPat (CBOR.Spec.Type.holds_on_raw_data_item p (CBOR.Spec.Type.Tagged tag v))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"CBOR.Spec.Type.raw_data_item",
"Prims.bool",
"FStar.UInt64.t",
"CBOR.Spec.Type.holds_on_raw_data_item_eq",
"CBOR.Spec.Type.Tagged",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Prims.b2t",
"CBOR.Spec.Type.holds_on_raw_data_item",
"Prims.op_AmpAmp",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_on_raw_data_item_eq_tagged (p: (raw_data_item -> bool)) (tag: U64.t) (v: raw_data_item)
: Lemma
(holds_on_raw_data_item p (Tagged tag v) <==> (p (Tagged tag v) && holds_on_raw_data_item p v)
) [SMTPat (holds_on_raw_data_item p (Tagged tag v))] =
| holds_on_raw_data_item_eq p (Tagged tag v) | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_snoc | val on_range_snoc (#opened: _) (p: (nat -> vprop)) (i j j' k: nat)
: STGhost unit
opened
((on_range p i j) `star` (p j'))
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True) | val on_range_snoc (#opened: _) (p: (nat -> vprop)) (i j j' k: nat)
: STGhost unit
opened
((on_range p i j) `star` (p j'))
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True) | let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 120,
"start_col": 0,
"start_line": 109
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: Prims.nat -> Steel.Effect.Common.vprop) ->
i: Prims.nat ->
j: Prims.nat ->
j': Prims.nat ->
k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_join",
"Prims.unit",
"Steel.ST.OnRange.on_range_singleton_intro",
"Steel.ST.Util.rewrite",
"Steel.Effect.Common.star",
"Steel.ST.OnRange.on_range",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_snoc (#opened: _) (p: (nat -> vprop)) (i j j' k: nat)
: STGhost unit
opened
((on_range p i j) `star` (p j'))
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True) =
| rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_get | val on_range_get (#opened: _) (p: (nat -> vprop)) (i j k l: nat)
: STGhost unit
opened
(on_range p i l)
(fun _ -> ((on_range p i j) `star` (p j)) `star` (on_range p k l))
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True) | val on_range_get (#opened: _) (p: (nat -> vprop)) (i j k l: nat)
: STGhost unit
opened
(on_range p i l)
(fun _ -> ((on_range p i j) `star` (p j)) `star` (on_range p k l))
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True) | let on_range_get
(#opened: _)
(p: (nat -> vprop))
(i j k l: nat)
: STGhost unit opened
(on_range p i l)
(fun _ -> on_range p i j `star` p j `star` on_range p k l)
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True)
= on_range_split p i j l;
on_range_split p j k l;
on_range_singleton_elim p j k | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 165,
"start_col": 0,
"start_line": 154
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k)
let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k
let on_range_unsnoc
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` p j)
(i <= j /\ k == j + 1)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p j k
let on_range_snoc_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k `star` (on_range p i k `implies_` (on_range p i j `star` p j')))
(j' == j /\ k == j + 1)
(fun _ -> True)
= on_range_le p i j;
on_range_snoc p i j j' k;
intro_implies
(on_range p i k)
(on_range p i j `star` p j')
emp
(fun _ ->
on_range_unsnoc p i j k;
rewrite (p j) (p j')
) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: Prims.nat -> Steel.Effect.Common.vprop) ->
i: Prims.nat ->
j: Prims.nat ->
k: Prims.nat ->
l: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_singleton_elim",
"Prims.unit",
"Steel.ST.OnRange.on_range_split",
"Steel.ST.OnRange.on_range",
"Steel.Effect.Common.star",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_get (#opened: _) (p: (nat -> vprop)) (i j k l: nat)
: STGhost unit
opened
(on_range p i l)
(fun _ -> ((on_range p i j) `star` (p j)) `star` (on_range p k l))
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True) =
| on_range_split p i j l;
on_range_split p j k l;
on_range_singleton_elim p j k | false |
Hacl.HPKE.P256_CP128_SHA256.fsti | Hacl.HPKE.P256_CP128_SHA256.cs | val cs:S.ciphersuite | val cs:S.ciphersuite | let cs:S.ciphersuite = (DH.DH_P256, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256) | {
"file_name": "code/hpke/Hacl.HPKE.P256_CP128_SHA256.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 96,
"end_line": 10,
"start_col": 0,
"start_line": 10
} | module Hacl.HPKE.P256_CP128_SHA256
open Hacl.Impl.HPKE
module S = Spec.Agile.HPKE
module DH = Spec.Agile.DH
module AEAD = Spec.Agile.AEAD
module Hash = Spec.Agile.Hash | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.Hash.fsti.checked",
"Spec.Agile.DH.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"Hacl.Impl.HPKE.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.P256_CP128_SHA256.fsti"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Agile.HPKE.ciphersuite | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.Mktuple4",
"Spec.Agile.DH.algorithm",
"Spec.Agile.HPKE.hash_algorithm",
"Spec.Agile.HPKE.aead",
"Spec.Hash.Definitions.hash_alg",
"Spec.Agile.DH.DH_P256",
"Spec.Hash.Definitions.SHA2_256",
"Spec.Agile.HPKE.Seal",
"Spec.Agile.AEAD.CHACHA20_POLY1305"
] | [] | false | false | false | true | false | let cs:S.ciphersuite =
| (DH.DH_P256, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256) | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.eq | val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
) | val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
) | let eq a b =
let a0 = a.(0ul) in
let a1 = a.(1ul) in
let a2 = a.(2ul) in
let a3 = a.(3ul) in
let a4 = a.(4ul) in
let b0 = b.(0ul) in
let b1 = b.(1ul) in
let b2 = b.(2ul) in
let b3 = b.(3ul) in
let b4 = b.(4ul) in
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
let h0 = ST.get() in
lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4);
let open Lib.RawIntTypes in
let open FStar.UInt64 in
(u64_to_UInt64 a0 =^ u64_to_UInt64 b0 &&
u64_to_UInt64 a1 =^ u64_to_UInt64 b1 &&
u64_to_UInt64 a2 =^ u64_to_UInt64 b2 &&
u64_to_UInt64 a3 =^ u64_to_UInt64 b3 &&
u64_to_UInt64 a4 =^ u64_to_UInt64 b4) | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 216,
"start_col": 0,
"start_line": 192
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false)
let u51 = n:nat{n < 0x8000000000000}
val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
open FStar.Calc
#push-options "--z3rlimit 100"
let lemma_equality1 a b c d e a' b' c' d' e' =
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp () : Lemma
(requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
=
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204);
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)
}
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)
}
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)
}
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)
}
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc (==) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b)
(pow2 102 * c)
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)
}
(a + pow2 51 * b) % (pow2 102);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)
}
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102)
(a + pow2 51 * b)
(a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp () : Lemma
(requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
= ()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp ()
val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Bignum25519.felem -> b: Hacl.Bignum25519.felem -> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.felem",
"Prims.op_AmpAmp",
"FStar.UInt64.op_Equals_Hat",
"Lib.RawIntTypes.u64_to_UInt64",
"Prims.unit",
"Hacl.Impl.Ed25519.PointEqual.lemma_equality1",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2",
"Lib.IntTypes.int_t",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t"
] | [] | false | true | false | false | false | let eq a b =
| let a0 = a.(0ul) in
let a1 = a.(1ul) in
let a2 = a.(2ul) in
let a3 = a.(3ul) in
let a4 = a.(4ul) in
let b0 = b.(0ul) in
let b1 = b.(1ul) in
let b2 = b.(2ul) in
let b3 = b.(3ul) in
let b4 = b.(4ul) in
assert_norm (pow2 51 = 0x8000000000000);
assert_norm (pow2 102 = 0x40000000000000000000000000);
assert_norm (pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm (pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
assert_norm (pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
let h0 = ST.get () in
lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4);
let open Lib.RawIntTypes in
let open FStar.UInt64 in
(u64_to_UInt64 a0 =^ u64_to_UInt64 b0 && u64_to_UInt64 a1 =^ u64_to_UInt64 b1 &&
u64_to_UInt64 a2 =^ u64_to_UInt64 b2 &&
u64_to_UInt64 a3 =^ u64_to_UInt64 b3 &&
u64_to_UInt64 a4 =^ u64_to_UInt64 b4) | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.gte_q | val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
) | val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
) | let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false) | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 50,
"start_col": 0,
"start_line": 32
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"FStar.UInt64.op_Greater_Hat",
"Lib.RawIntTypes.u64_to_UInt64",
"FStar.UInt64.__uint_to_t",
"Prims.bool",
"FStar.UInt64.op_Less_Hat",
"FStar.UInt64.op_Greater_Equals_Hat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Spec.Ed25519.q",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | false | true | false | false | false | let gte_q s =
| let h0 = ST.get () in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL
then true
else
if u64_to_UInt64 s4 <^ 0x00000010000000uL
then false
else
(if u64_to_UInt64 s3 >^ 0x00000000000000uL
then true
else
if u64_to_UInt64 s2 >^ 0x000000000014deuL
then true
else
if u64_to_UInt64 s2 <^ 0x000000000014deuL
then false
else
if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL
then true
else
if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL
then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true else false) | false |
LowParse.Norm.fst | LowParse.Norm.norm_steps | val norm_steps : Prims.list FStar.Pervasives.norm_step | let norm_steps = [delta_attr [`%Norm]; iota; zeta; primops] | {
"file_name": "src/lowparse/LowParse.Norm.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 59,
"end_line": 6,
"start_col": 0,
"start_line": 6
} | module LowParse.Norm
noeq
type norm_t : Type = | Norm | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Norm.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list FStar.Pervasives.norm_step | Prims.Tot | [
"total"
] | [] | [
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_attr",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.primops"
] | [] | false | false | false | true | false | let norm_steps =
| [delta_attr [`%Norm]; iota; zeta; primops] | false |
|
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_focus | val on_range_focus (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p j) `star` ((p j) `implies_` (on_range p i k)))
(i <= j /\ j < k)
(fun _ -> True) | val on_range_focus (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p j) `star` ((p j) `implies_` (on_range p i k)))
(i <= j /\ j < k)
(fun _ -> True) | let on_range_focus
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p j `star` (p j `implies_` on_range p i k))
(i <= j /\ j < k)
(fun _ -> True)
= on_range_get p i j (j + 1) k;
intro_implies
(p j)
(on_range p i k)
(on_range p i j `star` on_range p (j + 1) k)
(fun _ ->
on_range_put p i j j (j + 1) k
) | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 197,
"start_col": 0,
"start_line": 181
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k)
let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k
let on_range_unsnoc
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` p j)
(i <= j /\ k == j + 1)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p j k
let on_range_snoc_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k `star` (on_range p i k `implies_` (on_range p i j `star` p j')))
(j' == j /\ k == j + 1)
(fun _ -> True)
= on_range_le p i j;
on_range_snoc p i j j' k;
intro_implies
(on_range p i k)
(on_range p i j `star` p j')
emp
(fun _ ->
on_range_unsnoc p i j k;
rewrite (p j) (p j')
)
let on_range_get
(#opened: _)
(p: (nat -> vprop))
(i j k l: nat)
: STGhost unit opened
(on_range p i l)
(fun _ -> on_range p i j `star` p j `star` on_range p k l)
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True)
= on_range_split p i j l;
on_range_split p j k l;
on_range_singleton_elim p j k
let on_range_put
(#opened: _)
(p: (nat -> vprop))
(i j k l m: nat)
: STGhost unit opened
(on_range p i j `star` p k `star` on_range p l m)
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True)
= rewrite (p k) (p j);
on_range_singleton_intro p j l;
on_range_join p i j l;
on_range_join p i l m | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Steel.Effect.Common.vprop) -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.Util.intro_implies",
"Steel.ST.OnRange.on_range",
"Steel.Effect.Common.star",
"Prims.op_Addition",
"Steel.ST.OnRange.on_range_put",
"Prims.unit",
"Steel.ST.OnRange.on_range_get",
"Steel.ST.Util.implies_",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_focus (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
(on_range p i k)
(fun _ -> (p j) `star` ((p j) `implies_` (on_range p i k)))
(i <= j /\ j < k)
(fun _ -> True) =
| on_range_get p i j (j + 1) k;
intro_implies (p j)
(on_range p i k)
((on_range p i j) `star` (on_range p (j + 1) k))
(fun _ -> on_range_put p i j j (j + 1) k) | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_weaken | val on_range_weaken
(#opened: _)
(p p': (nat -> vprop))
(i j: nat)
(phi: (k: nat{i <= k /\ k < j} -> STGhostT unit opened (p k) (fun _ -> p' k)))
: STGhostT unit opened (on_range p i j) (fun _ -> on_range p' i j) | val on_range_weaken
(#opened: _)
(p p': (nat -> vprop))
(i j: nat)
(phi: (k: nat{i <= k /\ k < j} -> STGhostT unit opened (p k) (fun _ -> p' k)))
: STGhostT unit opened (on_range p i j) (fun _ -> on_range p' i j) | let on_range_weaken
(#opened: _)
(p p': (nat -> vprop))
(i: nat)
(j: nat)
(phi: (k: nat { i <= k /\ k < j }) -> STGhostT unit opened (p k) (fun _ -> p' k))
: STGhostT unit opened
(on_range p i j)
(fun _ -> on_range p' i j)
= on_range_weaken_and_shift
p p'
0
i j
(fun k -> phi k; rewrite (p' k) (p' (k + 0)))
i j | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 7,
"end_line": 241,
"start_col": 0,
"start_line": 227
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k)
let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k
let on_range_unsnoc
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` p j)
(i <= j /\ k == j + 1)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p j k
let on_range_snoc_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k `star` (on_range p i k `implies_` (on_range p i j `star` p j')))
(j' == j /\ k == j + 1)
(fun _ -> True)
= on_range_le p i j;
on_range_snoc p i j j' k;
intro_implies
(on_range p i k)
(on_range p i j `star` p j')
emp
(fun _ ->
on_range_unsnoc p i j k;
rewrite (p j) (p j')
)
let on_range_get
(#opened: _)
(p: (nat -> vprop))
(i j k l: nat)
: STGhost unit opened
(on_range p i l)
(fun _ -> on_range p i j `star` p j `star` on_range p k l)
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True)
= on_range_split p i j l;
on_range_split p j k l;
on_range_singleton_elim p j k
let on_range_put
(#opened: _)
(p: (nat -> vprop))
(i j k l m: nat)
: STGhost unit opened
(on_range p i j `star` p k `star` on_range p l m)
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True)
= rewrite (p k) (p j);
on_range_singleton_intro p j l;
on_range_join p i j l;
on_range_join p i l m
let on_range_focus
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p j `star` (p j `implies_` on_range p i k))
(i <= j /\ j < k)
(fun _ -> True)
= on_range_get p i j (j + 1) k;
intro_implies
(p j)
(on_range p i k)
(on_range p i j `star` on_range p (j + 1) k)
(fun _ ->
on_range_put p i j j (j + 1) k
)
let rec on_range_weaken_and_shift
(#opened: _)
(p p': (nat -> vprop))
(delta: int)
(i: nat { i + delta >= 0 })
(j: nat)
(phi: (k: nat { i <= k /\ k < j }) -> STGhostT unit opened (p k) (fun _ -> p' (k + delta)))
(i': nat { i' == i + delta })
(j': nat { j' == j + delta })
: STGhostT unit opened
(on_range p i j)
(fun _ -> on_range p' i' j')
(decreases (if j >= i then j - i else 0))
= on_range_le p i j;
if j <= i
then begin
drop (on_range p i j);
on_range_empty p' i' j'
end else begin
on_range_split p i (i + 1) j;
on_range_singleton_elim p i (i + 1);
phi i;
rewrite (p' _) (p' i');
on_range_singleton_intro p' i' (i' + 1);
on_range_weaken_and_shift p p' delta (i + 1) j phi (i' + 1) j';
on_range_join p' i' (i' + 1) j'
end | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: Prims.nat -> Steel.Effect.Common.vprop) ->
p': (_: Prims.nat -> Steel.Effect.Common.vprop) ->
i: Prims.nat ->
j: Prims.nat ->
phi: (k: Prims.nat{i <= k /\ k < j} -> Steel.ST.Effect.Ghost.STGhostT Prims.unit)
-> Steel.ST.Effect.Ghost.STGhostT Prims.unit | Steel.ST.Effect.Ghost.STGhostT | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.unit",
"Steel.ST.OnRange.on_range_weaken_and_shift",
"Steel.ST.Util.rewrite",
"Prims.op_Addition",
"Steel.ST.OnRange.on_range"
] | [] | false | true | false | false | false | let on_range_weaken
(#opened: _)
(p p': (nat -> vprop))
(i j: nat)
(phi: (k: nat{i <= k /\ k < j} -> STGhostT unit opened (p k) (fun _ -> p' k)))
: STGhostT unit opened (on_range p i j) (fun _ -> on_range p' i j) =
| on_range_weaken_and_shift p
p'
0
i
j
(fun k ->
phi k;
rewrite (p' k) (p' (k + 0)))
i
j | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.point_equal_1 | val point_equal_1:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz))
)
) | val point_equal_1:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz))
)
) | let point_equal_1 p q tmp =
let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
let h0 = ST.get() in
fmul pxqz (getx p) (getz q);
reduce pxqz;
fmul qxpz (getx q) (getz p);
reduce qxpz;
eq pxqz qxpz | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 247,
"start_col": 0,
"start_line": 237
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false)
let u51 = n:nat{n < 0x8000000000000}
val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
open FStar.Calc
#push-options "--z3rlimit 100"
let lemma_equality1 a b c d e a' b' c' d' e' =
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp () : Lemma
(requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
=
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204);
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)
}
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)
}
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)
}
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)
}
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc (==) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b)
(pow2 102 * c)
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)
}
(a + pow2 51 * b) % (pow2 102);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)
}
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102)
(a + pow2 51 * b)
(a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp () : Lemma
(requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
= ()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp ()
val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
)
[@CInline]
let eq a b =
let a0 = a.(0ul) in
let a1 = a.(1ul) in
let a2 = a.(2ul) in
let a3 = a.(3ul) in
let a4 = a.(4ul) in
let b0 = b.(0ul) in
let b1 = b.(1ul) in
let b2 = b.(2ul) in
let b3 = b.(3ul) in
let b4 = b.(4ul) in
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
let h0 = ST.get() in
lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4);
let open Lib.RawIntTypes in
let open FStar.UInt64 in
(u64_to_UInt64 a0 =^ u64_to_UInt64 b0 &&
u64_to_UInt64 a1 =^ u64_to_UInt64 b1 &&
u64_to_UInt64 a2 =^ u64_to_UInt64 b2 &&
u64_to_UInt64 a3 =^ u64_to_UInt64 b3 &&
u64_to_UInt64 a4 =^ u64_to_UInt64 b4)
inline_for_extraction noextract
val point_equal_1:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz))
)
) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Hacl.Bignum25519.point ->
q: Hacl.Bignum25519.point ->
tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 20ul
-> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.point",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.PointEqual.eq",
"Prims.bool",
"Prims.unit",
"Hacl.Bignum25519.reduce",
"Hacl.Bignum25519.fmul",
"Hacl.Bignum25519.felem",
"Hacl.Bignum25519.getz",
"Hacl.Bignum25519.getx",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub"
] | [] | false | true | false | false | false | let point_equal_1 p q tmp =
| let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
let h0 = ST.get () in
fmul pxqz (getx p) (getz q);
reduce pxqz;
fmul qxpz (getx q) (getz p);
reduce qxpz;
eq pxqz qxpz | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.point_equal | val point_equal:
p:point
-> q:point ->
Stack bool
(requires fun h -> live h p /\ live h q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))
) | val point_equal:
p:point
-> q:point ->
Stack bool
(requires fun h -> live h p /\ live h q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))
) | let point_equal p q =
push_frame();
let tmp = create 20ul (u64 0) in
let b = point_equal_1 p q tmp in
let res = if b then point_equal_2 p q tmp else false in
pop_frame();
res | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 296,
"start_col": 0,
"start_line": 290
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false)
let u51 = n:nat{n < 0x8000000000000}
val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
open FStar.Calc
#push-options "--z3rlimit 100"
let lemma_equality1 a b c d e a' b' c' d' e' =
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp () : Lemma
(requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
=
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204);
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)
}
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)
}
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)
}
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)
}
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc (==) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b)
(pow2 102 * c)
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)
}
(a + pow2 51 * b) % (pow2 102);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)
}
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102)
(a + pow2 51 * b)
(a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp () : Lemma
(requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
= ()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp ()
val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
)
[@CInline]
let eq a b =
let a0 = a.(0ul) in
let a1 = a.(1ul) in
let a2 = a.(2ul) in
let a3 = a.(3ul) in
let a4 = a.(4ul) in
let b0 = b.(0ul) in
let b1 = b.(1ul) in
let b2 = b.(2ul) in
let b3 = b.(3ul) in
let b4 = b.(4ul) in
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
let h0 = ST.get() in
lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4);
let open Lib.RawIntTypes in
let open FStar.UInt64 in
(u64_to_UInt64 a0 =^ u64_to_UInt64 b0 &&
u64_to_UInt64 a1 =^ u64_to_UInt64 b1 &&
u64_to_UInt64 a2 =^ u64_to_UInt64 b2 &&
u64_to_UInt64 a3 =^ u64_to_UInt64 b3 &&
u64_to_UInt64 a4 =^ u64_to_UInt64 b4)
inline_for_extraction noextract
val point_equal_1:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz))
)
)
let point_equal_1 p q tmp =
let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
let h0 = ST.get() in
fmul pxqz (getx p) (getz q);
reduce pxqz;
fmul qxpz (getx q) (getz p);
reduce qxpz;
eq pxqz qxpz
inline_for_extraction noextract
val point_equal_2:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true))
)
let point_equal_2 p q tmp =
let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
fmul pyqz (gety p) (getz q);
reduce pyqz;
fmul qypz (gety q) (getz p);
reduce qypz;
eq pyqz qypz
val point_equal:
p:point
-> q:point ->
Stack bool
(requires fun h -> live h p /\ live h q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies0 h0 h1 /\
(z <==> Spec.Ed25519.point_equal (F51.point_eval h0 p) (F51.point_eval h0 q))
) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Hacl.Bignum25519.point -> q: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.point",
"Prims.bool",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.Impl.Ed25519.PointEqual.point_equal_2",
"Hacl.Impl.Ed25519.PointEqual.point_equal_1",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u64",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let point_equal p q =
| push_frame ();
let tmp = create 20ul (u64 0) in
let b = point_equal_1 p q tmp in
let res = if b then point_equal_2 p q tmp else false in
pop_frame ();
res | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.point_equal_2 | val point_equal_2:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true))
) | val point_equal_2:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true))
) | let point_equal_2 p q tmp =
let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
fmul pyqz (gety p) (getz q);
reduce pyqz;
fmul qypz (gety q) (getz p);
reduce qypz;
eq pyqz qypz | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 276,
"start_col": 0,
"start_line": 267
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false)
let u51 = n:nat{n < 0x8000000000000}
val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
open FStar.Calc
#push-options "--z3rlimit 100"
let lemma_equality1 a b c d e a' b' c' d' e' =
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp () : Lemma
(requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
=
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204);
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)
}
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)
}
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)
}
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)
}
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc (==) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b)
(pow2 102 * c)
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)
}
(a + pow2 51 * b) % (pow2 102);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)
}
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102)
(a + pow2 51 * b)
(a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp () : Lemma
(requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
= ()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp ()
val eq:
a:felem
-> b:felem ->
Stack bool
(requires fun h -> live h a /\ live h b /\
F51.fevalh h a == F51.as_nat h a /\
F51.fevalh h b == F51.as_nat h b /\
F51.felem_fits h a (1, 1, 1, 1, 1) /\
F51.felem_fits h b (1, 1, 1, 1, 1)
)
(ensures fun h0 r h1 -> h0 == h1 /\
(r <==> F51.fevalh h0 a == F51.fevalh h0 b)
)
[@CInline]
let eq a b =
let a0 = a.(0ul) in
let a1 = a.(1ul) in
let a2 = a.(2ul) in
let a3 = a.(3ul) in
let a4 = a.(4ul) in
let b0 = b.(0ul) in
let b1 = b.(1ul) in
let b2 = b.(2ul) in
let b3 = b.(3ul) in
let b4 = b.(4ul) in
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
assert_norm(pow2 255 - 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed);
let h0 = ST.get() in
lemma_equality1 (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4);
let open Lib.RawIntTypes in
let open FStar.UInt64 in
(u64_to_UInt64 a0 =^ u64_to_UInt64 b0 &&
u64_to_UInt64 a1 =^ u64_to_UInt64 b1 &&
u64_to_UInt64 a2 =^ u64_to_UInt64 b2 &&
u64_to_UInt64 a3 =^ u64_to_UInt64 b3 &&
u64_to_UInt64 a4 =^ u64_to_UInt64 b4)
inline_for_extraction noextract
val point_equal_1:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\ live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z <==> ((px `SC.fmul` qz) == (qx `SC.fmul` pz))
)
)
let point_equal_1 p q tmp =
let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
let h0 = ST.get() in
fmul pxqz (getx p) (getz q);
reduce pxqz;
fmul qxpz (getx q) (getz p);
reduce qxpz;
eq pxqz qxpz
inline_for_extraction noextract
val point_equal_2:
p:point
-> q:point
-> tmp:lbuffer uint64 20ul ->
Stack bool
(requires fun h ->
live h p /\ live h q /\live h tmp /\
disjoint tmp p /\ disjoint tmp q /\
F51.point_inv_t h p /\ F51.point_inv_t h q
)
(ensures fun h0 z h1 -> modifies (loc tmp) h0 h1 /\
(let px, py, pz, pt = F51.point_eval h0 p in
let qx, qy, qz, qt = F51.point_eval h0 q in
z == (if ((py `SC.fmul` qz) <> (qy `SC.fmul` pz)) then false else true))
) | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Hacl.Bignum25519.point ->
q: Hacl.Bignum25519.point ->
tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 20ul
-> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.point",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.PointEqual.eq",
"Prims.bool",
"Prims.unit",
"Hacl.Bignum25519.reduce",
"Hacl.Bignum25519.fmul",
"Hacl.Bignum25519.felem",
"Hacl.Bignum25519.getz",
"Hacl.Bignum25519.gety",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub"
] | [] | false | true | false | false | false | let point_equal_2 p q tmp =
| let pxqz = sub tmp 0ul 5ul in
let qxpz = sub tmp 5ul 5ul in
let pyqz = sub tmp 10ul 5ul in
let qypz = sub tmp 15ul 5ul in
fmul pyqz (gety p) (getz q);
reduce pyqz;
fmul qypz (gety q) (getz p);
reduce qypz;
eq pyqz qypz | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_cons_with_implies | val on_range_cons_with_implies (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> (on_range p i k) `star` (on_range p i k @==> ((p i) `star` (on_range p j k))))
(j == i + 1)
(fun _ -> True) | val on_range_cons_with_implies (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> (on_range p i k) `star` (on_range p i k @==> ((p i) `star` (on_range p j k))))
(j == i + 1)
(fun _ -> True) | let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k) | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 38,
"end_line": 107,
"start_col": 0,
"start_line": 90
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Steel.Effect.Common.vprop) -> i: Prims.nat -> j: Prims.nat -> k: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.Util.intro_implies",
"Steel.ST.OnRange.on_range",
"Steel.Effect.Common.star",
"Steel.Effect.Common.emp",
"Steel.ST.OnRange.on_range_uncons",
"Prims.unit",
"Steel.ST.OnRange.on_range_cons",
"Steel.ST.OnRange.on_range_le",
"Steel.ST.Util.op_At_Equals_Equals_Greater",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_cons_with_implies (#opened: _) (p: (nat -> vprop)) (i j k: nat)
: STGhost unit
opened
((p i) `star` (on_range p j k))
(fun _ -> (on_range p i k) `star` (on_range p i k @==> ((p i) `star` (on_range p j k))))
(j == i + 1)
(fun _ -> True) =
| on_range_le p j k;
on_range_cons p i j k;
intro_implies (on_range p i k)
((p i) `star` (on_range p j k))
emp
(fun _ -> on_range_uncons p i j k) | false |
Steel.ST.OnRange.fsti | Steel.ST.OnRange.on_range_put | val on_range_put (#opened: _) (p: (nat -> vprop)) (i j k l m: nat)
: STGhost unit
opened
(((on_range p i j) `star` (p k)) `star` (on_range p l m))
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True) | val on_range_put (#opened: _) (p: (nat -> vprop)) (i j k l m: nat)
: STGhost unit
opened
(((on_range p i j) `star` (p k)) `star` (on_range p l m))
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True) | let on_range_put
(#opened: _)
(p: (nat -> vprop))
(i j k l m: nat)
: STGhost unit opened
(on_range p i j `star` p k `star` on_range p l m)
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True)
= rewrite (p k) (p j);
on_range_singleton_intro p j l;
on_range_join p i j l;
on_range_join p i l m | {
"file_name": "lib/steel/Steel.ST.OnRange.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 179,
"start_col": 0,
"start_line": 167
} | module Steel.ST.OnRange
include Steel.ST.Util
val on_range (p: (nat -> vprop)) (i j: nat) : vprop
val on_range_le
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> on_range p i j)
True
(fun _ -> i <= j)
val on_range_empty
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
emp
(fun _ -> on_range p i j)
(i == j)
(fun _ -> True)
val on_range_singleton_intro
(#opened: _)
(p: (nat -> vprop))
(i: nat)
(j: nat)
: STGhost unit opened
(p i)
(fun _ -> on_range p i j)
(j == i + 1)
(fun _ -> True)
val on_range_singleton_elim
(#opened: _)
(p: (nat -> vprop))
(i j: nat)
: STGhost unit opened
(on_range p i j)
(fun _ -> p i)
(j == i + 1)
(fun _ -> True)
val on_range_split
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` on_range p j k)
(i <= j /\ j <= k)
(fun _ -> True)
val on_range_join
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhostT unit opened
(on_range p i j `star` on_range p j k)
(fun _ -> on_range p i k)
let on_range_cons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k)
(j == i + 1)
(fun _ -> True)
= on_range_singleton_intro p i j;
on_range_join p i j k
let on_range_uncons
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> p i `star` on_range p j k)
(j == i + 1 /\ j <= k)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p i j
let on_range_cons_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(p i `star` on_range p j k)
(fun _ -> on_range p i k `star`
(on_range p i k @==> (p i `star` on_range p j k))
)
(j == i + 1)
(fun _ -> True)
= on_range_le p j k;
on_range_cons p i j k;
intro_implies
(on_range p i k)
(p i `star` on_range p j k)
emp
(fun _ -> on_range_uncons p i j k)
let on_range_snoc
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k)
(j' == j /\ k == j + 1)
(fun _ -> True)
= rewrite (p j') (p j);
on_range_singleton_intro p j k;
on_range_join p i j k
let on_range_unsnoc
(#opened: _)
(p: (nat -> vprop))
(i j k: nat)
: STGhost unit opened
(on_range p i k)
(fun _ -> on_range p i j `star` p j)
(i <= j /\ k == j + 1)
(fun _ -> True)
= on_range_split p i j k;
on_range_singleton_elim p j k
let on_range_snoc_with_implies
(#opened: _)
(p: (nat -> vprop))
(i j j' k: nat)
: STGhost unit opened
(on_range p i j `star` p j')
(fun _ -> on_range p i k `star` (on_range p i k `implies_` (on_range p i j `star` p j')))
(j' == j /\ k == j + 1)
(fun _ -> True)
= on_range_le p i j;
on_range_snoc p i j j' k;
intro_implies
(on_range p i k)
(on_range p i j `star` p j')
emp
(fun _ ->
on_range_unsnoc p i j k;
rewrite (p j) (p j')
)
let on_range_get
(#opened: _)
(p: (nat -> vprop))
(i j k l: nat)
: STGhost unit opened
(on_range p i l)
(fun _ -> on_range p i j `star` p j `star` on_range p k l)
(i <= j /\ j + 1 == k /\ k <= l)
(fun _ -> True)
= on_range_split p i j l;
on_range_split p j k l;
on_range_singleton_elim p j k | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.OnRange.fsti"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: (_: Prims.nat -> Steel.Effect.Common.vprop) ->
i: Prims.nat ->
j: Prims.nat ->
k: Prims.nat ->
l: Prims.nat ->
m: Prims.nat
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Prims.nat",
"Steel.Effect.Common.vprop",
"Steel.ST.OnRange.on_range_join",
"Prims.unit",
"Steel.ST.OnRange.on_range_singleton_intro",
"Steel.ST.Util.rewrite",
"Steel.Effect.Common.star",
"Steel.ST.OnRange.on_range",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True"
] | [] | false | true | false | false | false | let on_range_put (#opened: _) (p: (nat -> vprop)) (i j k l m: nat)
: STGhost unit
opened
(((on_range p i j) `star` (p k)) `star` (on_range p l m))
(fun _ -> on_range p i m)
(j == k /\ k + 1 == l)
(fun _ -> True) =
| rewrite (p k) (p j);
on_range_singleton_intro p j l;
on_range_join p i j l;
on_range_join p i l m | false |
Vale.X64.Flags.fsti | Vale.X64.Flags.flag_val_t | val flag_val_t : Type0 | let flag_val_t = option bool | {
"file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 9,
"start_col": 7,
"start_line": 9
} | module Vale.X64.Flags
open FStar.Mul
// This interface should not refer to Semantics_s
open Vale.Def.Prop_s
open Vale.X64.Machine_s
open Vale.Lib.Map16 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Machine_s.fst.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Flags.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Map16",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option",
"Prims.bool"
] | [] | false | false | false | true | true | let flag_val_t =
| option bool | false |
|
Vale.X64.Flags.fsti | Vale.X64.Flags.sel_curry | val sel_curry (m: t) (f: flag) : flag_val_t | val sel_curry (m: t) (f: flag) : flag_val_t | let sel_curry (m:t) (f:flag) : flag_val_t = sel f m | {
"file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 17,
"start_col": 0,
"start_line": 17
} | module Vale.X64.Flags
open FStar.Mul
// This interface should not refer to Semantics_s
open Vale.Def.Prop_s
open Vale.X64.Machine_s
open Vale.Lib.Map16
unfold let flag_val_t = option bool // HACK: this shouldn't have to be unfolded (it has to do with the lambda in FStar.FunctionalExtensionality.(^->))
val t : Type0
val sel (f:flag) (m:t) : flag_val_t
val upd (f:flag) (v:flag_val_t) (m:t) : t | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Machine_s.fst.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Flags.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Map16",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Vale.X64.Flags.t -> f: Vale.X64.Machine_s.flag -> Vale.X64.Flags.flag_val_t | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Flags.t",
"Vale.X64.Machine_s.flag",
"Vale.X64.Flags.sel",
"Vale.X64.Flags.flag_val_t"
] | [] | false | false | false | true | false | let sel_curry (m: t) (f: flag) : flag_val_t =
| sel f m | false |
Vale.X64.Flags.fsti | Vale.X64.Flags.to_fun | val to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) | val to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) | let to_fun (m:t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) =
FStar.FunctionalExtensionality.on flag (sel_curry m) | {
"file_name": "vale/code/arch/x64/Vale.X64.Flags.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 20,
"start_col": 0,
"start_line": 19
} | module Vale.X64.Flags
open FStar.Mul
// This interface should not refer to Semantics_s
open Vale.Def.Prop_s
open Vale.X64.Machine_s
open Vale.Lib.Map16
unfold let flag_val_t = option bool // HACK: this shouldn't have to be unfolded (it has to do with the lambda in FStar.FunctionalExtensionality.(^->))
val t : Type0
val sel (f:flag) (m:t) : flag_val_t
val upd (f:flag) (v:flag_val_t) (m:t) : t
let sel_curry (m:t) (f:flag) : flag_val_t = sel f m | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Machine_s.fst.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Flags.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Map16",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Vale.X64.Flags.t
-> FStar.FunctionalExtensionality.restricted_t Vale.X64.Machine_s.flag
(fun _ -> Vale.X64.Flags.flag_val_t) | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Flags.t",
"FStar.FunctionalExtensionality.on",
"Vale.X64.Machine_s.flag",
"Vale.X64.Flags.flag_val_t",
"Vale.X64.Flags.sel_curry",
"FStar.FunctionalExtensionality.restricted_t"
] | [] | false | false | false | false | false | let to_fun (m: t) : (FStar.FunctionalExtensionality.restricted_t flag (fun _ -> flag_val_t)) =
| FStar.FunctionalExtensionality.on flag (sel_curry m) | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline | val test_inline: Prims.unit -> FStar.All.ML unit | val test_inline: Prims.unit -> FStar.All.ML unit | let test_inline () : FStar.All.ML unit =
test_inline_mov_input ();
test_inline_mov_add_input ();
test_inline_mul_inputs ();
test_inline_mov_mul_rax_100 ();
test_inline_mov_mul_inputs ();
// This test leads (rightfully) to a failure in the printer due to a gcc bug
// test_inline_mov_add_input_dummy_mul ();
test_inline_comment_add ();
test_inline_same_line ();
test_inline_same_line_newline ();
() | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 160,
"start_col": 0,
"start_line": 149
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
let test_inline_mov_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
// This test generates the correct inline assembly code, but only works with gcc >= 9
// On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly
// allocate the output "result" into register rax
(*
let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Mul64 (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c
*)
let test_inline_comment_add () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let s = "This is a comment" in
let c = Block [
Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_comment_add" (Some "result") args regs_mod c
let test_inline_same_line () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let c = Block [
Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_same_line" (Some "result") args regs_mod c
let test_inline_same_line_newline () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let c = Block [
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr_annotate ins_Newline (AnnotateNewline ()));
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_same_line_newline" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.test_inline_same_line_newline",
"Vale.Test.TestInline.test_inline_same_line",
"Vale.Test.TestInline.test_inline_comment_add",
"Vale.Test.TestInline.test_inline_mov_mul_inputs",
"Vale.Test.TestInline.test_inline_mov_mul_rax_100",
"Vale.Test.TestInline.test_inline_mul_inputs",
"Vale.Test.TestInline.test_inline_mov_add_input",
"Vale.Test.TestInline.test_inline_mov_input"
] | [] | false | true | false | false | false | let test_inline () : FStar.All.ML unit =
| test_inline_mov_input ();
test_inline_mov_add_input ();
test_inline_mul_inputs ();
test_inline_mov_mul_rax_100 ();
test_inline_mov_mul_inputs ();
test_inline_comment_add ();
test_inline_same_line ();
test_inline_same_line_newline ();
() | false |
Hacl.Impl.Ed25519.PointEqual.fst | Hacl.Impl.Ed25519.PointEqual.lemma_equality1 | val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) | val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')) | let lemma_equality1 a b c d e a' b' c' d' e' =
assert_norm(pow2 51 = 0x8000000000000);
assert_norm(pow2 102 = 0x40000000000000000000000000);
assert_norm(pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm(pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp () : Lemma
(requires a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
=
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) + pow2 153 * (pow2 51 - 1) < pow2 204);
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)
}
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)
}
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc (==) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)
}
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)
}
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc (==) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a + pow2 51 * b)
(pow2 102 * c)
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)
}
(a + pow2 51 * b) % (pow2 102);
};
calc (==) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r
(a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)
}
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102)
(a + pow2 51 * b)
(a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp () : Lemma
(requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
= ()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp () | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.PointEqual.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 174,
"start_col": 0,
"start_line": 68
} | module Hacl.Impl.Ed25519.PointEqual
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module F56 = Hacl.Impl.BignumQ.Mul
module S51 = Hacl.Spec.Curve25519.Field51.Definition
module SC = Spec.Curve25519
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0"
val gte_q:
s:lbuffer uint64 5ul ->
Stack bool
(requires fun h -> live h s /\
F56.qelem_fits h s (1, 1, 1, 1, 1)
)
(ensures fun h0 b h1 -> h0 == h1 /\
(b <==> F56.as_nat h0 s >= Spec.Ed25519.q)
)
[@CInline]
let gte_q s =
let h0 = ST.get() in
let s0 = s.(0ul) in
let s1 = s.(1ul) in
let s2 = s.(2ul) in
let s3 = s.(3ul) in
let s4 = s.(4ul) in
assert_norm (Spec.Ed25519.q == 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed);
let open FStar.UInt64 in
let open Lib.RawIntTypes in
if u64_to_UInt64 s4 >^ 0x00000010000000uL then true
else if u64_to_UInt64 s4 <^ 0x00000010000000uL then false
else (if u64_to_UInt64 s3 >^ 0x00000000000000uL then true
else if u64_to_UInt64 s2 >^ 0x000000000014deuL then true
else if u64_to_UInt64 s2 <^ 0x000000000014deuL then false
else if u64_to_UInt64 s1 >^ 0xf9dea2f79cd658uL then true
else if u64_to_UInt64 s1 <^ 0xf9dea2f79cd658uL then false
else if u64_to_UInt64 s0 >=^ 0x12631a5cf5d3eduL then true
else false)
let u51 = n:nat{n < 0x8000000000000}
val lemma_equality1:
a:u51 -> b:u51 -> c:u51 -> d:u51 -> e:u51 ->
a':u51 -> b':u51 -> c':u51 -> d':u51 -> e':u51 ->
Lemma (requires a < pow2 51 /\ b < pow2 51 /\ c < pow2 51 /\ d < pow2 51 /\ e < pow2 51 /\
a' < pow2 51 /\ b' < pow2 51 /\ c' < pow2 51 /\ d' < pow2 51 /\ e' < pow2 51)
(ensures (a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') <==>
(a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e'))
open FStar.Calc
#push-options "--z3rlimit 100" | {
"checked_file": "/",
"dependencies": [
"Spec.Ed25519.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Impl.BignumQ.Mul.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Ed25519.PointEqual.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "SC"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S51"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.BignumQ.Mul",
"short_module": "F56"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Impl.Ed25519.PointEqual.u51 ->
b: Hacl.Impl.Ed25519.PointEqual.u51 ->
c: Hacl.Impl.Ed25519.PointEqual.u51 ->
d: Hacl.Impl.Ed25519.PointEqual.u51 ->
e: Hacl.Impl.Ed25519.PointEqual.u51 ->
a': Hacl.Impl.Ed25519.PointEqual.u51 ->
b': Hacl.Impl.Ed25519.PointEqual.u51 ->
c': Hacl.Impl.Ed25519.PointEqual.u51 ->
d': Hacl.Impl.Ed25519.PointEqual.u51 ->
e': Hacl.Impl.Ed25519.PointEqual.u51
-> FStar.Pervasives.Lemma
(requires
a < Prims.pow2 51 /\ b < Prims.pow2 51 /\ c < Prims.pow2 51 /\ d < Prims.pow2 51 /\
e < Prims.pow2 51 /\ a' < Prims.pow2 51 /\ b' < Prims.pow2 51 /\ c' < Prims.pow2 51 /\
d' < Prims.pow2 51 /\ e' < Prims.pow2 51)
(ensures
a + Prims.pow2 51 * b + Prims.pow2 102 * c + Prims.pow2 153 * d + Prims.pow2 204 * e ==
a' + Prims.pow2 51 * b' + Prims.pow2 102 * c' + Prims.pow2 153 * d' + Prims.pow2 204 * e' <==>
a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Impl.Ed25519.PointEqual.u51",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.squash",
"Prims.op_Multiply",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Math.Lemmas.lemma_mod_injective",
"FStar.Math.Lemmas.cancel_mul_mod",
"FStar.Calc.calc_finish",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.lemma_mult_le_left",
"Prims.op_Equality"
] | [] | false | false | true | false | false | let lemma_equality1 a b c d e a' b' c' d' e' =
| assert_norm (pow2 51 = 0x8000000000000);
assert_norm (pow2 102 = 0x40000000000000000000000000);
assert_norm (pow2 153 = 0x200000000000000000000000000000000000000);
assert_norm (pow2 204 = 0x1000000000000000000000000000000000000000000000000000);
let lemma_l_imp ()
: Lemma
(requires
a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e')
(ensures a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e') =
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 51) b' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 102) c' (pow2 51 - 1);
FStar.Math.Lemmas.lemma_mult_le_left (pow2 153) d' (pow2 51 - 1);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) < pow2 102);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) < pow2 153);
assert_norm (pow2 51 - 1 + pow2 51 * (pow2 51 - 1) + pow2 102 * (pow2 51 - 1) +
pow2 153 * (pow2 51 - 1) <
pow2 204);
calc ( == ) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e) % (pow2 204);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c +
pow2 153 * d)
(pow2 204 * e)
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e (pow2 204)) }
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 204);
};
calc ( == ) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') % (pow2 204);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c' +
pow2 153 * d')
(pow2 204 * e')
(pow2 204);
FStar.Math.Lemmas.cancel_mul_mod e' (pow2 204)) }
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 204);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 204)
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d)
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d');
calc ( == ) {
(a + pow2 51 * b + pow2 102 * c + pow2 153 * d) % (pow2 153);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b + pow2 102 * c)
(pow2 153 * d)
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d (pow2 153)) }
(a + pow2 51 * b + pow2 102 * c) % (pow2 153);
};
calc ( == ) {
(a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d') % (pow2 153);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b' + pow2 102 * c')
(pow2 153 * d')
(pow2 153);
FStar.Math.Lemmas.cancel_mul_mod d' (pow2 153)) }
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 153);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 153)
(a + pow2 51 * b + pow2 102 * c)
(a' + pow2 51 * b' + pow2 102 * c');
calc ( == ) {
(a + pow2 51 * b + pow2 102 * c) % (pow2 102);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a + pow2 51 * b) (pow2 102 * c) (pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c (pow2 102)) }
(a + pow2 51 * b) % (pow2 102);
};
calc ( == ) {
(a' + pow2 51 * b' + pow2 102 * c') % (pow2 102);
( == ) { (FStar.Math.Lemmas.lemma_mod_plus_distr_r (a' + pow2 51 * b')
(pow2 102 * c')
(pow2 102);
FStar.Math.Lemmas.cancel_mul_mod c' (pow2 102)) }
(a' + pow2 51 * b') % (pow2 102);
};
FStar.Math.Lemmas.lemma_mod_injective (pow2 102) (a + pow2 51 * b) (a' + pow2 51 * b');
FStar.Math.Lemmas.cancel_mul_mod b (pow2 51);
FStar.Math.Lemmas.cancel_mul_mod b' (pow2 51);
FStar.Math.Lemmas.lemma_mod_injective (pow2 51) a a'
in
let lemma_r_imp ()
: Lemma (requires a == a' /\ b == b' /\ c == c' /\ d == d' /\ e == e')
(ensures
a + pow2 51 * b + pow2 102 * c + pow2 153 * d + pow2 204 * e ==
a' + pow2 51 * b' + pow2 102 * c' + pow2 153 * d' + pow2 204 * e') =
()
in
Classical.move_requires lemma_l_imp ();
Classical.move_requires lemma_r_imp () | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_set_to_one_reverse_equality | val lemma_set_to_one_reverse_equality (q0 q1: quad32)
: Lemma (requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) | val lemma_set_to_one_reverse_equality (q0 q1: quad32)
: Lemma (requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) | let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 32,
"start_col": 0,
"start_line": 26
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q0: Vale.Def.Types_s.quad32 -> q1: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma (requires Vale.AES.GCM.lower3_equal q0 q1)
(ensures
Vale.AES.GCM.set_to_one_LE (Vale.Def.Types_s.reverse_bytes_quad32 q0) ==
Vale.AES.GCM.set_to_one_LE (Vale.Def.Types_s.reverse_bytes_quad32 q1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Types_s.reveal_reverse_bytes_quad32",
"Prims.b2t",
"Vale.AES.GCM.lower3_equal",
"Prims.squash",
"Prims.eq2",
"Vale.AES.GCM.set_to_one_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_set_to_one_reverse_equality (q0 q1: quad32)
: Lemma (requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1)) =
| reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
() | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_compute_iv_hard | val lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) | val lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) | let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 147,
"start_col": 0,
"start_line": 124
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
iv: Vale.AES.GCM_s.supported_iv_LE ->
quads: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
length_quad: Vale.Def.Types_s.quad32 ->
h_LE: Vale.Def.Types_s.quad32 ->
j0: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
~(FStar.Seq.Base.length iv == 96 / 8) /\
quads == Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits iv) /\
j0 ==
Vale.AES.GHash.ghash_incremental h_LE
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(FStar.Seq.Base.append quads (FStar.Seq.Base.create 1 length_quad)) /\
length_quad ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
0
1)
(8 * FStar.Seq.Base.length iv)
0))
(ensures Vale.Def.Types_s.reverse_bytes_quad32 j0 == Vale.AES.GCM_s.compute_iv_BE h_LE iv) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.AES.GCM_s.compute_iv_BE_reveal",
"Vale.AES.GHash.ghash_incremental_to_ghash",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.insert_nat64_reveal",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.insert_nat64",
"Vale.Arch.Types.lemma_insert_nat64_nat32s",
"Vale.Def.Words_s.nat32",
"Prims.int",
"Vale.Arch.Types.two_to_nat32",
"Vale.Def.Words_s.Mktwo",
"Prims.l_and",
"Prims.l_not",
"Prims.op_Division",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.AES.GHash.ghash_incremental",
"Prims.squash",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_compute_iv_hard (iv: supported_iv_LE) (quads: seq quad32) (length_quad h_LE j0: quad32)
: Lemma
(requires
~(length iv == 96 / 8) /\ quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) 0 1) (8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv) =
| assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
() | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_le_seq_quad32_to_bytes_prefix_equality | val lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32)
: Lemma
(slice (le_quad32_to_bytes q) 0 12 ==
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) | val lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32)
: Lemma
(slice (le_quad32_to_bytes q) 0 12 ==
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) | let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 55,
"start_col": 0,
"start_line": 50
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i)) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes q) 0 12 ==
FStar.Seq.Base.slice (Vale.AES.GCTR_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes
q)
0
12))
0
12) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_le_seq_quad32_to_bytes_prefix_equality (q: quad32)
: Lemma
(slice (le_quad32_to_bytes q) 0 12 ==
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12) =
| assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
() | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_le_bytes_to_quad32_prefix_equality | val lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) | val lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) | let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i)) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 48,
"start_col": 0,
"start_line": 34
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b0: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b0 == 16} ->
b1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b1 == 16}
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.slice b0 0 12 == FStar.Seq.Base.slice b1 0 12)
(ensures
Vale.AES.GCM.lower3_equal (Vale.Def.Types_s.le_bytes_to_quad32 b0)
(Vale.Def.Types_s.le_bytes_to_quad32 b1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Prims._assert",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"FStar.Seq.Base.slice",
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"Prims.op_Modulus",
"Vale.Def.Words_s.four",
"Prims.op_Division",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"Vale.Def.Types_s.le_bytes_to_quad32_reveal",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Prims.squash",
"Vale.AES.GCM.lower3_equal",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_le_bytes_to_quad32_prefix_equality
(b0: seq nat8 {length b0 == 16})
(b1: seq nat8 {length b1 == 16})
: Lemma (requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1)) =
| let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i: int).
(0 <= i /\ i < 12) ==>
(index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) | false |
Vale.AES.GCM.fst | Vale.AES.GCM.pad_to_128_bits_multiple_append | val pad_to_128_bits_multiple_append (x y: seq nat8)
: Lemma (requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) | val pad_to_128_bits_multiple_append (x y: seq nat8)
: Lemma (requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) | let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 78,
"end_line": 330,
"start_col": 0,
"start_line": 326
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> y: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length x % 16 == 0)
(ensures
Vale.AES.GCTR_s.pad_to_128_bits (FStar.Seq.Base.append x y) ==
FStar.Seq.Base.append x (Vale.AES.GCTR_s.pad_to_128_bits y)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Seq.Base.append",
"Prims.unit",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pad_to_128_bits_multiple_append (x y: seq nat8)
: Lemma (requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) =
| assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) | false |
Vale.AES.GCM.fst | Vale.AES.GCM.gcm_encrypt_LE_fst_helper | val gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | val gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal () | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 160,
"start_col": 0,
"start_line": 149
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
iv: Vale.AES.GCM_s.supported_iv_LE ->
iv_enc: Vale.Def.Types_s.quad32 ->
iv_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
iv_enc == Vale.AES.GCTR_s.inc32 (Vale.AES.GCM_s.compute_iv_BE h_LE iv) 1 /\
cipher ==
Vale.AES.GCTR_s.gctr_encrypt_LE iv_enc (Vale.AES.GCTR.make_gctr_plain_LE plain) alg key /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32))
(ensures
cipher ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.unit",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.eq2",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.AES.GCTR.make_gctr_plain_LE",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let gcm_encrypt_LE_fst_helper
(iv: supported_iv_LE)
(iv_enc iv_BE: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\ length auth < pow2_32))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) =
| gcm_encrypt_LE_reveal () | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_mov_add_input | val test_inline_mov_add_input: Prims.unit -> FStar.All.ML unit | val test_inline_mov_add_input: Prims.unit -> FStar.All.ML unit | let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 50,
"start_col": 0,
"start_line": 41
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rR15",
"Vale.X64.Instruction_s.opFlagsCf",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_Add64",
"Vale.X64.Machine_s.OConst",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Vale.X64.Machine_s.rRdx",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_mov_add_input () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rRax || r = rRdx) in
let c =
Block
[
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1))
]
in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_mov_mul_rax_100 | val test_inline_mov_mul_rax_100: Prims.unit -> FStar.All.ML unit | val test_inline_mov_mul_rax_100: Prims.unit -> FStar.All.ML unit | let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 78,
"end_line": 74,
"start_col": 0,
"start_line": 64
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rRbx",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.OConst",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_IMul64",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Vale.X64.Machine_s.rRdx",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rRbx)] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c =
Block
[
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx))
]
in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c | false |
Vale.AES.GCM.fst | Vale.AES.GCM.slice_append_back | val slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) | val slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) | let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 319,
"start_col": 0,
"start_line": 314
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq a -> y: FStar.Seq.Base.seq a -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length x <= i /\ i <= FStar.Seq.Base.length x + FStar.Seq.Base.length y)
(ensures
FStar.Seq.Base.slice (FStar.Seq.Base.append x y) 0 i ==
FStar.Seq.Base.append x (FStar.Seq.Base.slice y 0 (i - FStar.Seq.Base.length x))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.append",
"Prims.op_Subtraction",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let slice_append_back (#a: Type) (x y: seq a) (i: nat)
: Lemma (requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) =
| assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
() | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_mov_input | val test_inline_mov_input: Prims.unit -> FStar.All.ML unit | val test_inline_mov_input: Prims.unit -> FStar.All.ML unit | let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 39,
"start_col": 0,
"start_line": 31
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
() | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rR15",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Vale.X64.Machine_s.rRdx",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_mov_input () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15))] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c | false |
Vale.AES.GCM.fst | Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes | val append_distributes_le_seq_quad32_to_bytes (x y: seq quad32)
: Lemma
(le_seq_quad32_to_bytes (append x y) ==
append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) | val append_distributes_le_seq_quad32_to_bytes (x y: seq quad32)
: Lemma
(le_seq_quad32_to_bytes (append x y) ==
append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) | let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 324,
"start_col": 0,
"start_line": 321
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> y: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append x y) ==
FStar.Seq.Base.append (Vale.Def.Types_s.le_seq_quad32_to_bytes x)
(Vale.Def.Types_s.le_seq_quad32_to_bytes y)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let append_distributes_le_seq_quad32_to_bytes (x y: seq quad32)
: Lemma
(le_seq_quad32_to_bytes (append x y) ==
append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y)) =
| append_distributes_le_seq_quad32_to_bytes x y | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_same_line | val test_inline_same_line: Prims.unit -> FStar.All.ML unit | val test_inline_same_line: Prims.unit -> FStar.All.ML unit | let test_inline_same_line () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let c = Block [
Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_same_line" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 130,
"start_col": 0,
"start_line": 120
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
let test_inline_mov_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
// This test generates the correct inline assembly code, but only works with gcc >= 9
// On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly
// allocate the output "result" into register rax
(*
let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Mul64 (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c
*)
let test_inline_comment_add () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let s = "This is a comment" in
let c = Block [
Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_comment_add" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr_annotate",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Space",
"Vale.X64.Machine_Semantics_s.AnnotateSpace",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.opFlagsCf",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.op64",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_Add64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rR15",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.rRax",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_same_line () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rR15 || r = rRax) in
let c =
Block
[
Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15))
]
in
print_function "test_inline_same_line" (Some "result") args regs_mod c | false |
Vale.AES.GCM.fst | Vale.AES.GCM.gcm_encrypt_LE_snd_helper | val gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | val gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) | let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal () | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 198,
"start_col": 0,
"start_line": 180
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
length_quad32: Vale.Def.Types_s.quad32 ->
hash: Vale.Def.Types_s.quad32 ->
mac: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
cipher ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth) /\
length_quad32 ==
Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64
(Vale.Def.Words_s.Mkfour 0 0 0 0)
(8 * FStar.Seq.Base.length auth)
1)
(8 * FStar.Seq.Base.length plain)
0) /\
(let auth_padded_quads =
Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits auth)
in
let cipher_padded_quads =
Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.AES.GCTR_s.pad_to_128_bits cipher)
in
hash ==
Vale.AES.GHash_s.ghash_LE h_LE
(FStar.Seq.Base.append auth_padded_quads
(FStar.Seq.Base.append cipher_padded_quads (FStar.Seq.Base.create 1 length_quad32)
)) /\
Vale.Def.Types_s.le_quad32_to_bytes mac ==
Vale.AES.GCTR_s.gctr_encrypt_LE j0_BE (Vale.Def.Types_s.le_quad32_to_bytes hash) alg key
)))
(ensures
Vale.Def.Types_s.le_quad32_to_bytes mac ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain
auth)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.unit",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.b2t",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.insert_nat64",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"Vale.AES.GHash_s.ghash_LE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.AES.AES_s.aes_encrypt_LE",
"Prims.squash",
"FStar.Pervasives.Native.snd",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let gcm_encrypt_LE_snd_helper
(iv: supported_iv_LE)
(j0_BE length_quad32 hash mac: quad32)
(plain auth cipher: seq nat8)
(alg: algorithm)
(key: seq nat32)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ length plain < pow2_32 /\ length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 ==
reverse_bytes_quad32 (insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1)
(8 * length plain)
0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash ==
ghash_LE h_LE
(append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)))
(ensures
le_quad32_to_bytes mac ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth)) =
| insert_nat64_reveal ();
gcm_encrypt_LE_reveal () | false |
Hacl.HMAC.Blake2s_128.fst | Hacl.HMAC.Blake2s_128.compute_blake2s_128 | val compute_blake2s_128:compute_st Blake2S | val compute_blake2s_128:compute_st Blake2S | let compute_blake2s_128: compute_st Blake2S =
mk_compute (D.mk_impl Blake2S Hacl.Impl.Blake2.Core.M128)
hash alloca init update_multi update_last finish | {
"file_name": "code/hmac/Hacl.HMAC.Blake2s_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 61,
"end_line": 24,
"start_col": 0,
"start_line": 22
} | module Hacl.HMAC.Blake2s_128
module B = LowStar.Buffer
module D = Hacl.Hash.Definitions
open Spec.Agile.HMAC
open Spec.Hash.Definitions
open FStar.HyperStack.ST
open Lib.IntTypes
open EverCrypt.Helpers
open Hacl.HMAC
open Hacl.Hash.Blake2s_128
#set-options "--z3rlimit 25 --fuel 0 --ifuel 0"
[@@ Comment "Write the HMAC-BLAKE2s MAC of a message (`data`) by using a key (`key`) into `dst`.
The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes. | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.HMAC.fsti.checked",
"Hacl.Hash.Definitions.fst.checked",
"Hacl.Hash.Blake2s_128.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"EverCrypt.Helpers.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.HMAC.Blake2s_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Hash.Blake2s_128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Hash.Definitions",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 25,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HMAC.compute_st Spec.Hash.Definitions.Blake2S | Prims.Tot | [
"total"
] | [] | [
"Hacl.HMAC.mk_compute",
"Hacl.Hash.Definitions.mk_impl",
"Spec.Hash.Definitions.Blake2S",
"Hacl.Impl.Blake2.Core.M128",
"Hacl.Hash.Blake2s_128.hash",
"Hacl.Hash.Blake2s_128.alloca",
"Hacl.Hash.Blake2s_128.init",
"Hacl.Hash.Blake2s_128.update_multi",
"Hacl.Hash.Blake2s_128.update_last",
"Hacl.Hash.Blake2s_128.finish"
] | [] | false | false | false | true | false | let compute_blake2s_128:compute_st Blake2S =
| mk_compute (D.mk_impl Blake2S Hacl.Impl.Blake2.Core.M128)
hash
alloca
init
update_multi
update_last
finish | false |
Vale.AES.GCM.fst | Vale.AES.GCM.decrypt_helper | val decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) | val decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) | let decrypt_helper
(alg:algorithm) (key:seq nat8) (iv:supported_iv_LE) (cipher:seq nat8) (auth:seq nat8)
(rax:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth
)
(ensures (rax = 0) == snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad)))
=
gcm_decrypt_LE_reveal ();
insert_nat64_reveal ();
(*
let b = snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad)) in
let (_, ct) = gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad) in
assert (b = (ct = (le_quad32_to_bytes alleged_tag_quad)));
assert (ct == le_quad32_to_bytes computed_tag);
assert (b == (le_quad32_to_bytes computed_tag = le_quad32_to_bytes alleged_tag_quad));
*)
le_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag;
(*
assert (b == (computed_tag = alleged_tag_quad));
assert ((rax = 0) == (computed_tag = alleged_tag_quad));
*)
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 1174,
"start_col": 0,
"start_line": 1147
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
()
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
()
#reset-options "--z3rlimit 60"
let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
insert_nat64_reveal ();
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
//gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes j0_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append p128x6 p128) p_bytes in
calc (==) {
append (append (append auth_quads p128x6) p128) p_bytes;
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) p_bytes;
== { append_assoc auth_quads (append p128x6 p128) p_bytes }
append auth_quads (append (append p128x6 p128) p_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads p128x6) p128) p_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append p128x6 p128) p_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== { assert(equal (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes) plain_bytes) }
append (le_seq_quad32_to_bytes auth_quads) plain_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) plain_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) plain_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits plain_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits plain_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
()
) else (
calc (==) {
append (append (append auth_quads p128x6) p128) (create 1 length_quad);
== { append_assoc auth_quads p128x6 p128 }
append (append auth_quads (append p128x6 p128)) (create 1 length_quad);
== { append_assoc auth_quads (append p128x6 p128) (create 1 length_quad) }
append auth_quads (append (append p128x6 p128) (create 1 length_quad));
};
let c = append p128x6 p128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
()
);
()
#reset-options ""
let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads p128x6) p128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads p_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures(let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
le_quad32_to_bytes enc_hash == gcm_decrypt_LE_tag alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
=
gcm_blocks_dec_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
rax: Vale.Def.Words_s.nat64 ->
alleged_tag_quad: Vale.Def.Types_s.quad32 ->
computed_tag: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_common_s.is_aes_key alg key /\
FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
(match alleged_tag_quad = computed_tag with
| true -> rax = 0
| _ -> rax > 0) /\
Vale.Def.Types_s.le_quad32_to_bytes computed_tag ==
Vale.AES.GCM.gcm_decrypt_LE_tag alg key iv cipher auth)
(ensures
rax = 0 ==
FStar.Pervasives.Native.snd (Vale.AES.GCM_s.gcm_decrypt_LE alg
key
iv
cipher
auth
(Vale.Def.Types_s.le_quad32_to_bytes alleged_tag_quad))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Words_s.nat64",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Arch.Types.le_quad32_to_bytes_injective_specific",
"Vale.Def.Types_s.insert_nat64_reveal",
"Vale.AES.GCM_s.gcm_decrypt_LE_reveal",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_GreaterThan",
"Prims.logical",
"Prims.eq2",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCM.gcm_decrypt_LE_tag",
"Prims.squash",
"FStar.Pervasives.Native.snd",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let decrypt_helper
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_LE)
(cipher auth: seq nat8)
(rax: nat64)
(alleged_tag_quad computed_tag: quad32)
: Lemma
(requires
is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\
(if alleged_tag_quad = computed_tag then rax = 0 else rax > 0) /\
le_quad32_to_bytes computed_tag == gcm_decrypt_LE_tag alg key iv cipher auth)
(ensures
(rax = 0) ==
snd (gcm_decrypt_LE alg key iv cipher auth (le_quad32_to_bytes alleged_tag_quad))) =
| gcm_decrypt_LE_reveal ();
insert_nat64_reveal ();
le_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag;
() | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_mov_mul_inputs | val test_inline_mov_mul_inputs: Prims.unit -> FStar.All.ML unit | val test_inline_mov_mul_inputs: Prims.unit -> FStar.All.ML unit | let test_inline_mov_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 77,
"end_line": 87,
"start_col": 0,
"start_line": 76
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rRbx",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rR15",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_IMul64",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Vale.X64.Machine_s.rRdx",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_mov_mul_inputs () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c =
Block
[
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx))
]
in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_comment_add | val test_inline_comment_add: Prims.unit -> FStar.All.ML unit | val test_inline_comment_add: Prims.unit -> FStar.All.ML unit | let test_inline_comment_add () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let s = "This is a comment" in
let c = Block [
Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_comment_add" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 74,
"end_line": 118,
"start_col": 0,
"start_line": 107
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
let test_inline_mov_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
// This test generates the correct inline assembly code, but only works with gcc >= 9
// On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly
// allocate the output "result" into register rax
(*
let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Mul64 (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c
*) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr_annotate",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Comment",
"Vale.X64.Machine_Semantics_s.AnnotateComment",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.opFlagsCf",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.op64",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_Add64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rR15",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.rRax",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_comment_add () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rR15 || r = rRax) in
let s = "This is a comment" in
let c =
Block
[
Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15))
]
in
print_function "test_inline_comment_add" (Some "result") args regs_mod c | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_length_simplifier | val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 611,
"start_col": 0,
"start_line": 588
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
t: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
t ==
(match num_bytes > FStar.Seq.Base.length s * 16 with
| true -> FStar.Seq.Base.append s bytes
| _ -> s) /\
(num_bytes <= FStar.Seq.Base.length s * 16 ==> num_bytes == FStar.Seq.Base.length s * 16) /\
FStar.Seq.Base.length s * 16 <= num_bytes /\ num_bytes < FStar.Seq.Base.length s * 16 + 16 /\
FStar.Seq.Base.length bytes == 1)
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes t) 0 num_bytes ==
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append s bytes
))
0
num_bytes) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Prims.bool",
"Prims.unit",
"FStar.Calc.calc_finish",
"Vale.Def.Types_s.nat8",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.AES.GCM.append_distributes_le_seq_quad32_to_bytes",
"Prims.squash",
"Vale.Lib.Seqs.lemma_slice_first_exactly_in_append",
"Prims._assert",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.int",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat)
: Lemma
(requires
t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1)
(ensures
slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) =
| if num_bytes > (length s) * 16
then (())
else
(calc ( == ) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
( == ) { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
( == ) { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s)
(le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
( == ) { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()) | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.print_function | val print_function
(name: string)
(ret_val: option string)
(args: list (string & td & reg_64))
(regs_mod: (reg_64 -> bool))
(c: code)
: FStar.All.ML unit | val print_function
(name: string)
(ret_val: option string)
(args: list (string & td & reg_64))
(regs_mod: (reg_64 -> bool))
(c: code)
: FStar.All.ML unit | let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
() | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 29,
"start_col": 0,
"start_line": 14
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
name: Prims.string ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
args: Prims.list ((Prims.string * Vale.Interop.Base.td) * Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
c: Vale.X64.Machine_Semantics_s.code
-> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.string",
"FStar.Pervasives.Native.option",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.X64.Machine_Semantics_s.code",
"Prims.unit",
"Prims.int",
"Vale.X64.Print_Inline_s.print_inline",
"Prims.Nil",
"Vale.Interop.X64.reg_nat",
"FStar.List.Tot.Base.nth",
"FStar.List.Tot.Base.map",
"Prims.nat",
"FStar.List.Tot.Base.length"
] | [] | false | true | false | false | false | let print_function
(name: string)
(ret_val: option string)
(args: list (string & td & reg_64))
(regs_mod: (reg_64 -> bool))
(c: code)
: FStar.All.ML unit =
| let len = List.length args in
let arg_names n =
match List.Tot.nth args n with
| None -> ""
| Some (x, _, _) -> x
in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n: reg_nat len) : reg_64 =
match List.Tot.nth args n with
| None -> 0
| Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
() | false |
Vale.AES.GCM.fst | Vale.AES.GCM.lemma_gcm_encrypt_decrypt_equiv | val lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) | val lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) | let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 728,
"start_col": 0,
"start_line": 715
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv) /\
FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\
plain ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
cipher
auth))
(ensures
plain ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_decrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
cipher
auth
alleged_tag)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.unit",
"Vale.AES.GCM_s.gcm_decrypt_LE_reveal",
"Vale.AES.GCM_s.gcm_encrypt_LE_reveal",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.b2t",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.pow2_32",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.squash",
"Prims.bool",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_gcm_encrypt_decrypt_equiv
(alg: algorithm)
(key: seq nat32)
(iv: supported_iv_LE)
(j0_BE: quad32)
(plain cipher auth alleged_tag: seq nat8)
: Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth))
(ensures
plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag)) =
| gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
() | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_mul_inputs | val test_inline_mul_inputs: Prims.unit -> FStar.All.ML unit | val test_inline_mul_inputs: Prims.unit -> FStar.All.ML unit | let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 73,
"end_line": 62,
"start_col": 0,
"start_line": 52
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rRbx",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_IMul64",
"Vale.X64.Machine_s.rR15",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Vale.X64.Machine_s.rRdx",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_mul_inputs () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rRbx); ("second_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rRax || r = rRdx) in
let c =
Block
[
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15))
]
in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c | false |
Vale.Test.TestInline.fst | Vale.Test.TestInline.test_inline_same_line_newline | val test_inline_same_line_newline: Prims.unit -> FStar.All.ML unit | val test_inline_same_line_newline: Prims.unit -> FStar.All.ML unit | let test_inline_same_line_newline () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let c = Block [
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr_annotate ins_Newline (AnnotateNewline ()));
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_same_line_newline" (Some "result") args regs_mod c | {
"file_name": "vale/code/test/Vale.Test.TestInline.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 146,
"start_col": 0,
"start_line": 132
} | module Vale.Test.TestInline
open FStar.Mul
open FStar.IO
open Vale.Arch.HeapTypes_s
open Vale.X64.Machine_s
open Vale.X64.Instructions_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.InsLemmas
open Vale.Interop.Base
open Vale.Interop.X64
open Vale.X64.Print_Inline_s
let print_function
(name:string)
(ret_val:option string)
(args:list (string & td & reg_64))
(regs_mod:reg_64 -> bool)
(c:code)
: FStar.All.ML unit
=
let len = List.length args in
let arg_names n = match List.Tot.nth args n with None -> "" | Some (x, _, _) -> x in
let arg_types = List.Tot.map (fun (_, t, _) -> t) args in
let arg_regs (n:reg_nat len) : reg_64 =
match List.Tot.nth args n with None -> 0 | Some (_, _, r) -> r
in
let _ = print_inline name 0 ret_val len arg_types arg_names c arg_regs regs_mod [] in
()
let test_inline_mov_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mov_input" (Some "result") args regs_mod c
let test_inline_mov_add_input () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input" (Some "result") args regs_mod c
let test_inline_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_mul_inputs" (Some "result") args regs_mod c
let test_inline_mov_mul_rax_100 () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OConst 100));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_rax_100" (Some "result") args regs_mod c
let test_inline_mov_mul_inputs () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rRbx);
("second_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRcx || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rRbx));
Ins (make_instr ins_Mov64 (OReg rRcx) (OReg rR15));
Ins (make_instr ins_IMul64 (OReg rRax) (OReg rRcx));
] in
print_function "test_inline_mov_mul_inputs" (Some "result") args regs_mod c
// This test generates the correct inline assembly code, but only works with gcc >= 9
// On prior versions, gcc ignores the register asm("rax") annotation, and does not correctly
// allocate the output "result" into register rax
(*
let test_inline_mov_add_input_dummy_mul () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rRax || r = rRdx) in
let c = Block [
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Mul64 (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rRax) (OConst 1));
] in
print_function "test_inline_mov_add_input_dummy_mul" (Some "result") args regs_mod c
*)
let test_inline_comment_add () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let s = "This is a comment" in
let c = Block [
Ins (make_instr_annotate (ins_Comment s) (AnnotateComment s));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_comment_add" (Some "result") args regs_mod c
let test_inline_same_line () : FStar.All.ML unit =
let args = [
("first_arg", TD_Base TUInt64, rR15);
] in
let regs_mod r = (r = rR15 || r = rRax) in
let c = Block [
Ins (make_instr_annotate (ins_Space 0) (AnnotateSpace 0));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
] in
print_function "test_inline_same_line" (Some "result") args regs_mod c | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_Inline_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Arch.HeapTypes_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Test.TestInline.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.Print_Inline_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapTypes_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.All.ML Prims.unit | FStar.All.ML | [
"ml"
] | [] | [
"Prims.unit",
"Vale.Test.TestInline.print_function",
"FStar.Pervasives.Native.Some",
"Prims.string",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Prims.Cons",
"Vale.X64.Machine_s.Ins",
"Vale.X64.InsLemmas.make_instr_annotate",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Space",
"Vale.X64.Machine_Semantics_s.AnnotateSpace",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.Machine_s.OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rR15",
"Vale.X64.Instruction_s.opFlagsCf",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.HavocFlags",
"Vale.X64.Instructions_s.ins_Add64",
"Vale.X64.Instructions_s.ins_Newline",
"Vale.X64.Machine_Semantics_s.AnnotateNewline",
"Prims.bool",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"Vale.Interop.Base.td",
"FStar.Pervasives.Native.Mktuple3",
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | true | false | false | false | let test_inline_same_line_newline () : FStar.All.ML unit =
| let args = [("first_arg", TD_Base TUInt64, rR15)] in
let regs_mod r = (r = rR15 || r = rRax) in
let c =
Block
[
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rR15));
Ins (make_instr_annotate ins_Newline (AnnotateNewline ()));
Ins (make_instr_annotate (ins_Space 4) (AnnotateSpace 4));
Ins (make_instr ins_Add64 (OReg rR15) (OReg rRax));
Ins (make_instr ins_Mov64 (OReg rRax) (OReg rR15))
]
in
print_function "test_inline_same_line_newline" (Some "result") args regs_mod c | false |
Vale.AES.GCM.fst | Vale.AES.GCM.gcm_blocks_helper_enc | val gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | val gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) | let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 311,
"start_col": 0,
"start_line": 205
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
p_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\
(let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain) 0 p_num_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 p_num_bytes
in
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_encrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.gcm_encrypt_LE_fst_helper",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.AES.GCTR.gctr_partial_to_full_advanced",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"FStar.Seq.Base.index",
"Vale.AES.GCTR_s.inc32",
"Vale.AES.GCTR.gctr_encrypt_block_offset",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Prims.int",
"Prims.op_Division",
"Vale.AES.GCTR.gctr_partial_opaque_completed",
"FStar.Seq.Base.append",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR.gctr_partial_opaque_ignores_postfix",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.AES.GCTR.gctr_partial_reveal",
"Prims.bool",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR.gctr_partial_to_full_basic",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let gcm_blocks_helper_enc
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2)))
(ensures
(let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) =
| let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 + (if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16
then
(gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix alg
(length p128x6 + length p128)
plain
(append p128x6 p128)
cipher
(append c128x6 c128)
key
ctr_BE_2;
assert (gctr_partial alg
(length p128x6 + length p128)
(append p128x6 p128)
(append c128x6 c128)
key
ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert (index cipher num_blocks ==
quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert (gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
else
(gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher ==
gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key));
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
() | false |
Vale.AES.GCM.fst | Vale.AES.GCM.gcm_blocks_helper_dec_simplified | val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag))) | val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag))) | let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes alleged_tag)))
=
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 798,
"start_col": 0,
"start_line": 731
} | module Vale.AES.GCM
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_s
open Vale.AES.AES_s
open Vale.AES.GCM_helpers
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GHash_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open FStar.Calc
open Vale.Def.Words.Four_s
let lemma_set_to_one_equality (q0 q1:quad32) : Lemma
(requires upper3_equal q0 q1)
(ensures set_to_one_LE q0 == set_to_one_LE q1)
=
()
let lemma_set_to_one_reverse_equality (q0 q1:quad32) : Lemma
(requires lower3_equal q0 q1)
(ensures set_to_one_LE (reverse_bytes_quad32 q0) == set_to_one_LE (reverse_bytes_quad32 q1))
=
reveal_reverse_bytes_quad32 q0;
reveal_reverse_bytes_quad32 q1;
()
let lemma_le_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma
(requires slice b0 0 12 == slice b1 0 12)
(ensures lower3_equal (le_bytes_to_quad32 b0) (le_bytes_to_quad32 b1))
=
let q0 = le_bytes_to_quad32 b0 in
let q1 = le_bytes_to_quad32 b1 in
le_bytes_to_quad32_reveal ();
(*
* AR: 06/25: Someone should review this code, is this proof supposed to work without revealing this?
*)
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #nat8);
assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\
index b1 i == index (slice b1 0 12) i))
let lemma_le_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma
(slice (le_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
=
assert (equal (slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12)
(slice (le_quad32_to_bytes q) 0 12));
()
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_LE) (num_bytes:nat64) (h_LE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = reverse_bytes_quad32 (index iv_extra_b 0) in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_LE iv)
=
assert (length iv == 12);
assert (length iv_b == 0);
lemma_empty iv_b;
append_empty_l iv_extra_b;
assert (append iv_b iv_extra_b == iv_extra_b);
let q = index iv_extra_b 0 in
le_seq_quad32_to_bytes_of_singleton q;
assert (equal iv_extra_b (create 1 q));
assert (le_seq_quad32_to_bytes iv_extra_b == le_quad32_to_bytes q);
// Prove this so we can call lemma_le_bytes_to_quad32_prefix_equality below
calc (==) {
slice (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)) 0 12;
== {}
slice (pad_to_128_bits iv) 0 12;
};
// Prove this so we can call lemma_set_to_one_reverse_equality below
calc (==) {
le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes iv_extra_b) 0 num_bytes));
== {}
le_bytes_to_quad32 (pad_to_128_bits iv);
};
calc (==) {
j0;
== {}
set_to_one_LE (reverse_bytes_quad32 q);
== { le_bytes_to_quad32_to_bytes q }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (le_quad32_to_bytes q)));
== {
lemma_le_seq_quad32_to_bytes_prefix_equality q;
lemma_le_bytes_to_quad32_prefix_equality
(le_quad32_to_bytes q)
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12));
lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (le_quad32_to_bytes q))
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
}
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))));
== { lemma_set_to_one_reverse_equality
(le_bytes_to_quad32 (pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12)))
(le_bytes_to_quad32 (pad_to_128_bits iv));
lemma_le_bytes_to_quad32_prefix_equality
(pad_to_128_bits (slice (le_quad32_to_bytes q) 0 12))
(pad_to_128_bits iv) }
set_to_one_LE (reverse_bytes_quad32 (le_bytes_to_quad32 (pad_to_128_bits iv)));
== {compute_iv_BE_reveal ()}
compute_iv_BE h_LE iv;
};
()
open Vale.AES.GHash
let lemma_compute_iv_hard (iv:supported_iv_LE) (quads:seq quad32) (length_quad h_LE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == le_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_LE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == reverse_bytes_quad32 (insert_nat64
(insert_nat64
(Mkfour 0 0 0 0) 0 1)
(8 * (length iv)) 0))
(ensures reverse_bytes_quad32 j0 == compute_iv_BE h_LE iv)
=
assert (two_to_nat32 (Mktwo 0 0) == 0);
let q0 = Mkfour 0 0 0 0 in
lemma_insert_nat64_nat32s q0 0 0;
assert (insert_nat64 q0 0 1 == q0);
insert_nat64_reveal ();
assert (length_quad == reverse_bytes_quad32 (insert_nat64_def (Mkfour 0 0 0 0) (8 * length iv) 0));
ghash_incremental_to_ghash h_LE (append quads (create 1 length_quad));
compute_iv_BE_reveal ();
()
let gcm_encrypt_LE_fst_helper (iv:supported_iv_LE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
iv_enc == inc32 (compute_iv_BE h_LE iv) 1 /\
cipher == gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key /\
length plain < pow2_32 /\
length auth < pow2_32
))
(ensures cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
gcm_encrypt_LE_reveal ()
(*
let s_key_LE = seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE key) in
let s_iv_BE = be_bytes_to_quad32 (be_quad32_to_bytes iv_BE) in
let s_j0_BE = Mkfour 1 s_iv_BE.lo1 s_iv_BE.hi2 s_iv_BE.hi3 in
let s_cipher = fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
be_bytes_to_quad32_to_bytes iv_BE;
assert (s_cipher == gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE);
assert (s_iv_BE == iv_BE);
assert (s_key_LE == key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg s_key_LE ==
gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) plain alg key ==
gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key);
assert (gctr_encrypt_LE (inc32 s_j0_BE 1) (make_gctr_plain_LE plain) alg key ==
gctr_encrypt_LE iv_enc (make_gctr_plain_LE plain) alg key);
()
*)
let gcm_encrypt_LE_snd_helper (iv:supported_iv_LE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
length plain < pow2_32 /\
length auth < pow2_32 /\
cipher == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth) /\
length_quad32 == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * length auth) 1) (8 * length plain) 0) /\
(let auth_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let cipher_padded_quads = le_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
hash == ghash_LE h_LE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\
le_quad32_to_bytes mac == gctr_encrypt_LE j0_BE (le_quad32_to_bytes hash) alg key)
))
(ensures le_quad32_to_bytes mac == snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain auth))
=
insert_nat64_reveal ();
gcm_encrypt_LE_reveal ()
//be_bytes_to_quad32_to_bytes iv_BE;
//let t = snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain auth) in
//()
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(auth_bytes:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
)))
(ensures (let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
//cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key))
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)))
=
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
gctr_partial_opaque_completed alg plain cipher key ctr_BE_2;
if p_num_bytes > (length p128x6 + length p128) * 16 then (
gctr_partial_reveal ();
assert (gctr_partial alg (length p128x6 + length p128) plain cipher key ctr_BE_2);
assert (equal (slice plain 0 (length p128x6 + length p128))
(slice (append p128x6 p128) 0 (length p128x6 + length p128)));
assert (equal (slice cipher 0 (length p128x6 + length p128))
(slice (append c128x6 c128) 0 (length p128x6 + length p128)));
gctr_partial_opaque_ignores_postfix
alg (length p128x6 + length p128)
plain (append p128x6 p128)
cipher (append c128x6 c128)
key ctr_BE_2;
assert (gctr_partial alg (length p128x6 + length p128) (append p128x6 p128) (append c128x6 c128) key ctr_BE_2);
gctr_partial_opaque_completed alg (append p128x6 p128) (append c128x6 c128) key ctr_BE_2;
let num_blocks = p_num_bytes / 16 in
assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_BE alg key (inc32 ctr_BE_2 num_blocks)));
gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks;
assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks ==
gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0);
aes_encrypt_LE_reveal ();
gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes;
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
) else (
gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher;
assert (le_seq_quad32_to_bytes cipher == gctr_encrypt_LE ctr_BE_2 (le_seq_quad32_to_bytes plain) alg key);
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
assert (equal plain_bytes (le_seq_quad32_to_bytes plain));
assert (equal cipher_bytes (le_seq_quad32_to_bytes cipher));
assert (cipher_bytes == gctr_encrypt_LE ctr_BE_2 plain_bytes alg key)
);
gcm_encrypt_LE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key;
()
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma
(requires length x <= i /\ i <= length x + length y)
(ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
=
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x))));
()
let append_distributes_le_seq_quad32_to_bytes (x y:seq quad32) :
Lemma (le_seq_quad32_to_bytes (append x y) == append (le_seq_quad32_to_bytes x) (le_seq_quad32_to_bytes y))
=
append_distributes_le_seq_quad32_to_bytes x y
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma
(requires length x % 16 == 0)
(ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
=
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
#reset-options "--z3rlimit 100"
let gcm_blocks_helper (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE = compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes)))
=
let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 p_num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 p_num_bytes in
let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
let hash = ghash_LE h final_quads in
gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE;
//assert (cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) (be_quad32_to_bytes iv_BE) plain_bytes auth_input_bytes)); // Passes
calc (==) {
enc_hash;
== {}
gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0;
== {}
gctr_encrypt_block ctr_BE_1 hash alg key 0;
== {}
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== { aes_encrypt_LE_reveal () }
quad32_xor hash (aes_encrypt_LE alg key (reverse_bytes_quad32 ctr_BE_1));
== {}
quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1);
};
calc (==) {
gctr_encrypt_LE ctr_BE_1 (le_quad32_to_bytes hash) alg key;
== { gctr_encrypt_one_block ctr_BE_1 hash alg key }
le_seq_quad32_to_bytes (create 1 (quad32_xor hash (aes_encrypt_BE alg key ctr_BE_1)));
== {}
le_seq_quad32_to_bytes (create 1 enc_hash);
== { le_seq_quad32_to_bytes_of_singleton enc_hash }
le_quad32_to_bytes enc_hash;
};
if p_num_bytes > (length p128x6 + length p128) * 16 then (
let c = append (append c128x6 c128) c_bytes in
calc (==) {
append (append (append auth_quads c128x6) c128) c_bytes;
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) c_bytes;
== { append_assoc auth_quads (append c128x6 c128) c_bytes }
append auth_quads (append (append c128x6 c128) c_bytes);
== {}
append auth_quads c;
};
calc (==) {
append (append (append (append auth_quads c128x6) c128) c_bytes) (create 1 length_quad);
= {} // See previous calc
append (append auth_quads (append (append c128x6 c128) c_bytes)) (create 1 length_quad);
== { append_assoc auth_quads c (create 1 length_quad) }
append auth_quads (append c (create 1 length_quad));
};
let raw_quads_old = append auth_quads c in
calc (==) {
raw_quads;
== {}
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes));
== {
calc (==) {
pad_to_128_bits (slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes);
== {
calc (==) {
slice (le_seq_quad32_to_bytes raw_quads_old) 0 total_bytes;
== { append_distributes_le_seq_quad32_to_bytes auth_quads c }
slice (append (le_seq_quad32_to_bytes auth_quads) (le_seq_quad32_to_bytes c)) 0 total_bytes;
== { slice_append_back (le_seq_quad32_to_bytes auth_quads)
(le_seq_quad32_to_bytes c)
total_bytes }
append (le_seq_quad32_to_bytes auth_quads) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes);
== {}
append (le_seq_quad32_to_bytes auth_quads) cipher_bytes;
}
}
pad_to_128_bits (append (le_seq_quad32_to_bytes auth_quads) cipher_bytes);
== { pad_to_128_bits_multiple_append (le_seq_quad32_to_bytes auth_quads) cipher_bytes }
append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes);
}
}
le_bytes_to_seq_quad32 (append (le_seq_quad32_to_bytes auth_quads) (pad_to_128_bits cipher_bytes));
== { append_distributes_le_bytes_to_seq_quad32
(le_seq_quad32_to_bytes auth_quads)
(pad_to_128_bits cipher_bytes) }
append (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes auth_quads)) (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
== { le_bytes_to_seq_quad32_to_bytes auth_quads }
append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes));
};
let auth_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in
let cipher_padded_quads' = le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in
calc (==) {
append raw_quads (create 1 length_quad);
== {}
append (append auth_quads (le_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad);
== { assert (equal auth_quads auth_padded_quads') }
append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad);
== { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) }
append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad));
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
) else (
calc (==) {
append (append (append auth_quads c128x6) c128) (create 1 length_quad);
== { append_assoc auth_quads c128x6 c128 }
append (append auth_quads (append c128x6 c128)) (create 1 length_quad);
== { append_assoc auth_quads (append c128x6 c128) (create 1 length_quad) }
append auth_quads (append (append c128x6 c128) (create 1 length_quad));
};
let c = append c128x6 c128 in
calc (==) {
le_bytes_to_seq_quad32 (pad_to_128_bits (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes));
== { assert (equal (le_seq_quad32_to_bytes c) (slice (le_seq_quad32_to_bytes c) 0 p_num_bytes)) }
le_bytes_to_seq_quad32 (pad_to_128_bits (le_seq_quad32_to_bytes c));
== { assert (pad_to_128_bits (le_seq_quad32_to_bytes c) == (le_seq_quad32_to_bytes c)) }
le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes c);
== { le_bytes_to_seq_quad32_to_bytes c }
c;
};
insert_nat64_reveal ();
gcm_encrypt_LE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key;
()
);
()
// TODO: remove duplicate code -- there is an identical copy of this in GCTR.fst
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
)
#reset-options "--z3rlimit 10"
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_LE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128x6 == length c128x6 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_LE alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_LE alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == reverse_bytes_quad32
(insert_nat64 (insert_nat64 (Mkfour 0 0 0 0) (8 * a_num_bytes) 1) (8 * p_num_bytes) 0) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else
append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
let cipher_bound:nat = length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = le_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append (append auth_quads c128x6) c128 in
let total_bytes = (length auth_quads) * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (le_seq_quad32_to_bytes raw_quads) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
le_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_LE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (le_seq_quad32_to_bytes auth_raw_quads) 0 a_num_bytes in
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes) /\
le_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key)
iv plain_bytes auth_bytes))
)
=
gcm_blocks_helper alg key a128 a_bytes p128x6 p128 p_bytes c128x6 c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad;
let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16 then
append (append c128x6 c128) c_bytes
else
append c128x6 c128
in
lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes;
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
()
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_LE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma
(requires
is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\
length cipher < pow2_32 /\
length auth < pow2_32 /\
plain == fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth)
)
(ensures plain == fst (gcm_decrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv cipher auth alleged_tag))
=
gcm_encrypt_LE_reveal ();
gcm_decrypt_LE_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 ->
p128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128x6: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
p_num_bytes: Prims.nat ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
j0_BE: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128x6 * 16 + FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length p128x6 == FStar.Seq.Base.length c128x6 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
(let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in
j0_BE = Vale.AES.GCM_s.compute_iv_BE h_LE iv) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\
(let ctr_BE_2 = Vale.AES.GCTR_s.inc32 j0_BE 1 in
let plain =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes
| _ -> FStar.Seq.Base.append p128x6 p128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher =
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
| _ -> FStar.Seq.Base.append c128x6 c128)
<:
FStar.Seq.Base.seq Vale.Def.Types_s.quad32
in
let cipher_bound =
FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128 +
(match
p_num_bytes > (FStar.Seq.Base.length p128x6 + FStar.Seq.Base.length p128) * 16
with
| true -> 1
| _ -> 0)
in
Vale.AES.GCTR.gctr_partial alg cipher_bound plain cipher key ctr_BE_2))
(ensures
(let plain_raw_quads = FStar.Seq.Base.append (FStar.Seq.Base.append p128x6 p128) p_bytes in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher_raw_quads =
FStar.Seq.Base.append (FStar.Seq.Base.append c128x6 c128) c_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads)
0
p_num_bytes
in
FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\
cipher_bytes ==
FStar.Pervasives.Native.fst (Vale.AES.GCM_s.gcm_decrypt_LE alg
(Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes
alleged_tag))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat8",
"Prims.nat",
"Vale.AES.GCM_s.supported_iv_LE",
"Prims.unit",
"Vale.AES.GCM.lemma_gcm_encrypt_decrypt_equiv",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Pervasives.Native.fst",
"Vale.AES.GCM_s.gcm_encrypt_LE",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Vale.AES.GCM.lemma_length_simplifier",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCM.gcm_blocks_helper_enc",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.int",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.op_Equality",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCTR.gctr_partial",
"Vale.AES.GCTR_s.inc32",
"Prims.squash",
"Vale.AES.GCM_s.gcm_decrypt_LE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let gcm_blocks_helper_dec_simplified
(alg: algorithm)
(key: seq nat32)
(p128x6 p128 p_bytes c128x6 c128 c_bytes: seq quad32)
(auth_bytes alleged_tag: seq nat8)
(p_num_bytes: nat)
(iv: supported_iv_LE)
(j0_BE: quad32)
: Lemma
(requires
length p128x6 * 16 + length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128x6 * 16 + length p128 * 16 + 16 /\ length p128x6 == length c128x6 /\
length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\ is_aes_key_LE alg key /\
(let h_LE = aes_encrypt_LE alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_LE iv) /\ p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
let cipher_bound:nat =
length p128x6 + length p128 +
(if p_num_bytes > (length p128x6 + length p128) * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2))
(ensures
(let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\
cipher_bytes ==
fst (gcm_decrypt_LE alg
(seq_nat32_to_seq_nat8_LE key)
iv
plain_bytes
auth_bytes
alleged_tag))) =
| gcm_blocks_helper_enc alg key p128x6 p128 p_bytes c128x6 c128 c_bytes auth_bytes p_num_bytes iv
j0_BE;
let plain_raw_quads =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append p128x6 p128) p_bytes
else append p128x6 p128
in
let cipher_raw_quads:seq quad32 =
if p_num_bytes > (length p128x6 + length p128) * 16
then append (append c128x6 c128) c_bytes
else append c128x6 c128
in
lemma_length_simplifier (append p128x6 p128) p_bytes plain_raw_quads p_num_bytes;
lemma_length_simplifier (append c128x6 c128) c_bytes cipher_raw_quads p_num_bytes;
let plain_raw_quads = append (append p128x6 p128) p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append (append c128x6 c128) c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
assert (cipher_bytes ==
fst (gcm_encrypt_LE alg (seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes));
lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag;
() | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.